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Reachable Workspace and Proximal Function
Measures for Quantifying Upper Limb Motion
Robert P. Matthew1, Sarah Seko2, Gregorij Kurillo3, Ruzena Bajcsy2, Louis Cheng4, Jay J. Han5, and

Jeffrey Lotz3

Abstract—There are a lack of quantitative measures for clini-
cally assessing upper limb function. Conventional biomechanical
performance measures are restricted to specialist labs due to
hardware cost and complexity, while the resulting measurements
require specialists for analysis. Depth cameras are low cost
and portable systems that can track surrogate joint positions.
However, these motions may not be biologically consistent, which
can result in noisy, inaccurate movements. This paper introduces
a rigid body modelling method to enforce biological feasibility
of the recovered motions. This method is evaluated on an
existing depth camera assessment: the reachable workspace (RW)
measure for assessing gross shoulder function. As a rigid body
model is used, position estimates of new proximal targets can
be added, resulting in a proximal function (PF) measure for
assessing a subject’s ability to touch specific body landmarks. The
accuracy, and repeatability of these measures is assessed on ten
asymptomatic subjects, with and without rigid body constraints.
This analysis is performed both on a low-cost depth camera
system and a gold-standard active motion capture system. The
addition of rigid body constraints was found to improve accuracy
and concordance of the depth camera system, particularly in
lateral reaching movements. Both RW and PF measures were
found to be feasible candidates for clinical assessment, with future
analysis needed to determine their ability to detect changes within
specific patient populations.

Index Terms—depth camera, upper limb, clinical metrics,
quantitative, range of motion, functional assessment, rigid body
modelling

I. INTRODUCTION

ACCURATE and repeatable measures of human perfor-
mance are essential for tracking patient outcomes and de-

termining the efficacy of interventions. While highly accurate
methods for assessing an individual’s movement exist, these
methods typically require access to a specialised biomechanics
lab. The requirements for costly hardware, dedicated space for
setting up motion-capture cameras, and specialists needed to
collect and process this data are limiting factors that hinders
the use of these methods as part of standard patient care.

Existing clinical measurements instead focus on single
joint goniometry or task-specific scores. Some tests, such
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as the Functional Independence measure and Fugl-Meyer
assessment, provide a point score based on the degree of
assistance needed during a set of daily living tasks. While these
tests are easily deployable in clinic, able to track function,
have excellent inter-rater reliability, and are highly recom-
mended by professional organisations [1]–[3], they are unable
to distinguish between compensation and true recovery [4].
Functional testing rarely provides measures of compensation
or movement synergies. Instead these methods are scored
based on task completion or a subjective binary assessment
of perceived difficulty. This results in insufficient resolution
to distinguish between varying levels of function and may
confound improvement with the adoption of a potentially
undesirable compensatory mechanism.

This is in contrast to the traditional model based approach
used in biomechanics [5]. High accuracy measurements of
motion capture markers can be obtained through television
(i.e. Vicon), optoelectric (i.e. OptoTrack), or magnetic (i.e.
Ascension) methods. By placing these markers on specific
anatomical landmarks, a rigid body model can be used to
estimate the corresponding limb pose. Joint centre locations
can be inferred from the relative locations of markers or
through the use of function recovery and optimisation methods
[6], [7]. This allows for the study of compound motions of
the sternum, clavicle and humerus during arm motion [8]
and the quantification of movement during activity [9]. These
methods are the gold standard for biomechanics research,
whose accuracy is only surpassed by methods such as bi-planar
fluoroscopy [10].

Depth camera systems can be used as an alternative method
for obtaining 3D joint positions. Popularised by the Microsoft
Kinect, there are a number of commercial depth camera
systems including the Intel RealSense, VicoVR, Depthsense,
PMD, and SICK. These cameras estimate the depth of each
image pixel by projecting either known patterns onto the
environment (structured light), from a scanned point (time
of flight), or triangulation [11]. This depth image can be
converted into an estimated skeletal pose natively, or can be
combined with a skeletal tracking library such as Nuitrack or
OpenNI. These libraries use a learned decoder that applies a
pixel-wise labelling to each RGB-D pixel to identify limbs.
The joint centres can then be estimated from the intersection
of these limb segments [12]. This results in real-time frame-
wise estimates of full-body pose.

Although the connections of the resulting skeleton are
biologically-consistent, the lengths of the limbs and joint limits
are not constrained, resulting in non-realistic movements [13].
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These problems can be seen in cases of self-occlusion and
cases where the subject is not facing the camera [11], or during
periods of high speed movement [14]. The accuracy of the
detected joint centres and corresponding angles is therefore
dependent on the experimental motion protocol which is rarely
standardised [11], [15]. This limits the use of this technique
as a clinical assessment tool with a number of depth camera
systems focusing on single joint assessment and coaching
using video games [16].

In an effort to overcome some of these challenges, novel
metrics and movement protocols have been introduced. Kurillo
et al. proposed the reachable workspace measure for the
assessment of shoulder function [17]. This method projects
the motions of the wrist onto an allometrically scaled sphere
centred at the shoulder. The area encompassed by the observed
trajectories can be computed and used as a quantitative mea-
sure of shoulder function. The order of the arm movements
and timing of each action is kept consistent between trials by
using a coaching video which aids protocol consistency. This
measure has seen success in the assessment of subjects with
muscular dystrophy and amyotrophic lateral sclerosis and has
been shown to correlate with other clinical measures [18]–
[23]. While this test appears to be a promising measure, it is
likely to be sensitive to the same variable limb-length issues.

One approach for improving the biological feasibility of
the depth camera estimates is to combine frame-wise joint
centre estimates from a depth camera with the traditional rigid
body modelling approach. This approach has been used in the
collection and analysis of sit-to-stand movements [24]. The
kinematics and dynamics of this motion can be recovered,
providing estimates of loading in the low-back and ground
reaction forces [25]. This method of combining a depth camera
system with a rigid body model and a fixed clinical protocol
resulted in the identification of cohort specific variables of
performance [26]. Patients with low back pain were found
to move slower and with higher hip and spine loading when
compared to control subjects. This difference was less pro-
nounced post-surgery, suggesting that some of the identi-
fied measures are potentially useful for quantifying patient
outcomes. Furthermore, this analysis was able to identify a
single subject who later developed a post surgical complication
(proximal joint fracture) before the fracture occurred. This
suggests that these metrics may be able to identify early signs
of complications before they result in mechanical failure.

A. Contributions

This paper assesses the feasibility and efficacy of combining
depth cameras with rigid body models for upper limb clinical
assessment. Two movement protocols are tested: the reachable
workspace measure for assessing distal arm movement and the
proximal function measure for assessing a subject’s ability to
reach specific body landmarks that are related to activities of
daily living. The performance of the depth camera (Kinect 2,
Microsoft) is compared to a gold-standard active motion cap-
ture system (Impulse X2, Phasespace). The effect of constrain-
ing the raw joint position estimates using an allometrically
scaled rigid body model is examined for both the depth camera

and baseline systems. Finally recommendations are given on
the appropriateness of using depth camera systems for upper
limb clinical assessment.

II. METHODS

This section outlines an approach for correcting the non-
biological movements seen in the raw depth camera skeleton
and two proposed motions and measures for assessing upper
limb performance. Section II-A introduces the rigid body
modelling framework and a non-linear least squares approach
to inverse kinematics. Two movement protocols are proposed
in Section II-B, the reachable workspace (RW) for assessing
gross range-of-motion and the proximal function (PF) for
reaching body landmarks related to activities of daily living.

A. Models

To correct for non-biologically consistent movements, an
allometrically scaled rigid body model is used (Section II-A1).
Inman’s model of scapulohumeral rhythm is incorporated into
this model in Section II-A2 [27]. This rigid body model is used
to estimate the corresponding joint angles and re-projected
limb positions using framewise non-linear least squares opti-
misation (Section II-A3).

1) Rigid Body Modelling: The rigid body model consists
of seven allometrically scaled segments which connect eight
anatomical landmarks. The seven segments are separated into
two serial chains for the left and right arms which originate at
the torso. The torso is modelled as the base link of the system,
with both scapulae rotating at a common torso origin.

The movement of the torso (T ) in the world frame (W )
is modelled as a floating system with the associated homoge-
neous transform:

gW,T =

[
R−XR+Y R+Z t

0 1

]
(1)

where t ∈ R3×1 is the translation from the world frame to
the torso frame, and R ∈ SO(3) are standard rotations in the
special orthogonal group, each parameterised by angle θ.

The scapula (SC), upper arm (UA) and forearm (FA) are
then modelled as two branches from the torso with the right
arm modelled as:

gT,RSC =

[
R+ZR−Y 0

0 1

]
(2)

gRSC,RUA =

[
R+ZR−Y R+Z qRSJC

0 1

]
(3)

gRUA,RFA =

[
R+X qREJC

0 1

]
(4)

where SJC and EJC are the relative positions of the shoulder
and elbow joint centres in the torso and right upper arm frames
respectively. The left arm is modelled in a similar manner, but
with the direction of rotation reversed to allow for consistency
in anatomical rotation between the two limbs.

These homogeneous transforms can be used to write the
forward kinematic map FK (x). FK is a function that maps
the system states x = [t, θ]

T to positions on the rigid body
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Fig. 1. Kinematic model used to enforce allometric constraints. Left: Joints and segment lengths. The scapulothoracic movement is modelled as coincident Z
and Y axis rotations, with rotation of the glenohumeral joint modelled as a sequence of Z, Y, and Z rotations. The elbow is modelled as a single X rotation.
Centre: Correspondence between the six landmarks estimated from the depth camera (red crosses) and their approximate anatomical locations. The Torso
segment is defined by the mid-shoulder and mid-torso markers which are an allometrically scaled distance above and below the torso origin. Right: Model
for capturing scapulohumeral rhythm. Scapulothoracic (θTS , red), scapulohumeral (θSH , blue), and humerothroacic (θTH , purple) are shown.

structure. This allows the positions of anatomical landmarks pi

to be found given some system state xi and the local positions
of these landmarks in a segment frame qi.

For the recovery of upper body motion, the predicted
locations of the eight anatomical landmarks (Figure 1) can
be written as:

ptorso = gW,T (t, θ)qtorso (5)
pRSHO = gW,RSC (t, θ)qRSHO (6)
pRELB = gW,RUA (t, θ)qRELB (7)
pRWRI = gW,RFA (t, θ)qRWRI (8)

with the homogenous transforms g found from the relative
transforms (Equations 2, 3, and 4). This allows the forward
kinematic map to be written as:[

ptorso . . . pLWRI

]
i
= FK (xi) (9)

The anatomical landmark locations and segment dimensions
(Figure 1) are estimated from the subject’s standing height
[28]–[32].

2) Modelling Scapulohumeral Rhythm (SHR): While the
forward kinematics model presented in Equation 9 allows
for independent movement of the scapula and humerus, the
relative motions of these joints are coupled based on the
overall position of the humerus relative to the torso. This
coupled movement is known as scapulohumeral rhythm, and
can be represented as a ratio of expected scapula-humeral
motion to torso-scapula motion, and is typically taken to be
2:1 [27]. It is important to note that this ratio has been found
to vary due to an added load [33], increasing the speed of the
motions [34], and due to fatigue [35], with ratios ranging from
1.25:1 [36] to 7.9:1 (unloaded passive range of motion) [35].

In order to capture some of the features of SHR in the pro-
posed model, the angles used to parameterise the transforms
gT,SC and gSC,UA are expressed as fractions of the total torso-
humeral angle θUA. Although this is a simplified model of the

complex shoulder motions, the 2:1 ratio is commonly used and
is a first approximation for this proposed modelling method.

The underlying abduction-adduction of the shoulder can
therefore be represented by:

θTS =

{
0 for θTH < 45◦

1
3 (θTH − 45◦) for θTH ≥ 45◦

θSH =

{
θTH for θTH < 45◦

2
3 (θTH − 45◦) + 45◦ for θTH ≥ 45◦

(10)

where θTH , θTS , and θSH are the humerothoracic, scapulotho-
racic, and glenohumeral elevations (Figure 1 right). A similar
model is used for the protraction-retraction of the scapula and
humerus, where the 2:1 ratio is still used, but without the 45◦

offset.
While the centre of rotation of the scapula does not occur at

mid-line [37], this model is designed to be a first approxima-
tion for capturing shoulder movement. As such this removes
the necessity of finding an additional allometric relationship
for the mediolateral centre of rotation of the scapula.

3) Kinematic Recovery: This rigid body model was used
to estimate the joint angles corresponding to the observed
joint centres. This was formulated as a non-linear least squares
(NLS) problem, enforcing the fixed limb length and joint range
of motion constraints. Given a single Kinect observation k of
anatomical landmarks yk, the model states xk that best fit
these observations can be found via the optimisation problem:

argmin
xk

‖yk −FK (xk)‖22

subject to: x ≤ xk ≤ x
(11)

where FK is the forward kinematic map, and x, x are bounds
on the system states that are used to keep joint angles within
a physiologically consistent range.

As the kinematic recovery process is performed on each
frame separately, this approach can be parallelised decreasing
the time needed for computation.



IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. X, AUGUST 2015 4

SIDE

FRONT

45°

BELT

SHOULDER

ABOVE HEAD

Fig. 2. Reachable workspace motions. In the RW protocol, subjects are
instructed to move with their arm as straight as possible, through several
planes. Each movement moves through the maximal volitional range of motion
on each plane with the elbow only bending when crossing the torso. Subjects
move their arm through three planes about the cranial-caudal axis in front, at
45 degrees, and to the side of the subject. Subjects are also asked to move their
arm though three planes normal to the ground at the belt and shoulder levels,
and above their head. The position of the wrist relative to the shoulder can
then be projected on to a sphere providing a surface area metric of reaching
[17], [38].

B. Motions and Measures

The proposed method for obtaining an improved estimate
of upper limb function is evaluated on two upper-limb as-
sessments. The reachable workspace measure is designed to
assess the limits to gross range of motion, while the proximal
function measure is designed to assess the ability of the subject
to perform self care activities such as feeding, grooming, and
toileting. These motions are performed while seated, with
guidance from an instructional video keeping the timing and
order of actions consistent between trials and study sites.

1) Reachable Workspace (RW): The reachable workspace
measure is performed for each arm separately from a seated
position. Subjects are asked to move with their out-stretched
arm through several planes of movement (Figure 2). The
movements of the wrist relative to the shoulder centre are
projected onto an allometrically-scaled sphere. The projected
area is used as a quantitative measure of shoulder function. A
full description of this method is given by [17], [38].

2) Proximal Function (PF): In contrast to the distal assess-
ment of reach found by the RW measure, the proximal function
measure assesses a person’s abilities to reach key anatomical
landmarks. Subjects are asked to move the tested arm to each
landmark in series while seated (Figure 3). In cases where
the landmark is not part of the original Kinect model (back
pocket, stomach, etc.), an allometrically scaled model of these
locations in the torso frame is used. The distance between
the tested wrist and each landmark is measured. If the wrist is
below a pre-set threshold, that landmark is said to be reached at
that instant. The total duration of time that the hand is at each
landmark can therefore be used as a quantitative assessment
of their ability to move and hold their arm at each landmark.

12
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HEAD
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HEAD

TOP
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BACK

BACK
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Fig. 3. Proximal function targets. In the PF protocol, subjects are instructed to
move the tested hand to discrete anatomical landmarks in sequence. Starting
with their hand resting by their side, they are asked to move their hand to
their stomach, back-pocket, ipsi-and contra- lateral shoulders, mouth, top and
back of their head, before returning their hand to their side. A delay of three
seconds is given between each command.

III. EXPERIMENTAL VALIDATION

A convenience sample of ten subjects (6F/4M, 27.3 ±
3.1yrs., 1.70± 0.11m) were recruited under informed consent
(UCB IRB: 2016-01-8261). The cohort did not have any upper
limb impairment, a history of upper limb surgery, nor an injury
to the upper limbs within the prior six months. Subjects were
asked to wear athletic clothing and sat on a chair which was
adjusted so that the thigh ran parallel with the ground. A single
Microsoft Kinect for Xbox One (Kinect v2) depth camera was
positioned 300 cm in front of the subject, and 130 cm off the
ground. A computer monitor was placed just under the camera,
and used to present the instructional video for the RW and PF
measures. The instructional video was initially shown to the
subject to demonstrate the action. Subjects were then asked to
follow each video three times for each arm for both the RW
and PF movement protocols.

A. Baseline model

In addition to the Kinect measurements, an eight camera,
twenty six marker, active motion capture setup (Phasespace)
was used as an independent measure of the torso and upper
limbs. The torso and scapulae were modelled as floating bod-
ies, with the upper arm and forearm modelled as serial chains
connected to their respective scapula. This approach removed
any underlying assumptions on the movement of the scapula
relative to the torso, in contrast to the assumed scapula-
humeral rhythm used in the constrained model (Section II-A2).

Markers were placed at common anatomical landmarks,
with an additional marker placed midway between the
suprasternal notch and xiphoid process (Figure 4). This allows
for rigid body recovery in cases where the xiphoid process
is occluded by clothing. Three markers were placed on the
C7, T8, and T12 spinous processes. The markers on the
scapulae were based on the standard trigonum spinae, angulus
acromialis, and angulus inferior placements which can be
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Fig. 4. Placement of active motion capture markers (red crosses) for validation. Markers were placed on the skin on palpable anatomical landmarks on the
torso, scapula, elbow, and wrist [7], [39]–[41].

used to define a scapula reference frame [7], [39]–[41]. Two
additional markers were added at the acromioclavicular joint,
and processus coracoideus to improve robustness in cases of
marker occlusion [42]. Markers were also placed at the medial
and lateral epicondyles of the humerus, and the processes
of the radial and ulnar styloids. A final marker was placed
between the radial and ulnar styloids on the dorsal side of the
hand.

The instantaneous transforms for the floating segments
(torso and scapulae) were computed for each frame using NLS
performing an initial parameter fit to identify a marker model
and a state estimateor to identify the transform for each frame.
This process was repeated to find functional shoulder and
elbow joint centres for each arm. The recovered functional
centres were compared to allometric and landmark based
methods. The markers and their corresponding anatomical
locations are shown in Figure 4.

B. Implementation

All code was implemented in MATLAB, with the NLS
optimisations performed in parallel using the parallel com-
puting toolbox. To decrease the effect of erroneous readings,
the raw joint centre estimates from the Kinect were pre-
processed using a fifth order 1D median filter on the X, Y,
and Z coordinates. Both the raw joint centre estimates from
the Baseline (BR) and Kinect (DR) sensors were processed
through the same rigid body model to obtain constrained
Baseline (BC) and Kinect (DC) joint centre estimates.

The RW computation was performed on all four sets of joint
centre trajectories as described in [17]. For the PF action, a
second order, 1 Hz low-pass Butterworth filter was used to
smooth the estimated distance between the tested wrist and
each target location.

IV. RESULTS

Representative motion traces for the RW and PF tests are
shown in Figures 5 and 6. The signal-to-noise ratios (SNR) of
the raw and constrained movement trajectories are shown in

Table I. The mean percentage error of the reachable workspace
test is shown in Table II, with the concordance correlation
coefficients shown in Table III. Table IV shows the mean
percentage errors for the proximal function test. Each of the
tests are examined separately, with analysis of the estimated
joint positions and the final metrics.

A. Reachable Workspace

Figure 5 shows the movement traces of the wrist during the
reachable workspace action. Both the raw and processed base-
line positions perform well throughout the entire movement.
The raw and processed depth camera trajectories match the
baseline data through the majority of the workspace. The raw
depth camera diverges from the baseline at the extremes of the
workspace: when the wrist moves across or behind the body.
These effects appear to be reduced using the proposed model,
improving consistency throughout the movement.

Table I shows the SNRs for the baseline and depth camera
trajectories. The two baseline trajectories exhibit high SNR
(≥ 20) for both the left and right arms. This performance is
lower, but acceptable (10 − 20), in the spine and shoulder Z
directions.

The raw depth camera trajectories (DR) have lower SNR
across joints and axes. This decrease is more pronounced in
the mid-spine and ipsilateral GH joint, where the Z axis SNR
decreases below 10. The processed depth camera trajectories
(BR) have higher mid-spine and ipsilateral GH SNR compared
to the raw depth camera data, though these improvements are
still below that of the raw baseline trajectories.

The percentage error in the corresponding reachable
workspace area scores are presented in Table II. The processed
baseline data has low percentage error (≤ 5%) for all four
quadrants and the total area. In contrast, the raw depth camera
errors are higher in all quadrants with the percentage errors
in the range of 4% to 26%. The constrained depth camera
data has lower errors, particularly in quadrants 2 to 4, with a
corresponding decrease in the quadrant totals.

The concordance between the different scores are presented
in Table III. The processed baseline scores were found to have
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excellent concordance (≥ 0.75) when compared to the raw
baseline data. The raw depth camera areas were found to have
poor (< 0.4) and fair (0.4−0.59) concordance for the left arm,
and fair and good (0.6−0.74) concordance with the right arm.
In contrast, the concordance is higher for the processed depth
camera, with quadrants 3 and 4 and the total areas having
good/excellent scores.

B. Proximal Function

The wrist trajectories for the proximal function test are
shown in Figure 6. The raw and constrained baseline trajec-
tories overlap throughout the test and across all landmarks.
Both the raw and constrained depth camera trajectories are
close to baseline for most targets, though error is seen for
the back pocket, contralateral shoulder, and mouth targets.
The processed depth camera trajectories appear smoother,
especially at these higher error targets.

The SNRs shown in Table I show a similar pattern to the
reachable workspace test. SNRs are high between the raw
and processed baseline data, with decreases seen in the raw
depth camera joint positions. The constrained depth camera
data exhibits higher SNR compared to the raw depth camera
data, particularly in the Z direction for the GH joints and the
mid-spine.

The mean percentage errors in target duration for each of the
different methods are presented in Table IV. All methods show
low percentage error (< 5%) for the torso landmarks. The error
increases dramatically for the head landmarks, with the back
of head target being extremely inconsistent. To aid analysis,
the three head targets were combined to provide a head total
metric. The duration that the hand was found to be at all head
targets was found to have low mean percentage error (< 5%).
These low errors correspond to estimated target durations that
were within 0.1s for the torso and shoulder targets for all
methods. The head total metric was found to agree between
the two raw methods (< 0.1s), and between the two processed
methods (< 0.1s), though the raw and processed methods were
found to not be consistent between each other with a difference
of 0.3s between the totals.

V. DISCUSSION

A. Reachable Workspace Measure

The results presented in Section IV-A support the use of
both the proposed rigid body model for post-processing motion
data, and support the use of depth cameras to perform the
reachable workspace assessment. The excellent concordance
and low mean percentage error between the raw and con-
strained baseline data suggests that the proposed rigid-body
model is appropriate for modelling the reachable workspace
movements. The low percentage error and good/excellent con-
cordance seen in quadrants 3 and 4 suggest that the constrained
depth camera data is suitable for use as a performance metric.

Quadrants that correspond to self-occluding movements (1
and 2) exhibit higher percentage error, and lower concordance.
This is likely due to the limitations of using a single depth
camera for this application. As the tested limb moves in front
of the subject, the instantaneous estimates of the occluded

joint centre positions are likely to become worse. This is
supported by the low SNR seen at the ipsilateral GH joint.
This effect is compounded by the need for the elbow to bend
during the medial arm movements. This reduces the maximal
area during reaching in quadrants 1 and 2 (as seen in the
Front and Top views of Figure 5. Increased error in tracking
the elbow bend, and an overall decrease in area could both
disproportionately increase the percentage mean error in these
quadrants. The addition of rigid body constraints reduces this
effect resulting in improved SNR, lower mean percentage
error, and concordance of the final reachable workspace area.

The low error (< 5%) and excellent concordance be-
tween the baseline and processed depth camera measures in
quadrants 3 and 4 suggest that these quadrants may be the
most appropriate for clinical assessment. The lower mean
percentage error and higher concordance seen for the total area
metric should be treated with caution. As quadrants 3 and 4
are likely to have a larger areas than quadrant 2, the improved
performance in total area may be based on improvements in
the quadrant 3 and 4 sub-scores.

B. Proximal Function Measure

The results presented in Section IV-B support the use of
depth cameras for assessing proximal function, though at a
coarser spatial resolution than initially planned. As only the
wrist does not move significantly between the mouth, top, and
back of head positions, these three targets have to be merged
into a single head target.

The benefit of using the proposed rigid-body-model for
the PF test is less clear, with signs that it may introduce
a systematic error. The mean percentage errors for both
constrained methods are higher than their raw counterparts for
the back pocket, contra-lateral shoulder, and head positions.
This systematic error is likely to be caused by a combination
of self occlusion and scapular movement that does not match
the model used in Section II-A2. In the raw methods, the
target landmarks are based on a rigid body model that only
incorporates the estimated locations of the left, right, and
mid shoulders and the mid-spine. In contrast, the constrained
methods use all of the observed joint estimates, including the
elbows and wrists of both arms. The addition of these joint
centres may decrease the overall pose estimate due to multiple
erroneous estimates of joint position.

Despite the differences in the duration measured by the
raw and constrained methods, this duration metric does seem
feasible for assessing proximal function. Performance could
be improved by reducing this metric into a binary value by
comparing the measured duration to a preset threshold, similar
to other clinical scores. Extensions to determine improvement
to the PF test are included in Section VI-B.

It is interesting to note how the addition of a rigid body
model was of benefit to the RW protocol, but may introduce
error into the PF protocol. It is likely that this is due to
a fundamental difference in how these protocols function.
In RW, the accuracy of the GH centre is important as the
GH metrics are all based on the relative positions of the
wrist and the shoulder centre. As the rigid body model
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allows for improved estimates of position by constraining
limb lengths and adding in scapular-humeral rhythm, there
is a corresponding improvement in the estimated RW areas
when compared to the raw depth camera trajectories. This
improvement is highlighted at the extremes of the workspace.
When the arms are outstretched above or behind the subject,
the skeletonisation algorithm used by these cameras may have
difficulty identify consistent shoulder positions. By anchoring
the shoulder position to landmarks that are more consistent at
these times (contralateral shoulder and torso), these constraints
improve the accuracy of the joint centres. Furthermore, the
SHR model used in Section II-A2 is based on relatively pure

arm abduction. This is similar to the arm movements seen in
the RW quadrants 3 and 4, potentially resulting in improved
correlation and lower mean percentage errors. In contrast, the
cross body motions required in the RW quadrants 1 and 2 may
be dissimilar to the movement pattern assumed by the model
resulting in higher errors and lower concordance.

In contrast, the PF measure measures the time that the
wrist is near each anatomical landmark. While the error in the
ipsilateral GH joint centre position decreases using the rigid
body model this does not result in an improvement in the
estimated duration that the hand was at each target. This may
be due to two factors, the choice of assessment metric, and
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TABLE I
SIGNAL TO NOISE RATIOS IN JOINT CENTRE POSITIONS COMPARED TO THE CONSTRAINED BASELINE (BC) JOINT CENTRE TRAJECTORIES. SNR VALUES

ARE SHOWN FOR EACH COORDINATE SEPARATELY, AND FOR BOTH THE LEFT AND RIGHT HAND REACHABLE WORKSPACE (RW) AND PROXIMAL
FUNCTION (PF) TESTS. SNRS FOR THE RAW BASELINE (BR), RAW KINECT (DR), AND PROCESSED KINECT (DC) ARE SHOWN. COORDINATES ARE

GIVEN IN THE WORLD FRAME- X FROM LEFT TO RIGHT, Y POSTERIOR TO ANTERIOR, AND Z CAUDAL TO CRANIAL. CASES WHERE THERE IS A TWO DB
OR MORE DIFFERENCE BETWEEN THE RAW AND CONSTRAINED DEPTH CAMERA VALUES ARE HIGHLIGHTED WITH THE HIGHER SNR IN BOLD.

Left RW Right RW Left PF Right PF
Segment Axis BR DR DC BR DR DC BR DR DC BR DR DC

Spine Shoulder
X 21 22 21 19 23 22 20 24 24 19 25 25
Y 15 12 15 17 15 16 17 16 18 18 17 20
Z 12 11 11 10 11 12 12 11 12 10 12 14

Spine Mid
X 19 19 17 17 18 18 18 20 18 17 21 19
Y 20 9 8 25 9 9 23 15 14 26 12 12
Z 13 5 9 12 5 10 13 6 11 13 5 13

Ipsilateral GH
X 20 18 19 29 18 20 20 19 23 19 19 23
Y 15 12 11 19 12 12 18 14 12 22 16 15
Z 12 5 10 15 6 10 11 7 10 15 8 11

Ipsilateral Elbow
X 26 17 19 27 15 14 25 15 17 24 14 14
Y 24 14 15 29 12 12 24 15 17 28 15 15
Z 25 15 16 30 15 15 25 15 18 29 14 11

Ipsilateral Wrist
X 31 20 22 30 17 18 29 15 17 30 15 16
Y 31 15 16 32 15 15 29 11 12 31 12 13
Z 31 18 19 30 17 17 32 20 21 31 18 19

Contralateral GH
X 20 22 21 21 21 22 20 24 23 21 21 24
Y 20 13 13 21 15 14 23 12 13 21 16 16
Z 14 10 12 10 12 13 13 10 15 10 12 15

TABLE II
MEAN ERRORS FOR THE REACHABLE WORKSPACE TEST, PRESENTED AS PERCENTAGE ERRORS FROM THE RAW BASELINE DATA. PERCENTAGE MEAN

ERRORS ARE SHOWN FOR THE LEFT AND RIGHT HAND REACHABLE WORK-SPACE (RW) AND PROXIMAL FUNCTION (PF) TESTS, AND THE RAW
BASELINE (BR), RAW KINECT (DR), AND CONSTRAINED KINECT (DC) ARE SHOWN. QUADRANT 1 IS MEDIAL ABOVE THE SHOULDER, QUADRANT 2 IS

MEDIAL BELOW THE SHOULDER, QUADRANT 3 IS LATERAL ABOVE THE SHOULDER, AND QUADRANT 4 IS LATERAL BELOW THE SHOULDER. CASES
WHERE THERE IS A 3 OR MORE PERCENT DIFFERENCE BETWEEN THE RAW AND CONSTRAINED DEPTH CAMERA VALUES ARE HIGHLIGHTED WITH THE

LOWER VALUE IN BOLD.

LRW RRW
Quadrant BC DR DC BC DR DC

1: Medial Above Shoulder 6.5± 8.8 24.6± 20.1 18.9± 13.5 2.7± 13.2 25.6± 24.2 18.7± 18.4
2: Medial Below Shoulder 1.6± 10.3 4.4± 21.2 4.7± 17.4 2.4± 9.9 7.3± 22.2 7.6± 23.3
3: Lateral Above Shoulder 1.9± 8.0 11.8± 13.4 5.5± 8.4 0.7± 9.4 7.3± 12.2 2.6± 10.3
4: Lateral Below Shoulder 0.3± 8.3 8.2± 15.4 4.0± 9.9 1.1± 10.0 5.3± 12.4 2.1± 10.4

Total 2.4± 8.1 12.0± 15.0 7.8± 9.8 1.4± 9.9 9.4± 12.3 5.6± 10.5

TABLE III
LIN’S CONCORDANCE CORRELATION COEFFICIENTS FOR THE REACHABLE

WORKSPACE TEST COMPARED TO THE RAW BASELINE DATA. HIGHEST
CCC VALUE BETWEEN THE RAW AND CONSTRAINED DEPTH CAMERA

VALUES ARE HIGHLIGHTED IN BOLD.

LRW RRW
Quad. BC DR DC BC DR DC

1 0.85 0.31 0.53 0.89 0.69 0.79
2 0.78 0.07 0.39 0.92 0.49 0.52
3 0.86 0.58 0.83 0.82 0.68 0.77
4 0.83 0.43 0.77 0.81 0.62 0.76

Total 0.81 0.36 0.69 0.80 0.64 0.76

the underlying model assumptions. The duration metric was
chosen as it should be robust to the different strategies used by
subjects when they reach each target. As there are a number of
different ways a subject could reach their shoulder, measuring
the duration of time that the wrist is one hand’s length
from each target is a convenient assessment of function. This
metric only depends on the pose of the torso and the relative
position of the wrist. In cases of self occlusion, the addition
of rigid body constraints and an explicit SHR may introduce

artefacts in positions of the wrist and torso. This explains the
consistency between the two raw and two processed measures,
with a consistent offset between each measure. In this case,
adding constraints on the torso by either reducing the expected
movement, or adding in landmarks (such as the hips) could
reduce these effects.

C. Clinical Applicability

This paper indicates the potential for the RWS and PF
measures to provide a quantitative measure of upper limb
movement and function. The repeatability and accuracy of
these measures indicate their viability for tracking changes in
function due to pathology or treatment. The total time required
to perform both tests on both limbs is under four minutes,
allowing for integration into existing clinical workflows and
requiring minimal supervision and expertise to conduct the
test. As the observed movements are stored after each test,
reference motions can be presented to subjects as part of
patient education or to highlight changes in function. The
motion paths and joint angles obtained during these tests allow
for analysis of movement synergies and stereotyped motion



IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. X, AUGUST 2015 9

TABLE IV
MEAN PERCENTAGE ERROR IN DURATION FOR THE PROXIMAL FUNCTION MEASURE. TARGET DURATION ESTIMATED FROM THE CONSTRAINED

BASELINE (BC), RAW DEPTH CAMERA (DR), AND CONSTRAINED DEPTH CAMERA (DC) ARE COMPARED AGAINST THE RAW BASELINE (BR) DURATION.

LPF RPF
Quadrant BC DR DC BC DR DC
Stomach −0.2± 4.1 −0.8± 0.9 −0.1± 4.3 −3.7± 18.9 −0.3± 1.1 −0.3± 2.9

Back Pocket −1.9± 3.9 0.8± 1.7 −1.8± 3.3 −4.5± 3.9 −0.1± 2.1 −4.0± 3.8
Ipsi. SHO 0.5± 2.6 0.0± 1.1 −0.7± 2.6 −0.4± 2.4 −0.2± 0.6 −1.8± 1.8

Contra. SHO 2.6± 1.7 0.3± 1.3 5.1± 11.4 4.4± 4.5 0.6± 1.5 4.9± 4.9
Head Mouth 10.9± 52.5 2.4± 28.1 2.9± 42.2 21.3± 74.7 −7.2± 21.3 12.9± 63.8

Head Top −34.1± 56.4 −0.9± 49.6 −33.9± 56.5 −24.1± 65.2 8.6± 24.6 −13.5± 63.8
Head Back X −21.7± 81.8 X X X X
Head Total −2.6± 12.2 −0.1± 0.5 −3.5± 12.7 −0.7± 0.8 −0.3± 0.6 −0.9± 1.0

patterns. This suggests the clinical utility of this approach,
providing measures that can be used for assessment and
tracking immediately, while allowing for the development
of new metrics based on aggregating patient cohorts. These
additional measures would provide insight on the degree of
compensation and the presence of movement synergies, two
key factors for the accurate assessment of individuals with
neuromusculoskeletal conditions.

VI. SUMMARY

This paper introduced and assessed two upper limb func-
tional assessments that can be used clinically with a depth
camera. The effect of adding a rigid body model to raw
estimates of joint centre was assessed. These initial tests
suggest that both assessment measures can be performed on
individuals without upper limb impairment and that these
measures are accurate when compared to a baseline motion
capture system.

For the RW measure, it is recommended that a rigid body
model is used to improve the accuracy of the resulting areas.
Investigators should also note that quadrants 3 and 4 may be
less susceptible to errors due to self occlusion.

The proposed duration measure for PF also appears to be
a feasible measure for assessing subjects, though there is
insufficient evidence to accept or reject the use of the rigid
body model. Further testing is needed with individuals with
limitations in upper limb function to determine if these models
are beneficial, if the models needs to be changed for these
populations, or if the variations seen in this study can simply
be neglected by comparing the duration to a pass/fail threshold.

A. Limitations

While this paper shows the initial feasibility of using these
methods, testing was limited to ten people without any upper
limb impairment. To determine if these measures are able to
quantify and distinguish varying levels of function, these tests
should be repeated for a larger cohort with varying levels of
ability.

There are also limitations due to the methods and sensor
choice. Depth camera systems are limited by a single view-
point, making them sensitive to self-occlusion. The algorithms
used to perform the initial joint centre estimation may also
be sensitive in cases where the upper limbs are close to the
torso, increasing joint centre error. The scapular-GH model

used in this work may not be appropriate for individuals
with shoulder dysfunction, or individuals who have undergone
shoulder surgery. Additional study of specific clinical cohorts
is needed to determine the efficacy and to assess the effect of
each of these limitations.

B. Future Work

To determine the clinical utility of these methods, addi-
tional testing will be performed on individuals with varying
degrees of musculoskeletal function specificially investigating
individuals with shoulder replacement and muscular weak-
ness/dystrophy. To reduce any errors in unrealistic rotation of
the torso, the hip joint centres from the depth camera could
be added, or additional rotational constraints can be placed
on torso movement. True movement of the torso could also
be reduced by providing a hard-backed chair, with subjects
being coached to keep their back in contact. An Unscented
Kalman Filter [43] could be used to reduce high frequency
noise in the joint angles by adding dynamic constraints to the
recovered motion. The addition of this filtering step should
be treated with caution though as it is a sequential processing
method which will prevent the parallelisation of the kinematic
recovery step.
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