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Learning Conceptual Hierarchies by Iterated Relational Consolidation 
 

James M. Foster, Fabián Cañas, & Matt Jones  
{james.m.foster, canas, mcj}@colorado.edu 

University of Colorado, Department of Psychology & Neuroscience 
Boulder, CO 80309 USA 

 
Abstract 

Learning new concepts is critical to making sense of the 
world.  Research on analogical reasoning suggests structure 
mapping and schema induction can enable discovery of new 
relational concepts.  However, existing theories of schema 
induction and refinement are insufficient to explain 
acquisition of rich, compositional hierarchies of relational 
concepts.  This paper offers a proposal for this sort of 
representation construction, founded on reinforcement 
learning to evaluate the predictive usefulness of higher-order 
relations, together with a mechanism of relational 
consolidation by which systems of relations (schemas) can be 
chunked into unitary entities. A computational model of these 
ideas is outlined and partially tested in simulations and human 
experiments.  Implications and moderating factors for 
relational consolidation are considered. 

Keywords: Relational Consolidation; Analogy; Schema 
Induction; Predication; Refinement; Concept Learning 

Introduction 
Consider a second-order same-different task, in which the 
subject is presented with two pairs of objects and must 
recognize whether the pairs match in terms of whether their 
objects are the same or different.  The pairs match if both 
are instances of sameness (e.g., A-A, B-B) or if both are 
instances of difference (e.g., A-B, C-D), and they mismatch 
if one is an instance of sameness and the other an instance 
of difference (e.g., A-A, B-C).  Thompson, Oden, and 
Boyson (1997) tested naive chimpanzees on this task and 
found them unable to learn it, unless they were first trained 
on a first-order same-different task.  In the first-order task, a 
single pair of objects was presented, and subjects learned to 
associate sameness and difference to two plastic tokens 
(e.g., a yellow triangle and a red circle, respectively).  
Thompson et al. argued this training enabled subjects to 
reduce the second-order same-different task to a first-order 
task, by mentally replacing each pair of objects with its 
associated token, and then determining whether those tokens 
matched (see also Clark, 2006). 

Learning higher-order relations, such as in the second-
order same-different task, is arguably critical to abstract 
conceptual development.  In this paper, we argue that many 
concepts reside in relational hierarchies (relations among 
relations, and so on), and we investigate how such concepts 
might be learned.  Our basic premises are that much 
structure in the world (or at least its mental representation) 
is hierarchically compositional, and that discovering (or 
creating) this structure is a powerful cognitive mechanism 
for both learning and designing complex systems.   

For example, computer architecture, mathematical 
functions, and natural languages all exemplify multiple 

levels of abstraction by chunking systems of relations at one 
level into building blocks at the next level.  In computer 
architecture, digital logic gates are composed to form 
adders, which are composed with other digital circuits to 
form an arithmetic logic unit (ALU), which is a building 
block in a computer’s CPU.  Software design manages 
complexity by continuing this hierarchy, composing 
primitive functions into more complex functions, and from 
there to objects and design patterns.  The conceptual 
progression in mathematics proceeds similarly, composing 
the counting operation to define adding, which is further 
composed to form multiplying, and then exponentiation.  In 
traditional views of linguistics, phonemes, morphemes, 
words, and sentences form another example of a relational 
hierarchy.1 

These examples motivate our basic research questions.  
How are relational hierarchies mentally represented?  How 
are these representations learned or constructed through 
experience?  Once a relational concept is learned, how can 
one discover the higher-order relations in which it can 
participate?   

Here we consider the proposal that much of concept 
learning is driven by recognizing relational structure 
through analogy.  Research on analogical reasoning has 
converged on a view that episodes or scenarios are 
represented as patterns of role binding, in which objects are 
bound to roles of relations (Gentner, 1983; Hummel & 
Holyoak, 2003).  For example, the fact that the earth 
revolves around the sun is represented by binding earth and 
sun to the first and second roles of a revolves_around 
relation.  An analogy between two scenarios constitutes a 
determination that they share a common pattern of role 
binding.  For example, in the analogy between the solar 
system and the atom (Gentner, 1983), each system has the 
property that the object playing role 1 of revolves_around is 
the same as the object playing role 2 of more_massive_than. 

Analogy formation can thus be viewed as a search for a 
pattern of linkage among relations (i.e., in terms of how they 
are bound to shared objects) that holds in two different 
scenarios.  This linkage pattern is a type of higher-order 
relation among the linked relations.  Theories of schema 
induction (e.g., Doumas, Hummel, & Sandhofer, 2008) 
offer one way for such higher-order relations to be learned.  
When an analogy is formed, an abstract schema is created 
that captures the common structure discovered by the 

                                                             
1 Relational hierarchies are not taxonomic hierarchies.  In a 
taxonomic hierarchy, each concept or category is a union of lower-
level categories.  In a relational hierarchy, each instance of a 
concept is a configuration of instances of lower-order concepts. 
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analogy.  The schema can act as a new relational concept, in 
that it can be analogically aligned with future instances of 
the higher-order relation it embodies. 

Although we agree with theories of schema induction, we 
argue it is insufficient to explain human relational learning.  
Schemas are explicit relational structures, and thus they 
cannot be bound to roles of yet-higher-order relations in the 
way unitary objects and relations can.  The Thompson et al. 
(1997) study suggests that newly learned relations can only 
fill roles of other relations if they can be represented as 
atomic entities.  Therefore, to explain acquisition of 
relational hierarchies, we put forward the hypothesis that 
useful schemas are eventually replaced (or supplemented) 
with unitary representations.  Thus, a concept that was 
represented as a system of relations (via the schema) can 
now be represented as an atomic entity, capable of entering 
into relations itself.  We label this process relational 
consolidation, in a deliberate parallel to theories of episodic 
memory consolidation (e.g., Squire & Alvarez, 1995). 

We further propose that analogy, schema induction, and 
relational consolidation form a cycle that, when iterated, can 
produce relational hierarchies of arbitrary depth (height).  
This form of learning leads to a dualist view of objects and 
relations, in which (nearly) every concept is both a 
relational structure among its components and an object 
capable of participating in relations.  The conceptual 
systems built from this hierarchical relational chunking are 
potentially quite powerful and flexible. 

The remainder of this paper sketches a computational 
model under development that formalizes these ideas.  We 
report experimental tests and discuss implications of human 
learning of higher-order relational structures. 

Model 
We propose a computational model for learning hierarchies 
of relational concepts, named APEC for Analogy, 
Predication, Evaluation, and Consolidation.  The first two 
stages (A, P) of the model draw on prior work on analogy 
and schema induction (Doumas et al., 2008; Forbus, 
Gentner, & Law, 1995; Larkey & Love, 2003).  The last two 
stages make new proposals for how schemas are selected 
(E) and consolidated (C) into new concepts.  Altogether, the 
model progresses through parallel processes of analogy 
formation, predication of relational structure by schema 
induction, evaluation and refinement of schemas in a 
reinforcement-learning setting, and consolidation of useful 
schemas into new atomic relations.  Consolidated relations 
enter into new analogies, allowing the entire learning 
process to iterate. 

The goal of the model is to identify new higher-order 
relations that are useful for making predictions and guiding 
behavior.  There are an infinite number of higher-order 
relations that could be learned from any episode, and thus 
the challenge is selecting those that carry useful information 
(analogous to the problem of selecting configural cues in 
feature-based learning; e.g., Gluck & Bower, 1988).  The 
present model addresses this problem in two ways.  First, 

analogical mapping identifies higher-order relations that 
recur across multiple episodes, to determine which schemas 
to induce (a form of unsupervised learning).  Second, 
schema evaluation determines how useful each higher-order 
relation is for predicting outcomes or reward, to determine 
which schemas to consolidate (a form of reinforcement 
learning).  

The model is currently being implemented within 
Conway’s Game of Life (Gardner, 1970), a cellular 
automaton exhibiting hierarchical emergent structure, to test 
its ability to discover that structure.  The model produces 
interesting patterns of schema formation and evolution, 
which will be reported elsewhere.  Here we lay out the 
model’s basic architecture and formulation. 

Analogy 
APEC represents episodes as systems of role binding among 
entities, each of which is an instance of a known concept.  
Every entity is eligible to be bound to a role of one or more 
other entities, and all entities except primitive objects (used 
to seed the model) have roles that other entities can bind to.  
The goal of the analogy component of the model is to find 
correspondences between episodes that maximally preserve 
these role-filler relationships (i.e., parallel connectivity). 

 Formation of an analogy is achieved by a dynamic 
process of structure mapping.  APEC’s mapping dynamics 
are based on a simplified version of the Connectionist 
Analogy Builder (CAB; Larkey & Love, 2003).  For every 
pair of entities (say, ai in episode 1 and bj in episode 2), a 
mapping weight (mij) is defined.  Mapping weights evolve 
according to excitatory and inhibitory dynamics.  The raw 
evidence, Rij, for mapping weight mij is derived by summing 
the excitation received from all other weights: 

Rij = wijklmkl
kl
∑  

The excitation weight wijkl equals 1 if mij and mkl correspond 
to immediately adjacent and compatible mapping 
connections (e.g., ak plays role r in ai, and bl plays role r in 
bj), and it equals 0 otherwise.  The raw evidence is filtered 
through additional inhibitory mechanisms that encourage 
one-to-one mappings, and the result determines the 
incremental change to the mapping weights.  These 
dynamics continue until all mapping weights converge to 0 
or 1. 

Following the MAC/FAC model of analogical retrieval 
(Forbus et al, 1995), APEC uses a measure of structural 
match to determine the quality of an analogy.  An initial 
score is assigned to every matched pair of nodes to enforce a 
size preference.  A preference for deep analogies 
(systematicity) is implemented via a trickle-down method, 
whereby initial match scores are passed down to increment 
the scores of matching components.  The match scores are 
summed to get a global measure of structural match quality. 

Predication 
If the analogy achieves a minimum match quality, a schema 
is induced that represents the structural commonalities of 
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the analogues and encodes the shared pattern of role binding 
embodied by the analogy.  Specifically, an abstract entity is 
created for every mapping weight in the analogy, and these 
entities are role-bound to each other if the corresponding 
entities in the analogues are so bound.  Once created, 
schemas are treated identically to episodes (they are just 
more abstract).  This simple mechanism is drawn from prior 
work on schema induction (Gick & Holyoak, 1983; Doumas 
et al., 2008; Kuehne et al., 2000).  A schema can be thought 
of as codifying the higher-order relation embodied by the 
analogy, hence turning it into an explicit predicate.  
Aligning the schema with any new episode enables a test of 
whether that episode instantiates the higher-order relation. 

Evaluation  
When a schema is retrieved and compared to a new episode, 
it is refined, by abstracting the common structure between 
schema and episode (Doumas et al., 2008).  This process is 
a form of intersection discovery, where the intersection of 
the set of relations in a schema and episode are encoded as a 
new schema.  In this way, schemas shrink in size because 
the variability between episodes is abstracted over, leaving 
only the structure that is consistent across episodes.  
However, there may also be a need for schema elaboration, 
where schemas can grow in size (Corral & Jones, in press).  
We are currently exploring implementing schema 
elaboration in the model. 

In parallel with schema refinement, schemas are evaluated 
as candidates for consolidation as new relational concepts.  
New concepts are useful because they can facilitate 
generalization.  Learning about one instance of a concept 
can be applied to other instances.  Jones & Cañas (2010) 
show how representations can be learned by improving 
generalization in a reinforcement-learning framework.  The 
basic idea is that reward prediction error (TD error) can be 
used to determine when generalization from some past 
stimulus to the current stimulus was or was not helpful.  In 
the present context, if a learner encounters an episode that is 
alignable with some stored schema, then analogical 
inference from that schema enables generalization from past 
instances of that schema.  If this inference leads to improved 
prediction or behavior, then the schema is strengthened, and 
if not it is weakened.  This process tunes generalization to 
depend more on higher-order relations that are predictive 
and less on those that are not. 

Consolidation 
Relational consolidation is the process of a schema 
becoming chunked into a unitary concept that can be 
recognized automatically, retrieved from memory in 
parallel, and represented as an element of yet-higher-order 
relations.  As summarized in Table 1, consolidation is 
hypothesized to confer properties to a concept that are not 
true of (unconsolidated) schemas, because consolidated 
concepts are recognizable perceptually, without explicit 
(working-memory dependent) structure mapping.  

  

 Table 1.  Predicted consequences of consolidation 

Not Consolidated  Consolidated 
More affected by WM 
demands 

 Less affected by WM 
demands 

Quicker at analogical 
inference, because structure 
mapping is active 

 Easier to learn higher-order 
structure, because instances 
can be represented by tokens 

Serial retrieval  Parallel retrieval 
  
It is important to note that consolidation is not a change in 

the declarative knowledge embodied by a concept.  Rather, 
it is a proceduralization of the concept that enables future 
changes in knowledge – similar to the interaction between 
declarative and procedural knowledge in production systems 
(Anderson & Lebiere, 1998). 

The DORA model of relational predication (Doumas et 
al., 2008) has an operation similar to relational 
consolidation, in which it recruits a new proposition node to 
bind lower-order relations.  This new node can be bound to 
roles of yet-higher-order relations, but the relation is still 
explicitly structured.  In contrast, consolidation might be 
viewed within the DORA framework as enabling the new 
proposition node at the top of the relational structure to 
evolve into a new semantic node at the bottom.  We 
conjecture this difference has important implications for 
recognition and retrieval of instances of the concept. 

Relational consolidation is best explained from the 
perspective of the MAC/FAC model of analogical retrieval 
(Forbus et al, 1995).  MAC/FAC embodies the assumption 
that verifying the lower-level elements of an episode (i.e., 
objects and relations) is fast and automatic, whereas 
verifying relational structure is slower and requires 
working-memory resources.  In the first stage of analogical 
retrieval (Many Are Called), the target episode is converted 
to a flat feature vector that is used to probe all episodic 
memories in parallel.  Importantly, the dimensions in the 
MAC feature vector are predefined, based on the concepts 
the learner currently knows.  Stored episodes that share 
content (objects and relations) with the target are retrieved, 
without regard for how those objects and relations are 
connected by role binding.  In the second stage (Few Are 
Chosen), the episodes retrieved by the MAC stage are 
filtered by structural alignment to the target.  Only those 
episodes that are alignable with the target survive this stage. 

From the perspective of the MAC/FAC framework, 
relational consolidation enables a higher-order relation to be 
chunked and treated as a dimension of the feature vector 
used for memory probing.  Prior to consolidation, retrieval 
of instances of a higher-order relation require something 
like the FAC stage, in which subjects explicitly map 
between those instances and the schema.  Following 
consolidation, retrieval can rely solely on the MAC stage, 
thus operating much more rapidly and without requiring 
working memory.  We also propose a similar difference for 
perceptual recognition of instances of the concept in the 
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Figure 1: The two ways a predicated relation can be 
represented or recognized.  (A) Before consolidation, 
episodes must be structurally aligned to a schema.  (B) After 
consolidation, an instance of the concept is explicitly 
represented and bound to the lower-order relations.  The 
labels on the nodes refer to Experiments 1 & 2. 

environment, through the creation of a perceptual detector 
for each consolidated concept.  Figure 1 illustrates the 
difference between recognizing an instance of a higher-
order relation that has versus has not been consolidated. 

Experiments 1 & 2 
The goal of the present experiments was to test learning of 
categories defined purely by higher-order relations.  That is, 
the set of objects and relations present in instances of each 
category were identical; only the way the relations were 
linked into a higher-order structure differed.  If people can 
learn this type of category distinction, it would support our 
basic proposal for how higher-order relations are defined in 
constructing relational hierarchies. 

Each trial showed animations of three spaceships racing 
each other in pairs.  The categories were defined by the two 
logically possible structures these races could form: a cycle 
(e.g., A beats B, B beats C, C beats A) and an ordering 
(e.g., B beats A, B beats C, C beats A).  The races are thus 
first-order relations between spaceships, and cycle and 
ordering are the possible higher-order relations (see Figure 1 
for an example of the cycle structure). 

According to APEC, three types of learning potentially 
contribute to this task.  First, analogical alignment between 
episodes (trials) leads to induction of schemas capturing 
their common structure or properties.  Some of these 
schemas will capture the true category structure, whereas 
others will be based on irrelevant information (e.g., ship 
color or spatial position).  Second, feedback following each 
trial is used to strengthen or weaken schemas that 
contributed to each response, so that eventually the correct 
higher-order relations should come to dominate 
performance.  Third, with sufficient learning, the correct 
higher-order relations may become consolidated.  The 
results reported below primarily bear on the first of these 
mechanisms. 

Methods 
110 and 62 undergraduates participated in Experiments 1 
and 2, respectively.  Subjects were told they would observe 
alien spaceship races, in sessions of three races each.  The 
aliens were said to have two names for possible outcomes of 
a session, and the subject’s task was to learn their meaning.  

On each trial, three spaceships (differing only in color) 
raced in pairs in a sequence of three races.  The subject 
classified the session as “Dekal” or “Koplu” by typing D or 
K.  The correct answer was then displayed.  The experiment 
lasted until the subject met a learning criterion of 8 out of 10 
trials correct, or until 25 minutes elapsed (50-70 trials).  

Each experiment included two orthogonal manipulations 
designed to bias attention between objects (spaceships), 
relations (races), and higher-order relations.  In Experiment 
1, the trials were described as either “tournaments” or 
“sessions”.  In addition, the main task was preceded by a 
series of footraces among 5 cartoon characters, after which 
subjects were asked either which character had done best 
overall or which of two characters had won a specific race.  
The tournament label and overall-winner question were 
predicted to make rankings salient, thus shifting attention to 
higher-order relations. 

In Experiment 2, half the subjects were given a first-
person perspective by adding a gold star to mark “your 
ship” on each trial.  In addition, the three colors used for the 
spaceships were either constant or variable from trial to 
trial.  The marked ship and constant colors were predicted to 
make individual objects more salient, thus shifting attention 
away from higher-order relations. 

Results 
There were no differences across conditions in either 
experiment in meeting the learning criterion or number of 
trials to criterion.  All subsequent analyses are based on 
collapsing the groups of both experiments. 

The results demonstrate that subjects could learn the 
difference in categories.  113 subjects (65.7%) met the 
learning criterion.  Figure 2A shows the distribution of trials 
to criterion for these subjects (M = 30.9).  Ten subjects 
learned without making a single error; they were excluded 
from the remaining analyses, which are based on errors. 

Figure 2B shows a backward learning curve, aligned on 
each subject’s last error (for subjects who solved the task 
but made at least one error).  Performance prior to the last 
error is only slightly above chance, indicating learning was 
nearly all-or-none.  This is consistent with our hypothesis 
that learning is triggered by inducing the correct schema. 
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Figure 2. A: Distribution of trials to criterion, for subjects 
solving the task. B: Backward learning curve. 
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If learning depends on analogical mapping, then it should 
be most evident following consecutive stimuli in the same 
category (assuming subjects most often compare stimuli 
from consecutive trials).  Assuming the schema was induced 
following the trial of the last error (tlast), this predicts the 
stimuli on trials tlast – 1 and tlast should tend to be of the 
same category (see Figure 3).  This prediction holds for 59 
of the 103 subjects (p = .084, one-tailed binomial test).  If 
we relax the all-or-none assumption and examine 
performance of all subjects on all trials t, we find a highly 
reliable advantage when trials t – 2 and t – 1 are of the same 
category (mean difference 4.3%, paired t169 = 3.42, p < 
.001).2  This suggests comparison of recent stimuli from the 
same category had a significant effect on performance. 

 
 

Figure 3.  Example sequence of trial types and the most 
likely moment of schema induction.  Triangles indicate 

ordering trials and circles indicate cycle trials.   

Discussion 
Analogy and metaphor are pervasive in cognition 
(Hofstadter, 2001; Lakoff, 1980) and play a critical role in 
abstract reasoning.  The past three decades of research have 
led to a strong consensus that analogy hinges on recognition 
of common relational structure between two or more 
situations (e.g., Gentner, 1983; Hummel & Holyoak, 2003).  
This suggests that acquisition of new higher-order relations 
plays a critical role in human conceptual development. 

We propose that many (if not most) abstract concepts 
exist in relational hierarchies, in which entities are at once 
relational structures among their components and elements 
of higher-order relations.  The structure-mapping process of 
analogy (Gentner, 1983) can be viewed as a search for 
relations among relations, in the sense of how relations are 
connected to one another by operating on the same objects.  
Successful analogies—those that lead to useful inferences or 
predictions—might thus be treated as candidates for new 
relational concepts. 

Our approach builds on models of analogical retrieval 
(Forbus et al., 1995), structure mapping (Falkenhainer, et 
al., 1989; Hummel & Holyoak, 1996; Larkey & Love, 
2003), predication, and refinement (Doumas et al., 2008).  
Importantly, our model goes beyond previous models of 
schema induction (Doumas et al., 2008) by positing 
relational consolidation as a means for learning new 
relational concepts.  A further contribution of our approach 
is embedding predication within a reinforcement-learning 
framework in order to modify analogical similarity, and thus 

                                                             
2 Two additional subjects were excluded because they experienced 
no alternation trials before meeting the learning criterion. 

generalization, by representation change (Jones & Cañas, 
2010; see also Tomlinson & Love, 2006). 

Taken together, these ideas lead to a model, APEC, which 
iterates the Analogy, Predication, Evaluation, and 
Consolidation stages to build relational hierarchies in a 
long-term conceptual learning system.  Our eventual aim for 
the model is a system that can autonomously discover useful 
structure in its environment by construction of these 
relational hierarchies. 

Although the present experimental results indicate a role 
for analogical comparison and schema induction, we do not 
have strong evidence here for consolidation.  Indeed, we 
believe it more likely that the categories were learned only 
as schemas.  The experiments do provide a test of one 
fundamental assumption of the model: that people can learn 
higher-order relations defined solely by the configuration of 
shared role binding among lower-order relations. 

Future experiments could build the tournaments into 
third-order structures that require consolidation of the 
tournament type in order to solve the task.  Another future 
experiment is to test transfer of learned relational structure 
to an alternate domain with different lower-order relations.  
The lack of effect of our manipulations suggest it is an open 
question what factors influence the kind of learning tested in 
these experiments. 

Evidence for relational consolidation could also come 
from process dissociation between the two modes of 
representation outlined in Table 1.  Other evidence may 
come from neurological studies.  We speculate that 
relational consolidation is implemented neurally by a 
process of hippocampal-to-cortical feedforward training, in 
line with models of episodic memory consolidation (Gluck 
& Myers, 1993; McClelland, McNoughton, & O'Reilly, 
1995).  The hippocampus is well suited for storing schemas, 
which are inherently structured, given the conjunctive and 
localist nature of hippocampal representations. 

Relational consolidation is similar to the career-of-
metaphor hypothesis, by which a metaphor is originally an 
analogical mapping between the base and target domain, but 
it can become conventionalized so that the target is 
recognized immediately as an instance of the base category 
(Gentner et al., 2001).  This transition from novel to 
conventional metaphor resembles the transition from non-
consolidated to consolidated relations, in that both involve a 
transition from recognition via structure mapping to more 
automatic, perceptual recognition.  The major difference is 
that in the career of metaphor, the base concept was already 
consolidated, and the conceptual change is a form of sense 
extension of that base concept.  The conventionalization 
process does not create new concepts; it just extends their 
meaning.  Therefore it does not function to build up 
relational hierarchies.  Nevertheless, the  two ideas seem 
intimitely linked, in that the career-of-metaphor mechanism 
might play an important role in extending and refining the 
meaning of concepts after they have been consolidated. 

Language is almost certainly an important factor in 
relational consolidation.  Thompson et al.’s (1997) finding 
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of chimps learning higher-order relations depended on 
initial training with material tokens.  In humans, words can 
act as linguistic tokens (Clark, 2006) and have been shown 
to aid category learning (Lupyan, Rakison, & McClelland 
2007).  Son, Doumas, and Goldstone (2010) offer two 
possible roles of language in relational learning: “(1) words 
invite learners to compare, highlight, and represent relations 
(the Generic Tokens  [GT] hypothesis), and/or (2) words 
carry semantic cues to common structure (the Cues to 
Specific Meaning [CSM] hypothesis)” (p. 55).  The lack of 
significant effect of the CSM manipulation in our 
Experiment 1 could be explained by the cue word appearing 
only at the start of the experiment, or by the relatively subtle 
difference in semantics evoked by the cues “tournament” vs. 
“session”.  A stronger test of CSM would be to cue subjects 
with category labels whose meanings structurally match or 
mismatch the category schema.  

Finally, we do not claim that relational consolidation is 
the only mechanism for acquiring new relational concepts.  
Research on basic-level objects (Rosch et al., 1976) 
suggests there are truly primitive object concepts that are 
not originally constructed as relational systems.  Clearly a 
lot of discovery comes from analyzing the substructure of 
objects, and that process should be included in any complete 
model.  For example, categories can be induced for objects 
that fill the same roles (Jones & Love 2007).  Although we 
have been working on concept learning through 
mechanisms of synthesis, a future goal is to explore how 
combinations of analytic and synthetic mechanisms of 
relational learning might be more powerful than both alone. 
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