UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Combining a Connectionsit Type Hierarchy with a Connectionist Rule-Based Reasoner

Permalink
https://escholarship.org/uc/item/3fx0p121|
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 13(0)

Authors
Mani, D. R.
Shastri, Lokendra

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/3fx0p121
https://escholarship.org
http://www.cdlib.org/

Combining a Connectionist Type Hierarchy with a

Connectionist Rule-Based Reasoner

*

D. R. Mani and Lokendra Shastri
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104, USA

shastriQcis.upenn.edu

Abstract

This paper describes an efficient connectionist
knowledge representation and reasoning system
that combines rule-based reasoning with reasoning
about inheritance and classification within an IS-A
hierarchy. In addition to a type hierarchy, the pro-
posed system can encode generic facts such as ‘Cats
prey on birds’ and rules such as ‘if £ preys on y then
y is scared of z’ and use them to infer that Tweety
(who is a Canary) is scared of Sylvester (who is a
cat). The system can also encode qualified rules
such as ‘if an animate agent walks into a solid ob-
ject then the agent gets hurt’. The proposed sys-
tem can answer querles in time that is only propor-
tional to the length of the shortest derivation of the
query and is independent of the size of the knowl-
edge base. The system maintains and propagates
variable bindings using temporally synchronous —
i.e., in-phase — firing of appropriate nodes.

Introduction

In [Shastri & Ajjanagadde 1990a, Shastri & Ajjana-
gadde 1990b, Ajjanagadde & Shastri 1991], Ajjana-
gadde and Shastr have described a solution to the vari-
able binding problem [Lange & Dyer 1989, Smolensky
1987] and shown that the solution leads to the design of
a connectionist reasoning system that can represent sys-
tematic knowledge involving n-ary predicates and vari-
ables, and perform a broad class of reasoning with ex-
treme efficiency. The time taken by the reasoning sys-
tem to draw an inference is only proportional to the
length of the chain of inference and is independent of
the number of rules and facts encoded by the system.
The reasoning system maintains and propagates vari-
able bindings using temporally synchronous - i.e., in-
phase - firing of appropriate nodes. The solution to the
variable binding problem allows the system to maintain
and propagate a large number of bindings simullane-
ously as long as the number of distinct entities partici-
pating in the bindings during any given episode of rea-
soning, remains bounded. Reasoning in the proposed
system is the transient but systematic flow of rhythmic

*This work was supported by NSF grant IRI 88-05465
and ARO grant ARO-DAA29-84-9-0027.

418

patterns of activation, where each phase in the rhyth-
mic pattern corresponds to a distinct constant involved
in the reasoning process and where variable bindings
are represented as the synchronous firing of appropriate
argument and constant nodes. A fact behaves as a tem-
poral pattern matcher that becomes ‘active’ when it de-
tects that the bindings corresponding to it are present
in the system’s pattern of activity. Finally, rules are
interconnection patterns that propagate and transform
rhythmic patterns of activity.!

In this paper we describe how the above reasoning
system may be combined with an IS-A hierarchy. Such
an integration allows the occurrence of types (cate-
gories) as well as instances in rules, facts, and queries.
This has the following interesting consequences. First,
the reasoning system can combine rule-based reasoning
with inheritance and classification. For example, such
a system can infer that ‘Tweety is scared of Sylvester’,
based on the generic fact ‘Cats prey on birds’, the rule
‘If z preys on y then y is scared of z and the IS5-A
relations ‘Sylvester is a Cat’ and ‘Tweety is a Bird'.2
Second, the integrated system can use category infor-
mation to qualify rules by specifying restrictions on the
type of argument fillers. An example of such a rule
is: Vz:animate, y:solid-obj [walk-into(z,y) = hurt(z)],
which specifies that the rule is applicable only if the two
arguments of ‘walk-into’ are of the type ‘animate’ and
‘solid-object’, respectively.

An overview of the rule-based reasoning system is fol-
lowed by a description of the IS-A hierarchy realization
and its interface with the reasoning system. A detailed
discussion of the reasoning system and the type hierar-
chy interface may be found in [Shastri & Ajjanagadde
1990b] and [Mani & Shastri 1991] respectively.

It may be worth stating that the system does not require
a central controller or a global clock.

?Observe that this kind of reasoning combines ‘rela-
tional inheritance’ [Fahlman 1979] with rule-based reason-
ing: While relational inheritance can support the inference
‘Sylvester preys on Tweety’ by using the I5-A relationships
on the generic fact ‘Cats prey on birds’, it cannot support
the inference ‘“T'weety is scared of Sylvester’, because doing
so also requires the use of the rule ‘If z preys on y then y is
scared of r’.

mailto:shastri@cis.upenn.edu

o can-sall

€ own

cgve
F1

gve

facp |
wbuy

Figure 1: (a) Encoding rules and facts. (b) Activation trace for the query can-sell(Mary, Bookl)?

The rule-based reasoning system

Fig. la illustrates how long-term knowledge is en-
coded in the rule-based reasoning system. The net-
work encodes the following rules and facts: i) Vz,y, 2
[give(z,y,z) = own(y,z)], ii) Vz,y [buy(z,y) =
own(z,y)], iii)[Vz,y [own(z,y) = can-sell(z,y)],
iv) give(John,Mary,Bookl), v) buy(John,z), and vi
own(Mary,Balll).

The encoding makes use of two types of nodes: p-btu
nodes (depicted as circles) and r-and nodes (depicted
as pentagons). The computational behavior of these
nodes is as follows: A p-btu is a phase-sensitive binary
threshold unit. When such a node becomes active, it
produces an oscillatory output in the form of a pulse
train that has a period v and pulse width w. The tim-
ing (or the phase) of the pulse train produced by a p-btu
node depends on the phase of the input to the node. A
7-and node acts like a temporal AND node. Such a node
also oscillates with the same frequency as a p-btu node
except that it becomes active only if it receives unin-
terrupted activation over a whole period of oscillation.
Furthermore, the width of the pulses produced by a 7-
and node equals 7.2 The maximum number of distinct
entities that may participate in the reasoning process
equals 7 /w (assume integer divide). The encoding also
makes use of tnhibitory modifiers — links that impinge
upon and inhibit other links. A pulse propagating along

ILater we will introduce a third type of node, namely
the r-or node. A 7-or node becomes active on receiving any
activation but its output is like that of a r-and node.

419

an inhibitory modifier will block a pulse propagating
along the link it impinﬁes upon. In Fig. la, inhibitory
modifiers are shown as links ending in dark blobs.

Each constant in the domain is encoded by a p-btu
node. An n-ary predicate is encoded by a pair of 7-
and nodes and n p-btu nodes, one for each of the n
arguments. One of the 7-and nodes is referred to as
the enabler and the other as the collector. As a matter
of convention, an enabler always points upwards and is
named e:<predicate-name>. A collector always points
downwards and is named c:<predicate-name>. The en-
abler e:P of a predicate P becomes active whenever the
system is being queried about P Such a query may
be posed by an external process or by the system it-
self during an episode of reasoning. On the other hand,
the system activates the collector c:P of a predicate P
whenever the system wants to assert that the current
dynamic bindings of the arguments of P are consistent
with the knowledge encoded in the system. A rule is
encoded by connecting the collector of the antecedent
predicate to the collector of the consequent predicate,
the enabler of the consequent predicate to the enabler
of the antecedent predicate, and by connecting the ar-
guments of the consequent predicate to the arguments
of the antecedent predicate in accordance with the cor-
respondence between these arguments specified in the
rule. A fact is encoded using a 7-and node that receives
an input from the enabler of the associated predicate.
This input is modified by inhibitory modifiers from the
argument nodes of the associated predicate. If an argu-
ment is bound to a constant in the fact then the modi-

Type Hlerarchy

(a)

cacaned-of /___-
cproys on /N
F1 V.Y A 4
s T
wonanl /O V V V
g R A T T
Cat Il I fl | Nl
proy I | fl | M
Canary fl fl I | L_
wncared-of |f \V V V V V
seane ||| Il N | |
scaree | || | | 11 .
syvenee | |11 I Ml Il I
we LN
(b)

Figure 2: (a) An example network. (b) Trace of spreading activation for the query scared-of(Tweely, Sylvester)?

fier from such an argument node is in turn modified by
an inhibitory modifier from the appropriate constant
node. The output of the 7-and node is connected to the
collector of the associated predicate (refer to the encod-
ing of the fact give(John,Mary,Bookl) and buy(John,z)
in Fig. 1a.)

Inference Process

Posing a query to the system involves specifying the
query predicate and the argument bindings specified in
the query. In the proposed system this is done by simply
activating the relevant nodes in the manner described
below. Choose an arbitrary reference point in time -
say, to — for Initiating the query. We assume that the
system is in a quiescent state just prior to 5. The query
predicate is specified by activating the enabler of the
query predicate, with a pulse train of width and peri-
odicity 7 starting at time tp.

The argument bindings specified in the query are
communicated to the network as follows: Suppose the
argument bindings in the query involve n distinct con-
stants ¢;,...,¢,. With each of these n constants, asso-
ciate a delay é; such that no two delays are within w
of one another and the longest delay is less than 7 — w.
Each of these delays may be viewed as a distinct phase
within the period ty; and #; + 7. Now the argument
bindings of a constant ¢; are indicated to the system by
providing an oscillatory pulse train of pulse width w and
periodicity 7 starting at to + é;, to ¢; and all arguments
to which ¢; is bound. This is done for each constant
c; (1 €1 < n) and amounts to representing argument
bindings by the in-phase or synchronous activation of
the appropriate constant and argument nodes.

We illustrate the reasoning process with the help of
an example. Consider the query can-sell(Mary,Bookl1)?
i.e., Can Mary sell Bookl?) The query is posed by
i% activating the enabler node e:can-sell ii) activat-

420

ing Mary and p-seller in the same phase (say, phase-
1%1’ and 1ii) activating Bookl and cs-o0bj in some other
phase (say, phase-2). As a result of these inputs, Mary
and p-seller will fire synchronously in phase-1 of ev-
ery period of oscillation, while Book! and cs-obj will
fire synchronously in phase-2 of every period of os-
cillation. The node e:can-sell will also oscillate and
generate a pulse train of periodicity and pulse width
T SFig. 1b). The activations from the arguments p-
seller and cs-0bj reach the arguments owner and o-
obj of the predicate own, and consequently, starting
with the second period of oscillation, owner and o-
obj become active in phase-1 and phase-2, respectively.
At the same time, the activation from e:can-sell acti-
vates e:own. The newly created dynamic bindings for
the arguments of own, in conjunction with the activa-
tion oge:awn can be thought of as encoding the query
own(Mary,Book!)? The r-and node associated with the
fact own(Mary, Balll) does not match the query and
remains inactive. As the activation propagates from
the arguments of own to the arguments of buy and give
gFig. 1b), new bindings for the arguments of give and
uy get established which, in effect, encode two new
queries: give(z,Mary,Bookl)? (i.e., Did someone give
Mary Book17?), and buy(Mary,Bookl)? The r-and node
F1, associated with the fact giwe(John, Mary, Bookl) be-
comes active as a result of the uninterrupted activa-
tion it receives from e:give. Observe that the inhibitory
modifiers from recip and g-obj incident on the link from
e:own to F1 are blocked by the in-phase inputs from
Mary and Bookl, respectively. The activation from F1
causes c:give, the collector of give, to become active and
the output from c:give in turn causes c:own to become
active and transmit an output to c:can-sell. Conse-
quently c:can-sell, the collector of the query predicate
can-sell, becomes active indicating an affirmative an-
swer to the query can-sell(Mary, Book1)? (Fig. 1b).

Representation

(b)

Figure 3: (a) Structure of the entity cluster for C, and its interaction with the bottom-up and top-down switches.
The T and | nodes have a threshold # = 2. The multiple instantiation constant, k = 3. (b) Encoding of the is-a
relation is-a(A,B). A bundle of k wires is represented by a single link.

Combining the rule-based reasoner with
an IS-A hierarchy

Fig. 2a gives an overview of the combined reasoning sys-
tem. The rule-based part of the network encodes the
rule Vz,y [preys-on(z,y) = scared-of(y,z)] (ie., if z
preys on y, then y is scared of z), and the facts Vz:Cat,
y:Bird pr‘eys-o:;{:, y) and 3z:Cat Vy:Bird loves(y,z). The
former is equivalent to preys-on(Cat, Bird) and amounts
to ‘Cats prey on Birds’. The latter amounts to ‘there
is a cat that loves all birds’. The network on the right
encodes the IS-A relationships: is-a(Bird, Animag, 15-
a(Cat, Animal), 1s-a(Robin, Bird), 1s-a(Canary, Bird),
is-a(Tweety, Canary), is-a(Chirpy, Robin), and is-
a(Sylvester, Cat).

Facts involving typed variables are encoded in the fol-
lowing manner: A typed, universally quantified variable
is treated as being equivalent to its type. Thus Vz:Cat,
y:Bird preys-on(z,y) is encoded as preys-on(Cat, Bird).
A typed, existentially quantified variable is encoded us-
ing a unique subconcept of the associated type. Thus
in Fig. 2a, 3z:Cat Vy:Bird loves(z,y) is encoded as
loves(Cat-1,Bird), where Cat-1 is a unique instance of
Cat. For now let us assume that i) each concept (type
or instance) is encoded as a p-btu node ii) each con-
ceptual IS-A relationship such as is-a(A,B) is encoded
using two connectionist links — a bottom-up link from A
to B and a top-down link from B to A, and iii) the top-
down and bottom-up links can be enabled selectively
by built-in control mechanisms (missing details are pro-

421

vided below).

The time course of activation for the query scared-
of(Tweely,Sylvester)? is given in Fig. 2b. The query
is posed by turning on e:scared-of and activating the
nodes Tweely and Sylvester in synchrony with the first
and second arguments of scared-of, respectively. The
bottom-up links emanating from Tweety and Sylvester
are also enabled. The net result of spreading activation
(Fig. 2b), in the conceptual hierarchy and the rule-base
is that the query scared-of(Tweely,Sylvester)? is trans-
formed into the query preys-on(Cat,Bird)? The latter
query matches the stored fact preys-on(Cat,Bird) and
leads to the activation of c:preys-on. In turn, c:scared-
of becomes active and signals an affirmative answer to
the query.

Two technical problems

There are two technical problems that must be solved
in order to integrate the conceptual hierarchy and the
rule-based component. First, the encoding of the 1§-
A hierarchy should be capable of representing multiple
instantiations of a concept. For example, in the query
discussed above, we would like the network’s state of ac-
tivation to represent both ‘the animal Tweety’ and ‘the
animal Sylvester’. This is problematic because the node
Animal cannot be in synchrony with both Tweety and
Sylvester at the same time. Second, the encoding must
provide buili-in mechanisms for controlling the direc-
tion of propagating activation in the IS-A hierarchy so

as to correctly deal with queries containing existentially
and universally quantiﬁeg variables. Thus i) Activation
originating from an instance or a concept that corre-
sponds to a universally quantified variable in the query
should propagate upwards to all its ancestors, and ii) If
the IS-A hierarchy is a taxonomy, then activation origi-
nating from a concept C' that corresponds to an existen-
tially quantified variable in the query should propagate
to the ancestors as well as descendents of C. If how-
ever, the IS-A hierarchy permits multiple inheritance
then the activation must also propagate to the ances-
tors of the descendents of C. The foﬁowing solution to
these problems does not require an external controller
to monitor and control the nodes in the network, during
the reasoning process.

Implementing the Type Hierarchy

Each entity (i.e., type or instance) C, is represented by
a group of nodes called the entity cluster for C. Such
a cluster is organized as shown in Fig. 3a. The en-
tity cluster for C has k banks of p-btu nodes, where k,
the multiple instantiation constant, refers to the number
of dynamic instantiations a concept can accommodate.
Each bank Cp, consists of three p-btu nodes: Cj, Ciy,
Ciy. Each C; represents a distinct (dynamic) instanti-
ation of C. If this instantiation is in phase p, then, Cj
fires in phase p. The relay nodes Ci; and Gy control the
direction of propagation of the actwatlon represented by
Ci. The C‘I and Cj;j nodes have a threshold § = 2. As
shown in Fig. 3a, C; is connected to both Ci; and Cjj.
Ci) is linked to C.T, but not vice versa. Directional con-
trol of propagating activation is exercised using a suit-
able modification of the relay-node scheme discussed in
[Shastri 1988].

Every entity C is associated with two switches — a
top-down switch and a bottom-up switch. The switches,
both of which are identical in structure, control the flow
of activation in the type hierarchy. Each switch has k
outputs. Qutput; from the bottom-up switch connects
to C; and C;; while the corresponding output from the
top-down sw1tch goes to the C; and € nodes, 1 < i <
k. There is also a feedback from the é; nodes to both
the switches (See Fig. 3a and Fig. 4.

The interaction between the switches and the entity
cluster (Fig. 3a) brings about efficient and automatic
dynamic allocation of banks in an entity cluster, by en-
suring that:

e Activation is channeled to the entity cluster banks
only if the entity cluster can accommodate more in-
stantiations; the maximum number of instantiations
is therefore limited to k.

e Each C; picks up a unique phase; thus new instanti-
ations are always in a phase not already represented
in the entity cluster.

The architecture of the switch (with £ = 3) is illus-
trated in Fig. 4. The k p-btu nodes, S;,...,5;, with
their associated 7-or nodes form the basic components
of the switch. Every input to the switch makes two con-
nections — one excitatory and one inhibitory — to each
of S2,...,Sk; as a result of these excitatory-inhibitory
connections, all these nodes are disabled to begin with,
and cannot respond to incoming activation. Input acti-
vation will have an effect only on the S; node, since the

422

Figure 4: Architecture of the switch. The multiple in-
stantiation constant k = 3.

inputs to the switch directly connect to S; §F1) In
keeping with the behavior of p-btu nodes, Eecomes
active in response to the first available input and con-
tinues to fire in phase with that input as long it remains
active. As S goes active, the 7-or node associated with
S) turns on, thereby enabling S3. Inhibitory feedback
from C; ensures that S is not enabled during the phase
p in which C, is firing*. Thus S, selects and starts firing
in a phase other than p. Once S, has made its selection,
S3 gets its turn, and so on.

As instantiations are deputed to the entity cluster,
the p-btu nodes in the switch are progressively enabled
from left to right. If Cy,...,Ci-1 are firing in phases
P1s-- -, Pi—1, then S; always plcks a distinct phase p ¢
{p1,...,pi-1}, since inputs in phases py,...,pi_1 are
h;bltecfby the feedback links from Ci,... c‘i 1. At
any stage, if C;, 1 < i < k, picks up activation chan-
neled by the other switch, feedback from C; into the r-or
node associated with S; causes S;;; to be enabled, even
though S; has not picked a phase. This ensures that at
most k instantiations are selected jointly by the bottom-
up and top-down switches; hence, only k instantiations
can be channeled to C, at worst.

A fact of the form :s-a(A B) is represented by (Fig.

3b): (i) connecting the A;;,i = 1,...,k nodes to the
bottom-up switch for B; (ii) connectmg the By,i =
1,...,k nodes to the t.op-down switch for A.

Consider a concept C in the type hierarchy. Sup-
pose C; receives activation from the bottom-up switch
in phase p. C; starts firing in synchrony with this ac-
tivation. The Cj; node (with threshold 6 = 2) is now
receiving fwo inputs in this phase (from the bottom-up
switch and from Cj; see Fig. 3a) and begins to fire in
phase p. This causes activation in phase p to eventually

*In general, C; could receive input in two phases — one
from the bottom-up switch for C, and another from its top-
down switch. C, being a p-btu node, picks one of these
phases to fire in.

Figure 5: Network encoding the rule Vz.Ty, y. T3 32:T;5
[Aél (z,y) & Py(z,2) = Q(y)] in a forward reasoning
system. Links from T}, T5 and T3 are actually bundles of
k wires carrying the k instantiations of these constants.

spread to the super-concept of C. Hence, any upward
traveling activation continues to travel upward — which
1s the required behavior when C is associated with a
universal typed variable. Similarly, when C; receives
activation from the top-down switch in phase p, both
C: and C;; become active in phase p. Cj; follows suit,
because t:>ilr the link from Cj; to C"T' so that the whole
bank Cp, now fires in phase p. This mechanism allows
a concept associated with an existential typed variable
to eventually spread its activation to its ancestors, de-
scendents and ancestors of descendents.

Typed Variables in Rules

The type hierarchy can be used to impose type restric-
tions on variables occurring in rules, for both forward
and backward reasoning systems. To utilize this fea-
ture, we need to modify the implementation of rules:
In a forward reasoning system, the rule is encoded by
introducing a 7-or node to perform the type checking
for the argument under question. For example, in Fig.
5, which encodes the rule Vz:Ty, y:T5> 3273 | P (z,y) i
Pg(I,:’{ = Q(y)], g3 would turn on if and only if the
second argument of P, and T3 are in synchrony — which
is to say that the argument is bound to an object of
type T3. In the forward reasoner, typed variables are
allowed only in the antecedent of the rule.

In a backward reasoner, the strategy is similar, except
that 1) type checking for a typed universally quantified
variable is enforced %)y an inhibitory link from the con-
cept representing the type of the concerned argument;
i) For a typed, existentially quantified variable, an in-
hibitory link derived from a unique subconcept of the
associated type performs the type enforcement - in a
manner similar to the interpretation of a typed existen-
tial variable in a fact [Mani & Shastri 1991). In the
backward reasoner, typed variables are allowed only in
the consequent. Both in the forward and backward rea-
soners, a rule fires only if all typed arguments are firing

423

in synchrony with their respective types.

Conclusions

Adding a type hierarchy allows the connectionist rea-
soning system to handle rules, facts, and queries with
typed variables. The simulator described in [Mani 1990]
has been used to test the system. Several extensions to
the system proposed here are being investigated. The
current system assumes that any fact or query with both
existentially and universally quantified variables is such
that all the universal quantifiers are within the scope
of the existential quantifiers. Work is being done on
handling more general forms of facts and queries. We
are also working on the design of an expanded system
that would allow property-value attachments to con-
cepts [Shastri 1988]. We also wish to combine the I5-A
hierarchy with a reasoning system that allows multiple
instantiation of predicates. Lastly, we hope to combine
a forward and backward reasoner that can make use of
both long-term and dynamic (temporary) facts during
reasoning.

References
[Ajjanagadde & Shastri 1991] Ajjanagadde, V., and
Shastri, L. 1991. Rules and variables in neural nets.
To appear in Neural Computation 3(1).

[Fahlman 1979] Fahlman, S. 1979. NETL: A System
for Representing Real-World Knowledge. Cambridge,
Mass.: MIT Press.

[Lange & Dyer 1989] Lange, T. E., and Dyer, M. G.
1989. High-level inferencing in a connectionist net-
work. Connection Science, 1(2):181-217.

[Mani 1990] Mani, D. R. 1990. Using the Connectionist
Rule-Based Reasoning System Simulator.

[Mani & Shastri 1991] Mani, D. R., and Shastri, L.
Combining a Type Hierarchy with a Connectionist
Rule-Based Reasoner. Technical Report MS-CIS-91-
33, Department of Computer and Information Sci-
ence, Univ. of Pennsylvania, May 1991.

[Shastri 1988] Shastri, L. 1988. Semantic networks: An
evidential formulation and ils connectionist realiza-
tion. Los Altos: Morgan Kaufman.

[Shastri & Ajjanagadde 1990a] Shastri, L., and Ajjana-
gadde, V. 1990. An optimally efficient limited infer-
ence system. In Proceedings of AAAI-90, the Twelfth
National Conference of the American Association
of Artificial Intelligence, 563-570. Cambridge Mass.:
American Association for Artificial Intelligence.

[Shastri & Ajjanagadde 1990b] Shastri, L., and Ajjana-
gadde, V. 1990. From Simple Associations to Sys-
tematic Reasoning: A Connectionist Representation
of Rules, Variables and Dynamic Bindings. Technical
Report MS-CIS-90-05, Department of Computer and
Information Science, Univ. of Pennsylvania.

[Smolensky 1987] Smolensky, P. 1987. On variable
binding and the representation of symbolic structures
in connectionist systems. Technical Report CU-CS-
355-87, Department of Computer Science, Univ. of
Colorado at Boulder.

	cogsci_1991_418-423

