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APPLICATION OF HYSTERETIC TRENDS IN THE PRECONSOLIDATION STRESS 1 

OF UNSATURATED SOILS 2 

By W. Mun, Ph.D.1, C.J.R. Coccia, Ph.D.2, and J.S. McCartney, Ph.D., P.E. 3 3 

ABSTRACT: This paper involves an evaluation of a relationship describing the evolution in yield 4 

stress of unsaturated soils during hydraulic hysteresis, and an application of this relationship in an 5 

elasto-plastic framework to predict the compression curves of unsaturated soils under drained (free 6 

outflow of air and water with constant suction) or undrained (constant water content with no 7 

outflow of water and varying suction) conditions. The yield stress was quantified as the apparent 8 

mean effective preconsolidation stress obtained from compression tests reported in the literature 9 

on specimens that had experienced different hydraulic paths. It was observed that the 10 

preconsolidation stress does not follow a hysteretic path when plotted as a function of matric 11 

suction, but does when plotted as a function of the degree of saturation. Accordingly, an existing 12 

logarithmic relationship between the preconsolidation stress and matric suction normalized by the 13 

air entry suction was found to match the experimental preconsolidation stress results. This same 14 

relationship was also able to satisfactorily predict the trends in preconsolidation stress with degree 15 

of saturation by substituting the hysteretic soil-water retention curve (SWRC) into the place of the 16 

matric suction. The relationship between preconsolidation stress and suction was combined with 17 

an elasto-plastic framework to predict the compression curves of soils during drained compression, 18 

while the wetting-path relationship between preconsolidation stress and degree of saturation was 19 
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combined with the framework to predict the compression curves of soils during undrained 20 

(constant water content) compression. A good match was obtained with experimental data from 21 

the literature, indicating the relevance of considering the hysteretic SWRC and preconsolidation 22 

relationships when simulating the behavior of unsaturated soils following different hydro-23 

mechanical paths.   24 

INTRODUCTION 25 

Several hydro-mechanical, elasto-plastic frameworks have been developed to simulate the 26 

impacts of changes in mean total or effective stress and matric suction on the volume change of 27 

unsaturated soils. The ability of these frameworks to predict the hydro-mechanical behavior of 28 

unsaturated soil is influenced by the stress state definition. While early studies extended the critical 29 

state framework to unsaturated soils using independent state variables (Alonso et al. 1990; Wheeler 30 

and Sivakumar 1995; Cui and Delage 1996), other studies used the generalized effective stress 31 

concept (Loret and Khalili 200; Gallipoli et al. 2003; Wheeler et al. 2003; Tamagnini 2004; 32 

Romero and Jommi 2008; Khalili et al. 2008; Della Vecchia et al. 2013). An advantage of using 33 

the generalized effective stress concept is that a smaller number of material properties may be 34 

needed to simulate the complex volume change behavior of unsaturated soils, and the yield surface 35 

will always be concave and thermodynamically consistent (Khalili et al. 2008). Further, the effects 36 

of hydraulic hysteresis may be considered in an elasto-plastic framework by incorporating the soil-37 

water retention curve (SWRC) (Wheeler et al. 2003; Tamagnini 2004) or the air entry suction 38 

(Khalili et al. 2008) in the definition of the generalized effective stress concept. Using the 39 

generalized effective stress concept, this study involves an evaluation of how the SWRC can also 40 

be incorporated into the definition of the yield stress in hydro-mechanical frameworks to consider 41 

the effects of hydraulic hysteresis on this parameter. 42 
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A common feature of most hydro-mechanical elasto-plastic frameworks is the evolution in 43 

yield stress with matric suction, commonly referred to as the loading-collapse (LC) curve. The 44 

Barcelona Basic Model (BBM) presented by Alonso et al. (1990) is one of the most widely used 45 

models for unsaturated soils in terms of independent stress state variables. Although the BBM is 46 

capable of considering suction hardening behavior (e.g., increase in the preconsolidation stress 47 

with suction increasing) and expansion and collapse phenomena, problems have been encountered 48 

in matching the model to experimental data (Wheeler et al. 2002), and there may be issues 49 

considering the behavior of soils under suctions less than the air entry suction. Despite the fact that 50 

the concept of the LC curve is well-established, limited experimental data sets are available to 51 

thoroughly evaluate the influence of suction and degree of saturation on the mean effective 52 

preconsolidation stress of unsaturated soils. Specifically, knowledge of the SWRC or monitoring 53 

of the degree of saturation and/or suction during compression is needed to estimate the mean 54 

effective preconsolidation stress (Salager et al. 2008; Uchaipichat and Khalili 2009; Uchaipichat 55 

2010; Coccia 2016; Khosravi et al. 2016). This study seeks to develop and validate a simple 56 

hysteretic relationship between the mean effective preconsolidation stress p′c, matric suction , 57 

and degree of saturation Sr using the limited sets of data that are available in the literature. 58 

Following this, the new relationship is employed to as part of a simple hydro-mechanical 59 

framework to predict the volume change behavior of unsaturated soils under different drainage 60 

conditions.   61 

BACKGROUND 62 

The LC curve is used to indicate the yield limit transition from an elastic to an elasto-plastic 63 

volumetric soil response during compression of unsaturated soils. Under isotropic stress states, the 64 

yield limit of soils is typically assumed to be equal to the mean effective preconsolidation stress 65 
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(Wood 1990), although for unsaturated soils it has been defined in terms of the mean net 66 

preconsolidation stress pc,net or the mean effective preconsolidation stress p′c depending on the 67 

choice of stress state variables. This paper is focused on isotropic loading, so all further discussion 68 

of preconsolidation stress are for the mean preconsolidation stress. In general, most LC curves 69 

indicate an increase in preconsolidation stress with increasing matric suction, an effect commonly 70 

referred to as “suction hardening”, albeit with different shapes for this relationship. Analytical 71 

expressions to characterize the LC curve for unsaturated soils have been proposed in the literature 72 

in pnet vs. suction () space (Alonso et al. 1990), p′ vs.  space (Salager et al. 2008; Tourchi and 73 

Hamidi 2015), p′ vs. degree of saturation (Sr) space (Gallipoli et al. 2003; Romero and Jommi 74 

2008), p′ vs. modified suction space (i.e., suction multiplied by the porosity n) (Wheeler et al. 75 

2003), and p′ vs. effective saturation (Se) space (Zhou et al. 2012b). The shapes of some typical 76 

LC curves are shown in Figure 1, along with their analytical expressions. Several studies have 77 

defined the evolution of p′c with changes in matric suction (Lloret et al. 2003; Geiser et al. 2006; 78 

Salager et al. 2008; Uchaipichat and Khalili 2009; Mun and McCartney 2015, 2016; Khosravi et 79 

al. 2016), which have all confirmed an increasing trend between p′c and matric suction during 80 

drying. Alsherif and McCartney (2016) found that a similar increasing trend may also be present 81 

at high suction magnitudes. Although the suction is clearly related to p′c, the evolution in p′c may 82 

also be related to changes in soil structure during application of suction to the soil or due to 83 

different distributions in water throughout the soil during wetting and drying (hydraulic 84 

hysteresis).  85 

A well-known LC curve is that of Alonso et al. (1990), which was formulated to link the 86 

relationship between the preconsolidation stress and suction with the slope of the virgin 87 

compression line in net mean stress space. The LC curve proposed by Alonso et al. (1990) with a 88 
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hypothetical hydro-mechanical loading path for an overconsolidated soil subjected to an increase 89 

in matric suction followed by an increase in mean net stress is shown in Figure 1(a) in pnet –  90 

space. As matric suction increases, the soil is assumed to behave elastically along path O→A while 91 

the stress state remains within the LC curve. During this increase in suction, an apparent increase 92 

in pc will also occur as defined by the LC curve (Figure 1(a)). An increase in net stress along path 93 

A→B will also result in an elastic response until reaching the LC curve at point B. Further increases 94 

in mean net stress result in an elasto-plastic response, along with expansion of the LC curve due 95 

to stress-induced hardening. Although this loading path is the focus of this study, plastic strains 96 

may also be generated along other paths in the elasto-plastic frameworks for unsaturated soils that 97 

consider coupling between hydraulic and mechanical loading paths (Wheeler et al. 2003; Romero 98 

and Jommi 2008). The other LC curves presented in Figure 1 function in a similar way to that of 99 

Alonso et al. (1990), but interpret LC curve in terms of the mean effective preconsolidation stress. 100 

The relationship of Wheeler et al. (2003) also permits coupling between mechanical and hydraulic 101 

loading paths to be considered by incorporating suction increase (SI) and suction decrease (SD) 102 

curves that bound the region of elastic response.  103 

An advantage of the framework of Alonso et al. (1990) is that it can predict wetting-induced 104 

swelling or collapse of unsaturated soils. In this case, the slope of the virgin compression line in 105 

mean net stress space decreases with suction in order to predict collapse. However, this change in 106 

the slope of the virgin compression line with suction is not necessarily observed when interpreting 107 

soil behavior in terms of generalized effective stress (Uchaipichat and Khalili 2009), and the 108 

decrease in slope may lead to problems when trying to predict the phenomenon of pressurized 109 

saturation during drained compression to high mean stresses (Mun and McCartney 2015, 2016). 110 

Mun and McCartney (2016) found that the slope of the virgin compression line of an unsaturated 111 
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soil is different than that of a saturated soil, and that it will gradually converge with the virgin 112 

compression line of saturated soil at high stresses with an intersection point dependent on the initial 113 

degree of saturation. Nonetheless, similar to Uchaipichat and Khalili (2009), Mun and McCartney 114 

(2016) found that the virgin compression lines for specimens with different initial degrees of 115 

saturation in effective stress space were relatively parallel for mean effective stresses less than 3 116 

MPa, which is in the stress range relevant to most geotechnical applications. Instead of changing 117 

the slope of the virgin compression lines for unsaturated soils, Khalili et al. (2004) found that the 118 

collapse phenomenon may be captured by considering the relative changes in preconsolidation 119 

stress and effective stress with changes in degree of saturation or suction. This may imply that a 120 

linkage between the LC curve and the compression curve may not be necessary in all effective 121 

stress-based elasto-plastic frameworks. 122 

A remaining issue in the definition of the LC curve is confirmation of the role of hydraulic 123 

hysteresis on the yield stress evolution during wetting and drying, and understanding the situations 124 

in which it needs to be considered. In field applications such as slopes and pavements, for example, 125 

wetting and drying may lead to hysteretic changes in stiffness that may lead to temporal variations 126 

in deformations. Romero and Jommi (2008) noted that irreversible strains could be observed 127 

following a wetting-drying path using a suction-controlled oedometer under isotropic conditions 128 

and Khosravi and McCartney (2012) showed that hysteretic changes in the small strain shear 129 

modulus during drying and wetting may be linked to hysteretic changes in the preconsolidation 130 

stress. Further, hydraulic hysteresis may be encountered when loading soil under undrained 131 

drainage conditions, where a change in degree of saturation and suction are expected during 132 

compression, as will be discussed later in this paper. Although there have been several hydro-133 

mechanical frameworks proposed to account for changes in the yield stress during wetting or 134 
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drying (Wheeler et al. 2003; Tamagnini 2004; Sun et al. 2008, Sheng et al. 2004), they have not 135 

been used to evaluate the impact of hydraulic hysteresis for soils compressed under different 136 

drainage conditions. Accordingly, the objective of this paper is to provide a simple approach to 137 

investigate the evolution of the mean effective preconsolidation stress with degree of saturation 138 

using a linkage to the shape of the SWRC.  139 

CALIBRATION OF THE PRECONSOLIDATION STRESS RELATIONSHIP 140 

The hysteretic preconsolidation stress relationship proposed in this study couples the LC curve 141 

relationship of Salager et al. (2008) with the van Genuchten (1980) SWRC relationship to predict 142 

a non-linear relationship between the preconsolidation stress and the matric suction normalized by 143 

the air entry suction. The SWRC during hydrualic hysteresis is typically defined using a primary 144 

drying path that governs the drainage process from a water-saturated soil, a primary wetting curve 145 

that governs the wetting process from an air-dry soil, and scanning curves that transition between 146 

the primary wetting and drying curves depending on the initial state of an unsaturated soil 147 

undergoing a wetting or drying process. The van Genuchten (1980) SWRC model for the primary 148 

drying path is given as follows: 149 

vG

vG

n

n

vG

resresr SSS














1

1

)(1

1
)1(


 (1) 

where Sres is the residual degree of saturation and vG and nvG are fitting parameters. The approach 150 

used to simulate hydraulic hysteresis in this study was to fit a modified version of the van 151 

Genuchten (1980) SWRC to the wetting path data from the experimental studies, which includes 152 

a scanning curve and a portion of the primary wetting path. The equation used in this case is: 153 
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where Smax is the maximum degree of saturation on the primary wetting curve and Smin is the degree 154 

of saturation on the drying curve at the point of wetting. This approach provides a good fit to 155 

measured wetting path data but does not provide a generalized model for predicting any hysteretic 156 

path. Alternative approaches to capture the hysteretic SWRC are to assume a piece-wise log-linear 157 

SWRC (Wheeler et al. 2003), linear scanning curve connecting the primary drying and wetting 158 

paths (Tamagnini 2004), or modification of the parameters from the primary drying path to predict 159 

the wetting path (Kool and Parker 1987). Nonetheless, the approach using Equation (2) permits a 160 

simple evaluation of linkages between the SWRC and the preconsolidation stress that is the focus 161 

of this study. 162 

It should be noted that hydraulic hysteresis can be influenced by the initial conditions. For 163 

example, Della Vecchia et al. (2013) reported a different primary wetting path for different void 164 

ratios. Although differences may exist between the SWRC (and the air entry suction) at different 165 

stresses during compression or for soils with different initial densities, the effect of these factors 166 

are neglected in this study for simplicity. As compression of soils will change the pore structure 167 

and thus the SWRC, the stress-dependent SWRC model of Zhou and Ng (2014) can be 168 

incorporated into a relationship for the preconsolidation stress. However, there is insufficient data 169 

to apply the relationship from this Zhou and Ng (2014) at the current time. 170 

When interpreting the preconsolidation stress, the mean effective stress was evaluated using 171 

the definition of generalized effective stress proposed by Bishop and Blight (1963), as follows: 172 

 netpp'

 
(3) 
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where pnet is mean net stress,  is the matric suction equal to the difference between the pore 173 

air pressure ua and the pore water pressure uw, and  is the effective stress parameter assumed to 174 

be equal to the degree of saturation Sr for simplicity. Many other choices are available for the 175 

definition of the value of x, including the effective saturation (Bolzon and Schrefler 1995; Lu et 176 

al. 2010), a function of the air entry suction (Khalili and Khabbaz 1998), and experimental shear 177 

strength data (Lu and Likos 2006; Khalili and Zargarbashi 2010).     178 

Salager et al. (2008) proposed a semi-logarithmic relationship to capture the association 179 

between p′c and  as follows: 180 
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where p′c() and p′c (0) are the values of mean effective preconsolidation stress at matric 181 

suctions of  and zero, respectively, ae is the air entry suction, and  is a material parameter that 182 

defines the impact of matric suction on p′c. The relationship assumes a piecewise log-linear 183 

relationship for the SWRC where no change in degree of saturation occurs until the applied matric 184 

suction has surpassed the air entry suction. Therefore, no changes in p′c will occur until > ae. 185 

The relationship of Salager et al. (2008) has been adopted by several constitutive frameworks to 186 

define the LC curve in the p′ -  space (François and Laloui 2008; Bellia et al. 2015).  187 

A potential drawback of the relationship of Salager et al. (2008) involves the “if” statement 188 

required to maintain a constant value for p′c while≤ ae, and the fact that there is not data 189 

showing the evolution in p′c for suctions less than the ae. In order to predict the trends in 190 

preconsolidation stress and degree of saturation, the model of Salager et al. (2008) was modified 191 

to relate p′c and Sr as follows: 192 
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where  is the same soil parameter from the relationship between suction and p′c, and Se is the 193 

effective degree of saturation defined as (Sr-Sres/1-Sres).  194 

Data sets available in the literature that involve information on the role of suction and degree 195 

of saturation on the hardening response of unsaturated soils were selected to calibrate the hysteretic 196 

preconsolidation stress relationships in Equations (4) and (5). The calibration was restricted to 197 

studies that involved the drained, isotropic compression of soils that had experienced different 198 

hydraulic testing paths before loading. Uchaipichat and Khalili (2009) performed suction 199 

controlled isotropic loading tests on a compacted silt for different values of matric suction (0, 100, 200 

and 300 kPa) while Uchaipichat (2010) investigated the influence of hydraulic hysteresis on the 201 

compression curve and preconsolidation stress for different values of matric suction. Coccia (2016) 202 

investigated the impact of degree of saturation on the mean effective preconsolidation stress of 203 

compacted silt using a high pressure thermal isotropic cell. Khosravi et al. (2016) performed a 204 

series of isotropic compression tests to represent the impact of suction-induced hardening on the 205 

dynamic shear modulus of unsaturated soils. The data of Salager et al. (2008) was not included in 206 

this evaluation because of the large variability observed in the reported preconsolidation stress 207 

trends with suction. Other studies such as Mun and McCartney (2015, 2016) present drained 208 

compression curves for specimens with different initial suction values, but the specimens were 209 

prepared using different compaction efforts and may have different soil structures that may 210 

influence the preconsolidation stress. 211 
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The first step in evaluating the hysteretic preconsolidation stress model was to determine the 212 

parameters vG and nvG for different soils from the literature using least squares minimization. 213 

Drying-path SWRCs collected from the literature are shown in Figure 2(a). Using the method of 214 

least squares, the preconsolidation stresses from Equation (5) calculated from the value of degree 215 

of saturation at the point of yielding are compared with the measured values of p′c for each test in 216 

Figure 2(b). A good match between the experimental preconsolidation stress values and the results 217 

from Equation (5) is obtained in this figure. The evolution of p′c as a function of the initial suction 218 

() and normalized initial suction (/ae) for these soils calculated using Equation (4) are shown 219 

in Figures 2(c) and 2(d), respectively. The relationship also provides a reasonable match to the 220 

preconsolidation stress in terms of suction for the four soils.  221 

The preconsolidation stress values for compacted Kaolinite specimens that had experienced a 222 

wetting and drying path before undergoing isotropic, drained compression reported by Uchaipichat 223 

(2010) are investigated in Figure 3. To identify the effect of Sr on p′c by incorporating the hysteretic 224 

SWRC, the van Genuchten (1980) SWRC model parameters were determined for the primary 225 

drying and wetting paths shown in Figure 3(a). The changes in p′c with Sr obtained from Equation 226 

(5) are shown in Figure 3(b), and changes in p′c with  and /ae obtained from Equation (4) are 227 

shown in Figures 3(c) and 3(d), respectively. The values of p′c were not observed to exhibit any 228 

significant change with matric suction during hydraulic hysteresis in Figures 3(c) and 3(d), while 229 

a clear hysteretic trend between p′c and Sr was observed in Figure 3(b) for specimens that had 230 

previously experienced drying or wetting paths. Although the comparison in Figure 3 indicates 231 

that it may be simpler to use the relationship between the preconsolidation stress and suction (Fig. 232 

3(c)) in hydro-mechanical frameworks due to the lack of hysteresis in this relationship, there are 233 

hydro-mechanical paths where the suction and degree of saturation may both change, such as 234 
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undrained compression (i.e., compression under constant water content conditions). In this case, it 235 

may be easier to track or estimate changes in the degree of saturation, and use the hysteretic 236 

relationship in Equation (5) to predict the preconsolidation stress. In this case, the relationship in 237 

terms of degree of saturation in Figure 3(b) may be more useful. Although not shown here, 238 

Khosravi et al. (2016) also presented a single preconsolidation stress value for a specimen that had 239 

been wetted following a drying path, and similar observations to those in Figure 3 were drawn.  240 

There are several other studies that have evaluated the compression of unsaturated soils under 241 

undrained (or constant water content) conditions (e.g., Jotisankasa et al. 2007; Sun et al. 2008; 242 

Della Vecchia et al. 2013). In these cases, the suction and degree of saturation need to be monitored 243 

or inferred during compression in order to perform an effective stress analysis, as both variables 244 

can change during undrained compression. Of the studies provided above, Jotisankasa (2005) and 245 

Jotisankasa et al. (2007) provided sufficient information to perform this analysis and evaluate the 246 

hysteretic preconsolidation stress relationship. The measured drying and wetting path SWRCs 247 

from Jotisankasa (2005) and Jotisankasa et al. (2007) along with van Genuchten (1980) SWRC 248 

fitting parameters are shown in Figure 4(a), while a comparison between the preconsolidation 249 

stress data from their undrained compression tests and the fitted relationship from Equation (5) is 250 

shown in Figure 4(b). A value of  of 19.0 was identified for the compacted silty clay using least 251 

squares minimization, which was greater than that observed in the other studies presented in Table 252 

1 and likely reflects soil- and test-specific conditions. Nonetheless, a good fit is observed between 253 

the experimental data and the model. The trends in preconsolidation stress with  and /ae from 254 

Equation (4) are shown in Figure 4(c) and 4(d), and a good match is also observed with the model.  255 
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APPLICATION OF THE PRECONSOLIDATION STRESS MODEL IN PREDICTING 256 

COMPRESSION RESPONSE UNDER DIFFERENT DRAINAGE CONDITIONS 257 

The compression of soils under either undrained or drained conditions can be considered to 258 

elucidate how the hysteretic preconsolidation stress model may be used in different situations. 259 

During drained compression, the suction will remain constant while the degree of saturation will 260 

increase as the voids are compressed. The only way for the suction to remain constant but for the 261 

degree of saturation to increase would be for the shape of the SWRC to change, as shown in 262 

Figure 5(a) for a hypothetical soil. In this case, it may be simplest to estimate the preconsolidation 263 

stress in terms of suction using Equation (4), as shown in Figure 5(b). During undrained 264 

compression, it is expected that the degree of saturation will increase and the suction will decrease 265 

during undrained compression, as shown in Figure 5(c) for a hypothetical soil. The degree of 266 

saturation is likely proportional to the change in volume of the soil and may be easy to estimate 267 

using a model such as that of Zhou et al. (2012b). However, the change in suction may not be 268 

simple to estimate as the shape of the SWRC is likely changing. In addition to this, the model in 269 

Equation (4) does not capture the preconsolidation stress variation during the increase in degree of 270 

saturation during compression, so Equation (4) may not be suitable to predict the evolution in 271 

preconsolidation stress during undrained compression. In this case, it may be best to estimate the 272 

preconsolidation stress defined in Equation (5) using estimates of the degree of saturation during 273 

compression, as shown in Figure 5(d). It is acknowledged that the magnitude of changes in degree 274 

of saturation and suction are not as significant before the applied mean stress reaches the 275 

preconsolidation stress as they may be for higher stresses (Wheeler et al. 2003). Nonetheless, the 276 

nonlinear trends between preconsolidation stress and degree of saturation from the proposed 277 

relationship indicate that this still may be important to consider. 278 
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To evaluate the situations described in the previous paragraph quantitatively, the proposed 279 

preconsolidation stress models in Equations (4) and (5) can be utilized alongside a simple elasto-280 

plastic model to predict the compression curves of soils during drained compression using the 281 

relationship between preconsolidation stress and suction, and to predict the compression curves of 282 

soils during undrained (constant water content) compression using the wetting-path relationship 283 

between preconsolidation stress and the degree of saturation. The compression curves from the 284 

experiments indicate that the unsaturated soils exhibit elastic behavior until reaching a mean 285 

effective preconsolidation stress p′c. In the elastic region, changes in void ratio (e) up p'c can be 286 

expressed as follows: 287 

cf

f
pp

p

p
e ''     

'

'
ln

0

   (6) 

where p′0 and p′f are the initial and final mean effective stresses, and p'c is the mean effective 288 

preconsolidation stress, which can be predicted by using either Equations (4) or (5). The value of 289 

 is assumed to be constant regardless of the initial suction or initial degree of saturation.  290 

After reaching the mean apparent preconsolidation stress, the unsaturated specimens are 291 

assumed to decrease in volume irrespective of suction magnitudes or degree of saturation. The 292 

compression response of unsaturated soils for stresses greater than p'c can be calculated as follows:   293 
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(7) 

where  is the slope of the VCL for unsaturated soil and is assumed to be constant for unsaturated 294 

soils over the stress range of interest to geotechnical problems following the observations of 295 

Uchaipichat and Khalili (2009) and Mun and McCartney (2015). Although the slope  for 296 

unsaturated soils is assumed to be the same regardless of the suction, it is assumed to be greater 297 
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than or equal than the slope 0 for saturated soil in the mean effective stress range relevant to 298 

geotechnical engineering problems. This follows the observations of several experimental studies 299 

(i.e., Sivakumar 1993; Uchaipichat and Khalili 2009; Mun and McCartney 2015). 300 

Zhou et al. (2012a) introduced an expression to predict the change in the effective saturation 301 

caused by suction and stress changes by using a hydro-mechanical interaction function (De). 302 

However, the model of Zhou et al. (2012a) has a limitation in the evaluation of compression 303 

behavior with the change of suction or degree of saturation because of the complexity in 304 

calculation methods. Sun et al. (2008) also suggested an analytical expression to predict the change 305 

of degree of saturation and suction through inclusion of hydraulic hysteresis during undrained 306 

compression. This study employed a simplified approach to predict the change of degree of 307 

saturation during undrained compression based on the assumption that the variation in the degree 308 

of saturation of unsaturated soil is directly related to the changes in void ratio, an approach used 309 

by Jotisankasa (2005) and Jotisankasa et al. (2007). Changes in degree of saturation during initial 310 

compression in the elastic region can be calculated as follows:  311 

cf
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r pp
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S ''    
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'
ln

0

 

 
(8) 

The changes in degree of saturation can be used in an incremental form to calculate changes in the 312 

mean effective preconsolidation stress using Equation (5). Although not as critical to this study 313 

but still relevant for calculation of the mean effective stress using Equation (3), the degree of 314 

saturation for stresses greater than pʹc can be calculated as follows: 315 
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VALIDATION OF THE PRECONSOLIDATION STRESS MODEL IN PREDICTING 316 

COMPRESSION CURVES 317 

In order to verify the simple elasto-plastic framework together with the hysteretic 318 

preconsolidation stress model, comparisons between the simulated and measured compression 319 

curves for drained compression tests presented by Uchaipichat (2010) and undrained compression 320 

tests presented by Jotisankasa et al. (2007) are shown in Figures 6(a) and 6(b), respectively. In 321 

addition to the values of  defined in Figures 3 and 4 for each of the two studies respectively, the 322 

parameters of the framework were calibrated to predict the compression curves of the two 323 

unsaturated soils under different initial conditions, and are summarized in Table 2. Further, the 324 

actual initial conditions (e.g., Sr,0, e0, p′) from the experiments shown in Table 2 were used as 325 

inputs. The simulated compression curves appear to match well with the experimental compression 326 

behavior in Figures 6(a) and 6(b), and capture the different suction hardening effects for the 327 

specimens tested in both drained and undrained conditions.  328 

The approach described in Figures 5(a) and 5(b) was used to simulate the drained compression 329 

data of Uchaipichat (2010) while the approach described in Figures 5(c) and 5(d) was used to 330 

simulate the undrained compression data of Jotisankasa et al. (2007). Uchaipichat (2010) did not 331 

report the change of degree of saturation during drained compression, which required an estimated 332 

trend in Sr to calculate the mean effective stress. Although Equations (8) and (9) are meant for use 333 

in estimating changes in degree of saturation in undrained compression tests, they were used to 334 

predict the change of degree of saturation during compression under constant suction conditions, 335 

as shown in Figure 6(c). On the other hand, Jotisankasa et al. (2007) reported changes in degree 336 

of saturation and suction during undrained compression, and the data in Figure 6(d) indicates that 337 

the degree of saturation calculated using Equations (8) and (9) matches the data well. Although 338 
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the degree of saturation only increases by about 2% during the elastic loading for the different 339 

specimens, this small change still causes a relevant decrease in preconsolidation stress of about 6 340 

to 10% due to the steep shape of the wetting path curve in Figure 4(b). The suction values used in 341 

the simulation of the data of Uchaipichat are shown in Figure 6(e), and are constant as the test is 342 

drained. The suction values used in the simulation of the data from Jotisankasa et al. (2007) were 343 

estimated from the calculated values of Sr using the SWRC for simplicity, and the comparison in 344 

Figure 6(f) indicates a good fit with most of the measured suction values in the tests. 345 

The values of preconsolidation stress for the drained tests of Uchaipichat (2010) obtained from 346 

the suction values in Figure 6(e) using Equation (4) lead to a good fit to the experimental 347 

preconsolidation stress values as shown in Figure 6(g). As expected, the preconsolidation stress is 348 

constant during drained compression. In Figure 6(g), the point of yielding is reflected by the 349 

intersection between the preconsolidation stress line and the 1:1 line. The trends in 350 

preconsolidation stress for the undrained tests of Jotisankasa et al. (2007) obtained from the degree 351 

of saturation trends in Figure 6(d) using Equation (5) are shown in Figure 6(h). A decreasing trend 352 

in preconsolidation stress during compression is observed due to the reduction in Sr. The slope of 353 

the trend in preconsolidation stress increases with increasing suction due to the nonlinearity in the 354 

hysteretic preconsolidation stress relationship. 355 

The comparison in Figure 6 shows conceptually how the hysteretic preconsolidation stress 356 

relationship described by Equations (4) and (5) can be applied for different hydro-mechanical 357 

paths. Although the changes in degree of saturation in the elastic zone are expected to be the same 358 

due to the use of the same value of  in Equation (8), the shape of the SWRC may lead to different 359 

impacts of this change in degree of saturation on the predicted preconsolidation stress 360 

relationships. This also indicates that the shape of the SWRC for a given soil may have an impact 361 
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on how important hydraulic hysteresis may be in predicting the compression curve in undrained 362 

conditions.   363 

CONCLUSIONS 364 

This paper proposes a mean effective preconsolidation stress relationship that describes 365 

evolution in this variable with the suction and degree of saturation during hydraulic hysteresis, 366 

which was validated based on available data sets in the literature. The relationship was then used 367 

in a simple, effective stress-based elasto-plastic framework to predict the compression curves of 368 

soils during drained compression (constant suction) using the relationship between 369 

preconsolidation stress and suction, and to predict the compression curves of soils during 370 

undrained (constant water content) compression using the wetting-path relationship between 371 

preconsolidation stress and the degree of saturation. The proposed relationship was found to 372 

satisfactorily capture the relative changes in preconsolidation stress with suction and degree of 373 

saturation, and was shown to be useful to simulate the compression curves of unsaturated soils 374 

under different drainage conditions and corresponding hydro-mechanical paths. 375 
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TABLE 1: Parameters of the preconsolidation stress relationship for different soils 511 

Study Soils investigated 

Drying-path SWRC model 

parameters 

(van Genuchten 1980) 

p′c 

relationship 

parameter 

vg 

(kPa-1) 
nvg Sr,min 

ae  
(kPa) 

 

Coccia  

(2016) 
Compacted Bonny silt 0.16 1.38 0.03 2 0.765 

Khosravi et al.  

(2016) 
Compacted Bonny silt 0.02 2.60 0.06 10 0.700 

Uchaipichat  

(2010) 
Compacted Kaolinite 0.002 1.49 0.00 25 0.700 

Uchaipichat & 

Khalili (2010) 
Compacted Bourke silt 0.03 3.15 0.03 18 0.197 

 512 
TABLE 2: Calibrated parameters for the simulated compression curves of soils loaded in drained 513 

and undrained conditions 514 

Variable 
Drained condition 

(Uchaipichat 2010) 

Undrained condition 

(Jotisankasa 2005; Jotisankasa 

et al. 2007) 

Initial suctions evaluated, 0 

(kPa) 
0 / 50 / 100 / 200 / 300 0 / 75 / 134 / 525 /936 

Initial degrees of saturation 

evaluated, Sr,0 
1.00 / 0.97 / 0.96 / 0.95 / 0.91 1.00 / 0.54 / 0.49 / 0.40 / 0.36 

Initial void ratios evaluated, e0 1.05 / 1.04 / 1.04 / 1.03 / 1.03 0.71 / 0.71 / 0.71 / 0.70 / 0.69 

 (Saturated) 0.065 0.086 

 (Unsaturated) 0.070 0.178 

 0.005 0.007 

ae (kPa) 25.0 45.0 

vg (kPa-1) 0.019 0.095 

nvg 3.60 1.65 

Sr,max 0.994 0.982 

Sr,min (the same for all tests) 0.912 0.365 

p′c relationship parameter,  0.7 19.0

 515 
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