
UC Riverside
UC Riverside Previously Published Works

Title
Enriched Lawvere Theories for Operational Semantics

Permalink
https://escholarship.org/uc/item/3fz1k4k1

Authors
Baez, John C
Williams, Christian

Publication Date
2019-05-14

DOI
10.4204/eptcs.323.8

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3fz1k4k1
https://escholarship.org
http://www.cdlib.org/

John Baez and Bob Coecke (Eds.): Applied Category Theory 2019
EPTCS 323, 2020, pp. 106–135, doi:10.4204/EPTCS.323.8

c© John C. Baez & Christian Williams
This work is licensed under the
Creative Commons Attribution License.

Enriched Lawvere Theories for Operational Semantics

John C. Baez and Christian Williams
Department of Mathematics

U. C. Riverside
Riverside, CA
92521 USA

baez@math.ucr.edu, cwill041@ucr.edu

Enriched Lawvere theories are a generalization of Lawvere theories that allow us to describe the
operational semantics of formal systems. For example, a graph-enriched Lawvere theory describes
structures that have a graph of operations of each arity, where the vertices are operations and the
edges are rewrites between operations. Enriched theories can be used to equip systems with oper-
ational semantics, and maps between enriching categories can serve to translate between different
forms of operational and denotational semantics. The Grothendieck construction lets us study all
models of all enriched theories in all contexts in a single category. We illustrate these ideas with the
SKI-combinator calculus, a variable-free version of the lambda calculus.

1 Introduction

Formal systems are not always explicitly connected to how they operate in practice. Lawvere theories
[20] are an excellent formalism for describing algebraic structures obeying equational laws, but they do
not specify how to compute in such a structure, for example taking a complex expression and simplify-
ing it using rewrite rules. Recall that a Lawvere theory is a category with finite products T generated
by a single object t, for “type”, and morphisms tn→ t representing n-ary operations, with commutative
diagrams specifying equations. There is a theory for groups, a theory for rings, and so on. We can spec-
ify algebraic structures of a given kind in some category C with finite products by a product-preserving
functor µ : T→ C. This is a simple and elegant form of denotational semantics. However, Lawvere the-
ories know nothing of operational semantics. Our goal here is to address this using “enriched” Lawvere
theories.

In a Lawvere theory, the objects are types and the morphisms are terms; however, there are no
relations between terms, only equations. The process of computing one term into another should be
given by hom-objects with more structure. In operational semantics, program behavior is often specified
by labelled transition systems, or labelled directed multigraphs [26]. The edges of such a graph represent
rewrites:

(λx.x+ x 2) 2+2 4
β +

We can use an enhanced Lawvere theory in which, rather than merely sets of morphisms, there are graphs
or perhaps categories. Enriched Lawvere theories are exactly for this purpose.

In a theory T enriched in a category V of some kind of “directed object”, including graphs, categories,
and posets, the theory has the following interpretation:

http://dx.doi.org/10.4204/EPTCS.323.8
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

John C. Baez & Christian Williams 107

types: objects of T
terms: morphisms of T

equations between terms: commuting diagrams
rewrites between terms: “edges” in hom in V

To be clear, this is not a new idea. Using enriched Lawvere theories for operational semantics has
been explored in the past. For example, category-enriched theories have been studied by Seely [29]
for the λ -calculus, and poset-enriched ones by Ghani and Lüth [23] for understanding “modularity” in
term rewriting systems. They have been utilized extensively by Power, enriching in ω-complete partial
orders to study recursion [13] – in fact, there the simplified “natural number” enriched theories which
we explore were implicitly considered.

The goal of this paper is to give a simple unified explanation of enriched Lawvere theories and some
of their applications to operational semantics. We aim our explanations at readers familiar with category
theory but not yet enriched categories. To reduce the technical overhead we only consider enrichment
over cartesian closed categories.

In general for a cartesian closed category V, a V-theory is a V-enriched Lawvere theory with natural
number arities. We consider V as a choice of “method of computation” for algebraic theories. The main
idea of this paper is that product-preserving functors between enriching categories allow for the transla-
tion between different kinds of semantics. This translation could be called “change of computation”—or,
following standard mathematical terminology, change of base.

Because operational semantics uses graphs to represent terms and rewrites, one might expect some
category like Gph, the category of directed multigraphs, to be our main example of enriching category:
that is, the “thing” of n-ary operations, or n-variable terms in a theory, is a directed graph whose edges
are rewrites. This is known as small-step operational semantics, meaning each edge represents a single
instance of a rewrite rule.

When studying formal languages, one wants to pass from this local view to a global view: given a
term, one cares about its possible evolutions after not only one rewrite but any finite sequence of rewrites.
We study how programs operate in finite time. In computer science, this corresponds to defining a rewrite
relation and forming its transitive closure, called big-step operational semantics. This is the classic
example which change of base aims to generalize.

However, there is a subtlety. We may try to model the translation from small-step to big-step opera-
tional semantics using the “free category” functor, which for any directed multigraph forms the category
whose objects are vertices and morphisms are finite paths of edges. However, this functor does not pre-
serve products. One might hope to cure this using a better-behaved variant of directed multigraphs, such
as reflexive graphs. One advantage of reflexive graphs is that that each vertex has a distinguished edge
from it to itself; these describe rewrites that “do nothing”. Thus, in a product of reflexive graphs there
are edges describing the process of rewriting one factor while doing nothing in the other. This lets us
handle parallelism. Unfortunately, as we shall explain, the free category functor from reflexive graphs to
categories still fails to preserve products.

To obtain a product-preserving change of base taking us from small-step to big-step operational
semantics, it seems the cleanest solution is to generalize graphs to simplicial sets. A simplicial set is a
contravariant functor from the category ∆ of finite linear orders and monotone maps to the category of
sets and functions. It can be visualized as a space built from “simplices”, which generalize triangles to
any dimension: point, line, triangle, tetrahedron, etc. For an introduction to simplicial sets, see Friedman
[12]. We use sSet to denote the category of simplicial sets, namely Set∆op

.

108 Enrichment for Operational Semantics

Simplicial sets allow one to generalize rewriting to higher-dimensional rewriting, but this is not our
focus here. Indeed, we only need two facts about simplicial sets in this paper:

• There is a full and faithful embedding of RGph, the category of reflexive graphs, in sSet, so we
can think of a reflexive graph as a special kind of simplicial set (namely one whose n-simplices for
n > 1 are all degenerate).

• The free category functor FC: sSet→ Cat, often called “realization”, preserves products.

We thus obtain a spectrum of cartesian closed categories V to enrich over, each connected to the next
by a product-preserving functor, which allow us to examine the computation of term calculi in various
ways:

Simplicial Sets sSet-theories represent “small-step” operational semantics:
— an edge is a single term rewrite.

Categories Cat-theories represent “big-step” operational semantics:
(Often this means a rewrite to a normal form. We use the term more generally.)
— a morphism is a finite sequence of rewrites.

Posets Pos-theories represent “full-step” operational semantics:
— a boolean is the existence of a big-step rewrite.

Sets Set-theories represent denotational semantics:
— an element is a connected component of the rewrite relation.

In Section 2 we review Lawvere theories as a more explicit, but equivalent, presentation of finitary
monads. In Section 3, we recall the basics of enrichment over cartesian closed categories. In Section 4
we give the central definition of V-theory, adapted from the work of Lucyshyn-Wright [22]. Using his
work we show that a V-theory T gives a monadic adjunction between V and the V-category of models of
T in V. This generalizes a fundamental result for Lawvere theories.

In Section 5 we discuss how suitable functors between enriching categories induce change of base:
they transform theories, and their models, from one method of rewriting to another. Our main examples
arise from this chain of adjunctions:

sSet

a

Cat

a

Pos

a

Set

FC

UsS

FP

UC

FS

UP

The right adjoints here automatically preserve finite products, but the left adjoints do as well, and these
are what we really need:

• The functor FC: sSet→ Cat maps a simplicial set (for example a reflexive graph) to the category
it freely generates. Change of base along FC maps small-step operational semantics to big-step
operational semantics.

• The functor FP: Cat→ Pos maps a category C to the poset whose elements are objects of C, with
c ≤ c′ iff C has a morphism from c to c′. Change of base along FP maps big-step operational
semantics to full-step operational semantics.

• The functor FS: Pos→ Set maps a poset P to the set of “components” of P, where p, p′ ∈ P are
in the same component if p ≤ p′. Change of base along FS maps full-step operational semantics
to denotational semantics.

John C. Baez & Christian Williams 109

In Section 6 we show that models of all V-theories for all enriching V can be assimilated into one
category using the Grothendieck construction. In Section 7 we bring all the strands together and demon-
strate these concepts in applications. First we consider the SKI-combinator calculus, and then we show
how theories enriched over the category of labelled graphs can be used to study bisimulation.

Acknowledgements

This paper builds upon the ideas of Mike Stay and Greg Meredith presented in “Representing operational
semantics with enriched Lawvere theories” [30]. We appreciate their offer to let us develop this work
further for use in the innovative distributed computing system RChain, and gratefully acknowledge the
support of Pyrofex Corporation. We also thank Richard Garner, Todd Trimble and others at the n-
Category Café for classifying cartesian closed categories where every object is a finite coproduct of
copies of the terminal object [2].

2 Lawvere Theories

Algebraic structures are traditionally treated as sets equipped with operations obeying equations, but
we can generalize such structures to live in any category with finite products. For example, given any
category C with finite products, we can define a monoid internal to C to consist of:

an object M
an identity element e : 1→M
and multiplication m : M2→M

obeying the associative law m◦ (m×M) = m◦ (M×m)
and the right and left unit laws m◦ (e× idM) = idM = m◦ (idM× e).

Lawvere theories formalize this idea. For example, there is a Lawvere theory Th(Mon), the category
with finite products freely generated by an object t equipped with an identity element e : 1→ t and mul-
tiplication m : t2→ t obeying the associative law and unit laws listed above. This captures the “Platonic
idea” of a monoid internal to a category with finite products. A monoid internal to C then corresponds to
a functor µ : T→ C that preserves finite products.

In more detail, let N be any skeleton of the category of finite sets FinSet. Because N is the free
category with finite coproducts on 1, Nop is the free category with finite products on 1. A Lawvere
theory is a category with finite products T equipped with a functor τ : Nop → T that is the identity on
objects and preserves finite products. Thus, a Lawvere theory is essentially a category generated by one
object τ(1) = t and n-ary operations tn→ t, as well as the projection and diagonal morphisms of finite
products.

For efficiency let us call a functor that preserves finite products cartesian. Lawvere theories are
the objects of a category Law whose morphisms are cartesian functors f : T→ T′ that obey f τ = τ ′.
More generally, for any category with finite products C, a model of the Lawvere theory T in C is a
cartesian functor µ : T→ C. The models of T in C are the objects of a category Mod(T,C), in which the
morphisms are natural transformations.

A theory can thus have models in many different contexts. For example, there is a Lawvere theory
Th(Mon), the theory of monoids, described as above. Ordinary monoids are models of this theory in
Set, while topological monoids are models of this theory in Top.

For completeness, it is worthwhile to mention the presentation of a Lawvere theory: how exactly does
the above “sketch” of Th(Mon) produce a category with finite products? It is precisely analogous to the

110 Enrichment for Operational Semantics

presentation of an algebra by generators and relations: we form the free category with finite products on
the data given, and impose the required equations. The result is a category whose objects are powers of t,
and whose morphisms are composites of products of the morphisms in Th(Mon), projections, deletions,
symmetries and diagonals. A detailed account was given by Barr and Wells [4, Chap. 4].

In 1965, Linton [21] proved that Lawvere theories correspond to “finitary monads” on the category
of sets. For every Lawvere theory T, there is an adjunction:

Set

a

Mod(T,Set).

F

U

The functor
U : Mod(T,Set)→ Set

sends each model µ to its underlying set, X = µ(τ(1)). Its left adjoint, the free model functor

F : Set→Mod(T,Set),

sends each finite set n ∈ N to the representable functor T(τ(n),−) : T→ Set, and in general any set X
to the colimit of all such representables as n ranges over the poset of finite subsets of X . In rough terms,
F(X) is the model of all n-ary operations from T on the set X .

If we momentarily abbreviate Mod(T,Set) as Mod, we obtain an adjunction

Mod(F(n),µ) =Mod(T(τ(n),−),µ)∼= µ(τ(n))∼= µ(τ(1))n = Set(n,U(µ))

where the left isomorphism arises from the Yoneda lemma, and the right isomorphism from the product
preservation of µ .

This adjunction induces a monad T on Set:

T (X) =
∫ n∈N

Xn×T(n,1). (1)

The integral here is a coend, essentially a coproduct quotiented by the equations of the theory and the
equations induced by the cartesian structure of the category. This forms the set of all terms that can be
constructed from applying the operations to the elements, subject to the equations of the theory. The
monad constructed this way is always finitary: that is, it preserves filtered colimits [1], or its action on
sets is determined by its action on finite sets.

Conversely, for a monad T on Set, its Kleisli category Kl(T) is the category of all free algebras of
the monad, which has all coproducts. There is a functor k : Set→ Kl(T) that is the identity on objects
and preserves coproducts. Thus,

kop : Setop→ Kl(T)op

is a cartesian functor, and restricting its domain to Nop is a Lawvere theory kT . To see what this is doing,
note that:

Kl(T)op(n,m) = Kl(T)(m,n) = Set(m,T (n))

where the latter is considered as m n-ary operations in the Lawvere theory kT . When T is finitary, the
monad arising from this Lawvere theory is naturally isomorphic to T itself.

John C. Baez & Christian Williams 111

This correspondence sets up an equivalence between the category Law of Lawvere theories and the
category of finitary monads on Set. There is also an equivalence between the category Mod(T,Set)
of models of a Lawvere theory T and the category of algebras of the corresponding finitary monad T .
Furthermore, all this generalizes with Set replaced by any “locally finitely presentable” category [1]. For
more details see [4, 20, 24].

One final point, provided to us by Mike Stay: while monads are often associated with functional
programming languages such as Haskell, Lawvere theories correspond to interfaces or abstract classes
in object-oriented programming. In these one declares various constants, types, and abstract functions
satisfying tests, and then one implements the interface by assigning these elements, sets, functions, and
equations—precisely a model in Set. While people think of monads as the main example of “categories
in programming”, in fact Lawvere theories are ubiquitous.

3 Enrichment

To incorporate the aspect of computation, we now turn to Lawvere theories that have hom-objects rather
than mere hom-sets. To do this we use enriched category theory [18] and replace sets with objects
of a cartesian closed category V, called the “enriching” category or “base”. A V-enriched category or
V-category C is:

a collection of objects Ob(C)
a hom-object function C(−,−) : Ob(C)×Ob(C)→ Ob(V)

composition morphisms ◦a,b,c : C(b,c)×C(a,b)→ C(a,c) ∀a,b,c ∈ Ob(C)
identity-assigning morphisms ida : 1V→ C(a,a) ∀a ∈ Ob(C)

such that composition is associative and unital. A V-functor F : C→ D is:

a function F : Ob(C)→ Ob(D)
a collection of morphisms Fab : C(a,b)→ D(F(a),F(b)) ∀a,b ∈ C

such that F preserves composition and identity. A V-natural transformation α : F ⇒ G is:

a family αa : 1V→ D(F(a),G(a)) ∀a ∈ Ob(C)

such that α is “natural” in a: an evident square commutes. There is a 2-category VCat of V-categories,
V-functors, and V-natural transformations.

We can construct new V-categories from old ones by taking products or opposites, in obvious ways.
There is also a V-category denoted V with the same objects as V and with hom-objects given by the
internal hom:

V(v,w) = wv ∀v,w ∈ V.

The concepts of adjunction and monad generalize straightforwardly to V-categories, and when we speak
of an adjunction or monad in the enriched context this generalization is what we mean [18]. For example,
there is an adjunction

V(u× v,w)∼= V(u,wv)

called “currying”.

112 Enrichment for Operational Semantics

We can generalize products and coproducts to the enriched context. Given a V-category C, the
V-coproduct of an n-tuple of objects b1, . . . ,bn ∈ Ob(C) is an object b equipped with a V-natural iso-
morphism

C(b,−)∼=
n

∏
i=1

C(bi,−).

If such an object exists, we denote it by ∑
n
i=1 bi. This makes sense even when n = 0: a 0-ary V-coproduct

in C is called a V-initial object and denoted as 0C. When V is cartesian closed, any finite coproduct that
exists in V is also a V-coproduct in V. In particular,

uv+w ∼= uv×uw and w0 ∼= 1V

whenever 0 is an initial object of V. Conversely, any finite V-coproduct that exists in V is also a coproduct
in the usual sense.

Similarly, a V-product of objects b1, . . . ,bn ∈ Ob(C) is an object b equipped with a V-natural iso-
morphism

C(−,b)∼=
n

∏
i=1

C(−,bi). (2)

If such an object b exists, we denote it by ∏
n
i=1 bi. A 0-ary product in C is called a V-terminal object

and denoted as 1C. Whenever V is cartesian closed, the finite products in V are also V-products in V. In
particular,

(u× v)w ∼= uw× vw and 1w
V
∼= 1V

where our chosen terminal object 1V is also V-terminal. Conversely, any finite V-product in V is also a
product in the usual sense.

A general V-category C does not exactly have projections from a V-product to its factors, since given
two objects c,c′ ∈Ob(C) there is not, fundamentally, a set of morphisms from c to c′. Instead there is the
hom-object C(c,c′), which is an object of V. However, any object v of V has a set of elements, namely
morphisms f : 1V→ v. Elements of C(c,c′) act like morphisms from c to c′.

In particular, any V-product b = ∏
n
i=1 bi gives rise to elements

pi : 1V→ C(b,bi)

which serve as substitutes for the projections in a usual product. These elements are defined as compos-
ites

1V
idb−→ C(b,b) ∼−→

n

∏
i=1

C(b,bi)→ C(b,bi)

where the isomorphism comes from Eq. (2) and the last arrow is a projection in V.
Even better, we can bundle up all these elements pi into a single element

p : 1V→
n

∏
i=1

C(b,bi)

which serves as a substitute for the universal cone in a usual product. Starting from p we can recover the
V-natural isomorphism in Eq. (2) as follows:

C(−,b) ∼−→ 1V×C(−,b) p×1−−→
n

∏
i=1

C(b,bi)×C(−,b)−→
n

∏
i=1

C(−,bi) (3)

John C. Baez & Christian Williams 113

where the last arrow is given by composition. Thus, we say a universal cone exhibiting b as the V-
product of objects b1, . . . ,bn is an element p : 1V→∏

n
i=1C(b,bi) such that the V-natural transformation

C(−,b)→∏
n
i=1C(−,bi) given by Eq. (3) is an isomorphism.

The advantage of this reformulation is that we can say a V-functor F : C→ D preserves finite V-
products if for every universal cone p : 1V→∏

n
i=1C(b,bi) exhibiting b as the V-product of the objects

bi, the composite

1V
p−→

n

∏
i=1

C(b,bi)
∏i F−−→ D(F(b),F(bi))

is universal cone exhibiting F(b) as the V-product of the objects F(bi).
A bit more subtly, generalizing the exponentials in V, a V-category C can have “powers”. Given

v ∈ Ob(V), we say an object cv ∈ Ob(C) is a v-power of c ∈ Ob(C) if it is equipped with a V-natural
isomorphism

C(−,cv)∼= C(−,c)v. (4)

In the special case V= Set this forces cv to be the v-fold product of copies of c. As with V-products, it is
useful to repackage the isomorphism of Eq. (4) so we can say what it means for a V-functor to preserve
v-powers. First, note that this isomorphism gives rise to an element

q : 1V→ C(cv,c)v,

namely the composite

1V
idcv−→ C(cv,cv)

∼−→ C(cv,c)v.

Conversely, any element q : 1V→C(cv,c)v determines a V-natural transformation e : C(−,cv)→C(−,c)v,
and we say e is a universal cone if this V-natural transformation is an isomorphism. Next, suppose C
and D are V-categories with v-powers. We say a V-functor F : C→ D preserves v-powers if it maps
universal cones to universal cones.

There are just a few more technicalities. A category is locally finitely presentable if it is the category
of models for a finite limits theory, and an object is finite if its representable functor is finitary: that
is, it preserves filtered colimits [1]. A V-category C is locally finitely presentable if its underlying
category C0 is locally finitely presentable, C has finite powers, and (−)x : C0 → C0 is finitary for all
finitely presentable x. The details are not crucial here: all categories to be considered are locally finitely
presentable. We will use V f to denote the full subcategory of V of finite objects: in sSet, these are
simplicial sets with finitely many n-simplices for each n.

4 Enriched Lawvere Theories

Power introduced the notion of enriched Lawvere theory about twenty years ago, “in seeking a general
account of what have been called notions of computation” [27]. The original definition is as follows: for
a symmetric monoidal closed category (V,⊗,1), a “V-enriched Lawvere theory” is a V-category T that
has powers by objects in V f , equipped with an identity-on-objects V-functor

τ : Vop
f → T

that preserves these powers. A “model” of a V-theory is a V-functor µ : T→ V that preserves powers
by finite objects of V. There is a category Mod(T,V) whose objects are models and whose morphisms

114 Enrichment for Operational Semantics

are V-natural transformations. The monadic adjunction and equivalence of Section 2 generalize to the
enriched setting.

In this paper, however, we only consider natural number arities, while still retaining enrichment. To
do this we use the work of Lucyshyn-Wright [22], who along with Power [25] has generalized Power’s
original ideas to allow a more flexible choice of arities. We also limit ourselves to the case where the
tensor product of V is cartesian. This has a significant simplifying effect, yet it suffices for many cases
of interest in computer science.

Thus, in all that follows, we let (V,×,1V) be a cartesian closed category equipped with chosen finite
coproducts of the terminal object 1V, say

nV = ∑
i∈n

1V.

Define NV to be the full subcategory of V containing just these objects nV. There is also a V-category
NV whose objects are those of NV and whose hom-objects are given as in V. We define the V-category
of arities for V to be

AV := Nop
V .

We shall soon see that AV has finite V-products.
Definition 1. We define a V-theory (T,τ) to be a V-category T equipped with a V-functor

τ : AV→ T

that is the identity on objects and preserves finite V-products.
Definition 2. A model of T in a V-category C is a V-functor

µ : T→ C

that preserves finite V-products.
Just as all the objects of a Lawvere theory are finite products of a single object, we shall see that all

the objects of T are finite V-products of the object

t = τ(1V).

Definition 3. We define VLaw, the category of V-theories, to be the category for which an object is a
V-theory and a morphism from (T,τ) to (T′,τ ′) is a V-functor f : T→T′ that preserves finite V-products
and has f τ = τ ′.
Definition 4. For every V-theory (T,τ) and every V-category C with finite V-products, we define
Mod(T,C), the category of models of (T,τ) in C, to be the category for which an object is a V-functor
µ : T→ C that preserves finite V-products and a morphism is a V-natural transformation.

The basic monadicity results for Lawvere theories generalize to V-theories when V is complete and
cocomplete, as in the main examples we consider: V = sSet,Cat,Pos, and Set. Under this extra as-
sumption VLaw and Mod(T,C) can be promoted to V-categories, which we call VLaw and Mod(T,C).
Furthermore, there is a V-functor

U : Mod(T,V)→ V

sending any model µ : T→ V to its underlying object µ(t) ∈ V. Recall that monads and adjunctions
make sense in VCat, just as they do in Cat. The V-functor U has a left adjoint

F : V→Mod(T,V),

and Mod(T,V) is equivalent to the V-category of algebras of the resulting monad T = UF . More pre-
cisely:

John C. Baez & Christian Williams 115

Theorem 5. Suppose V is cartesian closed, complete and cocomplete, and has chosen finite coproducts
of the terminal object. Let (T,τ) be a V-theory. Then there is a monadic adjunction

V

a

Mod(T,V).

F

U

Proof. This follows from Lucyshyn-Wright’s general theory [22], so our task is simply to explain how.
He allows V to be a symmetric monoidal category, and uses a more general concept of algebraic theory
with a system of arities given by any fully faithful symmetric monoidal V-functor j : J→ V. For us
J= NV and j : NV→ V is the obvious inclusion; this is his Example 3.7.

Lucyshyn-Wright defines a J-theory to be a V-functor τ : Jop→ T that is the identity on objects and
preserves powers by objects in J (or more precisely, their images under j). For us Jop = AV. So, to apply
his theory, we need to show that a V-functor τ : AV→ T preserves powers by objects in NV if and only
if it preserves finite V-products. This is Lemma 16 below.

He defines a model (or “algebra”) of a J-theory to be a V-functor τ : T→ V that preserves powers by
objects in J. He defines a morphism of models to be a V-natural transformation between such V-functors.
So, to apply his theory, we also need to show that when J=NV, a V-functor µ : T→V preserves powers
by objects of J if and only if it preserves finite V-products. This is Lemma 17 below.

A technical concept fundamental to Lucyshyn-Wright’s theory is that of an eleutheric system of
arities j : J→ V. This is one where the left Kan extension of any V-functor f : J→ V along j exists
and is preserved by each V-functor V(x,−) : V→ V. In Example 7.5.5 he shows that j : NV → V is
eleutheric when V is countably cocomplete. In Thm. 8.9 shows that when j : J→ V is eleutheric, and
has equalizers, we may form the V-category Mod(T,V), and that the forgetful V-functor

U : Mod(T,V)→ V

is monadic. This is the result we need. So, our theorem actually holds whenever V is cartesian closed,
with equalizers and countable colimits, and has chosen finite coproducts of the initial object.

Before turning to examples, a word about Lucyshyn-Wright’s construction of the left adjoint F and
the monad T is in order. These rely on the “free model” on an object nV ∈ V. This is the enriched
generalization of the free model described in Section 2: it is the composite of τop : Aop

V → Top with the
enriched Yoneda embedding y : Top→ [T,V]:

Aop
V

τop

−→ Top y−→ [T,V]

nV 7→ tnV 7→ T(tnV ,−)

Since an object of V does not necessarily have a “poset of finite subobjects” over which to take a filtered
colimit (as in Set), the extension of this “free model” functor yτop to all of V is specified by a somewhat
higher-powered generalization: it is the left Kan extension of yτop along j.

NV [T,V]

V

yτop

j F :=Lan jyτop

η

116 Enrichment for Operational Semantics

This is the universal “best solution” to the problem of making the triangle commute up to a V-natural
transformation. That is, for any functor G : V→ [T,V] and V-natural transformation θ : yτop⇒ G j, the
latter factors uniquely through η . From the adjunction between V and the category of models Mod(T,V)
we obtain a V-enriched monad

T =UF : V→ V,

and this has a more concrete formula as an enriched coend:

T (V) =
∫ nV∈NV

V nV ×T(tnV , t).

We next give two examples of a rather abstract nature, where we show how Cat-enriched Lawvere
theories can describe categories with extra structure. In Section 7 we study examples more directly
connected to operational semantics.
Example 6. When V=Cat, a V-category is a 2-category, so a V-theory deserves to be called a 2-theory.
For example, let T=Th(PsMon) be the 2-theory of pseudomonoids. A pseudomonoid [9] is a weakened
version of a monoid: rather than associativity and unitality equations, it has 2-isomorphisms called the
associator and unitors, which we can treat as rewrite rules. To equate various possible rewrite sequences,
these 2-isomorphisms must obey equations called “coherence laws”. Power [19] has introduced “en-
riched sketches” as a way of presenting enriched Lawvere theories. Informally, here is a presentation of
the 2-theory for pseudomonoids:

Th(PsMon)

sort M pseudomonoid
operations m : M2→M multiplication

e : 1→M identity
rewrites α : m◦ (m× idM)

∼
=⇒ m◦ (idM×m) associator

λ : m◦ (e× idM)
∼

=⇒ idM left unitor
ρ : m◦ (idM× e) ∼

=⇒ idM right unitor
equations

M4 M3 M4 M3

M3 M2 = M2

M3 M3 M2

M2 M M2 M

1×1×m

1×m×1

m×1×1

1×m1×α

1×1×m

m×1×1 m×1

1×m

1×m

m×1

α×1

m m

α

α

m×1

1×m

m×1
mα

m m

M2 M2

M3 M2 = M3 M2

M2 M M2 M

1×e×1 1
1×λ

1×e×1 1

1m×1
1×m

m
α

m×1

ρ×1

m

m m

John C. Baez & Christian Williams 117

We write the equations as commutative diagrams merely for convenience; they could also be written as
equations in a more traditional style. The top diagram expresses the pentagon identity for the associator,
while the bottom one expresses the usual coherence law involving the left and right unitors.

Models of T = Th(PsMon) in Cat are monoidal categories: let us explore this example in more
detail. A model of T is a finite-product-preserving 2-functor µ : T→ Cat, which sends

t 7→ C
m 7→ ⊗ : C2→ C
e 7→ I : 1→ C

α 7→ a : ⊗◦ (⊗×1C)⇒⊗◦ (1C×⊗)
λ 7→ ` : I ◦1C⇒ 1C
ρ 7→ r : 1C ◦ I⇒ 1C

such that the coherence laws of the rewrites are preserved. Thus, a model is a category equipped with
a tensor product ⊗ and unit object I such that these operations are associative and unital up to natural
isomorphism; so these models are precisely monoidal categories.

Given two models µ,ν : T→ Cat, a morphism of models is a 2-natural transformation ϕ : µ ⇒ ν ;
this amounts to a strict monoidal functor ϕ : (C,⊗C, IC)→ (D,⊗D, ID). The strictness arises because
morphisms between models are 2-natural transformations rather than pseudonatural transformations.
There is a substantial amount of theory on pseudomonads and pseudoalgebras [6, 10], but to the au-
thors’ knowledge the theory-monad correspondence has not yet been extended to include the case of
weak naturality.

Finally, because Cat is complete and cocomplete, the category of models Mod(T,Cat) can be pro-
moted to a 2-category Mod(T,Cat). This is the 2-category of monoidal categories, strict monoidal
functors, and monoidal natural transformations.

We can accomplish the same thing on the monad side: a Cat-enriched monad is called a 2-monad,
and T gives rise to the “free monoidal category” 2-monad T on Cat [6]. To apply this 2-monad to
C ∈ Cat we first form the free model on C by taking a left Kan extension as above, and then evaluate this
model at the generating object. In the same way that the (underlying set of the) free monoid on a set X
consists of all finite strings of elements of X , T (C) is the monoidal category consisting of all finite tensor
products of objects of C and all morphisms built from those of C by composition and tensoring together
with associators and unitors obeying the necessary coherence laws. Morphisms of these algebras are
strict monoidal functors, while 2-morphisms are natural transformation. We thus have a 2-equivalence
between Mod(T,Cat) and the 2-category of algebras of T .

In this way, 2-theories generalize equipping set-like objects with operations obeying equations to
equipping category-like objects with operations obeying equations up to transformations that obey equa-
tions of their own. In particular, this gives us a way to present graphical calculi such as string diagrams
– the language of monoidal categories.

Example 7. Enrichment generalizes operations in more ways than by weakening equations to coher-
ent isomorphisms. We can also use 2-theories to describe other structures that make sense inside 2-
categories, such as adjunctions.

For example, we may define a cartesian category X to be one equipped with right adjoints to the diag-
onal ∆X : X→ X×X and the unique functor !X : X→ 1Cat. These right adjoints are a functor m : X2→ X
describing binary products in X and a functor e : 1→ X picking out the terminal object in X. We can
capture the fact that they are right adjoints by providing them with units and counits and imposing the
triangle equations. There is thus a 2-theory Th(Cart) whose models in Cat are categories with chosen

118 Enrichment for Operational Semantics

finite products. More generally a model of this 2-theory in any 2-category C with finite products is called
a cartesian object in C.

Th(Cart)

type X cartesian object

operations m : X2→ X product
e : 1→ X terminal element

rewrites 4 : idX =⇒ m◦ ∆X unit of adjunction between m and ∆X

π : ∆X ◦m =⇒ idX2 counit of adjunction between m and ∆X

> : idX =⇒ e◦ !X unit of adjunction between e and !X
ε : !X ◦ e =⇒ id1 counit of adjunction between e and !X

equations

∆X m

∆X ◦m◦∆X ∆X m◦∆X ◦m m

∆X◦4
1 4◦m 1

π◦∆X m◦π

!X e

!X ◦ e◦ !X !X e◦ !X ◦ e e

!X◦>
1 >◦e 1

ε◦!X e◦ε

Again we write the equations as commutative diagrams, but this time commutative triangles of 2-
morphisms in Th(Cart). These are the triangle equations that force m to be the right adjoint of ∆X

and e to be the right adjoint of !X. A model of Th(Cart) is a category with chosen binary products and
a chosen terminal object; morphisms in Mod(Th(Cart),Cat) are functors that strictly preserve this extra
structure.

The subtle interplay between the cartesian structure of Th(Cart) and the cartesian structure of the
object X ∈Th(Cart) is an example of the “microcosm principle”: objects with a given structure are most
generally defined in a context that has the same sort of structure. As seen in the previous example, we
can also define pseudomonoids in any 2-category with finite products, but this is excess to requirements:
one can in fact define them more generally in any monoidal 2-category [9].

In fact, if we let arities be finite categories, we would have Cat-theories of categories with finite
limits and colimits. However, for the purposes of this paper we are using only natural number arities.
This suffices for constructing Th(Cart) and also Th(CoCart), the theory of categories with chosen bi-
nary coproducts and a chosen initial object. Various other kinds of categories—distributive categories,
rig categories, etc.—can also be expressed using Cat-theories with natural number arities. This gives
a systematic formalization of these categories, internalizes them to new contexts, and allows for the
generation of 2-monads that describe them.

John C. Baez & Christian Williams 119

5 Change of Base

We now have the tools to formulate the main idea: a choice of enrichment for Lawvere theories corre-
sponds to a choice of computation, and changing enrichments corresponds to a change of computation.
We propose a general framework in which one can translate between different forms of computation:
small-step, big-step, full-step operational semantics, and denotational semantics.

5.1 General results

Suppose that V and W are enriching categories of the sort we are considering: cartesian closed categories
equipped with chosen finite coproducts of the terminal object. Suppose F : V →W preserves finite
products. This induces a change of base functor F∗ : VCat→WCat [7] which takes any V-category C
and produces a W-category F∗(C) with the same objects but with

F∗(C)(a,b) := F(C(a,b))

for all objects a,b. Composition in F∗(C) is defined by

F(C(b,c))×F(C(a,b)) ∼−→ F(C(b,c)×C(a,b))
F(◦a,b,c)−−−−→ F(C(a,b)).

The identity-assigning morphisms are given by

1W
∼−→ F(1V)

F(ida)−−−→ F(C(a,a)).

Moreover, if f : C→ D ∈ VCat is a V-functor, there is a W-functor F∗(f) : F∗(C)→ F∗(D) that
on objects equals f and on hom-objects equals F(f). If α : f ⇒ g is a V-natural transformation and
c ∈ Ob(C), then we define

F∗(α)c : 1W
∼−→ F(1V)

F(αc)−−−→ F(D(f (c),g(c))).

Thus, change of base actually gives a 2-functor from the 2-category of V-categories, V-functors and
V-natural transformations to the corresponding 2-category for W.

In fact, the change of base operation gives a 2-functor

CartCat
(−)∗−−→ 2Cat

(F : V→W) 7→ (F∗ : VCat→WCat)

where CartCat is the 2-category of cartesian closed categories equipped with chosen finite coproducts
of the terminal object, finite product preserving functors preserving these chosen finite coproducts, and
natural transformations. In particular, if V has not just finite coproducts of the terminal object but all
coproducts of this object, there is a map of adjunctions

Set

a

V Cat

a

VCat.

−·1

V(1,−)

(−·1)∗

(V(1,−))∗

120 Enrichment for Operational Semantics

Each set X is mapped to the X-indexed coproduct of the terminal object in V and conversely each object v
of V is represented in Set by the hom-set from the unit to v. The latter induces the “underlying category”
change of base, which forgets the enrichment. The former induces the “free V-enrichment” change of
base, whereby ordinary Set-categories are converted to V-categories, denoted C 7→ C. These form an
adjunction, because 2-functors preserve adjunctions.

We now study how change of base affects theories and their models. We start by asking when a
functor F : V→W induces a change of base F∗ : VCat→WCat that “preserves enriched theories”. That
is, given a V-theory

τ : AV→ T

we want to determine conditions for the base-changed functor

F∗(τ) : F∗(AV)→ F∗(T)

to induce a W-theory in a canonical way. Recall that we require V and W to be cartesian closed, equipped
with chosen finite coproducts of their terminal objects. We thus expect the following conditions to be
sufficient: F should be cartesian, and it should preserve the chosen finite coproducts of the terminal
object:

F(nV) = nW

for all n.
Given these conditions there is a W-functor, in fact an isomorphism

F̃ : AW→ F∗(AV).

On objects this maps nW to nV, and on hom-objects it is simply the identity from

AW(mW,nW) = nmW
W = (nm)W

to
F(AV(mV,nV)) = F(nmV

V) = F((nm)V) = (nm)W

where we use Lemma 13 in these computations.
Using this we obtain a composite W-functor

AW
F̃−→ F∗(AV)

F∗(τV)−−−→ F∗(T).

This is the identity on objects and preserves finite V-products because each of the factors has these
properties. It is thus a W-theory.

Theorem 8. Let V, W be cartesian closed categories with chosen finite coproducts of their terminal
objects, and let F : V → W be a cartesian functor that preserves these chosen coproducts. Then F∗
preserves enriched theories: that is, for every V-theory τV : AV→ T, the W-functor

τW := F∗(τV)◦ F̃ : AW→ F∗(T)

is a W-theory. Moreover, F∗ preserves models: for every model µ : T→ C of (T,τV), the W-functor
F∗(µ) : F∗(T)→ F∗(C) is a model of (F∗(T),τW).

Proof. We have shown the first part. For the second, by Lemma 17 it suffices to assume that µ preserves
finite NV -powers and check that F∗(µ) preserves NW-powers. We leave this as an exercise to the reader.

John C. Baez & Christian Williams 121

Hence, any cartesian functor that preserves chosen finite coproducts of the terminal object gives a
change of base. It thus provides for a method of translating formal languages between various “modes
of operation”. Moreover, this reasoning generalizes to multisorted V-theories, enriched theories which
have multiple sorts: given any n ∈ N, the monoidal subcategory (NV)

n is also an eleutheric system of
arities, so Lucyshyn-Wright’s monadicity theorem still applies.

5.2 Examples

Now let us look at some examples. The most important changes of base are the left adjoints in this
diagram from Sec. 1:

sSet

a

Cat

a

Pos
a

Set

FC

UsS

FP

UC

FS

UP

The first step describes the translation from small-step to big-step operational semantics. As already
mentioned, we need to use simplicial sets rather than graphs; let us now say more about why.

A first attempt might use directed multigraphs. Such graphs have directed edges and allow multiple
edges between any pair of vertices. The category Gph of directed multigraphs is SetG where G is the
category with two objects v and e and two morphisms s, t : e→ v. The “free category” functor F: Gph→
Cat gives for every graph G a category F(G) as follows:

objects vertices of G
morphisms (e1,e2, ...,en) : s(e1)→ t(en) : ∀i < n t(ei) = s(ei+1)

composition (e1,e2, ...,em)◦ (e′1,e′2, ...,e′n) = (e′1, ...,e
′
n,e1, ...,em) : t(e′n) = s(e1).

The morphisms in F(G) are called edge paths. Just as an edge describes a single rewrite in small-step
operational sematics, an edge path describes a sequence of rewrites in big-step operational semantics.
The edge paths with n = 0 serve as identity morphisms.

Unfortunately, F : Gph→ Cat does not preserve products, so it is not a valid base change. To see
this, let G1 be {0 e−→ 1}, the graph with two vertices and one edge. The product G1×G1 looks like this:

(0,0) (0,1)

(1,0) (1,1).

(e,e)

Thus the free category F(G1×G1) has just one non-identity morphism. On the other hand F(G1)×F(G1)
has five non-identity morphisms, shown here:

(0,0) (0,1)

(1,0) (1,1).

(id0,e)

(e,id0) (e,e) (e,id1)

(id1,e)

where we write id for identity morphisms and e for the edge path consisting of the single edge e. Note
that the triangles in this diagram commute. In terms of rewriting, the category F(G1×G1) only allows

122 Enrichment for Operational Semantics

the rewrite e : 0→ 1 to occur simultaneously in both factors, while F(G1)× F(G1) allows it to occur
independently in either factor, in a commuting way.

To solve this problem one, might try to use reflexive graphs. Such graphs have directed edges and
allows multiple edges between any pair of vertices; further, each vertex v is equipped with a distinguished
identity edge i(v) from v to itself. The category RGph of reflexive graphs is SetR, where R is the category
with two objects v and e, two morphisms s, t : e→ v, and a morphism i : v→ e obeying si= ti= 1v. There
is a free category functor F′ : RGph→ Cat, which is like the free category functor for Gph except that
we identify an edge path (e1, . . . ,en) with the same path having ei omitted when ei is an identity edge.
Thus, the identity edges of a reflexive graph R become identity morphisms in F′(R).

The advantage of reflexive graphs is that they allow rewrites in a product to occur independently in
either factor. For example, let R1 be the reflexive graph with two vertices and one non-identity edge,
{0 e−→ 1} (where we do not draw identity edges). The product R1×R1 has five non-identity edges:

(0,0) (0,1)

(1,0) (1,1).

(i(0),e)

(e,i(0)) (e,e) (e,i(1))

(i(1),e)

Thus, the free category F′(R1×R1) has two noncommuting triangles. On the other hand, F′(R1)×F′(R1)
is the product of the category with a single non-identity morphism e : 0→ 1 with itself, so it is this
category:

(0,0) (0,1)

(1,0) (1,1)

(id0,e)

(e,id0) (e,e) (e,id1)

(id1,e)

with two commuting triangles. Thus F′ : RGph→ Cat again fails to preserve products, though in some
sense it comes closer. Simply put, while F′(R1×R1) allows rewrites to be done independently in either
factor, these rewrites fail to commute.

To solve this problem we shall consider RGph as a full subcategory of the category of simplicial sets,
sSet. To do this, we treat a reflexive graph as a simplicial set with only degenerate simplices for n > 1.
There is a left adjoint FC: sSet→ Cat, usually called realization, and this functor preserves products
[16, Prop. B.0.15]. For example, if we treat R1 above as a simplicial set and take the product R1×R1
in sSet, this contains triangles that force the triangles in FC(R1×R1) to commute. Thus, realization
provides a useful base change to translate from small-step operational semantics to big-step operational
semantics.

The other functors in our chain of left adjoints are simpler. The “free poset” functor FP: Cat→ Pos
maps any category C to the poset whose elements are objects of C, with c≤ c′ iff C contains a morphism
from c to c′. This is a valid change of base—i.e., it preserves finite products—because the product of
posets is defined in the same way as the product of categories. If we apply this change of base to a model
of a Cat-enriched theory, we obtain a model of a Pos-enriched theory that says for any pair of terms the
presence or absence of a rewrite sequence from one to the other, without distinguishing between different
sequences. We call this full-step operational semantics.

Finally, we can pass to the purely abstract realm where all computation is already complete. For this
we take the left adjoint FS: Pos→ Set to the functor UP: Set→ Pos sending any set to the discrete

John C. Baez & Christian Williams 123

poset on that set. The functor FS collapses each connected component of the poset to a point; this too
preserves finite products. If we apply this change of base to a model of a Pos-enriched theory, we obtain
a model of a Set-enriched theory that extracts its denotational semantics by identifying all terms related
by rewrites. If the rewrites are terminating and confluent, we can choose a representative term for each
equivalence class: the unique term that admits no nontrivial rewrites.

6 The Category of All Models

In addition to base change, there are two other natural and useful ways to go between models of enriched
theories. Suppose V is any cartesian closed category with chosen finite coproducts of the terminal object.
Let VMod(T,C) be the category of models of a V-theory T in a V-category C with finite V-products,
as in Defn. 4. A morphism of V-theories f : T→ T′ induces a change of theory functor between the
respective categories of models

f ∗ : VMod(T′,C)→ VMod(T,C)

defined as pre-composition with f . Similarly, a V-product-preserving V-functor g : C→ C′ induces a
change of context functor

g∗ : VMod(T,C)→ VMod(T,C′)

defined as post-composition with g.
These translations, as well as change of base, can all be packed up nicely using the Grothendieck

construction: given any functor F : D→Cat, there is a category
∫

F that encapsulates all of the categories
in the image of F , defined as follows:

objects (d,x) : d ∈ D, x ∈ F(d)
morphisms (f : d→ d′,a : F(f)(x)→ x′)

composition (f ,a)◦ (f ′,a′) = (f ◦ f ′,a◦F(f)(a′)).

Moreover there is a functor pF :
∫

F → D given as follows:

on objects pF : (d,x) 7→ d
on morphisms pF : (f ,a) 7→ f .

For more details see [7, 15]. We noted in Section 4 that VLaw and Mod(T,C) can be promoted to
V-categories when V is complete and cocomplete: this and further conditions imply that we can use
the enriched Grothendieck construction [5], but we focus on the ordinary Grothendieck construction for
simplicity.

First, this construction lets us bring together all models of all different V-theories in all different
contexts into one category. All the V-theories are objects of VLaw, as in Defn. 3. We can also create a
category of all “V-contexts”.

Definition 9. Let VCon, the category of V-contexts be the category for which an object is a V-category
with finite V-products and a morphism is a functor that preserves finite V-products.

There is a functor
VMod : VLawop×VCon→ Cat

that sends any object (T,C) to VMod(T,C) and any morphism (f ,g) to f ∗g∗ = g∗ f ∗. The functoriality
of VMod summarizes the contravariant change-of-theory and the covariant change-of-context above.

124 Enrichment for Operational Semantics

Applying the Grothedieck construction we obtain a category
∫
VMod. Technically an object of

∫
VMod

is a triple (T,C,µ), but more intuitively it is a model µ : T→ C of any V-theory T in any V-context C.
Similarly, a morphism

(f ,g,α) : (T,C,µ)→ (T ′,C′,µ ′)

in VMod consists of:

• a morphism of V-theories f : T′→ T,

• a V-functor g : C→ C′ that preserves finite V-products, and

• a V-natural transformation α : g◦µ ◦ f ⇒ µ ′.

This is a natural way to map between different models of different theories in different contexts.
We can go further by creating a category that even contains all choices of enriching categories V:

Definition 10. Let Enr be the category for which an object is a cartesian closed category V with chosen
finite coproducts of the terminal object, and a morphism is a cartesian functor F : V→W preserving the
chosen finite coproducts of the initial object.

There is a functor
Mod: Enr→ Cat

that maps any object V to
∫
VMod and any morphism F : V→W to a functor

Mod(F) :
∫
VMod→

∫
WMod

that has the following effect:

• Mod(F) maps any object (T,C,µ) to the object (F∗(T),F∗(C),F∗(µ)).

• Mod(F) maps any morphism (f ,g,α) to the morphism (F∗(f),F∗(g),F∗(α)).

Thus, we can use the Grothendieck construction once more to pack up all choices of enrichment into one
big category:

Theorem 11. There is a category
∫

Mod in which:

• An object is a choice of cartesian closed category V with chosen finite coproducts of the terminal
object, a V-theory T, a V-category C with finite V-products, and a model µ : T→ C.

• A morphism is a cartesian functor F : V→W preserving the chosen finite coproducts of the ter-
minal object and a morphism (f ,g,α) : (F∗(T),F∗(C),F∗(µ))→ (T,C,µ) in WMod.

This category allows us to formally treat morphisms between objects of “different kinds”, something
we often use informally, for example when speaking of a map from a set to a ring, or a group to a
topological group. There are many unexplored questions about the large, heterogeneous categories which
arise from the Grothendieck construction, regarding what unusual structure may be gained, such as limits
and colimits with objects of different types, or identifying “processes” in which the kinds of objects
change in an essential way. However, for our purposes we need only recognize that enriched Lawvere
theories can be assimilated into one category, providing a single place in which to study change of base,
change of theory, and change of context.

John C. Baez & Christian Williams 125

7 Applications

In computer science literature, enriched algebraic theories have primarily been studied in the context of
“computational effects” [13]. Stay and Meredith have proposed that enriched Lawvere theories can be
utilized for the design of programming languages [31]. To circumvent the question of variable binding,
there is another approach which instead uses an enriched theory as a “compiler” which translates a
language with binding to one without. This idea comes from the subject of combinatory logic.

7.1 The SKI-combinator calculus

The λ -calculus is an elegant formal language which is the foundation of functional computation, the
model of intuitionistic logic, and the internal logic of cartesian closed categories: this is the Curry–
Howard–Lambek correspondence [3].

Terms are constructed recursively by variables, application, and abstraction, and the basic rewrite is
beta reduction, which substitutes the applied term for the bound variable:

M,N := x | (M N) | λx.M

(λx.M N)⇒M[N/x].

Despite the apparent simplicity, there are complications regarding substitution. Consider the term M =
λx.(λy.(xy)): if this is applied to the variable y, then (M y)⇒ λy.(y y) — but this is not intended,
because the y in M is just a placeholder, it is “bound” by whatever will be plugged in, while the y
being substituted is “free”, meaning it can refer to some other value or function in the program. Hence
whenever a free variable is to be substituted for a bound variable, we need to rename the bound variable
to prevent “variable capture” (e.g. (My)⇒ λ z.(y z)).

This problem was noticed early in the history of mathematical foundations, even before the λ -
calculus, and so Moses Schönfinkel invented combinatory logic [28], a basic form of logic without
the red tape of variable binding, hence without functions in the usual sense. The SKI-calculus is the
“variable-free” representation of the λ -calculus; λ -terms are translated via “abstraction elimination” into
strings of combinators and applications. This is a technique for programming languages to minimize the
subtleties of variables.

The insight of Stay and Meredith [30] is that even though enriched Lawvere theories have no vari-
ables, they can be used to study some programming languages through abstraction elimination. When
representing such a language as a sSet-theory, vertices—i.e., 0-simplices—in the simplicial set hom(1, t)
serve as closed terms. More generally, vertices in hom(tn, t) serve as terms with n free variables. Rewrite
rules going between such terms are edges—i.e., 1-simplices—in hom(tn, t).

To illustrate this, here is the theory of the SKI-calculus:

Th(SKI)

126 Enrichment for Operational Semantics

type t
term constructors S : 1→ t

K : 1→ t
I : 1→ t

(−−) : t2→ t
structural congruence n/a
rewrites σ : (((S−) =) ≡)⇒ ((− ≡) (=≡))

κ : ((K −) =)⇒−
ι : (I −)⇒−

These rewrites are implicitly universally quantified; i.e., they apply to arbitrary subterms−,=,≡without
any variable binding involved, by using the cartesian structure of the category. They are edges with
vertices as follows:

(((S−) =) ≡) : t3 1× t3 t4 t3 t2 t

((− ≡) (=≡)) : t3 t4 t4 t2 t

((K −) =) : t2 1× t2 t3 t2 t

− : t2 t×1 t

(I −) : t 1× t t2 t

− : t t

σ

l−1×t3 S×t3 (−−)×t2 (−−)×t (−−)

t2×∆ t×s×t (−−)×(−−) (−−)

κ

l−1×t2 K×t2 (−−)×t (−−)

t×! r

ι

l−1 I×t (−−)

t

Here l,r denote the unitors and s the symmetry of the product.
These abstract rules are evaluated on concrete terms by “plugging in” via precomposition. For ex-

ample:

((KS)I) : 1 t2 t

S : 1 t2 t

κ◦(S×I)

S×I ((K −) =)

S×I −

A model of this theory is a sSet-functor µ : Th(SKI)→ sSet that preserves finite sSet-products. This
gives a simplicial set µ(t). The images of the nullary operations S,K, I under µ are distinguished vertices
of µ(t), because µ preserves the terminal object, which “points out” vertices. The image of the binary
operation (− −) gives for every pair of vertices (u,v) ∈ µ(t)2 a vertex (u v) in µ(t) which stands for
their application. In this way all possible terms built from S, K, I and application give vertices in µ(t).
Similarly, rewrites going between these terms give edges in µ(t). Thus, µ gives a map of simplicial sets

µ1,t : Th(SKI)(1, t)→ sSet(1,µ(t))

John C. Baez & Christian Williams 127

that maps the “syntactic” graph of all closed terms and rewrites to the “semantic” graph: each rewrite
between terms in the theory is sent to a rewrite between the images of these terms in the model.

The fact that µ((−−)) : µ(t)2→ µ(t) is not just a function but a map of simplicial sets means that
pairs of edges (a→ b,c→ d) in Th(SKI)(1, t) are sent to edges (a b)→ (c d) in sSet(1,µ(t)). This
gives the full complexity of the theory: given a large term (program), there are many different ways it
can be computed—and some take fewer steps than others:

((K S) (((S K) I) (I K))) ((K S) ((K (I K)) (I (I K))))

((K S) ((K K) (I (I K))))

((K S) ((K K) (I K)))

((K S) ((K K) K))

S ((K S) K)

((K S) σ)

κ

(((K S) ι) (I (I K)))

((K S) ((K K) (I ι)))

((K S) ((K K) ι))

((K S) κ)

κ

More generally, the image µ(t)n is a simplicial set whose vertices are SKI-terms with n free variables
and whose edges are n-tuples of rewrites between such terms. This is because the enriched functor µ

gives maps of simplicial sets

µtn,t : Th(SKI)(tn, t)→ sSet(µ(t)n,µ(t)).

As the n-ary operations and rewrites thereof are built up from application and the three rewrites, every-
thing works the same way as in the case n = 0.

This process is intuitive, but how do we actually define the model, as a functor, to pick out a specific
graph? There are many models of Th(SKI), but in particular we care about the canonical free model,
which means that µ(t) is simply the graph of all closed terms and rewrites in the SKI-calculus. This
utilizes the enriched adjunction of Thm. 5:

sSet

a

Mod(Th(SKI),sSet)

fsSet

usSet

Then the canonical model of closed terms and rewrites is simply the free model on the empty graph,
fsSet(/0), i.e. the V-functor T(1,−) : T→ V. Hence for us, the syntax and semantics of the SKI combi-
nator calculus are unified in the model

µ
sSet
SKI := Th(SKI)(1,−) : Th(SKI)→ sSet.

Here we reap the benefits of the abstract construction: the graph µsSet
SKI (t) represents the small-step oper-

ational semantics of the SKI-calculus:

(µ(a)→ µ(b) ∈ µ
sSet
SKI (t)) ⇐⇒ (a⇒ b ∈ Th(SKI)(1, t)).

128 Enrichment for Operational Semantics

We can now consider the base changes in Sec. 5.2, to translate between several important kinds
of computation for the SKI-calculus. Given the above description of Th(SKI) as enriched in sSet, we
can apply the “free category” realization functor to the hom-objects, turning these reflexive graphs into
categories.

Here we enjoy the fact that this functor indeed preserves products, which is essential for considering
tuples of programs running in parallel: for example if we designate Gn := Th(SKI)(tn, t), then the fact
that FC(Gm×Gn)∼= FC(Gm)×FC(Gn) ensures that the execution of an m-term program and an n-term
program simultaneously (but independently) is the same as executing one, then the other.

Thus FC translates the theory of SKI from “small-step” to “big-step” operational semantics:
FC∗(Th(SKI)) is the theory of the SKI calculus, but now with hom-categories whose morphisms repre-
sent finite sequences of rewrite edges in the original theory.

We can continue these base-changes to “full-step” and denotational semantics, by applying the “free
poset” and “free set” (connected components) functors to the hom-objects of this theory. This process
demonstrates the idea of having a “spectrum” of detail with which to analyze the semantics of a pro-
gramming language, or general algebraic theory.

For example, consider the following computation:

(((S K) (I K)) S)

(((S K) K) S) ((K S) ((I K) S))

((K S) (K S)) S

σι

σι

ισ
κσ

κσι

κισσ
ι

κ

κ

The solid arrows are the one-step rewrites of the initial sSet-theory; applying FC∗ gives the dotted com-
posites, and FP∗ asserts that all composites between any two objects are equal. Finally, FS∗ collapses
the whole diagram to S. This is a simple demonstration of the basic stages of computation: small-step,
big-step, full-step, and denotational semantics.

7.2 Change of theory

We can equip term calculi with reduction contexts, which determine when rewrites are valid, thus giving
the language a certain evaluation strategy. For example, the “weak head normal form” is given by only
allowing rewrites on the left-hand side of the term.

We can do this for Th(SKI) by adding a reduction context marker as a unary operation, and a struc-
tural congruence rule which pushes the marker to the left-hand side of an application; lastly we modify
the rewrite rules to be valid only when the marker is present:

Th(SKI+R)

John C. Baez & Christian Williams 129

sort t
term constructors S,K, I : 1→ t

R : t→ t
(−−) : t2→ t

structural congruence R(− =) = (R− =)
RR = R

rewrites σr : (((RS−) =) ≡)⇒ ((R− ≡) (=≡))
κr : ((RK −) =)⇒ R−
ιr : (RI −)⇒ R−

The SKI-calculus is thereby equipped with “lazy evaluation”, an essential paradigm in modern pro-
gramming. This represents a broad potential application of equipping theories with computational meth-
ods, such as evaluation strategies.

Moreover, these equipments can be added or removed as needed: using change-of-theory, we can
utilize a “free reduction” sSet-functor fR : Th(SKI)→ Th(SKI+R):

objects tn 7→ tn

hom-vertices S,K, I 7→ S,K, I
(−−) 7→ R(−−)

hom-edges σ ,κ, ι 7→ σr,κr, ιr

This essentially interprets ordinary SKI as having every subterm be a reduction context. This is a sSet-
functor because its hom component consists of graph-homomorphisms

fn,m : Th(SKI)(tn, tm)→ Th(SKI+R)(tn, tm)

which simply send each application to its postcomposition with R, and each rewrite to its “marked”
correspondent.

So, by precomposition this induces the change of theory on categories of models:

f ∗R : Mod(Th(SKI+R),C)→Mod(Th(SKI),C)

for all semantic categories C, which forgets the reduction contexts.
Similarly, there is a sSet-functor uR : Th(SKI +R)→ Th(SKI) which forgets reduction contexts, by

sending σr,κr, ιr 7→ σ ,κ, ι and R 7→ idt ; this latter is the only way that the marked reductions can be
mapped coherently to the unmarked. However, this means that u∗R does not give the desired change-of-
theory of “freely adjoining contexts”, because collapsing R to the identity eliminates the significance of
the marker.

This illustrates a key aspect of categorical universal algebra: because change-of-theory is given by
precomposition and is thus contravariant, properties (equations) and structure (operations) can only be
removed. This is a necessary limitation, at least in the present setup, but there are ways to make do.
These abstract theories are not floating in isolation but are implemented in code: one can simply use a
“maximal theory” with all pertinent structure, then selectively forget as needed.

130 Enrichment for Operational Semantics

8 Conclusion

We have shown how enriched Lawvere theories provide a framework for unifying the structure and
behavior of formal languages. Enriching theories in category-like structures reifies operational semantics
by incorporating rewrites between terms, and appropriate functors between enriching categories induce
change-of-base functors between categories of enriched theories and models—this simplified condition
is obtained by using only natural number arities. This idea is motivated by an example sequence of such
functors, which provide a spectrum of detail in which to study the rewriting properties of a theory.

Change of base, along with change of theory and change of context, can be used to create a single
category Mod, which consists of all models of all enriched Lawvere theories in all contexts. We have
demonstrated these concepts with the theory of combinatory logic, Th(SKI), describing a change of base
from small-step operational semantics to big-step to full-step to denotational semantics.

Finally, we suggest that there are many interesting change-of-base functors, by considering an endo-
functor on the category of labelled transition systems, which quotients by the bisimulation relation and
is indeed a change of base.

John C. Baez & Christian Williams 131

A Natural Number Arities

In this appendix we prove the lemmas required for Theorem 5 and our study of base change in Section
5. Throughout we assume V is cartesian closed with chosen n-fold coproducts nV of its terminal object.

We begin with a study of NV, the full subcategory of V on the objects nV. First we must resolve a
potential ambiguity. On the one hand, for any object b of V we can form the exponential bnV . On the
other hand, we can take the product of n copies of b, which we call bn. Luckily these are the same, or at
least naturally isomorphic:

Lemma 12. The functors (−)nV : V→ V and (−)n : V→ V are naturally isomorphic.

Proof. If a,b ∈ V, then

V(a,bnV) ∼= V(a×nV,b) hom-tensor adjunction
= V(a× (n ·1V),b) definition of nV
∼= V(n · (a×1V),b) products distribute over coproducts
∼= V(n ·a,b) unitality
∼= V(a,b)n definition of coproduct
∼= V(a,bn) definition of product.

Each of these isomorphisms is natural in a and b, so by the Yoneda lemma (−)nV ∼= (−)n.

We can now understand coproducts, products and exponentials in NV:

Lemma 13. If V is any cartesian closed category with chosen coproducts of the initial object then NV is
cartesian closed, with finite coproducts. The unique initial object of NV is 0V. The binary coproducts in
NV are unique, given by

mV+nV = (m+n)V.

The unique terminal object of NV is 1V, and the binary products are unique, given by

mV×nV = (mn)V.

Exponentials in NV are also unique, given by

mV
nV = (mn)V.

Proof. In V we know that 0V is an initial object and 1V is a terminal object, by definition. Since the
subcategory NV is skeletal 0V is the unique initial object and 1V is the unique terminal object in NV.
Similarly, in V we have defined (m+n)V to be a coproduct of mV and nV, so in NV it is the unique such,
and we can unambiguously write

mV+nV = (m+n)V.

Products distribute over coproducts in any cartesian closed category, so in V we have

mV×nV ∼= (1V+ · · ·+1V)× (1V+ · · ·+1V)∼= (mn)V

where in the second step we use the distributive law twice. It follows that NV has finite products, and
since this subcategory is skeletal they are unique, given by

mV×nV = (mn)V.

132 Enrichment for Operational Semantics

Finally, by Lemma 12 we have

mV
nV ∼= mn

V
∼=

n

∏
i=1

mV
∼= (mn)V.

It follows that NV has exponentials, and since this subcategory is skeletal they are unique, given by

mnV
V = (mn)V.

We warn the reader that hom(mV,nV) may not have nm elements. It does in sSet,Cat,Pos and of
course Set, but not in V = Setk, where |hom(mV,nV)| = nkm. In fact, whenever NV has finite hom-sets
it is equivalent to FinSetk for some k. The reason is that 2V is an internal Boolean algebra in V, so its set
of elements hom(1V,2V) must be some Boolean algebra B in Set. A further argument due to Garner and
Trimble shows that NV is completely characterized, up to equivalence, by this Boolean algebra, and any
Boolean algebra can occur [2]. If this Boolean algebra is finite it must be isomorphic to {0,1}k for some
k ≥ 0. In this case, NV is equivalent to FinSetk.

Now suppose C is a V-category. The question arises whether the power of an object c ∈ C by nV
must also be the V-product of n copies of c. The answer is yes:

Lemma 14. Let C be a V-category and c ∈ Ob(C). Then the power cnV exists if and only if the n-fold
V-product cn exists, in which case they are isomorphic.

Proof. In Section 3 we saw that an object b∈Ob(C) is an n-fold V-product of copies of c precisely when
it is equipped with a universal cone

p : 1V→ C(b,c)n.

Similarly, b is an nV-power of c when it is equipped with a universal cone

q : 1V→ C(b,c)nV .

The universality properties have the same form, and by Lemma 12 the functors (−)n : V → V and
(−)nV : V → V are naturally isomorphic. Thus, given either sort of universal cone we get the other,
so an object is an n-fold product of copies of c if and only if it is the nV-power of c.

Lemma 15. Suppose C is a V-category such that every object is the n-fold V-product cn of some object c.
Then a V-functor F : C→ D preserves finite V-products if and only if it preserves powers by all objects
of NV.

Proof. Define a “finite V-power” to be a finite V-product of n copies of the same object. The V-functor
F preserves finite V-powers if and only if it maps any universal cone

p : 1V→ C(b,c)n

in C to a universal cone in D. Similarly, F preserves powers by all objects of NV if and only if it maps
any universal cone

q : 1V→ C(b,c)nV

in C to a universal cone in D. Two kinds of universality are involved here, but since they have the same
form, and since Lemma 12 says the functors (−)n : V→ V and (−)nV : V→ V are naturally isomorphic,
it follows that F preserves finite V-powers if and only if it preserves powers by all objects of NV.

It thus suffices to show that F preserves finite V-products if and only if it preserves finite V-powers.
This follows from the assumption that every object is the n-fold V-product cn of some object c.

John C. Baez & Christian Williams 133

Lemma 16. Let V be cartesian closed with chosen finite coproducts of the terminal object and let T be
a V-category. These conditions for a V-functor τ : AV→ T are equivalent:

1. (T,τ) is a V-theory,

2. τ preserves finite V-products,

3. τ preserves powers by objects of NV.

Proof. Conditions 1 and 2 are equivalent by definition. Since AV = Nop
V , finite V-products in AV are the

same as finite V-coproducts in NV, which are the same as finite coproducts in NV. Since every object in
NV is a finite coproduct of copies of 1V, Lemma 15 implies that conditions 2 and 3 are equivalent.

Lemma 17. Given a V-theory (T,τ) and a V-functor µ : T→ C, the following conditions are equivalent:

• µ is a model of (T,τ),

• µ preserves finite V-products,

• µ preserves powers by objects of NV.

Proof. Conditions 1 and 2 are equivalent by definition. Since τ is the identity on objects and preserves
V-products each object of T is of the form tn where t = τ(1V). Thus, Lemma 15 implies that conditions
2 and 3 are equivalent.

References
[1] J. Adámek & J. Rosický (1994): Locally Presentable and Accessible Categories. London Mathematical So-

ciety Lecture Note Series 189, Cambridge University Press, Cambridge, doi:10.1017/CBO9780511600579.
[2] J. C. Baez (2019): Can 1+1 have more than two points? The n-Category Café. Available at https:

//golem.ph.utexas.edu/category/2019/04/can_11_have_more_than_two_poin.html.
[3] J. C. Baez & M. Stay (2011): Physics, topology, logic and computation: a Rosetta Stone. In B. Coecke,

editor: New Structures for Physics, Springer, Berlin, pp. 95–172, doi:10.1007/978-3-642-12821-9. Available
at https://arxiv.org/abs/0903.0340.

[4] M. Barr & C. Wells (1984): Toposes, Triples and Theories. Grundlehren der mathematischen Wissenschaften
278, Springer, Berlin, doi:10.4204/EPTCS. Available at https://www.math.mcgill.ca/barr/papers/
ttt.pdf.

[5] J. Beardsley & L. Z. Wong (2019): The enriched Grothendieck construction. Advances in Mathematics 344,
pp. 234 – 261, doi:10.1016/j.aim.2018.12.009. Available at https://arxiv.org/abs/1804.03829.

[6] R. Blackwell, G. M. Kelly & A. J. Power (1989): Two-dimensional monad theory. Journal of Pure and
Applied Algebra 59(1), pp. 1–41, doi:10.1016/0022-4049(89)90160-6.

[7] F. Borceux (1994): Handbook of Categorical Algebra. Cambridge University Press, Cambridge,
doi:10.1112/BLMS/28.4.440.

[8] R. Crole (1994): Categories for Types. Cambridge University Press, Cambridge,
doi:10.1017/CBO9781139172707.

[9] B. Day & R. Street (1997): Monoidal bicategories and Hopf algebroids. Advances in Mathematics 129(1),
pp. 99–157, doi:10.1006/aima.1997.1649.

[10] E. J. Dubuc (1970): Kan Extensions in Enriched Category Theory. Lecture Notes in Mathematics 145,
Springer, Berlin, doi:10.1007/bfb0060485.

[11] M. Fiore, G. Plotkin & D. Turi (1999): Abstract syntax and variable binding. In: Proceedings, 14th Sympo-
sium on Logic in Computer Science, pp. 193–202.

http://dx.doi.org/10.1017/CBO9780511600579
https://golem.ph.utexas.edu/category/2019/04/can_11_have_more_than_two_poin.html
https://golem.ph.utexas.edu/category/2019/04/can_11_have_more_than_two_poin.html
http://dx.doi.org/10.1007/978-3-642-12821-9
https://arxiv.org/abs/0903.0340
http://dx.doi.org/10.4204/EPTCS
https://www.math.mcgill.ca/barr/papers/ttt.pdf
https://www.math.mcgill.ca/barr/papers/ttt.pdf
http://dx.doi.org/10.1016/j.aim.2018.12.009
https://arxiv.org/abs/1804.03829
http://dx.doi.org/10.1016/0022-4049(89)90160-6
http://dx.doi.org/10.1112/BLMS/28.4.440
http://dx.doi.org/10.1017/CBO9781139172707
http://dx.doi.org/10.1006/aima.1997.1649
http://dx.doi.org/10.1007/bfb0060485

134 Enrichment for Operational Semantics

[12] G. Friedman (2012): An elementary illustrated introduction to simplicial sets. Rocky Mountain Journal of
Mathematics 42(2), pp. 353–423, doi:10.1216/rmj-2012-42-2-353.

[13] M. Hyland & J. Power (2006): Discrete Lawvere theories and computational effects. Theoretical Com-
puter Science 366(1-2), pp. 144–162, doi:10.1016/j.tcs.2006.07.007. Available at https://core.ac.uk/
download/pdf/81105779.pdf.

[14] M. Hyland & J. Power (2007): The category theoretic understanding of universal algebra: Law-
vere theories and monads. Electronic Notes in Theoretical Computer Science 172, pp. 437–458,
doi:10.1016/j.entcs.2007.02.019.

[15] B. Jacobs (1998): Categorical Logic and Type Theory. Elsevier, Amsterdam, doi:10.1016/s0049-
237x(98)x8028-6.

[16] A. Joyal (2008): The theory of quasicategories and its applications. Available at http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.154.4968.

[17] P. Karazeris & G. Protsonis (2012): Left Kan extensions preserving finite products. Journal of Pure and
Applied Algebra 216(8-9), pp. 2014–2028, doi:10.1016/j.jpaa.2012.02.038.

[18] G. Kelly (2005): The Basic Concepts of Enriched Category Theory. Reprints in Theory and Applica-
tions of Categories 10, doi:10.1112/blms/15.1.96. Available at http://www.tac.mta.ca/tac/reprints/
articles/10/tr10abs.html.

[19] Y. Kinoshita, J. Power & M. Takeyama (1999): Sketches. Journal of Pure and Applied Algebra 143(1-3), pp.
275–291, doi:10.1016/s0022-4049(98)00114-5.

[20] F. W. Lawvere (1963): Functorial semantics of algebraic theories. Proceedings of the National Academy
of Sciences 50(5), pp. 869–872, doi:10.1073/pnas.50.5.869. Available at http://tac.mta.ca/tac/

reprints/articles/5/tr5abs.html.

[21] F. E. J. Linton (1966): Some aspects of equational categories. In: Proceedings of the Conference on Cate-
gorical Algebra, Springer, pp. 84–94, doi:10.1007/978-3-642-99902-4 3.

[22] R. B. B. Lucyshyn-Wright (2015): Enriched algebraic theories and monads for a system of arities. The-
ory and Applications of Categories 31(5). Available at http://www.tac.mta.ca/tac/volumes/31/5/
31-05abs.html.

[23] C. Lüth & N. Ghani (1997): Monads and modular term rewriting. In: Category Theory and Computer Sci-
ence, Springer, pp. 69–86, doi:10.1007/bfb0026982. Available at http://www.informatik.uni-bremen.
de/~cxl/papers/ctcs97l.pdf.

[24] B. Milewski (2017): Category Theory for Programmers. Available at https://bartoszmilewskiski.
com/2017/08/26/lawvere-theories/.

[25] K. Nishizawa & J. Power (2009): Lawvere theories enriched over a general base. Journal of Pure and
Applied Algebra 213(3), pp. 377–386, doi:10.1016/j.jpaa.2008.07.009.

[26] G. D. Plotkin (2004): A structural approach to operational semantics. Journal of Logical and Alge-
braic Methods in Programming 60-61, pp. 17–139, doi:10.1016/j.jlap.2004.05.001. Available at http:
//homepages.inf.ed.ac.uk/gdp/publications/sos_jlap.pdf.

[27] J. Power (1999): Enriched Lawvere theories. Theory and Applications of Categories 6(7), pp. 83–93. Avail-
able at http://www.tac.mta.ca/tac/volumes/6/n7/6-07abs.html.

[28] M. Schönfinkel (1924): Bausteine zu einer Logik der mathematischen Wissenschaften. Mathematis-
che Annalen 92, pp. 305–316. Available at http://www.digizeitschriften.de/dms/img/?PID=

GDZPPN002270110.

[29] R. A. G. Seely (1987): Modelling computations: a 2-categorical framework. In: Proceedings of the Second
Annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press, Ithaca, New York,
pp. 22–25.

[30] M. Stay & L. G. Meredith (2017): Representing operational semantics with enriched Lawvere theories.
Available at https://arxiv.org/abs/1704.03080.

http://dx.doi.org/10.1216/rmj-2012-42-2-353
http://dx.doi.org/10.1016/j.tcs.2006.07.007
https://core.ac.uk/download/pdf/81105779.pdf
https://core.ac.uk/download/pdf/81105779.pdf
http://dx.doi.org/10.1016/j.entcs.2007.02.019
http://dx.doi.org/10.1016/s0049-237x(98)x8028-6
http://dx.doi.org/10.1016/s0049-237x(98)x8028-6
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.154.4968
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.154.4968
http://dx.doi.org/10.1016/j.jpaa.2012.02.038
http://dx.doi.org/10.1112/blms/15.1.96
http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html
http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html
http://dx.doi.org/10.1016/s0022-4049(98)00114-5
http://dx.doi.org/10.1073/pnas.50.5.869
http://tac.mta.ca/tac/reprints/articles/5/tr5abs.html
http://tac.mta.ca/tac/reprints/articles/5/tr5abs.html
http://dx.doi.org/10.1007/978-3-642-99902-4$\relax $\@@underline {\hbox {\protect \kern +.2777em\relax \protect \kern +.2777em\relax }}\mathsurround \z@ $\relax $3
http://www.tac.mta.ca/tac/volumes/31/5/31-05abs.html
http://www.tac.mta.ca/tac/volumes/31/5/31-05abs.html
http://dx.doi.org/10.1007/bfb0026982
http://www.informatik.uni-bremen.de/~cxl/papers/ctcs97l.pdf
http://www.informatik.uni-bremen.de/~cxl/papers/ctcs97l.pdf
https://bartoszmilewskiski.com/2017/08/26/lawvere-theories/
https://bartoszmilewskiski.com/2017/08/26/lawvere-theories/
http://dx.doi.org/10.1016/j.jpaa.2008.07.009
http://dx.doi.org/10.1016/j.jlap.2004.05.001
http://homepages.inf.ed.ac.uk/gdp/publications/sos_jlap.pdf
http://homepages.inf.ed.ac.uk/gdp/publications/sos_jlap.pdf
http://www.tac.mta.ca/tac/volumes/6/n7/6-07abs.html
http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002270110
http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002270110
https://arxiv.org/abs/1704.03080

John C. Baez & Christian Williams 135

[31] M. Stay & L. G. Gregory Meredith (2016): Logic as a distributive law. Available at https://arxiv.org/
abs/1610.02247.

https://arxiv.org/abs/1610.02247
https://arxiv.org/abs/1610.02247

	1 Introduction
	2 Lawvere Theories
	3 Enrichment
	4 Enriched Lawvere Theories
	5 Change of Base
	5.1 General results
	5.2 Examples

	6 The Category of All Models
	7 Applications
	7.1 The SKI-combinator calculus
	7.2 Change of theory

	8 Conclusion
	A Natural Number Arities

