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Abstract
Photosynthesis relies on chlorophylls, which are synthesized via a common tetrapyrrole trunk pathway also leading to heme, vitamin 
B12, and other pigmented cofactors. The first committed step for chlorophyll biosynthesis is insertion of magnesium into 
protoporphyrin IX by magnesium chelatase. Magnesium chelatase is composed of H-, I-, and D-subunits, with the tetrapyrrole 
substrate binding to the H-subunit. This subunit is rapidly inactivated in the presence of substrate, light, and oxygen, so oxygenic 
photosynthetic organisms require mechanisms to protect magnesium chelatase from similar loss of function. An additional protein, 
GUN4, binds to the H-subunit and to tetrapyrroles. GUN4 has been proposed to serve this protective role via its ability to bind linear 
tetrapyrroles (bilins). In the current work, we probe the origins of bilin binding by GUN4 via comparative phylogenetic analysis and 
biochemical validation of a conserved bilin-binding motif. Based on our results, we propose that bilin-binding GUN4 proteins arose 
early in cyanobacterial evolution and that this early acquisition represents an ancient adaptation for maintaining chlorophyll 
biosynthesis in the presence of light and oxygen.
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Significance Statement

Human societies rely on oxygenic photosynthesis, which uses sunlight and produces our oxygen, food, and fodder. Photosynthesis 
requires chlorophyll, and chlorophyll synthesis is performed by a series of enzymes including magnesium chelatase. However, light 
and oxygen can inactivate magnesium chelatase. It has been proposed that the GUN4 protein uses linear tetrapyrroles (bilins) to pro-
tect magnesium chelatase under these conditions. In this work, we study the evolution of GUN4 proteins and identify key amino acids 
that GUN4 uses to bind bilin. Our work shows that bilin-binding GUN4 proteins are widespread and ancient, implicating them as an 
essential early adaptation for oxygenic photosynthesis.

Introduction
Terrestrial ecosystems and human societies rely on oxygenic 
photosynthesis for carbon fixation and oxygen production. Both 
anoxygenic and oxygenic phototrophs utilize chlorophyll (Chl) 
or bacteriochlorophyll (Bchl), cyclic tetrapyrroles synthesized via 
a shared tetrapyrrole trunk pathway (1) that also gives rise to 
heme via protoporphyrin IX (PPIX; Fig. 1A). These two metallopor-
phyrin pathways diverge after PPIX, with chelation of different 
metals leading to either heme or Chls. Iron insertion by ferroche-
latase (FC) gives rise to heme, which can in turn be metabolized 
into biliverdin IXα and then into phycobilins such as phycocyano-
bilin (PCB, Fig. 1A). FC can also generate zinc (Zn) porphyrins, 
which can be metabolized into Zn-Bchl to support anoxygenic 
photosynthesis (3–5).

As the first committed step of Chl synthesis, the chelation of 
magnesium into PPIX by magnesium chelatase (MgCh) is essential 
to all oxygenic photosynthetic species. MgCh is a large enzyme 
composed of H-, I-, and D-subunits, designated based on the 
host organism: CHLH, CHLI, and CHLD in eukaryotes; ChlH, 
ChlI, and ChlD in cyanobacteria; and BchH, BchI, and BchD in 

anoxygenic phototrophs. CHLH and CHLD are homologous to 
CobN and CobT of aerobic cobalt chelatase (CoCh), the enzyme re-
sponsible for cobalt insertion in the aerobic pathway for synthesis 
of vitamin B12 and related cobamide cofactors (6). In both en-
zymes, the large CHLH or CobN subunit is responsible for binding 
the tetrapyrrole substrate, while the other subunits power the re-
action via ATP hydrolysis. Anaerobic BchH is rapidly inactivated 
under aerobic conditions by photoreaction of bound porphyrin 
in the presence of oxygen, resulting in covalently modified BchH 
protein (7). Hence, the oxygenation of the atmosphere during 
the great oxygenation event (GOE) approximately 2.4 billion years 
ago (Gya) required cyanobacteria to adapt MgCh to function in the 
presence of oxygen.

In oxygenic organisms, Mg chelation by MgCh is facilitated by 
an additional protein, GUN4 (Fig. 1A). First identified genetically 
as essential for proper regulation of nuclear genes in plants in re-
sponse to chloroplast damage, GUN4 was later characterized bio-
chemically as a small protein binding both the porphyrin 
substrate and product of MgCh; both plant and cyanobacterial 
MgCh activities were stimulated by GUN4 in vitro (8). 
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Arabidopsis GUN4 is also able to bind to CHLH directly (9). In the 
cyanobacterium Synechocystis sp. strain PCC 6803 (hereafter, 
Synechocystis), the absence of GUN4 is associated with a range 
of phenotypes such as an inability to grow photoautotrophically 
under high light (10). More recent studies have established that 
GUN4 from Synechocystis and from the model green alga 
Chlamydomonas reinhardtii (hereafter, Chlamydomonas) can also 

bind linear tetrapyrroles (bilins) such as PCB (Fig. 1B; (2, 11)). PCB 
has no effects on MgCh activity alone, but it stimulates MgCh ac-
tivity by more than an order of magnitude when bound to GUN4 
(11). Loss of PCB biosynthesis in Chlamydomonas results in simi-
lar phenotypes to those of gun4 mutants, confirming the import-
ance of this property in vivo (11, 12). PCB is a core light 
harvesting component of cyanobacterial phycobilisomes, and its 
synthesis is essential in Synechococcus sp. PCC 7002 (13). Since phy-
cobilisomes are not essential to cyanobacteria (14), PCB’s role as a 
GUN4 cofactor appears critical for integrating multiple aspects of 
tetrapyrrole metabolism in oxygenic phototrophs.

GUN4 has been reported to be absent in Gloeobacter violaceus 
PCC 7421 (15), an early-diverging cyanobacterium lacking thyla-
koids (16–18). However, distant GUN4 homologs are detected in 
the genomes of Gloeobacter spp. by BLAST searches (19–21). 
Multiple GUN4 homologs are also found in Synechocystis (22). 
The closest Synechocystis relative to Arabidopsis GUN4 is the pro-
tein encoded by the sll0558 gene, with that encoded by sll1380 
being the next closest relative (15). Phenotypic analysis demon-
strated that loss of sll0558 confers gun4 phenotypes, whereas 
loss of sll1380 does not (10, 15). GUN4 paralogs thus exist in cyano-
bacteria, underscoring the possibility that the distant GUN4 ho-
mologs in Gloeobacter spp. are also paralogs.

The existence of GUN4 paralogs is relevant to questions about 
the origins and functions of GUN4 itself: did it evolve from such 
paralogs, or the other way round? Is bilin binding widespread in 
GUN4 orthologs? Is it absent in paralogs? Early evolution of 
GUN4 orthologs in ancestral cyanobacteria and stimulation of 
MgCh activity by bilin could have been ancient adaptations to per-
mit MgCh function in the presence of light and rising oxygen lev-
els. The subsequent loss of GUN4 in Gloeobacter spp. might then 
reflect lack of selective pressure for GUN4 function in a slow- 
growing organism adapted for growth in low light. However, 
analyzing the origins of GUN4 poses challenges for phylogenetic 
analysis. GUN4 is apparently confined to oxygenic photosynthetic 
organisms, meaning that there is no clearly ancestral outgroup. 
Paralogs would provide such an outgroup if they are ancestral, 
but this is effectively circular reasoning.

We examine these questions in the current work by placing 
GUN4 in the context of early cyanobacterial evolution (Fig. S1). 
Recent studies demonstrate that the earliest known cyanobacter-
ial branch, the Gloeobacterales, includes not only Gloeobacter spp. 
but also a range of other organisms (23–26). Within crown cyano-
bacteria, a range of isolates from Yellowstone and other hot 
springs that have previously been assigned to the unicellular ge-
nus Synechococcus (23, 27) have typically been recovered as the 
earliest branch, with this lineage sometimes also including the 
mesophilic isolate Synechococcus sp. PCC 7336 (Fig. S1; (28–31)). 
This Thermostichales lineage has recently been shown to contain 
thylakoids (27). Using phylogenetic analysis of 16S rDNA and of 
catenated ribosomal proteins, we extend this view by identifying 
early-branching mesophilic members from metagenomic studies 
of South African stromatolites (32). Several cyanobacterial genera 
have been repeatedly shown to be early branches within the sub-
sequent cyanobacterial crown radiation, including Pseudanabaena, 
Acaryochloris, Thermosynechococcus, and Gloeomargarita (21, 23, 25– 
31, 33–35). Through comparison of this pattern of diversification 
to phylogenetic reconstructions of GUN4 and CHLH, we support 
the presence of both proteins in the last common cyanobacterial 
ancestor (LCCA) and imply that GUN4 paralogs arose later in 
cyanobacterial evolution. We also identify a single amino acid sub-
stitution within a conserved LxNxLR motif (Fig. 1B) that is sufficient 
to ablate PCB binding in Chlamydomonas GUN4 protein (CrGUN4). 

B

L209

N211

PCB

L213

R214

SyGUN4 (7E2T)

A

heme Mg•proto

trunk

...

chlorophylls & bacteriochlorophylls

HO

Mg2+Fe2+

biliverdin IXa (BV)

...

FC MgCh +
GUN4

PPIX

protochlorophyllide a

chlorophyllide a
phycocyanobilin (PCB)

PCYA

...
Co2+

cobamides

...

CoCh

Fig. 1. GUN4 and bilin in Chl biosynthesis. A) Heme, Chl, and cobamides 
such as vitamin B12 are synthesized via a common tetrapyrrole trunk 
pathway (1). Incorporation of iron into PPIX by FC produces heme and also 
provides a precursor for synthesis of bilins such as PCB. Incorporation of 
magnesium into PPIX by MgCh is the first committed step in Chl 
biosynthesis, producing Mg•protoporphyrin IX (Mg•proto). In oxygenic 
photosynthetic organisms, MgCh function is stimulated by GUN4 protein, 
which can bind PCB (dashed line). The equivalent step in cobamide 
biosynthesis is cobalt chelation by CoCh. In the aerobic pathway for 
cobamide synthesis, CoCh is composed of three subunits including a 
substrate-binding CobN subunit homologous to the substrate-binding 
subunit CHLH in MgCh. B) The structure of GUN4 from Synechocystis sp. 
strain PCC 6803 is shown with bound PCB (PDB accession 7E2T; (2)). The 
PCB ligand and a conserved LxNxLR motif are indicated.
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Phylogenetic analysis demonstrates that this motif is conserved in 
cyanobacterial GUN4 orthologs and in GUN4 proteins from many 
eukaryotic algae, but not in GUN4 paralogs. Taken together, these 
studies provide evidence that a bilin-binding GUN4 ortholog was 
present in LCCA, implying that the ternary complex of GUN4, bilin, 
and MgCh is an ancient adaptation for Chl biosynthesis in the pres-
ence of light and oxygen.

Results
A Gloeobacterales/Thermostichales/higher crown 
(G/T/HC) framework for early cyanobacterial 
evolution
GUN4 orthologs have been reported to be ubiquitous in oxygenic 
photosynthetic organisms except for the early-branching cyano-
bacterium G. violaceus PCC 7421 (15). This is consistent with the 
absence of such orthologs in subsequently isolated Gloeobacter 
spp. (21, 36), although distant homologs could be detected by 
BLAST (19) searches of both the G. violaceus and Gloeobacter more-
lensis genomes (20, 21). BLAST searches of other members of the 
Gloeobacterales (24, 26) with the functional Synechocystis GUN4 
protein sll0558 (10, 15) identified possible orthologs. We therefore 
used GUN4 homologs from Gloeobacter spp., Aurora vandensis (24), 
and Anthocerotibacter panamensis (26) as queries against the assem-
blies from these other cyanobacterial species to obtain pairwise 
identities shown in Fig. S2. GUN4 homologs from Gloeobacter spp. 
were very close to each other and to a sequence from a 
metagenome-assembled genome (MAG) initially assigned to 
Aphanocapsa lilacina (37) but subsequently assigned to 
Gloeobacterales (25). These three sequences lacked close relatives 
in a broad range of other cyanobacteria, a pattern similar to that of 
the known Synechocystis GUN4 paralog sll1380 (Fig. S2; (15)). In 
contrast, the GUN4 homologs from A. vandensis and A. panamensis 
(Fig. S2) exhibited closer relatives in a broad range of cyanobacter-
ial genomes and MAGs, including Synechocystis. These results 
suggest that GUN4 orthologs are present in A. vandensis and A. 
panamensis. The presence of GUN4 orthologs in these species 
could implicate an early origin of this protein in cyanobacteria, 
but it also raises the possibility that such sequences were later ac-
quisitions arising via horizontal gene transfer (HGT). To address 
this question, we sought to compare the phylogenetic analysis 
of GUN4 with the pattern of early cyanobacterial evolution.

Previous phylogenomic studies have provided support for 
Gloeobacterales as the earliest branch in the process of cyanobac-
terial diversification (Fig. S1), consistent with the lack of thyla-
koids in this lineage and the presence of thylakoids in all other 
cyanobacterial lineages (18, 26, 27, 36, 38). Such phylogenomic 
studies provided good support for Thermostichales as the earliest 
branch within crown cyanobacteria and also identified several 
other early-branching crown cyanobacterial lineages without 
consensus on the precise order of branching for those lineages 
(Fig. S1). Hence, these studies establish a well-supported G/T/ 
HC (Gloeobacterales/Thermostichales/higher crown) topology 
for cyanobacterial evolution despite the lack of a robust view of 
subsequent branching within the higher crown. We began by ana-
lyzing 16S rDNA sequences, including a fragmentary 16S se-
quence from Gloeobacterales sp. SpSt-379 (hereafter, SpSt-379), 
a MAG recently assigned to Gloeobacterales (21, 25). The resulting 
tree recovered a well-defined Gloeobacterales clade that includes 
this sequence (Fig. 2, with additional information in Table S1). 
Consistent with previous work (25, 26), we observed two clades 
within Gloeobacterales: a clade including Gloeobacter spp. 

sequences and another including A. vandensis and A. panamensis 
sequences. The first clade includes known Gloeobacter 16S sequen-
ces as well as one originally assigned to Aphanocapsa caldariorum 
var. cavernarum, but later shown to be closely related to 
Gloeobacter (23). This clade also includes five sequences associated 
with genomes or MAGs: SpSt-379, G. violaceus, Gloeobacter. kilaueen-
sis, G. morelensis, and the MAG originally assigned to A. lilacina 
(hereafter, “A. lilacina;” (25, 37)). Previous work with multiprotein 
trees (25) placed two additional MAGs in this clade (ES-bin-141 
and ES-bin-313), but 16S sequences could not be found in these as-
semblies. The second clade includes sequences associated with 
three genomes or MAGs: A. vandensis LV9, A. panamensis, and a 
MAG from Alaskan peat previously assigned to this branch of 
Gloeobacterales (Fig. 2; (25)). An additional MAG assigned to this 
clade (24, 25), A. vandensis MP9P1, possesses a fragmentary 16S se-
quence perfectly matching the longer sequence of A. vandensis 
LV9; this sequence was omitted. Other 16S sequences in the 
Gloeobacterales lineage are from a range of environments, includ-
ing the Arctic, the Antarctic, European mountains, and 
Tasmanian stromatolites (Fig. 2). As expected, all three cyanobac-
terial species known to lack thylakoids were recovered within the 
Gloeobacterales.

The earliest branch within crown cyanobacteria, the 
Thermostichales (27), included 16S sequences from thermophilic 
Synechococcus isolates from Yellowstone and from Rupite hot spring, 
Bulgaria (Fig. 2). This clade also included additional sequences from 
hot springs in British Columbia, Japan, Tibet, Russia, and Indonesia. 
Genomes or MAGs are available for isolates from Yellowstone and 
British Columbia (39, 40). Additionally, genomes are available for 
Synechococcus bigranulatus Rupite (also Thermostichus bigranulatus or 
Thermostichus vulcanus (27, 41)) and for Synechococcus sp. strain 
Nb3U1 from Japan (42). The presence of thylakoids has been dem-
onstrated for both the Rupite strain (27) and S. bigranulatus 0431 
from Russia (43), which does not have a genome but whose 16S se-
quence was placed with other hot springs isolates. We also identi-
fied two early-diverging lineages of cyanobacteria within this clade 
(Fig. 2). No genomes or MAGs could be found for the earliest lineage, 
but the second group included a 16S sequence associated with a 
MAG (hereafter, SM2_3_2) from a South African stromatolite (32). 
Overall, the composition of this branch is consistent with the pro-
posed Thermostichales lineage (27) with the incorporation of early- 
branching mesophilic members but with the exclusion of 
Synechococcus lividus PCC 6715. In our analysis and in another recent 
study (31), S. lividus PCC 6715 was instead associated with 
Thermosynechococcus spp. in the third cyanobacterial clade, the high-
er crown cyanobacteria (Fig. 2). This clade included several 
branches with available genomes and MAGs, including members 
of Thermosynechococcus and Acaryochloris as well as the filamentous 
genus Pseudanabaena. The higher crown cyanobacterial clade also 
included Synechococcus sp. PCC 7336, which was clustered with 
the Yellowstone isolates in earlier analyses (28–31, 33). Our 16S 
analysis thus recovers the expected G/T/HC topology for early 
cyanobacterial evolution.

The identification of a potential early, mesophilic branch with-
in Thermostichales represented by SM2_3_2 prompted us to seek 
other potential members of this lineage. BLAST searches with a 
range of protein sequences from SM2_3_2 identified three other 
MAGs from the same study as potential close relatives: SM2_3_1, 
RM1_1_27, and SM2_3_60. As 16S sequences could not be detected 
in these MAGs, we used a set of 23 proteins of ≥128 amino acids 
from Thermosynechococcus elongatus (Table S2) to design ribosomal 
protein catenations for phylogenetic analysis. Ribosomal proteins 
were poorly represented in RM1_1_27, with only 4 out of the 23 
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detected (Table S2). Three of these proteins were identical to pro-
tein sequences from SM2_3_2, so RM1_1_27 sequences were not 
used in further analysis. Nine complete sequences were found 
in SM2_3_60, but these poorly overlapped with those of SpSt-379 
(Table S2). We therefore constructed two catenations of ribosomal 
proteins for phylogenetic analysis, using sequences from the 

nonphotosynthetic cyanobacterial relative Sericytochromatia 
(44) as an outgroup. Phylogenetic analysis of both catenations 
(Figs. 3A and S3) recovered the G/T/HC topology, with SM2_3_1 
and SM2_3_2 placed as early branches within Thermostichales. 
Synechococcus sp. PCC 7336 was placed as either the earliest branch 
within Thermostichales or as a sister lineage. SM2_3_60 was 
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KX903890 (clone GR1_0724; stromatolite, Tasmania [INCOMPLETE])

FR667380 (clone Llo_082; benthic mat, Llong lake, Pyrenees)

KP676745 (clone Alla11otu4-7; Alla hot springs)

FJ866611 (clone AS-45-2; sinkhole, Lake Huron)

JX016970 (clone HglFeb3G10m; seawater, near Heligoland)

JQ861812 (Uncultured sp., clone R83)

EF205441 (clone YCB100; hot spring, Tibet)

AB757744 (clone PMB-63; Padang Cermin hot spring)

FR667262 (clone Lle_030; benthic mat, Llebreta lake, Pyrenees)

3300039303 (“Aphanocapsa lilacina HA4352-LM1”)

KP676746 (clone Alla11otu4-8; Alla hot springs)

NR_074282 (Gloeobacter violaceus PCC 7421; Vierwaldstättersee, Switzerland)

JN825306 (clone Alchichica_AL31_2_1B_13; lake Alchichica)

CP063845 (Gloeobacter sp. MG652769 = G. morelensis)

HM448271 (clone YNP_SBC_BP4_B56; Yellowstone)

AB630682 (clone MPB2-6; Skarvsnes, Hotoke-Ike lake, Antarctica)

KC004019 ("Aphanothece caldariorum var. cavernarum" [INCOMPLETE])

KY744808 (Aegeococcus anagnostidisi TAU-MAC 0815)

EF205526 (clone DTB14; hot spring, Tibet)

KF975568 (clone FMSB25; Foroumad chromite mine, Iran)

NR_172653 (Anthocerotibacter panamensis strain C109; hornwort synbiont, Panama)

FR667311 (clone Llo_013; benthic mat, Llong lake)

AUMZ01000001 (Synechococcus sp. 60AY4M2; Mushroom Spring, Yellowstone)

FJ230802 (clone QuartzC16; Wave  Hill station, Northern Territory, Australia)

NR_104911 (Vampirovibrio chlorellavorus ICPB 3707)

EF429501 (clone MPB08; Wonder Lake hot spring mat, Luzon)

CP000239 (Synechococcus sp. OS-A strain JA-3-3Ab Octopus Spring)

FR667374 (clone Llo_076; benthic mat, Llong lake, Pyrenees)

JN438072 (clone SBYB_1576; Guerrero Negro salt flat)

JN506184 (clone SBZC_2047; Guerrero Negro, salt flat)

DSMC01000095 (Synechococcus sp. SpSt-285; British Columbia)

KP676742 (clone Alla11otu4-4; Alla hot springs)

AF132774 (Synechococcus sp. P1)

KT453627 (clone 332-16; otter vent, Yellowstone lake)

PCC_6312 (Synechococcus sp. PCC 6312)

KF856487 (clone 23BF24C; sediment, Lake Bourget [INCOMPLETE])

JN452269 (clone SBYG_6673; Guerrero Negro salt flat)

Rupite_genomic (Synechococcus or Thermostichus bigranulatus Rupite)

JQ307086 (clone 9_5; Alert, Ellesmere Island, NU [INCOMPLETE])

JQ625047 (Uncultured bacterium clone SHUX745)

PCC_7502 (Synechococcus sp. PCC 7502)

KT122313 (Uncultured sp., clone TGRWLFZ-16s-SI333)

CP000240 (Synechococcus sp. OS-B strain JA-2-3B'a(2-13) Octopus Spring)

HM448248 (clone YNP_SBC_BP4_B2; Yellowstone)

JQ861864 (Uncultured clone Ro 16S)

AB491712 (clone CG14; Crystal Geyser, Utah)

DQ408367 (Synechococcus bigranulatus 0431; hot spring near Lake Baikal [INCOMPLETE])

EF205557 (clone TP139; hot spring, Tibet)

FN811219 (clone UMAB-cl-35; Alexander Island, Antarctica)

A_van_LV9 (Aurora vandensis LV9)

JN529338 (clone SBZO_e467; Guerrero Negro, salt flat)

GU437443 (clone Tat-08-009_43_7; Tower Geyser, Chile)

DSQC01000986 (Gloeobacterales sp. SpSt-379 [INCOMPLETE])

PCC7336 (= AF448078; Synechococcus sp. PCC 7336)

KU382119 (clone QL8B_35pJ Yellowstone)

SM2_3_2 (Synechococcaceae cyanobacterium SM2_3_2)

AF445693 (clone SM1F11 Yellowstone)

EF545646 (Synechococcus sp. CR_L35; Las Lilas, Costa Rica)

KP710184 (uncultured Vampirovibrio sp.)

LC192829 (Synechococcus sp. Nb3U1)

MF191714 (Thermosynechococcus elongatus BP-1)

NR_121745 (Gloeobacter kilaueensis JS1; entrance, lava cave, Kilauea caldera)

JN825332 (clone Alchichica_AQ1_1_1B_17; lake Alchichica)

MG641933 (Stenomitos frigidus CAU11; soil crust, Cautivo, Tabernas Desert, Spain)

KR188970 (Uncultured bacterium clone HF97 [river biofilm, China])

MN544289 (Acaryochloris sp. CCNUM4; Mulan Tianchi)

AY884054 (Synechococcus sp. TS-15 genotype B-P2 Yellowstone)

AB039018 (Pseudanabaena sp. PCC 7367)

3300025548 (peat sample, Barrow Environmental Observatory, Alaska)

EF205462 (clone YCB36; hot spring, Tibet)

KM244806 (Vampirovibrio sp.)

EF032784 (Gloeobacter sp. clone HAVOmat17, lava cave, Kilauea caldera)

JN437179 (clone SBXZ_6111; Guerrero Negro salt flat)

NR_074407 (Acaryochloris marina MBIC11017)

JN438704 (clone SBYB_2275; Guerrero Negro salt flat)

JN447700 (clone SBYC_5457; Guerrero Negro salt flat)

AY884060 (Synechococcus sp. TS-91 genotype B''' Yellowstone)

DQ058873 (clone Pc23; pustular microbial mat, Shark Bay [INCOMPLETE])

AB039016 (Pseudanabaena sp. PCC 6802))

CP064963 (Candidatus Melainabacteria bacterium)

AB757741 (clone PMB-45; Padang Cermin hot spring)

KF179651 (clone MAY3C19; coral reef, Mayotte)

SM2_2_1 (Oscillatoriales cyanobacterium SM2_2_1)

HM448361 (clone YNP_SBC_QL2_B2; Yellowstone)

EF429499 (clone MPB05; Wonder Lake hot spring mat, Luzon)

MF191713 (Synechococcus lividus PCC 6715)

DSGY01000030 (Synechococcus sp. SpSt-164; British Columbia)

MH688849 (Stenomitos sp. Ru-0-2; sand dunes, Baabe, Vorpommern-Rügen, Germany)
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Fig. 2. Phylogenetic analysis of 16S sequences implicates a G/T/HC topology for cyanobacterial evolution. A maximum likelihood phylogenetic tree is 
shown for 16S rDNA sequences from Gloeobacterales (mauve), Thermostichales (blue), higher crown cyanobacteria (green), and noncyanobacterial 
sequences (grey). This analysis demonstrates the G/T/HC topology, with Gloeobacterales as the earliest cyanobacterial branch and Thermostichales as 
the next branch (equivalent to the earliest branch containing thylakoids). Organisms known to contain thylakoids (arrowheads) or to lack thylakoids 
(boxed “X”) are indicated, and sequences with available genomes or MAGs are in bold face. The sequence from Synechococcus sp. strain PCC 7336 is 
indicated in black due to the ambiguous placement of this organism overall (see text). Root placement is between the outgroup (sequences from 
Melainabacteria) and all cyanobacterial sequences.
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placed in a clade with Synechococcus sp. PCC 7336 (Fig. S3). The 
MAGs SM2_3_1 and SM2_3_2 are at least as large as genomes 
from their thermophilic relatives (Fig. 3B), suggesting that their 
complete genomes may be similar in size to that of Synechococcus 
sp. PCC 7336. RM1_1_27 and SM2_3_60 are much smaller MAGs, 
consistent with the poorer representation of ribosomal proteins 
in these assemblies (Fig. 3B and Table S2). Taken together, these 
ribosomal protein phylogenies corroborate the G/T/HC topology 
from 16S sequences, place SM2_3_1 and SM2_3_2 within that top-
ology, and provide a good framework for comparison to phylogen-
etic analysis of GUN4.

We next inferred maximum likelihood phylogenies for a series of 
single-protein trees varying in size and sampling as closer parallels 
to analysis of GUN4. Rather than attempting to span known diver-
sity in the higher crown clade, we largely focused on early branches 
in the higher crown cyanobacteria, such as Pseudanabaena or 
Acaryochloris. We began with ribosomal proteins L2 (Fig. S4) and 
S2 (Fig. S5), which were not included in either catenation. We 
next tested threonine synthase (Fig. S6), focusing on a particular 

isoform (protein accession HGZ88566) that was also present on 
the scaffold containing the 16S sequence of Gloeobacterales sp. 
SpSt-379. We subsequently examined a series of proteins varying 
in size and in availability in Gloeobacterales and Thermostichales 
(Fig. 4A and Table S1): the N subunit of dark-operative protochloro-
phyllide reductase (DPOR N subunit; Fig. S7); the ABC transporter 
subunit SufB (Fig. S8); Ca2+–dependent serine proteases of the sub-
tilisin or peptidase S8 family (subtilases; Fig. S9); the PilM (Fig. S10), 
PilN (Fig. S11), and PilT (Fig. S12) proteins implicated in the function 
of type IV pili; and the Chl-binding protein CP43 (Fig. S13). These 
proteins provide different parallels to GUN4. The DPOR N subunit 
is part of a multiprotein complex carrying out one step in Chl bio-
synthesis. SufB is also part of a multiprotein complex, but it is not 
well represented in Gloeobacterales (Fig. 4A). Subtilases were ab-
sent in the branch of the Gloeobacterales including A. vandensis 
and A. panamensis (Fig. 4A), so SufB and subtilases are similar to 
poor representation of GUN4 orthologs in Gloeobacterales. 
Proprotein convertases (45) provided an outgroup for subtilases, 
so we also included sequences from more derived cyanobacteria 
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Fig. 3. Identification of early-branching members of Thermostichales using catenated ribosomal proteins. A) A maximum likelihood phylogenetic tree is 
shown for catenated ribosomal proteins in the scheme of Fig. 2. Assemblies used for constructing the catenated sequence alignment are indicated in 
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in this analysis. PilN is a small protein, comparable in size to GUN4 
(Table S1). There is a functional distinction between PilT1 and PilT2 
isoforms in Nostoc punctiforme (46) that is reminiscent of the split be-
tween GUN4 orthologs and paralogs, so sequences from derived 
cyanobacteria were also included in the PilM, PilN, and PilT ana-
lyses. Like GUN4, CP43 is confined to oxygenic photosynthetic or-
ganisms, meaning there is no reliable outgroup. In all cases, the 
G/T/HC topology was recovered, with SM2_3_1 and SM2_3_2 se-
quences placed within the Thermostichales clade. SM2_3_60 and 
Synechococcus sp. PCC 7336 sequences were often placed within 
the Thermostichales clade or sister to it, but these sequences 
were instead placed within higher crown cyanobacteria in the ana-
lysis of SufB (Figs. 4A and S8). A meta-analysis of these single- 
protein trees (Fig. S14) recovered a topology for Gloeobacterales 
and Thermostichales (Fig. 4B) that largely matches recent work 
(25, 26). Within Thermostichales, we clearly recover the mesophilic 

cases from South Africa as one or more early branches, followed by 
genomes and MAGs from hot spring environments. Taken together, 
these studies demonstrate three key points: one, that the expected 
G/T/HC topology (Fig. S1) can be recovered in phylogenetic analysis 
of single proteins of varying size; two, that this topology can be re-
covered in the presence of multiple isoforms and without sequen-
ces from some early-branching organisms; and, three, that this 
topology can be recovered without an outgroup. It thus seemed ap-
propriate to examine GUN4 using the same approach.

Phylogenetic analysis of GUN4 and CHLH reveals 
both to be ancestral cyanobacterial genes
Within Gloeobacterales, GUN4 homologs are only present in A. 
panamensis, A. vandensis, G. violaceus, G. morelensis, and “A. lilacina” 
(Figs. 5A and S2). The lack of GUN4 sequences in other 
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Gloeobacterales species (Fig. 5A) may reflect incomplete coverage, 
consistent with the absence of other sequences from such MAGs 
(Fig. 4A). However, the complete absence of GUN4 homologs in 
the G. kilaueensis genome is notable. Within Thermostichales, by 
comparison, GUN4 homologs are ubiquitous in hot springs ge-
nomes and MAGs (Fig. 5A). Homologs are also found in SM2_3_1, 
SM2_3_2, and SM2_3_60 but are missing in the less complete 
RM1_1_27. Multiple homologs are present in Synechococcus 
sp. 7336. Examination of the pairwise identities of these sequen-
ces with a range of cyanobacterial assemblies (Fig. S2) suggests 
that GUN4 homologs from SM2_3_2 and SM2_3_60 are paralogs, 
whereas the sequence from SM2_3_1 is likely to be an ortholog.

We therefore constructed a GUN4 sequence alignment including 
sequences from Gloeobacterales, Thermostichales, and a range of 
higher crown cyanobacteria, including the known GUN4 ortholog 
and paralog from Synechocystis (15). We initially omitted one se-
quence from Synechococcus sp. PCC 7336 due to the variable place-
ment of this organism in different phylogenetic analyses (Figs. 2, 3, 
and S3–S13). We also initially omitted candidate GUN4 orthologs 
from Pseudanabaena spp., because inclusion of these sequences 
with the initial group of paralogs resulted in a lower quality align-
ment with more gap-enriched positions. The resulting alignment 
was used to infer a maximum likelihood phylogeny. Using this 
tree, we evaluated two scenarios. In the first scenario (Fig. 5B), we as-
sumed that a GUN4 ortholog was present in LCCA and that GUN4 pa-
ralogs evolved later via duplication and subsequent loss of GUN4 
function. This implies placement of a root between 
Gloeobacterales orthologs and all other sequences. Such root place-
ment does recover the expected G/T/HC topology for GUN4 ortho-
logs (Fig. 5B), with the appearance of paralogs as a loosely 
supported, derived clade including the known paralog sll1380 from 
Synechocystis along with sequences from G. violaceus and G. morelen-
sis. The known Synechocystis GUN4 ortholog sll0558 is part of a 
paraphyletic grade of GUN4 sequences from higher crown cyano-
bacteria. The GUN4 homolog from SM2_3_1 is placed in the ortholog 
clade, as expected (Fig. S2), and is an early branch within a clade of 
Thermostichales GUN4 orthologs that matches the overall pattern 
of evolution within these organisms (Figs. 3 and 4B). Interestingly, 
GUN4 orthologs from Gloeomargarita lithophora and related organisms 
such as Synechococcus sp. C9 appear most closely related to the paral-
ogs. Overall, the hypothesis that GUN4 is an ancestral cyanobacter-
ial gene is compatible with the observed tree (Fig. 5B).

In the alternate scenario (Fig. 6), we assumed that GUN4 orthologs 
evolved from paralogs via duplication and gain of function, implying 
a root placement between these two groups. In this hypothesis, GUN4 
orthologs would have arisen within higher crown cyanobacteria. 
However, the G/T/HC topology was not well supported in the paral-
ogs. The appearance of GUN4 orthologs in some members of the 
Gloeobacterales and in the Thermostichales would indicate that 
these lineages acquired GUN4 after their divergence from other 
cyanobacteria, implying more recent introduction of GUN4 orthologs 
via HGT in these lineages. This topology does retain a well-supported 
clade of GUN4 sequences from Thermostichales, implying an HGT 
event into the common ancestor of this taxon after they diverged 
from other cyanobacteria but while that ancestor remained a single 
genetic population. Such a scenario effectively implies an apparent 
discontinuity in which Thermostichales branched from other crown 
cyanobacteria before emergence of GUN4 but remained a single gen-
etic population for some time thereafter.

We next asked whether this analysis could be recovered using 
other techniques and with inclusion of the omitted sequences. We 
first used the same protein sequence alignment to calculate a 
phylogeny using Bayesian inference from randomly generated 

starting trees. The resulting tree is shown compared with the 
maximum likelihood tree as a tanglegram in Fig. S15, using the 
root placement of Fig. 5B. The two trees are very similar, with the 
G/T/HC topology recovered for GUN4 orthologs in both cases and 
with identical Thermostichales clades that each include the 
GUN4 ortholog from SM2_3_1 as the earliest branch. The relation-
ships in the paralog clade show more significant differences in 
the two analyses, but its composition and placement as sister to 
GUN4 from Gloeomargarita and related organisms were identical 
in both trees. We next carried out a maximum likelihood analysis 
of the DNA coding sequences for these proteins. The resulting phyl-
ogeny is again shown as a tanglegram with the maximum likeli-
hood analysis of the amino acid sequences (Fig. S16), using the 
same root placement. Excepting slight differences in the branching 
order of the hot springs isolates of Thermostichales, the 
DNA-based tree adopts a branch pattern also seen in ribosomal 
protein S2 (Fig. S5) rather than the consensus branching order 
(Figs. 2, S3, and S14). There are also more substantial changes in 
the paralog clade (Fig. S16). Lastly, we included candidate orthologs 
from either Synechococcus sp. PCC 7336 or Pseudanabaena spp., 
each requiring slightly different sampling of GUN4 paralogs to re-
tain a comparable number of characters in the final sequence 
alignment (Table S1). The resulting trees (Figs. S17–S18) confirm 
these sequences as orthologs and place them within higher crown 
cyanobacteria. All of these trees support four key conclusions: one, 
there is a clear separation of GUN4 orthologs and paralogs; two, the 
orthologs follow the G/T/HC topology of early-branching cyanobac-
teria; three, the Thermostichales GUN4 orthologs behave as though 
they were vertically inherited from the common ancestor of this 
lineage; and, four, orthologs from Gloeomargarita species, 
Synechococcus sp. C9, and related organisms are the protein sequen-
ces most closely related to the paralogs.

If GUN4 orthologs are derived from GUN4 paralogs, then verti-
cal inheritance of GUN4 orthologs in Thermostichales would im-
ply a discontinuity between the emergence of this lineage and 
its acquisition of GUN4 (see above). Given that the function of 
GUN4 orthologs relies on their interaction with CHLH (9), we per-
formed phylogenetic analysis of ChlH/BchH proteins to see if 
there was any evidence for a similar discontinuity in evolution 
of this GUN4-interacting protein. Unlike the analysis of GUN4, 
phylogenetic analysis of ChlH benefits from the presence of 
BchH orthologs in anoxygenic photosynthetic bacteria and from 
the availability of the CobN subunit of CoCh as a clear outgroup. 
However, there are two ChlH/CHLH isoforms present in some 
cyanobacteria and green algae, with the ChlH2 isoform apparent-
ly absent in Thermostichales (Fig. 5A). To aid in assigning the 
ChlH/CHLH isoforms, our phylogenetic analysis thus included 
green algal CHLH1 and CHLH2 sequences together with their bac-
terial relatives and prokaryotic CobN sequences. The inferred 
ChlH/CobN tree (Fig. 7) shows that the two ChlH isoforms arose 
as BchH1 and BchH2 isoforms in anoxygenic photosynthetic bac-
teria. CobN itself is only poorly represented in Gloeobacterales 
(Fig. 5A) and was found in two distinct clades. One group of cyano-
bacterial CobN sequences was found in some Gloeobacter spp. and 
only a few other cyanobacteria. These sequences were related to 
archaeal sequences and were only distantly related to other 
cyanobacterial CobN sequences. The more common group of 
Gloeobacterales CobN proteins is part of a clade also including 
CobN from Thermostichales and from higher crown cyanobac-
teria. This clade is derived from CobN sequences from other bac-
teria. Therefore, we conclude that cyanobacterial ChlH and CobN 
proteins arose independently from BchH and CobN ancestors, fol-
lowed by an early duplication of BchH proteins. ChlH2/CHLH2 was 
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recovered in separate prasinophyte/chlorophyte and cyanobacter-
ial clades, but it is less common than BchH1/ChlH1 and is absent in 
several important cyanobacteria, including the Thermostichales 
(Fig. 5A) and G. lithophora. CHLH1 is well represented in 
Gloeobacterales and in thermophilic members of the 
Thermostichales, and each of these groups was recovered as a sep-
arate clade. CHLH1 from higher crown cyanobacteria was recov-
ered as a paraphyletic grade, with eukaryotic CHLH1 descended 
from the higher crown sequences. The presence of 
Thermostichales CHLH1 sequences thus allows us to examine 
the evolution of the H1 isoform with higher confidence, and the 
G/T/HC topology was clearly recovered in ChlH1 without any 

apparent discontinuities. Hence, we found no evidence for subse-
quent acquisition of extant Thermostichales CHLH sequences via 
HGT, and CHLH1 clearly follows the G/T/HC topology. Taken to-
gether (see “Discussion”), these data favor the scenario with the 
simplest interpretation: GUN4 is an ancestral cyanobacterial gene.

Conservation of a bilin-binding motif in GUN4 
evolution implicates a bilin-dependent mode of 
action
In parallel with phylogenetic analyses, we examined conservation 
of the bilin-binding pocket in GUN4 evolution. PCB is known to 
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Fig. 5. Phylogenetic analysis of GUN4 is consistent with the G/T/HC topology. A) The availability of GUN4, CHLH, and CobN sequences in available 
genomes and MAGs of Gloeobacterales and Thermostichales is shown. B) A maximum likelihood phylogenetic tree is shown for GUN4, following the 
conventions of Fig. 2. An apparent clade of paralogs was defined based on the presence of sll1380 from Synechocystis (15). Root placement is between 
orthologs from Gloeobacterales and all other sequences.
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bind to GUN4 from both Synechocystis and Chlamydomonas. 
Conservation of bilin binding can thus provide independent con-
firmation of well-defined clades of GUN4 orthologs and paralogs 
as well as insight into the potential conservation of bilin binding 
in the largely uncharacterized GUN4 proteins from diverse eu-
karyotic algae. We began by examining the known crystal struc-
ture of GUN4 from Synechocystis with bound PCB (Fig. 1B). This 
analysis revealed the presence of an LxNxLR motif proximal to 
the bilin, with Asn211 on the β face of the PCB π system (47) in close 
proximity to the B- and C-rings. Asn211 corresponds to Asn219 in 
Chlamydomonas GUN4. By contrast with the Synechocystis GUN4 
structure with bound bilin, part of this motif (Leu221 and Arg222) 
is not resolved in the apoprotein structure of Chlamydomonas 
GUN4 (2), consistent with ordering of this motif upon ligand bind-
ing. Unlike Synechocystis GUN4 (2), CrGUN4 exhibits PCB incorp-
oration upon recombinant expression in Escherichia coli cells 
engineered to synthesize PCB (11, 48). This property allowed us 
to examine tetrapyrrole binding by wild-type and N219G 
CrGUN4 with this expression system. The N219G variant was 
chosen based on the presence of Gly at this position in the appar-
ent G. violaceus GUN4 paralog glr3962. Wild-type CrGUN4 contains 
a small amount of bilin as shown by characteristic peaks in the 
absorbance spectrum at 368 and 674 nm, but these peaks are ab-
sent in the N219G variant (Fig. 8A and B). Interestingly, the loss of 
bilin binding in this variant does not prevent porphyrin binding. 
As shown by fluorescence spectroscopy, the relative intensity of 
porphyrin fluorescence per protein absorbance on the aromatic 
amino acid band is higher in the N219G variant than in WT 
(Fig. 8C). Therefore, this residue modulates the specificity of 

CrGUN4 for tetrapyrroles, confirming the importance of this mo-
tif. However, even this non-conservative substitution does not 
ablate porphyrin binding and hence does not preclude folding.

To examine conservation of this motif in eukaryotic algae, we 
next inferred a maximum likelihood GUN4 phylogeny including 
both cyanobacterial and eukaryotic sequences (Fig. 9). Overall stat-
istical confidence was much lower in this analysis, so we also car-
ried out a Bayesian analysis of the same proteins (Fig. S19). The 
two analyses are in good overall agreement. Several points indicate 
that this approach provides a useful framework for examining bilin 
binding. First, the expected G/T/HC topology for presumptive 
cyanobacterial GUN4 orthologs was recovered. Second, cyanobac-
terial GUN4 paralogs comprise a later branch, as expected. Both 
analyses place GUN4 paralogs as branching after appearance of 
rhodophyte GUN4, implying that these paralogs appeared at or 
after the time of primary endosymbiosis. Glaucophyte GUN4 se-
quences are also consistent with this interpretation. The late emer-
gence of the paralog clade is also consistent with its placement as 
sister to Gloeomargarita species and related organisms in the cyano-
bacterial GUN4 tree (Fig. 5B), because G. lithophora is the closest 
known relative to the modern plastid (29). All other eukaryotic se-
quences emerge as a single clade after the paralog branch in both 
trees (Figs. 9 and S19). GUN4 from Viridiplantae (green algae and 
land plants) is recovered as a clade also including GUN4 from the 
dinoflagellate genus Karenia, which contains a tertiary, haptophyte- 
derived plastid (49). GUN4 sequences from most algae with 
rhodophyte-derived plastids comprise a clade sister to the green al-
gal clade that is distinct from rhodophyte GUN4. This clade includes 
haptophyte, cryptophyte, chromerid, and stramenopile sequences, 
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Fig. 6. Alternate scenario for GUN4 evolution. The phylogenetic tree from Fig. 5B is shown with an alternate root placement between GUN4 orthologs and 
GUN4 paralogs.
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along with a group of dinoflagellate sequences which were found as 
CHLH fusion transcripts. Other non-chimeric dinoflagellate se-
quences comprise a small clade that was variably placed in the 
two analyses. GUN4 from the dinotom Durinskia baltica is not asso-
ciated with other dinoflagellate sequences but is instead found 
within diatom GUN4 sequences, indicating that it is supplied by 
the diatom-derived plastid in this organism (49, 50). The early diver-
gence of rhodophyte GUN4 and subsequent divergence of glauco-
phyte GUN4 is consistent with some recent studies on divergence 
of these organisms (51, 52), although the lack of data for some early- 

diverging members of the Viridiplantae (53) may complicate this 
analysis. Despite this problem and the relatively poor statistical 
support for this analysis, it is noteworthy that eukaryotic algal lin-
eages other than dinoflagellates are each associated with a single 
GUN4 lineage, and dinoflagellate sequences are also recovered in 
distinct clades. Taken together, this analysis provides a framework 
for examining potential conservation of bilin binding in GUN4 pro-
teins from different eukaryotic algae.

We therefore examined conservation of the LxNxLR motif in 
eukaryotic GUN4 proteins in this context. As expected, the 
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Fig. 7. Phylogenetic analysis of ChlH and CobN. A maximum likelihood phylogenetic tree is shown for CHLH and BchH, using the conventions of Fig. 2
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topology for CHLH1. The root is placed between CobN and ChlH proteins.
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LxNxLR motif is largely conserved in cyanobacterial GUN4 ortho-
logs (Fig. 9). Apparent exceptions are proteins from A. vandensis 
and A. panamensis, lacking the initial Leu residue, and those of 
G. lithophora and related organisms, lacking the second Leu resi-
due and sometimes exchanging Asp for Asn. The latter substitu-
tion may not prevent bilin binding, because the reverse 
Asp-to-Asn substitution in a conserved catalytic residue in PcyA 
does not preclude bilin association (54). All other cyanobacterial 
GUN4 orthologs retain the entire motif, including those from 
Thermostichales. By contrast, no member of the paralog clade re-
tains the conserved Asn211/Asn219 (Fig. 1B), which we have 

established is essential for bilin binding in CrGUN4 (Fig. 8). 
Although one paralog sequence had the other three residues, all 
other paralogs lack at least two of the four residues within this 
motif. GUN4 paralogs from Gloeobacter spp. also lack these signa-
ture residues (Fig. 9). We therefore propose that the lack of this 
motif correlates with the loss of bilin binding in these cyanobac-
terial paralogs. In eukaryotes, the LxNxLR motif is well conserved 
in GUN4 proteins from glaucophyte and rhodophyte algae, which 
retain bilin-based phycobilisomes for light harvesting and hence 
also retain PCB (55, 56). A number of rhodophytes have other ali-
phatic residues in place of Leu213/Leu221, but Asn211/Asn219 is 
universally conserved in GUN4 from these algal lineages (Fig. 9). 
All four residues in this signature motif are conserved in GUN4 
from Viridiplantae and from Karenia spp., consistent with the im-
portance of bilin binding by GUN4 in Chlamydomonas (11). Some 
dinoflagellate GUN4 proteins retain the motif but have other ali-
phatic residues in place of Leu213/Leu221. This is similar to 
GUN4 proteins from rhodophytes, even though dinoflagellates 
no longer use phycobilisomes (57). There may also be a loose cor-
relation between the sequence of this motif and the enzymes car-
rying out the final steps in bilin biosynthesis. GUN4 proteins from 
stramenopiles and most haptophytes retain most of the motif but 
have Ser in place of Asn211/Asn219, and such algae have either a 
PebA homolog, a PebB homolog, or both rather than the PcyA or 
HY2 enzymes that can synthesize PCB (58, 59). Ser is also present 
in place of Asn in cryptophyte GUN4 proteins. Cryptophytes retain 
diverged phycobiliproteins and possess PebA, PebB, and some-
times PcyA (58, 60). Overall, the LxNxLR motif is tightly conserved 
in photosynthetic eukaryotes with primary plastids (rhodophytes, 
glaucophytes, and Viridiplantae). Taken together with the known 
bilin binding by GUN4 from Synechocystis and Chlamydomonas, 
it seems likely that GUN4 from rhodophytes and glaucophytes 
will also bind PCB.

Discussion
In this work, we have examined the evolution of GUN4 and of its 
potential for bilin binding. We have also identified additional 
metagenomic resources for early-diverging cyanobacterial line-
ages. Using phylogenetic analyses and characterization of recom-
binantly expressed proteins, we present evidence that GUN4 was 
present in LCCA and that bilin binding is an ancient feature of 
GUN4 orthologs that appears lost in paralogs. Our work thus 
presents several new insights.

An extended understanding of early 
cyanobacterial evolution
Our analysis of 16S rDNA, of catenated ribosomal proteins, and of 
several proteins corroborates the recently proposed composition 
and phylogenetic analysis of Gloeobacterales (25), including as-
signment of “A. lilacina” (37) within Gloeobacter (Figs. 2, 3, S3–S5, 
and S14B). We also largely confirm the proposed position and 
composition of Thermostichales (27). We recover a well- 
supported clade including thermophilic isolates from hot springs 
in Yellowstone and Rupite, Bulgaria. This clade also contains mul-
tiple examples known to contain thylakoids (27, 43). In contrast to 
the original proposal for Thermostichales but in agreement with 
other recent studies (31, 61), S. lividus PCC 6715 groups with 
Thermosynechococcus spp. and Synechococcus sp. PCC 6312 in the 
higher crown cyanobacteria. We also identify at least one early- 
branching, mesophilic lineage within Thermostichales. This lin-
eage is currently represented by three MAGs from South African 
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Fig. 8. Spectroscopic characterization of recombinant GUN4 proteins. A) 
Absorption spectra are shown for wild-type and N219G CrGUN4 protein 
after heterologous expression in E. coli cells synthesizing PCB and 
purification (11, 48). B) A detail view of the spectra from panel A is shown, 
with peak wavelengths indicated for the wild type. C) Fluorescence 
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stromatolites and by other 16S sequences (Fig. 2). The size of the 
two most complete assemblies assigned to this lineage, SM2_3_1 
and SM2_3_2, is larger than complete genomes from hot springs 
isolates of the Thermostichales (Fig. 3B). This may indicate that 
the thermophilic members of this lineage have undergone some 
type of genome reduction, as has also been suggested for the 

thermophilic genus Thermosynechococcus (61). These studies pro-
vide a robust framework for examination of GUN4 origins, with 
a reproducible G/T/HC topology observed in analyses of proteins 
of varying size and of 16S rDNA sequences. We did not unambigu-
ously assign two organisms to either Thermostichales or higher 
crown cyanobacteria, Synechococcus sp. PCC 7336 and SM2_3_60 

paralogs
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WP_247217436 (Synechococcus sp. C9)
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ABW25747 (Acaryochloris marina MBIC11017)
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KFF41158 (Ca. Atelocyanobacterium thalassa SIO64986)
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ABD01274 (Synechococcus sp. JA-2-3B'a[2-13])
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NJK61372 (Synechococcaceae cyanobacterium SM2_3_1)

ABC98247 (Synechococcus sp. JA-3-3Ab)

WP_218081744 (Anthocerotibacter panamensis C109)
MP9P1 (Aurora vandensis MP9P1)

LxNxLR motif
L217
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x
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Gloeobacterales
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higher crown
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Fig. 9. Conservation of the LxNxLR motif in eukaryotic GUN4 proteins. A maximum likelihood phylogenetic tree is shown for GUN4. Root placement 
matches that of Fig. 5B, but eukaryotic GUN4 sequences are included and proteins are coded by taxon as indicated in the legend. The G/T/HC topology is 
indicated, as are paralogs (box). On the right, conservation of each residue in the LxNxLR motif is indicated: filled circle, identity; open circle, conservative 
substitution. The presence of Gly (boxed “X”) or Ser (open triangle) in place of Asn219 is indicated. Conservative substitutions were defined as Ile, Val, or 
Met for Leu and Asp for Asn.
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(Fig. 4A), because of discrepancies between the 16S tree and ribo-
somal protein trees. At least one additional early cyanobacterial 
branch was potentially implicated in the 16S tree, and other po-
tential early-diverging 16S sequences were omitted from our 
tree because of poor overlap with the 16S fragment from 
SpSt-379. Hence, it seems likely that this G/T/HC topology may 
need to be amended or expanded as additional data become 
available.

An early origin for GUN4
Unlike MgCh, GUN4 has no ortholog in anoxygenic photosynthetic 
organisms. Hence, there is no rigorous outgroup available. As an 
alternative approach, we compared phylogenetic analysis of 
GUN4 with that of the G/T/HC topology we observed for early- 
branching cyanobacteria, which is itself in good agreement with 
a range of previous studies (Fig. S1; (21, 23), 25–31, 33–35)). This 
comparison reveals that the observed topology of GUN4 orthologs 
matches that expected for an ancestral cyanobacterial protein. 
GUN4 paralogs do not exhibit such a topology, implying that the 
ancestral cyanobacterial GUN4 ortholog was specifically lost in 
Gloeobacter spp. Alternatively, one could instead assume that 
GUN4 paralogs gave rise to orthologs late in cyanobacterial evolu-
tion. In our tree, the GUN4 orthologs most closely related to paral-
ogs are found in G. lithophora and related crown cyanobacterial 
species. Hence, subsequent HGT events must be invoked to ac-
count for the presence of GUN4 orthologs in earlier branches 
such as Thermostichales. Moreover, GUN4 orthologs within 
Thermostichales form a robust, well-supported clade with a basal 
mesophilic sequence. This is consistent with the presence of a 
GUN4 ortholog in the common ancestor of all Thermostichales, 
implying that this organism diverged from other cyanobacteria 
and then remained a single genetic population until GUN4 ortho-
logs had evolved elsewhere and were introduced by HGT.

This hypothetical late evolution of GUN4 from paralogs would 
be placed at approximately the same time as establishment of pri-
mary plastid endosymbiosis, because GUN4 from G. lithophora and 
related organisms are the closest cyanobacterial orthologs both to 
the cyanobacterial GUN4 paralogs (Figs. 5B and S15–S18) and to the 
presumptive GUN4 orthologs from glaucophyte and rhodophyte al-
gae (Figs. 9 and S19). Thermostichales would thus have to have re-
mained a single population from the time of their initial divergence 
until approximately the time of plastid establishment. Molecular 
clock estimates place branching of Gloeobacterales from crown 
cyanobacteria at 2.5–2.9 Gya (26, 62, 63). Studies including 
Thermostichales as a separate branch indicate their emergence 
relatively shortly thereafter: one analysis places branching of 
Gloeobacterales at 2.9 Gya and that of Thermostichales at 2.8 
Gya (62), whereas a more recent analysis favored slightly more re-
cent appearances of 2.6 Gya and 2.5 Gya, respectively (63). The sub-
sequent appearance of Pseudanabaena at 2.6 or 2.3 Gya in the same 
reports (62, 63) is consistent with the presence of filamentous 
cyanobacterial microfossils in formations dated at ca. 1.9 Gya (64, 
65). Plastid endosymbiosis is thought to have occurred more recent-
ly, with estimates ranging from 1.6–1.8 Gya in some studies to 2.1 
Gya or 0.9 Gya in others (63, 66–68). Hence, the most conservative 
estimate requires Thermostichales to have branched from other 
cyanobacteria at 2.5 Gya and acquired a GUN4 ortholog no earlier 
than 2.1 Gya.

These estimates allow a minimum time of 400 million years 
during which Thermostichales remained a single genetic popula-
tion such that a single HGT event would have given rise to vertical-
ly inherited GUN4 in this lineage. Cyanobacteria are certainly 

capable of retaining morphology and cell division patterns for bil-
lions of years (65), but it seems implausible that the ancestors of 
Thermostichales would have remained a single genetic popula-
tion for this time without geographic dispersal or diversification 
into thermophilic niches. Moreover, there is no corroborating evi-
dence that the GUN4 binding partner CHLH was similarly ac-
quired via HGT in Thermostichales. We hence favor the simpler 
explanation of these observations: GUN4 orthologs were present 
in LCCA and were lost in Gloeobacter spp. This scenario is consist-
ent with the hypothesis that GUN4 is an ancient and essential 
component in the process of adapting MgCh for function in the 
presence of oxygen.

A widely conserved bilin-binding motif
We have also demonstrated that a point substitution is sufficient 
to ablate binding of bilin but not porphyrin in CrGUN4. Retention 
of porphyrin binding also rules out an overall loss of structural in-
tegrity, implicating this N219G substitution as directly affecting 
ligand specificity. Asn219 is part of an LxNxLR motif found in 
both CrGUN4 and SyGUN4, and the equivalent Asn211 residue is 
in close proximity to bound bilin in crystal structures of SyGUN4 
(Fig. 1B; (2)). We therefore used the diversification of this motif 
in eukaryotic GUN4 sequences to assess the potential distribution 
of bilin binding within different algal lineages. The results of 
this analysis provide four insights. First, three out of four residues 
in this motif are conserved in GUN4 orthologs from 
Gloeobacterales, including the critical Asn residue, implying 
that bilin binding is likely to have arisen early in GUN4 evolution. 
Second, the motif is largely conserved in cyanobacterial GUN4 or-
thologs but not in paralogs, implying a correlation between bilin 
binding and GUN4 function. Third, the motif is conserved in ortho-
logs from glaucophyte and rhodophyte algae, Viridiplantae, and 
most dinoflagellates, implying that bilin binding by GUN4 is con-
served in these organisms. Fourth, eukaryotic GUN4 sequences 
lacking an equivalent to Asn219 instead have Ser at this position. 
Such haptophytes, cryptophytes, and stramenopiles have second-
ary plastids derived from rhodophyte algae and do not have the 
PCYA or HY2 enzymes needed to synthesize PCB. The substitution 
of Ser for Asn may thus reflect an adaptation to binding a differ-
ent, physiologically relevant bilin in these organisms. It will be in-
teresting to test this idea via reconstitution of FDBR activity from 
such organisms and via characterization of their GUN4 proteins, 
although the poor chromophorylation of Synechocystis GUN4 
upon heterologous expression (2) and the absence of known as-
says for function of GUN4 paralogs indicates that improved assays 
are likely needed for such studies. Similar studies on GUN4 from 
Gloeobacterales and Thermostichales would also test our pro-
posal that bilin-binding GUN4 orthologs were an ancient compo-
nent essential for Chl biosynthesis in an oxic environment in the 
LCCA.

Materials and methods
Phylogenetic analyses
Metagenomic and genomic assemblies from Gloeobacterales and 
Thermostichales (20, 21, 24, 25, 32, 36, 37, 39, 42) were downloaded 
for use as local BLAST (19) databases. The same approach was 
used for Synechococcus sp. PCC 7336, SM2_3_60, Synechococcus sp. 
C9 (69), and recently deposited MAGs for members of the 
Acaryochloridaceae and Gloeomargaritales (28, 32, 70) and for a 
microbial mat community from Shark Bay, Australia (71). 
Multiple sequence alignments were constructed using MAFFT 
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v7.450 (72). Maximum likelihood phylogenies were inferred using 
PhyML 3.1 (73), and statistical robustness was assessed using the 
transfer bootstrap expectation (TBE) as calculated in booster 
v0.1.2 (74). For Bayesian analysis, the alignment of cyanobacterial 
GUN4 proteins was converted into NEXUS format for use in 
MrBayes v3.2.7a (75) using the command-line -convert feature in 
CLUSTAL (76). Additional details are reported in the 
Supplemental Text.

Characterization of recombinant GUN4 proteins
A synthetic gene encoding N219G CrGUN4 was obtained from 
GenScript as in-frame His-tagged fusion proteins in pET28a, 
matching the previously reported expression construct for wild- 
type (11). Wild-type and N219G CrGUN4 were expressed in E. coli 
C41 (77) with plasmid pKT271 for PCB biosynthesis (48) and then 
purified from frozen cell pellets as described (11). Briefly, frozen 
cell pellets were thawed and resuspended prior to lysis via re-
peated passage through a microfluidizer. Lysate was clarified by 
centrifugation, and protein was then bound to Talon Ni2+–NTA 
resin (Novagen) and eluted using an imidazole gradient. Peak frac-
tions were pooled for overnight dialysis against TKKG buffer 
(25 mM TES-KOH pH 7.8, 100 mM KCl, 10% (v/v) glycerol) at 4°C. 
Dialyzed protein samples were then analyzed using a Cary 60 
spectrophotometer. Fluorescence spectra were acquired using a 
QM-6/2005SE fluorimeter with red-enhanced photomultiplier 
tubes (Photon Technology International 814 Series).

Data accessibility
Text files for absorption and fluorescence spectra and for each 
phylogenetic analysis generated during the current study are 
available at https://doi.org/10.25338/B8505X via the DataDryad 
repository.
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