UC Berkeley
UC Berkeley Previously Published Works

Title
Study of high-multiplicity three-prong and five-prong t decays at BABAR

Permalink
https://escholarship.org/uc/item/3fz430x{

Journal
Physical Review D, 86(9)

ISSN
2470-0010

Authors

Lees, JP
Poireau, V
Tisserand, V

Publication Date
2012-11-01

DOI
10.1103/physrevd.86.092010

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.orag/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/3fz430xj
https://escholarship.org/uc/item/3fz430xj#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

PHYSICAL REVIEW D 86, 092010 (2012)
Study of high-multiplicity three-prong and five-prong 7 decays at BABAR

J.P. Lees,' V. Poireau,! V. Tisserand,' J. Garra Tico,” E. Grauges,2 A. Palano,** G. Eigen,4 B. Stugu,4 D.N. Brown,’
L.T. Kerth,” Yu. G. Kolomensky,5 G. Lynch,5 H. Koch,® T. Schroeder,’ D.J. Asgeirsson,7 C. Hearty,7 T. S. Mattison,’
J.A. McKenna,” R. Y. So,” A. Khan,® V. E. Blinov,” A. R. Buzykaev,9 V. P. Druzhinin,” V. B. Golubev,” E. A. Kravchenko,’
A.P. Onuchin,” S.1. Serednyakov,9 Yu. I Skovpen,9 E.P. Solodov,” K. Yu. Todyshev,9 A.N. Yushkov,’ M. Bondioli,'°
D. Kirkby,10 A.J. Lankford,'® M. Mandelkern,'® H. Atmacan,'! J. W. Gary,11 F. Liy,"' O. Long,ll G.M. Vitug,ll
C. Campagnari,'> T.M. Hong,'? D. Kovalskyi,'? J.D. Richman,'* C. A. West,'> A. M. Eisner,"’ J. Kroseberg, '
W.S. Lockman,13 A.J. Martinez,13 B.A. Schumm,13 A. Seiden,13 D.S. Chao,14 C.H. Cheng,14 B. Echenard,14
K. T. Flood,14 D.G. Hitlin,14 P. Ongmongkolkul,14 F.C. Porter,14 AlY. Rakitin,14 R. Andreassen,15 Z. Huard,15
B.T. Meadows,15 M.D. Sokoloff,15 L. Sun,15 P.C. Bloom,16 W.T. Ford,16 A. Gaz,16 U. Nauenberg,16 J.G. Smith,16
S.R. Wagner,16 R. Ayad,””‘< W. H. Toki,17 B. Spaan,18 K.R. Schubert,19 R. Schwierz,19 D. Bernard,20 M. Verderi,20
P.J. Clark,>' S. Playfer,21 D. Bettoni,”?* C. Bozzi,?** R. Calabrese,”?*??* G. Cibinetto,?***?" E. Fioravanti,?**>?"

I. Garzia,*>**** E. Luppi,zza’zzb M. Munerato,??*??" L. Piemontese,”>* V. Santoro,>?* R. Baldini-Ferroli,>> A. Calcaterra,”
R. de Sangro,23 G. Finocchiaro,?® P. Patteri,”> 1. M. Peruzzi,”>" M. Piccolo,”> M. Rama,”® A. Zallo,”*> R. Contri,?**2*®
E. Guido,?**?** M. Lo Vetere,>**?** M. R. Monge,24a’24b S. Passaggio,24a C. Patrignani,z‘“"24b E. Robutti,”** B. Bhuyan,25
V. Prasad,” C.L. Lee,?® M. Morii,?® A.J. Edwards,”” A. Adametz,?® U. Uwer,”® H. M. Lacker,?® T. Lueck,”

P.D. Dauncey,”® U. Mallik,*' C. Chen,*? J. Cochran,** W. T. Meyer,*? S. Prell,** A. E. Rubin,*? A. V. Gritsan,** Z.J. Guo,*?
N. Arnaud,** M. Davier,>* D. Derkach,** G. Grosdidier,>* F. Le Diberder,>* A.M. Lutz,>* B. Malaescu,** P. Roudeau,**
M. H. Schune,** A. Stocchi,** G. Wormser,** D. J. Lange,35 D. M. Wright,35 C. A. Chavez,>® J.P. Coleman,’® J. R. Fry,36
E. Gabathuler,*® D. E. Hutchcroft,>® D.J. Payne,36 C. Touramanis,>® A.J. Bevan,>’ F. Di Lodovico,*” R. Sacco,?’

M. Sigamani,37 G. Cowan,”® D.N. Brown,*” C.L. Davis,”® A.G. Denig,40 M. Fritsch,*® W. Gradl,*° K. Griessinger,40
A. Hafner,*° E. Prencipe,40 R.J. Barlow,*""* G. Jackson,*! G.D. Laffelrty,41 E. Behn,*? R. Cenci,*? B. Hamilton,*?
Al awahery,42 D. A. Roberts,** C. Dallapiccola,43 R. Cowan,** D. Dujmic,44 G. Sciolla,** R. Cheaib,* D. Lindemann,*
P.M. Patel,*>** S. H. Robertson,*’ P. Biassoni,**®*%® N. Neri,*** F. Palombo,**®*%" S Stracka,****® L. Cremaldi,*’
R. G0d21ng,47’|| R. Kroeger,47 P. Sonnek,*’ D.J. Summers,*’ X. Nguyen,48 M. Simard,*® P. Taras,*® G. De Nardo,***4°®
D. Monorchio,****® G. Onorato,***°® C. Sciacca,*****® M. Martinelli,’® G. Raven,”° C.P. Jessop,5 ' J.M. LoSecco,’!
W.FE. Wang,51 K. Honscheid,”” R. Kass,>” J. Brau,”> R. Frey,53 N.B. Sinev,>® D. Strom,>® E. Torrence,” E. Feltresi, *>4°
N. Gagliardi,”**>** M. Margoni,”**>** M. Morandin,”** M. Posocco,”** M. Rotondo,”** G. Simi,’** F. Simonetto,**>*"
R. Stroili,>**>** S. Akar,> E. Ben-Haim,”> M. Bomben,>®> G.R. Bonneaud,’> H. Briand,>® G. Calderini,>> J. Chauveau,>’
0. Hamon,” Ph. Leruste,” G. Marchiori,” J. Ocariz,> S. Sitt,>> M. Biasini,”®*>%® E. Manoni, **>®" S. Pacetti,>®*>%°
A. Rossi,”**%° C. Angelini,”’*"" G. Batignani,”’**’® S. Bettarini,””*>"*1 M. Carpinelli,”’**"*1 G. Casarosa,’’*""
A. Cervelli,”’*>"" F. Forti,”’*>’® M. A. Giorgi,”’>>"® A. Lusiani,”’**’® B. Oberhof,’’*>"" E. Paoloni,”’**’® A. Perez,””
G. Rizzo,”"*"" J.J. Walsh,”’* D. Lopes Pegna,’® J. Olsen,’® A.J.S. Smith,”® A. V. Telnov,”® F. Anulli,”®* R. Faccini,”**>*"
F. Ferrarotto,”” F. Ferroni,”**>® M. Gaspero,”*>*" L. Li Gioi,””* M. A. Mazzoni,”®* G. Piredda,””® C. Biinger,*

0. Grl'jnberg,60 T. Hartmann,®® T. Leddig,60 H. Schroder,’* C. Voss,®® R. Waldi,*° T. Adye,61 E.O. Olaiya,m
F.F. Wilson,61 S. Emery,62 G. Hamel de Monchenault,(’2 G. Vasseur,62 Ch. Yéche,62 D. Aston,(ﬁ D.J. Bard,63
R. Bartoldus,63 J.F. Benitez,63 C. Cartaro,63 M.R. Convery,63 J. Dorfan,(’3 G.P. Dubois—Felsmann,63 W. Dunwoodie,63
M. Ebert,63 R.C. Field,63 M. Franco Sevilla,63 B.G. Fulsom,63 A. M. Gabareen,63 M.T. Graham,63 P. Grenier,(’3 C. Hast,63
W.R. Innes,*® M. H. Kelsey,® P. Kim,%® M. L. Kocian,®® D. W.G. S. Leith,®® P. Lewis,®® B. Lindquist,”* S. Luitz,%
V. Luth,63 H.L. Lynch,63 D.B. MacFarlane,63 D.R. Muller,63 H. Neal,63 S. Nelson,63 M. Perl,63 T. Pulliam,63
B.N. Ratcliff,®* A. Roodman,®® A. A. Salnikov,®* R. H. Schindler,®® A. Snyder,®® D. Su,®* M. K. Sullivan,®® J. Va’vra,®
A.P. Wagner,63 W.1J. Wisniewski,63 M. Wittgen,63 D.H. Wright,63 H. W. Wulsin,63 C.C. Young,63 V. Ziegler,63 W. Park,64
M. V. Purohit,** R. M. White,** J.R. Wilson,** A. Randle-Conde,® S.J. Sekula,®> M. Bellis,* P.R. Burchat,®®
T.S. Miyashita,66 M.S. Alam,67 J.A. Ernst,67 R. Gorodeisky,68 N. Guttman,68 D.R. Peimer,68 A. Soffer,68 P. Lund,69
S.M. Spanier,®® J. L. Ritchie,”® A. M. Ruland,’® R.F. Schwitters,’” B.C. Wray,”® J.M. Izen,”" X.C. Lou,”"

E. Bianchi,”**"?* D. Gamba,”**"?® S. Zambito,”**"*" L. Lanceri,””*"*" L. Vitale,”**”*" F. Martinez-Vidal,”*

A. Oyanguren,74 H. Ahmed,” J. Albert,”> Sw. Banelrjee,75 F. U. Bernlochner,”” H. H. F. Choi,” G.]J. King,75
R. Kowalewski,”” M.J. Lewczuk,”” I. M. Nugent,75 J.M. Roney,75 R.J. Sobie,”> N. Tasneem,”” T.J. Gershon,’®
P.E. Harrison,’® T.E. Latham,’® E. M. T. Puccio,’® H.R. Band,”’ S. Dasu,”’ Y. Pan,”” R. Prepost,”’ and S.L. Wu’’

1550-7998/2012/86(9)/092010(16) 092010-1 © 2012 American Physical Society



J.P. LEES et al. PHYSICAL REVIEW D 86, 092010 (2012)

(BABAR Collaboration)

"Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3,
F-74941 Annecy-Le-Vieux, France
2Facultat de Fisica, Departament ECM, Universitat de Barcelona, E-08028 Barcelona, Spain
3INFN Sezione di Bari, 1-70126 Bari, Italy
3bDipartimento di Fisica, Universita di Bari, I-70126 Bari, Italy
*Institute of Physics, University of Bergen, N-5007 Bergen, Norway
SLawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
CInstitut fiir Experimentalphysik 1, Ruhr Universitit Bochum, D-44780 Bochum, Germany
7University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
8Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
9Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
University of California at Irvine, Irvine, California 92697, USA
YOniversity of California at Riverside, Riverside, California 92521, USA
2University of California at Santa Barbara, Santa Barbara, California 93106, USA
B Institute for Particle Physics, University of California at Santa Cruz,
Santa Cruz, California 95064, USA
“California Institute of Technology, Pasadena, California 91125, USA
15Um'versity of Cincinnati, Cincinnati, Ohio 45221, USA
Y University of Colorado, Boulder, Colorado 80309, USA
Y Colorado State University, Fort Collins, Colorado 80523, USA
'8 Fakultiit Physik, Technische Universitit Dortmund, D-44221 Dortmund, Germany
Ylnstitut fiir Kern- und Teilchenphysik, Technische Universitiit Dresden, D-01062 Dresden, Germany
Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France
21University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
22INFN Sezione di Ferrara, I-44100 Ferrara, Italy
22bDipartimento di Fisica, Universita di Ferrara, I-44100 Ferrara, Italy
BINFN Laboratori Nazionali di Frascati, 1-00044 Frascati, Italy
2INFEN Sezione di Genova, I-16146 Genova, Italy
24bDipartimento di Fisica, Universita di Genova, I-16146 Genova, Italy
Blndian Institute of Technology Guwahati, Guwahati, Assam 781 039, India
2Harvard University, Cambridge, Massachusetts 02138, USA
*"Harvey Mudd College, Claremont, California 91711, USA
BUniversitit Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
2 Institut fiir Physik, Humboldt-Universitit zu Berlin, Netwonstrausse 15, D-12489 Berlin, Germany
SImperial College London, London SW7 2AZ, United Kingdom
31University of lowa, lowa City, lowa 52242, USA
2Jowa State University, Ames, Iowa 50011-3160, USA
3 Johns Hopkins University, Baltimore, Maryland 21218, USA
3 Laboratoire de I'"Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay,
B. P. 34, F-91898 Orsay Cedex, France
3SLawrence Livermore National Laboratory, Livermore, California 94550, USA
36University of Liverpool, Liverpool L69 7ZE, United Kingdom
3 Queen Mary, University of London, London EI 4NS, United Kingdom
38Royal Holloway and Bedford New College, University of London, Egham, Surrey TW20 OEX, United Kingdom
39University of Louisville, Louisville, Kentucky 40292, USA
“fnstitut fiir Kernphysik, Johannes Gutenberg-Universitit Mainz, D-55099 Mainz, Germany
41Um'versity of Manchester, Manchester M13 9PL, United Kingdom
42Um'versity of Maryland, College Park, Maryland 20742, USA
BUniversity of Massachusetts, Amherst, Massachusetts 01003, USA
“Massachusetts Institute of Technology, Laboratory for Nuclear Science,
Cambridge, Massachusetts 02139, USA
SMcGill University, Montréal, Québec H3A 2T8, Canada
4ONFEN Sezione di Milano, 1-20133 Milano, Italy
46bDipartimem‘o di Fisica, Universita di Milano, I-20133 Milano, Italy
*"University of Mississippi, University, Mississippi 38677, USA
BUniversité de Montréal, Physique des Particules, Montréal, Québec H3C 3J7, Canada
49YUNFN Sezione di Napoli, I-80126 Napoli, Italy

092010-2



STUDY OF HIGH-MULTIPLICITY THREE-PRONG AND ...

PHYSICAL REVIEW D 86, 092010 (2012)

4%Dipartirmento di Scienze Fisiche, Universita di Napoli Federico II, I-80126 Napoli, Italy
NIKHEF, National Institute for Nuclear Physics and High Energy Physics,
NL-1009 DB Amsterdam, The Netherlands
51 University of Notre Dame, Notre Dame, Indiana 46556, USA
320hio State University, Columbus, Ohio 43210, USA
53University of Oregon, Eugene, Oregon 97403, USA
SINFEN Sezione di Padova, I-35131 Padova, Italy
3 Dipartimento di Fisica, Universita di Padova, 1-35131 Padova, Italy
3SLaboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6,
Université Denis Diderot-Paris7, F-75252 Paris, France
S8UNFN Sezione di Perugia, I-06100 Perugia, Italy
5 Dipartimento di Fisica, Universita di Perugia, 1-06100 Perugia, Italy
STAINFN Sezione di Pisa, I-06100 Perugia, Italy
S Dipartimento di Fisica, Universita di Pisa, I-06100 Perugia, Italy
57¢Scuola Normale Superiore di Pisa, 1-56127 Pisa, Italy
38 Princeton University, Princeton, New Jersey 08544, USA
S9YNFEN Sezione di Roma, 1-00185 Roma, Italy
*®Dipartimento di Fisica, Universita di Roma La Sapienza, 1-00185 Roma, Italy
OUniversitcit Rostock, D-18051 Rostock, Germany
! Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 00X, United Kingdom
S2CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
9SLAC National Accelerator Laboratory, Stanford, California 94309, USA
S4University of South Carolina, Columbia, South Carolina 29208, USA
85 Southern Methodist University, Dallas, Texas 75275, USA
SStanford University, Stanford, California 94305-4060, USA
7State University of New York, Albany, New York 12222, USA
8Tel Aviv University, School of Physics and Astronomy, Tel Aviv 69978, Israel
69Um'versity of Tennessee, Knoxville, Tennessee 37996, USA
University of Texas at Austin, Austin, Texas 78712, USA
71University of Texas at Dallas, Richardson, Texas 75083, USA
T2INFN Sezione di Torino, I-10125 Torino, Italy
2 Dipartimento di Fisica Sperimentale, Universita di Torino, 1-10125 Torino, Italy
T3 INFN Sezione di Trieste, 1-34127 Trieste, Italy
73bDipartiment0 di Fisica, Universita di Trieste, I-34127 Trieste, Italy
"FIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
75University of Victoria, Victoria, British Columbia V8W 3P6, Canada
76Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
77University of Wisconsin, Madison, Wisconsin 53706, USA
(Received 14 September 2012; published 27 November 2012)

We present measurements of the branching fractions of three-prong and five-prong 7 decay modes
using a sample of 430 million 7 lepton pairs, corresponding to an integrated luminosity of 468 fb~!,
collected with the BABAR detector at the PEP-II asymmetric-energy e e~ storage rings at SLAC National
Accelerator Laboratory. The 7~ — (3w) nv,, 7 — B37) wv,, and 7~ — 7 f,(1285)v, branching
fractions are presented, as well as a new limit on the branching fraction of the second-class current decay
7~ — 7~ 1/(958)v,. We search for the decay mode 7~ — K~ 1/(958) v, and for five-prong decay modes
with kaons, and place the first upper limits on their branching fractions.

DOI: 10.1103/PhysRevD.86.092010
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I. INTRODUCTION

Study of the three-prong and five-prong decay modes of
the 7 lepton, where ‘“‘prong” refers to the number of
charged hadrons (7 or K) in the final state, allows one to
test the Standard Model and search for evidence of new
physics. The large 7 lepton data sample collected by the
BABAR experiment provides an opportunity to perform a
comprehensive study of rare, high multiplicity decay
modes and to search for forbidden processes.
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We present measurements of the 7~ — 37) nv,,
7~ — (37 wv,, and 7~ — 7 f,v, branching fractions.
We use the primary decay modes of the 7, »(782), and
£1(1258) mesons: n— vy, n— a7 70, n— 37°,
o—a ata, fi— 2727, and f; — 7t 7 1. No
other narrow resonances are observed. We measure the
branching fractions of the nonresonant decays, where the
nonresonant category includes possible contributions
from broad resonances. We present a new limit on the
branching fractions of the second-class current decay
7~ — 7 1n'(958)v,, and the first limits on the allowed
first-class current decays 7~ — K~ 7/(958)v, and 7~ —
7~ 7°1’(958)v,. Finally, we present the first limits on the
branching fractions of five-prong decay modes in which
one or more of the charged hadrons is a charged kaon. Note
that the branching fractions exclude the contribution of
Kg — 7" 7~ decays. Throughout this paper, charge con-
jugation is implied.

This analysis is based on data recorded with the BABAR
detector at the PEP-II asymmetric-energy e*e™ storage
rings operated at the SLAC National Accelerator
Laboratory. With an integrated luminosity (L) of 424
and 44 fb~! recorded at center-of-mass (CM) energies of
10.58 and 10.54 GeV, respectively, and an e*e™ — 777~
cross section of o+~ = (0.919 = 0.003) nb [1], the data
sample contains 430 million 7 pairs.

The BABAR detector is described in detail in Ref. [2].
Charged-particle momenta are measured with a five-layer
double-sided silicon vertex tracker and a 40-layer drift
chamber, both operating in the 1.5 T magnetic field of a
superconducting solenoid. Information from a detector of
internally reflected Cerenkov light is used in conjunction
with specific energy loss measurements from the tracking
detectors to identify charged pions and kaons [3]. Photons
are reconstructed from energy clusters deposited in a Csl
(TT) electromagnetic calorimeter. Electrons are identified by
combining tracking and calorimeter information. An instru-
mented magnetic flux return is used to identify muons.

The background contamination and selection efficien-
cies are determined using Monte Carlo simulation. The
7-pair production is simulated with the KK2F event gen-
erator [4]. The 7 decays, continuum g4 events (¢ = udsc),
and final-state radiative effects are modeled with the
Tauola [5], JETSET [6], and Photos [7] generators, respec-
tively. Dedicated samples of 7+ 7~ events are created using
the Tauola or EVTGEN [8] programs, with one of the 7
leptons allowed to decay to any mode while the other 7
decays to a specific final state. The detector response is
simulated with GEANT4 [9]. All Monte Carlo events are
processed through a full simulation of the BABAR detector
and are reconstructed in the same manner as the data.

II. EVENT SELECTION

The 7 pair is produced back-to-back in the ete™ CM
frame. The decay products of the two 7 leptons can thus be

PHYSICAL REVIEW D 86, 092010 (2012)

separated from each other by dividing the event into two
hemispheres: the ‘signal” hemisphere and the ‘“tag”
hemisphere. The separation is performed using the event
thrust axis [10], which is calculated using all charged
particle and photon candidates in the event.

We select events where one hemisphere (tag) contains
exactly one track while the other hemisphere (signal) con-
tains exactly three or five tracks with total charge opposite
to that of the tag hemisphere. The event is rejected if any
pair of oppositely charged tracks is consistent with a
photon conversion. The component of the momentum
transverse to the beam axis for each of the tracks must be
greater than 0.1 GeV/c in the laboratory frame. All tracks
are required to have a point of closest approach to the
interaction region less than 1.5 cm in the plane transverse
to the beam axis and less than 2.5 cm in the direction along
that axis. This requirement eliminates K9 mesons that
decay to 77" 7~ at points distant from the e*e~ collision
point.

To reduce backgrounds from non-7 pair events, we
require that the momentum of the charged particle in the
tag hemisphere be less than 4 GeV/c in the CM frame and
that the charged particle be identified as an electron or a
muon. The gg background is suppressed by requiring that
there be at most one energetic (E > 1 GeV) electromag-
netic calorimeter cluster in the tag hemisphere that is not
associated with a track. Additional background suppres-
sion is achieved by requiring the magnitude of the event
thrust to lie between 0.92 and 0.99.

Neutral pion and eta candidates are reconstructed from
two photon candidates, each with energy greater than
30 MeV in the laboratory frame; the invariant mass of
the 7° (%) is required to be between 0.115 (0.35) and
0.150 (0.70) GeV/c?. Neutral pion candidates are recon-
structed in the signal hemisphere. If a photon candidate
meets the invariant mass requirement with multiple photon
candidates, then the neutral pion candidate with invariant
mass closest to the nominal 7° mass [11] is selected. The
search for additional pion candidates is repeated using the
remaining photon candidates. The residual photon clusters
in the signal hemisphere are used to search for n — yy
candidates. In the case of multiple n candidates, the can-
didate with invariant mass closest to the nominal 7 mass is
selected. We reject events in which the invariant mass M
formed from the system of charged particles, 7°, and 7
candidates, all in the signal hemisphere, exceeds
1.8 GeV/c?.

The branching fractions are calculated using the expres-
sion B = Ny/(2Ne) where Ny is the number of candidates
after background subtraction, N is the number of 7 pairs
produced, and ¢ is the selection efficiency. N is determined
from the product of the integrated luminosity and the
ete” — 7t7 cross section. The uncertainty of N is
estimated to be 1%. The selection efficiencies are deter-
mined from the signal Monte Carlo samples. The
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uncertainty on the selection efficiencies includes 0.5% per
track on the track reconstruction efficiency, as well as
particle identification (PID) selection uncertainties. From
studies conducted on real and simulated events, the uncer-
tainties on the charged particle identification selectors are
estimated to be 1% for electrons, 2.5% for muons, 0.5% for
pions, and 1.8% for kaons. The combined electron and
muon particle identification uncertainty is estimated to be
1.6% based on the composition of the event samples. The
uncertainty on the 7° — yy and 1 — Y+ reconstruction
efficiency is estimated to be 3% per candidate.

II1. RESULTS

We present measurements of 7 decays to a system with
1, f1 and @ resonances in Secs. Il A, IIIB, and IIC,
respectively. Decays with these resonances do not account
for all three-prong or five-prong 7 decay modes, as dis-
cussed below, and we present measurements of the 7
branching fractions through nonresonant modes in
Sec. IIID. Section IIIE presents a search for 7 decays
with an ' (958) meson, while Sec. IIIF presents a search
for decays with either one or two charged kaons.

A. 77— 3w g,

The 7~ — 27~ 7" nv, mode is studied in the n — vy,
n— ata 7%, and 1 — 37 final states, while the
7~ — 7 27%yv, mode is studied in the n — 7+ 7~ 7°
final state.

The event yields are determined by fitting the 1 mass
peak in the yy, 7" 7~ 7%, and 37 invariant mass distri-
butions (see Fig. 1). The fit uses a Novosibirsk function
[12] (a Gaussian distribution with a tail parameter) for the
7 and a polynomial function for the background.

The Monte Carlo simulation indicates that some of the
entries in the 7 peak are from e* e~ — ¢g events. Control
samples, obtained by reversing the requirement on the
invariant mass of the observed decay products (M >
1.8 GeV/c?), are used to validate the background estimate.
The expected background is corrected by the ratio of data
to Monte Carlo events, and the statistical uncertainty of the
ratio is included in the background systematic uncertainty.
This method of validating the gg background estimate is
used for all decays and is not mentioned in the later
sections.

The reconstruction efficiencies are determined from fits
to the signal Monte Carlo samples. The 7~ — 7 27 nv,
sample is generated using a phase-space model for the
final-state particles. The 7~ — 277~ 7+ v, sample is com-
posed of 7~ — 7 fiv, (fy — m @7 n) decays and
decays without an intermediate resonance. The 7= —
27 7t v, (excluding f)) and 7~ — 7~ f, v, efficiencies
are the same for n — 7t 7 7° and 7 — 37° events,
whereas a slight difference is observed for » — 7y events
and a 2.5% uncertainty is added to the selection efficiency
systematic for this mode. In addition, a 4% uncertainty is
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FIG. 1. The yy, #* 7~ #° and 3#° invariant mass distribu-
tions for 7~ — 27~ 7" v, decay candidates, and the 77" 77~ 77°
invariant mass distribution for 7~ — 7 27%nv, decay candi-
dates, after all selection criteria are applied. The solid lines
represent the fit to the 1 peak and background. The dashed lines
show the extrapolation of the background function under the 7

peak.

added to the 7~ — 277~ 7t nv, selection efficiency for the
n— 7 7 7° mode to take into account variations
observed for different fits.

The three determinations of the 7~ — 27 7wt v,
branching fraction are found to be in good agreement
(see Table I) and we therefore calculate a weighted aver-
age. The statistical and systematic uncertainties on the
average are obtained by combining the individual uncer-
tainties in quadrature, accounting for correlations between
the systematic terms. The weighted average (inclusive of
7~ — @ fv,) is found to be

B(r~ =27 mqr,) = (225 £ 0.07 + 0.12) X 1074,

Hereinafter, when two uncertainties are quoted, the first is
statistical and the second is systematic. The average
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TABLE 1.

PHYSICAL REVIEW D 86, 092010 (2012)

Results and branching fractions for 7~ — (377)” v, decays.

T =27 7y,

T =27 7y,

T - 27w, T > a7 21y,

Decay mode n— yy n— 7o 70 n— 370 n—ata 70
Branching fraction (10™%) 2.10 =0.09 = 0.13 2.37+0.12*=0.18 2.54 +0.27 = 0.25 2.01 =0.34 =0.22
Data events 2887 = 103 1440 = 68 315+ 34 381 £45
x?/NDF 107/76 60/52 31/34 95/75
Selection efficiency (3.83+0.11)% (2.97 = 0.12)% (0.42 = 0.01)% (0.75 = 0.02)%
Background events 131 £29 65 = 38 137 83 =12
Systematic uncertainties (%)

Tracking efficiency 2.7 3.8 2.7 2.7

7% and 5 PID 3.0 3.0 9.0 9.0

Pion PID 1.5 2.5 1.5 1.5
Lepton-tag PID 1.6 1.6 1.6 1.6

N 1.0 1.0 1.0 1.0
Selection efficiency 39 4.0 2.8 2.7
Background 1.0 2.8 23 4.0
B(n—vy) 1.0
B(n— 7t 7 7°) 1.8 1.8
:B(”’]_’377'0) 0.9
Total (%) 6.3 7.4 10 11

branching fraction (exclusive of 7= — 7~ f,v,) is deter-
mined to be (0.99 + 0.09 + 0.13) X 10~ and is obtained
using the branching fraction (inclusive of 7~ — 7~ fv,),
given above, and subtracting the product branching frac-
tion B(r~ — 7 fiv,;) X B(f; — 7" 7 n) presented in
the next section.

The 7~ — 7~ 27" nv, branching fraction is found to be

B(r~ — 7 27%ygv,) = (2.01 £ 0.34 = 0.22) X 104

Naively, the ratio of the 7~ =27 7 qv, to 7~ —
7~ 27w, branching fractions is expected to be two if
the decay is dominated by the 7= — 7~ f; v, decay mode
(based on the f; branching fractions [11]). The data do not
support this expectation.

Our previous measurement of the 7~ — 27 7" nv,
branching fraction (1.60 *= 0.05 = 0.11) X 10™* [13],
which is based on the 7 — vy mode only, is superseded
by this measurement. The fit used in the previous analysis
was performed using a narrower range in the invariant
mass distribution (0.47-0.63 GeV/c?) defined in a pre-
determined 7 selector. The narrow fit range resulted in
an incorrect description of the background distribution
giving the wrong number of 7 candidates. The current
work uses wider fit range (0.30-0.70 GeV/c?) and the
background distribution is well described.

The 7~ — 27 7w yv, and 7~ — 7 277w, branch-
ing fractions are in good agreement with the results
from the CLEO collaboration, (2.3 = 0.5) X 10™* and
(1.5 £0.5) X 1074, respectively [14]. Li predicts a larger
7~ — 27~ 7w nv, branching fraction, 2.93 X 10~ [15].

B.v — @ fiv,

The branching fraction of 7= — 7~ f; v, and the mass
of the f; meson are measured using the f; — 27277~ and
f1— m"m n decay modes, where the f; —» 7w 7 n
decay is reconstructed using n — yy, n— 7 7 7,
and 1 — 37 events. The criteria used to select the 7= —
7~ fiv, decays for the branching fraction measurement
are described earlier. We modify the selection for the mass
measurement, dropping the requirement that the track in
the tag hemisphere be a lepton and the restriction on the
number of photon candidates in the tag hemisphere, to
increase the size of the event sample.

The numbers of 7= — 7~ f,v, candidates are deter-
mined by fitting the f| peak in the 27" 277~ and w7 7
invariant mass distributions (see Fig. 2). The f; line shape
is expected to be a Breit-Wigner distribution, modified
by the limited phase space. Previous studies show that
the f| — ag 7" (ay (980) — 7~ m) channel appears to
account for all f; — 7" 7~ n decays [16]. The mass of
the 7ay(980) system and the 7 mass provide a lower and
upper limit, respectively, on the f; line shape. We use the
four vectors of the charged pion and @(980) from
the EVTGEN generator to determine the simulated f;
line shape and find it to be a close approximation to the
Breit-Wigner expectation. The f; peak is fit using this
line shape convolved with a Gaussian distribution to take
into account the effects of the detector resolution. The
results of the fits are presented in Table II. There is no
evidence for peaking background from gg events or other 7
decays.

The product of the 7~ — 7 f,v, and f; — 27 27~
branching fractions, and the product of the 7= — 7 f, v,
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FIG. 2. The2#w*2#~ and " 7~ 7 invariant mass distributions
for 7~ — 27~ 7w nv, decay candidates after all selection crite-
ria are applied. The lower three plots are for the n — yy, n —
a7~ 7%, and y — 37° decays. The solid lines represent the fit
to the f,(1285) peak and background. The dashed lines show the
extrapolation of the background function under the f| peak.

and f, — w77 n branching fractions, are measured
to be

B(r~ — 7 fiv,)B(fy = 2at277)
= (5.20 = 0.31 * 0.37) X 1077,

B(rm =7 fiv)B(fi—> 7 7 1)
= (1.26 = 0.06 * 0.06) X 1074,

respectively, where the second result is the weighted
average of the three n modes. The B(t~ — 7 fv,)
branching fraction is determined to be (4.73 = 0.28 =
0.45) X 107* and (3.60 £0.18 = 0.23) X 107%, as
obtained by dividing the product branching fractions by
B(f1—27"2m7)=0.1107000¢ and B(f, — 77 n) =
0.34970513 [17], respectively.

PHYSICAL REVIEW D 86, 092010 (2012)

Our two measured values for the 7~ — 7~ f; v, branch-
ing fraction are consistent with each other to within two
standard deviations of the combined statistical and system-
atic uncertainties. The ratio of the product branching frac-
tions is used to determine the ratio of the f; — 2727~
and f; — 7" 7~ n branching fractions as

B(.fl i 27T+27T_)
B(f, — mmn)

where B(f; — wmm) = 1.5 X B(f;, — w7 n) based
on isospin symmetry. This agrees with average value of
0.41 £ 0.14 quoted by the Particle Data Group [11] but
disagrees with their fit value of 0.63 = 0.06 [11].

The systematic uncertainties of the branching fractions
are listed in Table II. We observe that the number of events
in the f, peak in the f; — 27" 277~ sample varies by 5%
for different background shapes. This variation is included
as a systematic uncertainty. We also observe that the
selection efficiency obtained from the Monte Carlo simu-
lation exhibits a slight dependence on whether the f;
decays via the f; — ag 7" or the f; — 7" 7~ 1 mode,
and the variation is included as a systematic uncertainty
(listed under “‘fit model” in Table II).

The 7~ — 7~ f,v, branching fraction using the
f1 — 27 27~ mode is consistent with the previous
BABAR measurement (the new result supersedes the pre-
vious measurement), which is also based on the f; —
27271~ mode [18]. CLEO published a branching fraction
of (5.87]4 = 1.8) X 107 [19] and Li predicts a branching
fraction of 2.9 X 107 [20].

The f; mass is determined by fitting the peak with a
nonrelativistic Breit-Wigner function, which was used in
previous measurements of the f; mass [11]. As a cross
check, we use the energy-momentum four vectors from the
generator Monte Carlo simulation, and we find the fitted
mass value to be consistent with the input mass value.

We fit the invariant mass distribution in the fully recon-
structed Monte Carlo samples to determine whether the
result of the fit differs from the input mass of the
Monte Carlo generator. The difference is used to correct
the value of the invariant mass of each channel obtained
from the fit and the uncertainty in the difference is included
as a systematic error.

Table IIT and Fig. 3 show the results of the fits to the
data. The last column of the table presents the mass after
the application of the reconstruction correction factor.
The average of these results is M, = (1.28025 *
0.00039) GeV/c?, where the error is statistical.

Previous BABAR analyses have measured the invariant
mass of resonances to be approximately 1 MeV/c? less
than the values quoted by the Particle Data Group [11].
This shift is observed in the measurement of the mass of
the f, meson [21] and the 7 lepton [22]. The shift is
attributed to the absolute energy and momentum calibra-
tion of the detector. We measure the calibration correction

=0.28 £0.02 £ 0.02,
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TABLE II. Results and branching fractions for 7= — 7~ f, v, decays.

fi—a Ty
n— 37°

fi—mimy
0

fi—mtay

Decay mode fi1— 272w n—7yy n—atr

Branching fractions (1074)
B(r~ — 7w fiv,)B(f, = 27 277)
B(r~ =@ fiv,)B(fi > 7 7'n)

0.520 £ 0.031 * 0.037

1.25+0.08 =0.07 1.26*=0.11 £0.08 1.33 £0.39 = 0.20

Data events 3722 + 222 1605 = 94 731 = 62 197 =59

x?/NDF 77/62 50/43 61/55 39/43

Selection efficiency 83*0.1)% (3.75 = 0.04)% (2.97 = 0.05)% (0.53 = 0.06)%

Systematic uncertainties (%)

Tracking efficiency 38 2.7 38 2.7

7% and 7 PID v 3.0 3.0 9.0

Pion PID 2.5 1.5 2.5 1.5

Lepton-tag PID 1.6 1.6 1.6 1.6

N 1.0 1.0 1.0 1.0

Selection efficiency 0.6 1.1 1.6 11

Fit model 5.0 2.7 s s

B(n — vy) 0.7

B(n— 7wt 7 70 1.2

fB(TI_’?’WO) 0.9

Total (%) 7.0 5.6 6.1 15

TABLE III. Results of fits for the mass of the f; resonance in 7~ — 7~ f; v, decays. The errors are statistical.

Monte Carlo Data Data
(generator-fit) (fit) (corrected)

Decay mode (GeV/c?) (GeV/c?) (GeV/c?)

f1— 2727 0.00074 = 0.00008 1.28031 £ 0.00067 1.28105 = 0.00067
fimmtay

n—yy 0.00292 = 0.00040 1.27775 £ 0.00045 1.28067 = 0.00060
n— 7o 70 0.00018 = 0.00020 1.27787 = 0.00080 1.27805 = 0.00082
n— 370 0.00347 = 0.00033 1.28036 = 0.00335 1.28383 = 0.00337
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FIG. 3 (color online).

f1 mass. The solid line is the weighted average and the shaded
area is the one standard deviation region.

Mass (GeV/c?)

FIG. 4. The fits to the w peak in the 77" 7~ #¥ invariant mass
distributions for 7~ — 27 7T wv, and 77 — 7 27w, de-

cay candidates after all selection criteria are applied. The solid

Compilation of our measurements of the
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TABLE IV. Results and branching fractions for 7~ — (37)” wv, decays.

T =27 7tev,

7 - 7 270y,

Decay mode o— 7 7ta° o—a ata’
Branching fractions (107) 8.4*0.4=*0.6 73+12*+1.2
Data events 2372 =94 1135 =70
x?/NDF 55/44 42/44
Selection efficiency (3.27 = 0.03)% (0.75 = 0.01)%
Background 257 £ 71 709 = 59
Systematic uncertainties (%)

Tracking efficiency 3.8 2.7

° and 5 PID 3.0 9.0

Pion PID 2.5 1.5
Lepton-tag PID 1.6 1.6

N 1.0 1.0
Selection efficiency 0.8 1.8
Background 34 14

B(w — 7 7 a°) 0.8 0.8

Total (%) 6.8 17

factor by fitting the 1, @, 7', D° and D*~ states using
data samples that have one track in the tag hemisphere
and either three or five tracks in the signal hemisphere.
No other selection criteria are applied. The peak masses
are found to be lower than the known values by
(—0.91 = 0.10) MeV/c? and the values are independent
of the mass of the resonance. We wuse the
(—=0.91 = 0.10) MeV/c? as a correction factor that is
applied to the invariant mass and its error is included in
the systematic uncertainty.
We determine the mass of the f,(1258) meson to be

My = (1.28116 = 0.00039 = 0.00045) GeV/c?.

The systematic uncertainty includes the reconstruction
uncertainty and the calibration uncertainty. This result is
in good agreement with the Particle Data Group value
(1.2818 = 0.0006) GeV/c? [11].

C.77 — (37 wv,

We measure the 7~ — 27 7iwr, and
7 27w, branching fractions. The number of events is
determined by fitting the w peak in the 7+ 77~ 7¥ invariant
mass distributions (see Fig. 4) with a Breit-Wigner distri-
bution, which is convolved with a Gaussian distribution to
take into account the detector resolution. The resolution
parameter of the Gaussian distribution is determined using
a data control sample consisting of gg events, and is fixed
in the fit. A polynomial function is used to fit the back-
ground. The results are presented in Table IV.

Approximately 10% of the events in the 77 —
27~ 7t wv, channel are backgrounds from other 7 decays
(primarily 7~ — 7~ 7’wv, decays) and eTe” — gg
events. The backgrounds are subtracted before calculating
the branching fraction.

T —

The 7~ — 7 27w v, sample has substantial contribu-
tions from 7~ — 7 wv, and 77 — 7 7wy, decays.
The background is estimated with the Monte Carlo simu-
lation and verified using data and simulation control
samples. The control samples follow the nominal selection
criteria but select one or two 7 instead of three 7°
mesons.

The branching fractions are found to be

B(r~ =27 mtwr,) = (8.4 +0.4+0.6) X 1077,
B(r~ = 7 27%vv,) = (7.3 + 1.2+ 1.2) X 107°.

The systematic uncertainties are listed in Table I'V.

The 7~ — 27 7" wv, and 7~ — 7 27°wv, branch-
ing fractions are consistent with the results from CLEO,
(12%£02+0.1) X 107* and (1.4 £ 0.4 = 0.3) X 1074,
respectively [14]. Gao and Li suggest that this mode is
dominated by the (mpw) state and predict a branching
fraction in the range of 1.8 — 2.1 X 107* with the two
modes (7~ — 27 7wt wv, and 77 — 7 27°wv,) having
the same value [23]. The result measured in this work is
approximately 50% of the predicted rate but the ratio of the
two branching fractions is consistent with unity.

D. Nonresonant decay modes

The resonant modes, involving 7, @ and f; mesons, do
not account for all of the observed decays, as discussed
below. We consider the excess in the observed decays to be
from “‘nonresonant” modes. We make no attempt to iden-
tify the contribution of resonances with larger widths
(>100 MeV/c?) as the nature of these resonances is com-
plex and their line shapes will be modified by the limited
phase space in the 7 decay. The Monte Carlo simulation
describes the final states using a phase-space model
for the final-state particles. The only exception is the
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TABLE V. Results and branching fractions for 7~ — 27~ 7#'37%,, 7~ =37 27 v,, and 7~ — 37 27" 7

decays.

PHYSICAL REVIEW D 86, 092010 (2012)

Op, nonresonant

Decay mode 77 =27 7w 370,

T =37 27y, 7 =37 27 70,

0.10 = 0.08 = 0.30
4094 = 64

Branching fractions (1074)
Data events

Efficiency (0.88 = 0.01)%
Background

Resonant 1763 *= 222
Other 7 decays 1681 = 44
qq 573 £50
Total background 4017 =232

Systematic uncertainties (%)
Tracking efficiency

7 and 5 PID

Pion PID

Lepton-tag PID

L Ot

Selection efficiency
Background

Total (%)

7.68 =+ 0.04 = 0.40
68985 + 263
(7.98 + 0.02)%

0.36 = 0.03 = 0.09
7296 = 85
(3.71 £0.03)%

4441 = 370 4458 £ 244
10621 £ 719 1315 = 100
1171 = 205 359 + 37
16233 = 835 6132 * 267

3.8 3.8

R 3.0

2.5 2.5

1.6 1.6

1.0 1.0

0.2 0.9

1.6 22.9

5.2 23.7

7~ — 37 27wtv, mode, which Tauola models using
T~ — aj v, decays [24].

We measure the branching fractions of the nonresonant
7 =27 7 37%,, 7 =37 27%v,, and
37 27w 7%y, decays. The numbers of candidates are
given by the numbers of events found in the data after
subtracting the resonant contributions and the background
from other 7 decays and gg events (see Table V).

The invariant mass plots in Fig. 5 show that the resonant
decays dominate the 7~ — 27 7*37%,. mode. The
background is primarily from 7~ — 7 7'wv, and gg
events. The branching fraction of the nonresonant 7~ —
27~ 7w 37%v, channel is determined to be (1.0 = 0.8 *
3.0) X 1073, The systematic uncertainty on the branching
fraction is dominated by the uncertainty in the background,
which includes the Monte Carlo statistical uncertainty and
the 7 branching fraction uncertainties. We do not list the
fractional systematic uncertainties for this mode in Table V
due to the smallness of the branching fraction. The branch-
ing fraction is consistent with zero and we set a limit of

T —

B(r~ =27 7 37%,) <58 X 1073

at the 90% confidence level.

We also determine the inclusive 7= — 27~ 7370,
branching fraction by summing the contribution from
the three resonant modes (B(7~ — 27 @ nv,)X
B(n —37°) + B(r~ = 7 27, )B(n — 7w 7 7°) +
B(t~ — 7 27°wv,)B(w — 7 7+ #%)) with the nonre-
sonant branching fraction. We find the result (2.07 *
0.18 +0.37) X 10™%, where the systematic uncertainty
accounts for correlations between the systematic uncer-
tainties of the individual modes.
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FIG. 5 (color online). The 37°, w* 7~ #°, and 27 7= 3#°
invariant mass distributions in 7= — 27~ 7" 37%», decay can-
didates. The predictions of the Monte Carlo simulation are
shown for the resonant (white histogram) and nonresonant (light
shaded histogram) 7 decays, and the background from other 7
decays and g events (dark shaded histogram). The resonant
decays include decays with the correct topology and a resonance
(m, f1 or w) in the final state.
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decays with the correct topology and a resonance (7, f; or w) in
the final state. The nonresonant decays are generated using
T~ —a; v, events. The differences between the data and
Monte Carlo predictions are discussed in the text.
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The 7~ — 37 27" v, decay has only a small contribu-
tion from resonant decays (see Fig. 6). The branching
fraction of the nonresonant 7~ — 377 27" v, decay is
determined to be

B(r~ =37 27t v,) = (7.68 + 0.04 + 0.40) X 10~*.

Although the modeling of the 377~ 27t invariant mass
distribution is deficient, the selection efficiency remains
the same if the Monte Carlo is reweighted to resemble the
data distribution. The decay model represents a significant
improvement compared to a phase-space model, in which
the p meson, observed in the 7+ 7~ invariant mass spec-
trum, is not included. Further tuning of the model is
required, which is outside the scope of the present study.
The background from the gg events is validated by com-
paring the numbers of data and Monte Carlo events in the
region above the 7 lepton mass.

The inclusive 7~ — 37~ 27" v, branching fraction is
(8.33 £0.04 = 0.43) X 107* and is obtained using the
same method as the nonresonant branching fraction except
that the 7= — 7~ f v, decays (the only resonant decay in
this channel) is considered as a background. In addition,
the contribution of the 7~ — 27~ 7t wv, decay via the
o — 7" 7~ mode is negligible. The branching fraction of
the 7~ — 3h™2h" v, decay (where h~ is either a 7w~ or
K ™) was measured to be (8.56 = 0.05 = 0.42) X 10 *ina
previous BABAR analysis [18] using a smaller data sample,
which did not use charged particle identification.

7~ — 37 27" 7°v, decays are dominated by the reso-
nant modes (see Fig. 7). We determine the branching
fraction of the nonresonant 7~ — 37 27" 70v, decay
mode to be

-
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The 77—, wt 7 @ 27 27t 7%, and 37 27" #° invariant mass distributions in 7~ — 37 27" 70,

decays. The predictions of the Monte Carlo simulation are shown for the resonant (white histogram) and nonresonant (light shaded
histogram) 7 decays, and the background from other 7 decays and gg events (dark shaded histogram). The resonant decays include
decays with correct topology and a resonance (7, f; or w) in the final state.
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TABLE VI. Results and branching fractions for 7~ — 7~ 7#%%/(958)v,, 7~ — K~ 1/(958)v,, and 7~ — 7~ 1/(958)v, decays.
T — 7 75 (958)v, n—yy n—oata 7
Limit (90% C.L.) <1.4 X 1073 <1.9X 107
Branching fraction (1079) 7.8 4.1 =*1.7 0.0 x7.6 9.3
Data events 24 £ 10 5+6
Background events 5+7 58
Selection efficiency (1.58 = 0.02)% (1.00 = 0.03)%
T~ —= K 1 (958)v, n—yy n—oata 7
Limit (90% C.L.) <24 X107 <4.2 X 107°
Branching fraction (1079) 05*+1.3x04 1.6x14x12
Data events 6=x7 15+4
Background events 3+x4 11*3
Selection efficiency (3.47 = 0.03)% (3.09 = 0.04)%
T — a7 1'(958)v, n—vyy n—oata 7’ n— 37°
Limit (90% C.L.) <5.2 %X 1076 <9.0 X 1076 <1.3X 1073
Branching fraction (1079) —28+35%19 —04+£39=*43 —1.8£8.1%£33
Data events 40 * 22 44 = 11 12 =10
Background events 58+ 12 45 £ 12 14+4

Selection efficiency (4.06 = 0.35)%

(3.25£0.15)% (0.96 £ 0.10)%

B(r~ =37 27" 7,) = (3.6 £0.3 £0.9) X 107°.

The systematic uncertainty on the nonresonant 7~ —
37 27t 7%v, branching fraction is dominated by the large
uncertainty in the background (see Table V). Although the
invariant mass distributions of the resonant modes in the
Monte Carlo simulation are corrected to provide better
agreement with the data, the corrections make little differ-
ence to the final branching fraction result. The other 7
decays and the ¢g events contribute to a lesser extent; their
contribution to the uncertainty of the background is very
small.

The 7~ — 37 27t 7%v, (including  and excluding
) branching fraction is (1.11 = 0.04 + 0.09) X 10~* and
is obtained by adding the nonresonant branching fraction
and the resonant branching fraction attributed to the 7= —
27wt wv, via w — 7wt 70 decay.

The inclusive 7~ — 37~ 27" 7%, branching fraction is
(1.65 = 0.05 = 0.09) X 10~* and is obtained by adding the
nonresonant branching fraction with the resonant branch-
ing fractions (B(r~ — 27 7w yv,)B(n — 7wt 7~ 7%+
B(r~ =27 7wt wv,)B(w — 7 7t 7).

The 7~ — 37 27" #’v, (including w and excluding
1) branching fraction can be compared with isospin model
predictions [25,26]. There are three 7 decay modes with six
pions in the final state: 7= — 27 7' 37y, T —
37 27" 7v,, and 7~ — 7 57°v, (there are no mea-
surements of the 7~ — 7~ 57°v, decay mode). There
are four possible isospin states for six pion decays:
4p), 3p), Bmw), and (7pw). The relative rates of the
decays can be used to identify the dominant isospin states.
The approximate equality of the 7~ — 27~ 7 37%», and
7~ — 37 27" 7°v, branching fractions suggest that the
(4mp) and (mpw) modes should dominate. The limited
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FIG. 8. The 7t 7~ 7 invariant mass in 7~ — 27~ 7t gv, de-
cay candidates for the y — yy, n— 7" 7 #°, and n — 37°
decay modes after all selection criteria are applied. The fit to the
1’ peak (in the top two plots) is represented by the solid line. The
number of 7' candidates in the 7 — 37° channel is determined
by counting the number of events in a single bin centered on the
1’ mass and subtracting the combinatorial events. The number of
combinatorial events is determined by fitting the data (the solid
line in the bottom plot), excluding the data point near the 5’
peak. The peak in this plot indicates the expected location and
width of an n’ signal.
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phase space imposed by the 7 mass suppresses the higher
mass states and as a result we do not observe evidence of
the p meson in these decays.

E. Search for decays involving i’ (958) decays

We also search for the 7~ — 7~ 7%%/(958)v,, 7~ —
K 7'(958)v,, and 7= — 7~ 71'(958)v, decays, where
n' — 7t 7. The first two decays are allowed first-class
current decays whereas the last decay is a second-class
current decay, with a rate that would be zero in the limit of
perfect isospin symmetry.

The numbers of 5’ candidates in the data and back-
ground Monte Carlo samples are given in Table VI. For
the 7= — 7 7°9/(958)v, via n — yy and the 7~ —
7~ 1'(958)v, via n — yy and n — 7 7~ 7° modes, we
measure the number of 1’ candidates by fitting the peak
with a Gaussian function and the combinatoric background
with a polynomial function. The number of %’ candidates
in the other channels is determined by counting the number
of events in a single bin centered on the 1’ mass and
subtracting the combinatorial events. The level of the
combinatorial background is estimated by fitting the
mass spectrum or from the average level of the sideband
region around the 1’ peak.

The #*# n invariant mass distributions for the
7~ — 7 7n'(958)v, candidate decays are shown in

«, 250 ; : : : : . . .
S E ~+ Data E
200F -~ _ ko =
8 0 é T —->K 2n 27ntv, ++ — v bked é
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Fig. 8. Although we see an 7’ peak in the n — 7w 7~ 7°

channel, we find that it can be fully accounted for by ¢q
events. We do not show the invariant mass distributions for
the 77— 7 7°9'(958)v, and 7 — K 7'(958)v.
decays. The analysis of these decay modes uses only the
n — yyand n — 7+ 7~ 7% channels. The n — 37° chan-
nel was not considered due to the limited size of the
samples.

The results for the three decay modes are given in
Table VI. The selection efficiencies are determined with
the signal Monte Carlo samples. The backgrounds from 7’
mesons are attributed to e* e~ — gg events and estimated
using the Monte Carlo samples. The background estima-
tions are validated by comparing the prediction of the
Monte Carlo simulation with data for events where the
invariant mass of all the observed final-state particles is
greater than the 7 mass.

We find no evidence for 7~ — 7~ 7°9'(958)v,, 77 —
K 1n'(958)v,, or 7 — 7 n'(958)v, decays (see
Table VI) and place the following upper limits on the
branching fractions at the 90% confidence level:

B(r~ — 7 7°9'(958)v,) < 1.2 X 1077,
B(r~ — K 1/(958)v,) <24 X 1076,
B(r~ — 7 1'(958)v,) < 4.0 X 107°,
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FIG. 9 (color online).

The K 27 2", K 37~ wt, K K 2o w", K 27 27" #° and K37~ 7" 70 invariant mass distributions

in the data sample after all selection criteria are applied. The unshaded histogram represents 7 decays in which a charged pion is
misidentified as a charged kaon, and the shaded histograms are primarily from gg events in which there is a charged kaon in the final

state. The Monte Carlo simulation does not include signal decays.
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TABLE VII. Results and branching fractions for charged kaon decay modes.

Decay mode T =K 20 27 v, 7~ > K37 wty, T~ > K K27 7ty,

Limit (90% C.L.) <24 X107 <5.0 X107 <4.5 %1077

Branching fraction (1079) 0.6 05*+1.1 1.6 0.6 =24 0.30 £ 0.10 £ 0.07

Data events 1328 = 36 1999 * 45 32+6

Background 1284 £ 72 1890 = 163 154

Selection efficiency (7.9 +0.1)% (7.9 £ 0.1)% 6.7*+0.1)%
T = K20 20" 70, T = K37t 7y,

Limit (90% C.L.) <19 X 107 <8 X 1077

Branching fraction (107°) 1.1 +04+04 —0.6 0.5+ 0.7

Data events 112 =11 154 £ 12

Background 84 £ 10 170 = 16

Selection efficiency 29+0.1)% 29*+0.1)%

The limits are determined from the weighted average of  branching fractions and we consider these backgrounds
the branching fractions measured for each mode. The  to be negligible. The previous limits on the 7= —
77— 7 79/ (958)v, and 7~ — K 7/(958)v, channels 7 7'(958)v, decay were measured by BABAR to be
are potential backgrounds to the 7= — 7 7/(958)v,  <7.2 X 107° [13] and by CLEO to be <8 X 107> [19].
decay. We find that background from these two decays is It is predicted that the branching fraction of 7= —
less than two events based on the upper limits on the 7~ 7/(958)v, should be less than 1.4 X 107 [27].

TABLE VIII.  Summary of branching fractions excluding contributions from K — 7% 7.

Decay mode

Branching fraction

Resonant decays

7~ — 27 7" v, (including f/)

7~ — 27 7" nv, (excluding f))

7~ — 7 277y, (including f,)

T > a7 fiv, via f; = 27 27"

T oo fiv,viafio 7w oy

B(f1 — 2m " 2m7)/B(f) — wmn)

T =27 mtov,

=7 270,

Nonresonant decays

7~ — 37 27" v, (excluding w, f)

7~ = 27 737, (excluding 7, w, f))
7~ = 27 7 37%, (excluding n, f))
7~ =37 27" 7%, (excluding 9, w, f;)
7~ = 37 27" 70, (excluding 7, f))
Inclusive decays (including 7, w, f)

7 =27 7 37%,

7~ — 37 27" v, (excluding )

7 =37 27 7Ov,

1’ (958) decays (90% upper level confidence limit)
T — 7 75 (958)v,

T > K 1n'(958)v,

T — 7 1'(958)v,

Kaonic decays (90% upper level confidence limit)
T = K 2u 27"y,

T > K37 7wy,

T =K K27 wtv,

T = K 2r 20" 7,

T = K37 7w 7y,

(2.25 £0.07 = 0.12) X 1074
(0.99 = 0.09 = 0.13) X 1074
(2.01 = 0.34 = 0.22) X 1074
(5.20 £ 0.31 = 0.37) X 1075
(1.26 = 0.06 = 0.06) X 1074
0.28 = 0.02 = 0.02
(84+04*0.6)x107°
(73 *1.2*12)x 107

(7.68 = 0.04 = 0.40) X 107*
(1.0 0.8 £3.0) X 1073
(16.9 = 0.8 +4.3) X 1073
(3.6 £0.320.9) X 1073

(1.11 = 0.04 + 0.09) X 1074

(2.07 £0.18 £ 0.37) X 1074
(8.33 £0.04 = 0.43) X 1074
(1.65 = 0.05 = 0.09) X 1074

<12 %1075
<2.4 % 107°
<4.0 X 1076

<2.4 X 107°
<5.0 X 107
<4.5 %1077
<1.9%x 1076
<8 X 1077
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F. Searches for decays involving charged kaons

Finally we present the first search for high-multiplicity
7 decays with one or two charged kaons. We find no
evidence for signal decays and place upper limits on the

branching fractions of the 71~ — K 27 2wy,
T —=>K3r atv,, =K K2z wtv, 1 —
K2 2at7%,, 7 =K 37 777, and 77 —

K~ 7'(958)v, decay modes (the 7~ — K~ 71/(958) v, decay
was presented in Sec. II1E).

The events are divided into topologies in which the
charged kaon has either the same or opposite charge as
the parent 7 lepton. If there are two kaon candidates, they
must have opposite charge. All other tracks are required to
be identified as charged pions. The selection criteria and
systematic uncertainties are described earlier. The require-
ment on the invariant mass (M < 1.8 GeV/c?) of the final
state uses the kaon mass for tracks identified as charged
kaons. Figure 9 shows the mass spectra for the various
channels. The predictions of the Monte Carlo simulation
are divided into decays with or without a K~ (in this latter
case, a 7~ is misidentified as a K~). The figures do not
include any signal decays in the Monte Carlo samples. The
background estimates, which give the dominant systematic
uncertainty, are verified by comparing the numbers of
events in the data and Monte Carlo samples in the
M > 1.8 GeV/c? region.

The numbers of events selected in the data and
Monte Carlo simulations are given in Table VII. The back-
grounds predicted by the Monte Carlo simulations are
approximately equal to the numbers of events in the data
sample. There is an excess of data events in the 7= —
K 27 27" 7%, mode, but this excess extends to mass
values above the 7 mass, indicating that events are due to
background 7 decays or gg events.

The upper limits on the branching fractions are given in
Table VII. There are no predictions for these modes. We
estimate that B(7~ — K 27 27wt v,.) ~ 107°-10"% if the
decay is related to B(r~ — 37 27" v,) by the ratio of the
Cabibbo-Kobayashi-Maskawa matrix elements (V,;/V,4).

PHYSICAL REVIEW D 86, 092010 (2012)

The 7= — 37 27" 7%v, decay is dominated by decays
to the narrow low-lying resonances and the branching frac-
tion of decay modes created by replacing a 7~ with K~
would be highly suppressed due to the limited phase space.

IV. SUMMARY

We present measurements of the branching fractions for
7 lepton decays to three-prong and five-prong final states.
The results are summarized in Table VIII. The branching
fractions exclude contributions of the K meson. The
results are more precise than previous measurements and
many decay modes are studied for the first time.
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