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ABSTRACT: We study nonequilibrium structural dynamics in
LiNi1/2Mn3/2O4 spinel cathode material during fast charge/discharge
under operando conditions using coherent X-rays. Our in situ
measurements reveal a hysteretic behavior of the structure upon
cycling and we directly observe the interplay between different
transformation mechanisms: solid solution and two-phase reactions at
the single nanoparticle level. For high lithium concentrations solid
solution is observed upon both charge and discharge. For low lithium
concentration, we find concurrent solid solution and two-phase
reactions upon charge, while a pure two-phase reaction is found upon discharge. A delithiation model based on an ionic blockade
layer on the particle surface is proposed to explain the distinct structural transformation mechanisms in nonequilibrium
conditions. This study addresses the controversy of why two-phase materials show exemplary kinetics and opens new avenues to
understand fundamental processes underlying charge transfer, which will be invaluable for developing the next generation battery
materials.
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Lithium ion batteries are ubiquitous in a wide range of
technologies, including cell phones, electric vehicles, and

sustainable energy systems,1−4 and battery performance is
inherently connected to the capability of lithium ions to
reversibly intercalate with the electrodes.5 Spinel materials
show exemplary kinetics and are extremely appealing
candidates for cathodes in future commercial batteries due to
their specific energy, cost, availability, nontoxicity, and,
importantly, high operating voltage.6−9 Ion kinetics are
governed by various nanoscale processes, including microscopic
structural changes of the electrode.10,11 The particular spinel of
interest, disordered LiNi1/2Mn3/2O4 (LNMO) is subject to
multiple, fundamentally different sources of structural dynamics
throughout the battery cycle: a cathode−electrolyte interface
(CEI) layer can form due to high operating voltages,12 strain
due to inhomogeneous lithiation,13 and the structure is known
to coexist in two structural phases with different lattice
parameters at particular lithium concentrations.14−16 During
battery cycling two-phase reactions compete with solid
solution, which is beneficial for high rates in battery materials.
Phase separation is unwanted for several reasons, such as a
typically slow nucleation of a new phase,17 diffusion limited
transfer of lithium across the phase boundary,18,19 and
coherency strain in case of phase separation in individual
particles, which leads to defect formation and capacity fade.20,21

Two-phase reactions are expected to yield slow kinetics, yet
many high rate materials including LiFePO4 (LFP), Li4Ti5O12

(LTO), and LNMO experience phase separation during slow
(dis)charge.14,15,21,22 Several novel lithiation mechanisms were
predicted to resolve this controversy, including domino
cascade,23 nonequilibrium kinetics,17 and metastable solid
solution, where concurrent two-phase and solid solution
reactions occur.20,24−26 As such, the interplay between solid
solution and two-phase reactions is crucial for understanding
the performance of the two-phase type battery materials. Here
we report a direct observation of nonequilibrium structural
dynamics, including the existence of a metastable solid solution,
in spinel LNMO material using in situ coherent X-ray
diffraction under operando conditions. We find that during
charge the solid solution dominates in the beginning of the
delithiation and even persists in the two-phase reaction region
at low lithium concentrations. Interestingly, during discharge
the cathode transforms via an extended two-phase reaction with
no indication of solid solution, which occurs only after the two-
phase reaction at very high lithium concentrations. The
different transformation mechanisms indicate a remarkable
hysteresis in the structural phase transformations.
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The experimental setup is shown in Figure 1. We acquired X-
ray (9.0 keV photon energy) diffraction patterns in situ from an
LNMO coin cell battery under operando conditions by a
charge-coupled device (CCD) positioned at a distance of 0.5 m
downstream of the sample. To transmit X-rays the coin cell
casting had a 5 mm opening, which was sealed with a kapton
film on both sides and did not mitigate the electrochemical
performance. The sample was prepared with a disordered
structure using the sol−gel method, similar to ref 8. The
detector was shifted to a 2θ angle of 16.5° to record the (111)
Bragg peak of the cathode, which contains randomly oriented
individual nanoparticles. The incident beam size (200 × 200
μm defined by slits) and scattering geometry were chosen to
observe 10−100 Bragg reflections from single nanoparticles on
the detector. The crystallographic structure throughout cycling
remains cubic (see Supporting Information Figure S1) thus the
position of a single Bragg peak is sufficient to track the
structural changes of the material.
A typical measured diffraction pattern is shown in Figure 1a,

where several distinct Bragg reflections are observed along the
Debye−Scherrer ring.27 In the magnified image (see Figure 1b,
center) interference fringes around the brightest spot indicate
that indeed reflection from a single nanoparticle is
recorded.28,29 An analysis of the fringe period (see inset in
Figure 1b) yields a particle size of 800 nm and concords well
with observations from scanning electron microscopy (SEM)
(see Supporting Information Figure S2). Some spots on the
detector appear to be scattering from nanoparticles being not in
the perfect Bragg condition (see arrows in Figure 1b).
Diffraction patterns (about 600 in total) similar to those

shown in Figure 1a,b were recorded, while the battery was
cycled (see Supporting Information movie). Each image was
collected in about 100 s and the maximum intensity between
the strongest and weakest peaks in each image varies over more
than 2 orders of magnitude. During charge and discharge
various intriguing phenomena were observed, including
continuous shifts and splitting of the Bragg peak. The former
indicates a solid solution reaction with continuous change of
the lattice parameter whereas the latter reveals a two-phase
reaction, which is often considered as an emergent property of
a many particle electrode.30 Three images of the distinct phases
are presented in Figure 1c.

The electrochemical performance of the cell during the in
situ X-ray measurements is presented in Figure 2a,b. The
battery was charged with a constant current of 0.12 mA that
corresponds to a C/4 rate (full charge in 4 h) and then held at a
constant voltage of 5 V versus Li/Li+ (see Figure 2a). During
the discharge, a constant negative current of −0.12 mA (C/4,
full discharge in 4 h) was applied and afterward the battery was
held at a constant voltage of 3.5 V versus Li/Li+. While held at a
constant voltage the current is reduced as the intrinsic cell
voltage approaches the applied voltage. Figure 2a indicates that
lithium ion diffusion is significantly slower in the charged state,
as compared with the discharged state.18 The cell voltage
deviates from the values recorded with a significantly slower
cycling rate (C/20) due to polarization.5 Although the battery
was cycled prior to our measurements (2 cycles with C/4 and
100 cycles with 2C), the specific capacity of this particular coin
cell battery reaches a value of 120 mAh/g, which is more than
80% of the theoretical capacity for this material (see Figure 2b).
To analyze the structural change of the whole ensemble of

scattering particles we angularly averaged all diffraction patterns
along the Debye−Scherrer ring and show this average as a

Figure 1. Experimental setup and measured diffraction patterns. X-ray
radiation from the undulator is transmitted through a monochromator
and is incident on a coin cell under operando conditions. (a) A portion
of the Debye−Scherrer ring is recorded on a CCD. (b) An enlarged
region of (a) shows fringes due to diffraction from a single cathode
particle. (b, inset) Linescan through the white dashed line in (b). (c)
Measured diffraction patterns for a lithium concentration of 1 − δ =
0.12 (left pattern), 1 − δ = 0.7 (center pattern), 1 − δ = 0.9 (right
pattern) as in Li1−δNi1/2Mn3/2O4. The arrows in (c) indicate different
structural phases. All images are shown on the same logarithmic scale
and with a scale bar of 0.1 nm−1.

Figure 2. (a) Modulus of the applied current during charge and
discharge as a function of measurement time shown on logarithmic
scale. Between charge and discharge (vertical lines at about 500 min)
we measured the open circuit voltage (OCV = 4.8 V). (b) Cell voltage
versus Li/Li+ as a function of specific capacity during charge (red solid
line) and discharge (blue dashed line). The same curves for a 5 times
slower cycling rate measured on another coin cell with the same
chemical composition are also shown (red dotted and blue dash-dot
lines). (c) The average along the Debye−Scherrer ring for all
diffraction patterns shown on a logarithmic scale. Lithium concen-
tration 1 − δ as in Li1−δNi1/2Mn3/2O4 and three different structural
phases are indicated. Note that x-axis in (c) is reversed for easier
comparison with Figure 1a and Supporting Information movie.
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function of measurement time in Figure 2c. As expected from
ex situ measurements14,15 (see also Supporting Information
Figure S1) and theoretical calculations,16 three structural phases
are observed, which confirms that the spinel structure is
disordered. These phases have a lattice parameter of 8.1 to 8.15,
8.08, and 8.0 Å and will be referred to as phase I, phase II, and
phase III, respectively (see Figure 2c). Transitions between
these phases are usually interpreted as reordering of the crystal
structure due to Mn3+/Mn4+, Ni2+/Ni3+, and Ni3+/Ni4+ redox
reactions.16,19

During charge the lattice starts in phase I and shrinks due to
extraction of lithium. It changes linearly with time in the first
200 min, indicating a solid solution reaction. The lattice
constant decreases rapidly to phase II after 200 min. The Bragg
peak splits after about 300 min, which marks the transition to
phase III with simultaneous presence of two structural phases.
Note that there is a drop in current and the slope of the curve
in Figure 2a changes after 300 min, which indicates an increase
in resistance of the material during its transition to phase III
with a significantly slower ion diffusion.18

A reverse reaction is observed during discharge. The lattice
expands and an extended two-phase reaction between phase III
and phase II dominates for most of the discharge. Just after the
completion of this phase transformation the structure abruptly
jumps to phase I. Finally, a solid solution is observed for high
lithiation.
Interestingly, the average in Figure 2c is not smooth but

shows bright spots, which represent Bragg scattering from
nanoparticles that perfectly satisfy the Bragg condition. The
slightly different angles of these Bragg spots indicate some
diversity in the behavior of nanoparticles, in particular during
the solid solution transformation that occurs at high lithium
concentrations. Different nanoparticles appear to have slightly
different lattice parameters for the same charge state (0−200
and 700−800 min). Fluctuations in the Bragg peak intensity
with time suggest that some particles change orientation during
(dis)charge. A typical width of the Bragg reflection is about
0.02° and from the intensity fluctuations of these reflections in
time we estimate that some nanoparticles can rotate slightly
with a speed of less than 0.02° over a period of 10 min. Note
that the rotation is significantly suppressed close to the fully
charged state between 350 to 450 min, where the applied
current is small (on the order of 0.01 mA). This indicates that
particle movement is driven by charge transport. For highly
charged states (200−700 min), we also observe a small fraction
of reflections that correspond to the discharged state (see
Figure 2c at d = 8.13 A) and appear to be disconnected from
the charge transport. It is worth mentioning that the structure
diversity among different nanoparticles and particle rotation
cannot be captured in conventional XRD experiments that
average over a much larger number of particles and yield a
smoother distribution.
The most striking observation is the phase transformation

between phase II and III with Bragg peak splitting, which starts
after 300 min upon charge and again after 500 min upon
discharge. This phase transformation is crucial to achieve full
battery performance, and to better understand the interplay
between solid solution and two-phase reactions we analyzed the
positions of the Bragg peaks as a function of the lithium
concentration, which was determined from electrochemical
data (see Figure 3a). Figure 3a clearly shows that structural
dynamics during charge and discharge are qualitatively
different. The strength of the scattering signal corresponding

to phases I, II, and III is shown as a function of the lithium
concentration in Figure 3b. The hysteresis of the lattice
parameter observed in Figure 3a,b is quite remarkable and is
partially due to phase nucleation barrier and coherency strain,
which both prevent a fast phase transformation.5,31 But not
only is there a hysteresis, our X-ray data also shows that solid
solution dominates during charge, and an extended two-phase
reaction prevails during discharge. Our X-ray data also indicates
that the phase nucleation upon discharge occurs faster than
upon charge.
To correlate structural dynamics with electrochemical data

we present the latter as a dQ/dV plot in Figure 3c (Q is the
total capacity and V is the cell voltage) where peaks correspond

Figure 3. (a) Positions of the Bragg peaks as a function of lithium
concentration found by dividing each diffraction pattern in 20
horizontal slices and fitting the projections of these slices with two
Gaussian functions. (b) The scattering signal obtained by averaging
Figure 2c horizontally in the range 7.98−8.05 Å (phase III, solid lines),
8.05−8.1 Å (phase II, dashed lines), and 8.1−8.2 Å (phase I, dotted
lines). Discharge curves are displaced vertically for better visibility. (c)
dQ/dV plot as a function of lithium concentration. The missing data at
the end of the charge and discharge are due to the voltage holds. The
data between δ = 0.03 and δ = 0.05 upon charge was compromised by
polarization and is not shown (see Figure 2b). Inset of (c) shows an
enlarged region. In all plots, red and blue colors represents charge and
discharge, respectively.
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to plateaus in the coin cell voltage and are indicative of two-
phase transformation under equilibrium conditions.5 A
comparison between the X-ray data and the electrochemical
data during charge is quite surprising (see Figure 3b−d).
Although we clearly observe peaks in the dQ/dV plot at δ =
0.01, δ = 0.2, and δ = 0.35, our X-ray data does not indicate any
two-phase regions, which should reveal itself in Bragg peak
splitting. The phase transformation eventually happens, but
much later during the constant voltage hold at δ = 0.84. The
material structurally appears to be in a solid solution regime,
but electrochemistry suggests there is a two-phase reaction.
Similar behavior has been observed in LFP using in situ X-ray
diffraction data32−34 and electron microscopy,35 and we
anticipate that this is a general phenomenon that occurs for
two-phase materials during fast cycling. We also want to note
that similar effects were theoretically predicted in LFP.36

We attribute the discrepancy between X-ray and electro-
chemical data to nonequilibrium structural dynamics due to the
fast charge rate used in our experiment.17 A possible
explanation for the observed behavior is the fact that
electrochemistry is governed by the surface of the nano-
particles, whereas X-ray diffraction is sensitive to their volume.
Taking into account the smaller diffusion coefficient for
charged (delithiated) material, as concluded from Figure 2a
and ref 18, a comparison between electrochemical and X-ray
data indicates that during charge (lithium extraction) the
surface of the particle is actually delithiated, has a smaller lattice
constant, and acts as an ionic blockade for ions trapped in the
nanoparticles (see Figure 4). This layer forms at a voltage of
about 4.7 V. No indication of this layer is observed in the X-ray
diffraction signal, thus we conclude that this charge transport
blockade layer is thin, provided it is as crystalline as bulk. The
layer could also be blocking the electron transport, however,
different ion diffusion coefficients for different structural phases
suggest ionic blockade.
During discharge there is a reasonable correspondence

between electrochemistry and X-ray diffraction of the nano-
particles (see Figure 3b−d). The dQ/dV plot shows three peaks
and a close look at the structural information captured with X-
rays reveals that there is indeed an abrupt lattice constant
change, an appearance of an additional structural phase, and a
transition to the third phase at δ = 0.83, δ = 0.7, and δ = 0.3,
respectively. During discharge, the lattice transforms into a
more diffusive material and there is no physical basis for an
ionic blockade (see Figure 4), thus the electrochemical and X-
ray measurements agree. The significant different behavior
during charge and discharge renders CEI as an unlikely source
of the dominant charge transport blockade, because CEI
equally persists upon charge and discharge and builds up with
cycling.12

Finally, a closer inspection of individual Bragg reflections
during (dis)charge reveals structural dynamics of single
nanoparticles. In particular, we analyzed the phase trans-
formation between phase II and III after 300 min during charge
and the back transformation after 500 min during discharge
(see Figure 2c). We observe two simultaneous Bragg reflections
connected by interference fringes, indicating they came from
the same particle (see Figure 4) multiple times. This shows
these particles are simultaneously in both structural phases and
consist of domains with different lattice constants. The
intensities of the respective peaks reflect the ratio of the two
phases provided the entire crystal maintains the Bragg
condition. Interestingly, during charge we also observe particles

defying the traditional two-phase coexistence (see Figure 4a).
Not only does the left peak (phase II) lose intensity and the
right peak (phase III) gain intensity, there is a continuous shift
of the maximum intensity during the phase transformation.
This suggests a metastable solid solution mechanism,20,24 where
in the two-phase region one of the two phases (phase II here)
undergoes a solid solution (see a sketch in Figure 4 and
simulations in Supporting Information Figure S3). Another
particle (see Figure 4b) shows similar behavior during charge
with a slightly earlier phase transformation.
During the reverse phase transformation upon discharge we

did not observe strong reflections between the two Bragg peaks
corresponding to the two phases. This indicates no metastable
solid solution, but rather a pure two-phase reaction, where the
positions of the Bragg reflections are fixed (see Figure 4c).
Note that the time scale in Figure 4c is increased by a factor of
3 as compared with Figure 4a,b to visualize the full phase

Figure 4. Phase transformation of different particles during charge
(a,b) and discharge (d,e). Vertical axis is time and horizontal axis
scattering angle (equivalent to lattice constant). Phase II and III are
indicated. The time between consecutive images is 350 s (a,b) and
1000 s (d,e) and the first image (top) was recorded after 285 min (a,b)
and 595 min (d). Different lithiation models for charge (c) and
discharge (f). Yellow, blue, and green represent phase II, phase III, and
solid solution between these phases, respectively. The direction of the
lithium ion flow is indicated by the arrows. Data in (d) was collected in
a separate measurement with a focused beam.
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transformation. To prove that we do observe phase trans-
formation of single nanoparticles we performed additional
measurements. We focused the beam to a size of a single
nanoparticle (1 μm × 1 μm) and by scanning the sample
assured that a single nanoparticle produced diffraction on the
detector. We repeated the (dis)charge and before recording
each diffraction pattern we carefully aligned the particle angle to
maximum Bragg intensity, trying to compensate for possible
particle rotations (see Figure 4d). Figure 4d shows two phases
with fixed positions of the Bragg peak, is similar to Figure 4c,
and confirms a pure two-phase reaction during discharge on
this single nanoparticle. The same measurement was not
possible during charge, because the phase transformation is
considerably faster and the two-phase region is very narrow.
In summary, using coherent X-rays we were able to study

nonequilibrium structural dynamics under operando conditions
of a spinel structure lithium half cell. We mapped the structure
on a single nanoparticle level and found that upon discharge the
material shows an extended two-phase reaction, whereas during
charge the cathode material mostly undergoes a solid solution
reaction. A comparison of the X-ray data with electrochemical
data measured simultaneously on the same operando battery
suggests that during charge a thin ionic blockade layer is
formed on the interface between cathode nanoparticles and
electrolyte. This layer prevents faster charging, and no
indication for such a layer is found for discharge. We anticipate
that attempts to reduce the effect of the ionic blockade by
doping the surface of the nanoparticles may lead to improved
performance of battery material during fast charging. Finally, we
foresee that the experimental in situ method developed here is
ideally suited to study the interplay between solid solution and
two-phase reactions for a large variety of next generation
battery materials, such as LNMO, LFP, and LTO. We
anticipate that it will ultimately open new avenues to
understand fundamental processes underlying lithium ion
kinetics and develop better battery materials.
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