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Abstract

We report constraints on cosmological parameters from the angular power spectrum of a cosmic microwave
background (CMB) gravitational lensing potential map created using temperature data from 2500 deg2of South
Pole Telescope (SPT) data supplemented with data from Planckin the same sky region, with the statistical power
in the combined map primarily from the SPT data. We fit the lensing power spectrum to a model including cold
dark matter and a cosmological constant (LCDM), and to models with single-parameter extensions to LCDM. We
find constraints that are comparable to and consistent with those found using the full-sky PlanckCMB lensing
data, e.g., s W8 m

0.25=0.598±0.024 from the lensing data alone with weak priors placed on other parameters.
Combining with primary CMB data, we explore single-parameter extensions to LCDM. We find W =k

- -
+0.012 0.023

0.021 or nM <0.70 eV at 95% confidence, in good agreement with results including the lensing potential as
measured by Planck. We include two parameters that scale the effect of lensing on the CMB: AL, which scales the
lensing power spectrum in both the lens reconstruction power and in the smearing of the acoustic peaks, and ffA ,
which scales only the amplitude of the lensing reconstruction power spectrum. We find ffA ×AL=1.01±0.08
for the lensing map made from combined SPT and Planckdata, indicating that the amount of lensing is in excellent
agreement with expectations from the observed CMB angular power spectrum when not including the information
from smearing of the acoustic peaks.

Key words: cosmic background radiation – cosmological parameters – gravitational lensing: weak
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1. Introduction

Gravitational lensing of the cosmic microwave background
(CMB) has emerged as a useful cosmological tool. CMB
lensing, which probes all structure along a given line of sight,
provides complementary information to the primary CMB
fluctuations which measure structure at z∼1100. The
sensitivity of CMB lensing peaks at intermediate redshifts
(z∼3), making it complementary to large-scale structure
surveys, the sensitivity of which typically peaks at lower
redshifts, and with very different sources of possible systematic
errors. Lensing of the CMB was first detected in cross-
correlation with galaxies a decade ago (Smith et al. 2007); high
signal-to-noise internal detections have now been achieved by
many experiments (Das et al. 2011b; van Engelen et al. 2012;
Planck Collaboration 2014b; POLARBEAR Collaboration
2014; BICEP2 Collaboration et al. 2016). For a review of
CMB lensing, see Challinor & Lewis (2005).

The fluctuations in the CMB lensing potential form a nearly
Gaussian projected field on the sky, with statistical properties
determined by the geometry and the history of structure
formation in the universe. Because the field is nearly Gaussian,
essentially all the information is encoded in the angular power
spectrum. The most precise CMB lensing power spectrum
measurements to date are from the Planckexperiment (Planck
Collaboration 2016b).

Cosmological parameter fits that include CMB lensing
information are broadly consistent with expectations from the
primary CMB measurements alone (Planck Collaboration
2016a). There are, however, mild but interesting tensions
(∼2σ) between constraints on cosmology from Planckprimary
CMB measurements and other cosmological probes. Specifi-
cally related to lensing, the amplitude of the matter power
spectrum on galaxy scales (σ8) inferred from Planckprimary
CMB data is slightly higher than that determined from cosmic
shear measurements (Hildebrandt et al. 2017; Joudaki et al.
2017; Troxel et al. 2017). Further, specifically related to
lensing of the CMB, the amount of lensing inferred from
the measured smearing of the acoustic peaks is higher than
that inferred from the direct measurement of the lensing-
induced mode-coupling (Planck Collaboration 2016a). The
amplitude of lensing is expected to be a powerful probe of
neutrino masses (Abazajian et al. 2015), so discordance in
measurements of lensing amplitudes is important for under-
standing the utility of these measurements as probes of particle
physics.

This paper is a companion to Omori et al. (2017), referred to
as O17 hereafter. In that work, we obtained a CMB temperature
map by combining 150 GHz SPT and 143 GHz Planckdata in
the 2500deg2 South Pole Telescope (SPT)-SZ survey region,
and we used the resulting temperature map to produce a map of
the projected gravitational lensing potential. In this paper, we
present a cosmological parameter analysis of the CMB lensing
power spectrum derived in O17. This spectrum is shown in
Figure 1, along with other recent measurements, including the
full-sky Plancklensing power spectrum.

This work is divided as follows: in Section 2 we review
gravitational lensing of the CMB and reconstruction of the
lensing potential; in Section 3 we describe the CMB
temperature data and simulations used for the O17 analysis
and for this work; in Section 4 we describe how the lensing
likelihood is constructed, including linear corrections for the
unknown true CMB and lensing potential power spectra; in

Section 5 we present the primary result of this paper:
constraints on cosmological parameters; we close with a
discussion.
Throughout this work, we use the PlanckTT + LOWP +

LENSING cosmology35 (Planck Collaboration 2016a) as a
fiducial model. This fiducial cosmology is used for generating
the simulated data necessary for the lensing reconstruction. All
CMB temperature and lensing potential power spectra used in
the present analysis have been computed with the CAMB
Boltzmann code36 (Lewis et al. 2000).

2. Lensing Reconstruction Framework

In this section, we build the theoretical framework for the
lensing likelihood, presenting selected elements from the
lensing reconstruction pipeline. A more complete description
of the procedure can be found in O17.

2.1. Lensing of CMB Temperature Fluctuations

Gravitational lensing remaps CMB fluctuations in position
space (Lewis & Challinor 2006):

f= + ( ˆ) ( ˆ ( ˆ)) ( )n n nT T , 1L U

where f ( ˆ)n is the projected gravitational lensing potential and
superscripts L and U refer to the lensed and unlensed
temperature fields respectively. To gain intuition, Equation (1)
can be Taylor expanded as

f= +   + ¼( ˆ) ( ˆ) · ( ˆ) ( )n n nT T T . 2L U U

From the second term, it can be seen that the observed lensed
temperature has a component that is the gradient of the
unlensed field modulated by the lensing deflection ∇f. If we
transform to harmonic space, Equation (2) would have the
second term on the right-hand side written as a weighted
convolution of the temperature field and the lensing potential,
where the harmonic transform for any particular mode for the
lensed field could involve a sum over all of the modes of the
unlensed field. Lensing thus introduces non-zero off-diagonal
elements in the covariance of observed temperature fields in
harmonic space (Okamoto & Hu 2003):
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where Tℓm are the spherical harmonic expansion coefficients of
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characterizes the mode coupling induced by lensing (i.e., the
effect of the convolution in Equation (2)).

35 base_plikHM_TT_lowTEB_lensing.
36 http://camb.info (2016 May version).
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2.2. Lensing Map Reconstruction

The lensing potential can be estimated from observed CMB
maps by measuring the lensing-induced mode coupling of
Equation (3) between pairs of modes in the observed
temperature field (Zaldarriaga & Seljak 1999; Hu & Okamoto
2002). In general, it is best to use pairs in harmonic space that
have good signal-to-noise for measuring lensing. For this
purpose, it is useful to work with a filtered map: ºT̄ F Tℓm ℓm ℓm,
with the filter º + -( )F C Nℓm ℓ ℓm

1 for a given CMB power
spectrum Cℓ and an anisotropic (m-dependent) noise power
spectrum Nℓm.

A formally optimal estimator (at first order) which
maximizes signal to noise in the estimated lensing potential
(Hu & Okamoto 2002) is

å

f

=
-

-
f⎛

⎝⎜
⎞
⎠⎟

¯

( ) ( )ℓ ℓ L
m m M

W T T
1

2
. 5

LM

M

ℓ m
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,
,

1 2

1 21 1

2 2
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We use Equation (5) as our f estimator for this analysis.
There are other choices (e.g., Namikawa et al. 2013) for how to
weight the mode pairs that sacrifice some signal-to-noise but
reduce foreground contamination. Lensing reconstruction is
done with the QUICKLENS code.37

The relationship between the filtered estimate of the lensing
potential resulting from Equation (5) and the true potential can
be written as

f fº f¯ ( ), 6LM LM LM

defining a response function LM that in general depends on
both L and M. As outlined in O17, this response function has
been calibrated using simulations. We estimate it by measuring
the cross-spectrum of simulated lensing potential outputs with

the input lensing potential maps and normalizing by the
autospectrum of the inputs.
The true amplitude of mode coupling in the CMB

temperature field induced by lensing is sensitive to the true
(unknown) temperature power spectrum, as can be seen in
Equations (3) and (4). What is measured in the data is some
amount of mode coupling; to turn this into an estimate of the
amplitude of the lensing potential, an assumption is made about
the typical amplitudes of the modes being coupled. The
response function thus depends on the assumed cosmological
parameters. To explore this cosmological dependence, we use
an isotropic approximation to the full anisotropic response
function and its dependence on cosmology. In the case where
both the signal and noise are isotropic (i.e., the CMB signal and
noise only depend statistically on ℓ and not m), the response
function can be written as

 å=
+

f f f ( )
L

W W F F
1

2 1
, 7L

ℓ ℓ
ℓ ℓ L

t
ℓ ℓ L

f
ℓ ℓ

,

, ,

1 2

1 2 1 2 1 2

where we have indicated extra superscripts on the weight
functions for either the true amount of mode coupling (t) or the
assumed amount for our fiducial cosmology ( f ). The filters Fℓ

are calculated for the fiducial cosmology. We use Equation (7)
and its dependence on cosmology to determine the cosmology-
dependent corrections to the simulation-based response
function.
The survey mask, point source mask, and spatially varying

noise all violate statistical stationarity in the data, and
consequently they introduce mode coupling that can bias the
lensing reconstruction. The result is that the lensing reconstruc-
tion has a non-zero mean signal—even in the absence of true
lensing signal—that depends on the survey geometry, mask,
and noise properties. This mean field f̄LM

MF is calculated using
simulations and removed.

Figure 1. SPT + Plancklensing bandpowers from O17 along with earlier lensing estimates from the SPT-SZ survey (van Engelen et al. 2012) and recent lensing
bandpowers obtained from temperature and polarization measurements from SPTPOL (Story et al. 2015). Also plotted are the most recent lensing autospectrum
measurements from BICEP2+KECK ARRAY (BICEP2 Collaboration et al. 2016), Planck(Planck Collaboration 2016b), POLARBEAR (POLARBEAR
Collaboration 2014) and ACTPOL (Sherwin et al. 2017), and a prediction for the lensing power spectrum using the best-fit cosmological parameters from the
PlanckTT + LOWP + LENSING cosmology (Planck Collaboration 2016a).

37 http://github.com/dhanson/quicklens
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After removing the mean field and correcting for the
response function, the final estimate of the lensing potential is


f

f f
=

-
f

ˆ
¯ ¯

( ). 8LM
LM LM

LM

MF

2.3. Lensing Autospectrum Estimation

To estimate the angular power spectrum of the CMB lensing
map obtained in the previous section, we multiply the estimate
f̂ by the survey mask (including point source and galaxy
cluster masking) and use PolSpice38 (Szapudi et al. 2001;
Chon et al. 2004) to compute the spectrum of the masked map.

The resulting power spectrum is a biased estimate of the true
lensing power spectrum. Known sources of bias include a
straightforward noise bias, ( )NL

0 , that comes from taking an
autospectrum of data with noise in it (where “noise” here
includes the Gaussian part of the CMB temperature field and
any other sky signal), and a bias that arises from ambiguity in
exactly which lensing modes are being measured in the power
spectrum, ( )NL

1 (Kesden et al. 2003). The superscript denotes
the order of the lensing power spectrum involved: ( )NL

0 is
independent of the true lensing power and only depends on the
instrument noise and sky power, while ( )NL

1 has a linear
dependence on the lensing power. As detailed in O17, we
calculate these biases using simulations and subtract them from
the measured power spectrum

= - -
ff ffˆ ( )ˆ ˆ ( ) ( )C C N N . 9L L L L

0 1

We use a realization-dependent ( )NL
0 estimate that takes into

account the power in the particular realization but does not
depend on the assumed cosmology (Namikawa et al. 2013).

The ( )NL
1 bias depends linearly on the lensing power and will

therefore depend on cosmological parameters. In the flat-sky
limit (Kesden et al. 2003; Das et al. 2011b; Planck
Collaboration 2014b) and assuming isotropic noise and
filtering, the bias is
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where the weight f ( )ℓ ℓW ,1 2 is the flat-sky version of
Equation (4).

There is a dependence on both the true CMB power (just as
for f

L) and the lensing power. To explore this cosmological
dependence (below), we will use Equation (10) to determine
the cosmology-dependent corrections to the ( )NL

1 that is derived
from simulations.

The next-order ( )NL
2 bias is largely removed by using the

lensed theory temperature power spectrum rather than the
unlensed spectrum when constructing the lensing estimator
(Hanson et al. 2011). There are other biases, such as the ( )NL

3 2

bias (Böhm et al. 2016), which are small at the precision of the
current work, and will be neglected.

We estimate uncertainties on the lensing power spectrum by
averaging over Ns=198 simulations:

åD =
-

- á ñ
ff ff ff

=

( ˆ ) ( ˆ ˆ ) ( )C
N

C C
1

1
. 11L

s i

N

L i L N
2

1
;

2
s

s

This procedure could be used to generate a full covariance
matrix, but for this analysis we assume that uncertainties are
uncorrelated between bins. This is expected for the relatively
large bins that we use and the realization-dependent removal of
the ( )NL

0 bias that strongly reduces the off-diagonal elements
of the covariance matrix (Schmittfull et al. 2013). From
simulations, we measured the correlation between bins to be no
more than 5%.

3. Lensing Data

The binned CMB lensing angular power spectrum (or
“lensing bandpowers”)

ff
ĈLb

computed in O17, using the
methods described in that work and summarized in the
previous section, is shown in Figure 1 (along with other recent
measurements from the literature), and the bin ranges and
bandpower values and uncertainties are listed in Table 1.39 We
will hereafter refer to this as the “SPT + Planck” lensing
measurement.
The higher angular resolution of the SPT greatly increases the

lensing signal-to-noise per pixel over Planckfrom the larger
number of available small-scale modes which can be used
for measuring the lensing-induced mode coupling. Combining
the Planckand SPT temperature maps strongly reduces the
uncertainties, in particular on small scales (higher L) as
compared to using only the SPT data. This happens because
the lensing map only uses modes in the temperature map
extending to ℓ=3000, to minimize possible foreground
contamination. The high-L lensing modes require probing
correlations in the temperature angular modes that are widely
separated in harmonic space. By using the Planckdata to
recover the low-ℓ modes, there is an increased number of large-
separation mode pairs.
As shown in O17, the SPT + Planckmeasurements over

the 2500 deg2SPT-SZ survey area are more precise than the
Planck-only full-sky constraints for L1000. From the
relative sky coverage, the Planck-only uncertainties using only
the SPT region would be more than three times larger than the
Planck-only full-sky constraints. The combined SPT +
Planckmeasurements are thus nearly statistically independent,
adding substantial new information.
Small-scale lensing measurements are most susceptible to

foreground contamination, as shown in van Engelen et al.
(2014). In that work, it was found that foreground contamina-
tion increased dramatically beyond L∼2000 for CMB map
filtering choices similar to those adopted in O17. For the
cosmological parameter estimation in this work, we therefore
use the SPT + Plancklensing measurements only below
L=2000.
A comparison of the O17 bandpowers with the prediction

from the best-fit Planckcosmology is shown in Figure 2. The
ratio is shown with and without a correction for foreground
contamination, based on van Engelen et al. (2014). The
estimated contamination is small, never exceeding more than
5% of the uncertainty in any L bin, but not completely

38 http://www2.iap.fr/users/hivon/software/PolSpice 39 https://pole.uchicago.edu/public/data/simard18
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negligible. The uncertainty in the template is fractionally
roughly 30% of the template amplitude at low L; the
uncertainty in the template in any bin is <2% of the lensing
bandpower uncertainty. The O17 bandpowers are consistent
with expectations from Planck, with O17 finding a relative
amplitude of 0.95±0.06 for the best-fit PlanckTT + LOWP +
LENSING cosmology.

In the likelihood analysis described in the following section,
the theory model includes this mean foreground contamination,
as well as a term in the covariance to account for uncertainty in
the foreground level.

4. Lensing Likelihood

In this section, we describe how we obtain the lensing
likelihood function for the SPT + Plancklensing data as a
function of cosmological parameters,  Q( )ln :



å
Q

Q Q

-

= - -
ff ff ff ff-

( )

[ ˆ ( )] [ ˆ ( )] ( )C C C C

2 ln

. 12
i j

L L L L L L
,

,th 1 ,th
i i i j j jb b b b b b

We make the approximation that the reconstructed lensing

bandpowers
ff

ĈLb
are Gaussian-distributed and uncorrelated

between bins, but that there is correlation between bins coming
from the uncertainty in the foreground subtraction. We assume
that the uncertainty in the residual foreground as reported in
van Engelen et al. (2014) is completely correlated between
bins, leading to off-diagonal terms in the covariance matrix.
The Qff ( )CL

,th
b

bandpowers correspond to the binned theory
lensing power spectrum at a given cosmology Q, with the
foreground template added.

4.1. Linear Corrections

The choice of cosmological model affects the computation of
the estimated lensing bandpowers through the calculation of the
response function and through the calculation of the ( )NL

1 bias
term. These effects need to be included in the likelihood
analysis.
The response function f

LM and ( )NL
1 correction for the

fiducial cosmology are obtained using simulations and
calculated using two-dimensional, anisotropic weighting. To
calculate the cosmological corrections to these terms, we use
isotropic approximations to both the response function and the

( )NL
1 bias (see Equations (7) and (10)). Within the range of

allowed parameters, the cosmological corrections are relatively
small, and we expect the error on these corrections from using
the isotropic approximation to be negligible.
At a given point in parameter space, we apply the

cosmology-dependent response function and ( )NL
1 corrections

to the theory spectrum (Planck Collaboration 2016b):




= + -ff
f

f
ffQ

Q Q
( ) ∣
( ) ∣

∣ ∣ ∣ ( )( ) ( )C C N N . 13L
L

L f
L L L f

,th
2

2
,th 1 1

To obtain these corrections, we use a linear approximation,
Taylor-expanding around the response function or ( )NL

1 bias
calculated for the fiducial cosmology. For a temperature or
lensing power spectrum that differs by Δ from the fiducial
spectrum, we obtain:

D ´ Df
Q ¢ ¢ Q( ) ∣ ∣ ∣ ( )( )M C , 14L L ℓ

R
f ℓ

TT2
,

where

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2

, and
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Q ¢ ¢ Q∣ ∣ ∣ ( )( ) ( )N M C , 15L L L L

1
,
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where º¢
¶

¶ ff
¢

( ) ( )

ML L
N

C,
1 L

L

1

. The matrices M were calculated using

binned versions of the temperature and lensing power spectra.
In principle there is also a dependence on the temperature
power spectrum in the ( )NL

1 correction, but that term was found
to be negligible.

5. Constraints on Cosmological Parameters

Sourced mainly by potential wells at intermediate redshifts,
gravitational lensing of the CMB can constrain late-time
cosmological parameters affecting the growth of structure
and the expansion of the universe, such as neutrino masses
(Smith et al. 2006; Abazajian et al. 2015), and as a geometrical
effect it can constrain curvature (Sherwin et al. 2011).
Because of the combined sensitivity to the geometry and the
growth of structure, lensing can break degeneracies between

Table 1
Foreground-removed Lensing Bandpowers Used in This Analysis

L p+ ´
ff[ ( )] ˆ [ ]L L C1 2 10Lb b

2 7
b

50–60 1.51±0.44
61–74 1.01±0.35
75–91 1.30±0.30
92–112 0.80±0.22
113–138 0.66±0.18
139–170 0.75±0.15
171–209 0.61±0.12
210–256 0.309±0.098
257–315 0.350±0.080
316–386 0.348±0.068
387–474 0.269±0.054
475–582 0.128±0.045
583–715 0.132±0.037
716–877 0.121±0.031
878–1077 0.070±0.025
1078–1322 0.043±0.024
1323–1622 0.048±0.023
1623–1991 0.012±0.026

Figure 2. Ratio of lensing bandpowers to lensing power spectrum predicted for
the best-fit Planck2015 cosmological parameters. Shown are both the raw
lensing bandpowers and the results after subtracting the best estimate of
foreground contamination.
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cosmological parameters constrained by the CMB alone,
including the angular diameter distance degeneracy (Stompor
& Efstathiou 1999).

Recent detections of CMB lensing have proven its
significance as a cosmological probe, on its own or in
combination with CMB temperature and polarization measure-
ments (Das et al. 2011b; van Engelen et al. 2012; Planck
Collaboration 2014b, 2016b). In the following section, we
show the most significant improvements on cosmological
parameters constraints provided by the SPT + Plancklensing
measurements over 2500 deg2as compared to the full-sky
Planckprimary CMB measurements on their own.

To determine the posterior probability distributions of
the cosmological parameters from SPT + Plancklensing
data in combination with CMB data, we use Markov chain
Monte Carlo (MCMC) methods (Christensen et al. 2001)
through the publicly available COSMOMC40 package (Lewis &
Bridle 2002).

Assuming a spatially flat universe, the properties of a Λ cold
dark matter (LCDM) model can be represented by the
following six parameters, which are the base set of parameters
to be varied in the chains: the baryon density W hb

2, the cold
dark matter densityW hc

2, the optical depth at reionization τ, the
angular scale of the sound horizon at the surface of last
scattering θs, the amplitude As, and power-law spectral index ns
of primordial scalar perturbations, both taken at a pivot scale of
k=0.05Mpc−1 as chosen in the cosmological parameters
analysis of Planck Collaboration (2014a). We will often use
parameters derived from these six, including the total matter
density Ωm.

For constraints based only on lensing, the same priors as in
Sherwin et al. (2017) have been applied. When computing
constraints combining CMB lensing measurements with
primary CMB measurements, the PlanckTT and lowP like-
lihoods have been used, the latter relying on low ℓ CMB
temperature and polarization data.

5.1. ΛCDM Model

An alternative way to parameterize the amplitude of the
matter power spectrum is σ8, the rms mass fluctuation today in
8 h−1 Mpc spheres assuming linear theory. This parameter is
convenient for comparisons with results from galaxy surveys.

In Figure 3, constraints from lensing experiments, both CMB
lensing (Planck Collaboration 2016b; Sherwin et al. 2017) and
cosmic shear (Hildebrandt et al. 2017; Joudaki et al. 2017;
Troxel et al. 2017), are shown in the σ8−Ωm plane, compared
with expectations from the primary CMB fluctuations as
measured by Planck. There have been hints of mild tension
between PlanckCMB power spectrum constraints and probes
of low-redshift structure. The CMB lensing constraints are all
highly consistent with each other, and it can be seen that the
constraints from this paper (the SPT+PlanckCMB lensing
data) overlap with both the low-redshift probes and the primary
CMB estimates, although the primary CMB data are substan-
tially more precise. In making the CMB-lensing-only con-
straints, as was done in Planck Collaboration (2016b) and
Sherwin et al. (2017), the corrections to the response function
were held at the best-fit cosmology corresponding to the
PlanckTT and lowP likelihoods41 (Planck Collaboration

2016a). The close agreement between SPT + Planckand
Planckis not simply from the combined SPT + Planckdata set
including data from Planck. The SPT + Planckdata are based
on only ∼2500 deg2, and are mainly driven by the SPT data.
Joint constraints on Ωm and σ8 obtained by combining the

CMB lensing data with the primary CMB measurements from
Planckare shown in Figure 4. In general, the CMB lensing
data (either the full-sky Planckor 2500 deg2SPT + Planck)
prefer lower values of σ8, as could be expected from Figure 3.
A commonly used parameter for lensing constraints is
s W8 m

0.25. For SPT + Planckwe find s W8 m
0.25=0.598±0.024,

in excellent agreement with both the value found using
the Planckfull-sky lensing reconstruction, 0.591±0.021
(Planck Collaboration 2016b), and the estimate by ACTPOL of
0.643±0.054 (Sherwin et al. 2017).
CMB lensing data are most sensitive to overall shifts in the

amplitude of matter fluctuations. This amplitude can be
expressed as the rms deflection angle á ñd2 1 2. For SPT +
Planck, we use the samples from the MCMC chains for LCDM
to determine that this rms deflection angle is 2.27±0.16
arcmin (68%), in good agreement with the extremely precise
measurement of the full-sky Plancksurvey of 2.46±0.06.

5.2. Lensing Amplitude Compared to Expectations

Gravitational lensing of the CMB leads to a small amount of
smearing of the acoustic oscillations in the primary fluctua-
tions, an effect that has been well measured (Das et al. 2011a;
Keisler et al. 2011). The primary CMB fluctuations as observed
by Planckshow weak evidence for a slightly elevated amount
of lensing-like smearing of the acoustic peaks, although the
lensing power directly measured by Planckshows no such
excess (Planck Collaboration 2016b). Using the same effect
in SPT temperature (Story et al. 2013) and polarization
(Henning et al. 2017) power spectra, there was no evidence

Figure 3. Lensing constraints on σ8 and Ωm from optical surveys (KiDS-450,
CFHTLens, DES) and CMB measurements (ACTPOL, Planckfull sky, SPT +
Planck2500 deg2). Also shown are constraints from the Planckprimary CMB
power spectra. This work is in good agreement with both CMB and optical
surveys.

40 http://cosmologist.info/cosmomc/(2016 July version).
41 base_plikHM_TT_lowTEB.
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for such an excess of peak smoothing, with a modest (∼1σ)
preference for less lensing than expected.

The expected amount of lensing depends on the somewhat
uncertain cosmological parameters. To explore this, we
marginalize over cosmological parameters and use new
parameters to artificially scale the amount of lensing: AL scales
the lensing power spectrum in both the lens reconstruction
power and in the smearing of the acoustic peaks, and ffA scales
only the amplitude of the CMB lensing reconstruction power
spectrum. This parameterization ensures that the LCDM
parameters that control the predicted degree of lensing (such
as W hb

2 and σ8) are determined without considering the
measured amount of peak smearing or mode coupling, and that
these measurements are reflected entirely in AL and ffA .

As these parameters are defined, the LCDM prediction for
the reconstructed lensing power spectrum gets multiplied by
both AL and ffA . Therefore, the combination ffA ×AL
represents the amplitude for the lensing power relative to the
LCDM prediction when the cosmological parameter fits are not
sensitive to the observed amount of peak smearing.

With AL fixed to unity the known preference in the
Planckprimary data for AL>1 will instead drive a preference
for models with higher intrinsic lensing amplitudes, leading to
a preference for lower values of ffA when compared with
lensing reconstruction measurements that are otherwise con-
sistent with LCDM. When AL is free, the peak-smoothing
preference for AL>1 increases the predicted lensing recon-
struction power and therefore causes a lower ffA for a given
model compared with the lensing power spectrum measure-
ment. The combination AL× ffA thus gives the amplitude of
the lensing power spectrum compared to Planck-allowed
LCDM predictions when the peak smoothing effect is not
reflected in the Planckconstraints.

Posterior distributions for AL, ffA , and ffA ×AL from
chains using combinations of Planckprimary CMB data, the
Plancklensing power spectrum, and the lensing power
spectrum in this work are shown in Figure 5. For models with
AL=1 the measured SPT + Plancklensing power spectrum is
somewhat low, with ffA =0.91±0.06. The CMB lensing
reconstruction power spectrum measurements show no evi-
dence for an anomalous amount of lensing relative to the
amount predicted from the best-fit LCDM parameters deter-
mined in the primary CMB data when the peak smearing effect
has been marginalized over. Using SPT + Planckdata, we find
ffA ×AL=1.01±0.08 relative to the predicted level of

lensing for LCDM marginalized over AL; using the full-sky
Planckfull-sky lensing reconstruction, the result is only
slightly higher, ffA ×AL=1.05±0.06. The peak smearing
in the Planckprimary CMB power spectra, meanwhile,
indicates mild evidence for enhanced lensing, with AL=
1.22±0.10.

5.3. Spatial Curvature

Inflationary models predict that the universe should be close
to spatially flat, and the combination of observations of the
primary CMB, supernovae Ia, baryon acoustic oscillations, and
local Hubble constant measurements shows that spatial
curvature is not large (e.g., Komatsu et al. 2011). Constraints
from the primary CMB have a geometrical degeneracy that
allows spatial curvature to be increased while the Hubble
constant is adjusted to keep the angular diameter distance to
last scattering fixed; as a result, CMB measurements have
historically relied on Hubble constant priors or external
measurements to constrain curvature. As a probe of the local
universe, lensing partially lifts this degeneracy (Sherwin
et al. 2011). Figure 6 demonstrates this degeneracy-breaking
by adding 2500 deg2SPT + Planckor Planckfull-sky lensing
reconstruction information to the Planckprimary CMB
measurements. The constraint on spatial curvature from adding
SPT + Plancklensing information to Planckprimary CMB is
W = - -

+0.012k 0.023
0.021 at 95% confidence.

5.4. Massive Neutrinos

CMB lensing, as a measurement of the amplitude of
clustering at intermediate redshifts, is a potentially powerful
probe of neutrino masses (Smith et al. 2006; Abazajian
et al. 2015). Neutrino oscillation experiments have precisely
measured the differences in the squares of the masses between
the neutrino eigenstates, but the absolute masses have not been
measured. Laboratory limits constrain the mass of the electron
neutrino, but the strongest constraints on absolute neutrino
masses currently come from cosmology. Having a substantial
amount of the energy density in the form of massive neutrinos
leads to a suppression of structure on small scales in the matter
power spectrum. The Planckprimary CMB measurements
limit the sum of the masses to be nM <0.72 eV at 95%
confidence (Planck Collaboration 2016a). This constraint is
strongly driven by the measurement of lensing through the
smearing of peaks in the CMB power spectra.
As was seen in Planck Collaboration (2016a), Figure 7

shows that adding information from the lensing reconstruction
power spectrum reduces the nM posterior value at zero, but the
lensing reconstruction data also rule out large values of nM ,
with the combined result being a similar 95% upper limit.

Figure 4. Constraints on σ8 and Ωm, combining CMB lensing data with
primary CMB constraints. The largest contours show CMB primary CMB
constraints from Planck,intermediate contours show the impact of adding the
2500 deg2SPT + Planckdata, and the smallest contours show Planckprimary
data combined with Planckfull-sky lensing results. This work is in excellent
agreement with the Planckfull-sky lensing result.
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Using SPT + Planck, the upper limit on neutrino masses is
nM <0.70 eV at 95% confidence, compared to nM <0.68 eV

for adding Planckfull-sky lensing reconstruction data.

6. Discussion

The SPT + Planckdata are not quite as constraining as the
Planck-only lensing constraints; while the signal-to-noise per
pixel of the O17 lensing map is substantially higher, the
combined map covers only 2500 deg2. As discussed in O17,
the statistical precision of the combined lensing map is
dominated by the SPT data. This measurement is therefore a
nearly independent check on the Plancklensing measurement.

The SPT + Plancklensing measurements and resulting
cosmological constraints are in close agreement with the

full-sky lensing results of the Planckexperiment. For example,
the SPT + Plancklensing measurements are in excellent
agreement with a spatially flat universe, as predicted by
inflationary models, withW = - -

+0.012k 0.023
0.021 at 95% confidence,

while a constraint on local structure from SPT + Planckis
s W8 m

0.25=0.601±0.023. Using Plancklensing instead yields
W = - -

+0.005k 0.017
0.016 and s W8 m

0.25=0.607±0.015. These new
measurements are nearly statistically independent of the Planck-
only results, so the agreement between the data sets is
informative.

Figure 5. Lensing amplitude constraints. The solid line shows the marginalized posterior distribution of AL from a fit using only Planckprimary CMB power
spectrum data. This is a measure of the level of smearing of the acoustic peaks relative to the prediction for LCDM cosmological parameters from the Planckpower
spectrum, ignoring the peak smearing information. Dashed lines show posterior distributions for ffA from fits to Planckpower spectrum and full-sky Planckor
2500 deg2SPT + Plancklensing reconstruction data in which only the lensing reconstruction power spectrum is allowed to vary, and the peak smearing is constrained
to be that expected for LCDM. This is a measure of the lensing reconstruction amplitude relative to the prediction for LCDM cosmological parameters from the
Planckpower spectrum including the peak smearing information. Finally, the dotted–dashed lines show posterior distributions for ffA ×AL, i.e., the lensing
reconstruction amplitude relative to predictions for LCDM cosmological parameters from the Planckpower spectrum, ignoring the peak smearing information, from a
fit in which ffA and AL are allowed to vary.

Figure 6. Constraints on curvature for Planckprimary CMB power spectra
alone (colored points), and adding either full-sky Plancklensing (black
contours) or 2500 deg2SPT + Plancklensing data (green). Points from the no-
lensing chain are color-coded by the matter density.

Figure 7. Limits on neutrino masses, showing Planckpower spectrum
information on its own (gray), and adding either Plancklensing data (blue)
or SPT + Planckinformation (red).
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This trend is also true for slight tensions that exist in
Planckbetween the amount of lensing inferred from peak
smearing and the direct reconstructions from the higher-order
statistics. Measurements of the lensing amplitude from SPT +
Planckare in excellent agreement with the lensing amplitude
inferred from the Planckhigher-order statistics, and in slight
tension with that inferred from CMB peak smearing. When
marginalizing over the peak smearing effect, the SPT +
Planckdata are in close agreement with the expected amount of
gravitational lensing otherwise predicted by the observed CMB
fluctuations.

The amount of lensing seen in SPT + Planckis also broadly
consistent with both the amplitude inferred from low-redshift
galaxy lensing studies and the amplitude of structure inferred
from the Planckprimary CMB measurements, as was also the
case with Planck-only lensing constraints. More precise CMB
lensing measurements will be required to further investigate
possible tensions between low-redshift and high-redshift
determinations of the amplitude of structure.
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