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ABSTRACT OF THE DISSERTATION 
 
 
 

The Dynamics of Entangled DNA Networks using Single-Molecule Methods 

 
 

by 
 
 
 

Cole David Chapman 
 
 
 

Doctor of Philosophy in Physics 
 
 
 

University of California, San Diego, 2015 
 
 
 

Professor Douglas E. Smith, Chair 
 
 

Single molecule experiments were performed on DNA, a model polymer, 

and entangled DNA networks to explore diffusion within complex polymeric fluids 

and their linear and non-linear viscoelasticity. DNA molecules of varying length and 

topology were prepared using biological methods. An ensemble of individual 

molecules were then fluorescently labeled and tracked in blends of entangled linear



 

xii 

and circular DNA to examine the dependence of diffusion on polymer length, 

topology, and blend ratio. Diffusion was revealed to possess a non-monotonic 

dependence on the blend ratio, which we believe to be due to a second-order effect 

where the threading of circular polymers by their linear counterparts greatly slows the 

mobility of the system. Similar methods were used to examine the diffusive and 

conformational behavior of DNA within highly crowded environments, comparable to 

that experienced within the cell. A previously unseen gamma distributed elongation of 

the DNA in the presence of crowders, proposed to be due to entropic effects and 

crowder mobility, was observed. Additionally, linear viscoelastic properties of 

entangled DNA networks were explored using active microrheology. Plateau moduli 

values verified for the first time the predicted independence from polymer length. 

However, a clear bead-size dependence was observed for bead radii less than ~3x the 

tube radius, a newly discovered limit, above which microrheology results are within 

the continuum limit and may access the bulk properties of the fluid. Furthermore, the 

viscoelastic properties of entangled DNA in the non-linear regime, where the driven 

beads actively deform the netw ork, were also examined. By rapidly driving a bead 

through the network utilizing optical tweezers, then removing the trap and tracking the 

bead’s subsequent motion we are able to model the system as an over-damped 

harmonic oscillator and find the elasticity to be dominated by stress-dependent 

entanglements.   
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Chapter 1 

Polymers, Single-Molecule Studies 

 

1.1 Polymer introduction 

A polymer is a unique macromolecule, made up of repeated subunits of 

monomers, which display rich, complex behavior when in concentrated solutions or 

melts. Polymers are pervasive in everyday life; they are prevalent in nature and make 

up such basic materials as silk, wool, and the cellulose in cell walls, and are also 

ideally suited for more complex roles as seen in RNA, proteins, and the storage of 

genetic material in DNA. Polymers may also be industrially synthesized and are 

pivotal for a variety of fields such as the materials industry, where they are used to 

create such common and important materials as nylon, plastics, and rubber. When 

concentrated, polymeric fluids display unique viscoelastic properties, exhibiting both a 

viscous and elastic response to deformations, which are highly dependent on the 

polymer length, structure, and topology. This ‘tunability’ is a large part of what makes 

polymers and polymeric fluids such an important part of the materials industry.  

 

1.2 Modeling polymers 

The simplest and most straightforward method for modeling polymers is to 

treat them as a system of N rigid rods, each of length b, referred to as the Kuhn length, 

where the length of the polymer, L, is then simply Nb. The Kuhn length (twice the 



2 

 

persistence length for a flexible polymer) is commonly used to describe the flexibility 

of a polymer. The rods are connected at a joint and oriented via a simple self-avoiding 

random walk, where no two segments of the polymer may occupy the same space. 

This is referred to as the freely jointed chain, or Gaussian chain model and the result is 

a random, roughly spherical coil (Figure 1.1) (1). The approximate size of this coil, 

termed the radius of gyration, is an important quantity in polymer physics and is 

defined as <Rg> = Nb2/6 and scales as Rg ~ L1/2 for an isolated polymer in an ideal 

solution (1).  

 
Figure 1.1  The Gaussian chain model, where a polymer is composed of N rigid rods 
of length b. The random orientation of the joints results in an approximately spherical 
coil, of radius Rg. 
 
 
 
1.3 Reptation model 

For dilute polymer solutions, the distance between polymers is large enough 

that intermolecular interactions may be ignored. As the concentration, c, increases 

however, the polymers will begin to overlap with one another for c > c*, where c* is 
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known as the overlap concentration (1). The dynamics of this semi-dilute regime are 

described by the Rouse model where the excluded volume interaction and the 

hydrodynamic interaction are disregarded (1). In this regime, the diffusion of 

individual polymers, D, will be slowed due to the presence of the surrounding 

molecules and is predicted to scale inversely with polymer length, D ~ L-1. The 

diffusion has a slightly weaker predicted dependence on concentration and scales as D 

~ c-1/2. 

For concentrations much higher than c*, the polymers become highly 

entangled with one another, significantly reducing the mobility of individual polymers 

and the system as a whole. The dynamics for concentrations at which entanglements 

dominate, c > ce, where ce is the so called critical entanglement concentration (ce ~ 

6c* (2)), are best described via the reptation model, first introduced by de Gennes in 

1971 and the cornerstone of entangled polymer physics (3). In this model, each 

polymer in the solution is confined to a tube-like region by the surrounding polymers, 

thus restricting the diffusion of the polymer to one-dimension along the axis of the 

tube and preventing any motion transverse to the tube (Figure 1.2). In this way, a 

highly complex, many-body problem (a polymer confined by many other polymers) is 

simplified into the manageable problem of a single polymer in a static confining tube 

(4). As the polymer diffuses via Brownian motion along the tube, the ends of the 

polymer escape this confinement and explore the surrounding area, thus creating a 

new portion of the tube, while the vacated end (opposite the exploring end) of the tube 

is destroyed, as the tube is not persistent. In this manner, the polymer reptates (so 
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named for its similarity to the motion of a snake) out of its confining tube, while 

forming a new one. The time-scale required for a polymer to vacate its tube is known 

as the disengagement time and is predicted to scale with polymer length for a 

monodisperse solution as L3, where τd = N3b4ς0/π2kBTa2 (5). τd can be evaluated 

experimentally and is highly dependent on polymer length, concentration, and 

topology. Experimentally, however, τd ~ L3.4 rather than the predicted scaling of 3 (6). 

The difference is accounted for in what is known as tube or contour length 

fluctuations, where the polymer chain will undergo thermally driven contraction and 

stretching, thus the tube is ‘forgotten’ more quickly than would be otherwise (4). 

Additionally, due to polymer entanglements, diffusion in this regime is significantly 

slowed, with a stronger dependence on polymer length and solution concentration, D ~ 

L-2c-7/4, than in the Rouse model. Similar to the experimentally observed increase in 

length dependence seen for the disengagement time, accounting for contour length 

fluctuations corrects for the slight discrepancy between initial reptation model 

predictions and observation for diffusion, resulting in D ~ L-2.3 (7).  
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Figure 1.2  (a.) A polymer entangled in a concentrated network of surrounding 
polymers. (b.) The surrounding polymers may be modeled as simple obstacles, 
restricting the polymer to a tube-like region, along which the polymer may reptate. 

 

 

It should be noted that this model provides a coarse picture of the internal 

dynamics of entangled polymer networks (albeit an incredibly powerful one, which 

makes countless accurate scaling predictions), with many subsequent theories 

attempting to fill in some of the finer details to increase our resolution of the behavior 

of individual polymers within these networks. In addition, the tube model, originally 

developed for polymer melts, has been successfully extended to apply to entangled 

polymer solutions using ‘blob’ theory. In this theory, the solution is modeled as a melt 

of chains. Each chain is then divided into correlation blobs with the blobs then 

becoming the effective monomers of the system (8). 
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1.4 Single-molecule technique basics 

As mentioned previously, the reptation model has been incredibly successful in 

its many predictions yet fails to fully describe the physical dynamics at the molecular 

level. Single-molecule techniques, central to the research described in this thesis, 

provide a method for revealing new insights into the internal dynamics of polymer 

behavior at the molecular, rather than bulk, level. With this method, individual 

molecules are typically labeled (typically with a fluorescent marker) and observed and 

recorded, allowing for direct observation of single-molecule dynamics such as their 

simple Brownian diffusion. This has led to many important findings: For example, 

single-molecule techniques have allowed researchers to directly visualize polymers 

undergoing reptation within an entangled network (9), confirming the validity of the 

tube model and have even measured the confining force from these tubes for an 

individual polymer in solution (10). 

 

1.5 DNA as a model polymer 

Although many candidates exist, DNA has been shown to be ideally suited for 

single-molecule polymer studies for many reasons. Perhaps the strongest case for 

using DNA is the sample monodispersity. Unlike synthetic polymers, the length of 

each DNA molecule is exactly known and additionally the topology may be tightly 

controlled through the use of enzymes, with little risk of contamination, a current 

impossibility in industrially synthesized polymers (11, 12). The often drastic change in 

viscoelastic properties from even a small fraction of impurities (linear polymers in a 
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circular polymer solution, for example) highlight the advantage of using DNA over 

other synthetic polymers (13). DNA molecules may also be easily labeled with 

fluorescent molecules, for straightforward visualization. Building on the previous 

work of Dr. Anderson and Dr. Smith, DNA was used as the polymer of choice for the 

studies in this thesis. 

 

1.6 DNA preparation  

DNA samples for study are prepared via E. coli bacterial stocks, containing the 

DNA sequence of interest, stored at -80° F. The E. coli cells are placed into a nutrient 

rich LB broth and allowed to multiply overnight. Following centrifugation, the cells 

are lysed to release their cellular contents. Through a series of purifications, the DNA 

molecules are isolated, yielding a pure DNA solution typically ranging from ~ 0.5 – 2 

mg/ml. The topology of the resulting DNA is supercoiled, however, so enzymes are 

added to convert the DNA to the desired topology of either relaxed circular or linear. 

For a more thorough explanation of the DNA preparation, see reference (14). 

To visualize the DNA, the molecules of interest are labeled with an 

intercalating dye, YOYO-1, which has an excitation/emission of 491/509 nm (Figure 

1.3). Through the use of basic filters, we can isolate the emission wavelength to 

visualize the labeled DNA exclusively. When attached to DNA, the dye is ~103x 

brighter than when free in solution, ensuring only the bound dye molecules are 

detected. A trace amount of the fluorescently labeled DNA molecules are embedded 

within the network of interest, then videos of individual molecules diffusing are 
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recorded with their positions and conformations tracked using custom written software 

(Matlab). Hundreds of videos are recorded for each case of interest, to build up a 

statistically significant ensemble of molecules, from which a diffusion coefficient and 

other relevant parameters are calculated.  

 

 

Figure 1.3  A 115 kbp DNA molecule, labeled with YOYO-1 dye. 

 

1.7 Particle Tracking 

To calculate the center of mass (COM) of the individual molecules, an 

approximately uniform distribution of dye molecules (~4:1 base pair to dye ratio) 

along the DNA molecule is assumed. Under this assumption, the brightness is 

proportional to the mass of the molecule, allowing the brightness to be used as a proxy 

for calculating the DNA COM. From the COM values, the ensemble averaged mean 

squared displacement (MSD) can be calculated, <|x – x0|2>. Here, the Einstein 

relation, <|x – x0|2> = 2Dt, is invoked to extract a diffusion coefficient, D (1). 
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Additionally, the conformation of the diffusing DNA molecules may be evaluated. 

Custom written code (Matlab) is used to determine the outline of the DNA, which is 

used for conformation analysis and its dependence on the environmental conditions of 

the polymer solution.  

 

1.8 Simulations 

In addition to experiments, simulations play a large role in polymer theory and 

can be used to aid in explaining the physics/mechanics behind certain phenomena 

observed in single molecule studies. For example, in the lattice based bond fluctuation 

model (BFM), monomers are placed and may occupy the vertices of a simple cubic 

lattice (15). BFM is a Monte Carlo simulation, therefore a monomer from the system 

is selected at random and also moved at random if the move direction is permissible, 

i.e. satisfies the defined conditions such as not occupying the same vertex as another 

monomer, bond length does not exceed threshold value, etc. Using this model, 

individual polymer COMs can be tracked over time (Monte-Carlo step) to determine 

an ensemble averaged MSD, allowing multiple parameters of interest to be calculated.  

 

1.9 Open questions in polymer physics 

Despite their ubiquity and the existence of reptation theory dating back more 

than 40 years, many open questions in polymer physics remain. For example, the 

dynamics of blends consisting of both linear and circular polymers, important 

particularly in industry and medicine in the creation of tunable materials and 
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biomaterials, are still not well understood. Additionally, within highly crowded 

environments, comparable to the dense intracellular environment, sub-diffusive 

behavior has been reported (16) with the potential crowding effects (pivotal for such 

medicinal areas as gene therapy and drug delivery (17), which often rely solely upon 

diffusion as a delivery mechanic) defying classical reptation theory, as the typical 

crowders may be too short to entangle with one another.  

These are just a few of the questions my research attempts to answer, as the 

advancement of polymer theory, via single-molecule techniques, has huge 

implications in industry, medicine, and a variety of other fields.  



 

11 

Chapter 2 

Rheology and Microrheology 

2.1 Rheology  

Rheology is the study of a fluid’s response to deformation and is used to 

determine a fluid’s viscoelastic properties in bulk. Typical rheological measurements 

involve applying an oscillatory strain and recording the fluid’s response to the applied 

strain. For a purely viscous fluid, the shear stress, σ, is purely proportional to the shear 

rate, that is σ ~ γ’, whereas for a purely elastic fluid the shear stress is proportional to 

the current shear strain, σ ~ γ. Various geometries for rheometers exist such as the 

parallel plate model, where a strain is induced via rotation of the plate(s), and the cone 

and disk model, where a rotating cone has the added benefit of creating a uniform 

shear rate throughout the fluid.  

Entangled polymer solutions are viscoelastic and behave as a non-Newtonian 

fluid, that is their apparent viscosity varies with shear rate. Often, the apparent 

viscosity of an entangled polymeric fluid decreases with increased strain, a 

phenomena known as shear thinning. For low oscillation frequencies, referred to as the 

terminal regime, viscoelastic fluids are liquid-like with G’’  >  G’. Here G’ ~ ω2 and G’ ~ 

ω. From this rapid growth (ω2 scaling) G’ will eventually exceed G’’ for increasing ω, 

thus the elasticity of the fluid will begin to dominate the response (5). The point at 

which G’  ~  G’’ is known as the crossover frequency and can be used to calculate the 

disengagement time, τd = 1/ωc. Here, the induced deformations from the oscillations 
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are occurring quicker than the timescale at which the polymers may reptate out of their 

confining tube, resulting in the observed increase in elasticity.  

 

2.2 Microrheology 

While highly effective at measuring the viscoelastic properties of complex 

fluids in bulk, ultimately rheology must rely on theoretical predictions to infer the 

behavior of a given fluid at the molecular level. As a response to this need for higher 

resolution, a powerful and relatively new set of techniques known as microrheology 

have been developed, capable of directly probing the local viscoelasticity at the 

molecular level. Microrheology has a number of advantages including small sample 

sizes, sensitivity to small forces (on the order of piconewtons), and the ability to detect 

microscale heterogeneities, imperceptible to classic bulk rheology techniques. All 

microrheology measurements involve embedding a dilute amount of micron-sized 

beads into the complex fluid of choice and operate under the assumption that the 

material behaves as a homogenous continuum on the length scale of the probe. From 

there, however, two distinct classes of measurements exist, passive and active 

microrheology.  

In passive microrheology, the embedded beads are allowed to diffuse naturally 

via Brownian motion with their positions tracked. From the particle tracking, an MSD 

is developed from which the viscoelastic properties are deduced. The bulk modulus, 

G*, can be calculated from the MSD, 𝐺∗ = !!!
!!" !!!(!)

. Then using the relation: 
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𝐺∗ = 𝐺! + 𝑖𝐺′′, G’ and G’’ can be determined, where G’ is the elastic modulus and the 

real portion of G*, and G’’ is the loss modulus and the imaginary portion of G* (18). 

In active microrheology, on the other hand, the embedded microspheres are 

actively driven via magnetic or optical tweezers. Magnetic tweezers utilize super-

paramagnetic particles (18), which are driven by strong magnets and tracked using 

video microscopy. Optical tweezers, on the other hand, use highly focused lasers to 

capture and drive individual embedded microspheres (19). Radiation pressure from the 

refracted light pulls the bead (of a higher index of refraction than the medium) towards 

the center of the trap radially and also counters the scattering force felt from the 

reflected light, preventing the bead from travelling upstream in the direction of laser 

propagation. Conservation of momentum dictates that any radial displacement of the 

bead from the trap center results in a deflection of the beam, typically recorded 

downstream from the focal plane using a position-sensing detector (PSD). 

Additionally, for small displacements radially, the restoring force is approximately 

that of a Hookean spring and thus a spring constant or trap stiffness, ktrap, may be 

calculated by observing the beam deflection for a trapped bead oscillating within a 

solution of known viscosity, such as water (η = 0.001 Pa s) using simple Stokes’ drag, 

  𝐹 = 𝑘!"#$Δ𝑥 and 𝐹 = 6𝜋𝜂𝑅𝑣. Using this method, pN-scale forces can be accurately 

measured to track a fluid’s response to deformations from the optically driven 

microsphere, which are typically oscillated sinusoidally (Figure 2.1).  
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Figure 2.1  Active microrheology schematic. An embedded microsphere is captured 
and oscillated sinusoidally at a fixed frequency and amplitude. The displacement of 
the microsphere from trap center is used to calculate the force felt by the microsphere. 
 

 

2.3 Tweezers setup 

For our microrheology measurements, we have developed and built a dual-

force optical tweezers setup using a highly modified, inverted fluorescence 

microscope (IX-71, Olympus). The traps are formed from a 1W, 1064 nm fiber optic 

laser which is initially directed through a Faraday isolator, preventing any interference 

caused by back-reflection of the beam. The beam then travels through a beam 

expander, which increases the beam diameter by 20x. Following expansion, the beam 

is then split into two distinct polarizations using a polarizing beam splitter (PBS). One 

beam is then reflected off a static mirror while the other beam is reflected off a 
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steerable, piezoelectric mirror allowing manipulation of the final trap position, with 

both beams then directed towards a second beam expander. Following the second 

expansion, the beams travel through a 1.2 NA, 60X water immersion objective, which 

tightly focuses the beams, creating two distinct optical traps. The beams are then re-

collimated using a 1.4 NA oil immersion condenser and are again split with a PBS and 

directed to two separate PSD’s, which constantly monitor the traps’ position at 20 

kHz. Schematic of the setup is shown in Figure 2.2. 

The two traps may be driven sinusoidally relative to the solution by oscillating 

the sample stage (while the traps remain stationary) at varying frequencies, resulting in 

a sinusoidal force response, which can be fit to a sine function and used to calculate 

the frequency dependent viscoelasticity of the fluid. The portion of the force response 

in phase with the stage velocity represents the viscous portion, while the elastic 

portion is in phase with the stage position. Additionally, the inverted microscope is 

capable of simultaneous epi-fluourescence microscopy, allowing for direct 

visualization of the sample chamber throughout any experiment.  
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Figure 2.2  Schematic for dual-force optical tweezers setup with epi-fluorescence 
microscopy.  



17 

 

2.4 Open questions in rheology 

It has been widely assumed that for microrheology studies to access the 

macroscopic rheological properties of complex fluids, the embedded microspheres 

must be larger than the mesh size of the entangled network. For beads smaller than 

this mesh size, particles used in passive studies have been found to diffuse much 

quicker than predicted by the Stokes-Einstein relation (20, 21). However, this limit, 

where the bead must simply be larger than the characteristic mesh size of the network, 

is yet to be experimentally validated and is critical to proper interpretation of 

microrheological results.  

Additionally, while the reptation model has been incredible in its ability to 

predict scaling for many observations in linear rheology, the dynamics (and 

subsequent scaling predictions) break down for non-linear measurements. In this non-

linear regime, the network undergoes significant deformation, where the classical tube 

theory assumption that the tube walls are static and uncrossable breaks down. Multiple 

theories and extensions have been proposed to account for these discrepancies with 

classical tube theory including the idea of chain-stretching, convective constraint 

release and entanglement constraint effects, among others. Research from this thesis 

attempts to clarify some of the issues associated with this non-linear regime (Chapter 

6).   

In addition to the examination of the diffusion of individual molecules, which 

shed light on the mechanics of individual polymers in solution, these are a few of the 
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questions my research attempts to answer regarding the dynamics of entanglements 

and polymer networks as a whole.



 

19 

Chapter 3 

Complex Effects of Molecular Topology on Diffusion in 

Entangled Biopolymer Blends 

 

3.1 Abstract 

 By combining single-molecule tracking with bond-fluctuation model 

simulations, we show that diffusion is intricately linked to molecular topology in 

blends of entangled linear and ring biopolymers, namely DNA. Most notably, we find 

a previously unreported non-monotonic dependence of the self-diffusion coefficient 

for linear DNA on the fraction of linear DNA comprising the ring-linear blend, which 

we argue arises from a second-order effect of ring DNA molecules being threaded by 

varying numbers of linear DNA molecules. Results address several debated issues 

regarding molecular dynamics in biopolymer blends, which can be used to develop 

novel tunable biomaterials. 

 

3.2 Introduction 

Entangled polymers display complex diffusional transport properties that are 

strongly dependent on molecular concentration, length, and topology. One such 

system of great interest is DNA, which is not only an important biopolymer, but has 

also served as a powerful model system for probing general polymer physics questions 

(22-25). While most progress has focused on monodisperse linear and branched
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polymers, blends of polymers of varying lengths and topologies are favored in 

practical materials engineering to effectively tune properties such as miscibility, strain 

hardening, etc (26, 27). Biological cells, which exhibit remarkable mechanical 

properties, also contain a mixture of nucleic acid and protein polymers of varying 

topologies. 

The most powerful theoretical concept in entangled polymer dynamics is the 

tube model, which postulates that each individual entangled polymer is effectively 

confined, by the surrounding molecules, to diffuse in a tube-like region parallel to its 

contour (i.e. reptation). While originally developed for polymer melts, the tube model 

has been successfully extended to polymer solutions using ‘‘blob’’ theory (28-30), in 

which each chain is divided into correlation blobs and the solution is modeled as a 

melt of chains with monomer size equal to the blob size. While the chain-end 

mediated process of reptation is the foundation of much of our present understanding 

of the dynamics of linear and branched polymers, extension of the tube model to ring 

polymers, which have no ends by which to execute standard reptation, is nontrivial 

and recognized as a major challenge (11, 31-47). Further, experimental data on 

entangled rings is highly conflicting (11, 34-36, 48) due, in part, to the extreme 

difficulty of synthesizing samples of purely ring polymers devoid of linear 

contaminants (11, 49), coupled with the fact that small quantities of linear polymers 

appear to dramatically alter the rheological properties of ring polymer melts (11, 33, 

35, 50). Nonetheless, blends of linear and ring polymers hold great promise as 

viscoelastic materials and fluids with highly tunable properties. 
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Recently, we used single-particle tracking to measure self-diffusion 

coefficients of linear and ring DNA molecules in solutions of entangled linear or ring 

DNA, and observed dramatic effects of molecular topology (2, 39). In these studies, 

tracked linear or ring molecules were added to each solution at essentially infinite 

dilution, so “tracer” diffusion coefficients in entangled solutions of purely linear or 

purely ring DNA were measured. Tracer diffusion coefficients exhibited a strong and 

complex dependence on the topology of both the tracer and the surrounding entangling 

molecules, and this dependence was most dramatic for the longest molecular lengths 

and highest solution concentrations examined (i.e. highest degree of entanglements). 

Diffusion in blends containing significant fractions of both ring and linear molecules 

(ring-linear blends) is expected to exhibit even richer behavior.  

In ring-linear (RL) blends, rings can become threaded by their linear 

counterparts, in which case the only available diffusive mechanism is predicted to be 

via the threading linear polymers releasing their constraints by unthreading themselves 

(via reptation) (31, 46, 51, 52). This constraint release process, for which there is 

indirect experimental evidence (11, 39, 47), is much slower than reptation. Several 

other ring polymer configurations have also been conjectured in RL blends including 

once-threaded, unthreaded-linear, and unthreaded-branched (31, 37, 46, 52). Each 

configuration relies on different diffusive mechanisms, but the extent to which each 

configuration and diffusive process play a role in RL blends is still debated (31, 40, 

46, 47). 
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Rheological studies have examined bulk properties of RL blends such as 

viscosity, relaxation spectra and terminal relaxation times (11, 33, 35, 44, 50), 

attempting to test theoretical predictions (31, 40, 52). While previous studies have all 

found a larger than expected rise in viscosity of ring polymer melts upon addition of 

small amounts of linear polymers, the dependence of viscosity on the fraction of linear 

polymers in the blend (fL) remains unclear. Some experimental and simulation studies 

have reported a non-monotonic dependence of viscosity on fL with a maximum 

reached at fL ≈ 0.5 (53, 54), while others have found that viscosity consistently 

increased with fL, approaching but never surpassing the value for a pure linear 

polymer melt (55, 56), Rings have also been shown to have shorter relaxation times 

and different relaxation spectra than linear polymers of equal length (11, 25, 33, 35, 

57). However, the purity of the ring samples and extent to which the rings are 

entangled in each of these studies remains controversial. 

Molecular diffusion in RL blends has been examined in recent experiments 

(44, 47, 58-60) and simulations (43, 61) which have reported conflicting results with 

multiple theoretical interpretations. Most recently, NMR was used to measure the 

dependence of the average blend self-diffusion (Dblend) and ring polymer self-diffusion 

(DR) on fL. While DR decreased linearly with increasing fL, Dblend showed a non-

monotonic dependence on fL with a minimum reached at fL ≈ 70% (44). These results 

contrast with previous findings reporting that blend composition has little effect on 

diffusion in RL blends (32, 62). 
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Previously, we implemented a Monte Carlo simulation approach to model RL 

blends, using a simple bond-fluctuation model (BFM) with discretized polymers on a 

lattice. The predictions of the model were consistent with our experimental results 

described above (2, 39). In addition, we predicted that the self-diffusion coefficient for 

ring polymers (DR) would decrease nonlinearly with the fraction of linear polymers in 

the blend (fL), decreasing more rapidly at low fL and slowly reaching a plateau at the 

highest fL (41). We also predicted that the linear polymer self-diffusion coefficient (D-

L) would decrease at low fL and reach what we believed to be a fL-independent plateau 

around fL ≈ 30%.  

In this article, we present experimental and simulation results that, for the first 

time, systematically characterize the effect of molecular diffusion of both linear and 

ring molecules on blend composition in entangled ring-linear blends.  

 

3.3 Methods 

We have chosen to use double-stranded DNA as our model polymer for the 

described experiments, as DNA, beyond its biological importance has been well 

established as a model system for probing fundamental questions in polymer physics 

(22, 24, 25). Further, DNA is amenable to several experimental techniques which are 

advantageous for the present studies including preparation of ring constructs (11, 12, 

63), fluorescent-labeling and single-molecule tracking of tracer molecules. While 

DNA is less flexible than typical synthetic polymers, a well-accepted notion in current 

polymer theory is that polymers of varying chemical composition, length and 



24 

 

flexibility when scaled according to the number of monomers or “blobs”, exhibit 

universal properties (28, 30). 

Details of all experimental techniques used, briefly summarized below, have 

been thoroughly described in Refs. (2, 14, 39, 64). Double-stranded DNA molecules, 

with contour lengths of 11 and 45 kilobasepairs (kbp), corresponding to 3.74 µm (~75 

persistence lengths) and 15.3 µm (~305 persistence lengths), respectively, were 

prepared by replication of cloned plasmid and fosmid constructs in E. coli, followed 

by extraction and purification. Restriction enzymes (BamHI, ApaI) and 

Topoisomerase I were used to prepare linear and ring forms, respectively. Blended 

solutions of varying weight fractions of linear and ring DNA, in aqueous buffer (10 

mM Tris-HCl (pH 8), 1 mM EDTA, 10 mM NaCl), with overall solution 

concentrations (c) of 0.1, 0.5 and 1.0 mg/ml were prepared, as depicted in Figure 3.1. 

A trace amount (<10-3c) of linear or ring DNA (tracers), labeled with YOYO-I 

(Invitrogen) for tracking, was mixed with the desired blended DNA solution (see 

Figure 3.1), and imaged with a fluorescence microscope using a 60x 1.2 NA water-

immersion objective. Note that because the tracer concentration is <1/1000 of the 

overall solution concentration, the presence of the tracers can be neglected when 

determining the overall solution concentration c and the weight fraction of linear DNA 

in the blended solution (fL). As reviewed in Ref (24), YOYO-I labeling slightly 

increases both the persistence length and contour length of DNA by ~1.34. However, 

the number of persistence lengths and basepairs per persistence length remain 

unchanged. This small length change has a minimal effect on the dynamics of the 
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tracer DNA (2, 64), such that tracers are representative of the unlabeled DNA of equal 

length and topology in the solution. Images were captured at 10 frames/sec with a 

high-resolution CMOS camera (Hamamatsu). Center-of-mass (x, y) coordinates of 

>200 paths of different molecules were tracked, and the Einstein relation <x2> = 

<y2> = 2Dt was used to determine diffusion coefficients. Errors were estimated using 

the bootstrap method (65). 

 

Figure 3.1 Schematic of experimental parameter space probed for ring-linear DNA 
blends. To track the center-of-mass motion of single linear molecules (to determine 
DL) in ring-linear blends, a trace amount of fluorescent-labeled (green) linear tracer 
chains are embedded in entangled solutions of ring (blue) and linear (red) DNA of 
varying solution concentration (c) and linear chain fraction (fL). Concentration 
increases from 0.1 mg/ml (top row) to 1.0 mg/ml (bottom row) and linear fraction 
increases from 0 (left column) to 1 (right column). Identical experiments are carried 
out using fluorescent-labeled ring tracers to determine DR. 
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We used the lattice bond-fluctuation model to simulate ring-linear blends and 

predict molecular self-diffusivities. The underlying protocol, which has been described 

and validated in sufficient detail previously (41, 43, 61), involves placing and moving 

beads corresponding to monomers of linear and ring polymers on a simple cubic 

lattice, subject to the constraints of excluded volume, bond non-crossability, and chain 

connectivity. The self-diffusion coefficient is computed from the mean-squared 

displacement of the center-of-mass of the polymers. The 45-kbp system at c = 1 

mg/ml was found to be equivalent to N = 316 beads per polymer at a total fractional 

lattice occupancy of f = 0.5 in the BFM, using the correlation blob model (2, 41). We 

also performed simulations at f = 0.25 (corresponding to c = 0.5 mg/ml) and f = 0.05 (c 

= 0.1 mg/ml). For each f, we spanned 0 ≤ fL ≤ 1, adjusting the simulation box size and 

number of replicas to ensure >500 molecules were used to estimate the self-

diffusivity.  

 

3.4 Results 

 Measured diffusion coefficients for linear and ring tracer DNA molecules are 

plotted as a function of linear fraction fL in Figure 3.2. Molecular lengths and solution 

concentrations probed range from well-above to well-below the critical concentration 

for entanglement (ce), above which linear molecules exhibit reptation dynamics (ce ~ 

0.4 mg/ml, ~1.3 mg/ml for 45 kbp, 11 kbp DNA, respectively (2)). 

For the 45-kbp DNA at c = 1.0 mg/ml (Figure 3.2a) both DL and DR are highest 

in a pure solution of rings (fL = 0). DR decreases rapidly as fL increases, dropping by a 
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factor of ~4 with only 20% linear molecules, and by a factor of 8 at 40% linear DNA. 

For 0.4 < fL < 1, DR continues to monotonically drop, albeit with a weaker fL 

dependence, reaching a minimum, ~17 times slower than DR(fL  = 0),  at fL  = 1.  

Interestingly, our results for DL display a non-monotonic dependence on the 

linear fraction fL, steadily decreasing by a factor of ~3 as fL increases from 0 to 50%. 

As fL is further increased DL steadily increases, almost doubling as fL increases to 1. 

To our knowledge, such behavior was not anticipated by any prior experimental or 

theoretical work. 

At c = 0.5 mg/ml (Figure 3.2b), trends similar to the 1.0 mg/ml case are found 

for both DL and DR, although the dependence on fL is weakened. DR decreases by a 

factor of ~3 as fL increases from 0 to 1, with a ~2x reduction at fL = 0.2. Likewise, DL 

displays a modest non-monotonic dependence on fL, reaching a minimum at fL =0.6.  

For the lowest concentration (0.1 mg/ml, Figure 3.2c), which is well below the 

critical concentration for entanglement, both DL and DR showed little dependence on 

blend composition, demonstrating that the complex dependence of molecular diffusion 

on blend composition is due to molecular entanglements. Similar results were found 

for ~4x shorter (11-kbp) DNA at 1.0 mg/ml (Figure 3.2c); however the 11-kbp DNA 

does exhibit a modest decrease in DR with fL similar to that of the entangled blends 

discussed above but much weaker. As the 11-kbp, 1.0 mg/ml system is quite close to 

the critical concentration for entanglement (ce ~1.3 mg/ml), this small decrease is 

expected as entanglements begin to form, and further demonstrates the dependence of 

the results on molecular entanglements.  
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Figure 3.2 Measured self-diffusion coefficients vs. fraction of linear DNA (fL) in ring-
linear blends. Self-diffusion coefficients for ring (blue) and linear (red) DNA in ring-
linear blends at three overall solution concentrations, 0.1 mg/ml (triangles), 0.5 mg/ml 
(circles), and 1.0 mg/ml (squares), and two molecular lengths, 45-kbp (solid lines) and 
11-kbp (dashed lines) are shown. The molecular lengths and solution concentrations 
displayed in each panel, (a), (b), and (c), are listed in the top left corner of the 
corresponding panel. Insets show zoomed in plots for linear DNA with appropriately 
adjusted y-axes. 
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If our BFM simulations capture the essential physics, the mapping between 

experimental diffusivities (µm2/s) and BFM diffusivities ((lattice units)2/(Monte Carlo 

Step)) is expected to be proportional. Figure 3.3 presents simulation and experiment 

results on the same plot, normalized such that DL
*= DL(fL = 1, c = 1 mg/ml) = DL(fL = 

1, f = 0.5).  

At the highest (f = 0.5) and lowest (f = 0.05) concentrations, simulations match 

experimentally observed trends quite well over the entire fL range. For the 0.5 mg/ml 

(f = 0.25) case, experimental and simulation results show similar variations of DL and 

DR with fL, however the magnitudes of the normalized diffusion coefficients differ by 

a factor of ~2. We believe this discrepancy arises from the fact that this concentration 

is in the crossover regime between entangled and dilute polymer dynamics, where 

peculiarities of the BFM lattice are most apparent. For example, previous studies on 

ring polymers indicate that while both the experiments and the BFM exhibit a 

crossover from Rouse scaling (DR ~ c-0.5) to reptation scaling (DR ~ c-1.75), and agree in 

both the dilute (Rouse) and entangled (reptation) regimes, there are noticeable 

differences in the location (ce ~ 0.4 mg/ml, fe ~ 0.25) and sharpness of the transition (2, 

43). Future work will examine this discrepancy in more detail, however it is outside 

the scope of the current study which is focused on entangled ring-linear blends well 

above ce. 



30 

 

 

Figure 3.3 Comparison between experiment and simulation results for self-diffusion 
coefficients vs. linear fraction fL in ring-linear blends. Experiment (solid lines) and 
simulation (dashed lines) results are normalized by DL

* = DL(fL = 1, c = 1 mg/ml) = 
DL(fL = 1, f = 0.5). Symbols and colors are as in Figure 3.2.  
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Importantly, the simulations also exhibit the experimentally observed non-

monotonic variation of DL(fL) at f = 0.25 and f = 0.5. Because this feature is less 

prominent than the rapid initial decrease of DR(fL), we previously noted that DL(fL) 

appeared to plateau at fL ~ 0.3 in our initial BFM studies (41). However, the observed 

minimum in DL is significant as it is above the measured error in both simulations and 

experiment. The non-monotonicity is also evident in the autocorrelation of the end-to-

end vector in the simulations, which is defined as, 

 

where Ree(t) is the end-to-end vector of a linear molecule at time t, and the 

angular brackets represent an ensemble average over all the linear chains in the 

system. We used the correlator algorithm, widely used in photon-correlation 

spectroscopy (66, 67), which allows us to compute pL(t) on the fly. Figure 3.4 shows 

that as fL increases, pL(t) initially decays more slowly. However, beyond a certain fL, 

the trend reverses, and pL(t) decays more quickly as fL increases.  

 

€ 

pL (t) = Ree (t )•Ree (0)

Ree
2 (0)
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Figure 3.4 The decorrelation of the end-to-end vector of the linear chains at f = 0.5 for 
different fL values (specified in the legend). The relaxation of the end-to-end vector 
initially slows down as fL increases from 0.10 to 0.50, and then accelerates as fL 
increases from 0.50 to 1.00. These non-monotonic fL-dependent dynamics are also 
evident in Figures 3.3 and 3.5. 

 

 

3.5 Discussion 

While the slowing of ring polymers at small fL, due to threading, has received 

much attention, the non-monotonic variation of DL(fL) has completely escaped notice. 

To gain further insight on this feature, we extend the minimal constraint model 

previously used to explain the variation of DR(fL) (41). 

In the original model, we considered DR(fL) as a competition between 

constraint release and pure diffusion, with the slower process controlling the overall 

rate. Characteristic diffusional decorrelation timescales can be defined via Di(fL) 
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=Rg,i
2(fL)/τi(fL), where Rg is the radius of gyration, and i = R (ring) or L (linear). If we 

ignore the small variation of Rg with fL (as justified by Refs (40, 54, 61), and treat the 

polymers as Gaussian coils, the original minimal constraint model can be rephrased as 

τR(fL) = τR(fL=0) + τCR(fL), where the constraint release timescale τCR depends on the 

number and mobility of the threading linear chains. From primitive path analysis of 

simulation data, which shrinks polymer contours without violating topological 

constraints, we find that the average number of linear polymers threading a ring is 

approximately fLZ (40, 41), with Z being the average number of entanglements per 

molecule in a purely linear polymer melt. Hence, it is reasonable to approximate the 

Rouse-like contribution as τCR(fL) ~  τL(fL) fLZ2, which leads to: 

,  (1) 

where c1 is a constant, and τi0 = τi(fL =0), and τi1 = τi(fL =1) for i = R or L. This 

simplified relation has previously been validated by experimental and simulation data 

(41). 

 To extend this model to explain the variation of DL(fL), we consider a 

simple empirical form for τL(fL), motivated by experimental findings on binary blends 

of linear polymers (68, 69). When extremely long linear chains with Z >> 1 are 

blended (at fraction fL) with much shorter linear chains, the viscosity or longest 

relaxation time of the long molecules τL(fL) roughly varies as: 

 

where the time-constant τ0 establishes the constraint-release Rouse relaxation. 

By analogy, we hypothesize the following simple form for ring-linear blends: 
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, (2) 

where the bracketed term crudely captures the threading of rings via a 

constraint-release Rouse mechanism, and c2 is an adjustable parameter. While this is a 

coarse simplification of complex molecular dynamics, the idea here is simply to 

explore whether a qualitatively plausible form can rationalize the observed trend. 

Equations (1) and (2) are coupled in τL(fL) and τR(fL), with two undetermined 

dimensionless constants c1 and c2, which can be determined by considering eq. (1) in 

the limit of fL =1, and eq. (2) in the limit of fL =0, respectively. Thus, c1Z2 = (τR1-

τR0)/(τL1), and c2Z2 = τL0/τR0. 

From the diffusivity data at fL = 0 and fL = 1, at 0.5 mg/ml and 1.0 mg/ml, we 

find c1 ~ c2 ~ 0.01. In particular, for the 45-kbp, 1 mg/ml case with c1= 0.008, and 

c2=0.012, in eq. (1) and (2), we get Figure 3.5, which qualitatively captures the non-

monotonic variation in τL(fL). 

Numerical experimentation with the minimal constraint model indicates that 

the shape of the curves and the location of the maxima are sensitive to the values of c1 

and c2. It also points to a necessary criterion for observing the non-monotonic 

behavior in τL(fL) clearly, viz.  τR0/τL0< 1 and τR1/τL1> 1, requiring that DL(fL) and 

DR(fL) cross over, as indeed seen in Figure 3.2. This criterion is satisfied at large N or 

high concentrations, where the minimum in DL is observed most clearly. The model 

also suggests that as τR1/τL1>> 1 (perhaps at concentrations and lengths much higher 

than those explored here), it might be possible to observe minima in DR as well.  

€ 

τ
L
(φ

L
) = φ

L

2τ
L1

+ (1−φ
L

2
) c

2
τ
R
(φ

L
)Z

2[ ]



35 

 

To try to understand the complex interplay of structure and dynamics from a 

more intuitive standpoint (70), we first ask, “why does τR increase monotonically with 

fL?” At low fL, a small fraction of rings are threaded by linear polymers, and rendered 

sharply less mobile, while the bulk of rings are unthreaded and diffuse essentially 

freely. As fL increases, both the fraction of threaded rings and the number of times a 

particular ring polymer is threaded increases (40), causing τR(fL), which is an average 

over all rings, to increase with fL. Beyond a certain fL, which depends on Z and f, all 

rings are at least “once”-threaded. The slowdown in mobility is substantial when an 

unthreaded ring is threaded once; it is less so when a once-threaded ring is threaded 

twice, which qualitatively explains why the rate of increase in τR(fL) tapers off in 

Figure 3.5. 

 

 
Figure 3.5 The solution of equations (1) and (2) (see text) for τL(fL) (red) and τR(fL) 
(blue), for the 45-kbp, 1 mg/ml case with c1 = 0.008, and c2 = 0.012, exhibits non-
monotonic variation in τL(fL).  



36 

 

The non-monotonic variation in τL(fL) is more interesting. Previous 

simulations using primitive path analysis, which indicates how the environment of 

constraints around a “test” linear polymer varies with fL (40), demonstrate that the 

total number of constraints on a linear test chain remains constant (ring constraints 

decrease while linear constraints increase with fL). We can combine this structural 

information with (i) the monotonic increase in τR(fL) and (ii)  τR1 > τL1 to explain the 

non-monotonicity in τL(fL). 

At fL = 1, the linear test chain is only constrained by surrounding linear chains, 

all having a timescale τL1. As fL decreases, at first, one of these constraining linear 

chains is replaced by a ring polymer. In this regime (fL ~ 1), τR(fL) > τL1 (Figure 3.5), 

since the average ring is threaded multiple times. From the standpoint of the test chain, 

it exchanged a more mobile constraint with a less mobile one, causing τL(fL) to 

initially increase as fL decreases from 1. Concurrently, however, τR(fL) decreases with 

decreasing fL, as discussed above. The net effect is that as fL decreases further, a larger 

fraction of the linear constraints are replaced by rings (effect of structure) that are 

themselves increasingly mobile (effect of dynamics). Thus, τR(fL) and τL(fL) approach 

each other, and at a certain point τR(fL) = τL(fL). Beyond this point, we begin 

exchanging less mobile linear constraints with more mobile ring constraints. This is 

manifested as a maximum in τL(fL) or a minimum in DL(fL).  
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3.6 Conclusion 

In summary, we have combined single-molecule experiments with simulation 

studies to systematically quantify the dependence of molecular diffusion on molecular 

topology and intermolecular entanglements in blends of linear and ring biopolymers. 

Among our findings, we observed a previously unreported and unpredicted non-

monotonic dependence of linear polymer diffusion on the fraction of linear polymers 

in the blend, which we have shown can be explained as a second order effect of the 

slowed diffusion of threaded rings in the blend. Reported results, which resolve 

several debated issues in polymer physics and chemistry, may also be used to tune 

novel biopolymer materials and fluids to exhibit specific viscoelastic properties.  
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Chapter 4 

Crowding Induces Complex Ergodic Diffusion and Dynamic 

Elongation of Large DNA Molecules 

 

4.1 Abstract 

Despite the ubiquity of molecular crowding in living cells, the effects of 

crowding on the dynamics of genome-sized DNA are poorly understood. Here, we 

track single, fluorescent-labeled large DNA molecules (11, 115 kbp) diffusing in 

dextran solutions that mimic intracellular crowding conditions (0-40%), and determine 

the effects of crowding on both DNA mobility and conformation. Both DNAs exhibit 

ergodic Brownian motion and comparable mobility reduction in all conditions; 

however crowder size (10 vs 500 kDa) plays a critical role in the underlying diffusive 

mechanisms and dependence on crowder concentration. Surprisingly, in 10-kDa 

dextran, crowder influence saturates at ~20% with a ~5x drop in DNA diffusion, in 

stark contrast to exponentially retarded mobility, coupled to weak anomalous 

subdiffusion, with increasing concentration of 500-kDa dextran. Both DNAs elongate 

into lower-entropy states (compared to random coil conformations) when crowded, 

with elongation states that are gamma distributed and fluctuate in time. However, the 

broadness of the distribution of states and the time-dependence and scale of elongation 

length fluctuations depend on both DNA and crowder size with concentration having 

surprisingly little impact. Results collectively show that mobility reduction and coil 

elongation of large crowded DNAs are due to a complex interplay between entropic
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effects and crowder mobility. While elongation and initial mobility retardation are 

driven by depletion interactions, subdiffusive dynamics and drastic exponential 

slowing of DNA, up to ~300x, arise from the reduced mobility of larger crowders.  As 

such, our results elucidate the highly important and widely debated effects of cellular 

crowding on genome-sized DNA. 

 

4.2 Introduction 

Biological cells, comprised of a wide range of macromolecules of varying 

sizes and structures, are highly crowded, with typical concentrations of ~200-400 

mg/ml (20 – 40% w/v) (71). Crowding has been shown to play a principle role in a 

wide array of biological processes, such as gene expression, protein folding, binding 

and aggregation, chromosomal compaction, cell volume regulation, and catalytic 

enzyme activity (17, 71-75). Drug delivery systems, gene therapy, and production and 

manipulation of synthetic cells and nanomaterials are also highly impacted by cellular 

crowding (17, 72, 76, 77). Macromolecular mobility is greatly reduced in crowded 

environments, yet despite these extreme conditions, diffusion is the primary 

mechanism by which the majority of reactions and interactions occur. Further, 

crowding has been shown to alter the conformations and stability of nucleic acids and 

proteins, which greatly impact protein-DNA binding efficiency, transcription and 

replication (72, 77). Despite the obvious importance of understanding molecular 

diffusion and configuration in crowded environments, the sheer system complexity, 

coupled with conflicting experimental and theoretical studies (16, 72) leaves this open 
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problem widely debated by a range of researchers in biology, physics, engineering, 

materials science and medicine. 

Genomic DNA, storing the genetic code for almost all living things and 

playing a pivotal role in several other biological functions (78, 79), varies widely in 

size and conformation among living organisms and is often one of the largest 

macromolecules in the cell (with bacterial genomes ranging from ~10 – 10,000 kbp). 

While DNA is often bound by histones or other DNA-binding proteins, there are a 

number of very important biological processes and biomedical and biotechnology 

advances that depend on the transport of naked DNA. Several important examples 

which have received much recent attention include nonviral gene delivery and 

antisense therapy, transfection and transformation, as well as DNA replication and 

transcription (80-82).  Despite the complexity and significance of large naked DNA, 

there is a paucity of studies investigating how cellular crowding levels impact the 

mobility and configuration of large DNA molecules.  

Here, we use single-molecule fluorescence microscopy and particle-tracking 

techniques to simultaneously characterize the diffusion and conformations of large 

double-stranded DNA molecules (11, 115 kbp) in 0-40% solutions of dextran (10, 500 

kDa), a widely used inert crowder comparable in size to small proteins (83). For each 

case, we quantify mean squared displacements and corresponding diffusion 

coefficients and ergodicity of DNA motion. We simultaneously determine the degree 

of conformational state change of DNA upon crowding, as well as corresponding 

probability distributions and time-dependent fluctuations of states.  
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Varying experimental and simulation results have been reported regarding the 

diffusion of macromolecules within crowded environments. Diffusion measurements 

of small DNA fragments (< 4.5 kbp) in up to 40% Ficoll-70 (84) and the cytoplasm 

and nucleus of HeLa cells (85); large (48 kbp) DNA in dilute dextran solutions 

confined within a nanochannel (86); and apomyoglobin in RNAse and human serum 

albumin (87) have all reported normal Brownian motion where the mean squared 

displacement (MSD) can be used to calculate the diffusion coefficient via MSD = 2Dt. 

In contrast, several groups have found evidence of anomalous diffusion in crowded 

systems, where MSD ~ ta with typical a values of 0.7 – 0.9 (i.e. subdiffusion) (16). 

Such anomalous behavior has been reported for aptoferrin in 500 kDa dextran (88), 

microspheres in cytoplasm (89), nanoparticles in dextran (90), and micron sized Cajal 

bodies in the nucleus of HeLa cells (91). Small single-stranded DNA in 10 kDa 

dextran solutions at cellular concentrations was also found to be subdiffusive (a ≥ 0.7) 

(92).  

While crowding is known to greatly impact the conformations of 

macromolecules, few studies have examined the effects of crowding on DNA 

conformation and have reported varying results. In crowded blends of DNA and 

polyethylene glycol, DNA has been shown to undergo compaction at low DNA 

concentrations and elongation and phase separation at high DNA concentrations (93, 

94). Conversely, DNA molecules confined within nanogeometries and crowded by 

dextran have been shown to swell, elongate or compact depending on the confinement 

geometry, crowding level and ionic conditions (75, 86, 95). The time-dependence and 
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length scale of conformational state fluctuations within crowded environments 

remains unknown. 

Thus, in comparison to their ubiquity and heavy biological significance, the 

effects of crowding on DNA are poorly understood. As such, our described 

experiments address important unanswered questions by elucidating the molecular 

level effects of cellular crowding on both the dynamics and configurational states of 

genome-sized DNA and the connection between center-of-mass mobility and 

conformational dynamics.  

 

4.3 Materials and Methods 

Double-stranded 11 and 115 kbp DNA, were prepared, as previously described 

(14), by replication of cloned plasmid (11 kbp) and bacterial artificial chromosome 

(115 kbp) constructs in E. coli, followed by extraction, purification, and restriction 

enzyme treatment to convert supercoiled constructs to linear form. For measurements, 

solutions of 10 kDa and 500 kDa dextran (Sigma) at concentrations of 0, 10, 20, 30, 

and 40% w/v were prepared in aqueous buffer (10 mM Tris-HCl (pH 8), 1 mM EDTA, 

10 mM NaCl). Trace amounts of either 11 or 115 kbp DNA, uniformly labeled with 

YOYO-1 (Invitrogen), were mixed into dextran solutions, loaded into sample 

chambers, and equilibrated for ~30 minutes prior to measurements. 

Using a high speed CCD QImaging camera on a Nikon Eclipse A1R inverted 

microscope, videos ranging from 5-60 seconds of DNA diffusing within dextran 

solutions were recorded at 10 frames/sec. Approximately ~150 – 300 DNA molecules 
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were recorded for each case. Custom written software (Matlab) was implemented to 

track the (i) center of mass position and (ii) major axis (Rmax) and minor axis (Rmin) 

vectors for each molecule (as described in Results). Tracked trajectories were then 

used to calculate all presented quantities (Figures 4.1 – 4.5). Error for MSDs and D 

values were calculated using the bootstrap method (96). 

The zero-shear viscosity of dextran solutions of different concentrations were 

measured using optical tweezers microrheology as described previously (97). Briefly, 

microspheres of radius r = 4.5 mm embedded in dextran solutions were trapped and 

oscillated over a range of small amplitude frequencies (0.5 µm; 0.05 – 10.0 Hz) using 

an optical tweezers and piezoelectric microscope stage. Microspheres were coated 

with BSA to prevent nonspecific binding. Oscillation amplitudes and frequencies were 

low enough to ensure we were probing the near-equilibrium properties of the solution 

such that inhomogeneities in the flow field and depletion around the bead are 

negligible. The force F that the dextran solution exerts on the oscillating sphere was 

measured using a position-sensing detector that measures the deflection of the trapping 

laser during oscillation. The measured force on the sphere and speed v of the 

piezoelectric stage were used to determine the viscosity via Stokes drag (F = 6phrv 

where h is the solution viscosity). Further instrumentation and methods details are 

fully described and justified in Refs (97) and (98). Some of the higher concentration 

viscosities exhibit modest frequency dependence (shear thinning) at higher 

frequencies, but all solutions reach a low frequency plateau (see Figure 4.7). We 
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determine the zero-shear viscosity from this low frequency plateau value of viscosity. 

Measured viscosities are presented in Figure 4.7. 

 

4.4 Results and Discussion 

4.4.1 Diffusion 

 We have imaged single, fluorescent-labeled DNA molecules diffusing in 

dextran solutions of concentrations, C, comparable to cellular conditions (C = 0 – 40 

(% w/v)). We tracked the center of mass positions of ~150-300 diffusing DNA in time 

to quantify the mean squared displacements (MSD) for each case (Figure 4.1). For 

each MSD, we evaluate a, where MSD ~ ta, and, as expected, for DNA diffusing in the 

absence of crowders (C = 0), we find purely linear behavior (i.e. classical Brownian 

motion) for all measured timescales (0-10 s and 10-50 s). We also find a ~ 1 for DNA 

diffusing in 10 kDa dextran (Sd) for all DNA lengths, crowding concentrations and 

timescales. Conversely, 0-10 s MSDs for both DNA constructs in 500 kDa dextran 

(Ld) solutions exhibit weakly anomalous mobility with a values of ~0.66±0.05 – 

0.87±0.06, decreasing slightly with increasing C (Figure 4.1A). Our results suggest 

that the crowder size, rather than DNA size, plays the key role in the emergence of 

subdiffusive dynamics. 
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Figure 4.1 Mean squared displacements vs. time for both the 11 kbp (top) and 115 
kbp (bottom) DNA diffusing in both 10 kDa (Sd) and 500 kDa (Ld) dextran from (A) 
0-10 seconds and (B) 10-50 seconds. The concentration, C, and crowder size (Sd or 
Ld) for each MSD is indicated in the legend. (A) All MSDs are fit to a power law 
MSD ~tα. α = 1 scaling (black line), which demonstrates classical Brownian motion, is 
added for convenience. For cases that display sublinear scaling, α values are listed to 
the right of the MSD in the corresponding color. MSDs without a listed α value 
display linear scaling. As seen in B for long timescales, α approaches unity for all 
cases. 
 

 

Multiple models have been proposed to explain the source of anomalous 

subdiffusion within crowded environments, with the two most widely invoked being 

the continuous time random walk (CTRW) and fractional Brownian motion (FBM) 

models (88, 99-101). CTRW is built around a non-Gaussian propagator, and reveals 

distinctly non-ergodic behavior, where time averaged MSDs differ from ensemble 

averaged MSDs (99). FBM, on the other hand, is completely ergodic with diffusion 

driven by a stationary Gaussian process (16, 99). Thus, to determine which model 
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describes our weakly anomalous behavior, we test the ergodicity of the DNA diffusion 

by evaluating the two most robust ergodicity breaking parameters (101): 𝐸𝐵 𝑡 =

!!(!)
!!(!)

 and the non-Gaussianity parameter, 𝐺 𝑡 = !
!

!!(!)
!!(!) !

− 1 , where 𝑥!(𝑡)  is the 

MSD and 𝛿!(𝑡)  is the time-averaged MSD. For a purely Gaussian ergodic process 

EB = 1 and G à 0 for sufficiently long times. For all data sets measured, we find that 

G goes to zero and EB ~ 1 (Figure 4.2). Thus our results show that large DNA 

diffusion is best modelled by FBM, which is a Gaussian stationary process. We note 

that obstructed diffusion is another potential ergodic process that has been proposed 

for crowded environments (16), but this model is based on immobile crowders. Thus, 

obstructed diffusion should only explain cases in which the diffusion timescale of the 

crowders is much slower than that of the diffusing molecule, whereas in our 

experiments the crowders are much more mobile than the DNA itself. The radii of 

gyration of Sd and Ld are Rg = 3.5 nm and 19 nm, respectively (86), as compared to 

our DNA which have Rg = 0.2 and 1.0 mm for the 11 kbp and 115 kbp DNA (63). 

Using our measured viscosities of the different dextran solutions we can calculate the 

diffusion coefficients for dextran via D = kbT/6phRg and compare to those of our DNA 

(see Figure 4.3B). As seen in Figure 4.3B, even Ld diffuses >10x times faster than the 

11 kbp DNA, and in most cases dextran is diffusing ~100x times faster. Thus, dextran 

behaves as a relatively mobile crowder compared to the timescale of DNA mobility. 

Finally, another possible explanation for our measured subdiffusion is that the DNA is 

trapped in minima surrounded by the crowders, which would have to collectively 

move before DNA can diffuse (102, 103). However, the studies that have reported this 
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source of subdiffusion also find that the trapped polymer undergoes compaction. In 

our conformational analysis (described in the Conformation Section below) we see no 

signs of compaction rather we observe polymer elongation, so we believe that this 

explanation is likely not valid for our experimental parameters. 

 

Figure 4.2 Non-Gaussianity parameter, G vs. time for 11 kbp (purple) and 115 kbp 
(orange) DNA diffusing in 10 kDa (open squares) and 500 kDa (closed squares) 
dextran. Note G tends to zero (dashed line), indicating an ergodic diffusion process. 
Inset shows calculated ergodicity-breaking term (EB) for each crowding case. EB = 1 
(dashed line) indicates ergodic behavior. See text for definitions of G and EB.  
 

 

Crowding-induced subdiffusion is predicted to only be apparent at intermediate 

timescales and approach normal diffusion on long time scales (16). Using this 

prediction, coupled with the weak nature and ergodicity of the subdiffusion, we 
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approximate our MSDs in Ld at long times (10-50 s; Figure 4.1B) as linear in order to 

extract diffusion coefficients D and compare to D values found in Sd (Figure 4.3). 

Importantly, a values determined from these long-time tails of the MSDs are all 

indistinguishable from unity within the experimental error, demonstrating the accuracy 

of the reported D values (Figure 4.1B).  

We find that the reduction of D from the C=0 case (D0), as concentration of 

either crowder increases, is nearly identical for both DNA lengths; however, the 

concentration dependence of D/D0 is starkly different in Sd vs Ld, once again 

demonstrating that DNA mobility is driven by crowder size rather than DNA size. We 

note that a reduction in mobility with increasing concentration is not entirely 

surprising, and could in fact simply be due to the increasing viscosity of the Ld and Sd 

solutions with increasing concentration via the Stokes-Einstein relation D ~ η-1. To 

separate the effect of increasing viscosity with dextran concentration from our 

measured mobility reduction we compare D/D0 to η0/η (Figure 4.3A). As seen is 

Figure 4.3A, we find that crowding-induced mobility reduction is distinctly different 

than that due simply to increasing viscosity. We find that the DNA mobility is actually 

enhanced compared to that expected from Stokes-Einstein dynamics. This enhanced 

mobility takes effect immediately at the onset of crowding (C = 10) with the DNA 

exhibiting a mobility ~10x faster than its corresponding Stokes-Einstein mobility. This 

effect can also be seen by comparing dextran diffusion coefficients Ddex to that of 

DNA (Figure 4.3B). If the DNA mobility reduction were purely viscosity-dependent 

then Ddex/DDNA would remain constant for all concentrations. However, as seen in 
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Figure 3B, this ratio initially drops an order of magnitude (enhanced DNA mobility) 

then remains fairly constant with a modest increase for Ld solutions and decrease for 

Sd solutions as C increases. We can understand this enhanced mobility as arising from 

the corresponding conformational change of the DNA that we observe at the onset of 

crowding (see Conformation section). The DNA undergoes a conformational change 

to facilitate transport through the crowded solution. Note that both the relative 

mobility enhancement and the conformational change appear at the onset of crowding 

and remain relatively unchanged as the crowding increases.      
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 Figure 4.3 (A) Normalized DNA diffusion coefficients, D/D0, and inverse normalized 
dextran solution viscosities, η0/η, vs. dextran concentration C for DNA diffusing in 
dextran solutions. Color and symbol scheme is as in Figure 4.2, with inverse viscosity 
shown in gray. The reduction in D from C = 0 (D0) appears independent of DNA 
length with the crowder length playing a dominating role. Note the surprising 
saturating effect for 10 kDa dextran data with negligible change in D/D0 for C > 20 
(horizontal dashed line). Conversely, in 500 kDa, D/D0 displays exponential scaling 
with C. From the exponential fit (dashed line) we find a critical crowding 
concentration of C* ~7.0. (B) Ratio of dextran vs DNA diffusion coefficients for each 
crowding case (same color/symbol scheme as A).  
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We find that in Sd, DNA mobility is reduced ~5x from C = 0 to 20 compared 

to the ~20x increase in viscosity; however, surprisingly, for C > 20, a saturating effect 

is observed as D/D0 remains nearly constant for both lengths of DNA while the 

viscosity increases ~3x more. To the best of our knowledge, this is the first time such 

a saturating effect has been reported for diffusion in a crowded system. We note that 

this result appears counterintuitive according to the Stokes-Einstein relation D ~ η-1, 

and given the error in our measured D values, it is possible that the mobility is actually 

decreasing with increasing C, albeit with a weak dependence that is immeasurable 

within our experimental error. We interpret this result as arising from the change in 

conformational dynamics of the DNA that we observe upon crowding as detailed in 

the following Conformation section. The change in DNA conformation and the 

associated fluctuations would directly impact the COM diffusion, and could lead to 

enhanced mobility as compared to that due to fluid viscosity as described above.  

Conversely, in Ld, we find D/D0 for both DNA constructs decreases 

exponentially up to the highest C values, dropping by ~300x, though still significantly 

enhanced in comparison to the ~3000x increase in viscosity.. By fitting the data to an 

exponential of the form D/D0 ~ exp(-C/C*), we find a critical crowding concentration 

of C* = 7.0%. As the mobility reduction deviates from the viscosity relation at ~C* we 

can interpret our measured critical crowding concentration as quantifying the 

concentration at which crowding induces breakdown of Stokes-Einstein mobility of 

DNA. Further, the concentration at which we begin to observe weak subdiffusion in 

Ld is ~2C*, once again demonstrating that the dependence of diffusion on crowding 
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concentration cannot be explained by Stokes-Einstein fluid effects. Similar results, 

namely DNA-independent mobility reduction and exponential dependence on C have 

been reported for shorter DNA (<4.5 kbp) in Ficoll-70 (84).  

The significant difference in diffusive dynamics of DNA between Sd and Ld 

cases can be understood by noting the significant difference in mobility of the two 

crowders (Figure 4.3). While highly mobile crowders (i.e. Sd is ~60x and ~300x more 

mobile than 11 and 115 kbp DNA) contribute to reduced mobility, this effect alone 

cannot explain the extreme mobility reduction seen with Ld and in many other 

crowded systems (84, 89, 92).  

Interestingly, our results are distinctly different from our previous diffusion 

results for semidilute and concentrated solutions of large DNA (13, 104) which show 

power law dependence on solution concentration as well as a strong dependence on 

DNA length in line with classical Doi-Edwards polymer theory (1). Further, we 

previously found no evidence of subdiffusion despite the fact that actual D values 

were comparable in magnitude to those measured in this study. This sharp contrast 

indicates that crowded systems, comprised of molecules with different sizes and 

structures have unique and complex dynamics not explained by classical theory for 

concentrated homogenous polymer solutions. 
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4.4.2 Conformation 

To further elucidate the effects of crowding on DNA, we investigated the 

conformational changes induced by Sd and Ld. During measurements, we commonly 

observed an unexpected elongation of DNA relative to the dilute case (C = 0), where 

DNA assumes a roughly spherical random coil conformation (Figure 4.4 insets, Figure 

4.5A). To quantify this elongation, which was most apparent for 115 kbp DNA in Ld, 

we use custom written software (Matlab), to quantify a major (Rmax) and minor (Rmin) 

axis (Figure 4.4 insets) of each DNA molecule for all recorded frames. The method we 

use, which defines an outline of the molecule is similar to that of calculating the radius 

of gyration tensor for each conformation (105).  From our measured major and minor 

axes, we define an elongation parameter, E = (Rmax/Rmin) – 1, to quantify the 

elongation relative to the random coil state. We find that the probability distribution of 

elongation states PE is well fit to a gamma distribution, 𝑃! 𝑘, 𝜃 = !!!

!(!)
𝐸!!!𝑒

!!
! , where 

k is the shape term and q is a measure of the distribution width (Figure 4.4). Gamma 

distributions have also recently been shown to describe the dynamics of several 

biological processes dominated by Brownian motion (106, 107). 
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Figure 4.4 Probability distributions for elongation parameter E for 11 kbp DNA in 
500 kDa dextran (top), 115 kbp DNA in 10 kDa dextran (middle), and 115 kbp DNA 
in 500 kDa dextran (bottom). Distributions for C = 0 (black), 10 (green), 20 (blue), 30 
(orange), and 40 (red) are shown. Right insets show recorded images of typical DNA 
conformations when crowded with DNA outline and major (Rmax) and minor (Rmin) 
axes used to calculate E (scale of each inset is (10µm)2). Left insets show the gamma 
distribution width parameter (θ) vs. C. For 115 kbp DNA, this width is lowest for C = 
0 while for 11 kbp DNA, θ at C = 0 is highest. The distribution for 11 kbp DNA in 10 
kDa dextran (not shown) is nearly identical to that in 500 kDa dextran (top). θ values 
for this case are shown (open squares) in the top inset. 
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For 115 kbp DNA in Ld, we see a ~67% increase in the average elongation 

coupled with a distribution widening of q ≈ 0.37 for C = 0 to q ≈ 0.62 for all crowding 

levels. Similar behavior (C-independent elongation and distribution widening) is seen 

for 115 kbp DNA in Sd, however less pronounced. Interestingly, while we find modest 

elongation for the 11 kbp DNA (similar to 115 kbp DNA in Sd), the distribution width 

q actually decreases with the addition of dextran (Figure 4.4 inset). Of note is the 

saturation effect of elongation for both DNAs, as the initial addition of dextran (C = 

10) causes an increase in the average elongation and change in distribution width but 

this distribution remains relatively unchanged up to the highest concentration (Figure 

4.4). Elongation has only previously been reported for crowded DNA when confined 

in nanogeometries (86, 95) or in conjunction with large-scale phase separation (94) at 

high salt conditions.  

We also sought to determine whether the elongation distributions arise from an 

ensemble of individual molecules, each with relatively fixed elongation states that 

varied from molecule to molecule, or from individual molecules (all in similar states) 

fluctuating between elongation states in time.  Thus, to evaluate the time dependence 

of elongation, we define a fluctuation length, 𝐿 𝑡 = |𝑅!"#(0) − 𝑅!"#(𝑡)| , which 

quantifies how quickly the conformational state of a molecule is changing and the 

length scale of elongation fluctuations. Figure 4.5A, depicting the physical 

interpretation of L(t), demonstrates that for very short times L(t) is nearly zero as the 

DNA has not had time to alter its conformation. As t increases, the conformation 

changes more apparently. For long times, L(t) approximately plateaus to a near steady 



56 

 

state terminal value, Lp (Figure 4.5B). We can understand this terminal value as the 

length scale of conformational “breathing” between different states. By fitting L(t) to a 

single exponential we quantify a decay rate, b, for conformational breathing, or the 

rate at which elongation states become decorrelated from one another (Figure 4.5 

insets). As expected, the decay rate of fluctuations is largest for C = 0 for all cases, 

indicating more rapid conformational fluctuations, which is then slowed, as DNA 

center-of-mass mobility is reduced by the addition of crowders. Interestingly, we see 

once again a saturating effect with b decreasing upon initial crowding but remaining 

relatively unchanged for C = 10 – 40 for all DNA and crowder sizes, corroborating our 

elongation state distribution results. We are aware of no previously reported direct 

measure of the dynamics associated with crowding-induced conformational change. 

We note that a more conventional measure of correlations would be the 

autocorrelation function of the major axis in time, i.e. <R(0)R(t)>. While this 

autocorrelation can provide the timescale of decorrelation, similar to our measured 

decay rate, it does not provide a straightforward measure of the breathing length scale. 

Nonetheless, we calculate the autocorrelation of elongation states and find a similar 

decay rate (see Figure 4.6), further validating our defined elongation fluctuation length 

parameter. 
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Figure 4.5 (A) Measured major axis, Rmax, (white line) and minor axis, Rmin, (black 
line) for a typical 115 kbp DNA molecule diffusing in Ld (C = 20) with increasing 
time. The fluctuation length for the displayed molecule, Li, is noted for each frame. 
(B) Ensemble averaged fluctuation length, L, vs. time for 11 kbp DNA in 10 kDa 
dextran (11-Sd), 11 kbp DNA in 500 kDa dextran (11-Ld), 115 kbp DNA in 10 kDa 
dextran (115-Sd), and 115 kbp DNA in 500 kDa dextran (115-Ld). Color scheme is 
the same as in Figure 4.4. Fluctuation lengths are all fit to single exponentials with 
decay rates β shown in the insets. The decay rate for C = 0 is highest for all cases, as 
expected; however, it remains relatively unchanged as C increases beyond 10. Also 
note that the terminal fluctuation length, ~0.7 µm for both DNAs at C = 0, increases 
~46% for 115 kbp DNA upon crowding but actually decreases ~40% for 11 kbp DNA 
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Figure 4.6 Normalized Rmax autocorrelation (<Rmax(0)Rmax(t)>/(Rmax(0))2 vs. time for 
11 kbp (top) and 115 kbp (bottom) DNA. Color scheme is the same as in Figures 4.4 
and 6.5. Autocorrelation data for all cases were well fit to an exponential decay, with 
the corresponding decay rates, b, vs. dextran concentration C, shown as insets for each 
plot. Note that the values and trends of the decay rates are nearly identical to the 
corresponding fluctuation length decay rates (see Figure 4.5B). 
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Figure 4.7 Dextran viscosity, η, vs oscillation frequency, w, for concentrations C = 0 - 
40 for (A) Sd and (B) Ld. Color scheme is the same as in Figure 4, with the additional 
pink squares representing C = 35. Viscosity values are measured via optical tweezers 
oscillatory microrheology as described in Methods and in Refs 97 and 98. Briefly, 
microspheres embedded in dextran solutions are trapped using optical tweezers and 
oscillated over a range of frequencies, w, at an amplitude of 0.5 mm. An approximate 
frequency-independent plateau can be seen for all concentrations at low w. This low-
frequency plateau viscosity provides a reliable estimate of the zero-shear viscosity of 
each solution. This plateau regime is also indicative of the frequency range over which 
the solution is behaving as a purely viscous fluid.  
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For the 115 kbp DNA, both in Sd and Ld, we find that the terminal fluctuation 

length, Lp, (~0.7 mm for C = 0) increases ~43% to ~1.0 mm for C > 0, indicating that 

the crowders are inducing larger, slower fluctuations. This result is in agreement with 

our elongation distribution data for 115 kbp DNA, where we indeed see an increased 

width in the gamma distribution for C > 0 relative to C = 0. Interestingly, for 11 kbp in 

both Sd and Ld, Lp actually decreases ~40% upon crowding (from Lp ≈ 0.7 mm at C = 

0 to ~0.40 mm for C > 0), corroborated by the reduced width in elongation distribution 

upon crowding (Figure 4.4).  Thus our findings demonstrate a novel crowding-induced 

molecular elongation mechanism dominated by DNA size with crowder size also 

playing a role. 

Naively, crowding-induced DNA elongation is counterintuitive as the highest 

entropy state for DNA in solution is a random coil conformation. However, crowding-

induced ordering of macromolecules is a well-known entropic effect, the depletion 

interaction, driven by entropy maximization of the crowders, which are much greater 

in number than the diffusing macromolecule of interest. The depletion interaction, 

whereby the crowders seek to increase their accessible volume and thus entropy, is 

responsible for a wide range of biochemical processes including enhanced protein 

folding and increased enzymatic reaction rates and DNA melting temperatures. When 

in a random coil the spherical space taken up by the DNA is excluded from the 

dextran which creates an effective osmotic pressure inward on the coil. While such 

pressure could lead to compaction at high enough salt concentrations, the electrostatic 

repulsion of neighboring DNA segments prevents full compaction without high salt, 
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so the DNA instead elongates to reduce the excluded volume. For reference, the 

volume taken up by a 115 kbp random coil with Rg = 1 mm is ~1 mm3 compared to a 

volume of ~1x10-4 mm3 (~(2nm)2 x 30 mm) for fully extended 115 kbp DNA. We see 

less pronounced elongation for Sd as these crowders are small enough that they could 

partially penetrate the random coil configuration thereby lowering the osmotic 

pressure difference.  While we see reduced elongation for 11 kbp DNA we find that 

the width of the distribution of states is lowered along with the terminal fluctuation 

length. Both effects, signatures of increased order, reflect an alternative entropy 

minimizing induced in 11 kbp DNA by the crowders. Conversely, for 115 kbp DNA, 

because the elongation, and corresponding entropy drop, is much more extreme, it 

compensates partially by an increased width of distribution states and terminal 

fluctuation length.  

While crowding-induced changes in molecular conformation are often 

explained in terms of entropic effects, as described above, crowding molecules can 

also affect the enthalpic contributions to the free energy change of the molecule from 

changing conformation. The most relevant enthalpic effect in our case would be due to 

preferential hydration of the crowder (which would modulate the solvent quality). 

Several recent studies have investigated the entropic and enthalpic contributions of 

different crowders on the stability and aggregation of various proteins and nucleic 

acids, with varying and often conflicting results (108, 109). However, the 

overwhelming majority of studies using dextran as a crowder have shown that the 

entropic excluded volume effect dominates the crowding-induced free energy change 
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(108-112). Further, a very recent study examining crowding-induced protein 

aggregation (109) has shown that flexible, inert, hydrophilic polysaccharides (such as 

dextran) influence the conformational free energy solely via excluded volume 

interactions. Interestingly, this same study shows that the effect of dextran-crowding is 

not proportional to the solution viscosity, in line with our diffusion results. While one 

recent experiment (113) reported that the crowding-induced stabilization of the protein 

ubiquitin by dextran is largely caused by enthalpic rather than entropic effects, this 

enthalpy-driven stabilization is shown to be independent of the size of the dextran 

(comparing polymeric to monomeric dextran) and to rely solely on the chemical 

structure (as expected for an enthalpy driven process). Conversely, our data show that 

the size of the dextran plays an important role in the conformational fluctuations of 

DNA. As crowder size plays a key role in entropically-driven processes, our results 

suggest that entropy rather than enthalpy is indeed the driving force underlying the 

crowding-induced conformational change of DNA, in line with reported results for 

conformational changes in proteins. 

Surprisingly, despite the initial conformational change induced by the addition 

of crowders, we see little change in elongation, width distribution or fluctuation time 

and length-scale as the crowder level is increased from C = ~10 – 40. We see a similar 

saturating effect for DNA diffusion in Sd, which we attribute to the mobility of Sd as 

compared to Ld and to the DNA itself. Thus, we can understand the initial mobility 

reduction and elongation/ordering of the DNA induced by the addition of crowders as 

driven by entropic depletion effects. However, because dextran is much more mobile 
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than DNA, the DNA is still subject to rapid thermal kicks from the crowders and 

rapidly changing “available” space to fluctuate within, which counteracts the slowing 

and elongation driven by entropy maximization of the crowders. As Ld is ~6x slower 

than Sd, the enhanced elongation in Ld is due to less rapid thermal kicks and 

rearranging. This reduced mobility also leads to a greater DNA mobility reduction, 

which is coupled with an exponential dependence of mobility on crowding level and 

subdiffusive behavior.  

 

4.5 Conclusion 

We have used single-molecule imaging and particle-tracking techniques to 

simultaneously track molecular diffusion and conformation of large genome-sized 

DNA in crowded environments that mimic cellular crowding conditions. Despite the 

essential role that mobility and configuration play in DNA function in the cell, 

relatively few studies have investigated the effects of crowding on large DNA and no 

previous studies have experimentally measured both center-of-mass mobility and 

conformational dynamics to elucidate the connection between the two. We determine 

the linearity and ergodicity of DNA MSDs and quantify both the probability 

distributions of DNA elongation states as well as elongation fluctuation time and 

length scales.  

While DNA displays ergodic Brownian motion for all crowding cases, we find 

that underlying diffusive mechanisms of large DNA are driven by the size and 

mobility of the crowder rather than the DNA itself. For smaller crowders we find 
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classical linear scaling of the MSD with time, which is linked to a novel saturation 

effect whereby increased levels of crowding beyond ~20% have negligible effect on 

DNA diffusion due to the high crowder mobility counteracting the entropic depletion 

effect restricting DNA conformation and diffusion. Reduced DNA elongation in 

smaller crowders coupled with a similar unique saturation effect of elongation state 

distributions and fluctuation timescales further supports this result. In contrast, DNA 

diffusion in large crowders displays exponential mobility reduction with crowder 

concentration up to ~300x at 40%, which is coupled with weak subdiffusive dynamics, 

with a ≈ 0.7 – 0.9, demonstrating that the fractional Brownian motion model for 

macromolecular diffusion in crowded environments well explains the diffusion of 

large DNA amongst crowders that are ≤50x smaller and more mobile than the DNA 

itself.  

While DNA size plays a minimal role in diffusion, it dominates elongation 

dynamics. Both DNA constructs exhibit elongation and slower state fluctuations upon 

crowding with elongation probabilities that are gamma distributed and show minimal 

dependence on crowder concentration. However, 115 kbp DNA displays elongation 

distribution widths and fluctuation lengths that increase upon crowding, in contrast to 

11 kbp DNA in which these parameters actually decrease. Both effects are signatures 

of the reduced DNA entropy induced by the depletion effect of the surrounding 

crowders.  

Our collective results, which reveal important new insights into the complex 

effects of cellular crowding on large DNA, are critical to a wide range of open 
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questions and problems debated by researchers in biology, physics, chemistry, 

engineering, materials science and medicine, including understanding important 

biological processes, developing new drug delivery and gene therapy techniques, 

fabricating synthetic cells, and designing novel biomaterials. 
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Chapter 5 

Onset of Non-Continuum Effects in Microrheology of 

Entangled Polymer Solutions 

 

5.1 Abstract 

Microrheology has emerged as a powerful approach for elucidating mechanical 

properties of soft materials and complex fluids, especially biomaterials. In this 

technique, embedded microspheres are used to determine viscoelastic properties via 

generalized Stokes-Einstein relations, which assume the material behaves as a 

homogeneous continuum on the length scale of the probe. However, this condition can 

be violated if macromolecular systems form characteristic length scales that are larger 

than the probe size. Here we report observations of the onset of this effect in DNA 

solutions. We use microspheres driven with optical tweezers to determine the 

frequency dependence of the linear elastic and viscous moduli and their dependence 

on probe radius and DNA length. For well-entangled DNA we find that the threshold 

probe radius yielding continuum behavior is ~3x the reptation tube diameter, 

consistent with recent theoretical predictions. Notably, this threshold is significantly 

larger than the mesh size of the polymer network, and larger than typical probe sizes 

used in microrheology studies. 
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5.2 Introduction 

Polymeric fluids and soft matter, ubiquitous in nature and industry alike, 

display complex and intriguing mechanical properties. As such, numerous studies 

have been devoted to understanding their stress-strain relationships (1, 5, 114, 115); 

however, many unanswered questions remain. In standard rheology studies 

macroscopic strains are applied and bulk induced stress is measured to quantify the 

frequency dependence of elastic and viscous responses. In contrast, microrheology 

uses embedded microspheres, either diffusing passively or driven by magnetic or 

optical tweezers, to probe mechanical properties at the microscale (20, 116-128). 

Microrheology has emerged as a powerful complimentary approach to standard 

macrorheology, and has many advantages, including small sample sizes, small applied 

strains (important for fragile biomaterials), and the ability to detect microscale 

heterogeneities and fluctuations (20, 129).  

In microrheology studies, measurements of microsphere motion are interpreted 

to deduce viscoelastic moduli via generalized Stokes-Einstein relations (126). 

Theoretically, such an analysis should yield accurate determinations of macroscopic 

material properties provided the material behaves as a near-equilibrium, 

homogeneous, isotropic continuum on the size scale of the probing microsphere. It is 

widely accepted that when polymers overlap to form a transient mesh the embedded 

probe should be chosen to be larger than the characteristic mesh size to access 

macroscopic rheological properties. Alternatively, probes smaller than the mesh size 

can and have been used to determine microscale structures and heterogeneities present 
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in polymer systems (20, 127, 128). Several recent experiments have employed passive 

nanoparticle tracking to examine both microscale and macroscale properties of 

flexible synthetic polymers, such as polyethylene oxide (PEO), polyethylene glycol 

(PEG), and polystyrene (PS) (20, 21, 130-132). Studies with polyethylene oxide found 

results independent of probe size for probe diameters of 0.46 – 2 µm (all larger than 

the mesh size, polymer radius of gyration, and entanglement correlation length), 

suggesting the continuum limit is valid (130, 132). Further, studies of entangled PS, 

employing nanoparticles smaller than the polymer mesh size (as well as the radius of 

gyration and entanglement correlation length), measured anomalous diffusion rates 

much faster than those predicted by the Stokes-Einstein relation, demonstrating a 

breakdown of the continuum limit (20, 21). In contrast, recent findings for semi-dilute 

PEG suggest that the polymer radius of gyration, rather than the mesh size, is the 

threshold probe size for reaching the continuum limit (131). For entangled polymers, 

several theoretical studies regarding the diffusion of spherical nanoparticles predict 

that the threshold probe radius, R, is the reptation tube diameter, dT (133-135). 

Recently, Yamamoto and Schweizer (135) used a statistical dynamics approach to 

build on these predictions and show that R = dT is not actually sufficient for the 

continuum limit; rather the probe must be several times larger than the tube diameter, 

predicting a threshold criterion of R ≈ 5dT. Despite the widespread use of passive 

microrheology techniques to probe polymer systems (20, 127, 128, 131, 136), this 

predicted crossover length scale has yet to be experimentally validated.  
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Compared to typical synthetic polymers, considerably larger length scales are 

encountered in biopolymer systems. For example, semi-flexible actin filaments with 

persistence lengths of ~17 µm have been extensively studied by microrheology (117, 

137-141), and evidence of non-continuum effects (such as free diffusion and cage-

hopping) has been reported for probe sizes similar to the mesh size (120, 126, 139, 

142-145). However, the transition from the non-continuum to the continuum regime, 

critical to understanding the microscopic nature of viscoelastic behavior in polymer 

systems, has not been characterized. The nature of such a transition also likely differs 

for more flexible biopolymers such as long DNA molecules in which the persistence 

length (≈ 50 nm) is significantly smaller than the polymer length (~1 – 50 mm). In 

contrast to actin, relatively few microrheology studies of DNA have been carried out, 

and most have been in the semi-dilute or marginally entangled regime (121, 146-149). 

Probe sizes used in the reported studies were larger than the DNA mesh size and non-

continuum effects were not observed, indicating that the probes were sufficiently large 

to detect macroscopic properties. Thus, for entangled flexible polymers, the point of 

onset of non-continuum effects has not been observed. 

Here, we report studies of the transition from the continuum to non-continuum 

regime in microrheology measurements with DNA, and the dependence on probe size 

and DNA length, including lengths longer than studied previously. We identify a 

threshold probe radius of ~3dT for entangled DNA, consistent with recent theoretical 

predictions (135).  For DNA, a model for flexible polymers in general, this threshold 
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is significantly larger than the mesh size and typical probe sizes used in microrheology 

studies. 

We used an active microrheology technique in which an optically trapped 

microsphere is driven sinusoidally at varying frequencies through DNA solutions 

while the resisting force is measured (117, 119). From these measurements we 

determined the storage modulus, Gʹ′(ω), which characterizes the elastic response, the 

loss modulus, Gʹ′ʹ′(ω), which characterizes the viscous response, and the complex 

viscosity, h*(ω), which is the ratio of complex modulus to frequency. We studied 

linear double-stranded DNA lengths of 11 kbp, 45 kbp, and 115 kbp at 1.0 mg/ml, 

which span the range from the unentangled to well-entangled regime with 

concentrations corresponding to 0.8ce, 2ce, and 4ce, respectively, where ce is the 

critical concentration for entanglements (previously determined to be ~6x the polymer 

coil overlap concentration) (2). The mesh size for all three samples remains fixed 

(~100 nm), however the number of entanglements per molecule (n) increases with 

molecular length. Microspheres with radii of 1, 2.25, and 3 µm, all much larger than 

the DNA mesh size, were tested. 

 

5.3 Experimental Section 

Three double-stranded DNA constructs, an 11 kbp (3.7 µm) plasmid, a 45 kbp 

(15 µm) fosmid, and a 115 kbp (39 µm) bacterial artificial chromosome were prepared 

by replication of cloned constructs in E. coli, followed by extraction and purification. 

One-cutter restriction enzymes, BamH1 (for 11 kbp), Apal (45 kbp), and MluI (115 



71 

 

kbp), were used to convert the supercoiled constructs to linear form. These protocols 

have been thoroughly described previously (13, 14). For measurements, DNA 

solutions were prepared in aqueous buffer (10 mM Tris-HCl (pH 8), 1 mM EDTA, 10 

mM NaCl) at a concentration of 1.0 mg/ml. Microspheres, with radii of 1, 2.25, and 3 

µm (Polysciences), were coated with Alexa-Fluor-488 BSA (Invitrogen) to prevent 

nonspecific binding and to visualize the microspheres. Trace amounts of coated 

microspheres were mixed with the prepared DNA solutions and the solution was 

equilibrated for ~30 minutes prior to measurements.  

A custom-built force-measuring optical trap, formed by a 1064 nm Nd:YAG 

DPSS laser (CrystaLaser) focused with a 60X 1.4 NA objective (Olympus), was used 

to capture individual microspheres within the sample chamber. The DNA solutions 

were displaced relative to the fixed trap using a piezoelectric nano-positioning stage 

(Mad City Labs) to apply a sinusoidal oscillation. A position-sensing detector (Pacific 

Silicon Sensors) measured the trapping laser deflection, which is proportional to the 

force acting on the trapped microsphere. The trap was calibrated using Stokes drag for 

a microsphere oscillating in water. The oscillation amplitude was chosen to be 0.52 

µm as this was found to be sufficiently large to obtain a clear signal while being small 

enough that the response was not amplitude dependent (in the near-equilibrium regime 

of material response).  

As depicted in Figure 5.1, force measurements for individual trials were each 

fit to a sine curve using the least squares method. The resulting fit for each force trace 

and the recorded stage position are used to calculate the storage modulus, Gʹ′(ω) = 
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[|Fmax|/(|xstage|6πR)]cos(Δφ), loss modulus, Gʹ′ʹ′(ω) = [|Fmax|/(|xstage|6πR)]sin(Δφ), and 

complex viscosity, η*(ω) = [(Gʹ′(ω)/ω)2 + (Gʹ′ʹ′(ω)/ω)2]1/2, as described previously 

(117), where |Fmax| is amplitude of measured force, |xstage| is stage amplitude, and Δφ 

is phase difference between stage position and recorded force signal. Ten trials, each 

an average of ten full oscillations, were completed for each frequency, with a new 

microsphere captured in a different region of the sample chamber for each trial. 

Average and standard deviation of Gʹ′(ω), Gʹ′ʹ′(ω), and η*(ω) for the ten individual 

trials give the plotted values and error bars, respectively, for each frequency shown in 

Figures 5.2, 5.3, and 5.4. 
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Figure 5.1 Measured force on a 1 µm radius microsphere (red; left axis) during ω = 
12.57 rad s-1 stage oscillation (black; right axis). The blue curve is the fit to the raw 
force data (described in methods). The three panels show measurements in solutions of 
3 different DNA lengths  (specified at the top of each plot).  
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Figure 5.2 Gʹ′(ω) (closed symbols) and Gʹ′ʹ′(ω) (open symbols) for 11, 45, and 115 kbp 
DNA measured with microspheres of radii: 1 µm (red squares), 2.25 µm (blue circles), 
and 3 µm (black triangles). Theoretically predicted scaling trends for the terminal 
regime (Gʹ′(ω) ~ ω2, Gʹ′ʹ′(ω) ~ ω) and the entangled regime (Gʹ′ʹ′(ω) ~ ω-1/4) are shown 
for comparison (dashed lines).  
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Figure 5.3 Complex viscosity, h*(ω), measured with microspheres of radii 1 µm (red 
squares), 2.25 µm (blue circles), and 3 µm (black triangles) for each molecular length. 
Theoretically predicted scaling trends for semi-dilute (h*(ω) ~ ω-0.5) and fully 
entangled (h*(ω) ~ ω-1) solutions are shown for comparison.  
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Figure 5.4 Gʹ′(ω) (closed symbols) and Gʹ′ʹ′(ω) (open symbols) for 3 µm radius 
microspheres. Values for 11 kbp (magenta), 45 kbp (green), and 115 kbp (orange) 
DNA are shown. 
 

 

5.4 Results 

For 11 kbp DNA (0.8ce) microsphere size had a minimal effect compared with 

that for the two longer DNAs (Figure 5.2). Gʹ′(ω) displays similar scaling with 

frequency for all probe sizes with magnitudes increasing slightly with microsphere 

size. Gʹ′ʹ′(ω) is essentially independent of microsphere size except for the highest 

frequency where a modest rollover is observed for 3 µm radius microspheres. 

Measurements are consistent with terminal relaxation regime scaling behavior, Gʹ′(ω) 

~ ω2 and Gʹ′ʹ′(ω) ~ ω, predicted by tube models (5), which indicates a low level of 
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entanglements (as expected for c < ce). Further, the viscous response (Gʹ′ʹ′) dominates 

over the measured frequency range, with the exception of the highest frequency for the 

3 µm radius microspheres. The observed scaling of Gʹ′(ω) and Gʹ′ʹ′(ω) for 11 kbp DNA 

is also consistent with that found in prior macrorheology measurements on calf-

thymus DNA (polydisperse, ~13 kbp) at 1.0 mg/ml (150, 151). The measured complex 

viscosity, h*(ω), also nearly probe size-independent (Figure 5.3), is largely frequency-

independent, further indication of the terminal relaxation regime.  

A greater dependence on probe size was observed with 45 kbp DNA (2ce), 

mainly for frequencies above ~2 rad s-1. As entanglements play a larger role in the 

response at higher frequencies, this finding suggests that the effect of microsphere size 

is linked to polymer entanglements. Below ~2 rad s-1 both Gʹ′(ω) and Gʹ′ʹ′(ω) scale as 

ωx with x < 1, consistent with a transition from the terminal regime to entanglement-

dominated regime (5). In the well-entangled regime, reptation theory predicts that Gʹ′ 

reaches a well-defined plateau, termed the plateau modulus (5), GN
0, and Gʹ′ʹ′ scales as 

ω-1/4. The most conspicuous probe-size dependence is that Gʹ′ʹ′ with 3 µm radius probes 

dramatically plateaus at high frequency whereas it continues to rise with the two 

smaller probes. Although we do not observe a decreasing trend, this plateau is 

consistent with a transition from Gʹ′ʹ′(ω) ~ ω to Gʹ′ʹ′(ω) ~ ω-1/4.  For Gʹ′ we do not 

observe a clear plateau for any probe size, but Gʹ′ with the 3 µm probe rolls over 

towards an apparent high frequency plateau at lower frequencies than observed with 

the smaller probes.  Observed scaling behavior for 3 µm radius probes is also similar 
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to that observed in previous macrorheology measurements of 48.5 kbp DNA at 1.0 

mg/ml (129). 

Measurements with 45 kbp DNA also show Gʹ′ʹ′(ω) > Gʹ′(ω) over the entire 

frequency range for 1 µm microspheres, in contrast to the larger microsphere data 

which both display a crossover frequency, ωc, above which Gʹ′(ω) > Gʹ′ʹ′(ω). This 

crossover frequency is predicted to be inversely proportional to the disengagement 

time (τd) for entangled polymers, i.e. the time for an entangled polymer to reptate out 

of its confining tube (1). Thus only for ω > ωc is tube confinement (entanglements) 

predicted to dominate the response. Our data show polymer disengagement times of τd 

≤ 0.07 s (ωc ≥ 95 rad s-1), τd ≈ 0.89 s (ωc ≈ 7 rad s-1), and τd ≈ 2.1 s (ωc ≈ 3 rad s-1) for 

the 1 µm, 2.25 µm and 3 µm radii microspheres, respectively. By estimating τd ≈ 0.065 

s for the 1 µm radius spheres, the disengagement times exhibit power law scaling with 

bead radius of τd ~ R3.16±0.06 (Figure 5.5). This scaling of τd with microsphere size 

indicates that larger microspheres can more effectively probe entanglements, 

suggesting that the continuum limit has not yet been reached with the smaller probes 

(134). This is also seen in the complex viscosity as the scaling exponent increases 

from ~-0.5 (predicted for the semi-dilute regime (129)) for 1 µm radius spheres to 

nearly -1, indicative of the entangled regime, for 3 µm spheres (Figure 5.3).  
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Figure 5.5 Polymer disengagement time (τd) vs. bead radius (R) for 45 kbp DNA at 
1.0 mg/ml. Disengagement times for each bead size (black squares) are determined 
from the measured crossover frequency for each bead size as described in the text. The 
data is fit to a power law τd ~ R3.16±0.06 (red line). 

 

 

For the longest DNA (115 kbp, 4ce), Gʹ′(ω) > Gʹ′ʹ′(ω) across the entire 

frequency spectrum for all three microspheres (Figure 5.2), implying τd  > 10 s (ωc < 

0.63 rad s-1), which is consistent with our previous finding of τd  ≈ 30 s for this system 

via single molecule force measurements (10). This finding demonstrates that 

entanglements dominate the polymer response, as expected given c ≈ 4ce. However, 

while the measured viscoelastic moduli using 2.25 and 3 µm radius microspheres are 

nearly identical over the entire frequency range, the 1 µm radius microsphere data is 

distinctly different. For the two largest microspheres, Gʹ′(ω) is roughly constant over 
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the entire frequency range, displaying a plateau modulus of GN
0 ≈ 0.2 Pa, while Gʹ′ʹ′(ω) 

displays a decreasing trend consistent with the predicted ω-1/4 scaling for the 

entanglement-dominated regime (5). In sharp contrast, Gʹ′(ω) and Gʹ′ʹ′(ω) for 1 µm 

radius microspheres steadily increase with ω, indicating the probe is not behaving as if 

the well-entangled regime was reached. Further, the complex viscosity scales as h*(ω) 

~ ω-1 for the two larger microspheres while the scaling exponent for 1 µm 

microspheres lies between -1 and -0.5 (Figure 5.3). These data indicate that for 115 

kbp DNA only microspheres with radii larger than ~2 µm are fully sensitive to the 

molecular entanglements and thus have accessed the continuum limit, in contrast to 

the smaller microspheres which appear to be detecting fewer entanglements. 

 

5.5 Discussion 

We have shown that microsphere size plays an important role in active 

microrheology measurements for entangled DNA, a model flexible polymer. We 

investigated the transition to non-continuum behavior by conducting measurements 

with different probe sizes and DNA lengths, including longer DNA lengths than 

studied previously, and found a clear dependence on the degree of entanglement of the 

DNA. Our results suggest two distinct threshold probe sizes based on the level of 

polymer entanglement. For semi-dilute, unentangled DNA (11 kbp, c < ce) the 

threshold probe radius is <1 µm, while for well-entangled DNA (115 kbp, c ≈ 4ce) it is 

~2 µm. 
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One prior study observed a slight dependence of DNA microrheology results 

on microsphere size, but this was not found to be due to non-continuum effects, but 

rather to a depletion-layer effect in which polymer concentration near the surface of 

the microspheres is altered (147). While this effect can be important to consider, it 

becomes increasingly small for DNA concentrations above ~0.3 mg/ml and does not 

affect the frequency dependence of the moduli (147, 149, 152). Therefore, this effect 

cannot explain the dramatic changes we observe in scaling behavior of the moduli 

with microsphere size with our longest DNA at 1 mg/ml. 

Thus, how can we explain the value of a threshold probe size for entangled 

DNA? There are several relevant length scales associated with both the individual 

polymers and the polymer network that could play a role in the viscoelastic response. 

The length scales associated with the individual DNA molecules are: persistence 

length (~50 nm), molecular length (3.7 µm, 15 µm and 39 µm), and radius of gyration 

(~0.3, 0.6, and 1.0 µm) (63). Length scales associated with the polymer network are: 

mesh size (~100 nm), tube diameter and polymer length between entanglements, le. le 

can be experimentally determined from the plateau modulus via the theoretically 

predicted relationship (1) Me = 4/5cRT/GN
0. For 3 µm microspheres, Gʹ′(ω) for all 

three DNA lengths approaches a value of ~0.2 Pa (Figure 5.4) giving le ≈ 5 µm. As an 

aside, this finding verifies for the first time the predicted scaling GN
0 ~ M0 for 

entangled DNA (153). The tube diameter is comparable to the spatial distance between 

entanglements, thus using our measured le and treating DNA as a random coil, we 

calculate a tube diameter of ~0.7 µm. 
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Several length scales listed above are on the order of the microsphere radii, 

including the molecular length. However, if the threshold length scale were the DNA 

length, then we should not observe agreement between 2.25 µm and 3 µm radius 

microspheres for the 115 kbp DNA as all microsphere sizes are smaller than the DNA 

length. 

Motivated by theoretical predictions (133-135), we can compare our threshold 

probe radius for well-entangled DNA (115 kbp, n ≈ 8) to the tube diameter to find a 

criterion of R ≈ 3dT for the continuum limit, which is closely aligned with the 

threshold size recently predicted by Yamamoto and Schweizer (R ≈ 5dT) for probe 

diffusion in typical entangled synthetic polymer melts (133-135). This previously un-

validated threshold is demonstrated with 115 kbp DNA as we see microsphere-size 

independence only above R ≈ 2 µm. Further, the measured scaling of Gʹ′ and Gʹ′ʹ′ with 

frequency for both the 2.25 and 3 µm radius microspheres (≥ 3dT) is consistent with 

tube theory predictions for well-entangled polymers, in sharp contrast to the smaller 1 

µm radius (~1.4dT) microspheres. We note that our criterion is actually slightly 

smaller than that predicted by Yamamoto and Schweizer which most likely stems 

from the different techniques addressed (passive probe diffusion vs. actively driven 

probes) as well as the different systems investigated (synthetic polymer melts vs. 

biopolymer solutions). Given these differences, the agreement between the theoretical 

predictions of Yamamoto and Schweizer and our experimental results lends credence 

to the universality of both results. 
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For 45 kbp DNA (c ≈ 2ce, n ≈ 3), this threshold is not apparent as data for all 

three microsphere sizes differs. This is most likely due to the fact that 45 kbp DNA is 

only marginally entangled with ~3 entanglements per molecule. In fact, the predicted 

threshold of R ≈ 5dT is only valid for well-entangled polymers with the criterion n > 4 

(135). We can understand the probe size dependence for the 45 kbp DNA by analogy 

to cage-hopping, where probes diffusing through entanglements can exhibit increased 

diffusion by hopping to new entanglement cages, thereby momentarily avoiding 

entanglement constraints (20, 134).  Similarly, if there are only a few entanglements in 

the vicinity of the probe, local fluctuations could momentarily release the probe from 

these constraints. This non-continuum effect should become more significant as the 

probe size decreases. Our finding that the measured polymer disengagement time 

scales roughly as the volume of the probe (τd ~ R3.16±0.06) for the 45-kbp DNA (Figure 

5.5) supports this interpretation and is in agreement with recent theoretical studies that 

suggest that the rate of cage-hopping decreases with probe size (134).  

Finally, for the semi-dilute, unentangled case (11 kbp, n < 1), our findings 

suggest agreement with recent theoretical studies that predict the threshold size for 

unentangled polymers is the radius of gyration (135). Here, all probe sizes are larger 

than the radius of gyration (~0.3 µm for 11 kbp DNA), and yield similar results, with 

scaling of Gʹ′ and Gʹ′ʹ′  in good agreement with theoretical expectations and prior 

macrorheology studies (1, 5, 150, 151). We note that as all microsphere sizes are also 

larger than the mesh size, this could also be an important length scale for un-entangled 

or weakly entangled polymers; however, distinguishing between the mesh size and the 
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radius of gyration does not serve a practical purpose as both length scales are smaller 

than microsphere sizes used in most microrheology experiments. 

We also note that throughout this discussion we have focused on the 

consequences of a probe being too small, however in microrheology if a probe 

becomes too large, this could also lead to systematic errors in the measured response. 

For instance, in our experimental design the microspheres and polymer solution are in 

a sample chamber with a thickness of ~100 µm. If the trapped probe approaches either 

surface during oscillation, surface interactions will influence the measured response 

and the optical trap characteristics. Thus, we would suggest that a probe not be larger 

than ~10 µm to eliminate any unwanted experimental artifacts; however, testing this 

limit is left open for future studies. 

  

5.6 Conclusion 

We have used active microrheology measurements with optical tweezers, 

employing microspheres of varying radii, to characterize the effect of probe size on 

measured linear viscoelastic properties of entangled DNA (a model flexible polymer) 

of varying lengths and degrees of entanglement. We have found that for un-entangled 

solutions, where the molecular length is less than the length between entanglements, 

the storage and loss moduli reveal only a weak dependence on microsphere size, 

provided the microsphere radius is larger than the radius of gyration. However, the 

microsphere radius becomes more relevant as the number of entanglements per 

molecule increases (i.e., the length of the molecule becomes significantly larger than l-
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e). We propose that for well-entangled flexible polymers, microrheology 

measurements of linear viscoelastic properties only become microsphere size 

independent for microspheres with radii larger than ~3 times the tube diameter. Given 

that this threshold is significantly larger than the mesh size for flexible polymers (e.g., 

~2 µm vs. 100 nm for 115 kbp DNA at 1 mg/ml), and larger than typical microsphere 

sizes used in microrheology experiments, this finding must be carefully considered. 

Considering the current wide spread use of microrheology to characterize biopolymer 

systems, this finding is important to understanding the complex relationship between 

stress and strain in these materials at the molecular level.  
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Chapter 6 

Nonlinear Microrheology Reveals Entanglement-driven 

Molecular-level Viscoelasticity of Concentrated DNA 

 

6.1 Abstract 

We optically drive a trapped microscale probe through entangled DNA at rates 

up to 100x the disentanglement rate (Wi≈100), then remove the trap and track 

subsequent probe recoil motion. We identify a unique crossover to the nonlinear 

regime at Wi≈20. Recoil dynamics display rate-dependent dilation and complex 

power-law healing of the reptation tube. The force response during strain exhibits key 

nonlinear features such as shear-thinning and yielding with power-law rate 

dependence. Our results, distinctly non-classical and in accord with recent theoretical 

predictions, reveal molecular dynamics governed by individual stress-dependent 

entanglements, rather than chain stretching. 

 

6.2 Introduction 

Microrheology, which uses embedded microspheres as probes, has recently 

emerged as a powerful technique for characterizing the molecular-level viscoelastic 

response of a wide range of soft materials and complex fluids, ubiquitous in industry, 

biology, and daily modern life (126, 147, 154-159). Microliter sample sizes enable 

characterization of valuable and difficult to produce materials, such as DNA and 
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cytoskeleton networks, inaccessible to bulk macrorheology techniques. Physiological 

scales of induced stresses (piconewtons) and strains (microns) are also directly 

applicable to a range of biological processes such as cell locomotion, blood flow, and 

elimination of pathological respiratory mucus comprised of entangled DNA (160); as 

well as new drug delivery techniques (161). 

Linear microrheology measurements, which use passive probe motion or small 

force probe oscillations, can readily determine microscale linear rheological properties 

via generalized Stokes-Einstein relations (126), provided the probe is larger than a 

characteristic length scale of the material (97). While numerous studies have provided 

critical insight into the microscale linear viscoelastic properties of entangled polymers 

and other soft materials (25, 126, 147, 149, 154-159, 162, 163), far fewer have 

investigated the nonlinear regime in which the probe is actively driven (via magnetic 

or optical tweezers) to significantly deform the material from equilibrium (162, 164, 

165). Here, interpretations within a macrorheology framework are complicated by the 

inherently inhomogeneous flow fields induced (158, 166). Thus, while microrheology 

has the unique ability to directly elucidate the molecular-level source of nonlinear 

material behavior, careful experimental design and interpretation, currently lacking in 

the literature, is critical.  

Further, the reptation tube model, pioneered by deGennes (3) and Doi and 

Edwards (DE) (1), remarkable in its ability to predict linear properties of entangled 

polymers (167), fails to fully capture intriguing nonlinear effects such as shear-

thinning and yielding; proving ill-equipped to explain potential polymer 
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disentanglement at high strain rates (129, 168). According to the tube model, each 

polymer is confined to move within a tube-like region formed by surrounding 

entangling polymers, restricting motion transverse to polymer contour. Tube model 

extensions, such as chain stretching and convective constraint release (CCR) have 

been proposed to accurately explain nonlinear effects (169-175), but conflicting 

experimental results and theories leave the regime controversial (176, 177). 

Previously, we used optical tweezers to characterize the near-equilibrium tube 

potential confining entangled DNA and found evidence of rate-dependent tube dilation 

not predicted by DE theory and anharmonic tube softening for large strains (25), in 

accord with recent simulations (178, 179). A recent theoretical model proposed by 

Sussman and Schweizer (SS) (170, 171, 175) for entangled rigid polymers predicts an 

anharmonic potential induced solely by individual topological constraints and coupled 

to the external stress imposed. Results of the SS model are consistent with previous 

extensions to DE theory that introduce CCR dynamics (173, 174) as well as 

experimental and simulation results for flexible polymers (178-181). Conversely, Lu 

et al. (LW) (169, 181) propose that chain stretching is the dominant mechanism 

underlying nonlinear features such as a stress overshoot during shear (129, 164). As 

such, experiments that directly elucidate the underlying molecular dynamics leading to 

widely observed nonlinear effects are needed (176, 177).  

Here, we present a novel microrheology technique, using optical tweezers, able 

to directly characterize the molecular-level viscoelastic response of entangled DNA. 

We identify a unique crossover to nonlinearity at strain rates ~20 times faster than the 



89 

   

disengagement rate (i.e. the rate for a polymer to reptate out of its confining tube). We 

quantify for the first time the nonlinear spring constant associated with microscale 

viscoelasticity, which we show arises primarily from individual DNA entanglements 

that are coupled directly to induced stress, with chain stretching playing a minimal 

role. Results resolve a long-standing debate regarding the molecular dynamics 

underlying the nonlinear response of entangled polymers. Further, our technique and 

analysis can be used to characterize the microscale nonlinear viscoelastic properties of 

a wide range of complex fluids and materials. 

 

6.3 Methods 

Double-stranded 45 kbp DNA, was prepared, as previously described (14), by 

replication of a cloned fosmid construct in E. coli, followed by extraction, purification, 

and restriction enzyme treatment to convert supercoiled constructs to linear form. 

DNA solutions were prepared in aqueous buffer (10 mM Tris-HCl (pH 8), 1 mM 

EDTA, 10 mM NaCl) at concentrations of 0.3, 0.5, and 1.0 mg/ml corresponding to 

0.5ce, ce and 2ce, respectively, where ce is the critical entanglement concentration (2). 

We can determine corresponding tube diameters dT and disengagement times td by 

combining our previous results from linear oscillatory rheology experiments on 45 kbp 

DNA (dT ≈ 0.7 mm at 1 mg/ml, GN
0 ~ c1.8) (97) with tube theory scaling predictions 

(1). We estimate td ≈ 0.72 s, 1.24 s and 2.57 s, and dT ≈ 1.3 mm, 1.0 mm, and 0.7 mm 

for 0.3, 0.5, and 1.0 mg/ml, respectively. Trace amounts of 4.5 mm microspheres 
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(probes) coated with Alexa-Fluor-488 BSA were embedded in DNA solutions which 

equilibrated for ~30 min prior to measurements. 

A custom-built force-measuring optical trap, formed by a 1064 nm Nd:YAG 

fiber laser focused with a 60X 1.4 NA objective, was used to trap a probe within the 

sample chamber. A nanopositioning stage displaced DNA solutions 30 mm relative to 

the trapped probe at speeds v = 1 – 60 mm/s, which can be expressed as strain rates via 

𝛾 = 3𝑣/ 2𝑎 , where a is probe radius (165). To compare measured rates to 

characteristic relaxation rates for each solution, we report all speeds as Weissenberg 

numbers, Wi = 𝛾𝜏!. Several other groups have used a similar strain ramp technique to 

probe soft material linear dynamics (25, 157, 182). Following strain, the probe 

remained trapped for wait times, tw, of 0 - 20 s (0 – 27.6td), after which the trap was 

shut off and subsequent probe position was tracked. An experimental schematic is 

shown in Figure 6.1. All reported data is an average of ≥10 trials. All measurements 

were repeated in water and viscous unentangled dextran solutions. Both controls 

exhibited purely Newtonian Stokes flow fluid behavior (Figure 6.4).  
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Figure 6.1 Experiment schematic. Trap position (blue) and probe displacement from 
trap center vs time are shown. Black/red curves are an average of 10 trials at 3 mm/s 
strain speed in 1.0 mg/ml DNA. Four stages of the experiment are shown: 
(Equilibration) Probes are trapped, probe and DNA solution equilibrate; (Strain) Traps 
are driven 30 mm at constant speed vtrap through solution; (Wait Time) Following 
strain, trapped probe begins to return to trap center; (Recoil) Trap is shut off and probe 
recoils backward (red curve) with speed vrecoil. Black curve during Recoil shows full 
return of probe to trap center if the laser is not shut off. 
 
 

A position-sensing detector measured the laser deflection during strain at 20 

kHz, while probe images were recorded at 100 s-1 both during and after strain. The 

laser deflection and probe displacement from the trap center during the strain are both 

proportional to the force acting on the trapped probe over the entire force range 

accessed. The trap was calibrated via the in situ equipartition method in our DNA 

solutions (157, 163) and Stokes drag in water (183). Measured force curves closely 
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approximate the fluid response, as we find no detectable difference in measured traces 

when trap stiffness is increased ~2x. For ease of rheological interpretation, measured 

force, F, and trap displacement, x, are converted to stress and strain via s = F/pa2 and 

g = x/2a respectively.  

 

6.4 Results and Discussion 

We find (Figure 6.2a) that the force exerted on the probe during strain initially 

increases with displacement (i.e. elastic response) before eventually yielding to a 

plateau (i.e. viscous response). Such yielding, a key feature of nonlinear strains, arises 

from unrecoverable microstructure rearrangement due to chain disentanglement and 

sliding (162, 168). We quantify the strain at which the DNA yields, gy, as the point at 

which the differential modulus of the force response (K = ds/dgtrap), which 

characterizes the elasticity or stiffness of the material (Figure 6.2b), drops to (2e)-1 of 

its peak value (Figure 6.2d). We find that for Wi ≤ 10, gy increases linearly with strain 

speed, indicative of the linear regime in which the relaxation rate is constant (i.e. 

unperturbed entanglement density). For Wi ≥ 20 we find approximate scaling gy ~ 

Wi1/3 in agreement with previous macrorheology experiments on entangled melts, and 

suggested to arise from a loss of entanglements or tube softening (169, 171, 180). 

Within this framework, sy should be proportional to gy which we find for strains >0.5 

(Figure 6.2d inset). While LW suggest that entanglement reduction is due primarily to 

chain stretching, not accounted for in SS theory (169, 181), they also show that 

significant chain stretch is the source of stress overshoots experimentally seen in 
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macrorheology studies on entangled flexible polymers including DNA (129, 164). We 

find no such overshoot, in accord with previous rheology studies on F-actin solutions 

and gelatins as well as SS predictions (162, 171, 184). This key difference between 

our measurements and macro- measurements on DNA highlights the unique system 

dynamics each technique probes (158) and shows that chain stretching only plays a 

significant role at the level of many-chain dynamics. Further, for very fast rates the 

yield strain appears to be asymptoting to a plateau with values of 0.7 > gy > 2 in 

agreement with SS predictions. Note that our results are distinctly non-classical as DE 

predicts a yield stress and strain that are both independent of strain rate with gy ~2.25.  
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Figure 6.2 DNA response during constant rate strain. (a) Measured stress, σ, vs strain, 
γ, in 1.0 mg/ml DNA for strain rates Wi = 3.6 to 126 (see legend in (b)). (b) 
Corresponding differential modulus, K, vs strain for each strain rate. (c) Apparent 
viscosity η vs. strain rate for 0.3 (circles), 0.5 (triangles), and 1.0 mg/ml (squares) 
DNA with predicted scaling η~Wi-1 shown. (d) Yield strain, γy, vs Wi for DNA 
solutions shown in (c) with predicted scaling for linear (γy~Wi1.0) and nonlinear 
regimes (γy~Wi1/3). Inset shows yield stress, σy, vs γy and predicted scaling σy ~ γy.  
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From the measured force plateaus (corresponding to K ≈ 0), we calculate an 

apparent viscosity via Stokes drag, h = F/6pan, which is roughly rate independent for 

Wi <20 then decreases, approaching a scaling of h~Wi-1.0 (Figure 6.2c), in accord with 

macrorheology experiments that show shear-thinning exponents of -0.5 to -1 (1, 129). 

Classical DE theory predicts shear thinning in the nonlinear regime but with -1.5 

scaling, while tube-model extensions that include CCR-like phenomena accurately 

capture experimental results (171-174). 

Following a post-strain wait time, tw, the trap is removed, after which the probe 

appeared to jump back or ‘recoil’ towards its original position (Figures 6.1, 6.3). The 

tracked position of the probe vs. time (Figure 6.3a) fit well to a decaying exponential, 

from which we determined a maximum recoil distance, R, and a decay rate, b, for each 

strain (Figure 6.3b,c). Our control data showed no measurable recoil, indicating that 

the recoil is an elastic effect dependent on entanglements. Thus, while the system has 

yielded to the strain by releasing some entanglements, the tube confinement has not 

been completely destroyed (170, 180). If the principle hindrance to probe recoil is 

individual entanglements then the recoil distance should be comparable to the tube 

diameter, in line with our results (Figure 6.3b). More importantly, we find R increases 

with Wi, crossing from linear scaling to R~Wi0.4 at Wi≈20. While the low Wi scaling is 

indicative of a linear response, the high Wi scaling is in accord with SS predictions for 

the strain-rate dependence of tube dilation arising from direct coupling of the tube 

potential to the external stress (rather than simply shear induced affine deformation) 

(171). Further, R reaches ~5dT, in excellent agreement with tube radius expansion 
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calculated by previous flexible polymer simulations (178). The wait-time dependence 

of R shows R ≤ dT for wait times tw > O(tD), demonstrating the coupled effect of the 

tube retracting to its equilibrium size (i.e. lost entanglements reforming) and those 

entanglements partially relaxing.  

This dynamic entanglement reformation and relaxation is more readily seen in 

the wait time dependence of the recoil decay rate b (Figure 6.3c). We find that b 

decreases with tw, but with distinctly different time dependences for Wi above and 

below ~20. For Wi < 20 the decay is exponential as expected for a single constant rate 

relaxation mechanism (i.e relaxation of the static deformed tube as predicted by DE). 

For Wi > 20 we find a short time plateau followed by b ~ t-0.6 scaling, in agreement 

with the disengagement time scaling tD ~t0.6 predicted by SS (170). Further, the two-

step power-law relaxation is in close agreement with SS predictions for the stress 

relaxation following a constant shear strain, explained as an initial fast relaxation 

mechanism coupled to tube retraction (giving the short-time plateau), followed by 

simultaneous relaxation of the deformed entanglements (predicted by DE) and tube 

contraction (slowing the relaxation rate to a power-law). We also find that b increases 

with Wi in line with the strain-rate dependent relaxation rate predicted by tube theories 

with CCR-like phenomena (171, 174).   
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Figure 6.3 Probe recoil dynamics following strain. (a) Measured probe recoil, r, 
(normalized by tube diameter dT) vs. time (normalized by disengagement time τd) 
when released immediately after strain (wait time tw=0). Strain rates of Wi = 5.4 to 108 
in 0.5 mg/ml DNA are shown. (b) Maximum recoil distance reached, R, vs Wi for 0.3 
(circles), 0.5 (triangles), and 1.0 mg/ml (squares) DNA at tw=0 with predicted scaling 
exponents for linear (1.0) and nonlinear (0.4) regimes. Inset shows R vs. Wi for tw = 0 
to 2τd in 1.0 mg/ml DNA. (c) Measured recoil decay rate, β, vs tw for 1.0 mg/ml DNA 
at Wi = 3.6 (red), 10.8 (orange), 18 (green), 54 (blue), and 108 (violet) with predicted 
scaling for linear (exponential curve) and nonlinear (0, -0.6) regimes. Inset shows β vs. 
Wi for tw=0 for all three DNA solutions.  
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To further characterize the microscale stress relaxation, we calculate an 

effective spring constant associated with entanglements. As the probe recoil fits well 

to a decaying exponential, we can treat it as that of an overdamped harmonic oscillator 

and use b to determine an effective entanglement spring constant, k, via b = [b – (b2 – 

4mk)1/2]/2m, where b = 6pha and m is probe mass. Calculated spring constants are 

small enough that k~b, so corresponding rate and time dependences of k are as in 

Figure 6.3c. Thus, the elastic entanglement stiffness is strain-rate dependent and 

crosses from linear to nonlinear relaxation dynamics at Wi~20.  

For Wi < 20 spring constants are nearly rate independent and increase with 

concentration as expected for the linear regime with average values 3.01, 1.65, and 

1.49 pN/mm for the 1.0, 0.5 and 0.3 mg/ml DNA, respectively. We can convert our 

low Wi spring constant, kL, for each concentration to a modulus, GL, and compare with 

the predicted linear modulus Ge = 3kbTre (1), where re is the density of entanglements. 

Our GL values are 0.84, 0.46 and 0.41 Pa, in excellent agreement with the predicted 

values 0.76, 0.43 and 0.29 Pa for 1.0, 0.5 and 0.3 mg/ml DNA. Further, our measured 

1.0 mg/ml modulus is in accord with macrorheology plateau modulus measurements 

for similar DNA solutions (0.65 Pa) (129). 

In equilibrium, the elastic energy of each entanglement monomer should be 

comparable to kbT. Thus, to confirm that our measured spring constants are indeed due 

to individual entanglements we compare our near-equilibrium elastic energy to the 

thermal energy, i.e. ½kLx2 ≈ kbT. We calculate an approximate equilibrium stretching 

length scale, x, associated with each entanglement of x ≈ 49 nm, 79 nm, and 88 nm for 
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1.0, 0.5, and 0.3 mg/ml DNA, respectively. The size of each ‘entanglement monomer’ 

should be on the order of the mesh size of the solution, z, which is ~100 nm, 140 nm 

and 180 nm for 1.0, 0.5, and 0.3 mg/ml DNA, respectively; giving us x ≈ 0.5z, and 

showing that the equilibrium stretching length is comparable to and scales with the 

entanglement monomer size. Thus, individual DNA entanglements are the source of 

the microscale elastic response, as confirmed by our other presented results. If we 

assume a constant stretching length, as k increases to ~2x the equilibrium value (with 

increasing Wi, Figure 6.3c) the elastic energy exceeds the thermal energy and thus 

cannot be sustained, so entanglements must be released, reducing the average 

entanglement density and softening the confining tube.  
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Figure 6.4 Sample force traces for a probe dragged in a purely Newtonian fluid (9% 
w/v, unentangled, 500 kDa dextran solution). A probe is captured in solution and 
allowed 2 seconds to equilibrate. This is followed by the strain phase in which the 
bead is pulled 30 µm at a constant strain rate. Strain rates from 3 – 35 mm/s were 
measured. Here, four sample strain rates are shown; 3 (red), 5 (blue), 20 (orange), and 
25 mm/s (black). Following the strain, the probe is allowed to relax back to the trap 
center. As expected, the force reaches a constant value (independent of strain distance) 
almost instantaneously, showing a purely viscous force response. Subsequent 
relaxation also occurs almost instantaneously (as compared to our measured entangled 
DNA solutions). Purely Newtonian behavior was observed for all measured strain 
rates.  
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6.5 Conclusion 

Here, we have demonstrated a novel experimental technique in which we use 

an optically trapped probe to drive entangled DNA far from equilibrium, and 

characterize the molecular-level linear and nonlinear viscoelastic response during and 

following strain. We show for the first time that microscale nonlinear viscoelasticity 

for entangled DNA is driven by individual entanglement constraints rather than chain 

stretching. However, the entanglements are distinctly non-classical, exhibiting rate-

dependent releasing or tube dilation and complex power-law relaxation dynamics. Our 

results provide critical insights into the long-standing debate on the molecular 

dynamics underlying the experimentally observed nonlinear response exhibited in 

entangled polymers. Our technique and analysis can also be used to characterize the 

microscale viscoelastic properties of a wide range of complex fluids and materials. 
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Chapter 7 

Conclusions, Future Work 

7.1 Introduction 

The preceding chapters have discussed the state of single-molecule studies and 

the contributions of my research to the current understanding of polymer theory. 

Diffusion of polymers in linear-circular blends has been revealed to possess a non-

monotonic dependence on blend ratio, a find with clear industrial applications as 

synthetic polymers are typically impure, with polymers of a non-desired topology 

potentially drastically altering the viscoelastic properties of a given fluid. The 

diffusive behavior of DNA within crowded environments, on the other hand, was 

shown to depend predominantly upon crowder length. 

Additionally, the viscoelastic properties of entangled DNA networks were 

examined using dual-force optical tweezers. A clear bead-size dependence was 

observed for beads smaller than ~3x the tube diameter, above which measurements are 

able to access macroscopic (bulk) properties of the fluid. The non-linear properties of 

DNA networks were also studied, revealing molecular dynamics, which are governed 

primarily by stress-dependent entanglements. However, many open questions still 

remain, with multiple promising avenues of research presenting themselves as a clear 

continuation of this work. 
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7.2 Bilinear blends 

While blends of differing topologies, here linear and circular, were examined, 

bilinear blends, consisting of two distinct linear polymers of differing length could 

potentially yield interesting and useful results. Despite the relative simplicity of the 

system, bulk studies on bilinear blends have yielded highly complex behavior, with 

diffusivity and viscoelasticity displaying a strong dependence on the relative polymer 

lengths and volume fractions. For example, if one of the polymer species is short 

enough such that it will fail to entangle at a given concentration, the volume fraction 

occupied by the polymer will behave approximately as a solvent (185). If both 

polymers are large enough and concentrated enough as to become entangled, more 

complicated viscoelastic behavior is observed, with multiple peaks for G’ and G’’ 

commonly found, indicative of the multiple timescales associated with the internal 

dynamics of the system (185). Classical reptation theory is unable to account for this 

type of bilinear system, in particular the assumption of a static tube has been found to 

be troublesome (5). Potential theories have been described to address these more 

complex findings, such as double reptation, with moderate success. However, the 

dynamics are still not fully understood and single-molecule studies in this area are 

lacking.  

As with circular/linear polymeric blends, the knowledge gained from the 

behavior of bilinear blends would of great interest to industry and the creation of new, 

tunable materials. Thus, both diffusion studies, involving labeling and subsequently 
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tracking DNA molecules, and microrheology studies to obtain the viscoelastic 

properties of bilinear blends would potentially yield valuable results.  

 

7.3 Crowding 

Our previous results involving the diffusive and conformational behavior of 

linear DNA molecules in highly crowded environments showed a previously unknown 

entropy driven conformational change. This elongation of the DNA was most 

pronounced for our largest, 115kbp, DNA molecules diffusing in an environment 

crowded with 500 kDa dextran. Whether this behavior would be observed for circular, 

or even supercoiled DNA is unclear.  Additionally, the effects of different crowding 

agents, polyethylene glycol (a common industrial compound) or ficoll for example, 

could yield new insights into the diffusive mechanisms involved for DNA in these 

crowded environments. Multiple crowders could perhaps be combined to lend a more 

realistic intracellular environment, important for medical applications, such as drug 

delivery and gene therapy, which rely heavily on diffusion within cellular crowding. 

 

7.4 Microrheology 

Another relevant study would be to examine the potential ‘wake’ created when 

using active microrheology techniques. When a bead is actively driven through a 

complex fluid, polymers may begin to accumulate along the leading edge of the bead, 

leaving an area devoid of polymers along the trailing edge. This phenomenon has been 



105 

   

observed experimentally and through simulations previously in colloid solutions 

(186). To ensure this would not have a noticeable effect on our measurements, we 

have previously attempted to observe any potential ‘wake’ effects by utilizing our 

dual-trap optical tweezers setup. By first testing the force response on individually 

trapped beads being actively driven through an entangled DNA solution for 30 µm at a 

constant rate, then comparing to the force response when both traps are utilized to 

drive two closely spaced beads (~ 15 µm apart, spaced along the axis of the driving 

force), we were able to conclude that any potential wake effects were insignificant for 

measurements at low speed/concentration regimes. The force response of the 

individual bead, as well as each of the two simultaneously driven beads were equal. 

However, for speeds above 30 µm/s in 1.0 mg/ml 115 kbp DNA, a clear difference 

was observed. Here, the force felt by the lagging bead was found to plateau at a lower 

value than that of the leading bead. The experiment was repeated in both directions, to 

ensure the effect was not due to differences in the individual traps, revealing identical 

behavior. While shown to have little effect for studies at lower speeds or 

concentrations, this trailing ‘wake’ could potentially have profound effects on 

interpreting future high-speed, non-linear microrheology results. 

 

7.5 Conclusion 

Despite being relatively young, single-molecule studies have proven to be an 

incredibly powerful set of techniques, having brought about innumerable important 
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discoveries to the world of polymer physics. The research in this thesis has attempted 

to answer at least a few of the countless questions facing the field today; however, 

many open questions persist. With the broad range of fields, which depend on its 

advancement, it is certain to be studied in earnest for the foreseeable future. 
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