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Abstract

The various types of retinal neurons are each positioned at their respective depths within the retina 

where they are believed to be assembled as orderly mosaics, in which like-type neurons minimize 

proximity to one another. Two common statistical analyses for assessing the spatial properties of 

retinal mosaics include the nearest neighbor analysis, from which an index of their “regularity” is 

commonly calculated, and the density recovery profile derived from auto-correlation analysis, 

revealing the presence of an exclusion zone indicative of anti-clustering. While each of the spatial 

statistics derived from these analyses, the regularity index and the effective radius, can be useful in 

characterizing such properties of orderly retinal mosaics, they are rarely sufficient for conveying 

the natural variation in the self-spacing behavior of different types of retinal neurons and the 

extent to which that behavior generates uniform intercellular spacing across the mosaic. We 

consider the strengths and limitations of these and other spatial statistical analyses for assessing 

the patterning in retinal mosaics, highlighting a number of misconceptions and their frequent 

misuse. Rather than being diagnostic criteria for determining simply whether a population is 

“regular”, they should be treated as descriptive statistics that convey variation in the factors that 

influence neuronal positioning. We subsequently apply multiple spatial statistics to the analysis of 

eight different mosaics in the mouse retina, demonstrating conspicuous variability in the degree of 

patterning present, from essentially random to notably regular. This variability in patterning has 

both a developmental as well as a functional significance, reflecting the rules governing the 

positioning of different types of neurons as the architecture of the retina is assembled, and the 

distinct mechanisms by which they regulate dendritic growth to generate their characteristic 

coverage and connectivity.
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The various types of retinal neurons are each positioned at their respective depths within the retina, 

where they are believed to be assembled as orderly mosaics. Contrary to that belief, we have 

shown, through the application of multiple spatial statistics, that there is conspicuous variability in 

the degree of patterning present among different retinal populations. The three retinal amacrine 

cells shown here, for example, might appear to be arranged as regular mosaics; the Voronoi 

tessellations of the real mosaics and random simulations, however, make apparent the differences 

in their distributions, from notably regular to essentially random.

Keywords

Nearest Neighbor; Voronoi Domain; Regularity Index; Auto-correlation; Density Recovery 
Profile; Effective Radius; Packing Factor; RRID AB_213554; RRID AB_2079751; RRID 
AB_2187701; RRID AB_90755; RRID AB_10064230; RRID AB_10013783; RRID AB_397958; 
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Introduction

The mammalian retina is composed of perhaps as many as a hundred different types of 

neurons (Zeng and Sanes, 2017). Each of those retinal cell types exhibits a unique 

transcriptional profile and morphological signature (Macosko et al., 2015; Shekhar et al., 

2016; Sumbul et al., 2014), residing at a characteristic depth within the retina in one of three 

different cellular layers. These neuronal populations differ in other demographic properties 

as well, including the absolute numbers of their constituent cells, in how those cells are 

positioned relative to one another within their respective strata, and in the degree to which 

they spread their processes to overlap one another (Reese and Keeley, 2016), each of them 

uniquely integrated into the retinal circuitry to contribute to visual processing (Baden et al., 

2016). The latter features are attributes of the “mosaic properties” of these populations, 

being histotypical features that are thought to ensure uniform service in retinal function 

across the visual field (Reese and Keeley, 2015).
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The presumption that retinal neurons are assembled as orderly retinal mosaics is so 

widespread that “regularity” has come to be regarded as a cardinal, defining, feature of a cell 

type (Cook, 1998, 2003). It is true that some neuronal types exhibit an obvious patterning in 

their distributions, and these orderly arrays of well-spaced neurons can often be simulated by 

local spacing rules that preclude proximity between neighboring cells {Eglen, 2006 #1554; 

Eglen, 2003a #1090; Galli-Resta, 2001 #1262}; these mosaics are clearly “regular”. Yet 

what exactly in a retinal mosaic defines its “regularity” is rarely examined, as different 

studies use different measures to ascribe this attribute to a labeled population of neurons. 

Two spatial statistics associated with these mosaics, the “regularity index” derived from an 

analysis of nearest neighbor distances, and the “effective radius” determined from the 

density recovery profile (informally termed the exclusion zone), have each come to be 

regarded as definitive evidence that a population of labeled neurons is indeed “regular” due 

to “self-spacing” behavior, and consequently a distinct type of neuron. In fact, the bar is 

often set exceedingly low for identifying order in an array of neurons using either statistic. 

The present review will first consider the use of these different spatial statistics, 

demonstrating their limitations and occasional misuse in the analysis of retinal mosaics. We 

will subsequently show, through the examination of multiple populations of retinal neurons 

in the mouse retina, that there is conspicuous variability in the patterning within their 

mosaics, from essentially random to highly regular1. That variability reflects the cell-type 

specific regulation of neuronal positioning during the assembly of the retinal architecture, 

which, in conjunction with distinct mechanisms governing dendritic outgrowth, establish the 

coverage and connectivity characteristic of each cell type, a topic we consider elsewhere 

(Reese and Keeley, 2015).

Nearest neighbor analysis and the regularity index

The widespread adoption of the nearest neighbor analysis followed demonstrations by 

Wässle and coworkers that various low-density retinal mosaics like those of horizontal cells 

or retinal ganglion cells, detected by virtue of their selective neurofibrillar silver staining or 

through the retrograde labeling of their dendritic arbors, exhibit a patterning quite distinctive 

from random distributions of infinitesimally small (i.e. dimensionless) points (Wässle et al., 

1981b, c; Wässle and Riemann, 1978). The Gaussian nature of the distribution of the nearest 

neighbor distances derived from such mosaics contrasted with the theoretical Poisson 

distribution associated with random point patterns (e.g. figure 1a–d). By expressing the 

variation in those nearest neighbor distances relative to their average (specifically, the ratio 

of the mean nearest neighbor distance to the standard deviation), a summary statistic, the 

“regularity index”, seemed to yield a simple quantitation of this property, increasing towards 

infinity as a mosaic approached a perfect lattice. Six particularly well-labeled samples were 

so analyzed in the cat’s retina, with A-type horizontal cells having indices of 4.7 to 6.2 

(being derived from two samples at different eccentricities) (Wässle and Riemann, 1978), 

ON and OFF alpha retinal ganglion cells having indices of ~4.6 (Wässle et al., 1981c), and 

1The term “mosaic” will be used herein to refer to any population of cells sharing some attribute, for instance, being immuno-positive 
at a specific depth within the retina, thought to identify members of a particular cell type. Whether it is, in fact, a singular type of 
neuron is an empirical matter, but the basis for such a conclusion should be made independent of its patterning, be that defined in 
terms of its regularity or its minimal self-spacing. Our use of the term carries no presumption of a degree of orderliness within the 
array.
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ON and OFF beta retinal ganglion cells having indices of 5.3 (Wässle et al., 1981a), the 

latter pairs being derived from two fields in which the ON versus OFF cells of each type 

could be reliably distinguished. Those early studies focused upon the novel recognition that 

such patterning is present and that it might be assessed quantitatively, stimulating a wave of 

interest in reporting the regularity index for various retinal cell types. But just how 

representative the regularity index derived from a single field is, and whether there is any 

variation as a function of cellular density or retinal eccentricity, were issues rarely 

considered in many of those subsequent studies.

Comparing the regularity index of a mosaic with that for a random point 

pattern

The regularity index thus came to be regarded as an attribute of particular types of retinal 

cells, and while it suggested a means of comparing the orderliness between different cell 

types, its baseline comparison with random distributions was left undefined. Jeremy Cook 

(1996) first drew attention to this concern, recognizing the need to consider the size of the 

sampled population and the constraint imposed by the geometry of the sampled field. Cells 

close to the boundary (e.g. figure 1a, b) will have uncertain nearest neighbors, and the 

proportion of such cells in a sample will increase as the areal size of the sampled field or the 

density of cells therein declines, or when the aspect ratio of the sampled area changes from a 

square to a rectangle (Cook, 1996). The regularity index for a theoretical random distribution 

of points was determined to be ~1.91, providing a potential baseline that many have used to 

compare with real mosaics, but when actually measured from random simulations of points, 

was found to deviate well above or below this value with progressively smaller numbers of 

points in the simulated field (figure 1e). But regardless of the number of cells, the average 

regularity index for such random simulations approximated this theoretical value of 1.91. 

Note, however, that the failure to exclude points along the border (i.e. those with uncertain 

nearest neighbors in the random simulations) yields average regularity indices that drift off 

of the theoretical random value of 1.91, increasingly so as cell number declines (figure 1f).

Whether or not such cells near the border are excluded, it is clear that individual random 

simulations at low density can veer markedly off of the theoretical value (figure 1e, f). Cook 

(1996) consequently generated his “Ready-Reckoner” chart identifying the critical values of 

the regularity index (termed the “Conformity Ratio” therein2) for a real sampled field as a 

function of the number of cells, at different levels of probability. So equipped, researchers 

were now able to proclaim that an analyzed field of cells was or was not significantly more 

orderly than a random distribution of points of the same density (e.g. Allison et al., 2010; 

Fite et al., 1999; Jang et al., 2011; Kolb et al., 2002; Marc, 1999b; Stenkamp et al., 2001; 

Yeo et al., 2009).

2The appealing features of this terminology, along with the limitations of “regularity index”, are addressed in Cook (1996). But as the 
latter term has gained widespread usage, we adopt it herein.

Keeley et al. Page 4

J Comp Neurol. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The benefit of randomly simulating distributions of cells rather than points

Retinal mosaics are commonly confined to specific strata within the different cellular layers 

of the retina, and rarely are these cells observed to overlie one another. Each cell type has a 

characteristic somal size, and that size constrains potential proximity between two like-type 

neighbors. Wässle and Riemann (1978) recognized this concern as they also studied the 

regularity index for cone distributions in the cat and monkey retina at two different 

eccentricities (3 versus 13 mm), where cone density varies extensively (~10,400 versus 

~3,600 cells/mm2, respectively). For both species, the more central samples generated higher 

regularity indices (monkey: 10.9; cat: 6.5) than in the periphery (monkey: 7.0; cat: 5.1). But 

to assess how these regularity indices compare with random distributions (at least for the 

higher density samples), they simulated random distributions of cones, constraining their 

positioning by the average size of the cone inner segment, being ~5 μm. So constrained, an 

array of 209 randomly distributed elements at a comparable density of 10,000 cells/mm2 

yielded a regularity index of 4.4, well in excess of the thresholds defined in Cook’s (1996) 

Ready-Reckoner chart at all four levels of significance. The real cone arrays in both cat and 

monkey still exceed this, but knowing this value qualifies the magnitude of those former 

values. Sampling the cone photoreceptor mosaic from the dorsal mouse retina, for instance, 

where cone density approaches this same value of 10,000 cells/mm2, Fei (2003) reported a 

regularity index of 3.6, well below the value for the random constrained simulation above. 

Doubtless the size of a cone inner segment is smaller in the mouse, but absent a simulation 

of cones constrained by that size, we cannot judge whether the regularity of the cone mosaic 

in the mouse exceeds that for such a random simulation.

This constraining effect of soma size on the regularity index of random distributions, 

particularly as the density of simulated cells increases, can be demonstrated directly by 

systematically varying cellular density in simulated random retinal mosaics (from 1,000 to 

5,000 cells/mm2) at three different physical sizes (soma diameters of 5.0 μm, 7.5 μm and 

10.0 μm) (e.g. figure 2a–f). While the smaller simulated diameter exhibited only a modest 

effect upon the regularity index at the five different densities examined, increasing from ~2 

to ~3 as a function of increasing density, the larger simulated diameters had more profound 

effects, with the largest yielding an increase in the regularity index from ~3 to ~9 as density 

increased (figure 2g) (Keeley et al., 2017b).

Real mosaics must prohibit proximity between neighboring cells by virtue of their physical 

sizes, thereby ensuring that the smallest nearest neighbor distances in a distribution can 

never be as small as those derived from random distributions of infinitesimally small points 

exhibiting complete spatial randomness (CSR). Furthermore, as those distributions increase 

in density, the longer nearest neighbor distances that are occasionally observed at lower 

density will also never be sampled. Both of these features necessarily constrain the range of 

possible nearest neighbor distances in simulated fields of cells, making clear that a direct 

comparison of a real mosaic with CSR sets a very low threshold for proclamations that a 

mosaic is “regular”. At best, one might avow that the sampled field is more regular than a 

random point process (although calling it “non-random” rather than “regular” would be a 

more apt description), but what is to be gained by such a claim when it must necessarily be 

the case? A more stringent claim would be based on the assessment of just how much more 
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regular a mosaic is relative to a random simulation when that simulation is constrained by 

the physical size of the cells, as Wässle and Riemann (1978) demonstrated for cone 

photoreceptors. The comparison with a randomly distributed collection of such 

dimensionless points is, we suggest, largely pointless.

The mosaic of AII amacrine cells—a regular retinal mosaic?

The mosaic of AII amacrine cells, being the densest of retinal amacrine cells, illustrates this 

issue well. The nearest neighbor analysis of AII amacrine cells, in all species for which it 

has been reported, has led to the conclusion that it is a regular retinal mosaic, evidenced by 

regularity indices ranging from 2.7 to 5.0, depending upon the species (Gaillard et al., 2014; 

Jeon et al., 2007; Mills and Massey, 1991; Perez de Sevilla Müller et al., 2017; Vaney, 1985; 

Vaney et al., 1991; Wässle et al., 1995; Wässle et al., 1993). Yet published distributions of 

AII amacrine cells appear strikingly irregular, in species as diverse at mice, bats, rabbits and 

monkeys (figure 3a–d), exhibiting nothing like the patterning associated with other more 

regular retinal mosaics like the horizontal cells (compare with figure 1a). If we generate 

random simulations of these AII amacrine cell mosaics at equivalent densities, constrained 

by the average soma size gleaned from those same studies, we find the simulated fields to 

exhibit a comparable degree of disorder (figure 3e–h). By computing the regularity index 

from such random simulations of cells (in this case, generating 99 such simulations for each 

of these real fields), we find that the regularity indices of the real arrays fall within the range 

of indices derived from those random simulations, for all four species (figure 3i).

While at least some of those studies have demonstrated that the AII amacrine cell mosaic is 

significantly different from CSR (Diggle, 2002), characterizing it as being “regular” blurs 

the distinction from other orderly mosaics, such as that of the horizontal cells, which 

generate regularity indices far in excess of that produced by simulations of random 

distributions of cells (Raven and Reese, 2003). We would like to understand the features that 

make these mosaics qualitatively different from one another, and a simple comparison of the 

absolute magnitude of the regularity index doesn’t begin to convey this distinction. The 

images (figure 3a–d) show that AII amacrine cells are occasionally positioned side by side, 

as occasionally are pairs of horizontal cells (e.g. figure 1a). But is the frequency of such 

side-by-side occurrences in those former mosaics sufficient grounds for concluding they are 

random? Indeed, we might go on to ask, is the distribution of all cells in a mosaic, as a 

function of distance from each cell, different from that achieved by a random distribution of 

cells?

The density recovery profile and the effective radius

The patterning present in regular retinal mosaics mentioned above, for example, the 

horizontal cells, is rarely so precise as to approximate a lattice. Such periodicity in a mosaic 

should reinforce itself in the spatial auto-correlogram derived from the two-dimensional 

somal pattern in the mosaic (being the plot of the positioning of all cells in the field relative 

to every other cell), yet most retinal mosaics show no evidence for it (figure 4a, b)3. Rather, 

these auto-correlograms typically show a region surrounding the origin where no cells are 

positioned, with a gradual increase in cellular density at further distances from the origin 
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until average cell density is achieved. Bob Rodieck (1991) first showed the utility of 

deriving the density recovery profile (e.g. figure 4c) from the auto-correlogram for a field of 

cholinergic amacrine cells in the monkey retina, from which one may estimate the size of the 

region surrounding the origin where cellular density was lower than the average at further 

distances, termed the “effective radius”4, often less formally called the exclusion zone. 

Rodieck and others were soon thereafter deriving the density recovery profile from various 

retinal cell types in different species (Cook and Sharma, 1995; Kouyama and Marshak, 

1997; Rockhill et al., 2000; Rodieck and Marshak, 1992), showing what appeared to be a 

universal feature of retinal mosaics, namely, an anti-clustering tendency, by which cells in a 

mosaic minimize their proximity to like-type cells. Subsequently, various modeling studies 

confirmed that the patterning present in some real retinal mosaics could be simulated simply 

by constraining random distributions of cells by a minimal distance spacing rule (Galli-Resta 

and Novelli, 2000; Galli-Resta et al., 1999; Galli-Resta et al., 1997). Deriving the density 

recovery profile from the auto-correlogram of a field to show the presence of such an 

exclusion zone became an attractive alternative means to infer such pattern-yielding 

behavior in a population, and seemed tantamount (for some, at least) to demonstrating 

regularity.

The density recovery profile is relatively immune to undersampling

Rodieck (1991) noted, and Cook (1996) subsequently analyzed in detail, the tendency for 

the effective radius to remain steady despite undersampling a mosaic. Cook compared the 

effects of progressively undersampling a real mosaic of retinal ganglion cells upon three 

different statistics, the average nearest neighbor distance, the regularity index, and the 

effective radius, showing that while the first grew incrementally greater and the second 

steadily declined, the effective radius remained relatively stable until the undersampling 

exceeded 50% of the original population (Cook, 1996). This provided a substantial boon to 

those analyzing labeled mosaics of cells in which antibody penetration or reporter transgene 

expression was suspected to be incomplete. Provided the density recovery profile revealed a 

null region surrounding the origin, so, by this measure, a mosaic was said to be regular 

(Huberman et al., 2008; Huberman et al., 2009; Kim et al., 2008; Rivlin-Etzion et al., 2011).

Unfortunately, it is not always straightforward to evaluate whether the details of a density 

recovery profile provide evidence that cells in a mosaic avoid proximity to one another, let 

alone whether the mosaic is regular. For instance, the high-density rod bipolar cells in the 

rabbit’s retina yield a density recovery profile with a null region at the origin that appears no 

larger than the very size of the rod bipolar cells themselves (i.e. the exclusion zone is simply 

a consequence of soma size constraining proximity) (Rockhill et al., 2000). To consider 

another less clear-cut example, the far lower-density ON-OFF direction-selective retinal 

ganglion cells in the DRD4-GFP retina (Drd4 cells hereafter) exhibit a density recovery 

profile for a single field yielding an estimated effective radius of 25.4 μm (Huberman et al., 

3The spatial auto-correlation of a field of cells plots the positioning of all cells in the field relative to every other cell as a function of 
increasing distance, out to a specified radius. It is generated by positioning the origin of the correlogram upon the centroid of each cell 
successively while plotting the position of every other cell lying within the correlogram.
4Specifically, the effective radius is defined as the radius of a cylinder with height equal to the mean density of cells and equivalent 
volume to the integrated region in the density recovery profile where the density falls below average cellular density.
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2009), being larger than soma size. Yet measurement of the nearest neighbor distances for 

this low-density population yielded a mean and standard deviation of 38.7 ± 15.7 μm 

(ranging from ~10-160 μm), generating a regularity index of 2.46, which, given the size of 

these cells, and an average density of 275 cells/mm2, might lead one to ponder whether this 

value would exceed that derived from a random simulation constrained by soma size. 

Tellingly, the shape of the distribution of these nearest neighbor distances is more 

characteristically Poisson-like rather than Gaussian.

It is also worth noting, as Rodieck (1991) pointed out, that because the bins in the density 

recovery profile closer to the origin contain progressively fewer and fewer cells, they exhibit 

the greatest variability, so that the derivation of the effective radius is dependent upon both 

the density of cells in a sampled field as well as the bin size used to construct the density 

recovery profile. A reported effective radius for a distribution of cells can, consequently, 

yield an unreliable estimate of the size of the exclusion zone, particularly when dealing with 

low-density mosaics.

Random simulations provide a direct assay for the effect of soma size upon 

the density recovery profile

Spatial auto-correlation analysis, and its derived density recovery profile and effective 

radius, can, like the above consideration of the nearest neighbor analysis and regularity 

index, be applied to simulated random fields of cells matched for density and constrained by 

soma size (figure 4d). By doing so, one can directly observe the effect of soma size upon the 

auto-correlogram (figure 4e), the density recovery profile derived from it (figure 4f), and the 

associated effective radius. Regular retinal mosaics like those of the horizontal cells, for 

instance, show substantially larger exclusion zones in the auto-correlogram and density 

recovery profile relative to such random simulations (compare with figure 4a–c with d–f), 

yielding significantly larger effective radii as those commanded by soma size alone (Raven 

and Reese, 2003). But while they diverge from random simulations using these spatial 

statistics, it is important to appreciate that such a difference in the size of the effective radius 

is no indication of the magnitude of any difference in regularity between the real versus 

random distributions. Rather, it simply reflects the minimal spacing present within the array. 

Unfortunately, an insidious consequence of its increasingly widespread use has been to 

further the assumption that an exclusion zone is indicative of regularity in a mosaic. It is not.

Dopaminergic amacrine cells have large exclusion zones yet are only 

marginally non-random

The dopaminergic amacrine cells are one of the sparsest retinal cell types, there being an 

average of only ~40 cells per mm2 in the C57BL/6J mouse retina. They are distributed 

across the retina in a pattern that appears to be random, though they are in fact non-random 

in their distribution (Raven et al., 2003), evidenced using nearest neighbor analysis as well 

as the density recovery profile (figure 5a, b). Nearest neighbor analysis shows a dearth of 

cells lying within 25 μm of one another, and a comparison with random simulations showed 

that nearest neighbor distances below 75 μm were less frequently present in the real fields 
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(figure 5c). The density recovery profile convincingly showed this difference in minimal 

spacing behavior, with the recovered density in the real mosaics achieved around 100 μm, 

while the random simulations did so by ~40 μm (figure 5d). Because these densities were so 

low, requiring large bin-widths, the effective radius could not be reliably computed, but the 

results from this analysis suggest that dopaminergic amacrine cells also exhibit an anti-

clustering tendency, avoiding proximity to one another. Despite this, these features were 

insufficient in yielding mosaics that were particularly regular to the eye (figure 5a), 

generating an average regularity index of 2.7 ± 0.1, compared to 2.0 ± 0.1 for the matched 

random simulations (inset in figure 5c; mean and s.e.m.), with some real fields have 

regularity indices falling within the range of the random simulations (see also Raven et al., 

2003).

Very low cell densities should, as we saw above, also introduce greater variability in the 

regularity index across different samples. Where cellular density is so low, an alternative 

approach to comparing the regularity index or the effective radius is to plot cumulative 

frequency distributions for the nearest neighbor distances or for the density recovery profile. 

Being cumulative distributions (the G function and the L function, respectively) (Diggle, 

2002; Ripley, 1976), they avoid the constraints upon the data imposed by bin size (e.g. 

figures 5c, d). One may then compare how well the spatial features of real fields can be 

simulated by minimal distance spacing rules (i.e. a spacing rule of a given mean and s.d. 

defining how closely a simulated cell can be randomly positioned relative to all previously 

positioned cells, until achieving the total number desired), by computing 99 simulations and 

asking whether the cumulative function for a real field would fall within the envelope of 

those simulations. Raven and coworkers (2003) tested the distributions of dopaminergic 

amacrine cells in the four densest real fields from that study, first using a minimal distance 

spacing rule derived from the soma size distribution of dopaminergic amacrine cells. This 

proved to be an ineffective fit, when comparing either the G function (the cumulative nearest 

neighbor frequency distribution) (figure 5e) or the L function (the cumulative density 

recovery profile) (figure 5g); by contrast, a larger minimal distance spacing rule of 70 ± 50 

μm was successful in yielding an acceptable fit, for all four fields (figure 5g, h). (See Raven 

et al., 2003, for a fuller discussion of the dmin parameters that provided acceptable fits to the 

real data).

Using this approach, computing these same cumulative (G and L) functions for all of the 16 

sampled fields used to derive the data in figure 5c and d, along with their respective 99 

simulations for each field, we confirmed that only one of the 16 fields was adequately fit by 

the minimal distance spacing rule based on soma size, while 14 of the 16 fields were fit by 

the 70 ± 50 μm spacing rule, including those fields with the lowest regularity indices (figure 

5i, j).

In short, those results confirm that the dopaminergic amacrine cells avoid proximity to one 

another, but this simply renders them marginally non-random (e.g. figure 5a). Despite the 

large size of their spacing rule, their density is still far too low to yield any qualitative sense 

of regularity across the retina, i.e. they have a low packing intensity5. The packing intensity 

5Packing intensity can range from between 0 (for infinitesimally small points) to 0.91 (for hexagonally-arranged disks).
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is defined as the fraction of the sample field covered by disks of fixed diameter (Eglen and 

Willshaw, 2002). Some of that uncovered territory within the field is due to the areas lying 

between densely packed circular elements; in the case of the dopaminergic cells, however, 

most of that unoccupied space is due to a dearth of cells (i.e. there are many locations where 

elements operating the same minimal distance spacing rule could be positioned, but are 

simply not present in the mosaic). Such a low packing intensity, coupled with a loose 

spacing rule, yields a patterning that is practically random (Raven et al., 2003).

The presence of an exclusion zone does not evidence regularity in a 

mosaic

In order to make even clearer the fact that the effective radius is not an index of the 

regularity in the patterning of an array of neurons, consider the two mosaics in figure 6, 

along with their associated auto-correlograms and density recovery profiles. The mosaic on 

the left is a random simulation constrained by a soma diameter of 10.0 ± 1.0 μm. As can be 

seen, the null region at the center of the auto-correlogram approximates the physical size of 

the simulated cells, and this is made clear in the density recovery profile, from which an 

effective radius was determined to be 9.9 μm. Compare this with the mosaic on the right, 

composed of cells of the same physical size though at reduced density. While not 

particularly regular by eye, it is immediately obvious that the elements in this mosaic exhibit 

a minimal spacing between themselves, and this is made apparent in the spatial auto-

correlogram and in the density recovery profile. An effective radius of 15.2 μm was derived, 

well in excess of the average soma size in this mosaic. One might be inclined to conclude 

that the latter mosaic exhibits some degree of regularity in its patterning relative to the first 

mosaic. Yet, in fact, the mosaic on the right is the very same mosaic as the original one on 

the left, only it has now been simulated to undergo uniform retinal expansion across the 

field, showing only the central region from it.

The point of this comparison is simply to stress the fact that two mosaics of identical 

patterning can have different exclusion zones. An obvious corollary, then, is that an effective 

radius derived from the density recovery profile is no proxy for assessing patterning in a 

mosaic. Rodieck and Marshak (1992) had previously made this very point, in their “little 

bang” hypothesis, observing the dimensional nature of the effective radius, and how it 

should be expected to vary across eccentricity as a consequence of differential retinal 

expansion during development, whereas indices of patterning (like the scale-invariant 

regularity index) should not.

Voronoi domain analysis assesses mosaic patterning by considering the 

spacing between each cell with all of its immediate neighbors

While the nearest neighbor analysis can be effective in reporting the patterning in a retinal 

mosaic, it has some obvious limitations, because it only considers the relationship between 

each cell and its closest neighbor. Cook (1996) spelled out this concern as he pondered an 

analysis of ballroom dancers where the pairs of partners were at low versus high densities: 

the nearest neighbor analysis will return comparable regularity indices for the two conditions 
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despite the different patterning in the two populations. Random undersampling of a real 

mosaic is unlikely to generate such a result, of course, but the example makes the point that 

very different two-dimensional distributions can have identical nearest neighbor statistics. 

Put simply, the nearest neighbor analysis, under the limiting condition of evenly spaced 

points along a line, will generate a regularity index no different from a two-dimensional 

collection of points having the same lattice-like periodicity. Hence, to understand the nature 

of the patterning in a two-dimensional array of cells, one should take into consideration the 

relationship between each cell and all of its immediate neighbors, rather than solely its 

nearest neighbor. The Voronoi tessellation of a field of cells does just this.

The Voronoi domain of a cell is the area in the plane of the mosaic that encloses all points 

closer to that cell than to any other cell. It is defined by the intersections of each of the 

bisectors of the Delauney segments connecting a cell to each of its immediate neighbors6. 

The Voronoi tessellation of the entire field of cells provides an immediate visual sense of the 

degree of regularity within the mosaic, conveyed by the variation in the size of the Voronoi 

areas, or “tiles”, present (figure 7a). These areas, like nearest neighbor distances, can be 

measured and then plotted as frequency distributions; such distributions approach a Gaussian 

profile when reconstructed from regular retinal arrays, such as those of the cholinergic 

amacrine cells (shown here in figure 7a) from which a regularity index can also be 

computed. As with the nearest neighbor analysis and spatial auto-correlation analysis, the 

Voronoi domain analysis can be conducted on random simulations matched in density and 

constrained by soma size to show just how different a real mosaic is from random (figure 

7b). Voronoi domain analysis, like the nearest neighbor analysis, is effective at reporting 

patterning in a retinal mosaic. But the two analyses tap into different features of such 

mosaics, and sometimes diverge from one another in their discriminating real from random 

distributions, providing insights into the factors that govern such patterning.

The regularity index derived from Voronoi domain analysis can discriminate 

real from random mosaics that are not discriminated by nearest neighbor 

analysis

The cholinergic amacrine cells are commonly regarded as forming a regular retinal mosaic, 

having been subjected to extensive analysis in various species, particularly the mouse (Galli-

Resta and Ensini, 1996; Galli-Resta and Novelli, 2000; Galli-Resta et al., 2000; Galli-Resta 

et al., 1997; Resta et al., 2005; Sandmann et al., 1997; Vaney et al., 1981; Voigt, 1986; 

Whitney et al., 2008). Using the nearest neighbor analysis, for example, the population in 

the inner nuclear layer (INL) has been shown to be significantly more regular than random 

simulations constrained by soma size (figure 7e). Curiously, in some species, the mosaic in 

the INL appears more orderly than that in the ganglion cell layer (GCL) (Galli-Resta et al., 

2000; Vaney et al., 1981; Whitney et al., 2008). In the mouse retina, when the population of 

cholinergic amacrine cells in the GCL is analyzed (figure 7c, d), the mosaic is found to be 

no more regular than random simulations constrained by soma size (figure 7f). Yet, if instead 

6Those segments interconnecting every cell to its immediate (or near) neighbors generate a triangulation of the mosaic, the Delauney 
tessellation of the field. The shortest of those segments is of course the nearest neighbor distance for a cell.
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we consider the positioning of each cell relative to all of its immediate neighbors, the 

Voronoi tessellations of both mosaics (INL and GCL) appear more orderly than their random 

simulations (figure 7, compare a, c with b, d). And if the regularity index is computed from 

these Voronoi domain areas (VDRI), they are each confirmed to be more regular than 

random, while retaining the distinction of greater regularity for the INL population (Whitney 

et al., 2008) (figure 7g, h). Clearly, the presence of two-dimensional patterning (assessed by 

the regularity index) is discerned in the Voronoi analysis that is otherwise overlooked when 

considering only each cell’s nearest neighbor.

The difference in the patterning of these two mosaics arises later during development, due to 

a gradual deterioration in the regularity of the mosaic in the GCL. This is thought to arise 

from the passive lateral displacement of somata in the GCL as the retinal vasculature and 

optic fiber layer form (Whitney et al., 2008). Such lateral displacement of a sufficient 

number of cells may then yield nearest neighbor statistics that overlap those obtained for 

random simulations of cells while still retaining significantly different Voronoi statistics (i.e. 

while the smallest nearest neighbor distances found in random simulations are occasionally 

sampled in the GCL population, the smallest Voronoi domain areas never are).

But a closer examination of the frequency distribution of the nearest neighbor distances for 

the population in the GCL shows that it is not identical to that for the random simulations 

(figure 7j). There, the mean nearest neighbor distance is larger for the real fields, but the 

variance is also larger, and so the computed regularity index turns out to be identical to that 

generated by the random simulations, despite these differences in their spatial features (see 

also Galli-Resta et al., 2000). This analysis shows how reducing the analysis of nearest 

neighbor distances to a simple derivation of the regularity index may conceal discriminating 

features of the spatial patterning, presumably the very same features that permit the 

discrimination by a Voronoi domain-derived regularity index (figure 7h, l). These 

considerations suggest that a spatial analysis of patterning would be better served by 

tessellation-based approaches that consider each cell’s relationship with all of its immediate 

neighbors. That said, the nearest neighbor analysis can shed light on small perturbations in 

the frequency of the shortest nearest neighbor distances, for instance, that characterize the 

cholinergic amacrine cells in the GCL during their development (Whitney et al., 2008), and 

those in the INL when their mosaic is altered through genetic manipulations (Keeley et al., 

2014b) Finally, while the regularity index is a handy summary statistic, the frequency 

distribution for either nearest neighbor distances or Voronoi domain areas provides a 

complementary and informative assessment of the spatial structure of the pattern.

The spatial independence of retinal mosaics

Rodieck (1991) also noted that spatial correlation analysis can be used to determine whether 

the positioning of cells in one mosaic has any bearing on the positioning of those in another, 

by computing their cross-correlogram. Cook and coworkers conducted such an analysis for 

different types of large retinal ganglion cells in various fish and amphibia, each individual 

type exhibiting a large exclusion zone in their auto-correlated condition. The resultant 

density recovery profile for the cross-correlated condition, by contrast, evidenced an 

exclusion zone no larger than soma size in every case. The cross-correlograms were 
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essentially flat, indicating no hint of a tendency to minimize proximity between members of 

the two types, nor any spatial affinity between them, which would have been evidenced as an 

elevation in densities surrounding the origin (Cook and Sharma, 1995; Shamim et al., 1997a; 

Shamim et al., 1999; Shamim et al., 1997b). Rockhill and coworkers (2000) subsequently 

computed this analysis in the rabbit’s retina for multiple pairs of mosaics, including the two 

populations of cholinergic amacrine cells. Essentially identical results were obtained for 

every pair-wise comparison examined in their study, from retinas that had been double-

labeled to identify any two of six different retinal mosaics. While rare exceptions to this 

result have been identified (Ahnelt et al., 2000; Kouyama and Marshak, 1997), the 

positioning of cells in most mosaics appears to be independent of the cellular positioning 

within other mosaics, consistent with the general conclusions of modeling studies showing 

that the patterning present in a mosaic can be reproduced using a minimal distance spacing 

rule operating between homotypic cells that are otherwise randomly distributed. Local 

spacing rules between like-type cells appear to be sufficient for recreating the patterning 

present in retinal mosaics (Eglen et al., 2003a; Galli-Resta, 2001).

Two regular mosaics combined are unlikely to generate a random one

Given such spatial independence between retinal mosaics, it is not surprising that combining 

the ON plus OFF populations of cholinergic amacrine cells, or of alpha or beta retinal 

ganglion cells, into a single composite mosaic, yields a regularity index that is far lower than 

the indices for their respective ON versus OFF component mosaics (Eglen and Willshaw, 

2002; Wässle et al., 1981a; Wässle et al., 1981c). Whether those derived composite 

regularity indices (being 2.8, 2.4, 2.7, respectively) differ from random is a more 

complicated assessment, given that in one case, the ON versus OFF cells occupy different 

strata and can in principle overlie one another, whereas in the other cases, they lie in the 

same stratum and preclude proximity by soma size. What seems clear is that the presence of 

periodicity within regular mosaics should be sufficient to ensure that a summed mosaic is 

not equivalent to a random simulation composed of the same total number.

Cook and Podugolnikova (2001) adopted a different approach to address this issue, by 

simply adding together pairs of two different retinal ganglion cell mosaics within the same 

retina to generate a composite mosaic, then subsequently computing the spatial auto-

correlogram. Rather than yielding a flat density recovery profile (beyond the effect of soma 

size) expected for a random distribution of cells, they found a profile showing reduced 

densities of cells surrounding the origin, though never dropping to zero (see also Rousso et 

al., 2016) for a more recent demonstration of the same point). Two regular mosaics then, are 

unlikely, when combined, to produce a distribution of cells with spatial features 

characteristic of a single random population.

But two marginally non-random mosaics combined can create a more 

regular one

Like the two populations of cholinergic cells in the INL and GCL, so dopaminergic 

amacrine cells in many carnivores are found distributed to these same two layers, rather than 

all being confined to the INL (Eglen et al., 2003b; Kolb et al., 1990; Oyster et al., 1985; 
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Peichl, 1991), as in primates and rodents (Dacey, 1990; Mariani and Hokoc, 1988; Savy et 

al., 1989; Versaux-Botteri et al., 1984; Wulle and Schnitzer, 1989). When those two 

populations are separately analyzed for their mosaic regularity using Voronoi analysis, they 

are each slightly more regular than random simulations, but when combined to generate a 

composite mosaic, show a further increase in their regularity index (Eglen et al., 2003b), 

instead of exhibiting a decline as observed for the two populations of cholinergic amacrine 

cells (Eglen and Willshaw, 2002). And when their cross-correlogram is computed, rather 

than exhibiting spatial independence in their positioning, the density recovery profile yields 

an exclusion zone that is similar to that for the auto-correlated condition for the composite 

population. Results such as these suggest that cells in the two layers form a single spatial 

mosaic, with the less frequent cells in the GCL being misplaced from their positions within 

the mosaic in the INL. This interpretation is consistent with the fact that irrespective of their 

somal depth, they all extend their processes to arborize in the same stratum within the inner 

plexiform layer (Eglen et al., 2003b) (see also Weltzien et al., 2014, for a comparable 

demonstration for another amacrine cell type).

All of the foregoing studies should make clear that while the regularity index may be an 

attribute of individual retinal mosaics, it cannot, by itself, be used as a diagnostic for 

discriminating between a single population of like-type cells versus two different 

populations that share some other classifying attribute (e.g. Dyer and Cepko, 2001). 

Interpreting the regularity index derived from markers that under-sample populations, for 

instance reporter genes that may not express in every cell of a given type, yet that are also 

mis-expressed in some cells of another type, is particularly difficult if the latter cells cannot 

be reliably discriminated from the former. Still other markers such as transcription factors 

are increasingly appreciated for characterizing (in some cases, responsible for determining) 

particular cell types, but they are also often present in other cell types. For instance, the 

transcription factor NFIA is critical for the establishment of the population of differentiated 

AII amacrine cells (Keeley and Reese, 2019), yet it is also expressed in two other types of 

amacrine cell, as well as Müller glia and in Type 5 cone bipolar cells. Only by combining it 

with another marker that labels a different spectrum of cell types including the AII cells can 

the intersection of the two labels unambiguously reveal the complete AII amacrine cell 

population (Keeley and Reese, 2018b) (see also Rousso et al., 2016).

Consider, for example, the population of retinal ganglion cells expressing the transcription 

factor SATB2. In the mouse retina, the protein is expressed in more than one type of retinal 

ganglion cell, yet in the primate retina, it has been claimed to identify only a single type, one 

that is present at exceedingly low density (Dhande et al., 2019). Fields of cells appear 

conspicuously irregular, perhaps a consequence of undersampling, or perhaps a consequence 

of over-sampling by inclusion of members of a second cell type; alternatively, it might truly 

reflect a degree of disorder in the patterning of a single cell type. The low densities of 

SATB2 cells across most of the monkey’s retina are in fact comparable to the density of 

dopaminergic amacrine cells in the mouse retina. These SATB2 cells have a more Poisson-

like distribution of nearest neighbor distances, with a tail to longer distances and with the 

shortest nearest neighbor distances suggestive of physical contact. Consistent with the 

degree of apparent irregularity in those published somal patterns, the calculated regularity 

index was 2.24, said to indicate “a relatively regular mosaic” (Dhande et al., 2019). The only 
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comparison provided for this assertion was with random simulations of dimensionless 

points, which we have noted above is not much of a comparison for asserting a non-random 

somal distribution. But regardless of whether this population is slightly nonrandom, as we 

saw for the dopaminergic amacrine cells in the mouse retina, or would in fact be well 

simulated by random distributions matched in density and constrained by soma size (as 

would seem likely using Voronoi domain analysis), there is no basis for concluding from 

such a regularity index alone that only a single type of cell is included in this sampled 

population (Dhande et al., 2019). Much as we saw before that a single retinal mosaic may 

not necessarily generate a non-random regularity index (e.g. the AII amacrine cell mosaic), 

so we see here that a (potentially) non-random regularity index is hardly proof of a single 

retinal mosaic.

Different spatial statistics convey distinct features in the patterning of 

retinal mosaics

We have, consequently, advocated the parallel use of multiple spatial statistical analyses 

when attempting to discern the patterning present in retinal mosaics. By also generating 

random simulations matched for density and geometry, and constrained by soma size, one 

may then compute this trio of analyses for both real distributions and matched random 

simulations, enabling a direct comparison to show how the former differ from random. And 

by sampling multiple fields of cells within a retina, and from multiple retinas, one can be 

assured that the spatial statistics typify the mosaic in question, rather than reflecting a 

particularly regular though atypical sampled field. We consider next our dataset derived from 

eight different types of retinal neurons in the mouse retina, showing considerable variability 

in their regularity and intercellular spacing.

From random to regular: variation in the patterning of retinal mosaics

Figure 8a presents micrographs of eight different types of retinal neurons in which various 

antibodies have been used that are widely recognized as being effective markers for those 

very cell types (Keeley et al., 2014a). From the digitized images of each mosaic, the X,Y 

coordinates of each cell are extracted, and somal patterns are generated (figure 8b). For each 

sampled field, a random distribution of cells is also simulated, matched to the number of 

cells in the real mosaic, and assigned a physical size associated with that cell type 

(specifically, randomly assigning a size to each simulated cell drawn from a Gaussian 

distribution of the same mean and standard deviation derived from the soma size distribution 

of the real population7), rejecting each cell with replacement should it overlie any portion of 

a previously positioned cell (figure 8c). The Voronoi domains associated to the individual 

cells in each of those distributions are also shown, conveying immediately the presence of 

patterning in the tessellation relative to what random distributions yield. Either four or eight 

fields were examined from each retina, sampling from a minimum of three retinas from 

different mice, for each cell type.

7Somal areas were traced from confocal images collected with a 40× or 60× objective for ~100-300 cells, depending upon the cell 
type (derived evenly from multiple retinas), and from these areas, the diameters of circles of equivalent area were determined and used 
to assign soma sizes in the random simulations.
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Adjacent to these real versus simulated somal arrays, the three different spatial statistical 

analyses are presented, in which the real versus random data are conveyed in colored versus 

grey histograms or scatterplots, respectively. For each analysis of regularity, the frequency 

distributions for nearest neighbor distances (figure 8d) or Voronoi domain areas (figure 8f) is 

followed by a histogram showing the mean (± s.e.m.) regularity index (figure 8e & g). The 

two indices for each individual mosaic field are also presented as a scatterplot (figure 8h), 

showing the full range of the individual regularity indices from the sampled fields, and 

conveying a sense of their relationship to one another across the different cell types. The 

mean (± s.e.m.) density recovery profiles for the real fields and random simulations are then 

presented (figure 8i), followed by their effective radii (figure 8j), along with their “packing 

factors” (figure 8k). The packing factor is another scale-independent index, derived from the 

effective radius, conveying how closely the positioning of the cells in the field approximates 

a perfect hexagonal lattice (Rodieck, 1991)8.

The first two cell types, the horizontal cells (red) and cholinergic amacrine cells, specifically, 

the population in the INL (green), are exemplars of regular retinal mosaics. The patterning in 

their arrays is conspicuous by eye, made even clearer by contrast with their density-matched 

random simulations (figure 8b & c). Their nearest neighbor frequency distributions convey 

an appreciation of their relatively Gaussian versus Poisson shapes, respectively (figure 8d). 

This distinction is borne out in the Voronoi domain analysis as well (figure 8f). By 

calculating the regularity index for each of the individual fields, we find that both statistics 

(derived from the nearest neighbor distances or from the Voronoi domain areas) confirm 

large differences between the real and random distributions (figure 8e & g), yet the 

magnitude of the difference is greater using the Voronoi domain analysis. For the most part, 

the two different indices correlate with one another, for either cell type, conveyed in their 

respective scatterplots (figure 8h).

Each of these mosaics exhibits a strong tendency for cells to avoid one another. The 

difference between the grey and colored density recovery profiles (figure 8i) shows directly 

how much farther apart cells in the real array are beyond the minimal spacing imposed by 

soma size alone, and the effective radius for each provides a measure of this exclusion zone 

(figure 8j). Note that the effective radius for the random simulations returns an estimate 

close to the soma size used in the construction of the random simulations. Packing factor 

analysis, which simply expresses the size of the effective radius relative to the maximal 

radius permissible were this same number of cells to be packed as a perfect hexagonal 

lattice, also reveals a large difference from these random simulations (figure 8k). Like the 

two regularity indices, the packing factor is also a scale-invariant measure, but unlike them, 

it is not a measure of regularity per se, but rather of efficient packing (Rodieck, 1991), and is 

only loosely correlated to the regularity index (Reese, 2008a).

Consider next the mosaic of VGluT3 amacrine cells (magenta). Their patterning appears less 

orderly by comparison with either the horizontal or cholinergic amacrine cell mosaics, 

8Specifically, the packing factor is the square of the ratio ER/MR, where ER is the effective radius and MR is the maximal radius 
possible were the same number of elements packed as a perfect hexagonal lattice. The packing factor can extend from zero, for a 
pattern exhibiting CSR, to 1.0, for a perfect hexagonal lattice. A perfect square lattice will have identical regularity but is not packed 
as efficiently as a perfect hexagonal lattice, necessarily having a lower packing factor (as well as a lower packing intensity).
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evidenced by the increasing breadth of their distributions (figure 8d & f), and the coincident 

decline in their regularity indices (figure 8e & g). The lesser regularity that is immediately 

apparent in the Voronoi domains (figure 8b), relative to those former cell types, is captured 

in the slight appearance of a tail in the Voronoi domain frequency distribution (figure 8f). 

Looking across these three cell types, one can observe a progressive trend for the frequency 

distributions (at least for the Voronoi domain areas) to become slightly more Poisson-like in 

shape, coincident with their progressive decline in regularity indices. While the mean 

effective radius of the VGluT3 cells is comparable to that for the cholinergic amacrine cells 

(figure 8j), their average densities are slightly lower, so that while they might exhibit the 

same tendency to avoid one another by this distance, there are more locations in the mosaic 

where cells with the same effective radius could be positioned, but are not (i.e. their packing 

intensity is lower). Accordingly, they also have a lower packing factor relative to either the 

horizontal or cholinergic amacrine cells (figure 8k), and, unlike those populations, the 

VGluT3 cells often have nearest neighbor regularity indices that are higher than those 

derived from the Voronoi domain analysis (figure 8h).

As indicated above, the dopaminergic amacrine cells (orange) are exceedingly sparse (their 

density in the A/J retina being less than half that found in the C57BL/6J retina in figure 5), 

and they lack any hint of regularity, being hard to distinguish from random distributions by 

eye (figure 8b & c). Yet nearest neighbor as well as Voronoi domain analyses indicate that 

they in fact have slightly greater average regularity indices (figure 8e & g), a consequence of 

the fact that they still minimize proximity to one another, borne out by the density recovery 

profile (figure 8i). Their very low densities render the estimated effective radii for both real 

and random distributions unreliable (figure 8j) (made particularly apparent by the excessive 

size of the estimated effective radius for the random simulations, due to the large bin widths 

used), even though simulations based on minimal distance spacing rules in C57BL/6J are 

consistent with this magnitude for the real distributions (Raven et al., 2003). Their packing 

factor is the lowest of all the mosaics, if not quite as low as random distributions yield, but 

these too should suffer from inaccurate estimation of the effective radius. Nevertheless, at 

the low-density end of the spectrum of all these mosaics, the analysis of dopaminergic 

amacrine cells serves to drive home the message that statistically non-random somal 

distributions can lack any obvious patterning for which the descriptor “regular” would fit.

The bottom four mosaics in figure 8, by contrast, show examples of higher density mosaics. 

The AII amacrine cell mosaic (cyan), as we have already considered, is noticeably irregular 

by eye (figure 8b & c). Interestingly, sometimes AII amacrine cells in the mouse retina are 

packed so close to one another such that their inter-somal distance is less than the mean 

somal diameter, which was derived from the mean somal area and used to constrain 

intercellular positioning in the random simulations. Somata, of course, are not perfectly 

round profiles, and can occasionally be compressed together, yielding some nearest neighbor 

distances shorter than those achieved in the random simulations (figure 8d). As a 

consequence, the regularity indices for the random simulations are higher than they are for 

the real arrays (figure 8e). This difference in the presence of shorter nearest neighbor 

distances is not apparent by eye when comparing the two somal patterns (figure 8b & c), and 

if one considers instead the Voronoi domain analysis, there, the distribution of domain areas, 

and the ensuing regularity indices, are identical (figure 8f & g; compare with d & e). The 
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density recovery profile detects those shorter nearest neighbor distances that are absent in 

the random simulations (i.e. the first bin in figure 8i), yet this is such a small difference that 

the calculated effective radius is hardly different from that for the real distribution (figure 

8j). AII amacrine cells, therefore, exhibit an exclusion zone predicted by soma size, and 

have a degree of patterning imposed on them solely by this constraining effect of soma size; 

they consequently pattern the retina no different from a random distribution of cells.

This behavior is also exhibited for three different types of retinal bipolar cells. Like the AII 

amacrine cells, so the mosaics of Type 2 (lime), Type 3b (blue), and Type 4 (turquoise) cone 

bipolar cells show a prominent disorder in their patterning, comparable to that of random 

distributions (figure 8b & c). Like AII cells, these cells are frequently side-by-side, and are 

occasionally positioned at slightly different depths yielding marginal positional overlap. 

Their mosaics consequently include a few very short nearest neighbor distances that are 

never observed in random simulations constrained by soma size (figure 8d, e & i). Yet that 

they are essentially random in their two-dimensional spatial statistics is made clear by their 

respective Voronoi analyses, where their Poisson-like distributions mimic closely those for 

random simulations, yielding identical regularity indices (figure 8f & g). They, like the AII 

cells, have effective radii that are exceedingly close to those derived for random simulations 

(figure 8j), indicating that their patterning upon the retina is simply the product of the 

spacing commanded by their physical size, nothing more.

The choice of cell types analyzed above was constrained by the availability of antibodies 

that selectively allow the detection of single cell types at particular depths within the retina. 

That the antibodies used reliably label their entire populations (i.e. the analyses are not 

confounded by variable undersampling), is suggested by the fact that estimates of the sizes 

of their entire populations, in multiple strains of mice, return an average coefficient of 

variation in each strain, for every cell type, around 0.04, despite different sampling 

procedures (Keeley et al., 2017a). Were individual retinas yielding variable proportions of a 

targeted cell type due to incomplete labeling of the population, we should expect greater 

variability in the total number of cells per retina (Keeley et al., 2014a).

The relationship between intercellular spacing and cellular density in 

retinal mosaics

To appreciate the differences in self-spacing behavior of these various cell types, consider 

the relationship between their spatial statistics across the variation in cellular density that is 

found in these sample fields. While there is some pronounced variation in the regularity 

indices for horizontal cells (red) at the very lowest densities (i.e. uncommonly high 

regularity indices are occasionally achieved when densities are so low), there is no 

significant correlation in either regularity index (derived from nearest neighbor distances or 

Voronoi domain areas) as a function of density (figure 9a & b). Likewise, the cholinergic 

amacrine cells (green) show no significant correlation between regularity index and density 

as well. In order for a mosaic to maintain regularity across variation in density, their 

constituent cells must modulate their average intercellular spacing, and that they do so is 

evidenced by the strong correlation between effective radius and density (figure 9c). Such a 
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smooth transition in intercellular spacing in step with changes in density should yield a 

packing factor that also does not vary as a function of density for these cell types, as 

observed (figure 9d).

By contrast, in retinal mosaics wherein cells minimize proximity only by their physical size, 

we would expect to observe a slow increase in regularity as a function of increasing density 

(as shown above for the random distributions in figure 2); in fact, the three types of cone 

bipolar cells (lime, blue and turquoise) all appear to exhibit just such a trend across variation 

in density. Their effective radii, by contrast with the horizontal and cholinergic amacrine 

cells, should not be expected to change as a function of density (random simulations that 

vary in density confirm as much—Keeley et al., 2017b), and this is exactly what is obtained 

(figure 9c). Absent any change in effective radius in the presence of increasing cell number, 

their packing factor must necessarily increase, because the maximal radius must decline with 

that increase in density (figure 9d).

Curiously, the AII amacrine cells (cyan) present a profile slightly different from the three 

types of cone bipolar cells, although this appears to be due to the two sparsest fields. The 

trends as a function of increasing density look more like those for the three bipolar cell 

populations when those two fields are discounted, in particular, suggesting an invariant ER 

as a function of density. Regardless, whatever the cause of the slightly different trends in the 

AII amacrine cell mosaic (figure 9), the patterning in their mosaics cannot be discriminated 

from random simulations using either Voronoi domain analysis (figure 8f, g) or packing 

factor analysis (figure 8k), like the three bipolar cell mosaics.

The VGluT3 amacrine cells (magenta), we have already seen, are not as regular as the 

horizontal or cholinergic amacrine cells. Their average effective radius is comparable to that 

for the cholinergic amacrine cells (figure 8j), yet their somewhat lower densities must yield a 

lower packing intensity, and we have suggested that this yields the reduction in their 

regularity. If we consider their statistics as a function of density, we see that their 

relationship is qualitatively like that for the more regular mosaics, yet we see a strong 

decline in the extent of the correlation between effective radius and density for this cell type 

(figure 9c). As intimated above, the patterning of the VGluT3 cells may be achieved by a 

comparable intercellular spacing rule to that employed by the cholinergic amacrine cells, on 

average, yet with far greater variability in that rule (i.e. a larger s.d.) at a given density. In 

short, different cell types may vary in the veracity by which they execute spacing rules to 

minimize proximity, a notion we have already considered above for the dopaminergic 

amacrine cell mosaic.

The above analyses demonstrate that, for the most regular of these mosaics, the horizontal 

cells, there can be a degree of variability in the regularity index at the lowest densities, a 

variability not explained by any variation in the size of the effective radius at the same 

density. This result would suggest that the same spacing rule can yield a degree of variability 

in the ultimate patterning within a field of cells, some of which may arise by the chance 

positioning of small numbers of cells. Such atypically high regularity indices occasionally 

seen for the horizontal cell mosaic appear to be unique to this cell type, though, as neither 

the cholinergic nor VGluT3 amacrine cells achieve such high regularity indexes even at 
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comparably low densities (figure 9a & b), perhaps it is only a fortuitous outcome of the 

largest spacing rule at such low densities (figure 9c), yielding the highest packing intensities.

Regularity in a mosaic is a heritable trait

The above examples of regularity in the horizontal and cholinergic amacrine cell mosaics 

show some degree of variability, yet their indices do not vary consistently across variation in 

density. Despite this, different strains of mice exhibit variation in their average regularity 

indices for a given cell type, which is independent of the variation in cell number across 

these strains, indicating that such patterning has a heritable component, being subject to 

genetic variants that ultimately modulate intercellular spacing (Keeley and Reese, 2014; 

Keeley et al., 2014b). Such variation in the regularity index across 26 recombinant inbred 

strains of mice mapped to a genomic locus on chromosome 11, wherein Pttg1 is located, and 

which, when knocked out, reduces mosaic regularity in cholinergic amacrine cells and 

horizontal cells. Results such as this, as well as the demonstration that Megf10 and Megf11 
play a role in the development of mosaic patterning of these same two cell types (Kay et al., 

2012), amply demonstrate that this histotypical property of neuronal populations can be 

dissected at the molecular and genetic level.

Normalizing the regularity index enhances the detection of genomic linkage

Interestingly, the above genomic mapping strategy supports the claim that it is the difference 
in mosaic order between real versus random distributions, rather than the absolute 

magnitude of the regularity index, that is the critical trait to which we should be attending 

(Keeley and Reese, 2014). Because different strains of mice also vary in their absolute 

numbers of horizontal cells and cholinergic amacrine cells (traits that independently map to 

other genomic loci—Whitney et al., 2014; Whitney et al., 2011b), so then, the magnitude of 

the variation in regularity index across the strains will be contaminated by the space-

occupying nature of each of these cell types that is progressively more constraining at higher 

densities. If, instead, the regularity index of a sampled field and its random simulation are 

expressed as a ratio (the “regularity ratio”), the different strains of mice exhibit a change in 

their rank ordering of this patterning trait (figure 10a, b). While the variation in regularity 

index for the horizontal cells across the strains is sufficient to map two suggestive genomic 

loci on chromosomes 1 and 14, the strength of genomic linkage is increased when using the 

regularity ratio instead (figure 10c, d) (Keeley and Reese, 2014).

Variation in mosaic patterning amongst retinal ganglion cell types

The foregoing analysis shows that four out of a total of eight retinal mosaics analyzed have 

cellular distributions that are essentially random, while the other four mosaics have cellular 

distributions that are non-random though exhibiting variation in just how regular they are. 

As we have sampled from less than 10% of all retinal cell types, to what extent might we 

generalize from these results to those other cell types? In particular, no retinal ganglion cell 

types were included in the above analysis because we have yet to find effective markers for 

single types that discriminate the entire population. Yet because some well-studied 

populations in other species show conspicuously regular arrays (Wässle et al., 1981a; 
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Wässle et al., 1981c), many have come to assume that all retinal ganglion cell types are 

assembled as regular mosaics (Seung and Sumbul, 2014; Zeng and Sanes, 2017). Each type 

of retinal ganglion cell is thought to extend their dendritic arbors to generate a complete and 

uniform coverage of the retina (Baden et al., 2016), transmitting a unique message derived 

from dedicated retinal circuitry at every location across the visual field. Of course, all 

populations of cone bipolar cells are believed to generate a uniform coverage of non-

overlapping dendritic arbors (Wässle et al., 2009), and as we have already seen above, at 

least three of them have managed to do so without the benefit of regular spacing within their 

somal arrays. Likely the other types of cone bipolar cell exhibit comparable disorder while 

generating a dendritic tiling of the retina (but see Luo et al., 1999, for a noteworthy 

difference in the patterning of two types of cone bipolar cell in monkey retina). Yet there 

may be reasons to expect a greater variety in the organizing principles of the different types 

of retinal ganglion cells, as we have seen for the amacrine cells, suggested by their myriad 

functions (Dhande et al., 2013; Huberman et al., 2009; Kim et al., 2008; Rousso et al., 2016; 

Zhang et al., 2012). For instance, a few retinal ganglion cell types are intrinsically 

photosensitive, contributing to the non-image forming functions of the retina (Hughes et al., 

2013), and such a luminance-detecting capacity would require neither regular somal 

patterning nor uniformity in process coverage. Other retinal ganglion cell types exhibit an 

atypically high degree of overlap amongst their dendritic and receptive fields (Baden et al., 

2016; Bae et al., 2018), while still others have uncharacteristically oriented, irregular, 

dendritic arbors (Huberman et al., 2009; Kim et al., 2008; Rousso et al., 2016). What we can 

glean from the published literature suggests a degree of variability in the regularity of their 

mosaics.

Within the mouse retina, perhaps the most convincing evidence for regularity in the mosaics 

of retinal ganglion cells comes from the analysis of the alpha ON sustained (AON-S) cell 

type. These cells can be discriminated by their SMI32 immunopositive status in conjunction 

with dendritic arbors positioned within the inner (ON) stratum of the IPL (Bleckert et al., 

2014). While this population was not subjected to an analysis of its regularity, the density 

recovery profile showed an exclusion zone that increases as density declines, yielding a 

stable packing factor. Other retinal ganglion cell types in the mouse retina (for example, the 

W3 cells and Jam-B cells) have had only their density recovery profiles reported, where the 

presence of an exclusion zone surrounding the origin was regarded as evidence for regular 

spacing, and that inferred regular spacing was then said to validate the presumption that each 

labeled population of cells was in fact a “natural cell type” (Kim et al., 2008; Zhang et al., 

2012). Yet images of some of these fields, by contrast with the AON-S cell type, appear 

discernably irregular, and absent direct simulations of random distributions at the same low 

densities, it is difficult to assess just how different those density recovery profiles are from 

random at these respective densities, let alone whether they reveal the presence of an orderly 

mosaic. We have, consequently, digitized the images from these various published mosaics, 

and generated 99 random simulations matched in density and constrained by the soma sizes 

derived from those published studies (figure 11), much as we described above for AII 

amacrine cells (figure 3), though in the present cases using both the nearest neighbor 

distances as well as the Voronoi tessellation to calculate each regularity index.
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The AON-S cells (Bleckert et al., 2014) present a mosaic that, by eye, appears more regular 

than random simulations matched in density and constrained by soma size (figure 11 a, f). 

Using either nearest neighbor analysis or Voronoi domain analysis, the regularity indexes 

(NNRI and VDRI) derived from the real sampled field were each substantially higher than 

the range of the 99 random simulated fields (figure 11k, l). This same study also reproduced 

mosaic fields for a second type of alpha cell, the AOFF-T cell, being a sparser population 

(figure 11b, g), but one that likewise generated regularity indexes that far exceeded the range 

for the 99 random simulations (figure 11k, l). By contrast, the mosaics of the Jam-B cells 

(figure 11c, h), the W3 cells (figure 11d, i), and the Drd4 cells (figure 11e, j), yielded 

regularity indexes that fell within the range of the random simulations, or in one case 

slightly exceeded that range on one of the two measures (Huberman et al., 2009; Kim et al., 

2008; Zhang et al., 2012) (figure 11k, l). (In fact, the results for the JamB cells were 

associated with a p value < 0.05, but note that they hardly differ from their random 

simulations, unlike the AON-S and AOFF-T cells. One would of course like to know how 

representative these single samples are. Alas, only the Bleckert et al., 2014, study provided 

multiple sample fields of the AON-S and AOFF-T cell types, all of them comparably regular). 

What are we to make of this?

Either these three other retinal ganglion cell types have been mis-sampled in those respective 

studies, and might, upon a more complete or selective sampling have generated regularity 

indexes greater than those for matched random simulations, or these mosaics are not 

assembled to achieve anything like the patterning associated with the AON-S and AOFF-T 

mosaics. Our own inclination is that both of these are likely to be correct: some of these 

studies may have mis-sampled their respective mosaics, relying as they have on variable 

hybridization signal or reporter gene expression, but there may also be substantial variety in 

their patterning, particularly when considering the variability in the organization of their 

dendritic arbors and associated functions. In light of the above results from other cell types, 

the degree of patterning (or regularity) generated by any minimal spacing behavior 

(evidenced by an exclusion zone) should be an empirical question rather than an a priori 
assumption about any type of retinal ganglion cell (or any retinal cell type). Many of the 

above studies have simply used the density recovery profile to conclude that a population of 

labeled cells is a single cell type based on the presence of an exclusion zone, and that its 

mosaic must necessarily be a regular one, particularly when it generates a regularity index 

exceeding that for a random distribution of infinitesimally small points (Huberman et al., 

2009).

The assembly of retinal mosaics

The diversity in the patterning of retinal mosaics, from random to regular, raises interesting 

questions about their assembly, as one ultimate goal for those interested in retinal 

development is to understand the construction of the retinal architecture, and this includes 

the positioning of different types of neurons across the breadth of the retina as well as across 

its depth. For example, might any variation in the difference between real versus random 

regularity indices across species arise solely from the greater retinal expansion experienced 

in larger eyes (Rodieck and Marshak, 1992)? If so, these mosaics should exhibit no change 

in regularity or packing as a function of development. Conversely, they might show an 
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increase in their regularity and packing at a particular developmental time-point, as do 

horizontal cells in the mouse retina (Raven et al., 2005b). Do differences in the relative 

patterning of the different ganglion cell mosaics reflect differences in their birth order? 

Earlier-generated types might endure a greater degree of disordering during development 

(like the cholinergic amacrine cells in this layer) as the optic fiber layer and retinal 

vasculature form (Whitney et al., 2008). And does the variation in regularity meaningfully 

relate to the manner by which these different cell types distribute their dendritic arbors to 

sample their respective afferents in the plexiform layers? The tiling behavior of the dendritic 

arbors of cone bipolar cells makes clear that regular patterning of somal arrays is not a 

requirement to generate uniform retinal coverage (Lee et al., 2011; Wässle et al., 2009); 

other cell types, however, exhibit variable degrees of dendritic overlap. Yet, for the moment, 

there is no clear relationship between the degree of mosaic regularity with homotypic 

regulation of dendritic growth (Reese and Keeley, 2015). These are all empirical questions, 

and only by addressing them directly might we come to understand the natural variation in 

these retinal mosaics, and the extent to which they share any organizing principles that 

ultimately relate to their development or function.

Conclusions

It should be clear from the foregoing considerations that the conclusions to be drawn about 

the distribution of a population of cells is dependent upon the spatial statistics employed. 

The use of the density recovery profile is a starting point for deciding if a population of cells 

exhibits an anti-clustering tendency. Such conclusions may be further strengthened when the 

effective radius is calculated, particularly when it is larger than average soma size. Yet 

because the accuracy of determining an effective radius depends upon the density of the 

population and the bin sizes used to construct the density recovery profile (Rodieck, 1991; 

Cook, 1996), particularly with low density populations, a safer demonstration of any anti-

clustering tendency would be by comparison with similar analyses derived from density-

matched and soma-size constrained random simulations. Regardless, these spatial statistics 

(the density recovery profile and effective radius) should never be used to proclaim 

regularity in a mosaic.

To address the latter issue, either the analysis of nearest neighbor distances or Voronoi 

domain areas permits such statements about the pattern in the mosaic. We advocate the latter 

analysis, because it takes into consideration each cell’s relationship with all of its immediate 

neighbors rather than just the closest neighbor. It is this very distinction that allows the 

Voronoi domain analysis, but not the nearest neighbor analysis, to discriminate the 

patterning in the population of cholinergic amacrine cells (in the INL) from that of the 

VGluT3 amacrine cells. Both have similar nearest neighbor regularity indexes, and these 

indexes are higher than those derived from random simulations for both cell types. Yet the 

cholinergic amacrine cells exhibit higher Voronoi domain regularity indexes, demonstrating 

a difference in the regularity of these two mosaics that is apparent by eye (figure 8). As 

noted above, however, the nearest neighbor analysis can also be informative, highlighting 

other features of a mosaic of potential interest, for instance, slight perturbations in the 

frequency of the shortest nearest neighbor distances that otherwise do not appreciably 

influence the Voronoi statistics.
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When using either analysis, the magnitude of the regularity index is of little value without 

appreciating the results achieved by random simulations. Furthermore, when the regularity 

index between a collection of real fields differs from that of their random simulations, one 

can safely infer that their distributions must be different, but the reverse is not necessarily 

the case: when the regularity index does not differ, one should compare their respective 

frequency distributions before attempting to conclude that their spatial distribution is no 

different from random. Finally, as we have noted above in figure 1, because most sampled 

fields contain relatively modest numbers of cells, it would be wise to either extract multiple 

samples and compare them to matched random simulations (e.g. figure 8), or, in the limiting 

case where there is only a single sampled field, to compute multiple random simulations 

enabling Monte Carlo testing (e.g. figures 3 and 11). The soundness of any conclusions, of 

course, depends upon whether that sampled field is truly representative of the population; in 

all likelihood, such single fields are chosen because they appear regular to the eye.

There are additional benefits to performing the Voronoi domain analysis as well. Any eye-

catching regularity in a mosaic is made more apparent, as the tessellation yields a qualitative 

appreciation of the patterning within a field. Conversely, Voronoi analysis can be used to 

assess mosaics that are neither regular nor random, but are instead clustered, the degree of 

which can be quantified by calculating the “coefficient of clustering” across the field (e.g. 

Yu et al., 2016). When fields contain such clustered distributions, or have cellular density 

gradients across the sampled region, the use of autocorrelation-based analyses or the 

determination of a regularity index or packing factor is misleading about the nature of the 

somal distribution.

The packing factor is an alternative analysis for examining the patterning in an array, but, 

like all of these analyses, it has its attractions and its limitations. Unlike the regularity index, 

the packing factor yields a description of how far the mosaic veers from a hexagonal lattice. 

Also unlike the regularity index, which extends to infinity as a mosaic approaches a perfect 

lattice, the packing factor approaches a finite value of 1.0. Yet here too, the magnitude of the 

packing factor is influenced by density as well as soma size, and so is best compared to 

random simulations. It also is a derived measure, dependent upon the magnitude of the 

effective radius, and as we have seen, that measure can be unreliable (Rodieck, 1991).

For mosaics that are found to deviate from random, how can one determine the fundamental 

organizing principle underlying a distribution of cells? One option is to simulate a hexagonal 

lattice of cells with an increasing degree of jitter in their positioning to test whether the 

spatial properties of the mosaic are well-replicated. An attraction of the autocorrelation 

analysis is that it returns a correlogram in which the foci in a jittered lattice reveal 

themselves when the jitter is modest (Hore et al., 2012). Yet for most post-receptoral retinal 

mosaics, such periodicity in not uncovered in their autocorrelograms. Rather, they yield 

correlograms showing only an exclusion zone at the center, indicative of an anti-clustering 

tendency amongst the cells in the mosaic. So alternatively, random simulations constrained 

by a minimal distance spacing rule can be generated to test whether a local spacing rule is 

sufficient for establishing the patterning found in the mosaic. This approach has been 

effective in recapitulating many retinal mosaics (Galli-Resta et al., 1997; 1999; Cellerino et 

al., 2000; Hore et al., 2012), and as we have shown, can provide an alternative route to 
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discriminating real from random mosaics when their densities are particularly low (figure 

5e–j).

In sum, there are a wealth of spatial statistics to choose from when analyzing the distribution 

of two-dimensional point patterns associated with retinal mosaics, each suited for drawing 

different conclusions. Their judicious use can offer insights into many features of a mosaic, 

revealing the diversity in the patterning of neuronal populations, from random to regular.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
a: The mosaic of horizontal cells (red) in the mouse retina (C57BL/6J) exhibits a degree of 

orderliness in the positioning of its cells. b: That patterning can be contrasted with a random 

distribution of infinitesimally small points (CSR) at identical density (the positions of which 

are indicated by grey dots). Both illustrated fields contain 150 cells (or points) in a field 300 

μm × 300 μm in area. c, d: The patterning in such real and simulated mosaics can be 

assessed by measuring the distance of each cell (or point) to its nearest neighbor, and then 

plotting the frequency distribution of those nearest neighbor distances. Note that elements 
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positioned near the border (lighter shading in a and b) have uncertain nearest neighbor 

distances, and so are excluded from the analysis. Plotted here are the distributions for 32 real 

fields of horizontal cells (mean ± s.e.m.), along with 32 random simulations (each one 

matched in density to a real field), having densities averaging 1450 cells/mm2. The two 

distributions differ, with that for the real data approximating a Gaussian distribution, while 

that for the random simulations approximates a Poisson distribution expected for a 

theoretical random point pattern. For each of the real fields and their random simulations, a 

regularity index can be computed, being the mean nearest neighbor distance divided by the 

standard deviation (NNRI). The average regularity index for the 32 real fields is 4.68 + 0.07, 

while that for the random simulations is 1.91 + 0.03. e: The regularity index for a theoretical 

random point pattern is ~1.91 (yellow line). Individual simulations of random point patterns 

can veer off of this theoretical value substantially as the number of cells in the field declines, 

yet they average, at any density, the theoretical value of ~1.91. Plotted here are the medians, 

quartiles, and outliers from 100 simulations varying in the number of cells within a sample 

square field. f: When points closer to the border than their nearest neighbor (e.g. lightly 

shaded points in b) are included in the analysis, their presence progressively distorts the 

average regularity index as cell number declines, taking it below the theoretical value of 

~1.91 (yellow line), also evident in Cook’s (1996) Ready-Reckoner chart.
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Figure 2. 
Random distributions of cells that simulate increases in somal size or cell number generate 

increases in the regularity index. a-f: Random simulations of cells 5 (a, b), 7.5 (c, d) or 10 (e, 

f) μm in diameter at 2000 (a, c, e) versus 4000 (b, d, f) cells per mm2. Each simulation 

randomly inserts a cell into the field, rejecting, with replacement, any cell that overlies a 

previously positioned cell, until achieving the desired density. Somal sizes are drawn from a 

Gaussian distribution of given mean with a standard deviation of 0.5 μm in each case. g: 

Variation in the nearest neighbor regularity index (NNRI) as a function of increasing density, 
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for simulated soma sizes of 5, 7.5 and 10 μm in diameter at progressively higher densities, 

from 1000 to 5000 cells per mm2. Plotted here are the medians and quartiles from 100 

simulations at each of the densities indicated along the X axis, for the three different 

simulated soma sizes, in a field 250 μm × 250 μm in area. Border cells are excluded in these 

and all subsequent analyses. (Modified from Keeley et al., 2017).

Keeley et al. Page 34

J Comp Neurol. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
a-d: AII amacrine cell mosaics from mouse (a), bat (b), rabbit (c) and monkey (d) are all 

notably irregular in their patterning. Each field shows the somal distribution of AII amacrine 

cells (cyan) in exemplar mosaics derived from respective publications (Jeon et al., 2007; 

Perez de Sevilla Müller et al., 2017; Vaney et al., 1991; Wässle et al., 1995). (The densities 

for these four fields are 3936 cells/mm2 for a, from figure 1b of Perez de Sevilla Müller et 

al., 2017; 2221 cells/mm2 for b, from figure 2a of Jeon et al., 2007; 1932 cells/mm2 for c, 

from figure 2 of Vaney et al., 1991; and 1143 cells/mm2 for d, from figure 4a of Wässle et 
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al., 1995). e-h: Random simulations of these same mosaics (grey), matched in area, 

geometry and cell density, and constrained by the soma size of AII amacrine cells reported 

in (or measured from) those studies are comparably irregular (somal sizes being 7.2 ± 0.4 

μm for e; 8.9 ± 0.7 μm for f; 8.8 ± 0.7 μm for g; and 8.5 ± 0.7 μm for h). The field 

dimensions, determined from those published images, are indicated beneath the real fields. i: 

The regularity index calculated from the distribution of nearest neighbor distances (NNRI) 

in the four fields shown in a-d is indicated (blue), along with the regularity indices from 99 

random simulations matched in density and constrained by soma size (grey), for each 

respective real field. None of the regularity indices for the real fields exceeded those for the 

lower 95 random simulations (i.e. none were associated with a p value < 0.05). The variable 

range of regularity indices for the 99 random simulations across the different species reflects 

the variation in cell number contained in the real sampled mosaics.
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Figure 4. 
a: Retinal mosaics can be assessed for any anti-clustering tendency using spatial auto-

correlation analysis. Shown is the mosaic of horizontal cells (red) from figure 1a, along with 

the size of the correlogram superimposed on a single soma. b: The spatial auto-correlation of 

the somal distribution (i.e. the plot of every cell relative to the origin at the center of the 

auto-correlogram) reveals an exclusion zone, indicating a region surrounding each cell 

where the frequency of like-type cells is lower than at greater distances from each cell. Such 

auto-correlograms generally fail to exhibit evidence of higher-order patterning, for instance, 
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any lattice-like periodicity, as such patterning should be amplified in the correlogram as 

regions of oscillating low and high density at the same periodicity. c: The density recovery 

profile derived from the auto-correlogram reveals the variation in average density as a 

function of increasing distance from the origin. The size of the vacant region surrounding 

the origin in the auto-correlogram can be estimated from the density recovery profile, termed 

the effective radius (vertical dashed line and arrowhead). The analysis must either correct for 

cells positioned closer to the border than the radius of the correlogram, or those cells must 

be excluded from the analysis (Rodieck, 1991). Plotted here are the mean (± s.e.m.) density 

recovery profiles from those same 32 real fields analyzed in figure 1c. d-f: Random 

simulations of cells (grey; in this case, of a simulated size of 10.0 ± 0.5 μm) show the effect 

of soma size upon the spatial auto-correlogram and density recovery profile. The average 

density recovery profile in f is derived from 32 simulated fields constrained by soma size 

and matched in density to the 32 real fields analyzed in c. (The filled circles in the 

correlograms in b and e indicate soma positions only, not soma size).
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Figure 5. 
a, b: The dopaminergic amacrine cell mosaic (orange) in the mouse retina (C57BL/6J) is 

exceedingly sparse and irregular, appearing comparable to a random simulation matched in 

density and constrained by soma size (grey). c: Comparison of the nearest neighbor 

frequency distribution (mean ± s.e.m.) derived from 16 real fields (orange) with that from 16 

separately derived random simulations (each one matched for density, geometry and 

constrained by soma size) confirm a dearth of shorter nearest neighbor distances in the real 

fields. Inset histogram shows the mean (± s.e.m.) regularity index for these 16 fields and 
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their random simulations. d: The density recovery profile (mean ± s.e.m.) confirms an anti-

clustering tendency in the real mosaics relative to their 16 matched random simulations. 

Data in a-d largely replicate the original report by Raven et al. (2003), now using larger 

sampled fields with higher numbers of cells. e-h: Monte Carlo testing of different minimal 

distance spacing rules confirms that real fields are fit by spacing rules substantially larger 

than soma size, the latter failing to fit the data (Raven et al., 2003). Shown are the G function 

(the cumulative frequency distribution for nearest neighbor distances) (e, f) and the L 

function (the scaled cumulative density recovery profile) (g, h), comparing data from a 

single real field (in orange) with 99 random simulations using a dmin based on mean soma 

size, of 11.43 ± 1.45 μm (e, g), versus a dmin of 70 ± 50 μm (g, h). The average of those 99 

simulations is indicated by the broken line, with the solid grey lines defining the envelope of 

those simulations. Informally, if the orange trace for the real data falls within the envelope of 

the simulations, then the model is a good fit to the data. i, j: Proportion of the 16 fields 

analyzed in c-e that could be fit by the two respective dmin rules (i.e. p < 0.95), using the 

ranking procedure described in Raven et al., 2003 for assessing each field relative to its 

respective 99 simulations). Despite their apparently random patterning (a), dopaminergic 

amacrine cells minimize close proximity, rendering them non-random.
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Figure 6. 
a-c: A random distribution of cells constrained by soma size (10 ± 1 μm, mean diameter ± 

s.d.) exhibits a null region at the center of the auto-correlogram, the size of which (discerned 

in the density recovery profile) approximates the soma size used in the simulation. d-f: The 

identical mosaic (showing only its central region in d) has been simulated to undergo 

uniform expansion, consequently maintaining identical spatial relationships between the 

cells. The two mosaics now differ, however, in the size of the null region present at the 

center of their auto-correlograms, yielding a larger effective radius derived from the density 

Keeley et al. Page 41

J Comp Neurol. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



recovery profile for the expanded mosaic. (The auto-correlogram and density recovery 

profile in e and f are derived from the full expanded field). The size of an effective radius, 

therefore, is not an indication of the degree of regularity in a mosaic.
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Figure 7. 
a, c: Cholinergic amacrine cells in the inner nuclear layer (INL) and ganglion cell layer 

(GCL) differ in their regularity in the mouse retina (C57BL/6J). The fields show the Voronoi 

domain associated with each cell (green) in the two respective mosaics at a single locus on 

the retina. b, d: A comparison with random simulations constrained by soma size (grey) 

shows that the GCL mosaic appears more similar to the random simulation than does the 

INL mosaic. Note that border cells, excluded from the analysis, are defined by those that 

have uncertain Voronoi domains. e, f: Using nearest neighbor analysis to compute the 
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regularity index (NNRI), the GCL mosaic is not significantly different from its random 

simulation. g, h: Using Voronoi domain analysis, by contrast, the regularity index (VDRI) of 

the GCL mosaic is significantly different from that of the random simulation, illustrating the 

benefit of considering all near neighbors rather than simply the nearest neighbor when 

assessing regularity. n = the number of fields analyzed; the number of random simulations 

for each comparison was identical. i, j: Frequency distributions (mean and s.e.m.) of the 

nearest neighbor distances for the real versus random mosaics in the INL and GCL, 

respectively. Note that the real versus random GCL distributions in j are clearly different, yet 

generating identical mean regularity indexes (f). k, l: Frequency distributions of the Voronoi 

domain areas for the real versus random mosaics in the INL and GCL, respectively. 

Analyses were derived from 4 different retinas, sampling in the center and periphery of each 

retinal quadrant, for a total of 32 real sampled fields plus their respective density-matched 

and soma-size constrained random simulations.
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Figure 8. 
Analysis of eight different types of retinal neurons in the mouse retina (A/J) show 

substantial variability in their patterning. Each cell type is indicated along the left margin 

and coded by color. a: Images of immunostained retinas, masked to reveal only the labeled 

somata, to accentuate their variation in patterning across cell types (see Keeley et al., 2014a, 

and Keeley and Reese, 2018, for unmasked examples). Each of the antibodies used to 

identify these eight cell types is provided in Supplementary Table 1. The methodology 

associated with tissue preparation and mosaic analysis can be found in Keeley et al. (2017a) 
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and in Raven and Reese (2002), respectively. Calibration bar = 50 μm. b: Somal patterns 

derived from such immunolabeled fields, where the size of each cell is portrayed with a 

filled circle set to mean soma size. c: Somal patterns derived from random simulations 

matched in density to the fields in b, in which the simulations prohibited somal overlap. d: 

Average nearest neighbor frequency distribution derived from multiple fields, with data from 

random simulations in grey shading. e: Regularity indices calculated from the nearest 

neighbor distances for real fields versus random simulations. f: Average Voronoi domain 

area frequency distributions for real fields versus random simulations. g: Regularity indices 

calculated from the Voronoi domain areas for real fields versus random simulations. h: 

Scatterplot showing the relationship between the two regularity indices for each field. i: 

Average density recovery profiles derived for the real fields and random simulations. The 

black dashed lines indicate the normalized mean density, for each cell type. j: Effective radii 

computed from the density recovery profiles for the real fields versus random simulations. k: 

Packing factors computed from the effective radius for each real field versus random 

simulation. Means and standard errors are plotted in all cases. n = the number of fields 

analyzed; the number of random simulations for each comparison was identical.
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Figure 9. 
The different cell types vary in their behavior as a function of cellular density on four 

different spatial statistics. Data are from each of the same eight cell types in figure 8e, g, j 

and k, now plotted for each individual field at its respective density. a: Nearest neighbor 

regularity index. b: Voronoi domain regularity index. c: Effective radius. d: Packing factor. 

Note in particular the difference in the relationship between effective radius with density 

across the different cell types, and how this relates to the variation (or lack therein) of the 

three patterning statistics as a function of density. (Note as well the exceedingly low 
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effective radii and packing factors for some fields; all have unreliable effective radii and 

derived packing factors due to low cell density).
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Figure 10. 
a: While the regularity index does not vary systematically as a function of density within any 

strain of mice, there can be variation in the regularity index across different mouse strains, 

indicating a heritable component to this trait. The horizontal cell mosaic of 28 different 

mouse strains (25 AXB/BXA recombinant inbred strains, their parental C57BL/6J and A/J 

strains, and their B6AF1 cross) were analyzed for their regularity index derived from their 

Voronoi domain areas (VDRI). Strains are rank-ordered by regularity index. n = the number 

of mice sampled per strain, with eight fields being averaged within each retina. b: Because 

these strains also independently vary in horizontal cell density, the regularity index derived 

from matched random simulations was also determined, and the two regularity indices 

expressed as a ratio (real/random). As a consequence, the strains undergo a reordering by 

ranking this “regularity ratio” (VDRR) that expresses the magnitude of the difference from 

random. c, d: Both strain distribution patterns map two quantitative trait loci (QTL), on 

chromosomes 1 and 14 (arrows in c and d), but this linkage between phenotype with 

genotype is stronger (i.e. higher likelihood ratio statistics are achieved) when normalizing 

the regularity index to what a density-matched random simulation would yield (d). The 

horizontal lines indicate suggestive and significant thresholds defined by permutation testing 

of the strain data. (Modified from Keeley and Reese, 2014).
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Figure 11. 
a-e: Ganglion cell mosaics (brown) from the mouse retina derived from the published 

literature vary in their patterning (Bleckert et al., 2014; Huberman et al., 2009; Kim et al., 

2008; Zhang et al., 2012). Each of those studies reported that the constituent cells minimize 

proximity to like-type neighbors, evidenced by the presence of an exclusion zone derived 

from the density recovery profile, said to indicate a regular retinal mosaic, but only one of 

them reported the regularity index derived from nearest neighbor analysis, though 

comparing it to a random pattern of dimensionless points (CSR) (Huberman et al., 2009). 
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Included are the AON-S and AOFF-T cells (a and b, from supplemental figures 1B and 1E of 

Bleckert et al., 2014), JamB cells (c, from figure 1b of Kim et al., 2008), W3 cells (d, from 

figure 1a of Zhang et al., 2012), and Drd4 cells (e, from supplemental figure 1A of 

Huberman et al., 2009). (The densities for these five fields are 148 cells/mm2 for a; 54 

cells/mm2 for b; 171 cells/mm2 for c; 259 cells/mm2 for d; and 188 cells/mm2 for e). The 

field dimensions, determined from those published images, are indicated beneath the real 

fields. f-j: Adjacent to each real field is a random simulation, matched in density and 

constrained by soma size estimated by measurements from those published studies (being 

20.3 ± 2.2 μm for f and inferred for g; 16.0 ± 1.1 μm for h; 15.1 ± 1.1 μm for i; and 16.9 ± 

1.4 μm for j). For each real and random field, the Voronoi tessellation is indicated. But for 

the infrequent presence of occasional close neighbors in the random simulations, the 

patterning (particularly in the Voronoi tessellation) looks similar to that for the real fields for 

all but the AON-S and AOFF-T cells. k, l: The regularity index derived from nearest neighbor 

analysis (k) and from Voronoi domain analysis (l) for each real mosaic (brown) and for the 

respective 99 simulations (grey). Only the AON-S and AOFF-T cells generate large differences 

in regularity relative to their respective random simulations.
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