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Abstract: Psychiatric disorders are complex brain disorders with a high degree of genetic heterogene-
ity, affecting millions of people worldwide. Despite advances in psychiatric genetics, the underlying
pathogenic mechanisms of psychiatric disorders are still largely elusive, which impedes the develop-
ment of novel rational therapies. There has been accumulating evidence suggesting that the genetics
of complex disorders can be viewed through an omnigenic lens, which involves contextualizing
genes in highly interconnected networks. Thus, applying network-based multi-omics integration
methods could cast new light on the pathophysiology of psychiatric disorders. In this review, we first
provide an overview of the recent advances in psychiatric genetics and highlight gaps in translating
molecular associations into mechanistic insights. We then present an overview of network method-
ologies and review previous applications of network methods in the study of psychiatric disorders.
Lastly, we describe the potential of such methodologies within a multi-tissue, multi-omics approach,
and summarize the future directions in adopting diverse network approaches.

Keywords: psychiatric disorders; network modeling; integrative genomics; systems biology;
multi-omics

1. Introduction

Psychiatric disorders, a group of prevalent brain disorders involving complex dis-
turbances in socio-cognitive functioning, are a leading cause of disability [1]. Surpassing
cancer and cardiovascular disease, psychiatric disorders are estimated to affect 792 mil-
lion people worldwide, representing 10.7% of the total population [2]. Nearly one in five
adults experiences a psychiatric disorder in the U.S., with major depressive disorder being
the leading cause of disability [3]. Given the lifelong morbidity and dearth of rationally
designed treatments, it is imperative to understand the pathophysiology of psychiatric
disorders. While numerous advances have expanded the scope of genetic analysis, how
genetic risk confers pathophysiology remains largely elusive.

Key unanswered questions include: How do polygenetic contributions interact to
affect molecular signaling and endophenotypes? Do different combinations of common
and rare variants produce distinct manifestations of psychiatric symptoms? How do we
meaningfully expand the understanding of these genetic interactions, and how do we
leverage such knowledge to promote precision medicine (Figure 1a)?
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Figure 1. Pursuing a network understanding of psychiatric disorders’ genetic architectures to advance
precision medicine. (a) With the increasing abundance of genome-wide association studies (GWAS)
and whole exome sequencing (WES) studies, genetic data for psychiatric disorders are increasingly
comprehensive. However, we still lack a mechanistic understanding of the genetic architecture in the
pathogenesis of different disorders and symptoms. Establishing such an understanding systematically
could enable the development of therapies for subgroups of patients or even on a personalized basis.
Network modeling of gene interactions provides a powerful tool to dissect risk-gene relationships
and pathways affected. The polygenic model and the omnigenic model are proposed for psychiatric
disorders. In the polygenetic model (b), a certain trait is determined by a combination of multiple
variants with different effect sizes. Common variants have a high population frequency and small
effect sizes, while a small number of rare variants have a low population frequency but large effect
sizes. In the omnigenic network model (c), the regulatory relationships between variants are depicted
by the network. A small number of hub genes regulates the majority of peripheral genes. Rare
variants likely reside in hub genes and common variants in peripheral genes.

One promising approach is to broaden the analysis to noncoding regulatory elements
and consider their effects within the complete architecture of a functional genome [1,4].
Current analytical methods mostly focus on interpreting common and rare variants lo-
cated in gene coding regions, but 93% of the disorder-associated loci identified in GWAS
are located in non-coding regions of the genome [5]. However, analyzing global interre-
lationships between non-coding regulatory elements and rare and common variants is
complicated by cell-type heterogeneity, data availability, and incomplete annotation.

In this review, we discuss recent advances in network approaches that may address
this complexity. Broadly, for example, network approaches that define the superstructures
of interactions and probabilistic models that localize key nodes in this structure could
compress the genetic search space to the most important elements. We will firstly introduce
the prevailing view on the polygenetic architecture of psychiatric disorders and review
genetic studies that have linked rare and common genomic loci to different conditions.
We will then discuss several challenges in dissecting the full architecture of psychiatric
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disorders with this view. We will present advances in multi-omics approaches and network
methodologies that could address these challenges in the context of an omnigenic model.
We will introduce emerging network tools that are underutilized but promising. Lastly, we
will summarize potential future directions of developing network approaches.

2. The Scope, Characteristics, and Genetic Architecture of Psychiatric Disorders

We surveyed six common psychiatric disorders with various levels of heritability (twin
heritability ranging from 0.37 to 0.85) and distinct domains of manifestation and etiology:
alcohol use disorder, autism spectrum disorder (ASD), bipolar affective disorder, major
depressive disorder, post-traumatic stress disorder (PTSD), and schizophrenia. Details
regarding disorder characteristics, heritability, and impacts are outside the scope of this
review but can be found in previous reviews, such as Sullivan and Geschwind, 2019 [1].

Over the past decade, genetic studies have linked both rare and common genomic
loci to different disorders and traits [6–12]. One efficient way to characterize the genetic
architecture of complex diseases is to search for protein-encoding rare mutations in sin-
gletons or multiplex families with extreme phenotypes, which include early onset, more
severe symptoms, or fast progression of diseases [13]. Human genetic studies of extreme
psychiatric phenotypes and rare syndromes involving psychiatric symptoms have revealed
numerous rare variants in psychiatric disorders. These rare variants include copy number
variations (CNVs) and protein-altering point mutations; particularly for schizophrenia
and ASD, 159 and 136 rare variants have been identified, respectively [7,14–17]. These
rare mutations occur at extremely low frequencies in the population, but each with a large
effect size. One rare mutation on its own may be sufficient to cause a specific disorder, as
in the Rett syndrome [18]. Rare variants often cause loss-of-function of known genes, and
it is relatively easier to identify the affected pathways. For instance, synaptic function and
transcriptional regulation pathways have been implicated by ASD rare genetic variants.
However, rare variants can only explain a small proportion of individuals [1].

By contrast, recent GWAS studies have uncovered common genetic loci with relatively
high frequencies in the population but each with small effect sizes, making common vari-
ants challenging to identify unless studied in large populations comprised of as many as
100,000 subjects [19,20]. Despite the challenges, 353 common loci have been identified for
the surveyed psychiatric disorders, amongst which 270 loci are associated with schizophre-
nia [14]. Such findings illustrate a polygenic model in which many gene loci with small
effect sizes and hub genes with moderate to large effect sizes contribute to a disorder [21]
(Figure 1b).

There are several challenges in investigating the polygenic architecture and mecha-
nisms of psychiatric disorders. First, large population samples are needed to overcome
statistical hurdles to identify common variants with small effect sizes. Second, interpreting
the biological roles of common variants is challenging because 93% of the common variant
loci located in non-coding areas of the genome can regulate gene expression in a subtle
or indirect way [5]. Third, the set of regulatory actions of a given gene is diverse and
varies across cell types and developmental stages. Last, cell-state-specific sequencing and
functional annotations of such non-coding areas are unavailable or inconsistent.

Multi-omics and network approaches can address these levels of complexity by exploit-
ing the structure of physiological contextualization and connectivity to generate otherwise
inaccessible insights. Multi-omics approaches integrate genetics, functional genomics,
transcriptomics, proteomics, and epigenetics. Integrating multiple levels of analysis in
this manner can provide unique windows into key driving elements and hypothesized
biological functions of genes that would otherwise be opaque to a single-level analysis.
One way to integrate multi-omics data is through network approaches and we will discuss
the biological and pragmatic motivations for transitioning from a polygenic model to an
omnigenic network model of psychiatric genetics.
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3. From a Polygenic Model to an Omnigenic Network Hypothesis of
Psychiatric Disorders

A polygenic model views disorder risk from a multitude of common and rare variants
as combinatorial contributions. More recent inferences from the polygenic model and
advances in technology and biology have promoted the recognition of an omnigenic
model, which views genetic architecture from a network perspective [22,23]. Networks
are graphical models depicting interactions between nodes. From social networks to the
World Wide Web, network models emphasize the structure of interconnections between
nodes, which may have apparent commonalities across domains. In biological networks,
nodes are biological entities such as genes, proteins, non-coding RNAs, and metabolites.
Nodes are organized hierarchically and may be described in terms of their topology or
interconnections, such as in scale-free architecture [24]. In a scale-free network, most genes
have only a few connections with other genes, while a small proportion of genes have a
high level of connectivity and are located at the center of the network. These small numbers
of genes with high connectivity are referred to as ‘core genes’ or ‘hub genes.’ The remaining
genes with low connectivity are referred to as ‘peripheral genes’ [25]. The relationships
between entities are illustrated by edges connecting nodes, with the strength of interactions
encoded as weights on edges. This view of genetic and signaling architecture permits
not only relationally-based biological insights but also hypotheses regarding how certain
structures are more vulnerable or robust to disorder.

In the omnigenic model, core genes and peripheral genes contribute differentially
to the heritability of complex traits [22]. The small number of core genes usually plays
a large regulatory role in the network, thus having large effect sizes. On the other hand,
the majority of genes are peripheral genes, which account for most of the heritability
as a whole, yet each displays a small effect size. Naturally, one can correspond to rare
variants with core genes and common variants with peripheral genes (Figure 1c). While
the polygenic model also allows for rare variants with large effect sizes, the omnigenic
model provides additional insights into the underlying gene regulatory relationships
responsible for pathogenesis. The assumption that rare variants are core genes in the
network, which have larger effect sizes, account for a small percent of heritability, and are
more phenotype-specific, is supported by existing studies [23,26,27]. Thus, we believe that
the omnigenic model is superior in reflecting the underlying pathogenic mechanisms of
complex psychiatric disorders.

The omnigenic network model calls for systems biology tools to make inferences about
pathogenic mechanisms; however, variants alone are insufficient to construct disorder-
related networks—additional molecular data that help establish or infer functional rela-
tionships are needed. Multiple levels of data from gene expression to protein interactions
can be integrated to facilitate the construction of disorder-related networks (Figure 2). We
describe these approaches in more detail below.
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Figure 2. Extracting tissue and cell type-specific gene interaction relationships from multi-omics
data. Genetics, functional genomics, transcriptomics, epigenomics, and proteomics are the most
commonly used omics tools in obtaining gene interaction relationships. Genetic readouts can be used
to infer trait-related pathways and driver genes, while readouts from other omics tools indicate gene
regulatory relationships or protein-protein interactions. Particularly, intermediate phenotype QTLs
(iQTLs) such as expression QTLs (eQTLs) or protein QTLs (pQTLs) from functional genomics data
act as a bridge linking genetics and other omics by tissue-specific loci-gene regulatory relationship,
thus enabling the interpretation of common variant loci in the non-coding areas of the genome.

4. Connecting Disorder-Related Genetic Architecture to Network Models

Integrating and embedding multi-tissue, multi-omics data into network architectures
offers unprecedented relational insights while anchored to physiologic contexts. Common
omics data for network construction include genetics, transcriptomics, proteomics, and
epigenomics [28]. Transcriptomic datasets derive from microarray, RNA-seq, and single-
cell RNA-seq experiments and are the most used data type in network construction. mRNA
and non-coding RNA expression levels can inform gene co-expression, regulation, and
causality relationships. Epigenomics data such as histone modification, DNA methylation,
non-coding RNA regulation, and open chromatin sites derived from methods such as
CHIP-seq, ATAC-seq, Hi-C, and methyl-seq, highlight specific gene regulation profiles [29].
Proteomic data can reflect protein-protein physical interaction relationships based on
assays such as the yeast double hybridization or co-regulation relationships through
high-throughput methods such as protein chips. Across the omics domains, genetic
and epigenetic variations contribute to gene expression regulation, which in turn affect
protein levels and downstream protein-protein interactions and functions. All these within-
datatype and between-datatype relations can be used in network construction.

As mentioned, the vast majority of heritability involves common variants that are often
in non-coding areas, which cannot be directly mapped onto a gene network. To connect
these loci with molecular networks in disease-relevant tissues, functional genomics serves
as a bridge between genetics and other omics. Intermediate phenotype quantitative trait
loci (iQTL) are mostly used for this purpose, which are genetic loci associated with specific
quantitative traits such as gene expression or protein levels, which are intermediate traits
between genetics and clinical phenotypes [30]. In terms of the quantitative trait associated,
iQTLs include expression QTLs (eQTLs), splicing QTLs (sQTLs), histone modification
QTLs (hQTLs), methylation QTLs (mQTLs), and protein QTLs (pQTLs) [31]. The most
common type of iQTLs studied is eQTLs that define genetic loci that are associated with
gene expression. eQTLs can be divided into cis-eQTLs and trans-eQTLs. Cis-eQTLs are
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adjacent genetic loci that cis-regulate the covariate gene, while trans-eQTLs are distant
genetic loci that regulate genes remotely [32]. In a network, cis-eQTLs can help set the
corresponding covariate genes as parent nodes. In contrast, trans-eQTLs can infer the
covariate genes as child nodes. As such, eQTL information can also be directly incorporated
into network construction. For instance, using eQTLs as input for Bayesian networks boosts
causal inference and network performance [33]. In this way, one can locate disorder-related
common variants in a network by examining the connection of their eQTL covariate genes
and further identify hub genes related to common variants in the network.

As efforts devoting to large-scale omics profiling proceed, there has been an accumu-
lation of databases of different data modalities that can be used for psychiatric research
(Table 1). GWAS catalog, LD-hub, and PGC collect the summary statistics of genetic as-
sociations of diseases or phenotypes from many GWAS, including numerous psychiatric
disorders [34,35]. The Genotype-Tissue Expression (GTEx) project profiled the genotype,
transcriptome, eQTLs, and sQTLs across 54 tissues in a total of 948 donors, including
2642 samples from 13 brain regions [36]. The Encyclopedia of DNA Elements (ENCODE)
profiles various transcriptional regulators and epigenomic factors across more than 150 tis-
sues from 4920 samples, including 706 brain samples [37]. Another project focusing on
transcriptional regulator profiling is the Functional Annotation of the Mouse/Mammalian
Genome (FANTOM), which has released atlases of transcriptional regulatory networks,
promoters, enhancers, lncRNAs, and miRNAs [38]. Apart from GTEx, an abundance of
bulk tissue RNA-seq and single-cell RNA-seq datasets can be found at the Gene Expression
Omnibus (GEO) [39]. Lastly, the Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) curates and profiles protein interactions, with the latest version v11 including
24.6 million proteins from 5090 organisms [40]. All these data resources enable robust
network construction integrating multi-tissue multi-omics datasets.

Table 1. Publicly available repositories of multi-tissue multi-omics data related to psychiatric research.

Omics Database Description URL Usage in Network
Applications

Genetics

GWAS catalog

Collections of the GWAS summary
statistics files

https://www.ebi.ac.uk/gwas/
(accessed on 11 January 2021)

Find trait-related genes,
pathways, and
subnetworks

LD-hub http://ldsc.broadinstitute.org/
(accessed on 11 January 2021)

PGC
https:
//www.med.unc.edu/pgc/
(accessed on 11 January 2021)

Genomics/
Functional
genomics/

Transcriptomics

GTEx
Genotype, transcriptome, eQTLs, and
sQTLs profiles across 13 brain regions
from 948 donors and 2642 samples

https:
//www.gtexportal.org/home/
(accessed on 11 January 2021)

“Building bricks” for gene
regulatory networks

GEO

A repository for various data types
including genotypes, bulk tissue
RNA-seq and single-cell RNA-seq
datasets

https:
//www.ncbi.nlm.nih.gov/geo/
(accessed on 11 January 2021)

PsychENCODE

A repository specifically for
neuropsychiatric disorders including
RNA-seq datasets, SNP genotypes,
epigenomic datasets and gene
regulatory networks

http:
//resource.psychencode.org/
(accessed on 11 January 2021)
https:
//www.synapse.org/#!Synapse:
syn4921369/wiki/235539
(accessed on 11 January 2021)

BrainSpan

Transcriptional profiles of 16 cortical
and subcortical regions with a
temporal coverage across pre- and
post-natal development in both males
and females

http://www.brainspan.org/
static/download.html (accessed
on 11 January 2021)

Epigenomics

ENCODE
Transcriptional regulator and
epigenomic factor profiles from
706 brain samples

https:
//www.encodeproject.org/
(accessed on 11 January 2021) Provide regulator-target

pair information
FANTOM

Atlases of transcriptional regulatory
networks, promoters, enhancers,
lncRNAs, and miRNAs

https://fantom.gsc.riken.jp/
(accessed on 11 January 2021)

https://www.ebi.ac.uk/gwas/
http://ldsc.broadinstitute.org/
https://www.med.unc.edu/pgc/
https://www.med.unc.edu/pgc/
https://www.gtexportal.org/home/
https://www.gtexportal.org/home/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://resource.psychencode.org/
http://resource.psychencode.org/
https://www.synapse.org/#!Synapse:syn4921369/wiki/235539
https://www.synapse.org/#!Synapse:syn4921369/wiki/235539
https://www.synapse.org/#!Synapse:syn4921369/wiki/235539
http://www.brainspan.org/static/download.html
http://www.brainspan.org/static/download.html
https://www.encodeproject.org/
https://www.encodeproject.org/
https://fantom.gsc.riken.jp/
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Table 1. Cont.

Omics Database Description URL Usage in Network
Applications

Proteomics STRING DB
Curated protein interactions
including 24.6 million proteins from
5090 organisms

https://string-db.org/ (accessed
on 11 January 2021)

Provide protein-protein
interaction information

5. A Survey of Current and Potential Network Methods and Applications in
Psychiatric Research

Networks commonly used in systems biology include gene regulatory networks,
protein-protein interaction networks (PPI), literature-curated networks, and hybrid net-
works (Table 2). These network models depict the molecular relationships at both the
cellular and intracellular level, each from a unique perspective. Gene regulatory networks
focus on elucidating gene-gene interaction and regulatory relationships, organizing genes
based on co-expression clusters or inferred causality and regulatory pairs. PPIs emphasize
the physical interaction between proteins, combining protein interaction information from
both experiments and computational predictions. Literature-curated networks capture
potential gene or protein interactions by mining gene or protein co-occurrence from pub-
lished research papers. Hybrid networks combine and integrate information from two or
more different networks and present a comprehensive summary for a specific tissue [41].

Below we discuss each network method and its application in psychiatric disorders.
We also highlight approaches that are not yet widely adopted in psychiatric research.

Table 2. Major networks used in psychiatric disorder research.

Networks Relationship Captured Disadvantages Example Construction
Methods

Gene regulatory
network

Co-expression
network

Covariation and
co-regulation among gene
clusters

- Not directional
- No causal relationships

WGCNA [42];
MEGENA [43]

Bayesian network Causality of regulation
between gene pairs

- High computational cost
- Lack of feedback loops
- Possibility of failing to

find the optimal network
structure

RIMBANet [44]

Regulator-target
pair network

Specific regulation of
certain transcriptional
factors/non-coding RNAs

- Only captures certain
types of regulator
relationships

From database
(FANTOM) [38];
ARACNe [45];
TargetScan [46]

Protein-protein
interaction
network

Physical interaction affinity
between pairs of proteins

- Cannot reflect causality
or regulator relationships

- Current PPI datasets are
not tissue-specific

From database
(STRINGDB) [40]

Literature-based
network

Background
likelihood network

Possibility of gene pairs
participating in a similar
genetic phenotype

- Limited by the current
level of knowledge

Gilman et al., 2011 [47]

Phenotypic-
linkage
network

Gene clusters related with
disease-related phenotypes
curated from the literature

Ward et al., 2020 [48]

Hybrid network
General gene-gene
interactions, PPIs, and
literature co-occurrence

Use premade networks
(e.g., PCNet) [49];

Custom script

https://string-db.org/
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5.1. Gene Regulatory Networks

Three main kinds of gene regulatory networks are commonly adopted: gene co-
expression networks, causal relationship networks, and regulator-target pair networks.

5.1.1. Gene Co-expression Networks

Gene co-expression networks are correlation-based networks in which highly co-
regulated genes are clustered into modules, illustrating the functional clustering of genes
and pinpoint core genes based on connectivity. Commonly used methods to generate gene
co-expression networks include WGCNA [42] and MEGENA [43]. The key differences
between the two types of co-expression networks include the module size (large modules
in WGCNA vs. more compact modules in MEGENA) and whether a gene can be in
multiple modules (not allowed in WGCNA but allowed in MEGENA). WGCNA has
been widely implemented in numerous studies and is one of the most adopted network
methods in systems biology and psychiatric research. In contrast, MEGENA has not been
broadly applied. In recent comparative applications between the WGCNA and MEGENA
for non-psychiatric diseases, the complementary nature of the two methods is strongly
supported [50,51]. It will be interesting to test MEGENA in psychiatric disorders in future
studies.

Using WGCNA or MEGENA, one can identify modules associated with certain condi-
tions based on the transcriptomic profiles in both cases and controls using the module-trait
correlation analysis (Figure 3a). By annotating disorder-associated modules’ biological
function, cell types and pathways responsible for pathogenesis can be elucidated. For
example, Kapoor et al., examined bulk-tissue gene expression in the prefrontal cortex of
subjects with alcohol use disorder as well as controls [52]. They applied WGCNA to the
transcriptomic profiles and identified two modules that were significantly correlated with
alcoholism. Further pathway analysis suggested that in subjects with alcoholism, there is a
down-regulation of calcium signaling and nicotine response pathways in one module and
an up-regulation of immune signaling pathways in another module.

Figure 3. Using networks to identify disorder-related networks and key driver genes. (a) The pipeline
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to identify disorder-related co-expression modules. A co-expression network is generated from the
transcriptomic profiles of a subject with a specific disorder and the corresponding controls using
methods such as WGCNA. By calculating the enrichment level of disorder-related risk genes in each
module, modules enriched with risk genes can be identified. Alternatively, modules positively or
negatively correlated with the disorder can be identified by doing a module-trait correlation analysis.
Downstream annotation of these modules’ biological functions will reflect pathways affected in the
disorder. However, co-expression networks are unable to capture direct, causal relationships, which
can be supplemented by Bayesian networks and regulator-target pair networks. (b) Using networks
as a ‘road map’ to identify key driver genes of a specific disorder. Bayesian networks (BNs), regulons
from regulator-target pair networks, and PPI networks depict causality, regulation, or direct physical
interactions, respectively, and can be used as network models summarizing regulatory or direct
gene-gene interactions in a certain tissue. By overlaying disorder-related gene sets, e.g., differentially
expressed genes (DEGs), disorder-correlated co-expression modules, related pathways, and risk
genes, one can pinpoint potential key drivers based on the topology of the networks. (c) A summary
of key driver validation approaches. RT-PCR and transcriptomics can evaluate possible expression
alterations of the key drivers from samples with the disorder. Key drivers may be also validated if
they are identified as risk genes by human genetic studies. In vitro and in vivo experiments using
appropriate cell or animal models may help to validate the molecular, cellular, and behavioral
phenotypes upon disrupting key driver expression or activities.

Another common application of co-expression networks is first to construct co-
expression networks based on the transcriptomic profiles from control subjects and then to
examine the module enrichment level of genes affected in a specific disorder (Figure 3a),
as exemplified in the following study. Parikshak et al. constructed WGCNA gene co-
expression networks based on bulk tissue brain RNA-seq data from subjects representing
the cortex of early developmental stages spanning post-conception, week 8 to one year after
birth in the BrainSpan database [53,54]. ASD rare variant genes are enriched in hub genes
of modules functioning in early transcriptional regulation and synaptic development. Spa-
tially, ASD rare variant genes are enriched in superficial cortical layers and glutamatergic
projection neurons of the cortex. These findings have been cross-validated experimentally
by other studies using postmortem human brain samples from subjects with ASD, using
both bulk-tissue and single nucleus transcriptomics [55,56]. A parallel paper by Willsey
et al., also utilized the BrainSpan database and gene co-expression networks to identify
pathways and cell types related to ASD [57]. Rather than using WGCNA, the authors
constructed co-expression networks of high confidence of ASD ‘seed genes’ using the
Pearson correlation coefficient to choose the top 20 best-correlated genes with a Pearson
coefficient higher than 0.7 for each seed gene. Using this method, the authors elucidated
an enrichment of ASD rare mutation genes in deep-layer glutamatergic projection neurons
of the mid-fetal cortex, consistent with the Parikshak et al. findings.

Gene co-expression networks are powerful tools in determining co-regulatory relation-
ships of genes involved in distinct functions and how these modules connect to psychiatric
disorders. However, co-expression networks are not directional, and thus are unable to
provide causal relationships between genes, an important aspect to retrieve upstream
regulators. This limitation can be addressed by causal regulatory networks described in
the following sections.

5.1.2. Bayesian Networks (BNs)

BNs are directed acyclic graphs summarizing causal regulatory relationships between
genes. BNs can be generated with transcriptomic data alone, but the incorporation of prior
information capturing regulatory information can offer higher prediction accuracy for
regulatory relationships [33,58]. cis-eQTLs, trans-eQTLs, and transcriptional factor-target
pairs can be used as prior information for causal inference [32]. For instance, genes with
cis-regulatory function and transcription factors are assigned as ‘parent nodes’ in BN,
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while genes under trans-regulation or target genes of transcription factors are ‘child nodes’.
Arrows pointing from the parent nodes to child nodes indicate the inferred direction of
causality.

Integrating genetics, transcriptomic, functional genomic inputs, and more, BN can
capture causal regulatory relationships in a given tissue and can be used as a ‘roadmap’
in pinpointing key regulatory genes [58] (Figure 3b). There have been a few applications
of BN in psychiatric research. Scarpa et al., leveraged a combination of a WGCNA gene
co-expression network, transcription factor-target network, PPI, and BN to identify con-
vergence and divergence of biological processes between sleep loss and depression [59].
The authors first measured the affective sleep patterns of 288 hybrid mice and their geno-
types and transcriptional profile in the cortex, hippocampus, hypothalamus, and thalamus.
WGCNA co-expression networks were constructed to identify trait-related modules in
individual tissues, and BNs were constructed based on the transcriptomic profiles in con-
junction with eQTLs derived from the genotype information and transcriptomics. Next, the
authors examined the differentially expressed genes (DEGs) from a meta-analysis cohort of
human major depressive disorder and from mouse sleep loss datasets. The DEGs of the
human major depressive disorder and the mouse sleep loss model converged on a frontal
cortex-derived module enriched in clock genes and immediate early genes (IEGs). More-
over, genes in this module displayed opposite directions of change in major depressive
disorder subjects and sleep deficient mice, in line with the facts that many major depressive
disorder patients manifest sleep issues and that antidepressants affect sleep. The authors
then identified the key driver gene of this subnetwork by overlapping the non-directional
co-expression modules on the directional BN to identify intramodular regulatory hub
genes. An IEG Arc was found as a key driver gene of the clock/IEG network, which may
link depression and sleep loss.

Protein-protein interaction and tissue-specific gene expression patterns have also been
used to construct BNs, as in GIANT BNs [60]. GIANT BNs contain 31 central nervous
system-related tissue-specific functional interaction networks, each constructed based
on transcriptomic profiles, protein interaction information, and regulatory information
curated from diverse experiments. Among those, the brain-specific BN was constructed
with thousands of curated experiments by Krishnan et al., and was used to predict ASD
risk genes and characterize their biological functions [61]. The authors applied this BN
as an input to a machine-learning procedure, which was informed by text-mining co-
occurrence of genes of high-confidence ASD associations. This approach revealed synaptic
transmission, MAPK signaling, histone modification, and immune responses to be essential
in affecting functions in ASD, which was cross-validated with the previous literature and
experiments. Besides, this method was applied to prioritize driver genes in ASD-related
CNVs, and the authors highlighted PPP4C and MAZ as potential top driver genes in the
most common ASD-related CNV 16p11.2.

Although not yet widely adopted in psychiatric research, BN has been applied to
study many other diseases such as Alzheimer’s disease [62], Type II diabetes [63], and
non-alcoholic fatty liver disease [50]. BN is very powerful in identifying key driver genes
in a biological process based on causality. For example, BN construction in RIMBANet
uses Monte Carlo Markov Chain simulations to reconstruct 1000 networks starting with
random seeds, and the final BN is a consensus network containing the most shared edges
across all the reconstructions [59]. Although this method promotes causal inference, its
disadvantages include high computational costs [29,41,44], the possibility of failing to find
the optimal network structure [41], and a lack of feedback loops that misses an essential
type of gene expression regulation [64].

5.1.3. Regulator-Target Pair Networks

Dysregulation of transcription factors and non-coding RNAs have been indicated in
psychiatric disorders [55,65–67]. A regulator-target pair subnetwork consisting of a gene
expression regulator (such as a transcription factor or a non-coding RNA) and its down-
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stream effect genes is termed a ‘regulon’. One can directly explore experiment-derived
regulator-target pair networks from databases such as FANTOM and ENCODE [37,68]. An
alternative method is to use the binding sites or transcriptomic information to infer targets
of transcription factors or non-coding RNAs.

One piece of software that infers transcription factor regulons based on transcrip-
tomic information is the Algorithm for the Reconstruction of Accurate Cellular Networks
(ARACNe). Repunte-Canonigo et al., applied ARACNe to a rat model of alcoholism and
identified Nr3c1, the gene encoding the glucocorticoid receptor, as a master regulator across
many brain regions in alcohol-dependent rats [45,69]. The authors then performed an
in vivo validation experiment by administering a glucocorticoid antagonist to the nucleus
accumbens and ventral tegmental area of the alcohol-dependent rats and control animals.
A significant decrease in alcohol consumption was observed in alcohol-dependent rats
with the glucocorticoid antagonist to either of the two brain regions, while there was no
effect in the alcohol non-dependent rats. Another method developed based on ARACNe,
the Reconstruction of Transcriptional Regulatory Networks (RTN) [70], was applied by
Pfaffenseller et al., to identify differentially expressed regulons in the prefrontal cortex
of subjects with the bipolar affective disorder [71]. Five regulons (EGR3, TSC22D4, ILF2,
YBX1, and MADD as regulators) were identified, with EGR3 showing the most robust
significance in two independent human bipolar affective disorder datasets.

The Ingenuity Pathway Analysis (IPA), a commercial tool constructed based on a
comprehensive curation of different networks from experimental datasets, text-mining
literature, and other databases, also contains transcriptional factor and miRNA-target
pair networks [72]. Using this tool, Bam et al., predicted many down-regulated miRNAs
in PTSD to target IFNG and IL-12, which exhibit increased expression levels in PTSD
patients [73]. They also predicted that the up-regulation of hsa-miR-193a-5p could decrease
the high expression level of IL-12, which may help reduce the excessive inflammation
response in PTSD patients.

Another software tool, TargetScan, predicts mRNA targets of miRNA based on con-
served sequences in mRNAs [46]. Wu et al., leveraged a combination of the co-expression
network and miRNA-target regulatory network to identify miRNA dysregulation in
ASD [67]. The authors firstly identified differentially expressed miRNAs from ASD case-
control brain samples and constructed WGCNA co-expression modules. They then used
the TargetScan algorithm to identify mRNA targets of top differentially expressed miRNAs
and hub miRNAs in ASD-related co-expression modules. The authors illustrated that
ASD-related risk genes are enriched in miRNA targets and miRNA modules. One miRNA,
hsa-miR-21-3p, targets neuronal/synaptic genes down-regulated in ASD, which may play
an essential role in pathogenesis.

5.2. PPI Networks

In a PPI network, the nodes are proteins, and the edges depict the physical interaction
relationship between proteins based on experimental datasets or computational simula-
tion. The edges are undirected, and the weights of the edges indicate the reliability of the
interaction. StringDB is the most commonly used PPI database, with the latest version
v11 covering around 25 million proteins from 5099 organisms [40]. StringDB imports
and integrates PPI information from other databases, including PINA, MINT, IntAct, DIP,
BioGRID, HPRD, and MIPS/MPact. It also contains PPI inferred from text-mining, statis-
tically significant co-occurring genes from the literature, and computationally predicted
PPI based on criteria such as co-expression. Other integrated databases, including IPA and
GeneMania, also contain PPI resources.

PPIs have been extensively used in psychiatric research to identify hub genes. Com-
monly used methods of identifying subnetworks and hubs include DAPPLE, DMS, MCODE,
and PINA [74–77]. For example, Blizinsky et al., constructed a PPI network related to rare
CNVs in schizophrenia using PINA2 [78]. MAPK3/ERK1 was identified as the most
topologically important hub for the 16p11.2 network. The authors then performed an
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in vitro validation by applying an ERK signaling inhibitor to cultured primary neurons
with 16p11.2 microduplication. This treatment successfully reversed the abnormality
in these neurons’ dendritic arborization, indicating the critical role of MAPK3/ERK1 in
maintaining normal neuronal morphology.

PPIs are also broadly used in combination with other networks, such as the co-
expression network, to identify disorder-related networks. Gulsuner et al., profiled
schizophrenia-related de novo mutations and leveraged a combination of the PPI net-
work and co-expression network to examine the functional relevance of these de novo
mutations and identify their enrichment in pathways and tissues [79]. By mapping de novo
mutation genes onto the GeneMania physical interaction data set, the authors constructed
an interconnected subnetwork enriched for schizophrenia de novo mutation genes, sug-
gesting that the mutation genes are biologically interacting. The authors then constructed
co-expression networks based on the BrainSpan data by calculating Pearson correlation
coefficients across de novo mutation gene pairs. The most highly connected co-expression
network of de novo mutation genes was derived from the fetal cortex. To further examine
the interaction topology and gene characteristics, the authors merged the PPI network and
co-expression network derived from the schizophrenia risk genes. This merged network
contained genes in pathways related to neurogenesis and synaptic integrity, with most of
the genes expressed high in early fetal development, low in childhood, and high again in
early adulthood, which is in line with the onset of schizophrenia in early adulthood.

Since proteins interacting with each other may be co-regulated by the same upstream
regulatory signal, they may also exist in the same co-expression network. Thus, genes
that are both co-regulated and show protein interaction may be of higher relevance to a
specific condition and should be prioritized for further study as driver genes (Figure 3b).
Parikshak et al., identified two WGCNA co-expression modules enriched for ASD rare
de novo variants [53] and further showed that these modules enriched for rare variants
are also significantly enriched for protein interaction. The authors then intersected the
WGCNA co-expression network hub genes with the PPI network hub genes. Many of the
overlapping hub genes are known to harbor ASD-associated mutations and interact with
other ASD-related genes, such as TBR1, NFIA, and KDM6B.

The comprehensive PPI databases provide abundant resources for reliable PPI net-
works. However, one main limitation of the PPI network is that it does not reflect causality
or regulatory relationships. In addition, the PPI network is not tissue-specific and may
bring in interactions that are not relevant to the disease tissues.

5.3. Literature-Based Networks

Literature-based networks are curated based on integrating general knowledge such
as pathway/function annotation databases and text-mining existing experimental data
and literature to capture genes contributing to specific biological functions. Although
gene ontology terms can be constructed into a network in terms of the relatedness of
biological pathways, genes in this type of network are not interconnected and do not
reflect the topological properties of gene-gene relationships [80]. Thus, pathway/function
annotation databases such as GO, KEGG, Reactome, and BioCarta are collections of sets of
functionally-related genes rather than networks. However, pathway annotations can be
used in conjunction with other molecular interaction information in network analysis.

Leveraging a knowledge-based and data-driven gene-phenotype likelihood network,
Gilman et al., developed the NETwork-Based Analysis of Genetic Associations (NET-
BAG) [47]. The gene-phenotype likelihood network was first constructed by connecting
all pairs of human genes. Then weights calculated based on the likelihood ratio were
assigned to the edges based on the naive Bayesian integration of pathway annotations,
protein-protein interaction information, shared gene or protein sequence or structure, and
coevolutionary patterns. In this network, genes that are more likely to participate in the
same phenotype have a high likelihood ratio weight. To predict genes affected by rare de
novo CNVs in ASD using this network, the authors overlaid genes from ASD-related CNV
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regions and found the subnetwork with the highest enrichment p-value. They discovered
that genes in these subnetworks mostly participate in synapse development, axon targeting,
and neuron motility, which were cross-validated by later studies [53,55–57,61,81]. Gilman
et al., also developed the NETBAG+ to incorporate more genetic variation, including GWAS
loci and de novo single nucleotide variants. Further analysis suggested that the cortical
interneurons, pyramidal neurons, and medium spiny neurons are the most impacted cell
types in ASD [47]. The authors also applied the NETBAG+ to schizophrenia and identified
related subnetworks and their functions [81]. Schizophrenia-related networks function
mainly in axon guidance, neuronal cell mobility, synaptic function, and chromosomal
remodeling, which largely coincides with ASD but with different mutations.

Similar to the NETBAG, Ward et al., constructed phenotypic-linkage networks (PLN)
to identify nervous system gene sets related to the GWAS loci of mood instability [48]. The
authors constructed a nervous-PLN using phenotypes specifically in the Nervous System
mouse phenotype ontology (MPO) category, and integrated GO terms and pathway anno-
tations with PPI and co-expression relationships, to derive semantic similarity scores [82].
Using this nervous-PLN, the authors found genes within loci related to mood instability
to function in synapse transmission. Specifically, two candidate genes associated in the
network are HTR4 and MCHR1, encoding serotonin and melatonin receptors, respectively,
and have been indicated in depression and schizophrenia.

5.4. Hybrid Networks

Apart from the individual usage of the networks mentioned above, constructing a
hybrid network consisting of two or more kinds of networks is also a common practice.
As different networks cover different aspects of gene interaction, a hybrid network can
leverage the strengths and overcome the disadvantages and limitations of each network
type. For example, combining PPIs with BNs integrates both causal gene regulatory infor-
mation and protein physical interaction, which covers distinct aspects of gene interactions
and promotes the identification of hub genes that play regulatory roles at the gene and/or
protein levels.

Gazestani et al., constructed hybrid networks incorporating knowledge-based, func-
tional, and experiment-derived co-expression networks to identify transcriptional per-
turbation patterns in leukocytes from ASD cases and control children [83]. The authors
first generated a static network which combines information from (a) high-confidence
physical and regulatory interactions from the Pathway Commons database, Reactome, and
BioGRID; (b) co-expression network based on the transcriptome of the aforementioned
case-controlled leukocyte samples; (c) functionally-related gene interactions from Gene-
Mania, which includes PPI, co-expression, co-localization, pathways, and protein domain
similarity information. Gene pairs in each diagnosis group (case or control) were retained to
generate diagnosis-specific networks. By comparing the control-specific network and ASD-
specific network, the authors discovered that the ASD network was enriched with ASD rare
mutation genes, as well as their regulatory targets and regulators. RAS–ERK, PI3K–AKT,
and WNT–β-catenin signaling pathways were enriched in ASD-specific networks, and
ASD rare mutations perturbed the network through these pathways.

In addition to constructing literature-curated networks or hybrid networks from
scratch, there are numerous existing hybrid network resources available. Huang et al.,
benchmarked 21 popular human gene or protein networks, including StringDB, GeneMania,
and GIANT, based on a disease gene set recovery test and found that networks with a
larger size have better performance in retrieving known disease genes [49]. They then
assembled an integrative network that requires edges to be present in at least two networks,
called Parsimonious Composite Network (PCNet), which is smaller in size but has the
best performance. Although psychiatric disorders were not explicitly tested, this study
provides a new network resource and a guideline to choose hybrid network resources.
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5.5. Cross Disorder Network Applications

Due to the genetic correlation and comorbidity across psychiatric disorders, studying
pathogenesis mechanisms across disorders may yield therapeutic targets for several dis-
orders or specific endophenotypes. A recent study by Gandal et al., leveraged WGCNA
gene co-expression networks constructed based on case-control human brain transcrip-
tomic profiles across five psychiatric disorders: schizophrenia, major depressive disorder,
bipolar affective disorder, ASD, and alcohol use disorder [84]. In addition to the distinct
transcriptomic disturbance in each disorder, the authors identified a shared component of
transcriptional dysregulation across all five disorders related to the degree of polygenic
overlap. Their results agree with previous findings supporting that a shared causal ge-
netic component underlies all psychiatric disorders [85,86]. Further, the authors identified
shared and unique modules across these disorders. In ASD, bipolar affective disorder,
and schizophrenia, an astrocyte module with the annotation of glial differentiation is
up-regulated; several modules associated with neuronal and mitochondria function are
down-regulated in these disorders. A microglia module is uniquely up-regulated in ASD,
which is confirmed in another study by Gandal et al., where modules related to microglia
and the interferon response are significantly up-regulated in ASD but down-regulated in
bipolar affective disorder and schizophrenia. There is also a shared upregulation of the
NF-kB pathway across these three disorders [87].

The conclusions from the Gandal et al., studies are consistent with previous pathway
analyses based on genetic risks and studied leveraging of a similar network approach.
Using pathway analysis, a study by PGC found that common genetic risks of schizophrenia,
major depressive disorder, and bipolar affective disorder converge on neural, immune,
and histone modification pathways [86]. Kim et al., constructed WGCNA co-expression
networks to identify shared modules across schizophrenia, major depressive disorder, and
bipolar affective disorder, which were enriched with GABAergic markers, synaptic proteins,
and immune functions. Interestingly, the specific genes in the immune function-related
modules showed no overlap across all three disorders, indicating possible differential
responses in the immune system [88].

5.6. Network Applications on Treatment Response

Besides network applications in studying pathogenesis, networks are also powerful
tools to identify driver genes in treatment response. Although many psychopharmacologi-
cal drugs are available and have been applied for more than five decades, their mechanisms
of action remain mostly elusive. Moreover, drug responses in individuals differ tremen-
dously. Elucidating the mechanisms of action and identifying biomarkers that predict
individual responses to drugs can greatly aid precision medicine in psychiatry and the
development of novel therapeutics.

Lithium (Li) is a first-line mood stabilizer for bipolar disorder, although its mode
of action is not fully elucidated. To reveal the mechanism of Li in treating bipolar dis-
order and the differential responses across patients, Breen et al., characterized the tran-
scriptomic profiles of subject-derived lymphoblastoid cell lines from Li responders and
non-responders [89]. WGCNA gene co-expression modules suggested that Li treatment
correlates to an upregulated immune response, apoptosis, and protein processing in the
endoplasmic reticulum, and a down-regulated ribosome pathway, translation initiation,
and phosphatidylserine metabolism. They further discovered that DEGs between Li re-
sponders and non-responders are enriched in cell cycle processes and nucleotide excision
repair pathways. To identify psychopharmacological drugs with a similar transcriptomic
signature to Li for bipolar disorder patients, the authors then queried the DEGs from Li
treatment against DSigDB, a database of drug/compound-activated gene expression sig-
natures [90]. Clonidine, an alpha2-adrenoceptor agonist, exhibited a drug-gene signature
most reminiscent of the Li signature, thus has potential for bipolar disorder treatment.
Besides DSigDB, CLUE and Metacore (commercial) also contain drug-gene transcriptomic
signatures applicable for studying drug action mechanisms and drug repurposing.
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5.7. Summary of New Insights Obtained from Network Studies of Psychiatric Disorders

Network methodologies provide us with a perspective beyond the identified disorder-
associated variants. For instance, candidate genes in the network which show high con-
nectivity to many previously identified genes can be prioritized as hub genes or driver
genes. Due to their high connectivity, these hub genes may act as the converging points of
disorder-related variants and pathways, making them potential targets for therapeutics
even if they have not been implicated by genetic evidence yet. Besides revealing hid-
den novel genes in disorder etiology, network methodologies can elucidate regulatory
relationships and coherent biological functions between disorder genes. For example,
co-expression networks can identify covariation across modules of genes and differentially
regulated modules, while one may fail to identify significant differentially expressed genes.

Many fruitful findings have been made through network methods, which are sum-
marized in Table 3. Among the six psychiatric disorders discussed in this review, ASD
and schizophrenia are the most studied, and independent studies have yielded consis-
tent results. Existing studies exploiting network methods mostly focus on identifying
candidate genes and pathways based on transcriptomic studies (Figure 4). Almost every
study on ASD has indicated the pathogenic role of immune and synaptic functions in ASD
pathogenesis. Other crucial biological processes revealed for ASD include chromatin and
transcription regulation, early embryonic development, axon guidance, extracellular ma-
trix, and MAPK signaling [47,50,53,57,83,91–95]. Besides the processes affected in general
ASD cases, Luo et al., combined electronic health records with genomic and transcriptomic
data and identified an ASD subtype with dyslipidemia [96]. In addition, the various stud-
ies also implicated key cell types related to ASD, including mid-fetal deep layer cortical
projection neurons, superficial cortical layers neurons, cortical interneurons, medium spiny
neurons, and microglia [55,57,81,97].

Table 3. Key findings based on network applications in selected psychiatric disorders.

Disorder Networks Key Findings Ref.

ASD

Co-expression
network

Synapse and immune response-related modules are affected in
frontal and temporal cortex from ASD subjects;
ASD rare variants affects early transcriptional regulation and
synaptic development pathways and are enriched in superficial
cortical layers and glutamatergic projection neurons in developing
and adult human cortex.

Voineagu et al. [91];
Parikshak et al. [53]

Protein-protein
interaction network

ASD rare variant related protein interactions are enriched in
synaptic transmission, cell junction, TGFβ pathway,
neurodegeneration, and transcriptional regulation.

de Rubies et al. [93];
Sanders et al. [92]

Bayesian network
Synaptic transmission, MAPK signaling, histone modification, and
immune response are the top affected functions in predicted ASD
risk genes using a brain-specific network.

Krishnan et al. [61]

Literature-based
network

ASD rare variant genes form a network related to synapse
development, axon targeting, and neuron motility;
Genes in ASD rare variant and single nucleotide variants informed
network are expressed at the highest level in cortical interneurons,
pyramidal neurons, and the medium spiny neurons of the striatum.

Gilman et al. [47];
Chang et al. [81]

Hybrid network

The ASD network constructed with the peripheral blood
transcriptome in children with ASD was enriched for ASD rare
mutation genes, as well as their regulatory targets and regulators.
RAS–ERK, PI3K–AKT, and WNT–β-catenin signaling pathways are
enriched in ASD-specific networks.

Gazestani et al. [83]
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Table 3. Cont.

Disorder Networks Key Findings Ref.

AUD

Co-expression
network

In prefrontal cortex samples from human AUD subjects, a module
functioning in calcium signaling, nicotine response and opioid
signaling are down-regulated in AUD, while another module
functioning in immune signaling are up-regulated in AUD;
In nucleus accumbens samples from human AUD subjects, two
neuronal modules enriched for genes in oxidative phosphorylation,
mitochondrial dysfunction, and MAPK signaling pathways are
down-regulated in AUD, while four immune-related modules
enriched for astrocyte and microglia markers are up-regulated
in AUD.

Kapoor et al. [52];
Mamdani et al. [98]

Transcription
factor/miRNA

regulons

Pathways related to synaptic processes and neuroplasticity are
disrupted in a rat AUD model;
Nr3c1 acts as a master regulator in multiple brain regions in
alcohol-dependent rats.

Tapocik et al., 2013 [99];
Repunte-Canonigo

et al., 2015 [69]

BAD

Co-expression
network

BAD common variants are enriched in the hippocampus and
amygdala across developmental stages.
In dorsolateral frontal cortex samples from human BAD subjects,
modules enriched for genes related to postsynaptic density, RNA
processing, and carbon-nitrogen ligase activity are downregulated,
while modules enriched for genes related to ion binding and lipid
catabolism are upregulated.

Xiang et al. [100];
Akula et al. [101]

Transcription factor
regulons

EGR3, TSC22D4, ILF2, YBX1 and MADD are predicted as master
regulators in human prefrontal cortex with BAD. Pfaffenseller et al. [71]

Protein-protein
interaction network

CDH4, MTA2, RBBP4, and HDAC2 are the core genes predicted by
PPI analysis, involved in early brain development regulation.
HP and PC are related to BAD de novo mutations; MAP4, WDHD1,
EIF4E and STRN are related to the BAD common variant loci.

Xiang et al. [100];
Toma et al. [102]

MDD

Co-expression
network

CCND3, TXND5, TRI26 are the driver genes for cognitive
dysfunction in MDD, validated by plasma protein level in MDD
subjects;
Immune response and protein processing in the ER are disrupted in
older adults with recurrent MDD

Schubert et. al. [103];
Ciobanu et al. [104]

Protein-protein
interaction network The ATP5G1 gene is associated with the pathogenesis of MDD Zeng et al. [105]

PTSD

Co-expression
network

Differential responses to PTSD are observed in correlated modules
constructed from the peripheral blood transcriptome of PTSD
subjects. In men, an IL-12 signaling module is upregulated; In
women, a module related to lipid metabolism and
mitogen-activated protein kinase is upregulated. Cytokine, innate
immune, and type I interferon-related modules are shared
between sexes.

Breen et. al. [106]

miRNA regulons Downregulated miRNAs in peripheral blood transcriptome of
PTSD subjects are predicted to target IFNG and IL-12. Bam et al. [73]
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Table 3. Cont.

Disorder Networks Key Findings Ref.

SCZ

Co-expression
network

Genes related to central nervous system development failed to
attenuate with age in SCZ subjects;
Synaptic protein co-expression was significantly decreased in the
auditory cortex of SCZ subjects;
SCZ common variants are enriched in negative co-expression genes
of C4A

Torkamani et al. [107];
MacDonald et. al. [108];

Kim et. al. [109]

Transcription factor
regulons

TCF4 is a master regulator identified from postmortem dorsolateral
prefrontal cortex of SCZ subjects and cultured olfactory
neuroepithelium

Torshizi et. al. [110]

Protein-protein
interaction network

MAPK3/ERK1 is the top hub for the 16p11.2 microduplication
network Blizinsky et. al. [78]

Literature-based
network

SCZ rare variant-derived network genes function mainly in axon
guidance, neuronal cell mobility, synaptic function, and
chromosomal remodeling, and are highly expressed in the brain
during prenatal development.

Gilman et. al. [111]

ASD: autism spectrum disorder; AUD: alcohol use disorder; BAD: bipolar affective disorder; MDD: major depressive disorder; PTSD:
post-traumatic stress disorder; SCZ: schizophrenia.

Figure 4. Comparing shared and distinct pathways across selected psychiatric disorders. Top
pathways related to selected psychiatric disorders are shown in the disorder-pathway network. Red
lines connecting disorders depict the correlation level between disorders [112]. Synaptic transmission-
related processes are shared among all six disorders and immune functions are indicated in all
disorders except BAD. Pathways including MAPK signaling and transcriptional regulation are
shared among the AUD, ASD, and SCZ. Each disorder and its associated pathways are annotated
with the same node color. Shared pathways between disorders are indicated with multi-color nodes.
ASD: autism spectrum disorder; AUD: alcohol use disorder; BAD: bipolar affective disorder; MDD:
major depressive disorder; PTSD: post-traumatic stress disorder; SCZ: schizophrenia.

Schizophrenia also engages the immune system, synaptic functions, and neurodevel-
opmental processes, which fall into the same pathway category as ASD [111,113]. However,
schizophrenia exhibits differential alterations in these pathways. Apart from the differential
immune response discussed in Section 5.5 (upregulated microglia and immune activities
in ASD and down in schizophrenia), the candidate genes from de novo CNVs of ASD
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and schizophrenia showed opposite directions in their biological functions. Most of the
schizophrenia candidate genes are associated with synaptic pruning and decreased den-
dritic spines, while ASD candidate genes are associated with increased dendritic spines,
which were also observed in postmortem brain analyses [111]. Besides, genes related to
schizophrenia de novo mutations mostly show a characteristic expression pattern: high in
the fetal stage, low in childhood, and high again in early adulthood [79], while ASD de novo
mutations exhibit high expression in fetal and early postnatal development [53,114]. An-
other independent study on the 22q11.2 deletion associated with schizophrenia identified
two hub genes that are expressed during embryonic brain development and adolescence,
respectively [115]. This pattern coincides with the typical onset time of schizophrenia,
which is around early adulthood. Schizophrenia-related genes have also been shown to
fail to decrease naturally as control subjects do [107].

The polygenic component of bipolar affective disorder overlaps with schizophrenia sig-
nificantly, but network application in bipolar affective disorder is very limited. The role of
postsynaptic density in bipolar affective disorder pathogenesis has been indicated by indepen-
dent studies [101,116]. Hub genes such as MAP4 and ILF2 were also suggested, but due to
fewer study numbers and a lack of validation, a consensus cannot be reached [71,100,102].

Major depressive disorder and PTSD are stress-related disorders that share neu-
ronal and immune dysregulations based on network studies [104,117–119]. PTSD has
been shown to engage immune processes more prominently than major depressive dis-
order. Dysfunction of multiple immune processes, including innate immunity, interferon
responses, cytokine receptor interaction, and glucocorticoid receptor activity, has been im-
plicated [106,117,120–123]. Unlike PTSD, for which all network studies identified immune
dysregulation, the mechanism behind major depressive disorder seems less coherent across
studies similar to the case of bipolar affective disorder. In a study using a mouse model to
identify hub genes related to depression susceptibility, several key drivers including Dkkl1,
Neurod2, and Sdk1 were validated in vivo, indicating the reliability of network predictions
and implicating synaptic transmission, cell-cell signaling, and oxidative phosphorylation
pathways in depression pathogenesis [124].

Lastly, alcohol use disorder is a disorder combining features of addiction and neuro-
toxicity. Network studies of alcoholism have revealed processes related to mitochondrial
dysfunction, synaptic transmission, neuroplasticity, calcium signaling, and immune func-
tions [52,98,99,125,126]. One hub gene, Nr3c1, predicted by transcription factor network
was validated in vivo in an alcohol-dependent mouse model [69]. More studies are needed
to reveal the underlying mechanisms behind alcoholism.

6. Conclusions and Future Directions

In summary, we have introduced and illustrated the main network approaches, their
strengths and limitations, and how they can complement one another by highlighting
relevant studies. Despite the aforementioned recent discoveries, network applications in
psychiatric research are still in their infancy. Networks such as the WGCNA co-expression
network and PPI have been extensively applied, while other networks such as BN are
rarely adopted despite indications as being powerful tools in other research fields. Integrat-
ing these network approaches may reveal hidden pathogenic mechanisms by capturing
underappreciated information from the data. We recommend the adoption of diverse types
of network approaches in each study to derive comprehensive molecular insights.

Besides leveraging complementary network methods, another future direction would
be to have an integrated framework followed by the field to apply a set of benchmarked
and well-performing networking methodologies systematically. Such a framework would
eliminate technical bias caused by different methods to enable systematic comparison of
psychiatric disorders at a network level.

Benchmarked and standardized network methodologies are applicable regardless
of disorder types. However, in order to better elucidate trait-specific biology, we rec-
ommend careful collection of multi-omic data types that reflect the unique aspects of a
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certain disorder, including specific causal factors (e.g., genetic versus environmental) and
the corresponding omics data types (e.g., genetic variants for genetic causes; epigenetic
alterations for environmental causes), and related brain regions and circuits at the relevant
developmental stages. In addition to collecting relevant types of data, tissue heterogeneity
needs to be addressed as a future direction. As a highly complex organ, the brain consists of
numerous subregions and nuclei, each containing various cell subtypes. Previous network
application studies in psychiatric disorders were mostly performed at the brain region
level using bulk tissue transcriptome. Obviously, with the advancement of single cell omics
technologies, exploring cell-level networks becomes an urgent need. The abundance of
single-cell transcriptomic datasets enables researchers to further dissect the pathogenic
mechanisms of psychiatric disorders at an increasing granularity at the cell type or sub-
type level. Thus, it is possible to identify cell subtypes related to a specific condition and
pinpoint key driver genes in different cell subtypes.

Appealing as it is, network methods for single-cell datasets are still limited. Due to
the challenge of data sparsity, methods applicable to bulk tissue transcriptomics do not
perform well on single-cell datasets [127]. However, a few single-cell network methods
have been successfully applied widely in studying cell type diversity and non-psychiatric
conditions, including in a ligand-receptor binding network, single-cell gene regulatory
network, and single-cell co-expression network. The ligand-receptor binding network
is a PPI network emphasizing intracellular interactions. By looking at the ligand and
receptor pairs expressed in cell types, we can identify interacting cell types utilizing
autocrine, paracrine, and endocrine signaling. For example, CellPhoneDB and iTALK
are two standard tools to calculate cell-cell interaction scores [128,129]; SCENIC uses
transcription factor information and single cell transcriptome data to identify regulons at a
cell-type-specific level [130]; scLink infers gene co-expression networks from a sparse gene
expression matrix [131]; CytoTalk aims to construct both within cell-type and between
cell-type signaling networks [132]. Benchmarking and applying these methods would
bring mechanistic research of psychiatric disorders to a finer granularity from the brain
region level to the cell subtype level.

Besides using single cell omics as a resource providing pathophysiological insights
with increasing granularity, single-cell and bulk tissue transcriptomic profiling can also
be applied as an approach to validating in silico predictions. Experimental validations
have been limited despite the current progress of in silico findings in key drivers and
pathways. More experimental validations should be performed to facilitate the transition
from in silico predictions to the bench and eventually to the bedside. Current experimental
validation methods include RT-PCR and transcriptomics for evaluating possible expression
alteration of the key drivers from samples with the disorder [51,52,60]; human genetic
studies for identifying risk genes [7,11,14,15]; and in vitro and in vivo experiments using an
appropriate animal model or human subject-derived material for validating the molecular,
cellular and behavioral phenotypes upon disrupting key driver expression [78,110,133,134]
(Figure 3c).

In conclusion, approaching psychiatric genetics from a network perspective enables
researchers to identify the converging pathways in genetic architecture and leverage the
abundance of the omics databases to yield a better understanding of the pathophysiology
and predictions for therapeutic targets. With this review, we hope to provide a systematic
overview of network methodologies, previous network applications, and their findings
in psychiatric research. Much remains to be explored—including adopting network ap-
proaches from other fields, standardizing a benchmarked and integrated framework,
developing single-cell network construction methods, and performing corresponding
experimental validations.
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