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Abstract 

Silicon germanium (SiGe) is a multi-functional material considered for quantum computing,           

neuromorphic devices and CMOS transistors. However, implementation of SiGe in nano-scale electronic            

devices necessitates suppression of surface states dominating on electronic properties. The absence of a              

stable and passive surface oxide for SiGe results formation of charge traps at the SiGe - oxide interface                  

induced by GeO​x​. In an ideal ALD process in which oxide is grown layer-by-layer, the GeO​x formation                 

should be prevented with selective surface oxidation (i.e. formation of an SiO​x interface) by controlling               

oxidant dose in first few ALD cycles of the oxide deposition on SiGe. However, in a real ALD process,                   
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the interface evolves during entire ALD oxide deposition due to diffusion of reactant species through the                

gate oxide. In this work, this diffusion process in non-ideal ALD is investigated and exploited: the                

diffusion through the oxide during ALD is utilized to passivate the interfacial defects by employing ozone                

as a secondary oxidant. Periodic ozone exposure during gate oxide ALD on SiGe is shown to reduce the                  

integrated trap density (D​it​) across the band gap by nearly an order of magnitude in Al​2​O​3 (< 6×10​10 cm​-2​)                   

and in HfO​2 (< 3.9×10​11 cm​-2​) by forming a SiO​x rich interface on SiGe. Depletion of Ge from the                   

interfacial layer (IL) by enhancement of volatile GeO​x formation and consequent desorption from the              

SiGe with ozone insertion during ALD growth process is confirmed by electron energy loss spectroscopy               

(STEM-EELS) and hypothesized to be the mechanism for reduction of the interfacial defects. In this               

work, the nanoscale mechanism for defect suppression at SiGe oxide interface is demonstrated which is               

engineering of diffusion species in ALD process due to facile diffusion of reactant species in non-ideal                

ALD. 

Introduction 

Silicon Germanium (SiGe) is promising material system for novel electronic devices due to quantum              

confinement thanks to mature scaling technology. It is being investigated for (i) quantum computing due               

to its long spin coherence time​2-4​, (ii) neuromorphic devices due to threading dislocations allowing              

controlled filament formation for resistive switching​6 and (iii) for channels in p-type metal oxide              

semiconductor (p-MOS) for boosting transistor performance due to high carrier mobility​7-9​. High            

transconductance in SiGe channels was reported by Hashemi et al via replacement high k/metal gate or                

interlayer oxides​10-11​. While SiGe transistors with high-k dielectrics are being actively developed for             

commercial high speed, low power electronic devices; the practical integration of SiGe as a top surface                

channel in complementary metal oxide semiconductor (CMOS) transistors is hindered by poor interface             

formation between the gate oxide and SiGe primarily due to GeO​x formation​12-13​. Elimination of unstable               

GeO​x species may be possible with Si cap layers epitaxially grown on SiGe channels for planar devices;                 



however it may be problematic for gate-all-around devices or FinFETs due to space constraints and the                

limitation in Si ALDs which may have low mobility due to defects​14​. Previous studies on defect                

suppression at the gate oxide-SiGe interface have included pre ALD passivation with nitrides​15-16 and              

sulfur​17 and post ALD selective oxygen scavenging with physical vapor deposited (PVD) gettering metal              

gates​12, 18​. However, the interfaces are still degraded mainly by Ge out-diffusion​13 during ALD at elevated                

temperatures. There are also processing challenges, for example the gettering metal inducing a reduction              

in maximum capacitance by forming thicker gate oxides and PVD being incompatible with nanoscale 3D               

devices employed​18​. ​Another approach for defect reduction is selective oxygen scavenging at high             

temperature (>500C). As shown by Lee at el. this technique utilizes the differences in bond strength                

between SiO​2 (3.48 eV) vs GeO​2 ​(2.82eV). The Ge-O bonds are broken selectively due to relative                

weakness compared to Si-O which causes selective Si oxidation with GeO out diffusion​19​. However, the               

thermal budget may be a concern for this process. ​Therefore, new approaches are needed for suppression                

of electronic defects in SiGe gate stacks. 

Modification of semiconductor oxide interfaces during the ALD process using reactive oxygen species             

has been shown to be effective for reduction of charge traps via formation of GeO​2 (not GeO​x​) interfaces                  

on high Ge content Si substrates (>90%) by post oxidation through Al​2​O​3 barrier using oxygen plasma as                 

studied by Zhang et al​20​, or ozone exposure reported by Ando et al., in which very high mobility was                   

observed​21​. In these studies, instead of direct plasma oxygen or ozone dosing on SiGe surface, the Al​2​O​3                 

was deposited prior to plasma oxygen or ozone dosing. However, it is seen that the ratio of Si to Ge in the                      

substrate can greatly change the chemistry of post oxidation through Al​2​O​3 barriers. For instance, it was                

reported that for pure Ge substrates, increasing the barrier Al​2​O​3 thickness (1 to 1.5nm) prior to                

post-oxidation reduces the GeO​x IL thickness (from 1.2 to 0.23 nm) and unexpectedly increases D​it               

(~5×)​20​. For SiGe substrates, it was shown that post ALD oxidation on low Ge content SiGe (30% to                  

50%) forms a highly defective SiGeO​x interface, and the thickness of the IL decreases for higher Ge                 



composition SiGe (Si​0.69​Ge​0.31 to Si​0.5​Ge​0.95​) due to suppression of SiO​x in the IL​21​. However, DFT and                

experimental studies shown that formation of an SiO​x interface between SiGe and oxide results in an                

extremely low interfacial defect density on low Ge content SiGe​18​.  

In the present study, comprehensive analysis of the effect of reactive oxidant exposure during ALD oxide                

deposition is studied with impedance measurements correlated with STEM-EELS and photon energy            

dependent PES analysis to elucidate the defect reduction mechanism with ozone insertion. The impact of               

ozone exposure during ALD oxide deposition on the SiGe/high-k oxide interface is investigated with a               

large set of MOSCAP samples, including gate oxides of Al​2​O​3 only, HfO​2 only, and hetero Al​2​O​3​-HfO​2                

structures by comparing ozone exposure directly on SiGe or with Al​2​O​3 and HfO​2 barriers. In contrast to                 

previous reports on high Ge content SiGe​20-21​, using ozone during HfO​2 gate oxide ALD on low Ge                 

content SiGe (Si​0.7​Ge​0.3​) is found to decrease interface defects by reducing interfacial GeO​x​. Ultra-low D​it               

of 0.32×10​12 cm​-2​eV​-1 is observed with very thin IL (<0.2nm) on Si​0.7​Ge​0.3 with ozone insertion into ALD                 

Al​2​O​3 ​gate oxides. STEM-EELS analysis shows significant interface defect reduction with SiO​x rich IL              

formation with ozone exposure into ALD Al​2​O​3 or HfO​2 gate oxide on Si​0.7​Ge​0.3​. PES revealed enhanced                

Ge and Si diffusion through HfO​2 during ALD growth with ozone insertion consistent with a low defect                 

SiO​x ​rich interface formed by selective surface oxidation. The mechanism for defect suppression with              

ozone insertion into ALD oxide found to be different for Al​2​O​3 and HfO​2​. While ozone depletes Ge from                  

the interface by forming GeO and enhances Ge out-diffusion depleting Ge from interface for both oxides,                

ultra-low D​it observed with ozone dosing during Al​2​O​3 ​gate oxide ​ALD on SiGe is consistent with a                 

second process occurring in which Al​2​O​3 deposition selectively scavenges oxygen from the oxide/SiGe             

interface thereby further reducing defect density​5​. ​In this study, by correlating the two advance              

metrologies, STEM-EELS and energy-resolved PES, with multifrequency impedance spectroscopy, the          

mechanism for reduction of surface states during the ALD process is elucidated for the key new channel                 

material in CMOS technology. However, a more general chemical insight is obtained. While ALD is               



idealized as a layer-by-layer growth process, this is incorrect, but the non-idealities can be utilized for                

defect reduction. It is rare that non-idealities in semiconductor chemical processes actually improve the              

material quality. 

Methods 

Interfacial defects at the gate oxide/SiGe interface were analyzed and quantified with multifrequency             

impedance spectroscopy on MOSCAPs fabricated on 8 nm thick p-type Si​0.7​Ge​0.3​(100) epitaxially grown             

on p-type Si (100). Degreased SiGe substrates were cleaned with cyclic HF (aq), and sulfur passivated                

with (NH​4​)​2​S(aq). HfO​2 (HfCl​4 - 250ms, H​2​O – 250ms) and Al​2​O​3 (trimethyl aluminum (TMA – 500ms) –                 

H​2​O – 500ms) gate oxides were grown at 300C in a Beneq TFS200 ALD reactor. After optimization of                  

the ozone pulse length, ozone was introduced during oxide ALD in a single pulse (60 sec with 100%                  

power at a flow rate of 4 g/h (at 100 g/Nm​3​, 20°C)) such as in Fig 1b, c, d or intermittently (5 sec each)                        

(Fig. 1e “ozone nanolaminate - NL’’). Gate metal and back contacts were formed with Ni thermal                

evaporation and Al sputtering. Optimized forming gas annealing (5%H​2​/95%N​2​) was employed in 3 steps              

300C-330C-350C for 10 min each, de​tails of the very similar MOSCAP fabrication process can be found                

elsewhere​18​. Electrical characterization of the ​MOSCAP devices was performed ​with a Keysight B1500 at              

300 K by I-V and multifrequency C-V, G-V measurements from inversion at 2V to accumulation at -2V.                 

Interface defects densities (D​it​) at the oxide – SiGe interface were calculated with the full interface state                 

model fitting capacitance and conductance graphs for each bias point​22-23​. As previously documented,             

multiple devices on the same wafer were probed to define standard D​it error analysis and verify the                 

repeatability​. It is shown that the typical standard error is 3.9%; therefore, relative D​it variation as low as                  

10% among different processing conditions can be reliably distinguished​5​. 

The structures and the compositions of the MOSCAP devices and interfaces were studied using electron               

transparent specimens (<50 nm) prepared from device cross sections with a ​FEI Scios Focused Ion Beam                



using Ga ions and low energy Ar ions (<1keV) for the last step to remove the Ga beam damage. A JEOL                     

JEM-ARM300F Transmission Electron Microscope equipped with double aberration correction was used           

in scanning transmission electron microscope (STEM) mode at 200keV both for imaging and             

compositional analysis. Oxide – semiconductor atomic structures were obtained by STEM ​high-angle            

annular dark field (HAADF) and bright field (BF) ​simultaneously. Similarly, the chemical composition of              

the devices was investigated simultaneously both with electron energy loss spectroscopy (EELS) and             

energy dispersive X-Ray spectroscopy (EDS) using a Gatan GIF Quantum ER and JEOL dual large-angle               

silicon-drift EDS detectors. Dual EELS including zero loss and core loss spectra were collected to correct                

the energy drift and deconvolute plural scattering. Gatan Digital Micrograph was used for the              

compositional analysis and multiple linear least square (MLLS) fitting was performed after background             

subtraction​24​.  

Surface and depth compositional profiles across the gate oxide were investigated with energy-resolved             

photoelectron spectroscopy (PES) using a nondestructive soft X-ray probe equipped with a Scienta R400              

analyzer at the MAESTRO beamline (micro ARPES end station) at the Lawrence Berkeley National Lab               

Advanced Light Source (ALS). Since the depth profiling with ion sputtering can alter the local oxide                

composition, especially in HfO​2​
25-26​, depth composition profiling was studied with photon energy            

dependent PES. Photon energy dependent PES was chosen instead of angle dependent PES for depth              

profiling, since photon energy dependent PES can be done with a fixed experiment geometry and a small                

spot size; therefore, the composition of the oxide could be probed between the metal gates (Fig. 1)​27-28​.                 

X-ray energy was varied between 150eV, 500eV and 1keV to benefit from differences in inelastic mean                

free path (​λ) (IMFP) of the photoelectrons. It should be noted that the mean free path for elastically                  

scattered photoelectrons can be longer than the IMFP (e.g. the elastic mean free path for photoelectrons at                 

~1keV in HfO​2 is ~6 nm​1​). In addition, even for inelastically scattered electrons, only 65% of the intensity                  

originate within one x-ray wavelength ​λ of the top surface. Therefore, photon ​energy dependent PES               



allowed probing the topmost layers due to the unique surface sensitivity obtained with low energy X-ray                

radiation as well as the oxide-SiGe interface probing with high energy X-rays with elastic and inelastic                

electrons. 

The incident photons and detection angels have a fixed relationship defined by the spectrometer. The               

incident photons were at an angle of 54.75​° with respect to the sample normal thereby positioning the                 

electron spectrometer to measure at normal emission. The X-ray penetration depth is much deeper than               

the HfO​2 and SiGe layer thicknesses; therefore, the detection depth is mainly determined by the inelastic                

mean free path (​λ) (IMFP) of the photoelectrons which is a function of the kinetic energy of the photo                   

electrons; however, the effective distance through which the electrons travel through the sample is              

determined by the exit angle. Therefore, a normal detection angle was chosen since this is shortest path                 

for photoelectrons to exit the substrate. 

The soft X-ray photons were focused onto samples with a beam cross section of 40 x 40 ​μ​m​2 located on                    

the HfO​2 surface between the Ni gate metals of the MOSCAP devices as shown in Fig 1. Each sample                   

was probed at six points with 10 scans averaged at each point. Compositions of the oxide at selected                  

energy-depth were obtained by monitoring Ge 3d, Hf 4f and Si 2p core level lines at narrow energy scan.                   

Since the focus of the experiments is Si and Ge composition in the HfO​2 and at the interface, the constant                    

kinetic energy PES method​28 was employed by choosing the close ionization edges of Hf 4f​7/2 (14.2eV),                

Ge 3d​5/2 (29.2eV) and Si 2p​3/2 (99.4eV) to obtain similar kinetic energy photoelectrons hence similar               

probing depth. ​To account for the change in photon flux as a function of X-ray energy, the ​Si and Ge                    

signal intensities are normalized with respect to the ​Hf 4f​5/2 signal. Details of the technique and                

experiment can be found in the supplement. Data analysis, peak deconvolution and multi-peak fitting              

were performed with the IGOR Pro software (WaveMetrics, Inc., v.802). After Shirley background             

subtraction, PES peaks were fitted using Lorentzian-Gaussian type line-shapes using the known binding             



  

energy positions. The Ge 3d​5/2 ​peak at a binding energy of 29 eV and Hf4f​7/2 peak at 17.2eV were used as                     

references to correct the spectral shift due to charging effects​29-30​.  

 

RESULTS  

Multifrequency C-V measurements of the MOSCAP devices along with device structures are presented in              

Fig. 2. Inset D​it values are the peak interface defect density in the band gap obtained with full interface                   

state model. Control devices with 45 ALD cycles of HfO​2 in Fig. 2a exhibit high accumulation                

capacitance, (C​max = 2.25 μF/cm​2​) along with high depletion capacitance indicating a high density of               

interface traps (D​it = 4×10​12 cm​-2​eV​-1​) in comparison to all HfO​2 devices with ozone exposure during (not                 

prior) ALD. Ozone exposure of the SiGe surface for 60 sec prior to HfO​2 deposition doubles the interface                  

trap density to 8×10​12 cm​-2​eV​-1 with negligible change in C​max as seen in Fig. 2b. However, ozone                 

insertion after 10 ALD cycles of HfO​2 decreases C​max to 2.0 μF/cm​2 along with D​it to 2.25×10​12 cm​-2​eV​-1                  

as shown in Fig. 2c. The 12% reduction in C​max ​is consistent with ozone forming a thicker interfacial                  

layer, and the 45% decrease in D​it ​by changing the location of ozone exposure to 1 nm away from the                    

SiGe surface is significant. This effect was more prominent when the ozone is introduced after 5 cycles of                  

HfO​2 on SiGe which induces a 55% reduction in D​it along with 20% decrease in C​max (Fig. 2d).                  

Furthermore, when ozone is evenly dispersed into HfO​2 by dosing after every 5 cycles, ​there is a 63%                  

decrease in D​it to 1.5x10​12 cm​-2​eV​-1 compared to the control sample as shown in Fig. 2e. This dispersion                  

of ozone pulses across the HfO​2 reduces D​it by 17% in comparison to a single 60 sec ozone pulse as                    

shown in Fig. 2d. Instead of ozone, when water of identical pulse length is dosed for 60 sec after 5 cycles                     

of HfO​2 as shown in Fig 2f, the interface deteriorates and D​it ​increases 15% compared to the control                  

sample indicating that even common reactant species diffusing through gate oxide to the interface during               

ALD. The impact of ozone exposure during HfO​2 ALD is consistent with ozone dosing several               



nanometers from the SiGe still influencing interface trap density and, therefore, HfO​2 ALD being more               

complex than a true layer-by-layer process. 

To elucidate the D​it reduction mechanism at the SiGe/HfO​2 interface by ozone exposure into HfO​2​,               

several HfO​2 only and HfO​2​-Al​2​O​3 hetero gate oxides with ozone exposures are compared. A control               

Ni/45 cycles of HfO​2 + 5 cycles of Al​2​O​3​/SiGe device with 1.75 μF/cm​2 and D​it of 3.3x10​12 cm​-2​eV​-1 is                   

shown in Fig. 2g. In comparison to the 45 ALD cycles of HfO​2 only control device in Fig. 2a, the control                     

hetero oxide bilayer device exhibits a 18% decrease in D​it to 3.3×10​12 cm​-2​eV​-1 consistent with oxygen                

scavenging by the TMA precursor​5​, and a 23% decrease in C​max due to increase in total oxide thickness                  

along with the lower dielectric constant of Al​2​O​3 in comparison to HfO​2​. In comparison to the bilayer                 

control sample in Fig. 2g, the ozone exposed bilayer device in Fig. 2h exhibits only a 25% decrease in D​it                    

with negligible change in C​max​. It is hypothesized that ALD of the bottom Al​2​O​3 layer induces GeO​x                 

decomposition to Ge by oxygen scavenging; in addition, the bottom Al​2​O​3 ​may reduce both O​3 and GeO​x                 

diffusion, but this is likely to be a minor effect since as shown below ozone is very effective in reducing                    

D​it for Al​2​O​3 gate oxides. In sum, the ozone dosing has a modest effect on bilayer HfO​2​-Al​2​O​3 oxides                  

consistent with the interfacial GeO​x already being at low concentration due to Al​2​O​3 deposition​5​, and this                

more modest effect of ozone on bilayer HfO​2​-Al​2​O​3 samples is consistent with both ozone and TMA                

dosing reducing interfacial GeO​x​ but using different chemical processes.  

To study the decrease in trap density at the Al​2​O​3​/SiGe interface by ozone insertion, a set of samples with                   

only Al​2​O​3 gate oxide with and without ozone insertion was fabricated (Fig. 2k – o). The control 45                  

cycles of Al​2​O​3 devices have a C​max of 1.12 μF/cm​2 and 1.26×10​12 cm​-2​eV​-1 as shown in Fig. 2k. In                   

comparison to control HfO​2 in Fig. 2a and control hetero Al​2​O​3 – HfO​2 devices in Fig. 2f, Al​2​O​3 only                   

devices exhibit a 70% and 60% lower interface trap density respectively consistent with oxygen              

scavenging by TMA exposure during Al​2​O​3 growth​5​. For ozone insertion into Al​2​O​3 after 5 ALD cycles of                 

Al​2​O​3 on SiGe as shown in Fig. 2l, the depletion capacitance almost disappears consistent with a 75%                 



decrease in D​it ​to 0.32×10​12 cm​-2​eV​-1 along with a small decrease in accumulation capacitance in               

comparison to the control device in Fig. 2k. Conversely, when SiGe is exposed to ozone prior to Al​2​O​3                  

growth, the D​it increases significantly without (Fig. 2m) and with sulfur treatment (Fig. 2n) prior to Al​2​O​3                 

growth. The sulfur passivated surface showed lower D​it consistent with sulfur reducing GeO​x​
17​. The 75%               

decrease in D​it for ozone dosing into Al​2​O​3​/SiGe devices is consistent with both ozone and TMA dosing                 

reducing interfacial GeO​x but using different yet complementary chemical processes. The TMA reduces             

GeO​x by gettering the oxygen from SiGeO​x ​interface to form Al​2​O​3 throughout the entire ALD process​5​,                

and it is hypothesized that the ozone promotes GeO​x out diffusion and eventually sublimation to form a Si                  

rich interface. Therefore, two distinct processes take place when ozone is inserted during Al​2​O​3 ALD: 1)                

D​it reduction with ozone and 2) oxygen scavenging with remote oxide (TMA) gettering. To confirm the                

importance of remote gettering and its synergy with ozone dosing for even HfO​2 based gate oxides, both a                  

top Al​2​O​3 layer was grown on HfO​2 (Fig 2i) as well as a traditional Al gettering gate (Fig 2j). Compared                    

to an ozone dosed HfO​2​-Al​2​O​3​/SiGe bilayer device (Fig 2h), the ozone dosed Al​2​O​3​-HfO​2​-Al​2​O​3​/SiGe             

tri-layer device (fig 2i) exhibits a 44% decrease in D​it​. This is consistent with remote oxygen scavenging                 

by Al​2​O​3 ALD grown on top of HfO​2 which is shown to be an effective method for IL modification for D​it                     

reduction even 4 nm from SiGe surface​5​.  

In the second remote scavenging example, a remote gettering gate Al metal is employed which is                

separated from the gate oxide with a thin Ni layer as shown in Fig. 2j. This sample was also exposed to                     

additional intentional water exposure after 5 cycles of HfO​2 to deteriorate and increase interface defects.               

In comparison to the control sample in Fig. 2f, the device with remote Al gettering gate exhibits a 60%                   

decrease in D​it with negligible decrease in C​max​. The data is consistent with the remote gettering by Al                  

metal or a top surface Al​2​O​3 ALD layer reducing the D​it by a mechanism which is independent of the D​it                    

reduction by ozone or increase by H​2​O insertion during gate oxide ALD.  



Interface defect distributions across the band gap for selected devices calculated with the full interface               

state model are shown in Fig. 3a. Ozone insertion into HfO​2 only and Al​2​O​3 only samples reduce interface                  

traps charges almost uniformly across the bandgap; the integrated D​it across the bandgap exhibit 65% and                

82% decreases, respectively. In addition, ozone insertion into devices reduces the leakage current             

consistent with thicker IL formation with ozone dosing as shown in Fig. 3b. Al​2​O​3 sample (Fig 2l) had                  

exceptionally low D​it because two complementary mechanisms of D​it reduction are active: 1) D​it ​reduction               

with ozone exposure and 2) D​it decrease with remote oxygen scavenging via top surface Al​2​O​3 ALD. In                 

contrast, for the HfO​2 only device exposed to ozone in Fig. 2, there is only a single D​it reduction                   

mechanism. 

The interlayer and oxide thicknesses of the selected devices are determined from STEM-HAADF and              

STEM-BF recorded simultaneously from the MOSCAP device structure in Si <110> projection as shown              

in Fig. 4. The control Al​2​O​3 device in Fig. 4a&f had a darker (HAADF)/brighter (BF) IL region of 0.4 nm                    

along with a 4.9 nm gate oxide thickness indicated with black and white arrows in the images.                 

Furthermore, these assignments are confirmed by compositional analysis. Insertion of ozone into Al​2​O​3             

forms an IL of similar thickness ~0.2 nm and increases gate oxide thickness to 5.5 nm as shown in Fig.                    

4b&g. In contrast, insertion of ozone into HfO​2 increases the IL thickness from 0.9 nm to 1.1 nm and                   

increases the gate oxide thickness from 4.2 nm to 4.4 nm as shown in Fig. 2 c&h vs 2d&i respectively.                    

Both results are consistent with the decrease in C​ox with ozone insertion into Al​2​O​3 (Fig 2k vs 2l) and into                    

HfO​2 (Fig 2a vs 2d); however, the mechanism of D​it reduction necessitates the compositional analysis to                

elucidate the differences in ozone induced reduction/growth with Al​2​O​3 ​vs HfO​2​. 

STEM-EELS compositional analysis of the selected devices along with associated structures are shown in              

Fig. 5. STEM-HAADF and BF intensity profiles correlated with EELS analysis are also shown. Note that                

these STEM images are a representation of similar areas where EELS analyses were performed but are                



not taken simultaneously with EELS due to experimental restrains. A multiple linear least square (MLLS)               

fitting ​24 is employed to resolve Al, Hf and Si edges and spectroscopic overlay issues. The IL regions are                   

shaded blue and located between the half maximum of oxygen and the half maximum of Hf. For the                  

Al​2​O​3 sample, since there is electron beam induced damage seen in the middle of oxide, the half                 

maximum of the Al is defined by extrapolation of max peak point for the Al signal which is estimated to                    

be 75 (a.u.). The blue IL boundaries are confirmed by correlating the EELS with the corresponding STEM                 

HAADF-BF contrast intensity profiles. The Si - Ge composition in IL is denoted with black and pink                 

arrows respectively; the arrows points to the Si and Ge intensity the middle of the interlayer. As shown in                   

the control HfO​2 device in Fig. 5a, the Hf and O signals have offsets indicating presence of a thick                   

Si​x​Ge​x​O​x IL; the black and pink arrows show high Ge composition in this IL. In contrast, the control                  

Al​2​O​3 device in Fig. 5b has a thinner interlayer as documented by the Al and O signals decaying in similar                    

positions. The Al​2​O​3 IL has only a small Ge signal (pink) indicating Si rich IL formation. Note that the                   

EELS data indicates a significant Al component in the Al​2​O​3​/SiGe interlayer, indicating that the IL may                

be AlSiO​x​.  

The ozone bilayer HfO​2 device shown in Fig. 5c has a larger offset between the Hf and O signals with                    

diminished Ge signal in IL (pink arrow) in comparison to the control device in Fig. 5a, consistent with a                   

thicker Si rich IL region. This ozone bilayer HfO​2 IL has a region which is Hf poor, so it is divided with a                       

dashed line to distinguish regions of Si​x​Hf​x​O​x and Si​x​Ge​x​O​x​. In addition, the Si peak beyond half max of                  

oxygen extends further into the gate oxide for the ozone bilayer HfO​2 (3 nm from the right edge of the                    

blue region) compared to control HfO​2 ​(1.5 nm from the right edge of the blue region), consistent with                  

ozone enhancing Si diffusion into HfO​2​; the ozone enhanced diffusion of Si is also confirmed by PES data                  

below. Last, for ozone bilayer (Fig 5c), a slightly increased Ge peak near the SiGe surface is observed,                  

consistent with Ge pile-up in the SiGe layer​31-33​. When ozone is dispersed into HfO​2 as shown in Fig. 5d,                   

the Hf – O offset was increased consistent with Si​x​Ge​x​O​x and Si​x​Hf​x​O​x formation. Similar to bilayer ozone                 



in Fig 5c, the Si signal in the ozone nanolaminate (Fig 5d) extended further into HfO​2 (3.8 nm from the                    

right edge of the blue region), consistent with ozone enhancing Si diffusion into HfO​2 mostly in the IL                  

region. Therefore, the ozone insertion into HfO​2 increases the IL thickness along with increasing the SiO​x                

concentration in the IL and maybe in HfO​2​, whereas ozone decreases the IL thickness and does not                 

change the Si diffusion into the gate oxide for Al​2​O​3​, which is consistent with Al​2​O​3 being a better                  

diffusion barrier to both GeO​x​ and SiO​x​ than HfO​2​
32​. 

For better illustration of the Si and Ge distributions, raw EELS data for HfO​2 with dispersed ozone (NL                  

device) is shown in a 3D semi-log graph in Fig. 6a. The elemental profiles of the oxide can be seen from                     

the peaks arising after element specific edges due to electron energy loss; for example, Hf M edges at                  

1662 eV and the O K edge at 532 eV. The black arrow indicates the SiGe/HfO​2 interface region. Tracing                   

the Si and Ge signal from SiGe into HfO​2 region, Ge decay (green arrow) is observed earlier than the Si                    

decay (orange arrow) consistent with a SiO​x​ rich IL formation.  

Side by side comparison of interface region for HfO​2 devices with raw EELS data after proper                

background subtraction is shown in Fig. 6b-d. Each color coded and numbered graphical line is an EELS                 

spectrum at a given location on the sample with the corresponding beam spot size indicated on the top                  

right corner of the graphs (note that 5 nm regions parallel to the SiGe surface are averaged). By tracing                   

the Si K edge at 1839 eV and Ge L edges at 1217 eV from SiGe into HfO​2​, it is seen at spectrum number                        

5 that Si and Ge signals decay simultaneously for the control HfO​2 device. In contrast, an earlier Ge decay                   

is seen both in bilayer and NL device at spectrum 5. The only Si peak observed at spectrum line 6 for                     

bilayer and NL devices indicate SiO​x IL formation. The data is consistent with the ozone increasing the Si                  

content of the IL for both the bilayer and NL devices. 

It is hypothesized that ozone increases the Si content of the IL by depletion of Ge through oxidation of Ge                    

at the interface which diffuses to the surface of the oxides and then sublimates. To prove the Ge and Si                    



diffusion hypothesis, PES is employed after full gate oxide deposition since PES has better compositional               

sensitivity especially for the topmost surface of the sample with low photon energy (see supplement). PES                

compositional analysis of MOSCAP devices are shown in Fig 7 for Ge (left) and Si (right). The schematic                  

drawings above the graphs are constructed from the STEM-EELS data illustrating the structure and the               

composition of the samples studied with PES. Metallic Ge​0 at 29eV and Si​0 (p​3/2​) peaks with spin orbit                  

splitting at 99.4eV are seen for all the devices at 1000eV which indicates that the probing depth extends                  

into the SiGe bulk. Broad peaks at 32.6eV and 103.1eV are defined as GeO​2​
34

​and SiO​2 respectively​29​.                 

Additional analysis and controls are provided in the supplement. It should be noted that in these graphs,                 

the Si and Ge intensities should not be directly compared to each other because the relative sensitivity of                  

the measurement system to the two different elements is not well characterized. 

For all the devices, the 150 eV X-ray-energy probed GeO​x shows similar signal intensity for given energy,                 

indicating Ge out diffusion from the SiGe layer through the HfO​2​. Conversely, the variation in the Si​+4                 

signal intensity among the samples is pronounced. SiO​2 signal is most strong at 150eV consistent with                

ozone induced Si out diffusion to the surface or the near surface region as the oxide is growing​35-36​. This is                    

consistent with EELS which showing enhancement of Si out diffusion with ozone pulsing. It should be                

noted that ​in PES in figure 7 ​the amount of Ge​2+ is low compared with Ge​4+ consistent with the ​difference                    

in the heats of formation between GeO​2 (ΔH° = −580.0 kJ/mol) and GeO (ΔH° = −261.9 kJ/mol); the                  

greater thermodynamic stability of GeO​2 ​compared to GeO is consistent with ​Ge​4+ dominating the XPS               

spectra after full device fabrication​. 

The diminished Si and Ge composition near the oxide top surface in EELS data may seem to be                  

inconsistent with PES data however, as explained in the supplement in detail, this is result of difference in                  

sensitivity and nature of the techniques. It should be emphasized that in PES spectrum the intensity of                 

elements results from the integrated signal from material normal to the SiGe surface while in EELS the                 

integrated signal generated from material parallel to the SiGe surface. It is noted that that at 1000 eV                  



photon energy, the Si​+0
​is a significant fraction of the Si spectrum in comparison the fraction of Ge​+0

​in the                    

Ge spectrum. Since this effect is only seen at 1000 eV, it must originate Si and Ge at the oxide/SiGe                    

interface. Beam induced decomposition is unlikely since GeO​x is less thermodynamically stable than             

SiO​x​. However, the relative escape probabilities (elastic plus inelastic) of the photoelectrons from ​Si 2p​3/​2               

and ​Ge 3d​5/2 ​are unknown and likely to differ (see supplement) and, therefore, this region is best studied                  

with STEM-EELS since it gives true composition vs depth. However, the PES data documents the               

presence of GeO​x and SiO​x on the top surface of the gate oxides or incorporated into the top of the oxide                     

as a germinate or silicate confirming the ozone induced diffusion of GeO​x​ and SiO​x ​during ALD. 

Discussion and Conclusion 

Kinetics of Ge diffusion into gate oxides and GeO desorption from the oxide surface are               

well-documented​31, 37-39​. Kita et al and others report formation of volatile GeO due to oxidation of Ge at                  

the interface of SiGe (or Ge) which diffuses through the gate oxide and desorbs from the surface as GeO​38,                   

40-41​. Unlike SiO desorption from surfaces at high temperature (standard sublimation temperature ~780C),             

sublimation of GeO occurs at low temperature (standard sublimation temperature ~ 400C)​41-42​. GeO​x             

formation can induce significant Ge consumption from interface​40, 43​. In addition, it has been shown that                

high pressure oxygen can suppress GeO desorption by forming relatively stable GeO​2 at the oxide-Ge               

interface which is a common mechanism for the high quality IL on Ge substrates​20-21, 44​; therefore, GeO                 

desorption can be enhanced at low oxidant pressure due transformation from GeO​2 into volatile GeO in an                 

oxygen deficient environment​38, 41​. The standard Gibbs free energy of Si oxidation is higher than that for                 

Ge but for very reactive oxidants, such as atomic O from O​3 dissociation, this difference may be less                  

important. In sum, the Ge out-diffusion into the gate oxide and GeO desorption from the system can be                  

controlled by tuning temperature, oxidant type, and oxidant concentration.  



It is hypothesized that interface defect reduction by ozone insertion into HfO​2 gate is primarily induced by                 

enhancement of GeO formation, followed by GeO diffusion through the gate oxide and sublimation of               

GeO from the gate oxide surface as illustrated in Fig. 8. ​Ozone from each ozone pulse can diffuse to the                    

SiGe oxide interface and form mobile GeO. This process can deplete Ge from SiGe top layer and form a                   

Si rich IL shown in STEM-EELS. ​The nature of the Ge diffusion process especially through thin oxide                

layer is not known. Studies on oxygen vacancy formation and In diffusion in HfO​2​ suggest that Ge                

diffusion would be oxygen vacancy dependent but DFT study is needed for understanding the true             

mechanism​45-46​. ​GeO desorption from GeO​2 surface (on Ge substrate) has been shown using thermal              

desorption spectroscopy (TDS) by Kita et al, since ALD process precludes TDS experiments, the results               

of Kita et al are used for the proposed mechanism. ​This process is Ge selective due to the difference in                    

activation energy for GeO desorption and diffusion and the propensity of SiO​x to form a silicate instead of                  

desorbing from gate oxides​42, 47-48​. Preferentially SiO​x formation because of difference in oxidation             

kinetics of Si versus Ge might also play a role. However, ozone is very active oxidant and each dosing                   

introduces excess of it which is enough to oxidize Ge along with Si on SiGe. Hence, although kinetics of                   

oxidation difference may play a role in these experiments, it cannot be the mechanism for observed                

results. ​Reports of the impact of oxygen plasma for Ge and SiGe oxidation (18, 36) suggest that the                  

oxygen radicals (O atoms) can diffuse through the oxide and form GeO​2 at the oxide/SiGe or Ge interface                  

lower defect density. However, plasma oxygen is not preferred since ion or electron bombardment can               

induce fixed oxide charge traps and may be concern for device reliability​. ​Conversely, oxygen molecules               

(O​2​) do not induce any damage but are not reactive as ozone or oxygen radicals; therefore, interface                 

defects reductions is not expected with molecular oxygen exposure during ALD process. 

Al​2​O​3 only gate oxide growth with ozone insertion on SiGe is very effective for D​it reduction because                 

there are two complementary mechanisms are active to reduce D​it​: 1) ozone selectively depletes Ge from                

the SiGe surface leaving an Si rich interface, while 2) Al​2​O​3 deposition process itself reduces D​it driven                 



 

by the highly oxygen reactive Al​2​O​3 precursor, TMA, and differences in formation enthalpy of GeO​x and                

SiO​x​; the defect reduction occurs by excess TMA diffusing into the oxide and reducing interface defects                

via oxygen scavenging​5​. Therefore, Al​2​O​3 ALD selectively scavenges oxygen from Ge which reduces the              

IL thickness and forms an ultra-low defect density (D​it ​3.2×10​11 cm​-2​eV​-1​) Al​2​O​3 / SiGe interface. Ozone                

insertion into bilayer HfO​2​-Al​2​O​3​/SiGe is not as effective as ozone insertion into only HfO​2​/SiGe devices;               

this is consistent with the Al​2​O​3 in the bilayer already partially decreasing the interfacial GeO​x and                

reducing the Ge out-diffusion since it is a good diffusion barrier​32​. The TMA diffusion through the gate                 

oxide during ALD is nominally a non-ideality in the ALD mechanism but produces the lowest D​it​ devices. 

For HfO​2​, the most effective D​it reduction with ozone is found when ozone is dispersed into the HfO​2 gate                   

oxide in a nanolaminate structure, consistent with the ozone oxidant continuing to generate interfacial              

GeO​x and its sublimation during the entire ALD process, thus providing a continuous removal of Ge from                 

the interface. While ALD is usually modeled as a layer by layer process, for gate oxide deposition, the                  

data is more consistent with processes in which the interface continuously evolves during ALD and thus                

requires continuous defect reduction or post deposition defect reduction process. This continuous defect             

reduction can be implemented by using an Al​2​O​3​/HfO​2 nanolaminate to getter oxygen from GeO​x              

continuously during ALD​5​, or by using an ozone-HfO​2 nanolaminate to continuously deplete Ge from the               

IL by GeO sublimation during ALD, or by using a gettering gate to scavenge oxygen from GeO​x after                  

ALD​18​; however, in all cases these processes depend on facile diffusion of oxidants during or post ALD                 

through the gate oxide. Correlations between experimental results suggest that ALD process itself             

modifies the oxide-channel interface during the entire ALD process. In essence, the non-ideality of ALD               

process (even for the Al​2​O​3​/HfO​2​ nanolaminate) is critical for the suppression of electronic defects. 
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