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(tt̄H) is performed, where the Higgs boson decays to bb̄, and both top quarks decay hadron-

ically. The data used correspond to an integrated luminosity of 20.3 fb−1 of pp collisions

at
√
s = 8 TeV collected with the ATLAS detector at the Large Hadron Collider. The

search selects events with at least six energetic jets and uses a boosted decision tree al-

gorithm to discriminate between signal and Standard Model background. The dominant

multijet background is estimated using a dedicated data-driven technique. For a Higgs

boson mass of 125 GeV, an upper limit of 6.4 (5.4) times the Standard Model cross section

is observed (expected) at 95% confidence level. The best-fit value for the signal strength is

µ = 1.6±2.6 times the Standard Model expectation for mH = 125 GeV. Combining all tt̄H
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a signal strength µ = 1.7± 0.8.
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1 Introduction

After the discovery of a new boson with a mass of around 125 GeV in July 2012 by the

ATLAS [1] and CMS [2] collaborations, the focus has now shifted to confirming whether

this particle is the Standard Model (SM) Higgs boson [3–6] or another boson. While any

deviation from SM predictions would indicate the presence of new physics, all measurements

of the properties of this new boson thus far performed at the Large Hadron Collider (LHC),

including spin, parity, total width, and coupling to SM particles, are consistent with the

SM prediction [7–12].

Because of its large mass, the top quark is the fermion with the largest Yukawa cou-

pling (yt) to the Higgs field in the SM, with a value close to unity. The coupling yt is

experimentally accessible by measuring the gluon fusion (ggF) production process or the

H → γγ decay, where a sizeable contribution derives from a top-quark loop. This case

requires the assumption that no new physics contributes with additional induced loops in

order to measure yt. Currently, the only process where yt can be accessed directly is the

production of a top-quark pair in association with a Higgs boson (tt̄H).

The results of searches for the Higgs boson are usually expressed in terms of the signal-

strength parameter µ, which is defined as the ratio of the observed to the expected number

of signal events. The latter is calculated using the SM cross section times branching ra-

tio [13]. The combined tt̄H signal strength measured by the CMS Collaboration [14],

obtained by merging searches in several final states, is µ = 2.8 ± 1.0. The ATLAS Col-

laboration has searched for a tt̄H signal in events enriched in Higgs boson decays to two

massive vector bosons or τ leptons in the multilepton channel [15], finding µ = 2.1+1.4
−1.2, for

tt̄H(H → bb̄) [16] in final states with at least one lepton obtaining µ = 1.5 ± 1.1, and for

tt̄H(H → γγ) [17] measuring µ = 1.3+2.6
−1.7.

Among all tt̄H final states, the one where both W bosons from t→Wb decay hadron-

ically and the Higgs boson decays into a bb̄ pair has the largest branching ratio, but also

the least signal purity. This paper describes a search for this all-hadronic tt̄H(H → bb̄)

decay mode. The analysis uses proton-proton collision data corresponding to an integrated

luminosity of 20.3 fb−1 at center-of-mass energy
√
s = 8 TeV recorded with the ATLAS

detector at the LHC.

At Born level, the signal signature is eight jets, four of which are b-quark jets. The

dominant background is the non-resonant production of multijet events. For this analysis,

a data-driven method is applied to estimate the multijet background by extrapolating its

contribution from a control region with the same jet multiplicity, but a lower multiplicity of

jets containing b-hadrons than the signal process. The parameters used for the extrapola-

tion are measured from a control region and checked using Monte Carlo (MC) simulations.

Other subdominant background processes are estimated using MC simulations. To max-

imise the signal sensitivity, the events are categorised according to their number of jets

and jets identified as containing b-hadrons (b-tagged). A boosted decision tree (BDT) al-

gorithm, based on event shape and kinematic variables, is used to discriminate the signal

from the background. The extraction of µ is performed through a fit to the BDT discrim-

inant distribution. After the fit the dominant uncertainty is the tt̄ + bb̄ production cross
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section. The sensitivity is also limited by systematic uncertainties from the data-driven

method used for the modelling of the large non-resonant multijet production.

2 The ATLAS detector

The ATLAS detector [18] consists of an inner tracking detector surrounded by a thin su-

perconducting solenoid magnet providing a 2 T axial magnetic field, electromagnetic and

hadron calorimeters, and a muon spectrometer incorporating three large superconducting

toroid magnets. The inner detector (ID) comprises the high-granularity silicon pixel detec-

tor and the silicon microstrip tracker covering the pseudorapidity1 range |η| < 2.5, and the

straw-tube transition radiation tracker covering |η| < 2.0. The electromagnetic calorimeter

covers |η| < 3.2 and consists of a barrel and two endcap high-granularity lead/liquid-argon

(LAr) calorimeters. An additional thin LAr presampler covers |η| < 1.8. Hadron calorime-

try is provided by a steel/scintillator-tile calorimeter, which covers the region |η| < 1.7, and

two copper/LAr hadron endcap calorimeters. To complete the pseudorapidity coverage,

copper/LAr and tungsten/LAr forward calorimeters cover up to |η| = 4.9. Muon tracking

chambers precisely measure the deflection of muons in the magnetic field generated by su-

perconducting air-core toroids in the region |η| < 2.7. A three-level trigger system selects

events for offline analysis [19]. The hardware-based Level-1 trigger is used to reduce the

event rate to a maximum of 75 kHz, while the two software-based trigger levels, Level-2

and Event Filter (EF), reduce the event rate to about 400 Hz.

3 Object reconstruction

The all-hadronic tt̄H final state is composed of jets originating from (u, d, s)-quarks or

gluons (light jets) and jets from c- or b-quarks (heavy-flavour jets). Electrons and muons,

selected in the same way as in ref. [16], are used only to veto events that would overlap

with the tt̄H searches in final states with leptons.

At least one reconstructed primary vertex is required, with at least five associated

tracks with pT ≥ 400 MeV, and a position consistent with the luminous region of the

beams in the transverse plane. If more than one vertex is found, the primary vertex is

taken to be the one which has the largest sum of the squared transverse momenta of its

associated tracks.

Jets are reconstructed with the anti-kt algorithm [20–22], with a radius parameter R =

0.4 in the (η, φ) plane. They are built from calibrated topological clusters of energy deposits

in the calorimeters [18]. Prior to jet finding, a local cluster calibration scheme [23, 24]

is applied to correct the topological cluster energies for the effects of non-compensating

calorimeter response, dead material, and out-of-cluster leakage. After energy calibration

1ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP)

in the centre of the detector and the z-axis coinciding with the axis of the beam pipe. The x-axis points

from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r,φ) are

used in the transverse plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity is

defined in terms of the polar angle θ as η = − ln tan(θ/2). Transverse momentum and energy are defined

as pT = p sin θ and ET = E sin θ respectively.
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based on in-situ measurements [25], jets are required to have transverse momentum pT >

25 GeV and |η| < 2.5. During jet reconstruction, no distinction is made between identified

electrons and jet energy deposits. To avoid double counting electrons as jets, any jet within

a cone of size ∆R =
√

(∆φ)2 + (∆η)2 = 0.2 around a reconstructed electron is discarded.

After this, electrons within a ∆R = 0.4 of a remaining jet are removed.

To avoid selecting jets from additional pp interactions in the same event (pile-up), a

loose selection is applied to the jet vertex fraction (JVF), defined as the ratio of the scalar

sum of the pT of tracks matched to the jet and originating from the primary vertex to that

of all tracks matched to the jet. This criterion, JVF ≥ 0.5, is only applied to jets with

pT < 50 GeV and |η| < 2.4.

Jets are b-tagged by means of the MV1 algorithm [26]. It combines information from

track impact parameters and topological properties of secondary and tertiary decay vertices

which are reconstructed within the jet. The working point used for this search corresponds

to a 60% efficiency to tag a b-quark jet, a light-jet rejection factor of approximately 700 and

a charm-jet rejection factor of 8, as determined for jets with pT > 25 GeV and |η| < 2.5

in simulated tt̄ events [26]. The tagging efficiencies obtained in simulation are adjusted to

match the results of the calibrations performed in data [26].

4 Event selection

This search is based on data collected using a multijet trigger, which requires at least five

jets passing the EF stage, each having pT > 55 GeV and |η| < 2.5. Events are discarded if

any jet with pT > 20 GeV is identified as out-of-time activity from a previous pp collision

or as calorimeter noise [27].

The five leading jets in pT are required to have pT > 55 GeV with |η| < 2.5 and all

other jets are required to have pT > 25 GeV and |η| < 2.5. Events are required to have at

least six jets, of which at least two must be b-tagged. Events with well-identified isolated

muons or electrons with pT > 25 GeV are discarded in order to avoid overlap with other

tt̄H analyses.

To enhance the sensitivity, the selected events are categorised into various distinct

regions, according to their jet and b-tag multiplicities: the region with m jets, of which n

are b-jets, is referred to as “(mj, nb)”.

5 Signal and background modelling

5.1 Signal model

The tt̄H signal process is modelled using matrix elements calculations obtained from the

HELAC-Oneloop package [28] with next-to-leading order (NLO) accuracy in αs. Powheg-

box [29–31] serves as an interface to the MC programs used to simulate the parton

shower and hadronisation. The samples created using this approach are referred to as

PowHel samples [32]. They include all SM Higgs boson and top-quark decays and use

the CT10NLO [33] parton distribution function (PDF) sets with the factorisation (µF)

and renormalisation (µR) scales set to µF = µR = mt +mH/2. The PowHel tt̄H samples
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use Pythia 8.1 [34] to simulate the parton shower with the CTEQ6L1 [35] PDF and the

AU2 underlying-event set of generator parameters (tune) [36], while Herwig [37] is used

to estimate systematic uncertainties due to the fragmentation modelling.

For these tt̄H samples the cross-section normalisations and the Higgs boson decay

branching fractions are taken from the NLO QCD and from the NLO QCD + EW theo-

retical calculations [13] respectively. The masses of the Higgs boson and the top quark are

set to 125 GeV and to 172.5 GeV respectively.

5.2 Simulated backgrounds

The dominant background to the all-hadronic tt̄H signal is multijet production, followed by

tt̄ + jets production. Small background contributions come from the production of a single

top quark and from the associated production of a vector boson and a tt̄ pair, tt̄V (V = W,

Z ). The multijet background is determined from data using a dedicated method described

in section 5.4. The other background contributions are estimated using MC simulations.

The multijet events, which are used for jet trigger studies and for the validation of

the data-driven multijet background estimation, are simulated with Pythia 8.1 using the

NNPDF2.3 LO [38] PDFs.

The main tt̄ sample is generated using the Powheg NLO generator with the

CT10NLO PDF set, assuming a value of the top-quark mass of 172.5 GeV. It is interfaced

to Pythia 6.425 [39] with the CTEQ6L1 PDF set and the Perugia2011C [40] underlying-

event tune; this combination of generator and showering programs is hereafter referred to as

Powheg+Pythia. The sample is normalised to the top++2.0 theoretical calculation per-

formed at next-to-next-to leading order (NNLO) in QCD and includes resummation of next-

to-next-to leading logarithmic (NNLL) soft gluon terms [41–46]. A second tt̄ sample is gen-

erated using fully matched NLO predictions with massive b-quarks [47] within the Sherpa

with OpenLoops framework [48, 49] henceforth referred to as Sherpa+OpenLoops. The

Sherpa+OpenLoops NLO sample is generated following the four-flavour scheme using

the Sherpa 2.0 pre-release and the CT10NLO PDF set. The renormalisation scale is set to

µR =
∏
i=t,t̄,b,b̄ E

1/4
T,i , where ET,i is the transverse energy of parton i, and the factorisation

and resummation scales are both set to (ET,t + ET,t̄)/2.

The prediction from Sherpa+OpenLoops is expected to model the tt̄+bb̄ contribution

more accurately than Powheg+Pythia, since the latter MC produces tt̄+ bb̄ exclusively

via the parton shower. The Sherpa+OpenLoops sample is not passed through full detec-

tor simulation. Thus, tt̄ + jets events from Powheg+Pythia are categorised into three

non-overlapping samples, tt̄ + bb̄, tt̄ + cc̄, and tt̄ + light-jets, hereafter called tt̄ + light,

using a labelling based on an algorithm that matches hadrons to particle jets. Then, tt̄ +

bb̄ events from Powheg+ Pythia are reweighted to reproduce the Sherpa+OpenLoops

NLO tt̄ + bb̄ prediction. The reweighting is done at generator level using a finer categori-

sation to distinguish events where one particle jet is matched to two b-hadrons, or where

only one b-hadron is matched. The reweighting is applied using several kinematic variables

such as the top-quark pT, the tt̄ system pT, and, where this can be defined, ∆R and pT of

the dijet system not originating from the top-quark decay [16].
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Unlike tt̄ + bb̄, no fully matched NLO predictions exist for tt̄ + cc̄ and tt̄ + light events.

A dedicated reweighting is therefore applied to the top-quark pT spectra as well as to the pT

spectra of the tt̄ system of tt̄ + light and tt̄ + cc̄ events in Powheg+Pythia, based on the

ratio of data to simulation of the measured differential cross sections at
√
s = 7 TeV [50].

No such reweighting is applied to the tt̄ + bb̄ sample, which is already corrected to match

the best available theory calculation.

Samples of single-top-quark events produced in the s- and Wt-channels are generated

with Powheg-box 2.0 using the CT10NLO PDF set. The samples are interfaced to

Pythia 6.425 with the CTEQ6L1 set of parton distribution functions and Perugia2011C

underlying-event tune. The t-channel production mode is generated with AcerMC [51]

interfaced to Pythia 6.425 with the CTEQ6L1 PDF set and the Perugia2011C underlying-

event tune. Overlaps between the tt̄ and Wt final states are removed [52]. The single-top-

quark samples are normalised to the approximate NNLO theoretical cross sections [53, 54]

using the MSTW2008 NNLO PDF set [55, 56].

The samples of tt̄V (V = W,Z) events are generated with the MadGraph v5 LO gen-

erator [57] and the CTEQ6L1 PDF set. Pythia 6.425 with the AUET2B tune is used to

generate the parton shower. The tt̄V samples are normalised to NLO cross-sections [58, 59].

Finally, event samples for single top quark plus Higgs boson production, tHqb and

tHW , are generated. The cross sections are computed using the MG5 aMC@NLO gen-

erator [60] at NLO in QCD. For tHqb, samples are generated with MadGraph in the

four-flavour scheme and µF = µR = 75 GeV then showered with Pythia 8.1 with the

CTEQ6L1 PDF and the AU2 underlying-event tune. For tHW, computed with the five-

flavour scheme, dynamic µF and µR scales are used and events are generated at NLO

with MG5 aMC@NLO+Herwig++ [61, 62]. These two processes together are referred to

as tH.

A summary of the cross-section values and their uncertainties for the signal as well as

for the MC simulated background processes is given in table 1.

5.3 Common treatment of MC samples

All samples using Herwig are also interfaced to Jimmy v4.31 [63] to simulate the un-

derlying event. With the exception of Sherpa, all MC samples use Photos 2.15 [64]

to simulate photon radiation and Tauola 1.20 [65] to simulate τ decays. The samples

are then processed through a simulation [66] of the detector geometry and response using

Geant4 [67]. The single-top-quark sample produced in the t-channel is simulated with a

parameterised calorimeter response [68].

All simulated events are processed through the same reconstruction software as the

data. Simulated events are corrected so that the lepton and jet identification efficiencies,

energy scales and energy resolutions match those in data.

When selecting based on the output value of the b-tagging algorithm, the number of

selected simulated events is significantly reduced, leading to large statistical fluctuations

in the resulting distributions for samples with a high b-tag multiplicity. Therefore, rather

than tagging the jets individually, the normalisation and the shape of these distributions

are predicted by calculating the probability that a jet with a given flavour, pT, and η is

– 6 –
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Process σ [pb]

tt̄H 0.129+0.012
−0.016

tt̄ 253+13
−15

Single top Wt-channel 22.4± 1.5

Single top t-channel 87.7+3.4
−1.9

Single top s-channel 5.61± 0.22

tt̄ + W 0.232± 0.070

tt̄ + Z 0.205± 0.061

tHqb 0.0172+0.0012
−0.0011

WtH 0.0047+0.0010
−0.0009

Table 1. Production cross sections for signal tt̄H, at mH = 125 GeV, and various simulated back-

ground processes. The quoted errors arise from variations of the renormalisation and factorisation

scales and uncertainties in the parton distribution functions.

b-tagged [69]. The method is validated by verifying that the predictions reproduce the

normalisation and shape obtained for a given working point of the b-tagging algorithm.

The method is applied to all simulated signal and background samples.

5.4 Multijet background estimation using data: the TRFMJ method

A data-driven technique, the tag rate function for multijet events (TRFMJ) method, is used

to estimate the multijet background. After measuring εMJ, the probability of b-tagging a

third jet in a sample of events with at least two b-tagged jets, the TRFMJ method uses

εMJ to extrapolate the multijet background from the regions with lower b-tag multiplicity

to the search regions with higher b-tag multiplicity but otherwise identical event selection.

In the first step, the b-tagging rate is measured in data samples selected with various

single-jet triggers, which are enriched in multijet events and have limited (≈10%) overlap

with the search region. The events in this TRFMJ extraction region are required to have

at least three jets with pT > 25 GeV and |η| < 2.5, with at least two b-tagged jets.

Excluding the two jets with the highest b-tagging weight in the event, εMJ is defined as

the rate of b-tagging any other jet in the event. It is parameterised as a function of the

jet pT and η, and also of the average ∆R between this jet and the two jets in the event

with highest b-tagging weight, 〈∆R(j,hMV1)〉. The pT and η dependence of εMJ reflects the

corresponding sensitivity of the b-tagging efficiency to these variables. In multijet events,

the ∆R dependence of εMJ is correlated with the multi-b-jet production mechanism. This

affects εMJ, shown in figure 1, which decreases by up to a factor two as ∆R increases for

fixed pT and η.

In the search region the TRFMJ method starts from the data sample with exactly two

b-tagged jets subtracting the contributions from all other backgrounds obtained from MC

simulation. Multijet background samples containing m jets (m ≥ 6), out of which n are
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Figure 1. Dependence of εMJ on the jet transverse momentum pT, in regions of jet pseudorapidity

η and average ∆R between this jet and the two jets in the event with highest b-tagging weight,

〈∆R(j,hMV1)〉. The pT bin boundaries are 25 (lowest), 40, 55, 70, 100, 200, 400, 600, 900 GeV

(highest), chosen such as to have uniform number of events across bins of 〈∆R(j,hMV1)〉.

b-tagged (n ≥ 3) are then constructed, using an event weight w(mj, nb), which is calculated

from εMJ analogously to the method described in ref. [69], accounting for the fact that the

starting sample contains two b-tagged jets. In each multijet event emulated using TRFMJ

by means of εMJ, (m− 2) jets not originally b-tagged can be used for the emulation of the

properties of additional b-tagged jets. This procedure allows to emulate observables that

depend on the number of b-tagged jets.

5.5 Validation of the TRFMJ method in data and simulation

Validation of the TRFMJ method is performed by a ‘closure test’, separately in data and

simulation. This is performed using the same data samples that were employed to estimate

εMJ. In these low jet multiplicity samples, the TRFMJ method, which is applied to the

events with exactly two b-tagged jets, is used to predict distributions in events with at

least three b-tagged jets. Using εMJ derived independently in data and simulation, the

predicted distributions are compared to those resulting when directly applying b-tagging.

This is done for a number of variables, such as b-tagged jet pT, angular distance between

b-tagged jets, and event shapes. As an example, for events with at least three jets and at

least three b-tagged jets (≥3j, ≥3b), figure 2 shows the closure test in data for the third-

leading-jet pT, HT (the scalar sum of the pT of all jets), and CentralityMass (defined as HT

divided by the invariant mass of the jets). Figure 3 shows the results of the closure test

in simulated multijet events for distributions of the leading-jet pT, the minimum mass of

all jet pairs in the event (mmin
jj ), and the third-leading b-tagged jet pT. The definitions of

these variables can be found in table 3. In both data and simulated multijet events with at

least three b-tagged jets, the predicted and observed number of events agree within 5%. In

events with a higher b-tagged jet multiplicity the numbers agree within the large statistical

uncertainty. For this reason the systematic uncertainties related to the TRFMJ method

are not estimated in the validation regions.
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Figure 2. Comparison of the shapes predicted by the TRFMJ method (red histograms) and direct

b-tagging (black circles) in data events with at least three jets and at least three b-tagged jets for (a)

the third-leading b-tagged jet pT, (b) HT, and (c) CentralityMass. The definitions of the variables

are listed in table 3. Events were selected with various single-jet triggers. The TRFMJ prediction

is normalised to the same number of events as the data. The uncertainty band for the TRFMJ

predictions shown in the ratio plot represents statistical uncertainties only.
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Figure 3. Comparison of the shapes predicted for the TRFMJ method (red histograms) and direct

b-tagging (black circles) in Pythia 8.1 multijet events with at least three jets and at least three

b-tagged jets for (a) leading-jet pT, (b) mmin
jj and (c) the third-leading b-tagged jet pT in the event.

The definitions of the variables are listed in table 3. Distributions are normalised to the same

area. The uncertainty band for the TRFMJ predictions shown in the ratio plot represents statistical

uncertainties only.
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6 Multijet trigger efficiency

Not all jets are reconstructed at the trigger level, mainly due to the Level-1 sliding window

algorithm and the Level-1 resolution [70]. The multijet trigger efficiency with respect to

the offline selection is derived in terms of the efficiency for a single jet to be associated

with a complete jet trigger chain, i.e., a complete sequence of jets reconstructed at Level-1,

Level-2 and EF satisfying the requirements described in section 4. This single-jet trigger

efficiency, εtrig, is evaluated in intervals of offline reconstructed pT and η:

εtrig(pT, η) =
Ntrig(pT, η)

N(pT, η)
, (6.1)

where Ntrig(pT, η) is the number of jets matched with a trigger chain and N(pT, η) is the

total number of jets within a given offline reconstructed pT and η interval. Figure 4 shows

that for large jet pT, εtrig reaches a plateau close to unity.

For both data and simulation, εtrig(pT, η) is derived using events triggered by a single-

jet trigger with a pT threshold of 110 GeV, and only the offline jets which are in the

hemisphere opposite to the trigger jet are used. To avoid additional trigger bias, events

are discarded if more than one jet with pT ≥ 110 GeV is reconstructed. The ratio of

εdata
trig (pT, η) to εMC,dijet

trig , where the latter is estimated in simulated dijet events, is referred

to as SFtrig(pT, η). In the analysis, for each MC sample α considered, the final number

of events passing the multijet trigger is estimated by weighting each jet by the product of

εMC,α
trig (pT, η) and SFtrig(pT, η). The parameters εtrig(pT, η) and SFtrig(pT, η) are estimated

for jet pT up to 100 GeV. Figure 4 shows the pT dependence of εdata
trig (pT, η), εMC,tt̄H

trig (pT, η),

εMC,dijet
trig (pT, η) and SFtrig(pT, η) for jets within |η| < 2.5, together with the uncertain-

ties from the difference between εMC,tt̄H
trig (pT, η) and εMC,dijet

trig (pT, η), which is taken as the

systematic uncertainty of the method.

7 Event classification

Six independent analysis regions are considered for the fit used in the analysis: two control

regions (6j, 3b), (6j, ≥4b) and four signal regions (7j, 3b), (7j, ≥4b), (≥8j, 3b) and (≥8j,

≥4b). In addition, the three regions with exactly two b-tagged jets, (6j, 2b), (7j, 2b) and

(≥8j, 2b), are used to predict the multijet contribution to higher b-tagging multiplicity

regions, using the TRFMJ method, as described above. The event yields in the different

analysis regions prior to the fit are summarised in table 2.

The regions are analysed separately and combined statistically to maximise the overall

sensitivity. The most sensitive regions, (≥8j, 3b) and (≥8j, ≥4b), are expected to contribute

more than 50% of the total significance.

8 Analysis method

The Toolkit for Multivariate Data Analysis (TMVA) [71] is used to train a BDT to separate

the tt̄H signal from the background. A dedicated BDT is defined and optimised in each of
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Figure 4. Single-jet trigger efficiencies, εtrig, (top) for data, simulated dijet events, and tt̄H events,

as a function of jet pT for jets with |η| < 2.5; (bottom) SFtrig(pT, η) = εdatatrig (pT, η)/εMC,dijet
trig (pT, η).

The uncertainty on SFtrig, shown as the green shaded area, is estimated from the difference between

the efficiencies in dijet and tt̄H simulated events in the denominator of SFtrig.

6j, 3b 6j, ≥4b 7j, 3b 7j, ≥4b ≥8j, 3b ≥8j, ≥4b

Multijet 16380 ± 130 1112 ± 33 12530 ± 110 1123 ± 34 10670 ± 100 1324 ± 36

tt̄+light 1530 ± 390 48 ± 18 1370 ± 430 45 ± 18 1200 ± 520 40 ± 23

tt̄+ cc̄ 280 ± 180 17 ± 12 390 ± 240 21 ± 15 560 ± 350 48 ± 33

tt̄+ bb̄ 330 ± 180 44 ± 26 490 ± 270 87 ± 51 760 ± 450 190 ± 110

tt̄+ V 14.2 ± 6.3 1.8 ± 1.5 22.0 ± 9.0 3.5 ± 2.3 40 ± 15 8.0 ± 4.2

Single top 168 ± 63 6.0 ± 3.7 139 ± 55 8.3 ± 4.6 110 ± 49 10.6 ± 5.9

Total background 18700 ± 480 1229 ± 48 14940 ± 580 1288 ± 66 13330 ± 780 1620 ± 130

tt̄H (mH=125 GeV) 14.3 ± 4.6 3.3 ± 2.1 23.7 ± 6.4 7.2 ± 3.3 48 ± 11 16.8 ± 6.1

Data events 18508 1545 14741 1402 13131 1587

S/B < 0.001 0.003 0.002 0.006 0.004 0.010

S/
√

B 0.10 0.095 0.194 0.20 0.415 0.417

Table 2. Event yields from simulated backgrounds and the signal as well as data in each of the

analysis regions prior to the fit (pre-fit). The quoted uncertainties are the sum in quadrature of the

statistical and systematic uncertainties in the yields for all samples but the multijet background.

The multijet normalisation and its systematic uncertainty are determined by the fit, so only its

statistical uncertainty is quoted here. Since the numbers are rounded, the sum of all contributions

may not equal the total value. The signal-to-background ratio, S/B, and the significance, S/
√

B, are

also given. The tH background is not shown as it amounts to fewer than 1.5 events in each region.
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the six analysis regions. The variables entering the BDT and their definitions are listed in

table 3.

The input variables include event-shape variables such as CentralityMass and aplanarity,

global event variables, such as ST (the modulus of the vector sum of the jet pT), HT 5 (the

scalar sum of the jet pT starting from the fifth jet in pT order), mmin
jj (the smallest invariant

mass of all dijet combinations), and the minimum ∆R between jets. The pT of the softest

jet in the event is the only individual kinematic variable that enters the BDT directly.

Other variables are calculated from pairs of objects: ∆R(b, b)p
max
T (the ∆R between the

two b-tagged jets with highest vector sum pT), m
∆R(b,b)min

bb (the invariant mass of the two

b-tagged jets with the smallest ∆R), (ET 1 + ET 2)/
∑
Ejets

T (the sum of the transverse

energies of the two leading jets divided by the sum of the transverse energies of all jets),

m2 jets (the mass of the dijet pair, which, when combined with any b-tagged jet, maximises

the magnitude of the vector sum of the pT of the three-jet system) and m2 b-jets (the

invariant mass of the two b-tagged jets which are selected by requiring that the invariant

mass of all the remaining jets is maximal). Two variables are calculated as the invariant

mass of three jets: mtop,1 is computed from the three jets whose invariant mass is nearest

to the top quark mass, taking into account the jet energy resolutions; the mtop,2 calculation

uses the same algorithm but excludes the jets which enter mtop,1. Finally, a log-likelihood

ratio variable, Λ, is used; it is related to the probability of an event to be a signal candidate,

compared to the probability of being a background candidate.

The Λ variable is the sum of the logarithms of ratios of relative probability densities

for W boson, top quark and Higgs boson resonances to be reconstructed in the event. For a

given resonance X decaying to two jets, the Λ component is built as ΛX(mjj) = ln
Psig(mjj)
Pbkg(mjj)

within a mass window wX = ±30 GeV around the given particle mass:

Psig(mjj) =

{
s ·G(mjj |mX , σX), for |mjj −mX | ≤ wX ,
1− s, for |mjj −mX | > wX .

(8.1)

Pbkg(mjj) =

{
b · Rect(mX , wX), for |mjj −mX | ≤ wX ,
1− b, for |mjj −mX | > wX .

(8.2)

Here s and b are the probabilities to find a jet pair with an invariant mass within ±wX
of mX . They are calculated from the signal simulation and from the multijet background

respectively. The signal mass distribution is modelled with a Gaussian G(mjj |mX , σX),

while the background is modelled with a uniform distribution Rect(mX , wX) between mX−
wX and mX+wX . Both functions Psig(mjj) and Pbkg(mjj) are normalised to unity. For the

top quark resonance the three-particle mass, mjjb, is used. The width of the Gaussian is

set to σX = 18 GeV for all resonances; this value corresponds to the expected experimental

width of a Higgs boson with no combinatoric background.

The expression for the complete event Λ is:

Λ(mjj ,mjjb,mbb) = ΛW (mjj |mW , σX) + Λtop(pT,jjb,mjjb|mtop, σX)

+ ΛH(pT,bb,mbb|mH , σX).
(8.3)
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The three terms refer to W, top, and Higgs resonances respectively. For the top quark

and Higgs boson resonances the masses, mjjb and mbb, as well as the pT, defined as the

magnitude of the vector sum of the pT of the jets used to reconstruct the top quark, pT,jjb,

and to reconstruct the Higgs boson, pT,bb, are used. The value of Λ is calculated for all

possible jet combinations and the maximum Λ of the event is chosen.

The variables entering the BDT are selected and ranked according to their separation

power with an iterative procedure, which stops when adding more variables does not signif-

icantly improve the separation between signal and background. The cut-off corresponds to

the point when adding a variable increases the significance, defined as
√∑

i S
2
i /B

2
i where

Si and Bi are the expected signal and background yields in the ith bin of the BDT dis-

criminant, by less than 1%.

Signal and background samples are classified as described in section 7, and then each sub-

sample is further subdivided randomly into two subsamples of equal size for training and

for testing.

The ranking of the input variables in terms of separation power for each analysis

region is shown in table 3. The distributions of the BDT outputs for simulated signal

and background events are shown in figure 5 for each analysis region. The figure shows a

better separation between signal and background for low jet multiplicities than for high jet

multiplicities. This is explained by the number of possible jet permutations. The number of

jet permutations increases giving the background more configurations to mimic the signal.

9 Systematic uncertainties

The sources of systematic uncertainty considered in this analysis can be grouped into six

main categories as summarised in table 4. Each systematic uncertainty is represented

by an independent parameter, referred to as a nuisance parameter, and is parameterised

with a Gaussian function for the shape uncertainties and a log-normal distribution for the

normalisations [72]. They are centred around zero and one, respectively, with a width

that corresponds to the given uncertainty. The uncertainties in the integrated luminosity,

reconstruction of the physics objects, and the signal and background MC models are treated

as in ref. [16]. The uncertainties related to the jet trigger as well as those related to the

data-driven method to estimate the multijet background are discussed below. In total,

99 fit parameters are considered. The determination and treatment of the systematic

uncertainties are detailed in this section. Their impact on the fitted signal strength is

summarised in table 8 in section 11.

The systematic uncertainty in the luminosity for the data sample is 2.8%. It is derived

following the same methodology as that detailed in ref. [73]. The trigger uncertainty is

determined from the difference between εtrig, estimated using tt̄H and dijet MC events.

Each jet in the event is weighted according to SFtrig(pT, η), the uncertainty of which is

propagated to the shape and normalisation of the BDT output distribution, as shown in

figure 6(a).

The uncertainties in physics objects are related to the reconstruction and b-tagging

of jets. The jet energy resolution (JER) and the jet energy scale (JES) uncertainties are
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Systematic uncertainty source Type Number of components

Luminosity N 1

Trigger SN 1

Physics Objects

Jet energy scale SN 21

Jet vertex fraction SN 1

Jet energy resolution SN 1

b-tagging efficiency SN 7

c-tagging efficiency SN 4

Light-jet tagging efficiency SN 12

Background MC Model

tt̄ cross section N 1

tt̄ modelling: pT reweighting SN 9

tt̄ modelling: parton shower SN 3

tt̄+heavy-flavour: normalisation N 2

tt̄+cc̄: heavy-flavour reweighting SN 2

tt̄+cc̄: generator SN 4

tt̄+bb̄: NLO Shape SN 8

tt̄V cross section N 1

tt̄V modelling SN 1

Single top cross section N 1

Data driven background

Multijet normalisation N 6

Multijet TRFMJ parameterisation S 6

Multijet HT correction S 1

Multijet ST correction S 1

Signal Model

tt̄H scale SN 2

tt̄H generator SN 1

tt̄H hadronisation SN 1

tt̄H parton shower SN 1

Table 4. Sources of systematic uncertainty considered in the analysis grouped in six categories.

“N” denotes uncertainties affecting only the normalisation for the relevant processes and channels,

whereas “S” denotes uncertainties which are considered to affect only the shape of normalised

distributions. “SN” denotes uncertainties affecting both shape and normalisation. Some sources

of systematic uncertainty are split into several components. The number of components is also

reported.
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Figure 5. Response of the BDT algorithm for simulated signal (dashed red), tt̄+jets background

(solid blue) and multijet background (dotted green) events in the (top) regions with 3 b-tags ((a)

6, (b) 7 and (c) ≥ 8 jets) and in the (bottom) regions with ≥ 4 b-tags ((d) 6, (e) 7 and (f) ≥ 8 jets).

The binning is the same as that used in the fit.

derived combining the information from test-beam data and simulation [25]. The JES

uncertainties are split into 21 uncorrelated components. The largest of these uncertainties

is due to the jet flavour composition. The JVF uncertainty is derived from Z(→ `+`−)+

1-jet events in data and simulation by varying the nominal cut value by 0.1 up and down.

The uncertainty related to the b-tagging is modelled with six independent parameters,

while four parameters model the c-tagging uncertainty [26]. These are eigenvalues obtained

by diagonalising the matrix which parameterises the tagging efficiency as a function of pT,

taking into account bin-to-bin correlations. Twelve parameters, which depend on pT and

η, are used to parameterise the light-jet-tagging systematic uncertainties [74]. The per-jet

b-tagging uncertainties are 3%–5%, about 10% for c-tagging and 20% for light jet tagging.

An additional uncertainty is assigned to the b-tagging efficiency for jets with pT > 300 GeV,

which lacks statistics for an accurate calibration from data.

A combined uncertainty of ±6.0% is assigned to the tt̄+jets production cross section,

including modelling components due to the value of αs, the PDF used, the process energy

scale, and the top quark mass. Other systematic uncertainties related to tt̄+jets produc-

tion are due to the modelling of parton showers and hadronisation.
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Figure 6. (a) Per event trigger scale factor SFtrig (black dots) versus the BDT output of tt̄H events,

shown with its corresponding systematic uncertainty (green band) for the (≥8j, ≥4b) region. (b)

Comparison of the BDT output of the multijet background predicted with different sets of TRFMJ.

The nominal TRFMJ is represented by the red points. The bottom panel shows the ratios of the

alternative TRFMJ predictions to the nominal set.

The systematic uncertainties arising from the reweighting procedure to improve tt̄

background description by simulation (section 5.2), have been extensively studied in ref. [16]

and adopted in this analysis. The largest uncertainties in the tt̄ background description

arise from radiation modelling, the choice of generator to simulate tt̄ production, the JES,

JER, and flavour modelling. These systematic uncertainties are applied to the tt̄+light and

tt̄ + cc̄ components. Two additional systematic uncertainties, the full difference between

applying and not applying the reweightings of the tt̄ system pT and top quark pT, are

assigned to the tt̄+ cc̄ component.

Four additional systematic uncertainties in the tt̄ + cc̄ estimate are derived from the

simultaneous variation of factorisation and renormalisation scales in Madgraph+Pythia.

For the tt̄+bb̄ background, three scale uncertainties are evaluated by varying the renormali-

sation and resummation scales. The shower recoil model uncertainty and two uncertainties

due to the PDF choice in the sherpa+OpenLoops NLO calculation are also taken into

account.

The tt̄+jets background is parameterised to allow a varying percentage of heavy

flavours c and b in the additional jets not originating from the top quark decay prod-

ucts. An uncertainty of ±50% is assigned to the tt̄ + bb̄ and tt̄ + cc̄ components of the

tt̄+jets cross section, which are treated as uncorrelated and are derived by comparing
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TRFMJ predictions Parameterisation variables in the TRFMJ method

Nominal set pT, |η|, 〈∆R(j,hMV1)〉
Multijet set 1 pT, ∆RMV1, ∆Rmin

(j,hMV1)

Multijet set 2 pT, ∆RMV1, ∆Rmin
(j,j)

Multijet set 3 pT, |η|, ∆Rmin
(j,hMV1)

Multijet set 4 pT, |η|, ∆RMV1, ∆Rmin
(j,hMV1)

Multijet set 5 pT, ∆RMV1, 〈∆R(j,hMV1)〉
Multijet lowest MV1 Nominal set removing the two lowest MV1 jets from computation

Multijet random MV1 Nominal set removing randomly two MV1 jets from computation

Multijet HT RW Nominal set with HT reweighting

Multijet ST RW Nominal set with ST reweighting

Table 5. Alternative predictions of the multijet background with the TRFMJ method. Multijet

sets 1 to 5 correspond to variations of the nominal set of variables describing εMJ. The next two sets

specify the variation in the nominal set based on the two b-tagged jets which are used to compute

εMJ. The last two refer to changes due to the residual mismodellings of HT and ST. Each of these

variations of the multijet background shape is quantified by one nuisance parameter in the fit.

Powheg+Pythia with a NLO result based on sherpa+OpenLoops. The uncertainty

in the tt̄ + bb̄ contribution represents the dominant systematic effect in this analysis. An

uncertainty of ±30% in the total cross section is assumed for tt̄+ V [58, 59].

The multijet background is estimated using data in regions with exactly two b-tagged

jets after subtraction of contributions from other events using MC simulation. All sys-

tematic uncertainties mentioned above are fully propagated to the data-driven multijet

background estimation and treated in a correlated manner.

To estimate the uncertainties associated with the multijet background, the values of

εMJ are determined as a function of different sets of variables, listed in the first part of

table 5, which are sensitive to the amount and the mechanism of heavy-flavour production.

Alternative variables used are ∆Rmin
(j,j), the minimum ∆R between the probed jet and any

other jet in the event, ∆Rmin
(j,hMV1), the minimum ∆R between the probed jet and the

two jets with highest b-tag probability or 〈∆R(j,hMV1)〉, its average value, and ∆RMV1,

the ∆R between the two jets with the highest b-tag probability. In addition, different

choices of methods to exclude b-tagged jets when determining εMJ in the TRFMJ method

are considered: the two b-tagged jets with the lowest MV1 weight or a random choice of

two jets among all b-tagged jets in the event are chosen. The different sets of variables

used to define εMJ affect the shape of the BDT distribution for the multijet background,

as shown in figure 6(b). Each of these shape variations is taken into account by a nuisance

parameter in the fit. These parameterisations also affect the overall normalisation, with

a maximum variation of 18% in the 3-b-tag regions and 38% in the ≥4-b-tag regions.

Residual mismodelling of HT and ST from the extraction region are also taken into account

as systematic uncertainties. The normalisation of the multijet background is evaluated

independently in each of the six analysis regions.
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For the signal MC modelling, the PowHel factorisation and renormalisation scales are

varied independently by a factor two and 0.5. The kinematics of the MC simulated samples

are then reweighted to reproduce the effects of these variations. The uncertainties related

to the choice of PDFs are evaluated using the recommendations of PDF4LHC [75]. The

systematic uncertainties from the parton shower and fragmentation models are evaluated

using PowHel+Herwig samples. The uncertainty due to the choice of generator is eval-

uated by comparing PowHel+Pythia8 with Madgraph5 aMC@NLO+Herwig++.

10 Statistical methods

The binned distributions of the BDT output discriminants for each of the six analysis

regions are combined as inputs to a test statistic to search for the presence of a signal. The

analysis uses a maximum-likelihood fit [72] to measure the compatibility of the observed

data with the background-only hypothesis, i.e., µ = 0, and to make statistical inferences

about µ, such as upper limits, using the CLs method [76, 77] as implemented in the RooFit

package [78].

A fit is performed under the signal-plus-background hypothesis to obtain the value of

the signal strength, assuming a SM Higgs boson mass of mH = 125 GeV. The value of

µ is a free parameter in the fit. The normalisation of each component of the background

and µ are determined simultaneously from the fit. Contributions from tt̄+jets, tt̄ + V

and single-top-quark backgrounds are constrained by the uncertainties of the respective

theoretical calculations, the uncertainty in the luminosity, and experimental data. The

multijet background normalisations are free parameters in the fit and are independent in

each region. The performance of the fit is validated using simulated events by injecting a

signal with variable strength and comparing the known strength to the fitted value.

11 Results

The yields in the different analysis regions considered in the analysis after the fit (post-fit)

are summarised in table 6. In each region, the variation of background and signal events

with respect to the pre-fit values (cf. table 2) are modest and, in particular, the fitted

multijet background component is well constrained by the fit within an uncertainty of 8%.

Figures 7 and 8 show the BDT output distributions for data and the predictions in each

analysis region, both before (left panels) and after (right panels) the fit to data. The relative

uncertainties decrease significantly in all regions due to the constraints provided by the

data, exploiting the correlations between the uncertainties in the different analysis regions.

The signal strength in the all-hadronic tt̄H decay mode, for mH = 125 GeV, is mea-

sured to be:

µ(mH =125 GeV) = 1.6± 2.6. (11.1)

The expected uncertainty in the signal strength (µ = 1) is ±2.8. The observed (expected)

significance of the signal is 0.6 (0.4) standard deviations. corresponding to an observed

(expected) p-value of 27% (34%), where the p-value is the probability to obtain a result at

least as signal-like as observed if no signal were present.
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Figure 7. Comparison between data and prediction for the BDT discriminant in the, from top

to bottom, (6-8j, 3b) regions before (left) and after (right) the fit. The fit is performed under

the signal-plus-background hypothesis. Pre-fit plots show an overlay of the multijet distribution

normalised to data for illustration purposes only. The bottom panels display the ratios of data to the

total prediction. The hashed areas represent the total uncertainty in the background predictions.

The tt̄H signal yield (solid red) is scaled by a fixed factor before the fit.
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Figure 8. Comparison between data and prediction for the BDT discriminant in the, from top

to bottom, (6-8j, ≥4b) regions before (left) and after (right) the fit. The fit is performed under

the signal-plus-background hypothesis. Pre-fit plots show an overlay of the multijet distribution

normalised to data for illustration purposes only. The bottom panels display the ratios of data to the

total prediction. The hashed areas represent the total uncertainty in the background predictions.

The tt̄H signal yield (solid red) is scaled by a fixed factor before the fit.
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6j, 3b 6j, ≥4b 7j, 3b 7j, ≥4b ≥8j, 3b ≥8j, ≥4b

Multijet 15940 ± 320 1423 ± 66 12060 ± 350 1233 ± 78 10020 ± 490 1280 ± 100

tt̄+light 1750 ± 270 55 ± 13 1650 ± 340 54 ± 15 1550 ± 450 54 ± 21

tt̄+ cc̄ 350 ± 170 22 ± 11 490 ± 240 28 ± 14 750 ± 360 66 ± 33

tt̄+ bb̄ 230 ± 120 31 ± 17 350 ± 190 63 ± 34 560 ± 320 139 ± 75

tt̄+ V 15.0 ± 6.2 1.9 ± 1.5 23.3 ± 8.9 3.6 ± 2.2 43 ± 15 8.7 ± 4.2

Single top 184 ± 59 6.7 ± 3.6 153 ± 52 9.4 ± 4.4 123 ± 48 11.8 ± 5.8

Total background 18470 ± 320 1539 ± 58 14720 ± 320 1391 ± 69 13030 ± 340 1561 ± 63

tt̄H (mH=125 GeV) 23.4 ± 6.3 5.6 ± 2.8 39.1 ± 8.9 11.9 ± 4.5 71 ± 15 28.8 ± 8.5

Data events 18508 1545 14741 1402 13131 1587

Table 6. Event yields from simulated backgrounds and the signal as well as measured events in each

of the analysis regions after the fit. The quoted uncertainties include statistical and systematical

effects. The sum of all contributions may slightly differ from the total value due to rounding. The

tH background is not shown as fewer than 1.5 events in each region are predicted.

Observed
Expected if µ = 0 Expected if µ = 1

−2σ −1σ Median +1σ +2σ Median

Upper limit on µ at 95% 6.4 2.9 3.9 5.4 7.5 10.1 6.4

Table 7. Observed and expected upper limits at 95% CL on σ(tt̄H) relative to the SM prediction

assuming mH = 125 GeV, for the background-only hypothesis. Confidence intervals around the

expected limits under the background-only hypothesis are also provided, denoted by ±1σ and ±2σ,

respectively. The expected (median) upper limit at 95% CL assuming the SM prediction for σ(tt̄H)

is shown in the last column.

The observed and expected limits are summarised in table 7. A tt̄H signal 6.4 times

larger than predicted by the SM is excluded at 95% CL. A signal 5.4 times larger than the

signal of a SM Higgs boson is expected to be excluded for the background-only hypothesis.

Figure 9 summarises the post-fit event yields for data, total background and signal

expectations as a function of log10(S/B). The signal is normalised to the fitted value of

the signal strength (µ = 1.6). A signal strength 6.4 times larger than predicted by the SM

is also shown in figure 9.

Figure 10 shows the effect of the major systematic uncertainties on the fitted value of µ

and the constraints provided by the data. The ranking, from top to bottom, is determined

by the post-fit impact on µ. This effect is calculated by fixing the corresponding nuisance

parameter at θ̂±σθ and performing the fit again. Here θ̂ is the fitted value of the nuisance

parameter and σθ is its post-fit uncertainty. The difference between the default and the

modified µ, ∆µ, represents the effect on µ of this particular systematic uncertainty. This

is also shown in table 8.

The largest effect arises from the uncertainty in the normalisation of the irreducible

tt̄ + bb̄ background. The tt̄ + bb̄ background normalisation is smaller by 30% in the fit

than the prediction, resulting in a decrease of the observed tt̄ + bb̄ yield with respect

to the Powheg+Pythia prediction. The second largest effect comes from the multijet

background normalisation. The data-driven method focuses on modelling the shape of the
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Sources of systematic uncertainty ±1σ post-fit impact on µ

tt̄ normalisation 108%

Multijet normalisation 71%

Multijet shape 60%

Main contributions from tt̄ modelling 34%–41%

Flavour tagging 31%

Jet energy scale 27%

Signal modelling 22%

Luminosity+trigger+JVF+JER 18%

Table 8. Effect of the different sources of systematic uncertainties on µ expressed in terms of

percentage of the fitted value of µ sorted according to their post-fit effect.
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Figure 9. Event yields as a function of log10(S/B), where S (expected signal yield) and B (ex-

pected background yield) are taken from the corresponding BDT discriminant bin. Events from

all fitted regions are included. The predicted background is obtained from the global signal-plus-

background fit. The tt̄H signal is shown both for the best-fit value (µ = 1.6) and for the upper

limit at 95% CL (µ = 6.4).

multijet background while the normalisation is constrained by the regions dominated by

multijet background. The uncertainty in the normalisation parameters amounts to few

percent and the values from each region are consistent with the variations applied to these

parameters to account for systematic uncertainties. Two of the multijet background shape

uncertainties are ranked fourth and fifth, and their pulls are slightly positive.

Other important uncertainties include b-tagging and JES. Uncertainties arising from

jet energy resolution, jet vertex fraction, jet reconstruction and JES that affect primarily

low-pT jets, as well as the tt̄+light-jet background modelling uncertainties, do not have a

significant impact on the result.
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Figure 10. The fitted values of the 20 nuisance parameters corresponding to the sources of sys-

tematic uncertainty with the largest impact on the fitted signal strength µ. The points, which are

drawn conforming to the scale of the bottom axis, show the deviation of each of the fitted nuisance

parameters θ̂ from θ0, which is the nominal value of that nuisance parameter, in units of the pre-fit

standard deviation ∆θ. The plain yellow area represents the pre-fit impact on µ and the hashed

blue area its post-fit impact. The error bars show the post-fit uncertainties σθ, which have size

close to one if the data do not provide any further constraint on that uncertainty. Conversely, an

error bar for σθ smaller than one indicates a reduction with respect to the original uncertainty.

The nuisance parameters are sorted according to their post-fit impact ∆θ (top horizontal scale).

Multijet scale factors (SF) show the fitted values and uncertainties of the normalisation parameters

that are freely floating in the fit. These normalisation parameters have a pre-fit value of unity.

12 Combination of tt̄H results at
√
s = 7 and 8 TeV

The sensitivity of the search for tt̄H production can be increased by statistically combining

different Higgs boson decay channels. This combination is described in the following.

12.1 Individual tt̄H measurements and results

The tt̄H searches that are combined are:

• tt̄H(H → bb̄) in the single-lepton and opposite-charge dilepton tt̄ decay channels

using data at
√
s = 8 TeV [16],
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• tt̄H(H → bb̄) in the all-hadronic tt̄ decay channel using data at
√
s = 8 TeVas pre-

sented in this paper,

• tt̄H(H → (WW (∗), ττ, ZZ(∗)) → leptons) with two same-charge leptons (e or µ),

three leptons, four leptons, two hadronically decaying τ leptons plus one lepton and

one hadronically decaying τ lepton plus two leptons in the final state using data at√
s = 8 TeV [15],

• tt̄H (H → γγ) at
√
s = 7 and 8 TeVin both the hadronic and leptonic (e or µ) tt̄ pair

decay channels [17].

First all H → bb̄ final states are combined, obtaining a signal strength for the tt̄H(H →
bb̄) combination, and then the outcome is combined with the remaining (non-H → bb̄)

channels.

12.1.1 H → bb̄ (single lepton and dilepton tt̄ decays)

The search for tt̄H production with H → bb̄ is performed in both the single-lepton and

dilepton tt̄ decay modes [16]. The single-lepton analysis requires one charged lepton with

at least four jets, of which at least two need to be b-tagged, while the dilepton analysis

requires two opposite-charge leptons with at least two jets, of which at least two must be

b-tagged. The events are then categorised according to the jet and b-tagged jet multiplicity.

The dominant background in the signal-enriched regions is from tt̄ + bb̄ events. In these

regions, neural networks [79] are built using kinematic information in order to separate

the tt̄H signal from tt̄ background. Furthermore, in the single-lepton channel, a matrix-

element discriminant is built in the most signal-enriched regions and is used as an input to

the neural network.

12.1.2 H → (WW (∗), ττ, ZZ(∗)) → leptons

The tt̄H search with H → (WW (∗), ττ, ZZ(∗))→ leptons [15] exploits several multilepton

signatures resulting from Higgs boson decays to vector bosons and/or τ leptons. Events

are categorised based on the number of charged leptons and/or hadronically decaying τ

leptons in the final state. The categorisation includes events with two same-charge leptons,

three leptons, four leptons, one lepton and two hadronic τ leptons, as well as two same-

charge leptons with one hadronically decaying τ lepton. Backgrounds include events with

electron charge misidentification, which are estimated using data-driven techniques, non-

prompt leptons arising from semileptonic b-hadron decays, mostly from tt̄ events, again

estimated from data-driven techniques, and production of tt̄ + W and tt̄ + Z, which are

estimated using MC simulations. Signal and background event yields are obtained from a

simultaneous fit to all channels.

12.1.3 H → γγ

The tt̄H search in the H → γγ channel [17] exploits the sharp peak in the diphoton mass

distribution from the H → γγ decay over the continuum background. The analysis is

split according to the decay mode of the tt̄ pair. A leptonic selection requires at least one
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lepton and at least one b-tagged jet, and missing transverse momentum if there is only one

b-tagged jet, whereas a hadronic selection requires a combination of jets and b-tagged jets.

Contributions from peaking non-tt̄H Higgs boson production modes are estimated from

MC simulations. The signal is extracted with a fit using the diphoton mass distribution as

a discriminant.

12.2 Correlations

Nuisance parameters corresponding to the same source of uncertainty in different analyses

are generally considered to be correlated with each other, except for the following sets:

• Nuisance parameters related to b-tagging (also c-tagging and light mis-tagging) are

considered to be independent among the analyses as different b-tagging working points

are employed.

• The electron identification uncertainty is considered to be uncorrelated between anal-

yses due to different selections used.

12.3 Results of the combination

12.3.1 Signal strength

The result of the tt̄H(H → bb̄) combination for the signal strength is µ = 1.4 ± 1.0.

The observed signal strengths for the individual tt̄H(H → bb̄) channels and for their

combination are summarised in figure 11. The tt̄ + bb̄ normalisation nuisance parameters

obtained in the all-hadronic analysis (−0.6 ± 0.8) and the leptonic analysis (+0.8 ± 0.4)

The expected significance increases from 1.0σ for the leptonic final state of tt̄H(H → bb̄)

to 1.1σ for the combined tt̄H(H → bb̄). Because the combined tt̄H(H → bb̄) best-fit value

of µ is lower than the leptonic-only value, the observed significance for the tt̄H(H → bb̄)

combination is reduced from 1.4σ (leptonic [16]) to 1.35σ (combined).

Figure 12 summarises the observed signal strength µ of the individual tt̄H channels

(H → bb̄, H → γγ and H → (WW (∗), ττ, ZZ(∗)) → leptons) and the tt̄H combination.

The observed (expected) significance of the combined tt̄H result is 2.33σ (1.53σ).

The combination of all tt̄H analyses yields an observed (expected) 95% CL upper limit

of 3.1 (1.4) times the SM cross section. The observed 95% CL limits for the individual tt̄H

channels and for the combination are shown in figure 13 and in table 9.

The result for the best-fit value is µ = 1.7± 0.8.

12.3.2 Couplings

Sensitivity to t − H and W − H couplings stems from several sources: from the tt̄H

production itself, from the Higgs boson decay branching fractions, from associated single

top and Higgs boson production processes (tHjb and WtH), where interference terms

include both the tt̄H and WWH vertices, and from the H → γγ branching fraction, where

again interferences between loop contributions from the top quark and the W boson are

present. Different channels differ in their sensitivity to these components. A two-parameter
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Figure 11. Summary of the measurements of the signal strength µ for tt̄H(H → bb̄) production

for the individual H → bb̄ channels and for their combination, assuming mH = 125 GeV. The total

(tot) and statistical (stat) uncertainties of µ are shown. The SM µ = 1 expectation is shown as the

grey line.
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Figure 12. Summary of the measurements of the signal strength µ for the individual channels and

for their combination, assuming mH = 125 GeV. The total (tot) and statistical (stat) uncertainties

of µ are shown. The SM µ = 1 expectation is shown as the grey line.

fit is performed, assuming that all boson couplings scale with the same modifier κV , while

all fermion couplings scale with the same modifier κF .

The parameterisation of the couplings for the tt̄H and tH production modes and for

the different Higgs boson decay modes is taken from refs. [7, 80]. Figure 14 shows the

log-likelihood contours of κF versus κV for the combined tt̄H fit. The combination of all

analysis channels slightly prefers positive κF . Additional studies, performed to determine

the contribution of the individual analyses to the combined coupling measurement, indicate

that the tt̄H, H → (WW (∗), ττ, ZZ(∗))→ leptons analysis prefers somewhat enhanced W−
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Figure 13. Upper limits on the signal strength µ for the individual channels as well as for their com-

bination, at 95% CL. The observed limits (solid lines) are compared to the expected median limits

under the background-only hypothesis (black dashed lines) and under the signal-plus-background

hypothesis assuming the SM prediction for σ(tt̄H) (red dotted lines). The surrounding green and

yellow bands bands correspond to the ±1σ and ±2σ ranges around the expected limits under the

background-only hypothesis.

Analysis

95% CL upper limit Signal strength

Observed
Expected

µ
−2σ −1σ median +1σ +2σ median (µ = 1)

tt̄H(H → γγ) 6.7 2.6 3.5 4.9 7.5 11.9 6.2 1.2+2.6
−1.8

tt̄H(H → leptons) 4.7 1.3 1.8 2.4 3.6 5.3 3.7 2.1+1.4
−1.2

tt̄H(H → bb̄) 3.3 1.3 1.5 2.1 3.0 4.4 3.0 1.4 ± 1.0

tt̄H Combination 3.1 0.8 1.0 1.4 2.0 2.7 2.4 1.7 ± 0.8

Table 9. Observed and expected (median, for the background-only hypothesis) upper limits at

95% CL on σ(tt̄H) relative to the SM prediction, for the individual channels as well as for their

combination. The ±1σ and ±2σ ranges around the expected limit are also given. The expected

median upper limits at 95% CL assuming the SM prediction for σ(tt̄H) are shown in the last

column.

H coupling, which can only be compatible with the tt̄H(H → γγ) rate if the interference

between tt̄H and WWH amplitudes is destructive, as expected in the SM.

13 Conclusion

A search for the SM Higgs boson produced in association with a pair of top quarks (tt̄H)

has been carried out with the ATLAS detector at the Large Hadron Collider. The search

focuses on H → bb̄ decays with tt̄ pairs decaying hadronically. The data used correspond to

an integrated luminosity of 20.3 fb−1 of pp collisions at
√
s = 8 TeV. The analysis is carried

out in six different jet and b-tagged jet multiplicity regions. Discrimination between signal

and background is obtained by employing a boosted decision tree multivariate classifier

in all regions. No significant excess of events above the background expectation is found
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Figure 14. Log-likelihood for the combined tt̄H fit. The fit agrees with the SM expectation within

the 68% CL contour. The physical boundary of κV ≥ 0 is considered.

for the SM Higgs boson with a mass of 125 GeV. An observed (expected) 95% CL upper

limit of 6.4 (5.4) times the SM cross section is obtained. By performing a fit under the

signal-plus-background hypothesis, the ratio of the measured signal strength to the SM

expectation is found to be µ = 1.6± 2.6.

The statistical combination of all tt̄H analyses performed at
√
s = 7 TeV and 8 TeV

yields an observed (expected) upper limit of 3.1 (1.4) times the SM cross section at 95%

CL. The combined measured signal strength is found to be µ = 1.7± 0.8.
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[34] T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput.

Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

[35] P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys.

Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].

[36] ATLAS collaboration, Summary of ATLAS PYTHIA 8 tunes, ATL-PHYS-PUB-2012-003

(2012).

[37] G. Corcella, HERWIG 6: an event generator for hadron emission reactions with interfering

gluons (including supersymmetric processes), JHEP 01 (2001) 010.

[38] R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244

[arXiv:1207.1303] [INSPIRE].
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F. Khalil-zada12, A. Khanov115, A.G. Kharlamov110,c, T.J. Khoo30, V. Khovanskiy98,
E. Khramov67, J. Khubua53b,y, S. Kido69, H.Y. Kim8, S.H. Kim161, Y.K. Kim33, N. Kimura155,
O.M. Kind17, B.T. King76, M. King167, S.B. King168, J. Kirk132, A.E. Kiryunin102,
T. Kishimoto69, D. Kisielewska40a, F. Kiss50, K. Kiuchi161, O. Kivernyk137, E. Kladiva145b,
M.H. Klein37, M. Klein76, U. Klein76, K. Kleinknecht85, P. Klimek147a,147b, A. Klimentov27,
R. Klingenberg45, J.A. Klinger140, T. Klioutchnikova32, E.-E. Kluge60a, P. Kluit108, S. Kluth102,
J. Knapik41, E. Kneringer64, E.B.F.G. Knoops87, A. Knue55, A. Kobayashi156, D. Kobayashi158,
T. Kobayashi156, M. Kobel46, M. Kocian144, P. Kodys130, T. Koffas31, E. Koffeman108,
T. Koi144, H. Kolanoski17, M. Kolb60b, I. Koletsou5, A.A. Komar97,∗, Y. Komori156, T. Kondo68,
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S. Schaetzel60b, U. Schäfer85, A.C. Schaffer118, D. Schaile101, R.D. Schamberger149, V. Scharf60a,
V.A. Schegelsky124, D. Scheirich130, M. Schernau163, C. Schiavi52a,52b, C. Schillo50,
M. Schioppa39a,39b, S. Schlenker32, K. Schmieden32, C. Schmitt85, S. Schmitt44, S. Schmitz85,
B. Schneider160a, U. Schnoor50, L. Schoeffel137, A. Schoening60b, B.D. Schoenrock92, E. Schopf23,
A.L.S. Schorlemmer45, M. Schott85, J. Schovancova8, S. Schramm51, M. Schreyer174, N. Schuh85,
M.J. Schultens23, H.-C. Schultz-Coulon60a, H. Schulz17, M. Schumacher50, B.A. Schumm138,
Ph. Schune137, C. Schwanenberger86, A. Schwartzman144, T.A. Schwarz91, Ph. Schwegler102,
H. Schweiger86, Ph. Schwemling137, R. Schwienhorst92, J. Schwindling137, T. Schwindt23,
G. Sciolla25, F. Scuri125a,125b, F. Scutti90, J. Searcy91, P. Seema23, S.C. Seidel106, A. Seiden138,
F. Seifert129, J.M. Seixas26a, G. Sekhniaidze105a, K. Sekhon91, S.J. Sekula42,
D.M. Seliverstov124,∗, N. Semprini-Cesari22a,22b, C. Serfon120, L. Serin118, L. Serkin164a,164b,
M. Sessa135a,135b, R. Seuster169, H. Severini114, T. Sfiligoj77, F. Sforza32, A. Sfyrla51,
E. Shabalina56, N.W. Shaikh147a,147b, L.Y. Shan35a, R. Shang166, J.T. Shank24, M. Shapiro16,
P.B. Shatalov98, K. Shaw164a,164b, S.M. Shaw86, A. Shcherbakova147a,147b, C.Y. Shehu150,
P. Sherwood80, L. Shi152,aj , S. Shimizu69, C.O. Shimmin163, M. Shimojima103,
M. Shiyakova67,ak, A. Shmeleva97, D. Shoaleh Saadi96, M.J. Shochet33, S. Shojaii93a,93b,
S. Shrestha112, E. Shulga99, M.A. Shupe7, P. Sicho128, P.E. Sidebo148, O. Sidiropoulou174,
D. Sidorov115, A. Sidoti22a,22b, F. Siegert46, Dj. Sijacki14, J. Silva127a,127d, S.B. Silverstein147a,
V. Simak129, O. Simard5, Lj. Simic14, S. Simion118, E. Simioni85, B. Simmons80, D. Simon36,
M. Simon85, P. Sinervo159, N.B. Sinev117, M. Sioli22a,22b, G. Siragusa174, S.Yu. Sivoklokov100,
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126 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of

America
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