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Abstract 

Evolution is the uniting concept of biology and life. At its fundamental level, it 

operates by sampling amino acid residues in proteins to optimize stability and 

function. One definition of the function of a protein is through its interactions with 

other molecules, especially other proteins. Growing evidence suggests a 

widespread phenomenon involving the domain of one protein interacting with a 

short, linearly extended peptide region on another protein, accounting for up to 

40% of all protein interactions in the cell. As such, these interactions are 

manipulated by invasive organisms and human diseases to cause pathogenesis, 

and are targets for new classes of drugs. Identifying specific interactions is 

therefore critical for human health. Experimental techniques have characterized 

thousands of peptide binding events, but conducting experiments can be costly 

and time-consuming, and their results can be prone to false positives. To both 

help guide experiments and to analyze their output, there is a need to develop 

accurate computational methods for predicting protein-peptide interaction 

specificity. This dissertation addresses this challenge, describing four 

complementary approaches: (i) a machine-learning algorithm to predict 

proteolytic cleavage in substrates of pro-apoptotic proteases; (ii) a peptide 

docking method that models the conformation of peptides in complex with protein 

binding sites; (iii) statistical analysis of peptide datasets derived from high 

throughput proteomic experiments to characterize factors mediating binding 

specificity; and (iv) prediction of peptide interactions contributing to pathogenic 

invasion.
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Chapter 1. Introduction 

1.1. Peptide-mediated interactions are prominent across life 

The interactions a protein makes with other proteins and molecules have been 

optimized by evolution. These interactions allow proteins to carry out a wide 

range of biological functions that are crucial for all forms of life. Typically, protein-

protein interactions are thought of as being between two domains where each 

domain contributes multiple non-contiguous segments of amino acid residues 

that form a binding patch, the size of which averages 1,000 Å2 per monomer[1]. 

These interactions generally occur at high binding affinity, resulting in the 

formation of a stable protein complex. In contrast, recent evidence has 

demonstrated the widespread phenomenon of another type of interaction that 

occurs between a globular domain from one protein and a short, linearly 

extended peptide region of another protein[2, 3]. These so-called linear motifs 

(LMs) frequently occur in disordered regions of a protein, or on ordered loops or 

unfolded segments[4] (N+;-",%I8Ia). These interactions are usually highly specific, 

with the specificity largely determined by the amino acid sequence of the LM[5]. 

The nature and extent of peptide-mediated interactions (PMIs) is just beginning 

to be understood due to a long-standing focus of experimental techniques on 

stable, folded proteins[6]. 

 A subset of PMIs involves interactions where a globular domain interacts 

with a small peptide that is not part of a larger protein (e.g. MHC Class I 

peptides; N+;-",%I8Ib). In many respects, two types of interactions are identical, 
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as LMs are as flexible as small peptides due to being found primarily in 

disordered regions, and both types involve many of the same biophysical 

principles mediating interaction specificity[7]. As such, PMIs and protein-small 

peptide interactions will be treated as interchangeable for the purposes of this 

dissertation, except where noted.  

 Statistical analysis of large datasets of PMIs have given insight into their 

prevalence, functions, and properties. PMIs have been estimated to account for 

up to 40% of all protein-protein interactions[2]. They occur at low (typically µ-

molar) affinity and are often transient, making them ideal mediators of protein 

signaling cascades and other cellular contexts where a rapid response is 

required. Indeed, PMIs account for 60% of all interactions in the Signal-

Transduction Knowledge Environment[2, 8]. 85% of LMs are in disordered 

regions of proteins[9]; and given that disordered proteins are more likely to be 

hubs in large protein interaction networks[10], LMs allow certain proteins to 

participate in multiple cellular processes. This is the case with the tumor 

suppressor p53, which acts in several contexts to regulate the cell cycle, largely 

controlled through PMIs with different kinases and other proteins[11]. PMIs can 

also form stable complexes, as is observed with nuclear export and localization 

signals (NES and NLS, respectively). These peptides bind to karyopherins, which 

transport proteins across the nuclear membrane. Dissociation of the peptide from 

the karyopherin occurs only through various associations with G proteins and 

GTPase activating proteins[12].  
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PMIs and their annotation are stored in a number of databases, the most 

prominent being ELM[9] and Domino[13]. Two recent datasets of particular 

interest focused only on protein-peptide interactions with solved structures[7, 14]; 

here, the peptide was not part of a larger protein chain, although the authors note 

that they were probably derived from LMs on proteins in the majority of cases. 

Researchers are only beginning to create a full picture of the structure and 

function of PMIs. In particular, understanding of protein-peptide interaction 

specificity, defined as identification of which peptides bind to a given protein, is 

an open problem. Determining this specificity is important for elucidating many 

critical cellular processes, and for developing medicine to treat human disease 

and combat pathogenic invasion. Following is a discussion of general properties 

of PMIs, their role in human health, and experimental and computational 

methods for characterizing new interactions. 

1.2. The majority of linear motifs can be grouped into a few classes   

Highlighted are several examples of protein-peptide interactions. In addition to 

being prevalent in the cell, these examples are well-characterized model systems 

for studying general principles of PMIs, and are frequently used as benchmark 

sets when developing new experimental and computational methods for 

detecting these interactions. 

Src Homology 2 and 3 (SH2 and SH3) are 7 kDa modular signaling 

domains found in many kinases and other protein families, binding specific LMs 

on kinase substrates to promote specificity between the two proteins. One of the 

most abundant domain types, they are present in more than 300 human 
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proteins[9]. SH3 domains recognize proline-rich peptides possessing the residue 

sequence Pro-Xaa-Xaa-Pro, where Xaa can be any amino acid, while SH2 domains 

recognize various sequences containing a phosphorylated Tyr residue. These 

two domains are often found on the same protein (including their namesake Src) 

and as such can modulate signaling pathways by addition and recognition of 

phosphate groups, and can also cooperate to auto-inhibit their proteins as 

necessary[15]. 

PDZ domains are 90-residue "-rich domains that bind the C-terminal ends 

of proteins. Upon association, PDZ substrates add a strand to the existing PDZ 

"-sheet, mediated by recognition of peptide side chains by the domain[16]. This 

recognition can be highly specific; one study showed that there are at least 16 

different PDZ classes, with each recognizing a different peptide sequence 

motif[17]. In signaling contexts, PDZ domains are prevalent in processes 

directing protein localization and frequently act as scaffolds for higher order 

signaling complex assembly[18]. 

Major histocompatibility complex (MHC) proteins are important players in 

the immune response. These proteins, having been secreted through the golgi 

apparatus to the cell surface, bind peptides derived from pathogenic proteins and 

display them on the surfaces of different cell types, where they are recognized by 

lymphocytes to stimulate an adaptive immune response against the pathogen. 

MHC proteins are grouped into two classes. MHC Class I are present on a 

variety of human cell types. The peptide binds into a cleft created by a "-sheet 

floor bounded by two helices. The second and third residue from the peptide C-
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terminus act as anchors, contributing most of the binding energy, while the rest of 

the peptide fits into as many as six binding pockets on the protein floor. Peptides 

binding to MHC Class I domains are usually 9 residues in length[19]. MHC Class 

II domains are found on “professional” antigen-presenting cells such as 

macrophages. They consist of two membrane-spanning chains that each 

comprise half of the peptide binding region. One end of the domain is open, 

accommodating peptides of up to 22 residues in length, and the binding pocket is 

shallower than that of MHC Class I proteins and has broader specificity. Even so, 

both MHC Class I and II domains are specific for between 103 to 104 peptides, 

encoded by the highly polymorphic HLA genes to allow for a complicated map of 

MHC proteins to the peptides they bind. This system has important implications 

for human health, as T cells need to differentiate between host and pathogen 

peptides to avoid an autoimmune response; additionally, these binding events 

are the basis for epitope-based vaccine development[20].  

 Other examples of domains that bind to linear motifs include WW, 14-3-3, 

and many different protein kinases. Together with the described examples, these 

six domain types account for more than 75% of all PMIs in the Domino 

database[13]. The rate of PMI discovery is increasing, and these particular 

domains may be overrepresented in LM databases due to selection bias of 

certain systems for research [2].%
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Figure 1.1 Examples of protein-peptide interactions.  
(a) Major histocompatibility class I domain (green) interacting with a ten-residue peptide 
(magenta). 
(b) PDZ scaffolding domain (green) interacting with a linear motif located on the C-terminal end of 
its substrate protein (blue). 

1.3. Protein-peptide complexes have unique characteristics 

Protein-peptide interfaces possess a number of structural properties 

distinguishing them from those in larger protein-protein interactions. A recent 

study compiled 103 high resolution complexes (the “PeptiDB” dataset) to analyze 

these properties in detail[7]. The average complex buries 500 Å2 of total 

accessible surface between the two monomers, which is 1500 Å2 less than in 

interactions between two globular domains. The secondary structure of the 

peptide upon binding is distributed evenly between !-helix, loop, and "-sheet, the 

latter involving the peptide associating with an existing strand in the protein[9]. 

About a third of residues at the protein-peptide interface are polar, which is 

similar to the fraction observed in protein-protein residues. However, residues 
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mediating protein-peptide interactions pack at a higher density than do those in 

protein-protein interactions and exhibit a greater frequency of hydrogen bonds 

across the interface, mainly derived from main-chain atoms. Interestingly, protein 

binding sites are generally inflexible; in the PeptiDB dataset, the conformation of 

87% of proteins shifted at an average of only 1.48 Å RMSD between the peptide-

bound and -unbound states (considering complexes where both states were 

available as solved structures). While the remaining 13% of proteins could 

change conformation substantially upon peptide binding, this result suggests that 

in general, the peptide adapts its conformation to accommodate the protein 

binding site[7]. Finally, it was observed that most pairs of interacting protein-

peptide segments across interfaces could be reconstructed by motifs found in 

monomeric protein folds, indicating that the wealth of data derived from protein 

structures can be used to model protein-peptide complexes where fewer solved 

structures are available[21]. 

 A separate study distinguished LMs from their larger context in disordered 

regions[5]. The amino acid composition of LMs was found to be more 

hydrophobic and similar to those residue types found in globular protein cores 

than were the surrounding disordered residues. Moreover, these hydrophobic 

residues (typically Trp, Leu, Phe, and Tyr) were thought to be the primary 

contributors to recognition of the LM by the binding site. This observation is 

supported by analysis on the PeptiDB dataset demonstrating that certain 

residues act as “hot spots” in binding, where the majority of the binding energy 

comes from a subset of residues participating in the interaction[7]. Additionally, it 
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was shown that in disordered regions, the residues surrounding the LM 

contribute an average of 20% to the total binding energy of the interaction. This 

contribution represents an important difference in PMIs versus protein-small 

peptide interactions and should be accounted for in computational modeling of 

the latter[5]. 

1.4. Peptide-mediated interactions are important in human health 

PMIs play a prominent role in human health and disease. Analysis of functional 

annotation suggested that disordered proteins are associated with more diseases 

than ordered proteins[22]. There are a number of reasons for this observation. 

The propensity for disordered proteins in large signaling networks, which are 

responsible for cell growth regulation among other processes, allows for 

mutations in these proteins to lead to unregulated cell growth and tumor 

formation. Also, pathogens will mimic interactions in signaling networks to 

modulate host gene expression, increasing the concentration of proteins 

necessary for pathogen survival and suppressing proteins involved in the host 

immune response[23]. Additionally, longer linear motifs in disordered proteins are 

prone to aggregation, which is responsible for a number of human 

neurodegenerative diseases[24]. A few examples follow, demonstrating the 

scope of the roles of PMIs in human health. 

The nuclear pore complex is an 120 mDA assembly consisting of ~450 

subunits to form a pore in the nuclear membrane, regulating transport of 

molecules to and from the nucleus[25]. The NLS and NES peptide motifs 

mediate protein import into the nucleus and export into the cytosol, respectively, 
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through their specific association with karyopherins. One study demonstrated the 

role of this process in Huntington’s disease (HD)[26]. The protein Huntington 

contains both an NLS and NES, suggesting it plays a role in multiple cellular 

compartments. However, mutant Huntington, which is characterized by a 

polyglutamate stretch exceeding a length threshold, is associated with cleavage 

of the NES by endogenous enzymes, leading to accumulation of Huntington in 

the nucleus and neural toxicity. Additionally, viral proteins have acquired NLSs to 

exploit the karyopherin mechanism to gain entry into the nucleus. An example is 

bornavirus, which is fatal in many animals and has been implicated in human 

psychiatric disorders. Bornavirus RNA polymerase, which acts to transcribe viral 

DNA in the host nucleus, was found to have an NLS that is necessary for viral 

replication[27]. 

 Many gram-negative pathogenic bacteria use the type-three secretion 

system (TTSS) to deliver virulent effector proteins into the host cell through an 80 

nm syringe-like appendage protruding from the bacterial surface. Effector 

proteins specifically bind homodimeric globular chaperone proteins to induce 

localization to the base of the TTSS complex and mediate active transport 

through the syringe apparatus. Effector proteins bind through their disordered N-

terminal domain that wraps around the chaperone dimer, adding additional "-

strands to an existing sheet on the sides of each monomer and forming specific 

interactions across the top in a linearly extended conformation. While bacterial 

genomes encode several paralagous chaperones, each virulence protein binds 
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specifically to its own chaperone. It is likely that this specificity is an additional 

temporal regulator of delivery of virulence proteins into the host cell[28].  

 Due to the role of protein-peptide interactions in human health, it is critical 

to develop methods to characterize their specificity on a proteomic scale. 

Knowledge of binding and conformation in endogenous PMIs has lead to 

successful rational design of peptide and small-molecule drugs to inhibit harmful 

interactions. For example, the nutlin small molecule class binds to MDM2, which 

has been implicated in cancer through over-negative regulation of p53; nutlin 

mimics a p53 peptide to bind MDM2 and disrupt this interaction[29]. Indeed, 

there has been a recent focus on searching for peptide mimics among approved 

small molecule drugs, as peptide binding sites may prove to be better targets for 

small molecules due to their small size and easily defined interaction surface[30]. 

Alternatively, peptides themselves are well-suited as therapeutics, as they have 

been evolutionarily optimized to bind with protein domains. This concept is 

discussed in detail in the next section. 

1.5. Peptides have potential for therapeutic use in different contexts 

Traditional drug discovery has searched for small molecules that bind to enzyme 

active sites. As drug discovery pipeline output has declined in recent years, other 

biological contexts have been examined as targets. As discussed, one approach 

has been to disrupt protein-protein interactions to inhibit normal protein 

function[30]. Protein interfaces can involve many atomic contacts over a 

relatively flat topology, making small molecules unsuitable for binding in many 

cases[31]. Alternatively, in addition to their use in PMI inhibition, peptides are 



! %%!

well-suited for this task, as they can be designed to mimic the binding interface 

and their larger size can disrupt more atomic contacts in the native surface[30]. 

In all cases, a primary challenge in using peptides to inhibit protein-protein 

interactions is to determine of a peptide sequence that will bind specifically to 

one of the protein surfaces at high affinity. A number of experimental and 

computational approaches have been developed to address this task, discussed 

in later sections.  

Several examples of peptides acting as potential therapeutics are 

highlighted. The first relates to the protein endostatin, which is an endogeonous 

suppressor of angiogenesis but suffers from typical drawbacks of using proteins 

as therapeutics (discussed below). Angiogenesis promotes tumor formation and 

cancer metastasis and is a target of anti-cancer drugs. A small peptide derived 

from endostatin was found to inhibit angiogenesis along with tumor progression 

in a process involving "1-integrin, which is one of several native binding partners 

of wild-type endostatin[32]. 

Peptide therapeutics have been successfully used to inhibit HIV infection. 

The HIV envelope glycoprotein gp41 is recognized by CD4 receptors on target 

cells, allowing for membrane fusion and subsequent viral entry. The structure of 

Gp41 includes three-helix bundle core (NH-R) containing hydrophobic grooves to 

which three other helices (CH-R) tightly interact. Designed using the CH-R 

sequence as a template, the FDA-approved drug Enfuviritide inhibits this 

interaction by competing for N-HR binding[33]. Another insightful study 

preventing HIV infection focused on HIV-1 integrase (IN) which catalyzes 
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integration of viral DNA into the host genome[34]. IN shifts between dimeric and 

tetrameric states; two dimers bind at each end of the viral DNA and form a 

tetrameric complex in the presence of the host cell growth factor LEDGF/p75. 

The authors designed small peptides mimicking LEFGF/p75; these peptides 

induced early IN oligomerization which resulted in an inactive tetramer and 

abolished the ability of HIV to replicate in vitro[34]. 

Addtionally, peptides are being used in other therapeutic contexts, 

including as probes that bind to biomarkers for in vivo early detection of 

cancer[35], vaccine development[36], and enzyme function inhibition[37]. In 

these contexts as well, knowledge of protein-peptide interaction specificity is 

crucial to success. 

There are unique obstacles in using peptides as drugs. As with other 

unfolded proteins in humans, they are prone to clearance by the immune system 

as well as ubiquitin-mediated degradation. To address this obstacle, non-native 

peptides have been designed that retain the binding specificity of peptides but 

the chemical composition of which has been modified to avoid recognition by 

endogenous factors. Examples include peptoids[38] and "-peptides[39], in which 

the side chain is appended, respectively, to the nitrogen and "-carbon atoms of 

the peptide backbone rather than to the !-carbon. Another approach is to use 

naturally-occurring small peptides containing one or more disulfide bonds. These 

so-called disulfide-rich peptides (DRPs) comprise many toxins in animal venoms 

and are resistant to heat denaturation and degradation in the bloodstream[40].  



! %'!

1.6. Experiments can discover peptide-mediated interactions on large 

scales 

A variety of experiments have been developed to characterize protein-peptide 

interaction specificity. While there is some overlap with those used to study 

globular protein binding partners, such as affinity purification and co-

immunoprecipitation[13], the most widely used experiments are designed 

specifically for peptides. One of the most powerful experimental techniques for 

determining protein-peptide interaction specificity is through phage display. This 

method was used to characterize the largest number of all protein-peptide 

interactions in the DOMINO database[13]. In phage display, random peptides are 

displayed on the surface of bacteriophage, and peptide binding specificity is 

determined by sequencing those phage which bind to an immobilized target 

protein of interest[41]. This protocol can assess binding between the protein and 

more than 1010 peptides to create a specificity profile. It has been used to 

determine such profiles for many domains including PDZ[42], WW[43], and 

SH3[44]. 

 Another method for determining protein-peptide binding specificity is the 

peptide microarray[45]. Here, peptides are immobilized onto a chip, either by 

synthesizing the peptide directly on the chip or by covalently attaching pre-made 

peptides onto a functional surface. Protocols achieving the highest peptide 

density have reported 40,000 peptides per cm2 [46]. Fluorescent labels are used 

to detect protein binding events. This method also creates complementary 

negative specificity profiles, as it determines which peptides to not bind the target 
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protein; additionally, it is capable of immobilizing post-translationally modified 

peptides.  

 A number of other experimental techniques exist, including yeast 2 

hybrid[47], raising antibodies against an LM epitope for determining functional 

sites on disordered proteins[48], and mass spectrometry for detecting post-

translationally modified peptides ([49]; discussed extensively in Chapter 4). 

Together, these methods have produced a wealth of knowledge of peptide 

interaction specificity. Despite these advancements, there are some inherent 

limitations. Experiments that rely on the formation of stable complexes can be 

inefficient, as protein-peptide interactions are often transient. Experiments can be 

expensive and time-consuming, and some are prone to a relatively high false 

positive rate. Most high-throughput methods are discovery-based and thus rely 

on their results to generate biologically relevant hypotheses[50]. Additionally, 

even in phage display, it is difficult for experiments to obtain a complete 

specificity profile for a particular protein. The more subtle aspects of protein-

peptide binding, such as residues at particular positions that prevent binding, or 

cooperativity across peptide residues, are often missed. To address these 

shortcomings, many computational approaches have been developed. 

1.7. Computational approaches predict linear motif binding 

Computational approaches to predict protein-peptide interactions generally fall 

into one of two categories. The first only attempt to predict whether or not a 

peptide binds and include statistical and machine learning approaches that 

benefit from training data of known positive and negative peptide binders. The 
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second, reviewed in the following section, are protein-peptide docking algorithms 

that assume the peptide binds and attempt to model the conformation of the 

bound peptide, although the more ambitious methods also include prediction of 

binding as well. There have been hundreds, if not thousands, of methods 

developed to carry out the first approach, and a comprehensive overview of 

these categories is beyond the scope of this review. A brief summary of three of 

the most popular follows. 

Position specific scoring matrices (PSSMs) take as training input a 

sequence alignment of a list of peptides that are known positive binders and 

create a scoring function, usually represented in terms of a log odds bit score, 

where the score at each position for a given amino acid residue represents the 

frequency with which that residue was observed in that position in the alignment. 

Peptides to be evaluated are examined at each position in the sequence, and the 

scores across all positions are summed to create an overall score that is usually 

compared to a cutoff. PSSMs are easy to generate and conceptually simple, and 

can perform well when there is a high degree of specificity at each position in the 

sequence. However, they fail to take into account correlations between residues 

in the sequence, as each position is independent. Moreover, if there is a medium 

degree of degeneracy in the sequence, PSSMs operate with less accuracy. One 

way to get around this problem is to weigh the scores for certain positions in the 

sequence if it is known that they contribute more to binding than other positions. 

Methods using PSSM include the popular Prediction of Protease Specificity 

(PoPS) algorithm which has been generally applied to protease cleavage 
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sitesnbIo; PePS, which is similar in concept but applied specifically to 

cathepsins[52], and GrabCas, which has been applied specifically to the pro-

apoptotic protease types, granzyme B and the caspasesnbdo. 

 Hidden markov models (HMMs) represent a canonical bioinformatics class 

of methods that have been used extensively in sequence motif finding. A natural 

application of these algorithms is to search a protein sequence for peptides likely 

to bind to another protein. HMMs are represented by a first-order Markov chain 

with a set of states; they encode transition probabilities to move from one state to 

another and emission probabilities which generate output during transitions from 

state to state. The output can represent a specific amino acid residue in a 

peptide sequence; HMMs are thus trained on input peptides and a test peptide is 

evaluated by calculating the probability of emitting the full sequence. HMMs are 

more robust to capture these probabilities given the training data than are 

PSSMs, and can model gaps in sequence alignments, but have a few 

drawbacks. For example, it is difficult to use them to incorporate conserved 

residue chemical properties at a particular position; additionally, a single HMM 

can only be trained and applied to predict one type of binding (i.e., either 

positives or negatives) as opposed to discriminating between the two types[9]. 

HMMs have been used extensively in searcing for linear motifs; examples 

include prediction of phosphorylation[54], and binding of peptides to SH2 

domains[55] and to MHC Class I molecules[56]. 

 Finally, another popular technique for identifying linear motifs is with 

support vector machines (SVM). SVMs are a class of machine learning 
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algorithms that can be trained on positives and negatives and predict into which 

classification a test peptide falls. N peptide features are encoded into an N-

dimensional vector, which represents one data-point. These features generally 

correspond to residue identity, although structural aspects can also be 

incorporated. Data-points are plotted in N-dimensional space, and the SVM 

generates a hyperplane that separates the positives from the negatives. Test 

peptides are evaluated by generating the same feature vector and determining 

on which side of the hyperplane it falls. The ability to discriminate positives from 

negatives is a powerful feature of SVMs, although they can suffer from over-

training in some cases. SVMs have been used to predict peptides binding to SH3 

domains[57] and MHC molecules[58]; they are also the focus of Chapter 2, which 

uses an SVM to predict protease cleavage sites. 

1.8. Peptide docking methods model the bound conformation of peptide 

complexes 

The computational approaches discussed in the previous section generally rely 

on statistical principles of linear motifs to predict protein-peptide interaction 

specificity. They are largely geared toward predicting whether or not a peptide 

binds to a given protein. A complementary approach to predicting binding is 

peptide docking, which predicts the conformation of the bound peptide. This 

problem is a critical one in structural biology. Knowledge of the peptide 

conformation helps address many of the challenges outlined in previous sections. 

Insight into how pathogenesis occurs can be gained by observing specific 

contacts made in inter-species protein-peptide interactions. Understanding which 
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residues are buried in the binding pocket allows for researchers to replicate these 

contacts in therapeutic design process. The optimal peptide docking algorithm 

would also predict whether binding occurs, either through estimation of the free 

energy of binding in the bound conformation, or by using a normalized score to 

compare peptides with different amino acid residue compositions. Additionally, 

transient complexes, which make up the majority of linear motif recognition 

events, are difficult to solve crystallographically; therefore, there is a need for 

accurate peptide docking algorithms to support these types of experiments.   

 Many computational docking approaches have focused on small 

molecules, and peptide docking methods have been relatively underrepresented. 

Nonetheless, several approaches have been developed recently that achieve 

good accuracy in general biological contexts, and many others have been 

described to dock peptides to specific protein families. Following is a description 

of the former group, and a brief survey of the latter.  

 One recent peptide docking algorithm, Rosetta FlexPepDock ab initio [59], 

demonstrated success when applied to a large benchmark set of unrelated 

protein-peptide complexes. This method initializes the peptide with an arbitrary 

conformation in the vicinity of the binding site, and uses a two-stage protocol to 

perform the docking. The first stage is a coarse grained approach in which the 

peptide is subjected to repeated rounds of rigid body transformations followed by 

random Monte-Carlo moves to perturb the peptide backbone conformation both 

through backbone dihedral adjustments and fragment insertion from the Rosetta 

protein fragment library. The second stage refines the protocol using a previously 
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described method[60] that performs similar local rigid body and backbone Monte-

Carlo moves, but minimizes the Rosetta energy function[61] and applies the 

Metropolis criterion to accept a move based on the energy of the system. The 

method was benchmarked on a set of complexes of bound peptides, a subset of 

which had an alternate, unbound structure available; the authors docked 18 out 

of 26 peptides with less than 2 Å RMSD error when compared to the native 

structure in the bound cases and 7 out of 14 in the unbound cases[59].  

 The DynaDock algorithm also performed well when applied to a smaller 

benchmark set[62]. This method also employed a two-step approach. The first 

component was a coarse grained procedure where the peptide was placed in the 

binding site of the protein and subjected to a number of steps featuring random 

perturbations of its structure. Each step included a random translation and 

rotation of the full peptide as well as a rotation of a random number of backbone 

and side chain dihedral angles by 10°. The full step was rejected if any pair of 

protein-peptide atoms overlapped by more than 90%. The second component 

was a high-resolution refinement procedure using molecular dynamics. A scoring 

function was used as the force to drive the simulation, incorporating physical 

force field terms in addition to coulombic and van der waals terms. These latter 

two restraints included a parameter that scaled their values to weaken their 

effects on the simulation; one of the notable features of DynaDock is that this 

parameter is optimized at each step of the simulation by applying conjugate 

gradients with respect to the parameter.  
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 The initial conformation of the peptide was a random placement within 6.5 

Å of the protein binding site, and the N and C terminal ends of this placement 

were constrained to be within 8.5Å of their coordinates in the native state. Protein 

atoms were fixed in the coarse-grained step but were allowed to move in the 

refinement step. The procedure was repeated for each member of a benchmark 

set of solved complexes, and an impressive 11 out of 15 had their best scoring 

pose align with the native state at less than 2.10 Å RMSD[62]. 

 A third generally applicable docking algorithm uses mutually orthogonal 

Latin squares to calculate the scores of a subset of all conformations of the 

peptide, find the local minima associated with these conformations, and average 

the scores using a variant of the mean field technique[63]. The authors defined 

the system as having M degrees of freedom sampled at N intervals, and thus the 

full search space is NM. The method samples N2 conformations and averages 

them. The protocol is repeated 1,5000 times, and the authors show that this 

number is sufficient to identify all of the local minima in the system. Force-field 

terms are used to score intra-peptide interactions, and the PLP scoring function, 

which is a combination of physical and statistical distance-dependent terms, is 

used to evaluate protein-peptide interactions[64]. The method performed well, 

docking 39 out of 56 of the diverse benchmark set complexes to within 2.00 Å 

RMSD of the native state (examining backbone atoms only; no side chain 

comparison was performed).   

 In addition to these three methods, which represent the state-of-the-art in 

peptide docking, there have been many studies that focus on docking peptides to 
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a particular protein or protein family of interest. These methods apply canonical 

docking techniques, and often demonstrate good results, but have yet to be 

applied in a general context and are often optimized to work on a specific 

system. The most widely studied system involves MHC molecules ([20] and 

section 1.2). One method used a Monte Carlo approach to sample peptide 

conformations and scored with a coarse-grained pair-wise atomic distance-

dependent potential and solvation energy approximation based on the buried 

atomic surface upon peptide association to the binding site[65]. Another 

technique scored peptide association solely based on the number of atomic 

contacts between peptide and protein atoms, exhaustively sampled peptide 

dihedral angles in increments of 30°, and incorporated explicit water molecules if 

they were present in the solved structure of the protein binding site[66]. MHC-

peptide complexes have proven to be particularly suitable for explicit free energy 

modeling; different studies have attempted these calculations while optimizing 

the system with Monte Carlo[67], molecular dynamics simulated annealing 

(MDSA)[68], and the !BB branch-and-bound approach[69]. Finally, one study 

docked the terminal ends of the peptide into the MHC molecule, applied loop-

closure of the intermediate backbone atoms using MODELLER[70], and refined 

the peptide with Monte Carlo sampling using physical energy terms, docking 33 

out of 40 peptides to within 2.5Å RMSD of the native state[71]. 

 In addition to MHC molecules, studies have focused on other particular 

systems of interest. These efforts include docking peptides to PDZ domains with 

MDSA using a physical force-field and rotamer optimization[72] and a Monte 
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Carlo approach incorporating hydrogen bonding, hydrophobicity, and 

electrostatics scoring terms[73]. Another group performed two complementary 

docking peptides to SH3 domains using homology modeling, explicit free energy 

calculations, and molecular dynamics simulations, in the process doing well to 

discriminate successfully SH3 peptide binders from non-binders[74, 75]. Finally, 

other approaches have focused on docking peptides to kinases and 

phosphatases[54] and nuclear receptors[76], and used the Rosetta docking 

scoring function to study peptides binding to HIV-1 Protease[77] and explore 

extending peptide fragments to replicate binding free energy of longer peptides in 

complex with a small, diverse set of proteins[78]. 

 While all of these methods have demonstrated success either on a 

general benchmark set or a particular system of interest, there is still room for 

improvement. Some complexes are more challenging than others, either due to 

longer peptides, receptor flexibility, or inadequacies in the scoring function to 

capture the physical forces mediating interactions for that particular complex. In 

many cases, despite modeling the peptide to less than 2 Å RMSD of the native 

state, side chain placement is still problematic (and often the positions of these 

side chains are of particular interest, as they have a strong impact on peptide 

binding affinity). Finally, the utility of computational docking methods would be 

dramatically increased if they could distinguish peptide binders from non-binders; 

to date, no generalized algorithm as demonstrated success in this area. In 

Chapter 3 of this dissertation, a new general peptide docking method is 
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presented, as well as initial results on a small benchmark set of protein-peptide 

complexes. 
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Chapter 2. Prediction of Protease Substrates using Sequence and 

Structure Features 

2.1. Introduction 

As discussed in Chapter 1, the interactions of linear motifs with globular protein 

domains are transient and occur with varying degrees of specificity. Proteases 

are a particular class of enzymes that hydrolytically cleave their target substrates, 

often requiring a specific residue sequence motif at the cleavage site. This motif 

forms complementary contacts with the protease active site, allowing for tighter 

binding prior to cleavage and reduction of the Km value of the reaction, as well as 

allowing the formation of a high energy transition state conformation. 

Understanding these sequence motifs, and the structural contexts on which they 

fall, will enable identification of proteolytic substrates using computational 

methods, which, as discussed, have many advantages and can complement 

experimental approaches. Here, we focus on the protein-peptide specificity of the 

pro-apoptotic proteases granzyme B (GrB) and caspases interacting with their 

respective protein substrates.  

 Apoptosis is a noninflammatory form of cell death that regulates tissue 

differentiation and homeostasis in higher eukaryotes (for a review, see [79]). 

Since apoptotic turnover of cells lies in direct opposition to the uncontrolled 

growth of tumor cells, a strong link exists between apoptosis and cancer. Indeed, 

the terminal cellular effect of most chemotherapeutic compounds is induction of 

apoptosis[80]. 
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GrB is a serine protease delivered by natural killer cells into virally-infected 

and tumor cells[81]. The caspases are a family of endogenous cysteine 

proteases activated by extracellular death ligands and environmental 

stresses[82]. Both protease types recognize and cleave specific peptide 

sequences containing an aspartic acid residue on their target substrates, 

activating different pathways that lead to apoptosis. Identifying these substrates 

has led to a wealth of knowledge about how the proteases contribute to 

apoptosis, how the cleavage events lead to cell death, and which substrates to 

target for therapeutic purposes. 

Substrates of the two protease types have been discovered with a variety 

of experimental techniques, ranging from low-throughput gel-based methods to 

proteomic efforts that can identify hundreds of cleaved proteins [49, 83, 84]. 

However, different datasets overlap only partially, indicating that many substrates 

remain to be identified. For example, two proteomics studies, respectively, 

reported 261 and 292 caspase cleavage sequences, although the high-

confidence overlap between the two sets was only 64 (Figure 1A in [85]). 

Furthermore, the results presented later in this dissertation indicate that high 

throughput proteomics studies are able to characterize a subset of all modified 

peptides (see sections 4.3.6 and 4.6.2 for further details). 

To reduce this gap, accurate computational techniques could be used to 

predict protein-peptide interactions for guiding further focused experiments. 

Computational methods have also been applied to predict substrates recognized 

by GrB and caspases. Most of these methods are based on canonical linear 
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motif searching techniques. These methods take advantage of both protease 

types having a near-absolute requirement for Asp at the P1 position, while 

allowing degenerate preference for different residue types in the positions 

immediately su[49]rrounding P1. These studies rely on fixed sequence 

searches[86], PSSMs based on frequencies of residue types in known cleavage 

sites[52, 87, 88], and positional-scanning combinatorial substrate libraries (PS-

SCLs) [51, 53], SVMs using residue composition around the cleavage site[89], 

and Bayesian neural networks[90]. A full review of computational techniques for 

discovering linear motifs for these and other biological systems is presented in 

section 1.7. 

Cleavage sequences for both GrB and caspases are generally thought to 

occur on flexible, disordered regions of substrates[91]. However, it was 

previously shown in an analysis of caspase substrate structures that many of 

these known cleavage sites are in !-helices and even occasionally on "-

strands[49, 92]. This observation motivates the choice of a machine-learning 

algorithm that relies on the structure as well as sequence information. Here, we 

describe such a protocol incorporating SVM learning[93]. The method is trained 

and benchmarked on separate pools consisting of known GrB and caspase 

cleavage sequences. It is then applied to the human proteome to generate a list 

of high-confidence predictions for experimental validation. Two such candidates 

are the proteins AIF-1 and SMN1, which are experimentally validated as being 

cleaved by GrB. The approach has the potential to provide greater coverage of 

substrates for both GrB and caspases, and can be easily adapted to other 
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protein-peptide systems through our web server that can learn from any user-

supplied protein-peptide training set (see section 6.1 for web-server availability 

and description). 

%

Figure 2.1 Flowchart of machine learning procedure.  
Peptides are scored with the SVM trained on sequence and structure features; the peptides that 
pass the cutoffs derived from benchmarking are the final candidates for experimental validation. 
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2.2. Results 

2.2.1. Benchmark sets are created from positive and negative substrates 

For each protease type, two sets of octapeptides were compiled to benchmark 

the method (N+;-",%f8I, steps 1a and 1b). These sets included peptides cleaved 

(‘positives’) and not cleaved (‘negatives’) by the proteases, respectively ([93]; 

Supplemental Figure 1a). For GrB, the positives include 54 cleavage sequences 

from literature (i.e. our ‘GrBah’ dataset; and section 6.2) and 305 cleavage 

sequences from a proteomics experiment that used combined fractional diagonal 

chromatography for isolating peptides[94]. These positives spanned the P4 to P4# 

positions using the traditional protease nomenclature[95]. Positives for caspase 

substrates were drawn from the literature-curated Casbah dataset[96], as well as 

a separate proteomics dataset obtained in experiments with the Jurkat cell line 

([49] and section 4.2). The negatives for both protease types were all 

octapeptides in known protein substrates that are outside of the experimentally 

identified cleavage site and contain Asp in the fourth position ([93]; 

Supplementary Figure 1b). While it is possible that some of these negatives are 

in fact cut by the protease and were missed experimentally, many of the positives 

in the benchmark sets were confirmed by studies that afford a high degree of 

coverage. The use of octapeptides outside the cleavage site is therefore a 

suitable source for a statistical description of the negatives’ properties. 

2.2.2. Difference in peptide sequence between positives and negatives 

The frequencies of amino acid residue types appearing at each position in the 

peptides were calculated for positives of both protease types and the combined 
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set of negatives. Instead of the qualitative sequence logos commonly used to plot 

residue-type frequencies[97], we created a representation allowing for a more 

quantitative comparison of residue characteristics and identity (Figure f8fa). A 

large degree of degeneracy is observed in the positives, with both GrB and 

caspase substrates allowing for six or more residue types appearing at 

frequencies >5% at six of the eight subsites in the peptide. Aside from the 

requirement for Asp at the P1 site, the most stringent specificities are for large 

hydrophobic residues at the GrB P4 site (occurring in 62% of all substrates), and 

for small non-polar residues at the caspase P1# site (occurring in 74% of all 

substrates). Residue-type frequencies in the positives for both protease types 

differ from those in the negatives. 

2.2.3. Enrichment of structural features in cleavage sequences 

Structural features were assessed for enrichment in known cleavage sequences 

compared with the negatives (Figure f8fb and c). Previous reviews of protease 

substrates show that the cleaved sequence is more likely to be exposed to 

solvent, flexible, disordered and lacking secondary structure[91]. In solved 

structures and comparative models, cleavage sequences are indeed more likely 

to be in a loop than the negatives, with 65.3% ± 13.3% of GrB sites and 65.0% ± 

10.9% of caspase sites being in such a conformation compared with 52.2% ± 

2.1% of the negatives. Solvent accessibility was greatest in the caspase 

substrates (97.3% ± 3.7% of cleavage sequences), followed by the negative set 

(86.5% ± 1.5%), and then by the GrB substrates (81.6% ± 10.8%). When 

structures or comparative models were not available, predictions gave a similar 
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enrichment, although the magnitude of cleavage sequences in a loop 

conformation for all three sets was increased between 12% and 20%. This 

agreement in the relative distributions (Figure f8fb and c) suggests that any 

errors in PSI-PRED are generally not limiting in predicting the secondary 

structure of cleavage sites in the substrates to which it was applied. Finally, the 

amount of predicted disorder (i.e. sequences that are flexible, dynamic and 

unresolved in an electron density map obtained by X-ray crystallography) was 

also greater by 12% for GrB substrates and by 37% for caspase cleavage 

sequences than in the negatives. 
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Figure 2.2 Sequence and structural properties of cleavage sequences.  
(a) A stacked histogram showing the relative frequency of each residue type at each position in 
the cleavage sequence for substrates of GrB (G) and caspases (C), and negatives (N). The 
numbering spans positions from P4 to P4#. Letters on the plots represent the one-letter code for 
each amino acid residue type, followed by its percentage at that position. X (gray) represents the 
total percentage for all residue types that are present in the position at <5% relative frequency. 
Amino acid residue types are grouped by general characteristic (Green: hydrophobic; orange: 
small non-polar; red: charged acidic; blue: basic; purple: polar).  
(b) Structural properties of protease cleavage sequence positives and negatives as assessed by 
DSSP for substrates where a solved structure or good quality comparative model was available. 
Numbers may not add to 100% as some peptides did not have more than four residues in any 
one of the three secondary structure conformations.  
(c) Structural properties as assessed by predictive methods that consider the protein primary 
sequence only. Disopred predicted disorder in all substrates. PSI-PRED predicted secondary 
structure, in cases where a structure or model of the substrate was not available. 

2.2.4. Benchmarking of scoring functions 

Using a jackknifing procedure and the datasets, we benchmarked a scoring 

function for predicting whether or not an octapeptide is a substrate of a given 

protease type, incorporating an SVM trained on both structure and sequence. 
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Receiver operator characteristic (ROC) plots were generated to assess the ability 

of the scoring functions to distinguish between positives and negatives (N+;-",%

f8d). The critical point of the ROC plot represents the optimal tradeoff between 

coverage and accuracy (i.e. the minimal combined false positive and false 

negative rates) and was used to compare the performance of different methods. 

Due to preferences of these proteases for specific residue types around 

cleavage sites, as well as the enrichment of certain structural features at these 

sites, we hypothesized that the best classifier would incorporate these aspects of 

proteolysis. Indeed, the SVM trained on these features did well to discriminate 

between positives and negatives in the benchmark sets [N+;-",%f8d; ‘SVM 

(Structure)’]. The GrB benchmark set was classified with a 0.79 TPR at a 0.21 

FPR at its critical point. Furthermore, these rates improved (0.87 TPR at 0.14 

FPR) when the SVM was trained on all known GrB substrates but assessed on a 

test set consisting of only the literature-curated GrBah dataset. The caspase 

benchmark produced similar results on both datasets. Error bars for the FPRs 

across 1000 iterations were assessed and calculated as less than 0.002 for all 

points; these are omitted from the figure as they are smaller than the width of the 

curve itself. 

Due to the potential for biasing an estimate of prediction accuracy by 

including peptides from similar proteins in both the training and testing set, we 

performed the jackknifing procedure with homolog filtering. When this condition 

was imposed, the TPRs and FPRs did not change significantly ([93], 

Supplementary Figure 2). This observation implies that including peptides from 
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related proteins across the two sets does not significantly influence the estimate 

of the prediction accuracy. The likely reason is that the features used by the 

classifier depend on the peptides themselves and not on the proteins from which 

they were derived. 

%

Figure 2.3 SVM benchmark results.  
Results from different methods applied to four different datasets, represented by ROC curves. 
The line from (0,0) to (1,1) represents a random predictor; a perfect classifier would go from (0,0) 
to (0,1) and then to (1,1). The critical point of the ROC curve is where each curve intersects the 
line from (1,0) to (0,1). Full test sets included all known substrates for the respective protease 
type, and Literature test sets excluded the large proteomic datasets, retaining only the GrBah and 
Casbah substrates. SVM (Structure) was developed in the current study; SVM (Sequence) was 
taken from a previous study that trained on cleavage sequence residue type only [89]; PSSM 
implemented the GrabCas method for GrB substrates[53], while for caspases it was trained on 
frequency of residue types at each position in known cleavage sequences, using the PoPS 
algorithm[51]. All ROC plots were interpolated through a number of points equal to the number of 
test set positives in each dataset ([93]; Supplementary Figure 1a). 
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2.2.5. Comparison with other methods 

The results of the method were compared with those obtained by two 

previously described methods tested on the same datasets. An SVM trained on 

sequence only predicted GrB substrates with a 0.76 TPR at a 0.25 FPR at its 

critical point when assessed on the full test set [N+;-",%f8d, ‘SVM (Sequence)’]. 

GrabCas achieved a 0.71 TPR at a 0.29 FPR on the same test set (N+;-",%f8d, 

‘PSSM’). Similar discrepancies were observed on the GrBah test set and on both 

caspase test sets, here using the PoPS algorithm as the basis for the PSSM. 

2.2.6. Criteria for selecting targets for experimental validation 

The method was applied to all human proteome octapeptides with Asp in 

the fourth position to produce a score for each potential cleavage sequence. Two 

proteins, Apoptosis Inducing Factor 1 (AIF-1) and Survival Motor Neuron 1 

(SMN1), fulfilled the following criteria for experimental followup: (i) they were not 

in any benchmark dataset, (ii) the corresponding mRNA was expressed in the 

K562 cell line (highly susceptible to granzyme-induced cell death), (iii) a validated 

antibody was available and (iv) evidence supported a role in apoptosis. To test 

whether these candidates were cleaved by GrB or caspases, K562 lysates were 

treated with varying concentrations of exogenous protease for either 1 h or 19 h. 

As the benchmark set contains substrates of both initiator and executioner 

caspases, a mixture composed of caspase-8 and -3 was chosen. To determine if 

exogenously added GrB was the causative protease, K562 lysates were 

pretreated with broad-spectrum caspase inhibitors before GrB addition. 
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Figure 2.4 Immunoblots of predicted GrB substrates.  
K562 lysates were treated with increasing concentrations of GrB or a mixture of caspase-3 and 
caspase-8 for either 1 h or 19 h. The final concentration of exogenously-added protease was 1 
µM, 500, 250, 100, 50 and 25 nM. For caspases, the final concentration refers to the 
concentration of total caspase (caspase-3 plus caspase-8). The no protease controls were 
incubated at 37$C for 19h to account for the activity of endogenous proteases. The caspase-
inhibited lysates were pretreated with 100µM z-VAD-FMK and 100µM z-DEVD-FMK at 37$C and 
then treated with GrB. Bands corresponding to full-length (FL) protein, proteolytic fragment 1 
(PF1) and proteolytic fragment 2 (PF2) are indicated with arrows. Controls showed that the SMN1 
antibody cross-reacts with GrB ([93]; Supplementary Figure 4). The GrB band is indicated by an 
arrow and asterisk. 

2.2.7. Cleavage of AIF-1 by GrB 

AIF-1 is a mitochondrial flavoprotein that translocates to the nucleus during 

apoptosis and facilitates DNA fragmentation. Interestingly, AIF-1 has a high-

scoring GrB cleavage sequence (VPQD126KAPS) that is partially solvent exposed 

and in a loop conformation, as determined in its X-ray structure. Addition of GrB 

to K562 lysates results in the appearance of a !55 kDa proteolytic product that is 

both time and concentration dependent [labeled as proteolytic fragment 1 (PF1) 

in N+;-",%f8c]. A second !50 kDa proteolytic fragment [labeled as proteolytic 

fragment 2 (PF2) in N+;-",%f8c] is detected only at the highest concentrations of 

GrB after 19 h. The anti-AIF1 antibody was raised against a peptide sequence 

derived from the C-terminus of the protein. The antibody will therefore recognize 
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both full-length protein and any proteolytic product containing this C-terminal 

epitope, making cleavage at VQPD126 the most likely explanation for the 

observed 55 kDa product. AIF-1 did not contain high-scoring caspase cleavage 

sites. In agreement with this prediction, the same proteolysis pattern is observed 

when GrB is added to K562 lysates pretreated with caspase inhibitors (N+;-",%

f8c). Furthermore, addition of exogenous caspase to K562 lysates resulted in no 

detectable proteolysis of AIF-1. These data indicate that proteolysis of AIF-1 is 

directly dependent on GrB. 

2.2.8. Cleavage of SMN1 by GrB 

Proteolysis of SMN1 is observed during apoptosis in neurons; one study 

demonstrated that cleavage occurs at ICPD252SLDD and suggested a caspase 

as the causative protease[98]. When evaluated with our method, this site instead 

scored poorly with the caspase SVM model but scored well with the GrB SVM 

model (N+;-",%f8b). To determine if SMN1 is a GrB substrate, GrB-treated K562 

lysates in the presence and absence of caspase inhibitors were immunoblotted 

for SMN1. Both the appearance of the !37 kDa and !23 kDa proteolytic products 

(labeled PF1 and PF2 in N+;-",%f8c) are caspase independent. SMN1 did contain 

a high-scoring caspase cleavage sequence, located six residues C-terminal to 

the predicted GrB cleavage site. Addition of exogenous caspase to K562 lysate 

resulted in the appearance of a !37 kDa proteolytic product, consistent with 

cleavage near the predicted GrB site (N+;-",%f8c). 
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2.2.9. CDK4 is not cleaved by GrB 

Proteins were predicted to be negatives if all candidate cleavage sequences did 

not score higher than a threshold defined by the SVM critical point. To determine 

if a predicted negative is cleaved by GrB and caspases, immunoblotting for 

CDK4 in protease-treated lysates was performed. In all cases, a slight reduction 

in the amount of full-length protein is evident only after 19 h at 37$C and at high 

concentration of exogenous protease (N+;-",%f8c), validating our negative 

predictions. 

2.3. Discussion 

2.3.1. Overview 

In an effort to increase the coverage, accuracy and efficiency of identifying 

protease substrates, we developed and benchmarked a bioinformatics method 

that takes advantage of the current knowledge about known substrates as well 

as general rules of protein structure (N+;-",%f8I). Its predictive power was 

quantified by the degree to which it distinguishes between positives and 

negatives in a benchmark set. To demonstrate the utility of the approach, we 

applied it to predict novel substrates of the GrB protease and caspases, followed 

by experimental validation of two biologically important predictions, AIF-1 and 

SMN1. These results thus benefited from the synergy of sequence- and 

structure-based predictions combined with biological intuition to select targets for 

validation. The computational method has two main benefits. First, it acts as a 

hypothesis generator; when applied to all proteins in a proteome of interest, it 

produces a list of high-confidence predictions suitable for a focused and efficient 
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experimental followup. Second, the computational method lends insight into the 

structural aspects that determine whether a site can be cleaved. 

2.3.2. Proteome-wide prediction of protease substrates 

The method was applied to all proteins in the human proteome to identify those 

most likely cleaved by GrB and caspases, resulting in many predictions made 

with high confidence. For example, the top 500 predicted caspase substrates 

with Gene Ontology (GO[99]) annotation received a score corresponding to a 

0.002 FPR and a 0.110 TPR in the ROC plot (N+;-",%f8d). GO assignments for 

these sequences suggest their role in apoptosis (21 proteins), signaling (53), 

transcription regulation (51) and proteolysis (18), all of which are hallmarks of 

many known substrates targeted by caspases to induce cell death. Similar 

results are observed for predicted GrB substrates ([93]; Supplementary Table 2). 

Once experimentally validated, these substrates lend critical insight into 

apoptosis. A case in point is the two GrB substrates validated in this study, AIF-1 

and SMN1, which are potentially involved in two novel apoptotic pathways 

initiated by GrB cleavage. Prediction availability is detailed in section 6.3. Each 

predicted substrate site is annotated with the structural assignments that were 

used to make the predictions, the TPRs and FPRs for their scores, and links to 

the MODBASE database of comparative protein structure models to view any 

known structures or models of the substrate. 

2.3.3. Cleavage of SMN1 and AIF-1 by GrB 

The high-confidence predictions generated by this method are valuable for both 

streamlining experimental validation (N+;-",%f8c) and generating novel 
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hypotheses regarding the roles of substrates in cell death. AIF-1 is tethered to 

the inner mitochondrial membrane (IMM); therefore, its translocation to the 

nucleus requires both mitochondrial outer membrane permeabilization (MOMP) 

and proteolysis of the IMM tether. The cathepsins B, S and L have been shown 

to proteolyze AIF-1 around residue 100, 26 residues N-terminal to the predicted 

GrB cleavage site[100]. The redundancy of multiple proteases liberating AIF-1 

from the mitochondria might represent a strategy to overcome anti-apoptotic 

resistance mechanisms, such as Hsp70 overexpression. Hsp70 has been shown 

to inhibit import of AIF-1 to the nucleus[101]. GrB cleaves and inactivates 

Hsp70[102] and therefore might facilitate AIF-1 nuclear import. 

SMN1 cleavage was first observed during neuronal apoptosis induced by 

viral infection and ischemic injury in mice[98]. Mutation of Asp252 to Ala abolished 

cleavage, leading to the speculation that caspase was the causative protease. 

Interestingly, SMN1 cleavage was induced by adding brain extracts from either 

ischemically injured or virally infected mice, raising the possibility that cytotoxic T 

lymphocyte (CTLs) and therefore GrB was present in the extracts. 

In a separate study, SMN1 cleavage has been observed in a differentiated 

neuronal cell line during growth factor withdrawal. CTLs are absent in this ex vivo 

study, thereby excluding GrB and implying a caspase as the causative 

protease[103]. Interestingly immunoblotting for SMN1 in the neuronal lysate 

suggested that proteolysis is inefficient, consistent with our observation that 

SMN1 is proteolyzed far more efficiently by GrB than the caspases. In light of 

evidence for a role of CTLs in both ischemic brain injury[104] and virally infected 
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neurons[105], GrB should be examined as the causative protease for SMN1 

cleavage in vivo. 

2.3.4. Benefit of incorporating structural features in classifier training 

The method was compared with several previous approaches benchmarked on 

the same datasets. One study using an SVM trained on sequence features did 

well to discriminate between positives and negatives[106], but was still 

outperformed by the current SVM that incorporates structure as well as sequence 

features (N+;-",%f8d). This improvement shows that structural features of the 

cleavage sequence can add predictive value to a substrate identification method. 

Additionally, the method outperformed two other methods based on PSSMs. The 

first method, GrabCas, uses the results of in vitro small peptide libraries to 

predict GrB substrates[53, 107]. These in vitro libraries often do not fully reflect 

the observed protein-peptide specificity in known biological substrates. In 

contrast, our SVM training set does include biological substrates. The second 

method, PoPS, was trained only on the observed frequencies of residue types at 

each position in the caspase training set[51]. This PSSM does not take into 

account cooperativity across residue pairs. In contrast, the pair correlations can 

be encoded in our SVM. 

It was shown previously that caspase cleavage sites can occur in regions 

of regular secondary structure ([49] and section 4.2.3). Here, we show that GrB 

substrates display the same tendency. Indeed, >35% of known cleavage 

sequences in both GrB and caspase substrates fall on a region that has regular 

secondary structure (Figure f8f). One possibility is that these regions undergo 
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local unfolding prior to cleavage by the protease. These observations 

demonstrate the limitations of making predictions based on sequence and then 

filtering for expected secondary structure, as opposed to using a machine 

learning algorithm that makes unbiased predictions by combining sequence and 

structure in an integrated fashion.  

%

Figure 2.5 Details of novel GrB substrates.  
(a) Solved structure of AIF-1 (PDB ID 1M6I), highlighting Asp126. Cleavage at this site is 
consistent with the observed banding patterns on the immunoblot.  
(b) A peptide on AIF-1 centered on Asp392 that scores well when examining sequence only, but 
poorly when structure is considered, likely due to being largely inaccessible to solvent.  
(c) Another high scoring site on AIF-1 at Asp417; it is unclear why this site is not cleaved despite 
favorable sequence and structure properties.  
(d) Scores for the SMN1 protein for all octopeptides with Asp in the fourth position, as assessed 
by SVMs trained on GrB and caspase substrates, respectively. The ‘GrB’ and ‘Caspase’ columns 
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indicate the scores that the respective SVMs assigned to each peptide, and TPR and FPR signify 
rates that these scores would fall on in the benchmark set. 

An example of the power of incorporating structure into prediction is 

shown by comparing two potential cleavage sequences in AIF-1, VPQD126KAPS 

(N+;-",%f8ba) and VETD392HIVA (N+;-",%f8bb). Both sites were evaluated with the 

sequence-based SVM[106] as well as our SVM that includes structural 

information. VPQD126KAPS, which was suggested experimentally as the GrB 

cleavage site (N+;-",%f8c), was scored with the sequence-based SVM 

corresponding to a 0.73 FPR. When structural features were incorporated, this 

site scored with much higher confidence at a 0.17 FPR. The site is on a fully 

exposed, flexible portion of the solved AIF-1 structure. VETD392HIVA, on the 

other hand, evaluates at a 0.05 FPR when scored with the sequence-based 

SVM, but falls to a lower confidence 0.34 FPR when structural features are 

included. This site is almost completely buried and portions of it fall on a "-

strand. The difference between these two sites demonstrates the importance of 

considering structural information when predicting protease cleavage sites. 

Interestingly, a third sequence at IDSD417FGGF is not cleaved despite having 

favorable sequence and structure features (N+;-",%f8bc); further understanding of 

the dynamics of GrB-substrate recognition is needed to determine why this is the 

case. 

2.3.5. General applicability of the approach 

The protocol presented in this study was applied to predict substrates for GrB 

and caspases, two types of proteases that recognize extended, specific 

oligopeptide sequences possessing certain structural features. However, the 
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approach is generally applicable to predict interaction partners for any protein 

that recognizes its peptide partners based on the features encoded in our 

method. Thus, we provide a web server (section 6.1) that allows users: (i) to 

construct and apply a new SVM based on a user-provided training set; (ii) to 

benchmark the ability of the SVM to predict interaction partners for a protein of 

interest; (iii) to use the newly generated SVM to make proteome-wide 

predictions; and (iv) to make the SVM and its predictions publically available for 

use by others. As a result, our approach may become a widely useful hypothesis 

generator that can increase the pace of biological discovery by guiding future 

experiments in a variety of protein-peptide systems. 

2.4.  Methods 

2.4.1. Structural characteristics of sequences 

Datasets of known cleavage sequences were compiled for benchmarking, and all 

human proteome octapeptides with Asp in the fourth position were processed for 

the application step. Comparative models were generated by the automated 

modeling pipeline ModPipe[108], and only good quality models [those predicted 

to have >80% of their C-! atoms within 3.5 Å of the native state, as assessed by 

the model evaluation algorithm TSVMod[109]] were considered (N+;-",%f8I, step 

2b). It has been previously shown that secondary structure features computed 

from accurate comparative models are similar to those for crystallographic 

structures[110]. For a solved structure or a comparative model, the DSSP 

program was used to assess secondary structure (mapping results ‘H’, ‘G’ and ‘I’ 

to !-helix; ‘B’ and ‘E’ to "-sheet; and ‘S’, ‘T’ and ‘L’ to loop) and solvent 
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accessibility ([111]; N+;-",%f8I, step 2c). When a structure or model was not 

available, sequence-based algorithms were used to predict secondary structure 

(N+;-",%f8I, step 2a; [112]). A sequence-based algorithm was also used to predict 

disorder on all known substrates regardless of whether a structure or model was 

available[113]. A cleavage sequence was defined as being in a loop if four or 

more of its residues were predicted to be in this conformation, devoid of regular 

secondary structure; similarly, a cleavage sequence was defined to be solvent 

accessible if four or more of its residues were >16% exposed to solvent[111]. 

Error bars represent two times an SD, which is calculated for a binomial 

experiment with (n * p * (1 % p))1/2; values for n can be found in [93]; 

Supplementary Figure 1a. Training on octapeptides spanning P4 to P4# gave the 

best performance relative to peptides of other lengths and positions (data not 

shown). 

2.4.2. Scoring of potential cleavage sites by an SVM 

SVMs are machine-learning algorithms that can be used for classification. They 

create a kernel function hypersurface that maximally separates two sets of n-

dimensional training set (i.e. classified) vectors, followed by predicting an 

unclassified vector as falling on one side or the other of the separation. Each 

dimension in the vector is a feature number, which has a corresponding value. 

Here, a single cleavage sequence had eight features representing its 

oligopeptide sequence. Each residue was assigned a feature number by the 

formula n*20+i, where n represents the zero-based position in the peptide 

sequence of the residue and i represents the position of the residue in a zero-
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based alphabetical ordering of all residues. Thus, a glutamate (i=3) in the second 

position (n=1) would have the feature number 23. The value for all sequence 

features was 1. 

 The outputs of the structural assessment algorithms were used to create 

additional features for each cleavage sequence. Each of these algorithms 

assigned a value to each residue in the cleavage sequence. The program 

Disopred outputs values from 0 to 1 that correspond to the predicted degrees of 

disorder. DSSP outputs a calculated solvent accessibility fraction and both DSSP 

and PSI-PRED output a predicted structure type of loop, !-helix or "-sheet. 

These algorithms each added eight features to a cleavage sequence, where the 

structure types were assigned the values 1, 2 and 3 corresponding to loop, helix 

and sheet, respectively, and the other values were the raw score outputs of the 

algorithms. 

 The SVM-light software was used to execute the SVM algorithm ([114]; 

N+;-",%f8I, step 3). A radial basis kernel function was used, sampling different 

values of the parameters C (selecting from 1, 10, 100 and 1000) and & (0.01, 0.1, 

1, 10 and 100) to find those that performed best in the assessment, as has been 

done previously[106]. 

2.4.3. Benchmarking of scoring by jackknifing 

A jackknife procedure was employed to test different scoring functions, in which 

90% of the positives for each type of protease were randomly selected into a 

training set, and the remaining 10% were placed in a test set, along with the 

known negatives. The ratio of negatives to positives in the test set was 39 : 1 for 
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the GrB benchmark and 35 : 1 for the caspase procedure, reflecting the ratio of 

negatives to positives observed in respective known substrates. Scores for the 

peptides were ranked and the false positive rate (FPR) against the true positive 

rate (TPR) was assessed at different score thresholds (N+;-",%f8I, step 4). The 

jackknife procedure was repeated 1000 times and the results were averaged. 

Error bars for the averaged FPR µ at each TPR represent two times an SD, 

which is calculated over the distribution of FPRs for all iterations (x from i to N) by 

((1/N)#(xi % µ)2)1/2. 

 To ensure that random assignment of all experimentally identified peptides 

into different training and testing sets did not artificially influence predictive 

accuracy due to some similarities between the two sets, a separate jackknifing 

procedure was performed and compared the original to random assignment. 

Here, for each peptide x in the test set, no other peptide y was included in the 

training set if y was derived from a protein with >25% sequence identity to the 

protein from which x was derived. These included other peptides on x’s protein 

itself. We describe this restriction as ‘homolog-filtering’. 

2.4.4. Comparison of the protocol to other approaches 

We applied to the datasets the following published methods: (i) an SVM trained 

on sequence information, using the original encoding and parameter sampling 

scheme [106]; (ii) the GrabCas method, which incorporates in vitro PS-SCLs into 

a PSSM, using default parameters; (iii) a PSSM based on the frequency of 

residue types appearing in each position in the training set, incorporating the 

generalized PoPS algorithm to score a sequence[51]. 
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2.4.5. Experimental validation on select substrates 

The method was applied to all octapeptides in the human proteome with Asp in 

the fourth position. Certain peptides were selected for experimental validation 

using the following procedure. The expression of a predicted substrate at the 

mRNA level was determined by consulting the BioGPS database 

(https://biogps.gnf.org/; N+;-",%f8I, step 5). The availability of a literature-

validated antibody was determined by consulting http://www.labome.com. K562 

cells were grown in Iscove’s modified Dulbecco’s medium, 10% FBS, 1' 

Glutamax, 1' Penn/Strep to a density of !5'105 cells/ml. K562 cells were 

harvested by centrifugation, washed in PBS, and lyzed in MPERTM (Thermo 

Scientific, Rockford, IL) at 1'107 cells/ml according to the manufacturer’s 

instructions. Protein concentration was determined by BCA assay (Thermo 

Scientific, Rockford, IL). 

Pichia-expressed human GrB[107] and Escherichia coli-expressed human 

caspase-3 and -8[115] were purified as previously described. K562 MPERTM 

lysates were diluted 1 : 2 into 500 mM HEPES pH 8.0, 100 mM NaCl, 0.01% 

Tween-20 to raise the pH for optimal GrB activity and diluted 1 : 2 into MPER and 

20 mM DTT for optimal caspase activity. GrB or a mixture of caspase-3 and -8 

were added for either 1 h or !19 h before quenching proteolysis by adding LDS 

sample buffer (Invitrogen, Carlsbad, CA) and incubating at 70$C for 10min. The 

final concentration of exogenous protease (GrB or total caspase) was 1µM, 500, 

250, 100, 50 and 25 nM. Untreated lysate was incubated for 19 h to account for 

the activity of endogenous proteases. Caspase-inhibited lysates were pretreated 
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with 100µM z-VAD-FMK (Bachem, Torrance, CA) and 100µM z-DEVD-FMK 

(Bachem, Torrance, CA) for at least 1 h at 37$ C and then treated with GrB as 

described. To verify that the exogenous protease added to the lysate was active, 

immunoblots against validated substrates were performed as described: pro-

caspase-3 for GrB, PARP for caspase-3 and BID for caspase-8 ([93]; 

Supplementary Figure 3). 

7µg of total protein from each protease-treated and -untreated sample 

were subjected to electrophoresis on denaturing and reducing NuPAGE Bis-Tris 

gels (Invitrogen, Carlsbad, CA). Proteins were then transferred to Polyvinylidene 

Fluoride (PVDF) membranes and blocked in Tris buffered saline Triton X-100 

(TBST) containing 5% (w/v) milk. Membranes were then incubated with 

substrate-specific antibodies, washed and incubated with HRP-conjugated 

secondary antibodies (BioRad, Hercules, CA). Immunoblots were developed on 

film with the ECL Plus detection system (GE Healthcare, Piscataway, NJ). To 

verify that equal amounts of protein were being compared across samples, 

GAPDH levels were quantified in parallel with either a rabbit anti-GAPDH or 

mouse anti-GAPDH antibody and appropriate Cy3 or Cy5 conjugated secondary 

antibody (GE Healthcare, Piscataway, NJ). Fluorescence was quantified on 

Typhoon Scanner (GE Healthcare, Piscataway, NJ). A representative GAPDH 

immunoblot is shown in [93], Supplementary Figure 3. All primary antibodies 

were from either (Cell Signaling, Beverly, MA) or (Santa Cruz Biotechnology, 

Santa Cruz, CA). 
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Chapter 3. Peptide Docking 

3.1. Introduction 

The previous chapter presented a machine-learning algorithm that identified 

whether a given peptide would bind to, and thus be cleaved by, different protease 

families. This method addressed the question of whether binding occurred on a 

binary level, but described little about the mode of binding, which residue 

contacts occurred between molecules, and which peptide residues contributed 

the most to binding affinity. Additionally, the machine-learning approach relied on 

a large training set of known positives and negatives for its predictive accuracy. 

This training set is often not available in many biological systems.  

A complementary approach to identify protein-peptide interaction specificity is 

through peptide docking. The ideal peptide docking algorithm would take as input 

simply the peptide sequence of interest and the protein structure and 

automatically determine whether the peptide binds, and if so, what the bound 

conformation of the peptide is. However, this problem is a challenging one due to 

the large degree of flexibility in a peptide, the potential for significant 

conformational change of an unbound protein receptor upon peptide association, 

and the lack of precise scoring functions to evaluate whether a bound 

conformation is near-native. As discussed in section 1.8, progress has been 

made towards accurate peptide docking, but there are still hurdles to overcome, 

perhaps the greatest of which is error in docking results due to optimization 

procedures not reaching the global minimum of the scoring function when 
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sampling different peptide conformations. Here, we present a method that 

attempts to overcome this obstacle using a divide-and-conquer scheme. This 

method has two main components. The first is a docking algorithm that follows a 

traditional optimization scheme, using molecular dynamics for sampling different 

conformations of the system and a combination of physical and statistical scoring 

restraints to evaluate each conformation. We demonstrate success with this 

algorithm on a small benchmark set, but note significant limitations, mostly in its 

ability to obtain near-native conformations for some peptide residues, but result 

in significant error in other areas of the peptide. The second component attempts 

to address this problem by employing the divide-and-conquer approach to 

determine accurate local regions in different steps of the MD trajectory and 

combine them into a global solution. While this work is still ongoing, significant 

progress has been made and a framework is in place to test different parameters 

of the algorithm. The final section of this chapter discusses the future direction 

this research will take. 
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3.2. Results 

3.2.1. Benchmark complexes with different peptide lengths are selected 

%

Table 3.1 Peptide docking benchmark set statistics.  
Peptide length is measured in residues; “#Peptide Atoms” and “#Protein Atoms” indicate the 
number peptide and protein atoms, respectively, that were used in the sampling procedure. 
Protein atoms represent the peptide binding site only and not the full protein. 

To evaluate the performance of the algorithm, a small benchmark set was 

created consisting of the solved structures of five proteins each in complex with a 

small peptide (9#.*,%d8I). The length in residues of the peptides ranged from five 

to fifteen. All peptides were in complex with a single protein chain with the 

exception of HIV protease where the peptide interacted with two identical protein 

chains. All members of the benchmark set were arbitrarily selected from the 

PeptiDB dataset[7], without regard to the biological context of the proteins.   

3.2.2. Scoring function values are weakly correlated with RMSD Error 

For each member of the benchmark set, 1,000 independent docking runs were 

performed, with each docking run consisting of a combination of molecular 

dynamics and simulated annealing to optimize the value of a scoring function 

based on a combination of physical and statistical restraints (Section 3.5). The 

resulting peptide conformation was the one scoring the lowest out of all 
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conformations generated by the trajectory. For each of the 1,000 runs for a 

benchmarked complex, the score of this conformation was saved along with its 

RMSD error when compared with the native peptide structure. A scoring function 

should be designed to have its global minimum equal to the native conformation 

of a peptide; therefore, we first evaluated whether our scoring function potentially 

had this property, and also calculated the general correlation between scores of 

the peptides generated by a run and the RMSD error.  

%

Table 3.2 Peptide docking benchmark set performance.  
Best RMSD: RMSD of the conformation that is the closest to the native, regardless of score; 
RMSD of Best Score: RMSD of the lowest-scoring conformation. Ranks are all out of 1,000 runs. 
Correlation is the Pearson correlation coefficient  

 In one of the benchmark complexes (HIV protease), the native structure 

scored better than all peptides generated by the docking run. Evaluation on two 

other complexes resulted in the native peptide being outscored by fewer than five 

docked conformations, and a fourth native complex was outscored by nineteen 

docked peptides. In the final complex, cyclophilin A, the native peptide was 

ranked 700th, indicating that the scoring function may be insufficient to evaluate 

this peptide (9#.*,%d8f, “Score rank of native”).  

 In four of the five cases, there was a weak correlation between the final 

docking scores and RMSD error (N+;-",%d8I). The value of the Pearson 

correlation coefficient in these cases ranged from 0.11 and 0.25 (9#.*,%d8f, 
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“Correlation”). The fifth case (!-Bungarotoxin) essentially had no correlation 

between the scores and RMSD. Within individual trajectories, as the atoms 

moved from initial random positions to those resembling a more biological 

conformation of the peptide chain, the score decreased significantly, indicating 

that the main inaccuracy of the scoring function is in distinguishing one near-

native conformation from another. 

3.2.3. Regions of docked peptides are close to the native conformation 

We examined the ability of the sampling procedure to find a conformation of the 

peptide as close to the native state as possible. For each benchmark complex, 

the following were evaluated: (1) the RMSD error of the lowest scoring 

conformation; (2) the score of the conformation with the lowest RMSD and its 

rank among all runs for the complex; and (3) visual inspection of the final 

conformation. A summary is presented in 9#.*,%d8f. An examination follows of 

each complex in turn. 
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Figure 3.1 Scores vs RMSD of optimal docking poses  
For each member of the benchmark set, 1,000 independent docking runs were performed. Each 
point on a plot represents the value of the best scoring conformation for one of the 1,000 runs 
and the corresponding RMSD error from the native complex of that conformation. All RMSDs 
measured in Ångstroms. Red squares indicate scores for the native complex, which by definition 
has an RMSD of 0Å. 

!-bungarotoxin 

The thirteen residue !-bungarotoxin peptide docked at an optimal conformation 

(defined as the conformation with the best RMSD) of 4.71Å (N+;-",%d8f), although 

the conformation receiving the best score fared worse at 7.16Å. The 

conformation generally preserves the overall fold of the peptide, in which the 

terminal ends protrude from the binding site while the center is buried. Most of 

the side-chains are misplaced. Despite there not being a correlation between the 

scores and RMSDs for !-bungarotoxin  (9#.*,%d8f), the score of the optimal 

conformation ranks 45th among all scores. 

 

%

Figure 3.2 Optimal !-bungarotoxin conformation.  
In this and subsequent figures, the protein is shown in red, the native peptide in blue, and the 
docked peptide in yellow; (a) shows the peptides in complex with the native structure of the 
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receptor, and (b) shows the same peptide alignment without the receptor and in a different 
orientation. 

MHC Class I 

Peptides recognized by the MHC Class I receptor bind to a large pocket, here 

modeled as including 445 atoms in the binding site. The three C-terminal peptide 

residues are posed at 0.44Å from their native conformation (N+;-",%d8d). 

However, a large kink in the docked peptide at the center asparagine residue 

leads to the rest of the peptide not extending as long as the native, aligning with 

an overall error of 4.64Å. This conformation ranked 18th by score among all 

docking conformations. 

%
%
%

%

Figure 3.3 Optimal MHC Class I conformation. 
 

HIV protease 

The results for the HIV protease peptide complex docking run were the best in 

the benchmark set. The peptide docked at 2.42Å RMSD relative to the native, 
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with the N-terminal glutamine residue contributing the most to the error (N+;-",%

d8b). This residue protrudes from the peptide; the lack of restraints between 

peptide and protein atoms in this region is likely the reason for this error. The 

peptide is buried in the protease, in contrast to other benchmark peptides that 

bind to an open cleft; this reduced conformational flexibility likely contributes to 

the accurate pose. Additionally, this optimal conformation is also the best scoring 

pose for the peptide. 

%

Figure 3.4 Optimal HIV protease conformation 
%
Pilius FimG 

The fimG subunit of the E. coli pilius assembly docks with an optimal 

conformation of 7.40Å RMSD error relative to the native (N+;-",%d8h). While this 

error is relatively large, there is a five residue stretch (peptide residues four to 

eight) that aligns at 0.56Å to the corresponding residues in the native peptide. 

The primary contribution to the overall error comes from the terminal ends of the 
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peptide, which do not resemble the native conformation. FimG is a fifteen residue 

peptide and represents a particularly challenging docking problem, although in 

this case the top scoring peptide is also the second best in terms of RMSD 

(7.98Å). 

%
Figure 3.5 Optimal FimG conformation 
 

Cyclophilin A 

Cyclophilin A is the smallest peptide in the benchmark set at five residues. The 

optimal pose docks at 2.07Å RMSD relative to the native complex, making it the 

peptide with the lowest error among all peptides in the benchmark set (N+;-",%

d8h). However, the best scoring peptide has an error of 5.22Å, ranking it 267th in 

terms of RMSD. As noted previously, the native peptide scores 700th compared 

to the other docking runs; therefore, the scoring function needs to be improved 
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before a confident selection of the final peptide can be made. It is possible that 

the small size of the peptide, and thus a relatively small number of restraints in 

the system, contribute to this discrepancy between the best scores and optimal 

conformations. 

%
Figure 3.6 Optimal cyclophilin A conformation. 

3.2.4. The DOMINO algorithm divides the system into subsets 

In all of the benchmark complexes, certain regions of the peptide were close to 

the native conformation while others aligned with large error. While the best-

scoring MD frames generally contained the former, it is possible that other 

frames in the trajectory contained a separate low-scoring region, but the overall 

score for those frames was suboptimal. A solution to this disconnect between 

individual low-scoring frames may come from an approach that combines 

individually locally optimal regions in a rigorous fashion to assemble a global 
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conformation that scores better than any individual frame. To this end, we 

explored applying the DOMINO algorithm in an atomic context[116]. 

 DOMINO uses the initial restraint set as input to divide the system into 

overlapping subsets of interacting degrees of freedom (in this case, the three-

dimensional coordinates of atoms) and evaluates the restraints acting on atoms 

within each subset. The values of the restraints are drawn from the 

conformations generated by the trajectory. Compatible conformations of atoms 

across subsets are evaluated to combine the subsets into the final solution 

(N+;-",%d8j; See section 3.5 for a full description). 
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Figure 3.7 Flowchart illustrating the DOMINO procedure. 
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 We applied DOMINO to the HIV Protease benchmark complex to evaluate 

its applicability. As with the MD docking procedure, we initialized the system by 

assigning random coordinates within the protein binding site to all peptide atoms. 

From here, force-field restraints were added to appropriate atoms and non-

bonded restraints were added across all pairs of atoms within 6Å (N+;-",%d8e). 

This restraint graph was used to generate the subsets used in the DOMINO 

algorithm (N+;-",%d8g).  

%

Figure 3.8 Molecular representation of the restraint graph.  
Blue atoms represent the protein binding site; red are the randomized peptide atoms. Lines 
between atoms represent initial restraints between atoms that are used to create the junction 
tree. Lines terminating in empty space are associated with unbound protein atoms. 
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%
Figure 3.9 Visualization of the DOMINO Merge Tree  
(a) The full merge tree, where each leaf represents a subset of atoms created in the junction tree, 
and each internal node is the union of atoms contained in its two children. (b) Zoomed in region of 
a (black square); numbers represent number of protein atoms (p) and peptide atoms (l) in that 
subset. 

The restraint graph included 796 non-bonded restraints, which is a small fraction 

of the total 66,367 restraints added to all pairs of atoms prior to running the MD 
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trajectory. The number of subsets produced by the junction tree construction 

algorithm is inversely correlated with the degree of connectivity of the initial 

restraint graph; thus, this small number of initial restraints is appropriate. The 

restraint graph is used to create a junction tree, which contained 159 nodes. 

These nodes were set as the leaves of the merge tree (Section 3.5), which itself 

contained 318 nodes.  

3.2.5. Domino can find a lower score better than any individual MD frame 

%

Table 3.3 Domino Results.  
Shown are the top 30 scoring DOMINO runs. Each is compared to the best scoring minimized 
MD frame for the trajectory to which the DOMINO algorithm was applied. Also shown is the 
RMSD of both the MD and DOMINO frame relative to the native; the difference between the two 
scores (“DOMINO – MD”), the RMSD between these two modeled conformations (“MD-DOMINO 
RMSD”), the number of conformations examined across all subsets (“Assignments”) and the 
memory and time requirements for the run. The final line represents the example presented in 
Figure 3.10. 
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The DOMINO algorithm initializes each leaf of the merge tree with a list of all 

conformations of atoms in that subset as read from the MD trajectory. The set of 

atoms in the interior node of a merge tree are equal to the union of atoms in each 

of its two child nodes, with the root node containing all atoms in the system. The 

protocol employs a depth-first search to set the conformations of an interior node 

equal to the total number of compatible conformations between the two child 

nodes, propagating these conformations up to the root of the tree. Any interior 

node thus represents conformations that are derived from multiple steps of the 

trajectory. 

 In this fashion, we used the DOMINO algorithm to combine all locally 

optimal conformations of the system (with each subset representing a set of local 

conformations) into a global conformation. We ran the algorithm 1,000 times, 

initializing each run with a different random configuration of peptide atoms. 

Overall, 36.4% of the individual runs resulted in a DOMINO configuration that 

had a lower score than the best scoring MD frame, including in 14 of the top 30 

conformations when ranked by the score of the DOMINO solution (9#.*,%d8d). 

However, only 6.73% of the 1,000 runs resulted in a DOMINO score 5% lower 

than the best scoring MD frame. The lowest scoring conformation from all runs 

was the result of a DOMINO solution that slightly decreased the optimal score 

from an individual frame of the trajectory. 

 As a proof of concept, we highlight on one iteration, which ranked 251st by 

DOMINO score across all runs, finishing with a 6Å RMSD error compared to the 

native state (N+;-",%d8IH). In this run, the final DOMINO score was 25.6% less 
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than that of the optimal MD frame. The two conformations deviated by 1.16Å 

RMSD. This result demonstrates the ability of DOMINO to generate a score 

significantly less than that of any individual scores in the MD trajectory. 

%

Figure 3.10 Domino proof-of-concept.  
(a) For the run discussed in the text, the minimized MD over the course of the trajectory. The 
broken line represents a high score due to increasing the temperature in a simulated annealing 
procedure. The red square represents the Domino result (-1,076 compared to the lowest MD 
score of -850). (b) The DOMINO configuration (blue) compared to the best scoring MD 
conformation (yellow). 

3.3. Discussion 

3.3.1. Overview of progress toward an atomic level peptide docking 

method 

We have presented two methods for docking a small peptide to the solved 

structure of a protein. The first is a traditional optimization procedure that 

attempts to minimize a scoring function using a canonical sampling algorithm, 

molecular dynamics. While previous docking attempts have used MD to sample 

peptide conformations, (Section 1.8), none has attempted a truly blind docking 

procedure that starts from an initial random configuration and doesn’t rely on 

specific knowledge of the system to achieve good accuracy. In this study, the 
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initial set of docking runs on a small benchmark set produced good results in all 

cases, although some were over a local region of the peptide only. Improvement 

to both the sampling and scoring components (discussed below) will increase the 

accuracy of this first docking method. 

The second method is an attempt to improve the results of the sampling 

procedure by using the divide-and-conquer DOMINO approach to combine 

locally optimal and near-optimal conformations across many subsets of the 

system. In principle, DOMINO can take as input a trajectory generated by any 

sampling procedure, including the popular Monte Carlo algorithm, and apply the 

same merging protocol to generate a conformation scoring better than any 

individual conformation produced by the sampling algorithm. We have 

demonstrated a proof-of-concept, showing that DOMINO can indeed improve 

upon the scores produced by a trajectory in a large fraction of independent 

optimization runs, sometimes significantly. Here again, improvements to the 

algorithm, including junction tree construction considerations, parallelization of 

conformation compatibility evaluations, and iteration, will increase the accuracy 

of the method.   

3.3.2. Fixed side chains reduce the difficulty of the problem 

During benchmarking, the peptide atom positions were the only degrees of 

freedom in the system; the protein atoms remained fixed in their native bound 

conformation. In real-world docking applications, the peptide will often be docked 

to a native unbound conformation of the protein. While one study demonstrated 

that the atomic positions of most protein receptors do not vary by more than 1.5Å 
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upon peptide complex formation, this flexibility will still be critical to account for to 

ensure accuracy in docking. Unfortunately, incorporating flexible side chains also 

increases the challenge of the problem, as it could increase the number of 

degrees of freedom by up to an order of magnitude (9#.*,%d8I). This area is 

another where DOMINO could be useful, as more protein atoms would be 

assigned to subsets and their locally optimal interactions with peptide atoms 

could be assessed.   

3.3.3. Benchmark results illustrate the potential of DOMINO 

The benchmark set demonstrated the possibility of obtaining high-accuracy local 

poses. In all cases, a region of the peptide docked in a conformation that was 

very close to the native state. For example, the three C-terminal residues of the 

MHC Class I structure were docked at 0.44Å relative to the native state, the HIV 

Protease structure aligned at less than 2Å at seven of its nine positions, and 

even the fifteen residue FimG structure had a stretch of five residues aligning at 

0.56Å relative to the native. However, the rest of these peptides often docked 

with significant error. These cases are ideal for assessment by DOMINO. 

Assuming an improved scoring function, DOMINO has the potential to retain 

these conformations in a fraction of the subsets of the system, while exploring 

locally optimal conformations in the poor-scoring regions of the rest of the 

peptide. The length and flexibility of the peptide may actually be beneficial for the 

success of the DOMINO algorithm, as local regions of extended peptides may be 

generally biophysically independent from each other, and thus each region can 

be explored on its own and the results combined in the end.  
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3.4. Future Direction 

3.4.1. Improvements to the scoring function 

One of the primary contributions to error in the benchmark system lies in the 

possible inaccuracies of the scoring function. We demonstrated that the there 

was only a weak correlation, if any, between the score of the system and its 

RMSD error, with the native peptide usually not scoring lower than all modeled 

conformations. A more robust scoring function will be necessary to achieve 

greater accuracy. One area of improvement could come from a new statistical 

potential to evaluate non-bonded atomic distances. The current potential, DOPE, 

is derived from atomic distances found in globular proteins in the PDB and is not 

specific to protein-peptide atomic interactions[70]. Studies have shown that the 

identity and packing of atoms across the protein-peptide interface is different 

than in globular protein cores (Section 1.3) and a new statistical potential based 

on these distances could improve the accuracy of the docking procedure. 

3.4.2.  Improvements to the sampling procedure 

In its current form, the molecular dynamics procedure proceeds in a 

straightforward fashion. The system is heated and cooled according to a 

schedule, with simple scaling of the Lennard-Jones non-bonded interaction 

restraints (Section 3.5). We plan several improvements to the procedure. First, 

an initial conjugate minimization procedure will be applied to the system to relax 

it before running the MD trajectory. Second, the velocities will be capped at low 

levels to prevent the system from exploding when the temperature is increased, 

similar to the caps implemented in the MODELLER protocol[117]. Third, various 
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further scaling of Lennard-Jones restraints will be explored, with the effects of the 

restraints being reduced and increased at various time points. These 

improvements should lead to a more robust exploration of the energy landscape 

and result in fewer runs being immediately discarded due to the simulation not 

being able to handle a bad initial starting conformation.  

3.4.3. Parallelization of DOMINO 

One drawback of DOMINO is the large amount of memory it uses to save 

conformations across subsets, and the CPU time required to merge compatible 

conformations at step in the recursive process (9#.*,%d8f). A solution to this 

problem lies in parallelization of the algorithm. Each subset contains inherent 

concurrency, as processing one internal node requires knowledge of the 

conformations of its child subsets only. Thus, each subset could be assigned to a 

single processor, and many subsets could be evaluated in parallel. Additionally, 

conformations between two subsets are evaluated in an all-vs-all pair-wise 

fashion. Thus, two subsets each containing n conformations require up to n vs n 

comparisons. However, as each of these comparisons is independent, groups of 

conformations could be assigned to different processors (for example, 100 

processors could each evaluate (n / 10) vs (n / 10) conformations). These 

methods should greatly improve the speed of DOMINO as well as increase the 

number of conformations it can consider overall.   

3.4.4. Iterative DOMINO 

Many docking procedures approach the problem in an iterative fashion, with a 

coarse-grained approach being followed by refinement of an initial docking pose 
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(Section 1.8). We will explore implementing DOMINO in a similar fashion. As the 

restraint graph is drawn based on the initial random conformation, the DOMINO 

subsets may not always include protein and peptide atoms that interact at close 

distances, which reduces the effectiveness of DOMINO. One solution is to run 

one iteration of sampling and DOMINO divide-and-conquer to produce an 

intermediate result, and then redraw the restraint graph and create new subsets 

based using this updated conformation. More sampling and DOMINO can be 

applied, until a convergence criteria is met. Additionally, the resolution of the 

discrete grid that DOMINO uses can be increased as each iteration is run, 

allowing the system to proceed from coarse-grained to high resolution. 

%

3.5. Methods 

Here, we describe both the methods for the canonical peptide docking procedure 

(sections 3.5.1 to 3.5.4) as well as the DOMINO algorithm (sections 3.5.5 to 

3.5.8).  

3.5.1. Initialization of the system 

For each member of the benchmark set described in Section 3.2.1, the peptide 

chain was identified and its atoms were defined as the flexible atoms in the 

system. The protein atoms were all kept fixed in their native conformation. The 

initial positions of the flexible atoms were randomized by the following procedure: 

for each peptide atom, set its coordinates to be equal to that of a randomly 

selected atom. This ensures that the initial position of each peptide atom was in 

the peptide binding site, but sufficiently random to make the problem difficult. 
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3.5.2. Generation of a scoring function 

Bond lengths, angles, dihedrals, and impropers were all restrained using the 

CHARMM force-field for stereochemistry. The distances between all pairs of 

fixed atoms and flexible atoms, as well as all pairs of flexible atoms and flexible 

atoms, were restrained using a Lennard-Jones potential in combination with the 

DOPE potential[70]. The values of the atomic radii used in the Lennard-Jones 

potential were scaled as discussed below. The values of these restraints were 

summed to produce a score for the overall conformation. 

3.5.3. Sampling of the system 

The system was sampled using standard molecular dynamics (MD) with a Verlet 

integrator. 2200 4 fs time-steps were run in a simulated annealing protocol, 

changing the temperature at every 200 steps using the following schedule: 250, 

400, 700, 1000, 1000, 800, 600, 500, 400, 300, 200 (all temperatures in Kelvin). 

During this time, the values of the atomic radii in the Lennard-Jones potential 

were scaled to 0.1 times their normal size to permit flexible atoms to pass 

through one another. Following this, an additional 1000 steps were run during 

which time the values of the radii were scaled every 200 steps, from 0.1 to 0.6. A 

velocity cap of 1.0 A / fs was imposed on the system for the first 200 MD steps to 

prevent initially frustrated atoms restrained by harmonic potentials from moving 

too far away. Additionally, the system was minimized every 25 MD time-steps 

with up to 100 steps of conjugate gradients (CG). This full run output two optimal 

structures, selected from all sampled peptide conformations; the first was that 
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receiving the best score according to the restraint set, and the second was that 

with the smallest RMSD value when compared to the native state.  

3.5.4. Selection of final output structures 

The steps described above (initialization, scoring, sampling) were repeated 1,000 

times for each benchmark complex. Thus, each complex was sampled 1,000 

times using a different random starting conformation, which generated two output 

conformations (best scoring and smallest RMSD) each time. The conformations 

representing the best score and smallest RMSD among these 2,000 output 

structures were determined to be the final output structures and were reported in 

9#.*,%d8f. 

3.5.5. Overview of the DOMINO procedure 

The DOMINO procedure has previously been described extensively[116]. Briefly, 

the system is represented as a graph where the nodes are the degrees of 

freedom to be sampled (here, the three-dimensional coordinates of the atoms) 

and the edges are the restraints acting on the atoms. The graph is triangulated 

and then decomposed using an explicit junction tree construction algorithm. A 

junction tree is a graph created from the triangulated restraint graph, where the 

nodes are subsets of atoms, representing the maximal cliques (i.e., fully 

connected atoms) from the restraint graph, and edges are added between some 

subsets if the subsets share an atom. If two subsets x and y share an atom but 

aren’t connected by an edge, then the junction tree property guarantees that all 

subsets along the path connecting x and y will also contain that atom. In this 

study, a further refinement of the junction tree is included, known as the merge 
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tree. The merge tree is a binary tree where the leaves are the subsets of the 

junction tree and each internal node contains the union of atoms in its two 

children. Thus, the root of the merge tree contains all atoms in the system. 

Following merge tree creation, the possible conformations of atoms in each leaf 

are generated and compatible conformations are propagated up through the 

merge tree to the root, as discussed in detail below. 

3.5.6. Generation of the merge tree 

The restraint graph is created following initialization of the system, where the 

coordinates of all flexible atoms are set (section 3.5.1). Force field restraints are 

added across appropriate atoms, and then DOPE restraints are added between 

all non-bonded pairs of flexible atoms, as well as all pairs of fixed and flexible 

atoms within a cutoff of 6Å. These restraints and the atoms on which they act 

comprise the restraint graph. Next, the restraint graph is triangulated, the system 

is decomposed into subsets that make up the junction tree, and the merge tree is 

derived from the junction tree. Finally, non-bonded restraints are created 

between all pairs of fixed and flexible atoms in the system exceeding the 6Å 

cutoff in preparation for sampling; note that these restraints are not represented 

in the DOMINO restraint graph. 

3.5.7. Generation of assignments 

Following restraint creation, the system is optimized according to the protocol 

described in section 3.5.3. This procedure generates a number of conformations 

of the system, one for each step of MD and CG. Next, for each of these 

conformations, the position of each atom is snapped to a point on a grid of 0.1Å 
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resolution. This position is saved as what we denote a “state” of the atom. Thus, 

for each atom, a number of states is saved equal to the number of discrete grid 

positions that atom occupied in the trajectory; note that the same state can be 

found in multiple trajectory steps if the atom didn’t move far enough in a single 

step, or if it revisited a previous state. Finally, for each subset in the junction tree 

(and thus each leaf of the merge tree), the list of states of its atoms in each step 

of the trajectory is saved as what we denote an “assignment”. For example, if a 

subset as three atoms, then the assignment representing the first step of the 

trajectory would be [1, 1, 1]. If in the second step of the trajectory, the third atom 

moved into a new state, but the first two stayed in their first states, then the next 

assignment would be [1, 1, 2]. In this fashion, for each subset, a large number of 

assignments are generated, one for each step of the trajectory (duplicate 

assignments are discarded). 

3.5.8. Merging of compatible assignments 

After creation of all assignments for the leaves of the merge tree, the DOMINO 

inference algorithm merges compatible assignments across all merge tree 

nodes. By definition, the atoms in an internal node are the union of the atoms in 

each of its children (whether the children are leaves or are themselves an 

internal node). For an internal node, all assignments in its first child are 

compared to all assignments in its second child and a list of compatible 

assignments is generated. Two assignments are compatible if the overlapping 

atoms in the two children are in the same state in both assignments. Note that in 

these two assignments, the states of the non-overlapping atoms of the first child 
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could be derived from a different trajectory step than were the states of the non-

overlapping atoms of the second child. Therefore, a compatible assignment could 

contain states from different trajectory steps. This list of compatible assignments 

is saved as the assignment list for the internal node.  

 A recursive depth-first search is used to visit all nodes in the merge tree, 

propagating compatible assignments up through the tree until the root is reached. 

Additionally, in this procedure, only the top 10,000 scoring assignments are 

saved for each internal node due to memory considerations. We are exploring 

ways to optimize memory usage and increase this number, as the assignments 

discarded by this process could become optimal as the propagation proceeds.  

 When the root is reached, the states in each assignment are translated 

back into the atomic coordinates to which they were mapped. The system is 

evaluated using the scoring function, and the final DOMINO result is the 

conformation that is evaluated with the lowest score. As noted above, 

assignments may include states of atoms derived from multiple trajectory steps, 

and in the root, this phenomenon is almost always the case. Thus, the DOMINO 

procedure produces a conformation that is drawn from multiple trajectory steps, 

and this conformation will often be evaluated with a lower score than any single 

trajectory step. 

3.5.9. Integrated modeling platform 

The docking and DOMINO procedure are both implemented in the Integrated 

Modeling Platform (IMP), which is a software suite for modeling protein and 

assembly structure using sampling algorithms and scoring functions in a modular 
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fashion. IMP is open source and freely available; for more information, see 

www.integrativemodeling.org. 
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Chapter 4. Analysis of protein-peptide specificity determined by mass 

spectrometry-based proteomic experiments 

The previous two chapters presented algorithms for identifying novel protein-

peptide interactions. These methods are designed to complement experimental 

efforts, both by using existing experimental results to predict new interactions in 

the same system (Chapter 2) or by guiding new experiments by identifying the 

critical residue interactions across molecules upon analysis of accurate 

conformations generated by peptide docking (Chapter 3). Another important area 

where computational methods can contribute to experiments is in rigorous 

statistical analysis of large experimental datasets. This research provides insight 

into aspects of peptides that contribute to specificity, whether a simple result 

such as the distribution of residue types at certain positions in the peptide, or 

something more complicated such as the distance distribution of these peptides 

through a three-dimensional structure.  

 In this chapter, we perform such analysis on proteomic mass-spectrometry 

datasets of post-translational modifications of peptides. Mass-spec is an ideal 

experiment for determining protein-peptide interaction specificity, with the 

capacity to identify hundreds or even thousands of interactions in the proteome. 

While some may be not be physiologically relevant (i.e., the peptide substrate is 

modified by the protein but this modification has no phenotype), and some may 

be artifacts of the experiment (for instance, if the peptide and protein are in 

separate cellular compartments in vivo but the experiment operates in a cell 

lysate), they are nevertheless biophysical interactions that are identified by 
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experiments and thus can be analyzed statistically to gain insight into the forces 

mediating their specificity. 

 The two protein types studied in this chapter are the pro-apoptotic 

proteases caspases, which were also analyzed in Chapter 2, and the O-GlcNAc 

transferase, which modulates signaling pathways through the addition of a simple 

sugar to its target substrates. Large mass-spec datasets of modified peptides 

were generated using novel bioengineering technology, and the results were 

analyzed in a number of bioinformatics techniques. Together, these studies 

demonstrate how experiments and computational approaches can work together 

to identify aspects of protein-peptide interaction specificity on a large scale. 

4.1. Introduction – Caspases and proteomics 

The widespread intracellular proteolysis that is a hallmark of apoptosis is 

predominantly mediated by the caspase protease family. Apoptosis can be 

induced by extracellular death ligands, such as Fas ligand, TNF-!, or TRAIL, via 

the extrinsic pathway to activate caspase-8. It can also be induced by agents 

such as cytotoxic compounds, radiation, and other environmental stresses via 

the intrinsic pathway with release of proapoptotic factors from mitochondria to 

activate caspase-9. As discussed in section 2.1, caspase-3 can be activated 

through proteolysis by Granzyme B as a result of natural killer cell activity. 

Initiator caspases-8 and -9 in turn activate executioner caspases, among them 

caspases-3 and -7. Caspases then catalyze a multitude of proteolytic events to 

inactivate prosurvival and/or antiapoptotic proteins and activate antisurvival 
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and/or proapoptotic proteins. This proteolysis results in apoptotic cell death and 

clearance of apoptotic bodies by phagocytes. 

Here, we expand the focus of caspase substrate specificity introduced in 

Chapter 2. Because the study of apoptotic pathways has ramifications for 

development of therapies for treatment of cancer, there is significant interest in 

gaining a better understanding of caspase activity during apoptosis. For example, 

identification of new targets of proteolysis in apoptosis can lead to the discovery 

of prosurvival and/or antiapoptotic factors, which can lead to identification of 

chemotherapeutic targets. Over 300 publications describing a wide variety of cell 

types and apoptotic inducers have reported the proteolysis of approximately 360 

human proteins in apoptosis[96]. Adding to this complexity, the nature of the 

apoptotic response varies widely in a cell-dependent and stimulus-dependent 

manner that cannot be easily predicted[118, 119]. Thus, combined data sets of 

caspase substrates from studies using varied inducers and cell types have 

limited use for understanding how a single inducer can cause apoptosis in a 

particular cell type. 

We have developed an enzymatic approach for global profiling of 

proteolysis and sequencing of cleavage sites in complex mixtures that is based 

on positive selection of protein fragments containing unblocked !-amines, 

characteristically produced in proteolysis. This positive selection is enabled by 

use of an engineered peptide ligase termed subtiligase to selectively biotinylate 

unblocked protein !-amines with absolute selectivity over $-amines of lysine side 

chains. We have used this method to sequence 333 cleavage sites in 292 
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different protein substrates targeted by caspase-like proteolysis in Jurkat cells 

after intrinsic induction of apoptosis with the classic chemotherapeutic etoposide. 

Through bioinformatic profiling of the proteolysis that is induced by a single agent 

in a single cell line, this work reveals the vastness of caspase-like proteolysis that 

takes place during apoptosis, sheds light on determinants of specificity for this 

activity in a cellular context, and demonstrates the utility of a powerful 

degradomic technology to study proteolysis in biological samples. 

 

%

Figure 4.1 Positive selection of peptide N termini of proteins from complex mixtures 
(a) Workflow for biotinylation of protein N termini in complex mixtures using subtiligase and a 
biotinylated peptide ester that contains a TEV protease cleavage site, trypsinization of labeled 
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proteins, capture of biotinylated N-terminal peptides with immobilized avidin, recovery of captured 
peptides with TEV protease, and analysis of N-terminal peptides by 1D or 2D LC/MS/MS for 
identification of corresponding proteins and cleavage sites. The representative MS/MS spectrum 
corresponds to semitryptic peptide GSAVNGTSSAETNLEALQK from MEK1 (MP2K1_HUMAN) 
and identifies a previously unknown caspase-like cleavage site at Asp16. The a2 and b2 ions at 
m/z 223 and 251 are characteristic hallmarks of a ligated, SY-bearing, N-terminal peptide. 
(b) Structure of the biotinylated peptide glycolate ester used in the proteomic workflow. 

4.2. Results – Caspase cleavage sites and analysis 

4.2.1. The degradomic technology allows for positive selection of protease 

substrates  

Direct and selective labeling of protein !-amines or !-carboxylates is a powerful 

approach for profiling proteolysis in complex mixtures since it permits direct 

identification of cleavage sites in protein substrates. Approximately 80% of 

mammalian proteins are known to be N-terminally acetylated[120]. Thus, greater 

signal over background can be achieved through N-terminal instead of C-terminal 

labeling. However, such labeling must still be extremely selective for !-amines 

over lysine $-amines, which are approximately 25 times more abundant in an 

average protein. To achieve this selectivity, we have adopted an enzymological 

approach that makes use of the rationally designed protein ligase subtiligase. 

This engineered enzyme exhibits absolute selectivity for modification of !-

amines[121, 122]. 

We have developed a proteomic method utilizing subtiligase that enables 

capture and sequencing of N-terminal peptides found in complex biochemical 

mixtures (N+;-",%c8Ia). Proteins in biological samples are N-terminally biotinylated 

by treatment with subtiligase and a peptide glycolate ester substrate specially 

tailored to our proteomic workflow (N+;-",%c8Ib). Biotinylated samples are 

exhaustively digested with trypsin, and N-terminal peptides are captured with 
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avidin affinity media. The peptide ester substrate contains a tobacco etch virus 

(TEV) protease cleavage site to permit facile recovery of captured peptides. An 

important aspect of our workflow is that recovered peptides retain an N-terminal 

SY-dipeptide modification, providing a key hallmark to distinguish labeled 

peptides from contaminating unlabeled peptides with tandem mass spectrometry 

(LC/MS/MS). In standard protease nomenclature, substrates are cleaved 

between the P1 (N-terminal) and P10 (C-terminal) residues, with Pn and Pn’ 

residues increasing in count by one in both directions away from the scissile 

bond[95]. Thus, the Pn’ residues of a cleavage site correspond to N-terminal 

residues of the labeled peptide identified, whereas the Pn residues of a cleavage 

site can be inferred from the protein sequence preceding the identified peptide. 

As a validation of this method, we analyzed endogenous N termini in 

nonapoptotic Jurkat cells in two small-scale experiments using one-dimensional 

reversed-phase (1D) LC/MS/MS and two large-scale experiments using two-

dimensional strong cation exchange/reversed-phase (2D) LC/MS/MS 

(summarized in [49], Tables S1 and S2). Comparison of data obtained in both 

types of experiments is informative since 1D LC/MS/MS typically results in 

identification of abundant N termini, whereas the increased proteomic coverage 

afforded by 2D LC/ MS/MS results in additional identification of lower-abundance 

N termini. Of the combined 131 unique N termini identified in small-scale 

experiments, 72% are either annotated in SwissProt as native protein N termini 

or correspond to cleavages within the first 50 residues of proteins, as would be 

expected for N-terminal signal or transit peptide processing ([49]; Figure S1A). 
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The remaining 28% correspond to cleavages outside of the first 50 residues, 

arising from additional processing or constitutive protein degradation. In support 

of this notion, 51% of the combined 661 unique N termini identified in large-scale 

experiments correspond to cleavages outside of the first 50 residues ([49]; Figure 

S1A). The increased frequency of such N termini in large-scale experiments is 

consistent with the expected lower abundance for products of constitutive protein 

degradation. 

4.2.2. Degradomic analysis of apoptotic jurkat cells 

For analysis of apoptosis in Jurkat cells, we conducted several small-scale (1D) 

and large-scale (2D) LC/MS/MS experiments (representatives are summarized in 

Tables S3 and S4) with cells treated with the topoisomerase II poison etoposide. 

The experiments with untreated cells described above serve as respective 

controls for the small and large-scale experiments with apoptotic cells, in which a 

combined 244 and 733 unique N termini, respectively, were identified. Combined 

data sets of all N-terminal peptides identified in untreated and apoptotic Jurkat 

cells, respectively, are included as supplemental data ([49]; Tables S5 and S6). 

Caspases are known to exhibit strict substrate specificity for aspartate at P1, and 

for glycine > serine > alanine at P10[123, 124]. In small-scale experiments, 43% 

of N termini identified in apoptotic cells were derived from P1 aspartate 

cleavages, in contrast to less than 1% in untreated cells (N+;-",%c8fa). In large-

scale experiments, 43% of N termini identified in apoptotic cells were derived 

from P1 aspartate cleavages, in contrast to 3% in untreated cells (N+;-",%c8fb). 

An increased frequency of glycine at the first position of N termini is also 
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observed in apoptotic cells relative to untreated cells at both experimental scales 

(N+;-",%c8fa and b). The N termini uniquely identified in apoptotic Jurkat cells are 

thus consistent with induction of caspase-like activity. 

Of the 3% P1 aspartate N termini detected in large-scale experiments with 

untreated cells (N+;-",%c8fb), 55% correspond to reported caspase 

substrates[96]. Thus, it is likely that these originate from the small number of 

apoptotic cells typically present in untreated cultures. The detection of 3% P1 

aspartate N termini in large-scale experiments with untreated cells and less than 

1% in small-scale experiments is consistent with the low abundance of such N 

termini in cultures of normal cells. Additionally, if one considers that N termini 

annotated in SwissProt are representative of native N termini in healthy cells, it is 

notable that less than 1% are derived from proteolytic processing after an 

aspartate residue ([49]; Figure S2). In apoptotic samples, we find that the 

increased frequency of N termini located beyond the first 50 residues is solely 

attributable to P1 aspartate cleavages ([49]; Figures S1B and S1C). Thus, the 

vast majority of proteolysis we observe in apoptosis is attributable to caspases or 

proteases with caspase-like substrate specificity. 
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Figure 4.2 N termini derived from caspase-like cleavage are a hallmark of apoptotic cells 
(a) Frequencies of P1 and P10 amino acid residues corresponding to nonhomologous N termini 
identified in small-scale 1D LC/MS/MS experiments with untreated and apoptotic Jurkat cells. 
Data are represented as mean ± SD (n = 2 for untreated, and n = 4 for apoptotic).  
(b) Frequencies of P1 and P10 amino acid residues corresponding to nonhomologous N termini 
identified in large-scale 2D LC/MS/MS experiments with untreated and apoptotic Jurkat cells. 
Data are represented as mean ± SD (n = 2 for untreated, and n = 3 for apoptotic). ‘‘–’’ indicates 
lack of a putative P1 residue in cases where the P10 residue is an initiator methionine. 

Among the total 1099 SY-labeled peptides identified in etoposide-treated 

Jurkat cells, 418 follow aspartate in corresponding protein sequences ([49]; 

Tables S4 and S6). These peptides correspond to 333 P1 aspartate N termini 

and caspase-like cleavage sites (identified cleavage sites are listed in [49]; Table 

S7). In turn, these cleavage sites map to 282 unique substrates and ten 

additional others that cannot be distinguished from homologs containing the 

same identified N terminus (identified substrates are listed in [49]; Table S8). The 

average overlap between data sets obtained in separate experiments is 55% at 

the peptide level and 58% at the protein level ([49]; Figures S3A and S3B). 
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Similar overlap levels (~67%) have been previously observed for replicate 

analyses of complex mixtures of peptides with LC/MS/MS[125]. We have verified 

16 of the proteins identified as caspase substrates in our studies to be cleaved 

during apoptosis using immunoblotting (representative examples are included as 

[49]; Figure S4A). We have also determined that the proteolysis of a 

representative set of substrates is blocked by the broad-spectrum caspase 

inhibitor Z-VAD(OMe)-fmk, consistent with this proteolysis being caspase-

dependent ([49]; Figure S4B). 

%

Figure 4.3 Substrate specificity of caspase-like cleavage induced in apoptotic cells 
(a) Sequence logo representation[97] of the frequency of amino acid residues in the capase-like 
cleavage sites identified in apoptotic cells.  
(b) Sequence logo representation of the in vitro substrate specificity of caspase-3[107, 124].  
(c) Sequence logo representation of the frequency of amino acid residues in previously reported 
capase cleavage sites. 
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(d) Frequency of P4-P1 motifs in the capase-like cleavage sites identified in apoptotic Jurkat 
cells. 
(e) ROC curves for predictive HMMs constructed from three different cleavage site training sets 
(Jurkat, literature, and merged). Three representative HMM score threshold values for the 
merged data set are indicated (TPR, true-positive rate; FPR, false-positive rate). 

The most frequent residues at the P4, P3, P2, and P10 positions of the 

caspase-like cleavage sites identified in apoptotic Jurkat cells are aspartate, 

glutamate, valine, and glycine, respectively (N+;-",%c8da). Thus, an averaged 

composite of these cleavage sites indicates that the most common caspase 

activity in apoptotic cells exhibits a specificity that is most similar to the substrate 

specificity of executioner caspases-3 and -7, as determined with peptide 

substrates (N+;-",%c8db)nIHj0%Ifco. However, there are significant differences 

between the cellular cleavage sites and the in vitro specificity profiles. Notably, 

the canonical DEVD cleavage site motif is found in less than 1% of the caspase-

like cleavage sites observed in apoptotic Jurkat cells, and the broader DXXD 

motif is still only found in 22% of the identified cleavage sites (N+;-",%c8dd). A 

distinct difference in the composite cellular profile is the high frequency of serine 

and threonine residues at P4, P3, and P2, which is not observed in vitro for any 

of the caspases ([49]; Figure S5). Interestingly, a composite of all reported 

human capase cleavage sites and human orthologs of reported rodent caspase 

cleavage sites[96] is very similar to the Jurkat cellular profile reported here 

(N+;-",%c8dc). 

These observations suggest that caspase substrate specificity determined 

with peptide substrates has limited value as a predictor of physiological caspase 

cleavage sites. To investigate the predictive value of a large set of known 

physiological caspase cleavage sites, we constructed three profile hidden 
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Markov models (HMMs) using the cleavage sites identified in our studies, 

previously reported cleavage sites, and the union of these two data sets (a 

detailed description of this analysis is found in [49]; Supplemental Experimental 

Procedures). The accuracy of these HMMs was estimated via jackknifing and 

plotted in a receiver operator characteristic (ROC) plot, showing the true-positive 

rate versus the false-positive rate at different HMM score thresholds. Although all 

three HMMs predict caspase cleavage sites relatively accurately, the HMM built 

from the merged substrate set performed slightly better than those built from the 

individual sets (N+;-",%c8de). Its true-positive rate was 0.86 at the false-positive 

rate of 0.15, compared to the average true-positive rate of 0.84 at the false-

positive rate of 0.17 for the other two HMMs. 

4.2.3. Analysis of structural determinants of caspase substrate specificity 

The combined data set of the 333 caspase cleavage sites identified in our work 

and the approximately 300 previously identified caspase cleavage sites[96] 

allows an opportunity to expand our understanding of caspase substrate 

specificity from primary structure to the level of secondary and higher- order 

structures. To accomplish this goal, we mapped the known caspase cleavage 

sites onto experimentally determined atomic structures in the Protein Data Bank 

(PDB)[126], as well as comparative protein structure models in the ModBase 

database[127]. Stringent filters were applied so that only models likely to be 

sufficiently accurate for the analysis were used. 
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Figure 4.4 Structural Determinants of Caspase Substrate Specificity 
(a) Solvent accessibility (>33% surface area exposed) at each position of all known P4–P40 
positions of caspase cleavage sites and each position of all eight residue sequences containing 
aspartate in the fourth position found in PDB protein structures (control peptides). Differences 
between cleavage sites and control peptides have associated p values < 0.001 by %-square test. 
(b) Sequence logo representations of secondary structure at each position of all known P4–P40 
positions of caspase cleavage sites and each position of the control peptides described above. L, 
loop; A, !-helix; and B, "-sheet. Differences between cleavage sites and control peptides have 
associated p values < 0.001 by %-square test. 
(c) Distribution of secondary structure motifs for P4–P40 caspase cleavage sites and for the 
control peptides described above.  
(d) Localization of caspase cleavage sites in substrates relative to functional domain boundaries 
annotated in Pfam compared to localization of all eight residue sequences containing aspartate in 
the fourth position found in the human SwissProt database (control peptides). Differences 
between cleavage sites and control peptides have associated p values < 0.001 by %-square test. 

We identified 18 cleavage sites in known structures and 116 sites in 

comparative models. Depending on P4 through P40 position, between 60% to 

80% of cleavage site residues are solvent accessible, as defined by solvent 

exposure of greater than 33% total surface area (N+;-",%c8ca). Averaged across 
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P4 through P40, cleavage site residues are 76% more exposed than a reference 

control of all octapeptide sequences in the PDB containing an aspartate residue 

at the fourth position. The type of secondary structure was assigned using 

DSSP[111] for P4 through P40 positions. The frequency of secondary structure 

types at each position reveals that caspases most frequently cleave protein 

substrates at loops relative to the octapeptide reference control described above 

(N+;-",%c8cb). Surprisingly, proteolysis at !-helical regions is not uncommon. 

Binning of cleavage sites into secondary structure motifs reveals that although an 

all-loop motif is the most common secondary structure motif, the second most 

common one is an all-helix motif (N+;-",%c8cc). The finding that some cleavages 

occur at solvent inaccessible and !-helical regions likely reflects structural 

dynamics of these regions. Structural examples of cleavages identified in our 

studies are included as supplemental data ([49]; Figure S6). 

Analysis of the location of cleavage sites in caspase substrates annotated 

in the Pfam database[128] indicates that 46% of them are located within an 

annotated functional domain, 38% are located between annotated domains, and 

16% are located at protein termini, either before the first annotated domain or 

after the last (N+;-",%c8cd). This distribution is relatively similar to the distribution 

of a reference control of all octapeptide sequences in the human SwissProt 

database containing an aspartate residue at the fourth position. Thus, caspases 

do not exhibit a strong preference for cleavage of substrates either inside or 

outside functional domains. Caspase cleavage sites are also evenly distributed 

over the length of protein substrates (data not shown). 
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4.2.4. Analysis of protein-protein interactions between caspase substrates  

Upon inspection of the entire data set of caspase substrates, we noted a number 

of instances where multiple proteins along a single biochemical pathway, or in a 

single protein complex, are targeted by caspases. For a more systematic 

analysis of this property, we utilized data from three different protein interaction 

databases (HPRD, IntAct, and MINT) to create a network of caspase substrate 

protein interactors [129-131]. This network is made up solely of the substrates 

identified in our studies, reported human capase substrates, and human 

orthologs of reported rodent caspase substrates[96] but excludes the caspases 

themselves (binary interactions constituting this network are listed in [49]; Table 

S9). A total of 415 interactors and 1253 interactions were found among the 

merged human caspase substrate data set of 602 proteins, for an average of 2.1 

intra-data set interactions per caspase substrate. Ten data sets of 602 randomly 

chosen proteins from the protein interaction databases had an average of 0.2 

intra-data set interactions per protein. This indicates a 10-fold enrichment in 

protein interactions between caspase substrates relative to randomly interacting 

proteins (N+;-",%c8b) (a detailed description of this analysis is found in [49]; 

Supplemental Experimental Procedures). 
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Figure 4.5 Network Analysis of Protein Interactions between Caspase Substrates.  
(a) Enrichment in protein-protein interactions between the 602 total caspase substrates relative to 
an equally sized reference control set of protein interactors randomly selected from protein 
interaction databases. Data for the control set are represented as mean ± SD (n = 10).  
(b–k) Caspase substrate protein interaction subnetworks encompassing substrates annotated to 
overrepresented GO biological process terms relative to the entire human GO annotation. 
Substrates are labeled with gene symbols. Corrected p values, number of nodes, and number of 
edges are indicated in each case. This analysis was applied to the substrates identified in this 
work and previously reported caspase substrates[96].  
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To determine which biological processes are preferentially targeted by 

caspases during apoptosis, we used the BiNGO[132] plugin of Cytoscape[133] to 

find GO biological process terms that are overrepresented relative to the 

complete human GO annotation. We then focused on the 132 terms in the three 

deepest levels of the GO hierarchy to find the ten most overrepresented GO 

terms and the substrates annotated to those terms. This analysis yielded 

subnetworks of substrates involved in regulation of transcription, transcription 

from RNA polymerase II promoter, DNA repair, antiapoptosis, induction of 

apoptosis, apoptotic mitochondrial changes, regulation of translational initiation, 

DNA unwinding during replication, endocytosis, and cell division (N+;-",%c8bb-k). 

The regulation of transcription GO term yielded the densest subnetwork, with 188 

edges among 93 nodes (N+;-",%c8bb). In sharp contrast to the other nine GO 

terms, the cell division GO term barely yielded a network at all, with only two 

edges among 20 nodes (N+;-",%c8bk). 
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4.2.5. The N-CoR/SMRT complex is a target of caspase proteolysis during 

apoptosis 

%

Figure 4.6 Analysis of Proteolysis of N-CoR/ SMRT Corepressor Complex Components 
during Apoptosis in Jurkat Cells after Treatment with 50 mM Etoposide 
(a) Caspase substrate protein interaction subnetwork encompassing components of the N-CoR/ 
SMRT corepressor complex (N-CoR, SPEN, TBLR1, RBBP7, and HDAC7), and transcription 
factors such as retinoic acid receptor, androgen receptor, and SP1 (green, from this work; red, 
from literature; and blue, in both data sets).  
(b) Schematic representation of N-CoR/SMRT corepressor complex resident components and 
visiting interactors (red label, resident component; white label, visiting interactor; and black fill, 
target of proteolysis in apoptosis). 
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(c) Time courses for the proteolysis of procaspase-3 and DFF35/45 and for oligonucleosomal 
DNA fragmentation.  
(d) Full cleavage of N-CoR, HDAC7, SHARP, and TBLR1, and partial cleavage of RBBP7. 
(e) Full cleavage of SMRT and of HDAC-3, a previously identified caspase substrate. Black 
arrows indicate full-length proteins. Red arrows indicate expected cleavage products for cleavage 
at the sites identified in our studies (cleavage products were not detected in all cases). 

To analyze whether multiple cleavages along a pathway or in a complex 

occur at physiologically relevant rates, we focused on the portion of the 

regulation of transcription subnetwork representing N-CoR/SMRT transcriptional 

corepressor complex components and interactors (N+;-",%c8ha and b). This 

complex is involved in the recruitment of histone deacetylase activity to 

chromatin, which leads to chromatin condensation and transcriptional repression. 

Our studies identified N-CoR/SMRT complex resident components N-CoR and 

TBLR1[134], as well as additional N-CoR/SMRT complex interactors 

HDAC7[135], MINT/SHARP/SPEN[136], and RBBP7/RbAp46[137] as caspase 

substrates (MS/MS spectra of N-terminal peptides corresponding to cleavage 

sites in these proteins are included in [49]; Figures S7–S14). We probed for 

cleavage of these proteins during etoposide-induced apoptosis in Jurkat cells by 

immunoblot in order to qualitatively determine extent of proteolysis in each case. 

N-CoR, TBLR1, HDAC7, and SHARP were all fully cleaved at rates similar to 

those observed for hallmark substrates procaspase-3 and DFF45 (N+;-",%c8hc 

and d). This proteolysis also tracked reasonably well with the time course for 

DNA fragmentation. In contrast, only partial proteolysis of RBBP7 was observed, 

suggesting it to be a possible bystander substrate (N+;-",%c8hd). Although not 

detected in our proteomic studies, we predicted the N-CoR homolog SMRT[134] 

to also be a caspase substrate on the basis of high sequence similarity to N-CoR 

cleavage sites. Indeed, SMRT was fully cleaved during etoposide-induced 
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apoptosis in Jurkat cells (N+;-",%c8he). The previously identified caspase 

substrate HDAC3[138], another N-CoR/SMRT complex component[134], was 

also fully cleaved. Organization of functional domains in these proteins indicates 

that proteolytic processing at the cleavage sites identified in our studies likely 

results in inactivation of protein function by virtue of separating functional 

domains from one another (N+;-",%c8j). 

 

%

Figure 4.7 Caspases cleave resident N-COR/SMRT complex components and visiting 
interactors at regions leading to separation of functional domains 
Functional domain organization and candidate caspase cleavage sites in SMRT and TBL1 are 
similar to those indicated for the respective homologs, N-CoR and TBLR1. 

4.3. Discussion – The role of caspase cleavage in apoptosis 

4.3.1. Caspases target specific protein hubs in certain biological pathways 

One of the most striking findings of this study is that caspase substrates as a 

whole tend to physically interact with one or more other caspase substrates, 
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either in protein complexes or networks. We interpret this as an indication that 

caspases target a limited set of biological pathways to elicit programmed cell 

death, as opposed to indiscriminately targeting the entire cellular proteome. 

These data also suggest that caspases target protein complexes that are hubs 

for cell viability in essential processes such as transcription and that targeting of 

multiple components in each complex is required for a full commitment to 

apoptosis. In this regard, it is notable that active caspases are dimeric, which is 

rare for proteases. A dimer is well equipped for semi-processive activity 

consistent with targeting multiple components of protein complexes. Another 

reported example of targeted proteolysis of a protein complex is the cleavage of 

SET, HMG-2, and Ape1, three components of the SET complex, by the cytotoxic 

lymphocyte protease granzyme A[139]. Interestingly, granzyme A is also dimeric. 

4.3.2. Novel caspase substrates lead to hypotheses of apoptotic 

mechanisms 

The discovery that several components of the N-CoR/SMRT 

transcriptional co-repressor complex are targets of caspase proteolysis presents 

a remarkable example of multiple cleavages in a single protein complex or 

pathway during apoptosis. Six proteins that are part of, or interact with, the N-

CoR/SMRT complex are fully cleaved during etoposide-induced apoptosis in 

Jurkat cells, including the corepressors N-CoR and SMRT themselves. This 

finding was made possible by our large-scale discovery- oriented proteomic 

approach, as opposed to a more typical focused hypothesis-driven approach. 

Inactivation of the N-CoR/SMRT complex during apoptosis may achieve a result 
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similar to the effect of HDAC inhibitors, with decreased histone deacetylation 

leading to opening of chromatin and transcriptional upregulation of proapoptotic 

genes[140]. Interestingly, HDAC 7 has recently been implicated as a 

physiological substrate of caspase-8, with its proteolytic inactivation leading to 

upregulation of Nur77[141]. 

4.3.3. Proteolytic products alter substrate functions 

Our studies indicate that a change in function of proteins targeted by 

caspases during apoptosis must be rationalized by one or occasionally a few 

cuts per protein. We have found that caspase cleavages occur inside functional 

domains and between functional domains at approximately equal frequencies. In 

either case, relatively stable products must be produced after cleavage of the 

substrates since we detected them. Stability of these products is also consistent 

with the relatively strict P10 glycine, serine, and alanine specificity we observe for 

the cellular caspase-like activity, which 

creates fragments conforming to the N-end rule[142]. In addition to functional 

disruption of the substrate protein, such cleavages may result in products that 

function as dominant negatives. For example, in the case of the N-CoR and 

SMRT corepressors, the C-terminal cleavage products contain the CoRNR boxes 

known to interact with nuclear receptors[143]. These proteolysis products could 

thus inhibit interaction between N-CoR/SMRT and nuclear receptors. 
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4.3.4. Proteomic results represent the union of all caspase cleavage 

events in whole-cells 

By globally identifying caspase-like cleavage sites in the proteome of apoptotic 

cells, this work presents a large-scale substrate specificity profile of caspase 

processing of endogenous proteins in intact cells. Importantly, this profile is 

influenced not only by the primary structure of cleavage sites but also by solvent 

accessibility, secondary and higher order protein structure, and possibly 

posttranslational modifications of substrates[144]. Our finding that caspases 

often target proteins in complexes underscores the value of studying 

determinants of proteolysis under physiologically relevant conditions. The 

caspase-like cleavage sites identified in apoptotic Jurkat cells likely result from 

the action of several members of the caspase family of proteases. Although the 

aggregate substrate specificity of the observed caspase-like activity is most 

similar to the known specificity of executioner caspases, in vitro studies of 

caspases using peptides do not fully account for the observed cellular specificity 

[107, 123, 124]. Peptide-centric approaches are best suited for determination of 

optimal protease substrate sequence specificity, invaluable in development of 

sensitive synthetic substrates or potent inhibitors. In contrast, a protein-centric 

method such as the one presented here is best suited for characterization of 

endogenous proteolysis in biological samples and for studying structural context 

of peptide cleavage site on the native protein. 
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4.3.5. Proteomic results are input for further bioinformatics analysis 

This work indicates that the widely used primary structural determinants of 

caspase in vitro substrate specificity are insufficient to predict physiological 

caspase cleavage sites. However, the cellular cleavage sites we have identified 

significantly expand a data set that can be used to train algorithms for predicting 

cleavage sites. Indeed, a proof of principle is provided by an accurate prediction 

of caspase cleavage sites by our preliminary HMMs. In addition to demonstrating 

that caspase cleavage sites are most commonly found in solvent accessible loop 

regions, as shown for other proteases[91], our analysis also indicates that a 

number of cleavage sites appear in partially solvent inaccessible regions and !-

helices. This information could also be incorporated into predictive algorithms (for 

example, as discussed in Chapter 2). Finally, based on our protein interaction 

analysis, predictive algorithms may also benefit from scoring that considers 

physical interactions of candidate substrates with other caspase substrates.  

4.3.6. Experimental results represent a subset of all caspase cleavage 

sites 

The incomplete overlap between cleavage sites and protein substrates 

identified in our separate experiments is not uncommon for tandem mass 

spectrometric analysis of complex mixtures, in which analysis of many species, 

whether peptidic or not, precludes complete sampling[125]. The number of 

caspase substrates we have identified is thus likely smaller than the total number 

of caspase substrates in apoptotic Jurkat cells. We identified 50 of approximately 

361 previously reported human caspase substrates and 50 of approximately 307 
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previously reported human caspase cleavage sites (Figures S3C–S3E) [96]. 

Incomplete proteomic sampling of caspase substrates in our studies is likely an 

important contributor to the modest overlap between the substrates we have 

identified and those previously reported. This result furthermore demonstrates a 

role for accurate computational methods to compliment experimental findings 

through predicting new substrate cleavage sites, as discussed in Chapter 2. 

4.3.7. Proteomic results significantly expands understanding of caspase 

substrate specificity 

Although the data set of substrates we have identified is not comprehensive, it 

doubles the number of known cleavage sites in human targets of caspase-like 

proteolysis in apoptosis. The study of apoptotic pathways has important 

ramifications for identification of pathways that are critical for cellular 

homeostasis, and for development of potential anticancer therapeutics. A number 

of caspase targets are active or established drug targets for treating cancer, 

including topoisomerase II, Bcl-2, Hdm2, MEK1, and Akt, to name a few. Thus, it 

is possible that the list of substrates we have identified includes new candidate 

chemotherapeutic targets. The products of caspase proteolysis may also serve 

as useful biomarkers for assessment of chemotherapeutic efficacy, as 

demonstrated in the case of cytokeratin-18 for breast cancer[145]. Along with 

MS-based quantitation, the technology we describe should enable global 

analysis of the apoptotic phenotype as a function of time, cellular context, and 

type of induction. Finally, the technology should also be broadly applicable for 

global sequencing of proteolytic cleavage sites in other biological settings. 
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4.4. Methods in profiling of caspase cleavage sites 

4.4.1. Preparation of subtiligase and peptide ester substrate 

Subtiligase was recombinantly expressed in B. subtilis and purified essentially as 

previously described[121]. The biotinylated peptide glycolate ester was 

synthesized by solid-phase peptide synthesis as described for other subtiligase 

substrates[146]. 

4.4.2. Cell culture, induction of apoptosis, and cell lysate preparation 

Jurkat clone E6-1 (ATCC) cells at a density of 1 X 106 cells/ml were treated with 

etoposide (50 µM) for 0 or 12 hr prior to being harvested. Detergent lysates were 

prepared at a typical concentration of 2 X 108 cells/ml (approximately 20 mg/ml) 

with buffered 1.0% Triton X-100 in the presence of protease inhibitors. 

4.4.3. Sample Biotinylation, Denaturation, Reduction, Alkylation, and Gel 

Filtration  

Cell lysates were biotinylated by treatment with subtiligase (1 µM), biotinylated 

peptide ester substrate (1 mM), and DTT (2 mM). Ligation reactions were 

typically left to proceed at room temperature for 60 min. Samples were then 

denatured, reduced, alkylated, and subjected to gel filtration for removal of 

hydrolyzed peptide ester substrate. 

4.4.4. Trypsinization and Recovery of Biotinylated Peptides 

Filtered samples were subjected to solution digestion with sequencing grade 

modified trypsin (Promega). Biotinylated N-terminal peptides were captured from 
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trypsinized samples with NeutrAvidin agarose (Pierce). Captured peptides were 

recovered by treatment of agarose resin with recombinant TEV protease (1 µM). 

4.4.5. LC/MS/MS  

N-terminal peptide samples were analyzed by one-dimensional reversed-phase 

LC/MS/MS or two-dimensional strong cation exchange/reversed-phase 

LC/MS/MS. In the latter case, samples were fractionated by offline strong cation 

exchange chromatography with a 60 min gradient on a 2.1 X 200 mm 

PolySULFOETHYL Aspartamide column at a flow rate of 0.3 ml/min. Reversed-

phase chromatography of unfractionated or fractionated samples was carried out 

with a 60 min gradient on a 75 µm X 15 cm C18 column at a flow rate of 350 

nl/min. The capillary column was coupled to a QSTAR Pulsar, QSTAR XL, or 

QSTAR Elite mass spectrometer (Applied Biosystems). For each acquired MS 

spectrum, either the single or the two most intense multiply charged peaks were 

selected for generation of CID spectra. A dynamic exclusion window of 3 min 

was applied. CID spectra not included as supplemental data will be made 

available upon request. 

4.4.6. Interpretation of MS/MS Spectra 

Data were analyzed with Analyst QS software, and MS/MS centroid peak lists 

were generated with the Mascot.dll script. Data were searched against the 

SwissProt human database (March 2008 release) with Protein Prospector 5.0 

(University of California, San Francisco). Peptide tolerances in MS and MS/MS 

modes were 100 ppm and 300 ppm, respectively. The digest protease specified 

was trypsin, allowing for two missed cleavages and nonspecific cleavage at N 
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termini. An N-terminal SY modification and cysteine carbamidomethylation were 

specified as a fixed modifications, and methionine oxidation was specified as a 

variable modification. Peptides with scores & 22 and expectation values % 0.05 

were considered positively identified. False-discovery rates for peptide 

identifications were estimated with a target-decoy strategy. 

4.4.7. Cleavage site predictions 

Cleavage site prediction was assessed using 1000 jackknife trials on 473 

substrates containing 603 cleavage sequences from both our caspase substrate 

dataset and the literature substrate dataset[96]. A test set consisted of 60 

randomly selected true positive cleavage sequences and 3,000 randomly 

selected true negative peptides derived from all octapeptides in caspase 

substrates with aspartate at the fourth position that have not been shown to be 

cleaved by caspases. A training set consisted of all cleavage sequences from 

respective substrate sets not present in the corresponding test set. Hidden 

Markov models were constructed using the "hmmbuild" command of HMMer 

version 2.3.2[147] and test peptides were scored using the "hmmpfam" 

command. 

4.4.8. Structural bioinformatics 

Secondary structure analysis of cleavage sites was carried out on a set of 

experimentally determined structures from the Protein Data Bank[126] and “good 

quality” comparative models from ModBase[127]. A good quality model has 

either a N-DOPE score < -0.4[70] or is based on ( 25% sequence identity to the 

template structure with a “model score” > 0.8[148]. Such models are likely to 
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have ( 75% of their C! atoms within 3.5 Å of the correct positions[149]. The 

DSSP algorithm was used to assign the type of secondary structure of each 

cleavage site, discriminating between !-helix, "- sheet, and loop states. The 

fraction of solvent accessible surface area of each residue in the cleavage sites 

was determined by dividing the observed exposed surface area, as also 

assessed by DSSP, by the maximum exposed surface area of the residue[111]. 

Residues were considered exposed if this fraction was > 0.33. A reference 

control distribution of both solvent accessibility and secondary structure state 

was determined from the set of all octapeptides with aspartate at the fourth 

position from 15,787 experimentally determined structures with < 95% sequence 

identity to each other[126]. Domain analysis was performed using domain 

assignments from the Pfam database (July 2007 release)[128]. The reference 

control for this analysis was the set of all octapeptides with aspartate at the fourth 

found in the human Swiss-Prot database. Statistical significance of differences 

between caspase cleavage sites and reference controls were assessed using the 

%-square test. Molecular graphics were rendered using Pymol 1.0 (DeLano 

Scientific). 

4.4.9. DNA Fragmentation 

Fragmentation of whole cell DNA was analyzed by agarose gel electrophoresis 

with the Apoptotic DNA Ladder Kit (Roche). 

4.4.10. Immunoblotting 

Jurkat cells at a density of 1 X 106 cells/ml were treated with etoposide (50 µM) 

for 0, 2, 4, 8, 12, and 24 hr prior to being harvested. Whole-cell lysates were 
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prepared at a concentration of 2 X 107 cells/ml with buffered 1.0% SDS in the 

presence of protease inhibitors and sonication. Lysates were normalized to a 

protein concentration of approximately 2 mg/ml prior to analysis by SDS-PAGE 

and western blot. Utilized antibodies are listed in [49]; Supplemental 

Experimental Procedures. 

4.5. Introduction – The role of O-GlcNAcylation in the cell 

O-GlcNAcylation, the addition of a single sugar ("-N-acetylglucosamine) to serine 

and threonine residues on specific peptides regions on intracellular domains of 

proteins, is a reversible and dynamic post-translational modification (PTM). The 

O-GlcNAcylation state of proteins is responsive to numerous cellular stimuli, 

including nutrient levels and stress. The addition of this PTM is catalyzed by the 

enzyme O-GlcNAc-transferase (OGT). This enzyme is highly expressed in the 

brain, and the physiological roles of protein GlcNAcylation may be particularly 

important in the central nervous system[150]. OGT is present in dendrites, axon 

terminals and is associated with microtubules[151]. Neuron-specific deletion of 

OGT results in neonatal lethality due in part to abnormal neuronal development 

and motor deficits[152].  

Because O-GlcNAcylation modifies serine and threonine side chains, 

there is the potential for interaction between the functions of this moiety and 

those of phosphorylation; we denote this interaction “cross-talk”. Over 1,000 

proteins have been identified as O-GlcNAc modified. While the majority of these 

are also phosphorylated[153], the implications are unclear given that the majority 

of all cellular proteins are probably phosphorylated. In addition, in most cases the 
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specific peptide bearing the O-GlcNAc modification within a protein is still 

unknown. Traditional biochemical analysis has revealed numerous proteins that 

have been shown to be both phosphorylated and GlcNAcylated including c-

Myc[154], nitric oxide synthase[155], RNA polymerase II[156]synapsin I[157], 

tau[158] and amyloid precursor protein[159]. In cell culture, modulation of the 

global levels of phosphorylation is accompanied by changes in GlcNAcylation 

levels of many proteins, and vice versa[160], although the specific sites involved 

have not been reported. Obviously these responses are complex. For example, 

pharmacological inhibition of a kinase causes an increase in GlcNAcylation of 

some proteins and a decrease in others[161]. Postulation of a clear mechanistic 

basis for interpretation of these types of experiments is lacking. 

Driven by advances in affinity chromatography and the development of 

several generations of more powerful tandem mass spectrometers[162], our 

knowledge of the complexity and extent of cellular phosphorylation is still growing 

dramatically. In contrast, analogous progress in our knowledge of O-

GlcNAcylation has lagged due to less robust enrichment methodologies and 

suitable, broadly applicable and sensitive mass spectrometric methodologies.  

In this present work, we have established a workflow that permits the 

combined detection and determination of O-GlcNAcylation and phosphorylation 

sites from proteins in the same biological sample. This study has resulted in the 

identification of over 6,000 proteins, including some 1,750 sites of O-

GlcNAcylation and 16,500 sites of phosphorylation. These findings correspond to 

some 15% and 60% of proteins being O-GlcNAcylated and phosphorylated, 
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respectively. In addition, these results demonstrate that cross-talk between the 

two types of PTMs does occur at the catalytic level but is less prevalent at the 

structural level.%

4.6. Results – Characterization and analysis of O-GlcNAcylation 

modifications 

4.6.1. Abundance of O-GlcNAcylation and phosphorylation is quantified 

We have developed a workflow to sequentially enrich O-GlcNAcylated and 

phosphorylated peptides from tryptic digests of mouse synaptosomes, which also 

allows for analysis of the protein content from the PTM-depleted sample (N+;-",%

c8ea). O-GlcNAcylated peptides were isolated using three rounds of lectin weak 

affinity chromatography (N+;-",%c8eb), yielding a final pool containing 

approximately 30% GlcNAcylated peptides. Phosphorylated peptides were 

isolated using an automated TiO2-based enrichment step ([163]; Figure S1A). 

These two PTM-enriched fractions as well as the final unbound fraction 

(containing non-modified peptides) were then fractionated using high pH reverse 

phase chromatography (N+;-",%c8ec). All fractions were analyzed on an LTQ-

Orbitrap Velos mass spectrometer using electron transfer dissociation (ETD) for 

O-GlcNAc peptides and collisional dissociation (CAD or HCD) for 

phosphopeptides and others. Interpretation of these mass spectral analyses 

resulted in the identification of 2,278 unique O-GlcNAcylated and 18,173 

phosphorylated peptides. These assignments correspond to over 1,750 unique 

sites of O-GlcNAcylation and 16,500 unique sites of phosphorylation. Analysis of 

the PTM-depleted digest identified 52,208 unique peptides from 6,287 proteins, 
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all at global FDRs of less than 1% ([163]; Tables S1-3). As we have previously 

reported, our enrichment technique using the lectin wheat germ agglutinin (WGA) 

also enriches for N-GlcNAcylated peptides[164], and in our current analysis, we 

found over 450 N-GlcNAcylated peptides ([163]; Table S4). While WGA has been 

reported to be selective for GlcNAcylated peptides and proteins[165], we have 

identified over 150 peptides in the WGA-enriched fractions that appear to be 

GalNAcylated ([163]; Table S5).  

%
Figure 4.8 Mass spec workflow and primary data. 
a) Workflow schematic for the serial analysis of GlcNAcylation, phosphorylation and protein 
content (see methods).  
b) Peptide UV trace during three sequential runs of lectin chromatography. The UV shift to later 
elution times corresponds with a subsequent enrichment in the percentage or peptides that are 
GlcNAc-modified.  
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c) rUV trace of the high pH reverse phase gradient for the final GlcNAc-enriched fraction. Similar 
gradients are used to fractionate all peptides prior to analysis by LC-MS/MS. 

4.6.2. PTM-detection efficiencies allows for estimation of total cellular PTM 

counts 

A major factor affecting whether or not a given peptide is detected in a proteomic 

study is its relative abundance[166]. To estimate how efficiently we identified 

sites of O-GlcNAcylation and phosphorylation within our synaptosome 

preparation, we took advantage of the fact that we also conducted an in-depth 

protein analysis. The 6,287 proteins that we identified were divided into bins 

based upon their relative abundance as determined by calculating exponentially 

modified protein abundance index (emPAI) values for each protein[167]. We then 

calculated the percentage of proteins in each bin that were either GlcNAcylated 

or phosphorylated. For the most abundant proteins, we identified 19% and 63% 

of them to be GlcNAcylated and phosphorylated, respectively (N+;-",%c8ga and b). 

Proteins present at lower abundance were substantially less likely to be identified 

as GlcNAcylated (an average of 9.8% for the 12 lowest bins). For 

phosphorylation, this decrease was more modest. For 52% of the proteins in the 

12 lowest bins, at least one site of phosphorylation was identified. Proteins in the 

most abundant bin had an average of 0.51 and 5.9 sites of GlcNAcylation and 

phosphorylation, respectively (N+;-",%c8gc and d). The average number of sites 

identified per protein dropped off significantly with decreased protein abundance 

for both PTMs. Overall, this suggests that while we were able to identify large 

numbers of both PTMs, we were not identifying all PTM-modified peptides 

present in the sample, particularly those originating from lower abundance 
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proteins. Based upon the average modifications per protein for the most 

abundant/thoroughly characterized proteins, we now can postulate the existence 

over 3,400 O-GlcNAcylation sites and 39,000 phosphorylation sites for the more 

than 6,000 proteins identified in our synaptosome preparation. Using the same 

rationale, we estimated that we identified approximately 50% and 33% of the 

GlcNAcylation and phosphorylation sites in our sample, respectively. This result 

is another example of even large proteomic datasets finding only a subset of all 

modified peptides, as discussed in section 2.1. 

%
Figure 4.9 Percentage of proteins with given PTMs as a function of relative protein 
abundance. 
a-b) Overall abundance for GlcNAcylation and phosphorylation. The total number of unique non-
phosphorylated and non-GlcNAcylated peptides per protein was used as an estimate of protein 
abundance. The ability to detect that a protein is PTM-modified increased with protein 
abundance. 38% and 88% of the highest abundance proteins were GlcNAcylated and 
phosphorylated, respectively.  
c-d) Average number of modification sites as a function of relative protein abundance. The 
number of identified PTM-sites per protein increased with protein abundance. An average of 1.5 
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and 17 sites of GlcNAcylation and phosphorylation per protein was observed for the most 
abundant proteins. Note: because the proteins bassoon and piccolo were GlcNAcylated to a 
much higher extent than other proteins, they were not used. Including them would raise the 
average number of GlcNAcylations per protein from 1.5 to 3.1.  

4.6.3. Mass spectrometry allows for characterization of PTM-modified 

peptides  

Multiple sites of GlcNAcylation were often found close together in protein primary 

sequence, or in close proximity to sites of phosphorylation. N+;-",%c8IHa and b 

show MS/MS spectrum of two different O-GlcNAc site isomers of the peptide 

sequence, TAVKPTPIILTDQGMDLTSLAVEAR, from the protein bassoon. N+;-",%

c8IHc and d show MS/MS spectra of two PTM-analogs of the peptide 

AAVVTSPPPTTAPHK from the protein !-adducin, where the peptide is either 

phosphorylated or GlcNAcylated at serine-6. Overall, we observed 137 instances 

when the phosphorylated peptide and the GlcNAcylated analog occurred on the 

same amino acid. We observed 439 instances of peptides containing two sites of 

GlcNAcylation. An example of one such peptide, SVTDTALPGQSSGPFYSPR, 

modified at serine-1 and threonine-3, is shown in [163]; Figures S1. [163]; Figure 

S2 shows an example of an N-GlcNAcylated peptide with the sequence 

LNGTDPIVAADSKR from the Prolow-density lipoprotein receptor-related protein 

1, modified at aspargine-2. 

4.6.4. PTM sequence motifs are degenerate 

Previous analyses, based on a significantly smaller scale GlcNAcylated peptide 

dataset suggested a P-V-X-S/T motif for substrates of OGT[168]. While this motif 

does exist for a subset of modified peptides in this study, the majority of 

GlcNAcylation sites assigned here fit poorly to this motif. In fact, less than 20% of 
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the modified peptides we observe here can be explained using this motif. Using 

the present findings, N+;-",%c8IHe shows a sequence logo representation of the 

amino acids surrounding the modified serine/threonine. There is a moderate 

preference for a proline residue either two or three amino acids N-terminal to the 

site of modification (-2 or -3). There is also a slight preference for valine at the -1 

and -3 positions. Overall, GlcNAc appears to be targeted towards regions rich in 

serine/threonine residues, as evidenced by an increased frequency of these 

residues within five residues of modification sites. Such a preference for 

serine/threonine rich stretches may explain our detection of over 439 peptides 

with multiple GlcNAc modifications. This observation suggests a recognition 

mechanism in which the OGT targets a general linear motif on a protein without a 

strong consensus for the exact peptide sequence.  

To investigate motifs within our phosphorylation dataset, we used Motif-X 

to look for over-represented patterns[169]. We find that a total of 56 motifs show 

statistically significant overrepresentation ([163]; Table S5). To look more 

generally at potential motif characteristics, we grouped amino acids by chemical 

property (e.g. small hydrophobic, charged/polar side chains) as shown in N+;-",%

c8df – i. When grouped by chemical property, the most prevalent amino acids 

present around the site of GlcNAcylation are small/non-polar residues, indicating 

existence of a hydrophobic residue at the -3 position. Phosphorylation has a 

similar preference for small/non-polar residues. In addition, due to the prevalence 

of proline-directed kinases in the mammalian kinome, there was an increased 

probability of having a hydrophobic residue at the +1 position. Finally, we 
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examined those serine/threonine residues showing reciprocal modification by 

both PTMs. This subset had a motif most similar to that of the overall 

GlcNAcylation motif. We compared these motifs to the population of 

serine/threonine residues not found to be PTM-modified. Hydrophobic residues 

are most prevalent at all amino acids immediately surrounding these 

serine/threonine residues N+;-",%c8di.  
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%
Figure 4.10 PTM-modified MS/MS spectra and motif analysis.  
Peptides from the GlcNAc enrichment were analyzed using ETD, while those from the 
phosphopeptides enrichment were analyzed using CAD.  
a-b) The peptide TAVKPTPIILTDQGMDLTSLAVEAR GlcNAcylated at the 1st or 11th amino acid, 
respectively.  
c-d) The peptide AAVVTSPPPTTAPHK phosphorylated or GlcNAcylated at the serine in the 6th 
position, respectively.  
e) Sequence logo for an alignment of GlcNAcylation sites identified in this study.  
f-i) Sequence logo where individual amino acids are grouped by chemical property. “S” 
designates small/non-polar (A, G, S, T); “A” designates acidic (D, E); “B” designates basic (H, K, 
R); “H” designates hydrophobic (C, R< I, L, M, P, V, W); and “P” designates polar (N, Q, Y). 
Included are the chemical property logos for the GlcNAc motif, phospho motif, co-modified sites, 
and the background distributions. 
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4.6.5. Kinases are enriched for both types of PTMs 

We identified one site of GlcNAcylation on OGT itself; however, we did not 

identify any phosphorylation on OGT in our synaptosome preparation despite the 

protein being present at relatively abundant levels, with 28 unique peptides 

identified. Olsen and colleagues previously identified six different phosphorylation 

sites on OGT from mitotically active cells[170]. On the O-GlcNAcase, we 

identified two sites of phosphorylation and no sites of GlcNAcylation. We 

identified 280 proteins annotated with protein kinase activity in the Gene 

Ontology (GO:0004672) and 87 protein phosphatases (GO:0004721). While 66% 

of kinases were phosphorylated, only 48% of proteins in this dataset were 

phosphorylated (p < 3.8 e-11, hypergeometric distribution). In addition,16% of 

kinases were O-GlcNAcylated, in contrast to 10% of proteins overall (p < 3.6 e-4, 

hypergeometric distribution). In contrast, protein phosphatases were not found to 

be PTM-modified at rates different from the overall dataset (52% phosphorylated 

and 8% GlcNAcylated). This evidence supports the notion that O-GlcNAcylation 

interacts with phosphorylation via OGT’s regulation of (at least a subset of) 

kinases.  
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%
Figure 4.11 Structural aspects of OGT-substrate specificity  
a) Charge distribution along the surface of the OGTs catalytic domain. 
b) Structural comparison of GlcNAcylation and phosphorylation sites with a background list of 
non-modified serines and threonines.  
c) Comparison of the number of identified GlcNAcylation sites versus phosphorylation sites per 
protein for the 20% highest abundance proteins, where our ability to identify PTMs was highest. 
The size of each data-point is proportional to the square root of occurrences. Note: There were 
some 2060 proteins at the 0-0 data-point in (c). For clarity, this data-point was given a size of 20 
rather than 45.3 (20601/2). 
d) Expected versus observed sequence distances between sites of GlcNAcylation and 
phosphorylation. 
e) Expected versus observed sequence distances between pairs of phosphorylated residues. 
f) Expected versus observed three-dimensional distances between sites of GlcNAcylation and 
phosphorylation, considering residues in solved structures or high quality homology models.  

4.6.6. OGT-Substrate docking models generate hypothesis for properties 

mediating specificity 

Recently, the crystal structure of human OGT in a complex with a model 

GlcNAcylated peptide has been published[171], which established that the 

transferase makes contacts primarily with the backbone of the substrate 

polypeptide. To investigate possible tertiary structural elements that may play a 

role in substrate recognition, we explored how GlcNAcylated proteins in our 
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dataset would fit into the transferase active site using the program PatchDock, a 

molecular docking algorithm based on shape complementarity principles. This 

was followed by use of Fast Interaction REfinement in molecular DOCKing (FIRE 

DOCK)[172] to sort the docking solutions by energetic score. We docked crystal 

structures or very high quality homology models (i.e., those models with greater 

than 85% sequence identity to the template structure used for modeling) to the 

human OGT structure with and without the domain containing tetratricopeptide 

repeats (TPR). In the structure of OGT, these TPR domains have been 

hypothesized to restrict access to the catalytic site[171]. When this domain is 

removed (likely through a hinge-linke motion), a large basic patch, is revealed 

that encompasses the catalytic site of OGT (N+;-",%c8ca). A complementary 

acidic patch is present on the TPR domain that interacts with this basic patch. 

Constraints were applied to tether the GlcNAcylated residue within 10Å of the 

catalytic site in OGT. In this fashion, we docked 32 modified peptides 

characterized in this study to the OGT structure. It is interesting to note that only 

1 of the 32 tested proteins docked to OGT when the TPR domain was attached, 

but 23 of the 32 tested proteins were able to dock to OGT once the TPR domain 

had been removed and the basic patch revealed. This is further evidence to 

support the theory that the TPR domain must swing out to allow substrate 

proteins to bind OGT. 

To investigate any electrostatic interactions occurring at the protein-

protein interface of OGT and docked substrate proteins, we aligned all docked 

solutions and color-coded residues according to side chain chemical properties. 
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No obvious patterns emerged from this investigation. We then took every acidic 

and basic residue on OGT surrounding the catalytic site and identified any 

oppositely charged residues on docked substrates within 10Å of the 

corresponding residue on OGT. Some electrostatic interactions were identified 

that could possibly be helping substrate proteins bind to OGT ([163]; Figure S2A-

D).  

4.6.7. PTMs occur primarily on disordered loop regions 

To gain insight into what secondary protein structural elements may be important 

for localization of these modifications, we determined the frequency with which 

they appeared on loops, alpha helixes, or beta sheets. Relative to the distribution 

of these structural elements in general, both GlcNAcylation and phosphorylation 

moieties were enriched within loops and relatively less prevalent within sheets or 

helixes (N+;-",%c8cb). For both PTMs, the site of modification occurred on loops 

approximately 90% of the time. Additionally, we calculated to what extent these 

PTMs were found in ordered versus disordered regions of protein structure. Both 

PTMs were approximately six-fold more likely to occur on disordered rather than 

ordered regions of protein structure (N+;-",%c8cb).  

4.6.8. Respective PTM counts on individual proteins are weakly correlated 

To investigate how these two PTMs might be interacting at the level of individual 

proteins, we examined the number of phosphorylation sites per protein as a 

function of the number of O-GlcNAcylation sites per protein (N+;-",%c8cc). There 

is a rough correlation between the frequencies of these two PTMs (r2 = 0.25). 

Interestingly, the vast majority of proteins partitioned to the top left half (i.e. with a 
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phospho:GlcNAc ratio > 1). The number of GlcNAc sites identified per protein 

was roughly equal to the minimum number of phosphorylation sites identified per 

protein (particularly when the number of GlcNAc sites was > 2). However, for 

many proteins we observed extensive phosphorylation and only a limited number 

of O-GlcNAcylation sites.  

In contrast, the only heavily GlcNAcylated protein that was not also heavily 

phosphorylated was CCR4-NOT transcription complex subunit 1. While 

estimated to be relatively abundant in our preparation, as a transcription factor, 

this protein likely partitions between the nucleus and cytoplasm (for a review see 

[173]). Regulation of gene transcription is a protein functional class known to be 

preferentially GlcNAcylated[174]. A single site of phosphorylation on CCR4-NOT 

has been reported[175]. Since only a minor fraction of this protein was present in 

our synaptosome preparation, it is possible that analysis of a total cell lysate 

(rather than of a specific organelle) would reveal additional sites of CCR4-NOT 

phosphorylation. 

4.6.9. Single residues show no cross-talk between PTM types 

As noted above, in 137 instances we observed phosphorylated peptides where 

the site of phosphorylation was the same as the site of GlcNAcylation observed 

on a GlcNAcylated peptide, representing 8% of the GlcNAcylation sites identified. 

While this number of reciprocally modified sites suggests cross-talk between 

these two PTM systems, given the extensive number of phosphorylation and 

GlcNAcylation sites we identified in this study, it is expected that both PTMs 

would map to the same amino acid residue at some frequency by chance alone. 
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If these two PTM systems have evolved to cross-talk functionally, the observed 

frequency with which the same residue was found modified by both PTMs should 

substantially exceed the frequency predicted by chance alone. For a given 

protein, the number of co-modified sites expected by chance alone is a function 

of the total number of serine and threonine residues on that protein as well as the 

phosphorylation and GlcNAcylation frequencies for that protein (i.e. observed 

modification sites with respect to total modifiable serines and threonines). 

However, one potential confound of the analysis is that not all serine and 

threonine residues may be surface-accessible and hence able to be modified by 

either PTM. We therefore restricted our analysis to disordered regions of protein 

structure, which encompassed approximately 50% of a given protein sequence 

(N+;-",%c8cb). Summing the expected co-modifications across all proteins in our 

dataset resulted in a prediction of 136 instances of overlapping modification. 

Therefore, while both PTMs are preferentially targeted to disordered regions of 

protein structure, within these disordered regions we find no increased propensity 

for GlcNAcylation to occur on the same residue as phosphorylation.  

4.6.10. PTM types show very weak cross-talk within primary structure 

proximity 

Spatial proximity between sites of GlcNAcylation and phosphorylation has been 

posited as a mechanism for structural cross-talk[153]. If an organism has evolved 

to utilize such a mechanism, we reasoned that sites of GlcNAcylation should 

display an increased propensity to be localized proximal to sites of 

phosphorylation. For each site of GlcNAcylation, we calculated the distance 
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along the primary sequence to the nearest site of phosphorylation (N+;-",%c8cd). 

For each site, we also calculated the expected phosphorylation distance 

distribution. This was calculated using the native distribution of serine and 

threonine residiues on that protein and assuming that they could be randomly 

phosphorylated based upon the phosphorylation frequency of that protein (with 

all calculations limited to disordered regions). Within five amino acids of a site of 

GlcNAcylation, we observed a very subtle increase in the presence of 

phosphorylation sites, relative to expected distribution. However, we also 

investigated the distribution of phosphorylation sites with respect to each other 

on multiply phosphorylated proteins (N+;-",%c8ce). In stark contrast to the GlcNAc-

phosphorylation distribution, phosphorylation sites showed a very strong 

preference to cluster together with respect to the protein primary sequence. Such 

clustering of phosphorylation sites within a protein has been previously 

reported[176]. This minimal increase in localization of phosphorylation near sites 

of GlcNAcylation suggests that the two types of modification have not evolved to 

cross-talk via co-localization nearby in primary structure.  

4.6.11. PTM types show no cross-talk within tertiary structure proximity 

Primary sequence distance is an indirect measure of inter-residue distance within 

a protein three dimensional structure. We therefore investigated the spatial 

relationship of GlcNAc to phosphorylation with respect to protein three 

dimensional structure. Of the 466 proteins we observed with both types of PTMs, 

111 were present in ModBase with high quality three dimensional models 

covering both sites of modification. Using shells of increasing radii, we examined 
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the extent to which phosphorylation sites were found to be spatially proximal to 

O-GlcNAcylation sites. For each protein, we then calculated the expected 

number of phosphorylation sites at each distance using that protein’s 

phosphorylation frequency and the distribution of serine/threonine residues. 

Serine and threonine residues within 100Å of a site of GlcNAcylation show no 

increase in phosphorylation frequency relative to the protein overall (N+;-",%c8cf). 

This result suggests that the two types of modification have not evolved to cross-

talk via close spatial proximity. 

4.7. Discussion – O-GlcNAcylation and crosstalk with phosphorylation 

4.7.1. O-GlcNAcylation is a widespread phenomenon 

Previous investigations of protein O-GlcNAcylation have been limited in scope 

and in particular have lacked analogous characterization of phosphorylation for 

modified proteins occurring in the same biological preparations. The results 

presented here represent a 20-fold increase in the number of GlcNAcylation sites 

identified from any sample with endogenous levels of GlcNAcylation. Our 

extensive GlcNAcylation coverage of both proteins modified and sites occupied, 

coupled with over 16,500 sites of phosphorylation allowed us to systematically 

characterize GlcNAc distribution on synaptic proteins and address potential 

cross-talk between these two post-translational modifications. The increased 

coverage reported in this study is mainly due to three factors: (a) the use of more 

sensitive mass spectrometry (an Orbitrap Velos equipped with ETD 

fragmentation), (b) high pH fractionation of the GlcNAc-enriched fractions prior to 

LC-MS/MS, and (c) improved efficiency of the lectin-enrichment step. The 
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primary improvement in the LWAC step is the switch from an agarose-

immobilized lectin to one immobilized on POROS resin[177] carried out in three 

rounds of enrichment. 

4.7.2. Proteomic results demonstrate the physiological role of O-

GlcNAcylation in the brain 

UDP-GlcNAc, the terminal product in the hexosamine biosynthetic pathway, is 

used by OGT to modify its substrates. Alterations in cellular energy state that 

increase UDP-GlcNAc levels have been shown to increase global protein 

GlcNAcylation[178]. Substrate recognition is presumed to be partially regulated 

via adapter protein interactions with TPR domains on OGT. Such a mechanism 

could enable OGT to selectively modify certain substrates in response to global 

changes in UDP-GlcNAc levels[179]. GlcNAc levels in discrete subcellular 

compartments respond differentially in response to serum stimulation[180]. 

However, as OGT has thousands of potential unique protein targets in mouse, 

activation of OGT (e.g. via increased UDP-GlcNAc levels) will likely result in 

modification of many substrates in concert. 

 GlcNAcylation plays a critical role in neuronal biology. Neuron-specific 

knockout of OGT leads to early postnatal death, which suggests a role for this 

enzyme in pathways basic for survival[152]. OGT is enriched at synapses[150]. 

In addition, GlcNAc has been implicated in a diverse set of neuronal processes 

such as axonal branching and LTP at CA3/CA1 hippocampal synapses[181]. 

We examined potential biological functions of GlcNAc using gene ontology 

analysis ((334[ll#<+;)8;,/,)/3)*);=8)";). For this analysis, we used a 
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background consisting of proteins in our dataset not found to be GlcNAc modified 

and of a similar abundance distribution to the GlcNAcylated proteins. Consistent 

with GlcNAc modifications occurring on a large percentage of proteins, there 

were no GO categories in which GlcNAcylated proteins were significantly 

(greater than 50%) enriched. This suggests that in synaptic regions of the brain, 

modification by GlcNAc acts at a very broad level to regulate cellular function.  

The protein bassoon is extensively modified by both phosphorylation and 

GlcNAcylation. Bassoon is a core component of presynaptic active zones, and as 

a component of Piccolo-Bassoon transport vesicles participates in targeting of 

cargo to distal axons. The binding of Bassoon to dynein light chain is thought to 

regulate transport of these vesicles along microtubules[182]. Bassoon contains 

three functional dynein light chain binding motifs. We identified GlcNAcylation 

sites within two of these motifs, while none of them was found to be 

phosphorylated. This result indicates a potential role for GlcNacylation in 

regulation of vesicular transport.  

4.7.3. PTMs can potentially cross-talk at multiple levels 

Broadly speaking, cross-talk involving the two types of PTMs can occur via three 

distinct (yet non-mutually exclusive) mechanisms: at the structural level involving 

proteins modified by both PTMs; at the catalytic level involving regulating activity 

of one type of PTM-modifying enzyme by a second PTM; and at the sub-cellular 

localization level whereby PTM-mediated transport of one PTM regulates access 

to cellular environments containing enzymes mediating levels of the second 

PTM[183].  
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 Cross-talk has been defined as “the action of one posttranslational 

modification influencing the addition or removal of another posttranslational 

modification”[184]. In this context, one can imagine both positive and negative 

cross-talk occurring at various distances within a protein’s three dimensional 

architecture. Primary cross-talk (occurring at the same amino acid) will be 

necessarily negative when both PTMs cannot occur simultaneously at the same 

amino acid. Secondary cross-talk could occur either proximally or distally with 

respect to the initial PTM, and in principle could be both positive and negative, 

depending on the protein. In the case of proximal cross-talk, addition of the first 

PTM could obscure or complete a motif regulating addition of the second PTM, 

as is the situation for the phosphodegron motif[185]. In the case of negative 

cross-talk, the first PTM could also alter the region around the site sterically or 

electrostatically to impair addition of the second PTM. For distal cross-talk, the 

first PTM would either have to allosterically modify protein structure, or act as a 

recruitment site for an additional protein that in turn causes recruitment of the 

second PTM-modifying enzyme, or the first PTM may alter subcelluar localization 

of the protein (and thus modify protein localization with respect to enzymes 

regulating addition and removal of the second PTM). 

In this study we have identified some 137 instances of individual serine 

and threonine residues reciprocally modified by both phosphorylation and 

GlcNAcylation, increasing several-fold the number of such cases reported. 

However, in contrast to previous studies, the scope of our analysis allowed us to 

demonstrate that these 137 instances are essentially what one would expect to 
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find by chance alone given the rates with which both PTMs modify their 

substrates. As such, there is limited evidence that there was evolutionary 

pressure to increase primary cross-talk. Nevertheless, when occurring at the 

same amino acid, the two PTMs necessarily antagonize each others’ occupancy 

levels, and this is therefore primary cross-talk by definition. To engage in this 

type of cross-talk at a functionally relevant biological level would require that the 

stoichiometry of modification be sufficiently high to significantly alter the 

concentration of unmodified protein. While absolute stoichiometries of 

modification were not measured in this present study, recent reports have 

examined these values for both PTMs on a range of proteins[186]. An 

examination of GlcNAcylation stoichiometry at the protein level for seven proteins 

showed a range of 2 to 100%, although the stoichiometries at individual sites for 

multiply-modified proteins will likely be lower. Wu and collegues calculated 

phosphorylation stoichiometries for over 5000 yeast phosphorylation sites. These 

values varied from 1 to 100%, with a median phosphorylation stoichiometry of 

approximately 25%. Based upon these results, it would appear that basal 

stoichiometries for both PTMs are in a range where moderate increases in one 

PTM would be expected to result in a decrease in the stoichiometry of the other 

PTM. 

It has recently been reported that GlcNAc and phosphorylation levels are 

of similar abundance at spindles and midbodies[187]. However, without 

controlling for differential detection efficiency of the two PTMs, it is difficult to 

make such claims with a high degree of confidence. When we attempt to account 
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for this effect, we observed 11-fold more sites of phosphorylation than 

GlcNAcylation in synaptosomes. While different subcellular compartments will 

undoubtedly have different ratios of these two PTMs, our results encompass 

measurements for over 6,000 proteins, which suggests that the modification 

rates of these PTMs in the overall proteome are very similar.  

An important caveat with the current study is that it only represents a static 

snapshot of how these two PTMs distribute in synaptosomes. Mass 

pharmacological stimulation of cells in culture clearly results in several fold 

changes in phosphorylation and GlcNAcylation state of many proteins. Whether 

physiologically relevant conditions that result in changes of similar magnitude 

exist in vivo remain to be seen. Interactions between GlcNAc and 

phosphorylation may exist during dynamic changes that cannot be readily 

discerned from static snapshots. Finally, knowledge about absolute stoichiometry 

of modification, in particular at those residues found to harbor both types of 

PTMs, may help to shed light on how these PTMs might compete for sites of co-

occupancy. 

4.8. Methods in characterizing O-GlcNAc modifications 

4.8.1. Preparation of mouse synaptic membranes 

Synaptic membrane samples were purified at 4ºC, as described previously[188]. 

Briefly, brains from adult mice (strain C57BL/6J) were dissected; the cerebellum 

was removed and the brains immediately frozen in liquid nitrogen. Material from 

several animals was combined prior to the biochemical purification. The brain 

tissue was homogenized in a sucrose buffer containing a mixture of phosphatase 
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inhibitors (1 mM Na3VO4, 1 mM NaF, 1 mM Na2MoO4, 4 mM sodium tartrate, 100 

nM fenvalerate, 250 nM okadaic acid), and cleared by centrifugation. 10 ml of 

buffer was used per gram of brain. The membranous fraction was layered on a 

sucrose density and fractionated by centrifugation. Synaptic membranes were 

collected at the 1.0-1.2 M interface and harvested by centrifugation. 

4.8.2. Digestion of synaptosome samples 

30 mg of synaptosome was resuspended in 1 ml buffer containing 50 mM 

ammonium bicarbonate, 6 M guanidine hydrochloride 6X Roche Phosphatase 

Inhibitor Cocktails I and II, and 6X PugNAc inhibitor. The mixture was incubated 

for one hour at 57ºC with 2 mM Tris(2-carboxyethyl)phosphine hydrochloride to 

reduce cysteine side chains, these side chains were then alkylated with 4.2 mM 

iodoacetamide in the dark for 45 min at 21ºC. The mixture was diluted six fold 

with ammonium bicarbonate to a final ammonium bicarbonate concentration of 

100 mM and 1:50 (w/w) modified trypsin (Promega, Madison, WI, USA) was 

added. The pH was adjusted to 8.0 and the mixture was digested for 12 hours at 

37ºC. The digests were desalted using a C18 Sep Pak cartridge (Waters, Milford, 

MA, USA) and lyophilized to dryness using a SpeedVac concentrator (Thermo 

Electron, San Jose, CA, USA).  

4.8.3. Preparation of  the lectin weak affinity chromatography column 

 300 µg of POROS Al resin was reacted with 25 mg of WGA per the 

manufacturer’s instructions. Briefly, 10 mM bicine, pH 7.5 was used as the 

reaction buffer and 5 mg/ml sodium cyanoborohydride was added along with 200 

)l 2M sodium sulfate. The mixture was rotated at 21°C for 24 hours. The resin 
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was spun down and washed with 10 mls bicine, then quenched with 10 mls 200 

mM Tris/acetate buffer, pH 7.5 and 200 )l sodium cyanoborohydride (100 

mg/ml). The resin was then packed into a 2 x 250 mm stainless steel column.  

4.8.4. Enrichment of GlcNAcylated peptides using a WGA column 

 Peptides were resuspended in 50 )l buffer A (100 mM Tris pH 7.5, 150 mM 

NaCl, 2 mM MgCl2, 2 mM CaCl2, 5% acetonitrile). Peptides were run over the 

column at 125 )L/min. GlcNAcylated peptides eluted as an unresolved smear on 

the right side of the flow thru tail peak. After 1.3 ml, an additional 100 )L of 20 

mM GlcNAc in buffer A was injected to elute any remaining peptides. To 

decrease the chance of overloading the column each 10 mg portion was split into 

two 5 mg samples and run separately and the GlcNAc enriched fractions were 

combined subsequently. For subsequent rounds of enrichment, the pooled 

fractions were run together in a similar fashion as before. 

4.8.5. Enrichment of phosphorylated peptides using titanium dioxide 

Peptides were resuspended in 250 )L buffer B1 (1% TFA, 20% acetonitrile). The 

samples were run at 80 )L/min in buffer B1 over an analytical guard column with 

a 62 µL packing volume (Upchurch Scientific, Oak Harbor, WA USA) packed with 

5 µm titanium dioxide beads (GL Sciences, Tokyo Japan)[189]. The column was 

rinsed with H20, then eluted with 3 x 250 µL  saturated KH2PO4 followed by 3 x 

250 µL 5% phosphoric acid. A switching valve was used to direct these elutions 

onto a C18 macrotrap peptide column (Michrom Bioresources, Auburn, CA, USA). 

The peptides were washed with H20 then eluted with 50% acetonitrile, and this 

solution was lyophilized to dryness using a SpeedVac concentrator.  
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4.8.6. High pH reverse phase chromatography 

High pH RP chromatography was performed using an ÄKTA Purifier (GE 

Healthcare, Piscataway, NJ, USA) equipped with a 1 x 100 mm Gemini 3) C18 

column (Phenomenex, Torrance, CA). Individual GlcNAc-enriched or phospho-

enriched fractions loaded onto the column in 1% buffer A (20 mM NH4FA, pH 

10). Buffer B consisted of buffer A with 50% acetonitrile. The gradient went from 

1% B to 21% B over 1.1 ml, to 62% B over 5.4 ml, and then directly to 100% B. 

20 fractions were collected and dried down using a SpeedVac concentrator. 1 mg 

of the GlcNAC and phospho depleted flow through material was separated by 

high pH reverse phase to collect 60 fractions.  

4.8.7. Mass spectrometry analysis 

All peptides were analyzed on an LTQ Orbitrap Velos equipped with a nano-

Acquity UPLC. GlcNAc-enriched fractions were analyzed using electron transfer 

dissociation (ETD). Phospho-enriched fractions were analyzed using collision 

activated dissociation (CAD). Non-modified peptides were analyzed using HCD. 

Peptides were eluted using a 90 minutes gradient. Data was searched against 

the Uniprot Mus musculus database (downloaded January 11, 2011). To this 

database, a randomized version was concatenated to allow determination of 

false discovery rates. The cleavage specificity was set to “trypsin”, allowing for 

one missed cleavage. Carbamidomethylation of cysteine residues was set as a 

fixed modification. Acetylation of protein amino termini, oxidation of methionine 

residues, pyrolization of amino terminal glutamines, and loss of protein terminal 

methionines were set as variable modifications. For the GlcNAc search, HexNAc 
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modification of serine, threonine and asparagines was set as variable 

modifications. For the phospho search, phosphorylation of serine, threonine and 

tyrosine was set as variable modifications. Data was searched initially with a 20 

ppm tolerance of the parent ion, 0.6 Da tolerance of MS/MS measured in the ion 

trap (CAD and ETD) and 20 ppm tolerance for HCD MS/MS. The precursor mass 

tolerance was then recalibrated on a file by file basis based upon the mass 

accuracy of high scoring peptides. Final precursor mass tolerances were 

between 10 and 13 ppm. 

For the resulting output, the corresponding Unigene name, gene, and entry 

numbers were appended (http://www.ncbi.nlm.nih.gov/unigene). Uniprot entries 

were grouped by their corresponding Unigene genes and redundant peptides 

within a gene group were removed. 

For the non-modified peptide identifications, a peptide expectation value 

threshold * 0.01 was used. A protein was considered positively identified if the 

most confident peptide for that protein had an expectation value * 1e-7. This 

resulted in the identification of 6,190 Unigene entries and 58,825 unique 

peptides. At this threshold, the decoy database contained 6 entries and 8 unique 

peptides (protein FDR = 0.097%, peptide FDR = 0.013%). 

GlcNAcylation and GalNAcylation both increase the mass of the modified 

peptide by the same amount (203.08 Da), and therefore these two PTMs are 

indistinguishable in the mass spectrometer. While GlcNAcylation occurs almost 

exclusively on intracellular protein regions, the extracelluar domain of Notch is O-

GlcNAcylated[190]. Peptides were assigned as ambiguous between 
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GalNAcylated or GlcNAcylated based upon their annotation in Uniprot as located 

in extracelluar or luminal regions. These include mitochondrial proteins, which 

possess both complex carbohydrate modifications as well as O-

GlcNAcylation[191].  

4.8.8. Calculations of expected versus observed frequencies. 

The expected versus observed cross-talk between the two types of PTMs was 

determined in three different contexts. (1): For cross-talk at a single residue, we 

counted the number of times a residue was observed to be both O-GlcNAcylated 

and phosphorylated in different experiments. We also calculated the number of 

times this co-modification was expected to occur by chance as n * rg * rp, where n 

represented the number of serines and threonines in one protein and rg and rp 

were the rates of O-GlcNAcylation and phosphorylation, respectively for the 

same protein (calculated as the number of each modification over the total 

number of serines and threonines). The expected number of co-modifications 

were summed across all proteins and compared to the observed value using %2 

evaluation. (2) For cross-talk at the primary structure level, we compared the 

observed versus expected values for the number of times an O-GlcNAcyation 

event was observed at a distance of n residues from a phosphorylation, for 

different values of n along the protein sequence. Thus, for each O-GlcNAcylation, 

we counted the number of phosphorylations at distance n to create a distribution 

of observed distances. Expected distances were calculated as in (1), limiting the 

serines and threonines to those also at distance n. Values of n were binned in 

intervals of five to create a larger sample size. Expected values were compared 
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to observed values at each bin interval using %2. (3) For cross-talk at the spatial 

proximity level, we compared the expected and observed values for the number 

of times an O-GlcNAcylation was observed within n Å of a phosphorylation, for 

different values of n. Calculations proceeded as in (2). Analysis was limited to 

those modifications falling in a solved structure or good quality homology model 

of the protein. In all co-modification analysis, we limited the serines and 

threonines to those falling in disordered regions only. 

4.8.9. Structural Analysis of PTMs 

For proteins having an experimentally solved structure or good quality homology 

model in ModBase[108], secondary structure assignments for peptides were 

created by DSSP[111]. For proteins with no structure information available, 

secondary structure was predicted using PSIPRED[112]. For all proteins, 

disorder was predicted using the DISOPRED algorithm[113]. 
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Chapter 5. Host pathogen protein interactions 

 Pathogens have evolved numerous strategies to successfully invade their 

hosts, acquire nutrients, and evade their immune defenses[192]. These 

strategies often involve direct interactions between host and pathogen 

molecules, including the formation of protein complexes[28]. Much remains to be 

learned about the network of interactions between host and pathogen proteins 

and the specificity mediating these interactions. If the intraspecies interaction 

network of Saccharomyces cerevisiae is a guide, several independent large-

scale studies are likely required for a comprehensive mapping of host–pathogen 

interactions[193]. 

 Interactions between host and pathogen proteins are typically studied using 

traditional small-scale biochemical and genetic experiments, which focus on one 

protein or pathway at a time. Large-scale interaction discovery methods, such as 

tandem affinity purification and yeast– two-hybrid experiments, enable more 

comprehensive detection but at the cost of significant false-negative and false-

positive error rates[194]. Computational methods have demonstrated utility in 

improving the coverage, accuracy, and efficiency of identifying protein–protein 

interactions in combination with experimental data sets[195, 196] and are likely to 

similarly complement large-scale experimental efforts to characterize host–

pathogen interaction networks. 

 As discussed extensively in section 1.4, interactions involving peptides are 

of particular interest in these contexts. Peptide-mediated interactions are 
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prevalent in host signaling networks, which are often disrupted or mimicked by 

pathogens to carry out the processes described above. Thus, both protein-

protein and protein-peptide interactions are important in pathogenesis. This 

chapter examines both of these types of interactions from a specificity 

standpoint. First, an application of a statistical method to predict protein-protein 

interactions is presented in a cross-species context. These interactions can be 

between two proteins, but a subset involves protein-peptide association. Second, 

a specific examination is conducted of protease inhibition by the P. falciparum 

falcipain-2 prodomain, which is autoinhibitory as well as selective for certain 

human cathepsins. Together, these studies demonstrate the predictive and 

explanatory aspects of protein-peptide interaction specificity in pathogenic 

contexts. 

 

5.1. Introduction – High throughput prediction of host-pathogen 

interactions 

Genome sequencing has changed the scale and diversity of biomedical problems 

amenable to investigation as complete sequences are now available for many 

species, including human and a number of biomedically relevant microbes[197]. 

Functional insights into the proteins encoded by these genomes are emerging 

from technical advances such as three-dimensional structure determination and 

the detection of genetic and physical interactions[198, 199]. However, in general, 

the wealth of genomic information available for both human host and pathogens 

remains unmined due to the lack of whole-genome protocols that can predict 
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host–pathogen interactions. 

 Here we hypothesize that host–pathogen protein interactions, knowledge of 

which is severely lacking, can be inferred from the growing body of 

experimentally observed interactions, which is reaching saturation in some 

species. We previously showed that this approach can be useful in predicting 

intraspecies interactions[200]. We now provide three additional lines of evidence 

that suggest the hypothesis is a valid one and that the developed protocol can 

predict functionally relevant host–pathogen protein interactions. The protocol 

identifies pairs of host and pathogen proteins with similarity to proteins known to 

interact, assesses the likelihood of interaction based on structural modeling, and 

then identifies those pairs with a greater chance of encounter as suggested by 

their subcellular location and expression properties. The result of the protocol is 

an enriched candidate set that is suitable for subsequent experimental study. We 

have applied the protocol to 10 human pathogens, including species of 

mycobacteria, kinetoplastida, and apicomplexa, which are responsible for 

‘‘neglected’’ human diseases. These pathogens cause tropical diseases with a 

significant global burden, infecting over 1 billion people and incurring over 1 

million annual deaths (World Health Organization 2003). 

 We first describe the protocol, detailing the data sources, the computations 

used, and its performance on intraspecies protein interactions in S. cerevisiae. 

We then present the predictions made for the 10 pathogens and assess them by 

three independent computational procedures. We then discuss the observed 

performance of the method and potential future improvements. We present 
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several specific predictions that warrant experimental follow-up. Finally, we 

conclude by discussing the implications of these results for understanding the 

molecular mechanisms of pathogenesis. 

5.2. Results – Generation of interaction predictions in neglected diseases 

The protocol begins with the target set of host and pathogen protein sequences 

(N+;-",%b8I). 

%

Figure 5.1 Host-pathogen interaction prediction protocol.  
The protocol begins with the set of host and pathogen proteins. Sequence matching procedures 
are then used to identify similarities between the host or pathogen proteins and proteins with 
known structure or known interaction partners. A structure-based statistical potential assessment, 
or a sequence similarity score in the absence of structure, is then used to predict interacting 
partners. Finally, this set of potential interactions is filtered using the biological contexts of the 
host and pathogen proteins and a network-level filter. The protocol reduces the number of 
potential P. falciparum–human protein interactions by about five orders of magnitude (Table 5.2). 
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5.2.1. Detecting sequence and structure similarities and identifying pairs 

of proteins with similarity to known complexes 

Similarities were first detected between the target sequences and components of 

known protein complexes, using an automated comparative protein structure 

modeling pipeline. The fraction of the pathogen proteomes for which a suitable 

interaction template was identified varied from 16% of Trypanosoma cruzi 

sequences to 25% of Cryptosporidium parvum sequences, while the human 

proteome coverage was 34% (9#.*,%b8I). 

%

Table 5.1 Interaction template and biological data coverage of the genomes analyzed.  
Our automated comparative protein modeling pipeline MODPIPE was used to detect sequence 
and structure similarities to proteins in known complexes. Biological coverage refers to those 
proteins for which at least one type of annotation was available ([201]; Table S1). 

 Pairs of host and pathogen proteins that each had detectable similarity to 

components of a known interaction were then identified. The number of these 

pairs varied widely among the pathogens, with the prokaryotes having far fewer 
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pairs than the eukaryotes (9#.*,%b8f, column 2). For example, 43,528 host–

pathogen protein pairs were identified for Mycobacterium tuberculosis (3,954 

sequences, 18% template coverage), while 160,952 pairs were identified for 

Cryptosporidium hominis with approximately the same proteome size and 

interaction template coverage (3,886 sequences, 20% template coverage). 

Among the eukaryotic pathogens, the number of pairs varied approximately in 

proportion to the proteome sizes (9#.*,%b8I and 9#.*,%b8f). 

%

Table 5.2 Potential interaction set reduction by assessment and filtering.  
The potential interactions meet the structural assessment or sequence alignment significance 
criteria. These interactions are then filtered so that they meet at least one pathogen biological 
criterion, one host biological criterion, and are based on a template that is used for less than 1% 
of the total number of predictions in a given host–pathogen network. The numbers in parentheses 
represent the number of individual host/pathogen proteins involved in the interactions. 

5.2.2. Assessing the sequence or structural basis of the potential 

interactions 

Next, the sequence or structural basis of interaction between the identified pairs 

was assessed using sequence similarity and statistical potential scores, 

respectively. This step identified ~5% of the host–pathogen pairs identified in the 

previous step as possible interacting partners (9#.*,%b8f), almost all (99.5%) of 

which were based on structural templates. The minimal contribution of sequence-

based templates to the predictions is due to the stringent joint sequence identity 

threshold ((80%) required to reliably transfer interactions[202, 203]. The 



! %(&!

reduction in the number of pairs by the assessment step was greatest for the 

Toxoplasma gondii–human pairs, of which only 3.4% passed the scoring 

thresholds. As expected from the number of host–pathogen protein pairs with 

interaction templates, fewer predictions were made for the prokaryotic than for 

the eukaryotic pathogens. 

5.2.3. Applying biological and network-level filters 

The interactions were then filtered by the biological context of their component 

proteins, such as life-cycle stage and tissue expression, and by network-level 

information regarding the template usage frequencies. Interactions that met at 

least one host and one pathogen biological criterion were considered to pass the 

biological context filter (9#.*,%b8I and nfHIoF TableS3). Next, the network-level 

filter flagged those predictions based on templates that were used for more than 

1% of the total predictions, as these predictions exhibited a low level of 

interaction specificity. For example, many pairs of G-protein subunits ! and " 

were predicted to interact based on the crystal structure of the G-protein Gi 

heterotrimer (Protein Data Bank [PDB] 1GG2). 

 The filters resulted in a wide range of reductions in predicted interactions 

(9#.*,%b8f), due to the different levels of biological annotation used for the 

genomes. For example, Plasmodium falciparum had the highest biological 

annotation coverage (88%) and, as expected, the highest fraction of interactions 

that passed the biological and network-level filters (13%). This final set of P. 

falciparum–human interactions is five orders of magnitude smaller than the initial 

set of all possible protein pairs. The low coverage of biological annotation for 
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other pathogens was also evident, as filtering the predictions for two pathogens, 

Trypanosoma brucei and T. gondii, resulted in removal of all interactions. The 

type of annotation available for the pathogen proteins is particularly important. 

For example, both T. brucei and T. cruzi have biological annotation for 45% of 

their proteomes; however, filtering results in zero interactions for the former and 

914 for the latter. This difference occurs because life cycle annotation is available 

for 1930 (10%) of T. cruzi proteins but only 120 (1%) of T. brucei proteins (nfHIoF 

Table S3). The majority of the biological annotations are GO terms that do not 

pass the filtering criteria. 

5.2.4. Assessment 

Next, the predictions were assessed to characterize the coverage and accuracy 

of the method. Coverage refers to the fraction of interactions that are accessible 

by the method, and accuracy refers to the fraction of the covered interactions that 

were correctly identified. The structure- and sequence-based prediction methods 

have both been previously benchmarked in the context of intraspecies 

interactions [200, 202], and the results are briefly described in Section 5.4. In 

contrast to interspecies interactions, large experimental data sets of thousands of 

intraspecies interactions are available and ideal for benchmarking prediction 

methods. These benchmarking results remain informative in the host–pathogen 

context as the underlying biophysical chemistry remains the same. We assessed 

the quality of the protocol in the host–pathogen context in three additional ways. 
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5.2.5. Assessment I: Comparison of predicted and known host–pathogen 

protein interactions 

The predicted interactions were first compared with the set of known host–

pathogen interactions (nfHIoF Table S1), which although too small to assess the 

method rigorously, still allow insight into the performance of the method. Our 

protocol recovered four of the 33 host–pathogen protein interactions published in 

the literature for the 10 pathogen species. Other known interactions were not 

identified because of the lack of available templates. None of these latter cases 

was due to incorrect assessment by our method. As expected, this result 

suggests that currently, a limitation of the protocol’s coverage is the restriction to 

interactions with an appropriate template. 

 No interactions have been previously identified for three of the species we 

studied, Leishmania major, C. hominis, and C. parvum. The method recovered 

67% (n = 2) of the known T. brucei–human interactions. One of these 

interactions, an ornithine decarboxylase (ODC) interspecies dimer whose 

physiological relevance has not been established, was later filtered out of the 

predictions because it was based on a homodimer template. For the species with 

the most observed interactions, P. falciparum and T. cruzi, the method recovered 

9% (n = 1) and 8% (n = 1) of the previously observed interactions, respectively. 

In both cases, the interactions were protease– protease inhibitor interactions. 

5.2.6. Assessment II: Comparison to gene expression and essentiality data 

Next, we compared our prefiltered predictions to genome-scale data sets 

describing pathogen genes involved in M. tuberculosis infection and human 
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genes involved in L. major, M. tuberculosis, and T. gondii infections. These 

comparisons were performed because genomic studies are, so far, the only 

source of large-scale data sets describing host–pathogen interactions, even 

though only weak correlation has been observed between physical protein 

interactions and expression data[204, 205]. 

 Previous studies have identified 194 M. tuberculosis genes that are 

essential for in vivo infection[206] and 286 genes that are up-regulated in 

granuloma, pericavity, or distal lung infection sites compared with in vitro 

conditions[207]. Comparison of these two sets of genes to the set of M. 

tuberculosis proteins predicted to interact with human proteins revealed minimal 

overlap (nfHIoF Table S2). In fact, only one gene occurs in both experimental data 

sets and our predictions: Rv3910 (GI 15611046), a probable conserved 

transmembrane protein. The overlap of our predictions with the set of genes 

upregulated during infection (23 genes) is greater than that between the two 

experimental sets of up-regulated genes and genes essential for infection (18 

genes). 

 Previous studies have identified human genes that are differentially 

regulated in response to a variety of protozoal infections, in particular within the 

macrophage and dendritic cells of the immune system[208]. The human proteins 

predicted to interact with L. major, M. tuberculosis, and T. gondii include, 

respectively, 231, 78, and 169 proteins encoded by genes differentially 

expressed in macrophages and dendritic cells upon infection by these pathogens 

(nfHIo; Table S2B), [208]. 
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5.2.7. Assessment III: Functional overview of predicted interactions 

%

Table 5.3. Functional annotation of human proteins predicted to interact with M. 
tuberculosis.  
The 10 (a) cellular component, (b) biological process, and (c) molecular function annotation terms 
that are most enriched in the set of human proteins predicted to potentially interact with M. 
tuberculosis proteins, compared with the background, are listed. The analysis was done before 
application of the biological filters to prevent bias in the enriched terms. The enriched terms were 
identified and their significance computed by GO::TermFinder using a Bonferroni correction[209]. 

Finally, we evaluated the functional relevance of the predicted interactions by 

searching for functional annotations of proteins that were significantly enriched in 

the human proteins predicted to interact with pathogens, compared with the 

whole human proteome. This analysis was done before the application of the 

biological filters to prevent introduction of filter bias into the functional profile of 

the predictions. The human proteins predicted to interact with pathogen proteins 

were significantly enriched in several gene ontology terms (9#.*,%b8d). For 
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example, the human proteins predicted to potentially interact with M. tuberculosis 

are enriched in cellular component terms that make sense in light of known 

mechanisms of tuberculosis infection including immunological synapse (7.7-fold 

enrichment, P = 10-3), T-cell receptor complex (8.5-fold enrichment, P =1.6 X 10-

2), and autophagic vacuole (17.1-fold enrichment, P = 3 X 10-4). These terms all 

reflect the known immunobiology of this pathogen, which elicits a T-cell response 

and was recently found to be eliminated through autophagy[210-213]. Similarly, 

the human proteins predicted to interact with P. falciparum proteins are enriched 

in terms such as extrinsic to plasma membrane (5.2-fold enrichment, P = 9.2 X 

10-15) and homophilic cell adhesion (4.2-fold enrichment, P = 2.8 X 10-21). 

 The enriched functional terms that have not been previously implicated in 

infection represent either novel biological insights or false positives. 

Distinguishing between these two possibilities requires experiments beyond the 

scope of this paper. However, some of the enriched terms suggest that false 

positives could be identified and discarded if they arise from conservation of core 

cellular components. For example, the conservation of core translation 

machinery across all divisions of life[214] could result in erroneously predicted 

interactions causing the enrichment in the human–P. falciparum network for 

eukaryotic translation elongation factor (7.4-fold, P = 8.4 X 10-4). Similarly, terms 

such as pyruvate deydrogenase activity (25.6-fold, P = 2.2 X 10-2) and asparate-

tRNA ligase activity (24.4 fold, P = 5.3 X 10-5), which are enriched in the human 

proteins predicted to interact with M. tuberculosis, may also be false positives 

caused by the conservation of core cellular components, and could be filtered. 
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5.3. Discussion – Confidence and limitations in interaction predictions 

We presented a protocol that reduces the number of host–pathogen protein pairs 

to an experimentally tractable set of predicted interactions, by a series of 

assessments: (1) identifying template interactions; (2) assessing the putative 

interaction, using structure if available; and, finally, (3) filtering using biological 

context and network-level information. For example, the procedure resulted in a 

five order of magnitude reduction in the number of possible human–P. falciparum 

protein interactions. Although it is not possible to directly assess the enrichment 

of true interactions in the predictions, previous assessment in the context of S. 

cerevisiae interactions found an enrichment of about two orders of magnitude. In 

addition, assessment of the method by comparison to known host–pathogen 

interactions (nfHIoF Table S1), genomics data (nfHIoF Table S2), and functional 

analysis (9#.*,%b8d) suggests that the method is capable of enriching for 

functionally relevant interactions. We now discuss the observed performance of 

the method, present several specific predictions and their support in the 

literature, and close by discussing future developments and applications of the 

method to characterize host–pathogen and other types of interspecies 

interactions. 

5.3.1. Limitations in coverage 

 

The performance of the method can be characterized by two factors: coverage, 

describing the fraction of all interactions covered by the method, and accuracy, 

describing the fraction of the covered interactions that were correctly identified. 
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The main factor that limits the coverage of our method is that, like all comparative 

approaches, it depends on previous experimental observations of similar 

interactions. Despite the limited coverage, reflected in the low number of known 

interactions recovered by the method (four of 33), the availability of structure 

enables a more rigorous assessment of the interactions than that allowed by 

sequence alone[200]. As experimental efforts identify more interactions and 

further characterize the biology of host and pathogen proteins, the increased 

number of templates and expanded biological context data will increase the 

coverage and accuracy of our method, respectively. 

 Another factor that limits the coverage of our method is that the template 

identification procedure is primarily restricted to domain-mediated interactions, 

although peptide-mediated interactions are also known to contribute to protein 

interaction networks[215]. Peptide motifs that mediate protein interactions are 

being identified through a combination of computational and experimental 

methods[216, 217], and application of these motif-based methods will likely 

expand the coverage of host–pathogen protein interactions. 

5.3.2. Errors in accuracy 

Several factors affect the accuracy of the method. These include errors in the 

comparative modeling process[218], the coarse-grained nature of the statistical 

potential used to assess the interface residue contacts[200], and consideration of 

only interactions between individual domains (i.e., incorrectly predicting 

interactions that are unfavorable in the context of the full-length proteins). While 

these three sources of error affect both intra-species and host–pathogen protein 
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interactions, an additional type of error uniquely affects inter-species interactions. 

As the pathogen and host species are both eukaryotic for eight of the 10 

pathogens studied, many of the predicted interactions are between core cellular 

components, such as translation machinery, metabolic enzymes, and ubiquitin-

signaling components (9#.*,%b8d). Although these interactions could potentially 

occur if the host and pathogen proteins encountered one another, their 

availability for such an encounter is not guaranteed. We used biological data, 

such as known exported pathogen proteins and known host–tissue targets, to 

address the ‘‘accessibility’’ issue. However, the precise spatial and temporal 

locations of these proteins are generally difficult to characterize. We expect this 

last source of errors to be diminished when the evolutionary distance between 

pathogen and host is greater, such as between bacterial or viral pathogens and 

their human hosts. 

5.3.3. Specific examples of validated predictions 

%

Figure 5.2 Example of a validated prediction: falcipain-2–cystatin-A.  
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(A) An interaction was predicted between falcipain-2 and cystatin-A based on a template structure 
of cathepsin-H (orange) bound to cystatin-A (teal) (PDB 1NB3). (B) The structure of falcipain-2 
bound to chicken cystatin was recently experimentally determined (PDB 1YVB). Although the 
interaction is experimentally verified, the question remains whether it would occur in vivo. Figures 
were generated by PyMOL (http://www.pymol.org). 

We now describe two examples of predicted interactions that have been 

previously observed experimentally. We predicted several interactions between 

proteases and protease inhibitors, the best scoring of which occurred between P. 

falciparum falcipain-2 protease and the human cystatin-A inhibitor based on a 

template structure of human cathepsin-H bound to cystatin-A (PDB 1NB3) 

(N+;-",%b8f). This prediction was recently experimentally validated, with chicken 

cystatin (PDB 1YVB) (N+;-",%b8f; [219]). This crystal structure was not present in 

our template set, because it has not yet been classified by the SCOP domain 

annotation database[220]. Thus, the predicted complex was a true blind 

prediction. The experimentally determined structure provides direct validation of 

our prediction, although it does not demonstrate relevance to infection. However, 

the known involvement of cysteine proteases in malaria pathogenesis and 

experimentally established cross-talk between host and pathogen protease and 

inhibitors[221] suggests that the interaction may play a role during infection. This 

case is an example where structure is important both in making the prediction 

and in highlighting its potential relevance as a potential pharmacologic target. 

Falcipain-2 and cathepsin-H share only 34% sequence identity, beyond the 

threshold of the sequence-based method required for a reliable prediction of 

interaction[202]. However, comparison of the experimental falcipain-2–cystatin 

structure with the template cathepsin-H–cystatin-A structure reveals a high 

degree of structural similarity at the interface (C-! RMSD of 0.43 Å). In addition, 
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this structure can be used to search for small-molecules that may disrupt or 

mimic the target interaction. Falcipain-2 is discussed extensively later in this 

chapter. 

 We predicted several interspecies enzyme dimerizations, such as T. brucei 

ornithine decarboxylase (ODC) binding to human ODC. Functional dimerization 

of parasitic and host enzyme subunits have been previously observed, such as in 

T. brucei and mouse ODC[222]. Although both host and pathogen ODCs have 

been implicated in viral and protozoal infections[223-225], the in vivo relevance 

of these homodimer-like complexes is not clear, and thus, we generally removed 

predictions based on homodimer sequence templates or template structures of 

subunits classified in the same domain family. This restriction also facilitates 

visualization and analysis of the networks, although some true positive 

predictions may be lost. 

5.3.4. Specific examples of predicted interactions 

We now describe two specific examples of predicted interactions whose indirect 

support in the literature warrants experimental follow-up. Two additional 

examples are discussed in nfHIo; Supplemental material. 
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Figure 5.3 Examples of predicted interactions.  
(A) P. falciparum thrombospondin-related adhesive protein (TRAP) was predicted to interact with 
human Toll-like receptor 4 (TLR4) based on a structure of glycoprotein IBa (orange) bound to von 
Willenbrand factor (teal), respectively (PDB 1M10). (B) M. tuberculosis probable exported protein 
Rv0888 was predicted to interact with actin based on a structure of DNAse-I (orange) bound to 
actin (teal), respectively (PDB 1ATN). Figures were generated by PyMOL (http:// 
www.pymol.org). 

We predicted that P. falciparum thrombospondin-related adhesive protein (TRAP, 

SSP2, PF13_0201) interacts with human Toll-like receptor 4 (TLR4, 

ENSP00000346893), based on a template structure of Glycoprotein IBa bound to 

Von Willenbrand factor (PDB 1M10) (N+;-",%b8dA; [226]). TRAP, an immunogenic 

protein used as a component of several vaccine candidates[227], was also 

predicted to interact with three other leucine-rich repeat proteins; however, the 

interaction with TLR4 had the most support from the biological filters. Single 

nucleotide polymorphisms have been observed in TLR4, a ‘‘pattern recognition 

module’’ involved in the innate immune response. These mutations are 

associated with an increased severity of malaria, although they fall outside of the 

region that was modeled here[228]. Analysis of TRAP sequence data from a 

Gambian P. falciparum population indicates that the gene is under strong 
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selection for variation in the sequence, with peaks in this variation occurring in 

the A-domain that we predicted to interact with TLR4[229]. The possible 

encounter of these two proteins is also supported by the known expression of 

TRAP on the parasite surface during the sporozoite stage of the plasmodium life 

cycle and of TLR4 in the liver. While alternative explanations are possible, the 

biological evidence and the structural predictions made here suggest that a 

TRAP–TLR4 interaction may play an in vivo role in infection. 

 We predicted that M. tuberculosis probable-exported protein Rv0888 (GI 

15608028) may interact with several human !-actins (ENSP00000295137) 

based on the template structure of DNAse I bound to actin (PDB 1ATN) (N+;-",%

b8dB; [230]). The interaction between DNAse and actin is known to be strong 

enough to depolymerize actin [230], and so the predicted interaction could be 

involved in the observed M. tuberculosis rearrangement of host actin[231], which 

has been hypothesized to be triggered by a secreted pathogen factor[232]. 

5.3.5. Future developments 

The identification of protein–protein interactions is an important problem that has 

inspired the development of numerous algorithms to predict them[233]. Several 

of these methods rely on information such as genomic proximity, gene fission/ 

fusion, phylogenetic tree similarity, gene co-occurrence, colocalization, co-

expression, and other features that only make sense or are currently feasible in 

the context of a single genome. However, comparative approaches that infer 

interactions based on previously observed interactions remain applicable to 

host–pathogen protein interactions, including the sequence and structure-based 
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methods we have used here[200, 202]. Other applicable methods include those 

that identify peptide motifs[215] or sequence signatures[234] that mediate 

interactions. 

 Another possible extension of the presented method that may aide in the 

interpretation of the predictions is an analysis of the genetic polymorphisms at 

loci encoding for the proposed interacting proteins. If the host gene exhibits 

polymorphisms associated with infection severity or the pathogen gene exhibits a 

pattern of polymorphisms suggesting antigenic variation, for example, human 

TLR4 and P. falciparum TRAP (N+;-",%b8dA), there may be greater reason to 

believe that the interaction is relevant to infection. 

5.3.6. Potential impact 

We developed a computational whole-genome method to study potential host–

pathogen protein interactions and presented four lines of evidence that suggest it 

is a valid approach to enrich for these interactions. The method, like any 

experimental or computational method, has limitations in coverage and accuracy, 

as we have quantified to the best of our ability. Despite these limitations, our 

resource is valuable as it is the first attempt to provide large data sets enriched 

for host–pathogen protein interactions. 

Knowledge of host–pathogen interactions is useful in the development of 

strategies to treat and prevent infectious diseases. These interactions may serve 

as pharmacologic targets, both for traditional drug discovery efforts aimed at 

disrupting individual pathogen proteins and for small molecule or antibody 

inhibitors of protein–protein interactions. The proposed interactions also highlight 
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pathogen proteins that may be potential immunization targets. 

 We have also applied our method to 10 pathogens involved in human 

infectious diseases. The predictions are available on the Internet (see Section 

6.6 for full details) and can be viewed and filtered according to criteria of interest 

to an investigator, such as particular host tissues or pathogen life-cycle stages. 

We hope that the predictions serve the larger biomedical research community in 

moving toward the goal of treating infectious diseases, in the ‘‘open source’’ 

model of the Tropical Disease Initiative, a decentralized, Web-based, community-

wide effort where scientists from laboratories, universities, institutes, and 

corporations work together for a common cause (http://www.tropicaldisease.org) 

[235]. In closing, we expect our method to complement experimental methods in 

providing insight into the basic biology of host–pathogen systems, as well as 

other interspecies relationships that fall elsewhere on the mutualism–parasitism 

continuum. 

5.4. Methods used to predict host-pathogen interactions 

The protocol began with the host and pathogen protein sequences: 

CryptoDB[236], GeneDB[237], OrthoMCL-DB[238], PlasmoDB[239], 

ToxoDB[240], TubercuList (http://genolist.pasteur.fr/TubercuList/) (9#.*,%b8I). 

5.4.1. Detecting sequence and structure similarities 

First, protein structure models were calculated for all sequences using 

MODPIPE, our automated software pipeline for large-scale protein structure 

modeling[241]. MODPIPE relies on MODELLER[70] for its functionality and 

calculates comparative models for a large number of sequences using different 
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template structures and sequence-structure alignments. Sequence-structure 

matches are established using a variety of fold-assignment methods, including 

sequence–sequence[242], profile–sequence[243], (BUILD_PROFILE, a module 

for calculating sequence profiles in MODELLER), and profile–profile 

alignments[244] (PROFILE_SCAN, a module for fold-assignment using profile–

profile scanning in MODELLER). Increased sensitivity of the search for known 

template structures is achieved by using an E-value threshold of 1.0. Ten models 

are calculated for each of the sequence-structure matches to achieve a 

reasonable degree of conformational sampling[70]. The best scoring model for 

each alignment is then chosen using a statistical potential[70]. Finally, all models 

generated for a given input sequence are evaluated for the correctness of the 

fold using a composite model quality criterion that includes the coverage of the 

model, sequence identity of the sequence-structure alignment, the fraction of 

gaps in the alignment, the compactness of the model, and statistical potential Z-

scores[70, 245, 246]. Only models that are assessed to have the correct fold 

were included in the final data sets. The models have been deposited in our 

database of comparative models, MODBASE[127], as publicly accessible data 

sets. 

 The detected structural similarities were then used to assign structural 

domain boundaries to the modeled sequences, according to the SCOP 

classification system[220], as previously described[200]. Briefly, domain 

boundaries were assigned to the target proteins when the putative domain 

contained at least 70% of the residues in the template domain. If the template-
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target domain similarity was more than 30% sequence identity, the target domain 

was classified at the family level of the template’s domain classification. If the 

sequence identity was more than 30% and a reliable model was built or if the 

sequence identity was more than 30% but MODBASE deemed only a reliable 

fold assignment, the superfamily was assigned. The remaining target domains 

received the template domains SCOP classification at the fold level, and were 

not used in the interaction prediction. 

5.4.2. Identifying pairs of proteins with similarity to known interactions 

and assessing the sequence or structural basis of the potential 

interactions 

Next, pairs of host and pathogen proteins were searched for similarity to known 

interactions collected in PIBASE[247] and IntAct[130]. PIBASE (release 1.69) is a 

comprehensive relational database of structurally defined protein interfaces that 

currently includes 209,961 structures of interactions between 2613 SCOP 

domain families. As previously described, these structures were clustered and 

then filtered to remove potential crystallographic artifacts, resulting in a set of 

template binary interfaces of 5275 structures[200]. IntAct (release 2006-08-18) is 

an open source database of protein interaction data and contains 63,276 binary 

protein interactions[130]. 

 Putative interactions between pairs of host and pathogen proteins that 

contained domains classified in the same superfamily as those previously 

observed to interact (PIBASE) were assessed by alignment of their comparative 

structure models onto the corresponding domains of the template complexes and 
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by subsequent assessment of the putative interface by a statistical potential, as 

previously described[200]. Briefly, pairs of residues from the host and pathogen 

protein models whose side chains occurred within a distance of 8 Å of one 

another were identified and their scores summed according to a statistical 

potential derived from binary interface structures in PIBASE. A Z-score was 

calculated to assess the significance of this raw statistical potential score, by 

consideration of the mean and standard deviation of the statistical potential 

scores for 1000 sequences where all amino acid residues in the target domain 

sequences were shuffled. 

 The ability of the statistical potential to discriminate a set of 100 true protein 

interfaces from a background set of 100,000 sequence-randomized decoys was 

previously assessed using a receiver-operator-curve (ROC) analysis[200]. This 

ROC analysis exhibited an area under the curve (AUC) of 0.993 and suggested 

an optimal statistical potential Z-score threshold of 1.7, which gave true-positive 

and false-positive rates of 97% and 3%, respectively. Interactions predicted 

based on template complexes formed by protein domains from the same SCOP 

family were omitted from the analysis, because these predictions primarily 

consisted of multimeric enzyme complexes formed by both host and pathogen 

proteins, as well as core cellular components such as ribosome subunits and 

proteasome subunits. 

 Sequence profiles, built by MODPIPE, were searched for proteins that 

participate in binary protein interactions (IntAct) [130]. Host and pathogen 

sequences were predicted to interact when each aligned to at least 50% of t he 
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sequence of members of a template complex with a joint sequence identity of 

(sequence identity1  * sequence identity2)1/2  >= 80%[202]. This threshold has 

been previously shown to correctly predict true protein–protein interactions[202]. 

Interactions predicted based on homodimer templates were omitted from the 

analysis, because the predictions primarily consisted of complexes formed 

between corresponding core cellular components of host and pathogens (e.g., 

histones). 

5.4.3. Applying biological and network-level filters 

The predicted interactions were filtered using biological context and network-level 

information. The biological context filter was imposed at two levels, individual 

proteins and their interactions (nfHIoF Table S3). The host proteins were filtered 

by expression in tissues known to be targeted by the pathogen (GNF Tissue 

Atlas[248], known expression on cell surface, and known immune system 

involvement (ENSEMBL[249], Gene Ontology Annotation [GOA][250], IRIS[251]). 

The pathogen proteins were filtered by known or predicted secretion, known 

expression on cell surface, infective life-cycle stage, and functional annotation to 

defense response mechanisms (PlasmoDB[239], ToxoDB[240], CryptoDB[236], 

GeneDB [references in nfHIoF Table S1] [237]). The GO terms for human protein 

involvement in immune system were GO:0051707, GO:0002376, and 

GO:0006955. The GO terms for pathogen protein involvement in host–pathogen 

interactions were GO:00044419 (involved in defense response), GO:0043657 

(cellular component: host cell), and GO:0009405 (pathogenesis). Potential 

interactions between human and pathogen proteins that each met at least one 
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biological criterion were considered to pass the biological filter. 

 The second level of biological filters was applied simultaneously to both 

human and pathogen proteins, as follows: M. tuberculosis, pairs of human 

proteins expressed in lung tissue or bronchial epithelial cells and pathogen 

proteins upregulated in granuloma, pericavity, or distal infection sites[207]; L. 

major, pairs of human proteins expressed in skin and pathogen proteins 

expressed in the promastigote or metacyclic life-cycle stage and human proteins 

expressed in blood and pathogen proteins expressed in amastigote life-cycle 

stage; T. brucei, pairs of human proteins expressed in blood and pathogen 

proteins expressed in the bloodstream life-cycle stage; P. falciparum, pairs of 

human proteins expressed in erythrocytes and pathogen proteins expressed in 

the merozoite life-cycle stage, known or predicted to be secreted, and found on 

the surface of infected erythrocytes and human proteins expressed in liver and 

pathogen proteins expressed in the sporozoite life-cycle stage; and Plasmodium 

vivax, pairs of human proteins expressed in erythrocyte and pathogen proteins 

predicted to be secreted. 

 The network-level filter removed predictions based on templates used for 

more than 1% of the total number of predictions in each host–pathogen network. 

This filter was imposed due to the lack of specificity in the predictions based on 

these highly used templates. On average, 15 interaction templates were removed 

from each run. 

The filtering step was performed after the initial modeling and interaction 

prediction steps so that the filters could be easily updated to include biological 
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annotation resulting from future experiments, without requiring re-calculation of 

models and interactions. 

5.4.4. Assessment: Intraspecies interactions benchmark 

The sequence- and structure-based prediction methods have both been 

previously benchmarked in the context of intraspecies S. cerevisiae protein 

interactions. For the sequence-based method, all of the interactions transferred 

from Caenorhabditis elegans, Drosophila melanogaster, and Helicobacter pylori 

onto S. cerevisiae were correct at a joint sequence identity threshold of 

80%[202]. For the structure-based method, 270 of 3387 (8%) predicted S. 

cerevisiae interactions overlapped with experimentally observed interactions, 

90% of which exhibited less than 80% sequence identity to the their interaction 

template[200]. The use of orthogonal biological information as filters was found to 

provide a significant (threefold) enrichment of previously observed interactions. 

The method could not predict the correct specificities in families of homologous 

receptor-ligand networks, such as the epidermal growth factor receptor and 

tumor necrosis factor-b network of ligand receptor interactions. In total, 19,424 

interactions have been experimentally observed out of the possible 21,776,700 

pairs of yeast proteins (0.09%; Jan 2006) [200]. Thus, the number of protein 

pairs was reduced by about four orders of magnitude, while the enrichment was 

increased by about two orders of magnitude. The analysis suggested that the 

method was applicable as a first pass for genome-wide predictions of protein 

complexes. 
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Table 5.4 Host–tissue filters used for each pathogen.  
Host–tissue expression data were obtained from the GNF Tissue Atlas[248] unless noted 
otherwise. 

5.4.5. Assessment: Functional overview of predicted complexes 

The human proteins predicted to interact with pathogen proteins were analyzed 

for significant enrichment of gene ontology function terms using 

GO::TermFindernfHgo. The analysis was done on the interactions before 

application of the biological filters to prevent introduction of filter bias into the 

functional profile of the predictions. The enrichment for a given GO term was 

computed as the ratio of the fraction of proteins in the predicted set annotated 

with the GO term to the fraction in the entire human genome. The significance of 

this enrichment was computed as a P-value with Bonferroni correction for 

multiple hypothesis testing[209]. 
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5.4.6. Assessment: Comparison to gene expression and essentiality data 

Human genes differentially regulated (two-tailed t-test, P < 0.05) in macrophages 

and dendritic cells during infection by L. major, M. tuberculosis, and T. gondii 

were retrieved from GEO Omnibus (GDS2600)[208, 252]. Lists of M. tuberculosis 

genes essential for in vivo infection[206] and genes that are upregulated in 

granuloma, pericavity, or distal lung infection sites compared with in vitro 

conditions[207] were obtained from literature. 

5.5. Introduction – The role of the P. falciparum falcipain-2 prodomain 

Plasmodium falciparum, the most virulent human malaria parasite, is responsible 

for hundreds of millions of illnesses and about one million deaths each year[253]. 

The control of malaria is hindered by increasing resistance to available drugs, 

making it important to develop new drugs to treat this disease. Among potential 

new targets for antimalarial therapy are falcipain cysteine proteases[254]. The 

best characterized of these proteases, falcipain-2 and falcipain-3, play key roles 

in the hydrolysis of hemoglobin by intraerythrocytic parasites[255-257]. Inhibitors 

of falcipains demonstrate potent in vivo antimalarial activity, and these proteases 

are the targets of efforts to develop novel cysteine protease inhibitors as new 

antimalarial drugs[254]. 

 Falcipains are cathepsin L-like papain-family cysteine proteases[254]. 

Features shared with other proteases of this sub-family include a 30 kDacatalytic 

domain with conserved active site amino acid residues and a prodomain with 

potent enzyme inhibitory activity[258]. We have characterized a number of 

unusual features of falcipains. First, folding of the mature protease is mediated 
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by a fourteen residue N-terminal extension, rather than the enzyme 

prodomain[258, 259]. Second, a ten amino acid insertion near the C-terminus 

mediates interaction of the mature domain with its principal substrate, 

hemoglobin, and with the prodomain. Third, the prodomain does not have a 

typical signal sequence, but contains a membrane-spanning domain that predicts 

a type II integral membrane protein. Fourth, the falcipain prodomain is much 

larger than that of most other described papain-family proteases, with 

downstream sequence similar to papain and related enzymes, but unique 

upstream regions that mediate trafficking of falcipain-2 to the food vacuole, the 

site of hydrolysis of hemoglobin[260]. 

 Considering its importance as a potential drug target, we were interested in 

evaluating the features of the falcipain-2 prodomain that mediate enzyme 

inhibition. We hypothesized that the inhibitory function is mediated by the 

downstream portion of the prodomain, which has an amino acid sequence similar 

to that of other papain family proteases. In this region, cathepsin L-like papain 

family proteases, including falcipains, contain a number of conserved residues 

that appear to mediate interaction between the prodomain and mature 

protease[261], including six amino acids (ERFNIN in papain) spanning nineteen 

residues[262] and, further downstream, four conserved amino acids (GNFD in 

papain) spanning seven residues[263]. Conservative substitutions at these motifs 

are common; the sequences are ERWNIN and ANFD in cathepsin L and 

DRWNIN and ANLD in cathepsin K. In cathepsin L, these residues appear to 

stabilize the prodomain structure through the formation of salt bridges[264]. To 
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determine the roles of these conserved amino acids and other portions of the 

falcipain-2 prodomain in enzyme inhibition, we expressed the prodomain and a 

series of truncated fragments, and evaluated their inhibitory activity[221]. Our 

results define a 61 residue minimum inhibitory domain, which includes the 

ERFNIN and GNFD motifs, that strongly inhibits falcipain-2 and many other 

cysteine proteases. Modeling of the falcipain-2 prodomain suggests that the 

prodomain covers the enzyme active site, and thereby inhibits activity by 

preventing substrate access. 

5.6. Results – Characterization of prodomain inhibition 

5.6.1. Identification of the inhibitory domain of falcipain-2 

Falcipain-2 and homologs from related plasmodia have much larger prodomains 

than those of most papain-family proteases. The upstream portion of the 

falcipain-2 prodomain bears no obvious resemblance to sequences of non-

plasmodial proteases, and mediates enzyme trafficking to the parasite food 

vacuole[260]. In contrast, the downstream portion of the falcipain-2 prodomain is 

similar to that of papain, and in particular to the cathepsin L sub-family of papain-

family proteases (N+;-",%b8c). The sequence identity for this region between 

falcipain-2 and human cathepsin L is 21%, and residues that have been identified 

as playing key roles in the functions of papain family prodomains are generally 

conserved in falcipain-2 and plasmodial homologs. The well characterized 

ERFNIN and GNFD domains[261], which contribute to proenzyme stability, are 

both fully conserved in falcipain-3, but falcipain-2 differs from the consensus 

sequence at one ERFNIN (I!V) and one GNFD (G!E) residue. Two highly 
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conserved Trp residues (at positions 19 and 22 of procathepsin L), which also 

contribute to the stability of cathepsin L sub-family proteases[262], are each 

replaced by Phe in both falcipain-2 and falcipain-3 (N+;-",%b8c; falcipain-2 

positions 165 and 168).  

 We previously showed that the prodomain of falcipain-2 is a potent 

reversible inhibitor of the protease[258]. To characterize the requirements for 

inhibition, we expressed a series of prodomain fragments in E. coli ([265]; Figure 

S1) and evaluated inhibition of falcipain-2 by each of the fragments (N+;-",%b8b). 

All peptides were soluble in the buffers used for our experiments and stable 

under our experimental conditions. As we hypothesized, the large upstream 

portion of the prodomain, which includes a transmembrane domain flanked by 

cytosolic and lumenal segments, and which mediates trafficking of falcipain-2 to 

the food vacuole[260], is not required for enzyme inhibition. Inhibitory potency 

was the same for a prodomain construct lacking only the upstream cytosolic and 

transmembrane domains (Tyr54-Asp243) and for constructs lacking the upstream 

104 (Ser105-Asp243), 126 (Leu127- Asp243), or 154 (Leu155-Asp243) amino acids of 

the prodomain (N+;-",%b8b). All of these constructs were very potent inhibitors of 

falcipain-2, with Ki < 1 nM. The removal of the 27 C-terminal amino acids of the 

prodomain (Tyr54-Asp216) did not affect inhibitory potency, but removal of the 37 

C-terminal amino acids (Tyr54- Leu206) led to a ~2000-fold loss of inhibitory 

potency, and removal of the 63 C-terminal amino acids (Tyr54-Asn180) led to a 

complete loss of inhibitory activity. A peptide spanning the ERFNIN and GNFD 

motifs (Tyr176-Asp216) demonstrated no inhibitory activity. These results allow 
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identification of a minimum inhibitory domain for falcipain-2 (Leu155-Asp216), which 

includes two hydrophobic residues (Phe165 and Phe168 in falcipain-2; Phe182 and 

Phe185 in falcipain-3) and the ERFNIN and GNFD motifs, all of which are highly 

conserved among other cathepsin L sub-family proteases. We could not directly 

test the inhibitory activity of this minimum inhibitory peptide, as production of the 

recombinant peptide was unsuccessful. 

%

Figure 5.4 Alignment of C-terminal amino acid residues of the prodomains of falcipain-2 
and related cysteine proteases.  
The sequences of falcipain-2 (FP2), falcipain-3 (FP3), berghepain-2 (BP2), human cathepsin K 
(Cath K), human cathepsin L (Cath L), human cathepsin B (Cath B), and papain were aligned 
using Expassy (European Bioinformatics Institute). Amino acids comprising the ERFNIN and 
GNFD motifs are labeled with stars, and conserved hydrophobic residues are indicated by 
arrows. Amino acids that are identical or similar to those of falcipain-2 are highlighted. 

5.6.2. Inhibitory Activity of the Falcipain-2 Prodomain Against Other 

Cysteine Proteases 

Cathepsin L sub-family protease prodomains generally inhibit only closely related 

proteases. For example, the prodomains of cathepsin L, cathepsin K, and 

cathepsin S are each potent inhibitors of all three proteases, but not of cathepsin 

B[261]. In contrast, the falcipain-2 prodomain had a rather broad inhibitory 

specificity, with inhibition of the falcipain-2 homolog from Plasmodium berghei 

(berghepain-2), the Trypanosoma cruzi protease cruzain, cathepsin L, and 
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cathepsin B (N+;-",%b8h). The only tested papain-family cysteine protease that 

was not inhibited was the dipeptidyl peptidase cathepsin C. The aspartic 

protease pepsin, serine protease !-chymotrypsin, and metalloprotease 

collagenase were not inhibited by the falcipain-2 prodomain. 

%

Figure 5.5 Inhibitory activity of profalcipain-2 constructs.  
The domains of falcipain-2 and the studied constructs are represented diagrammatically. 
Abbreviations: Cyto, cytosolic domain; TM, transmembrane domain; Hb, hemoglobin. The 
residues contained in each construct are shown, and the inhibitory capacity of mature falcipain-2 
for each construct is indicated. The data provided are the Ki values for each polypeptide 
construct. Results are from two experiments, each performed in duplicate. 

5.6.3. Structural Explanation for Inhibitory Activity of Falcipain- 2 

Prodomain Fragments 

Structure-function studies identified a discrete portion of the falcipain-2 
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prodomain required for inhibition of the cognate mature protease. Prior work with 

other cathepsin L sub-family proteases suggests key roles for conserved 

hydrophobic amino acids as well as the ERFNIN and GNFD motifs in maintaining 

prodomain structure[261]. We explored the roles of different domains in 

maintaining prodomain structure by circular dichroism analysis (N+;-",%b8j). 

Secondary structure was seen in a fragment with potent inhibitory activity 

(Leu155-Asp243), but not in two larger constructs that lacked any sequence 

downstream of the ERFNIN and GNFD motifs (Tyr54-Leu206; Tyr54-Asn180) or in a 

peptide spanning the ERFNIN and GNFD motifs (Tyr176-Asp216). These results 

indicate that the ERFNIN and GNFD motifs and an upstream region including 

conserved Phe residues are required for proper folding or maintenance of 

secondary structure of the prodomain. 

%

Figure 5.6 Inhibition of different proteases by the prodomain of falcipain-2.  
The inhibition of falcipain-2 (FP2), falcipain-29 (FP29), falcipain-3 (FP3), berghepain-2 (BP2), 
cruzain, human cathepsin B (Cath B), human cathepsin L (Cath L), bovine cathepsin C (Cath C), 
pepsin, α-chymotrypsin (α-Chymo), and collagenase was measured as described in Methods. In 
each case, activity was measured with and without the prodomain and the percentage inhibition 
calculated. Error bars represent standard deviations from two experiments, each performed in 
duplicate. 
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5.6.4. Homology Modeling of Profalcipain-2 

To explain the role of profalcipain-2 motifs in enzyme inhibition, we modeled the 

structure of the target falcipain-2 using the crystallographic structures of several 

papain-family cysteine proteases as templates. We used the software 

MODELLER-9v4[266] to construct a homology model of profalcipain-2 N+;-",%b8e, 

which aligned to mature falcipain-2, procathepsin L, procathepsin K, and 

procaricain at sequence identities of 100% (by definition, aligned with the 

sequence of the mature domain only), 30.6%, 30.9%, and 32.1% respectively 

(14, 20–24). The model was evaluated with DOPE (Discrete Optimized Protein 

Energy), a pairwise atomic distance statistical potential that assesses atomic 

distances in a model relative to those observed in many known protein 

structures[70]. The DOPE Z-score of the model (-0.99) is similar to the Z-scores 

of all templates (cathepsin L: -1.62; mature falcipain-2: -1.13; procathepsin K -

0.95; procaricain -1.25); generally, a Z-score of -1 or less indicates a relatively 

accurate model, with more than 80% of its C-α atoms within 3.5 Å of their correct 

positions[70]. Additionally, a separate assessment technique, TSVMod, was 

applied. This method predicts the native overlap (defined as the fraction of a-

carbon atoms within 3.5 Å of the native structure) of a homology model in the 

absence of a solved structure using support vector machine learning[109, 267]. 

The model’s predicted native overlap (0.85) was similar to that of a model of 

mature falcipain-2 built using the mature sections of the above templates, 

indicating the falcipain-2 prodomain does not contribute significantly 

disproportionately to the overall model error. This assessment suggests that the 
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fold of the profalcipain-2 model is correct despite the relatively low sequence 

identity between the falcipain-2 prodomain and the templates. 

%

Figure 5.7 Circular dichroism analysis of prodomain constructs. 
Different falcipain-2 prodomain constructs (200 µg/ml) were incubated in 20 mM sodium 
phosphate, pH 5.8, and absorbance between 195 and 240 nm was measured. 

5.6.5. The Profalcipain-2 Model Suggests that the Conserved Residues 

Provide Stability to the Overall Fold 

We examined the homology model for possible interactions involving residues in 

the conserved motifs. Several of these residues are highlighted in N+;-",%b8eb. (i) 

The charged pair Arg185 and Glu221 appears to form a salt bridge. (ii) Glu210 from 

the GNFD motif may form a separate salt bridge with Lys403 in the mature 

domain. (iii) Phe214 may participate in non-polar interactions, and possibly '-

bond stacking, with two tryptophan residues on the mature domain, Trp449 and 

Trp453. All of these interactions are also present in at least one of the templates 

used to build the model, although none of them is conserved across all 

templates. 
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Figure 5.8 Homology model of profalcipain-2.  
(a) Model created using MODELLER 9v4. The 160 N-terminal residues of the prodomain are not 
included in the model. The prodomain (cyan) runs up the face of the mature enzyme (purple; 
catalytic triad residues in orange) before forming !-helices containing the conserved ERFNIN and 
GNFD motifs (yellow). (b) Close-up of several predicted interactions between the mature 
protease and the ERFNIN (R185) and GNFD (E210; F214) motifs. Blue dashed lines indicate 
presumed stabilizing interactions (both electrostatic and hydrophobic) between residues. The 
structure has been rotated 180° around the vertical axis from its representation in (a) 

5.6.6. The Falcipain-2 Prodomain Appears to Block Substrates from 

Entering the Cathepsin B Active Site 

A separate homology model was constructed in which the falcipain-2 prodomain 

and cathepsin-B mature domain were modeled as a complex (N+;-",%b8ga). The 

model was built based on an alignment of profalcipain-2 at 31.2% sequence 

identity with the crystallographic structure of procathepsin B[268, 269]. The 

model received a DOPE Z score of -0.87, and a TSVMod native overlap 

prediction of 0.82. These scores indicate that the overall fold is correct; poor 

scores would have suggested that there were significant errors in the modeled 

structure of the prodomain, and in that case the model would not have resembled 

the structures of the templates on which it was based. The model suggests that 

the prodomain of falcipain-2 binds mature cathepsin B in a manner similar to that 

observed in papain family zymogens, inhibiting catalytic activity by blocking 
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substrate access to the active site. (N+;-",%b8gb). While no structure has been 

solved for a propeptide in complex with an inhibited mature enzyme, it is likely 

that these propeptides bind to the enzymes in a conformation resembling the 

zymogen form[268, 270]. This hypothesis is reflected in the model, which by 

construction is similar to its templates, and displays favorable stereochemistry 

and non-bonded atom distances as evaluated by MODELLER and DOPE. 

%

Figure 5.9 Model rationalizing the inhibition of cathepsin B by FP2 prodomain.  
(a) Model of the falcipain-2 prodomain (red) and mature cathepsin B (blue; catalytic triad residues 
in yellow). The prodomain binds to cathepsin B in a similar fashion as zymogens of other cysteine 
proteases, including procathepsin L and procathepsin B. (b) Structural overlay of mature 
cathepsin B (blue) and falcipain-2 (cyan). Catalytic triad residues are shown in the stick 
representation (yellow: cathepsin B; orange: falcipain-2). Cathepsin B amino acid numbering is 
used. 

5.6.7. Differences Between the Prodomains of Falcipain-2 and Cathepsin L 

Cathepsin B activity is inhibited by the prodomain of falcipain-2 (N+;-",%b8h) but 

not cathepsin L[261]. To examine the structural basis of this selectivity, we 

compared the sequences and structures of these two proteins. Several 

differences were of note (N+;-",%b8IH). First, while the procathepsin L !1 helix 

clashes with the occluding loop region of mature cathepsin B, thus preventing 

binding, the equivalent helix in falcipain-2 does not. Second, Phe186 in 

profalcipain-2 participates in polar interactions with Phe165 and Phe168; in 
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procathepsin K and procathepsin L, Phe186 is replaced by Arg. Third, a multiple 

sequence alignment reveals a conserved motif (LMNNAEHIN in falcipain-2) in 

the plasmodial proteases falcipain-2, falcipain-3, and berghepain-2 that 

represents an insertion relative to the sequences of procathepsin K and 

procathepsin L (N+;-",%b8c). Finally, an apparent salt bridge (interaction not 

shown) is formed between Glu210 in the falcipain-2 prodomain and Lys184 in 

mature cathepsin B; Glu210 of falcipain-2 (which has replaced Gly in the GNFD 

motif) is replaced by Ala in cathepsin L and cathepsin K. Taken together, 

differences between modeled interactions for the cathepsin B mature domain 

with procathepsin L or profalcipain-2 appear to describe the structural basis for 

the observed selective inhibition of cathepsin B activity by profalcipain-2. 

%

Figure 5.10 Modeled differences between falcipain-2 (a) and cathepsin L (b) prodomain 
binding to cathepsin B.  
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The model predicts a helix arrangement in the falcipain-2 prodomain (purple) that prevents steric 
clashes with the cathepsin B occluding loop (cyan). Phe186 may mediate this arrangement; in 
cathepsin K and cathepsin L, Phe186 is replaced by Arg. For cathepsin L (red), there is a large 
steric clash between the linker joining the two cathepsin L helices and the space-filled occluding 
loop (cyan). 

5.7. Discussion – A structural model for prodomain inhibition specificity 

We evaluated features of the falcipain-2 prodomain that mediate enzyme 

inhibition. Our data show that only an 11 kDa C-terminal region of the prodomain 

is required for potent inhibition of the protease. The region includes two 

hydrophobic residues (both Phe in falcipain-2) and the ERFNIN and GNFD 

motifs, all of which are conserved among cathepsin L- like papain family 

proteases. The falcipain-2 prodomain also inhibited other papain family cysteine 

proteases, including similar cathepsin L sub-family proteases and the more 

distantly related cathepsin B. We explored the relevance of conserved falcipain-2 

motifs by circular dichroism; the conserved residues were required to maintain 

the secondary structure of the prodomain. Thus, the first prerequisite for 

inhibitory activity was appropriate secondary structure. We also constructed a 

homology model of profalcipain-2 to help explain the observed experimental 

results. The model identified potential interactions between the inhibitory portion 

of the prodomain and mature falcipain-2 that appear to explain the inhibitory 

activity, and also the ability of the prodomain of falcipain-2, but not that of the 

related protease cathepsin L, to inhibit cathepsin B. Taken together, our results 

identify and structurally characterize a minimum inhibitory domain of the 

falcipain-2 prodomain, offering a starting point for new considerations for the 

inhibition of key proteases of malaria parasites. Indeed, small molecules that 

inhibit falicipains via interactions independent of the active site might offer highly 
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specific antimalarials without detrimental effects due to inhibition of host cysteine 

proteases. 

 Results of structure-function studies were straightforward. As expected, the 

upstream portion of the falcipain-2 prodomain, which mediates protein 

trafficking[260], was not required for inhibitory activity. Indeed, only a small 

portion of the prodomain (Leu155-Asp216) was required for sub-nanomolar 

inhibition of the mature enzyme. We did not demonstrate inhibition by the 

isolated Leu155-Asp216 peptide, as production of this peptide proved difficult, but 

consideration of inhibition by a number of overlapping constructs (N+;-",%b8b) 

clearly demonstrates that this peptide is sufficient for inhibition of falcipain-2. 

Circular dichroism studies suggested that the limits of the minimum inhibitory 

domain are dictated by requirements for appropriate folding and maintenance of 

a secondary structure for the inhibitory portion of the prodomain. Due to the 

conserved overall fold of cathepsin precursors[261], along with the high degree 

of structural similarity between these proteases and mature falcipain-2 (C! root-

mean-square-deviation between falcipain-2 and cathepsin K is 0.92 Å; falcipain-2 

and cathepsin L is 0.81Å; and falcipain-2 and procaricain is 0.95 Å), profalcipain-

2 is a good candidate for comparative modeling analysis. Our model has a good 

DOPE score, a pairwise atomic distance statistical potential that has been shown 

to perform well in evaluating errors in homology models[70]. DOPE is particularly 

suited to determine the accuracy of the overall fold of a model. The DOPE score 

of the model of falcipain-2 was similar to those of mature falcipain-2 and 

procathepsin L, indicating that the overall fold of our homology model is accurate. 
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A separate model assessment program, TSVMod, gave essentially the same 

results. 

 In our model, residues in the ERFNIN and GNFD motifs were involved in 

several interactions important to the stability of the falcipain-2 prodomain fold 

(N+;-",%b8eb). Two interactions, Arg185– Glu221 and Phe214–Trp449/Trp453, appear 

to be conserved between falcipain-2 and cathepsin L, with equivalent residues 

present in procathepsin L[271] . A third interaction, Glu210–Lys403, represents a 

unique charged pair interaction, as a Glu is found in falcipain-2, but not falcipain-

3 or most related proteases, replacing the Gly in the GNFD motif. Side chain 

packing is the most difficult part of comparative modeling; however, in this case 

using the ERFNIN and GNFD motifs as well as the conserved Phe residues to 

guide the alignment resulted in conserved sequences across the downstream 

region of the prodomain (N+;-",%b8c), increasing confidence in our predictions. 

Many cathepsin L sub-family propeptides act in trans to inhibit related 

proteases[261]. However, selectivity has been observed, and it has been 

demonstrated that the prodomains of cathepsin L and cathepsin K are unable to 

inhibit cathepsin B[268, 270]. Explanations for this observation include the 

following. First, cathepsin B lacks the ERFNIN motif, so that the protease lacks 

most of the !2 helix found in cathepsin L sub-family proteases. Second, 

cathepsin B contains a large occluding loop insertion, conferring dipeptidase 

activity, but preventing propeptides containing the ERFNIN motif from binding 

due to a steric clash between the occluding loop and the prodomain residues 

connecting !1 and !2 (N+;-",%b8IHb). Interestingly, selectivity for prodomain 
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inhibition was broader for falcipain-2, as the prodomain of falcipain-2 markedly 

inhibited cathepsin B (N+;-",%b8h). Our homology model adds insight to this 

observation. 

 In the model, the interaction of the helices equivalent to cathepsin L helices 

!1 and !2 is shifted (N+;-",%b8IHa). This shift is mediated by the presence of an 

additional aromatic residue in falcipain-2, Phe186. This residue is part of the 

hydrophobic core of aromatic residues that contributes to the helix interaction in 

cathepsin L and cathepsin K, normally mediated by two Trp residues on !1 and 

the Phe residue in the ERFNIN motif on !2. In falcipain-2, Phe186 provides 

additional stability, allowing !1 to shift across !2 and eliminating the steric 

overlap between the prodomain residues and the cathepsin B occluding loop. In 

procathepsin L and procathepsin K, which do not inhibit cathepsin B, Phe186 is 

replaced by Arg38 (procathepsin L) and Arg41 (procathepsin K); arginine is a basic 

residue that interacts less favorably with the other hydrophobic residues. (N+;-",%

b8IHb). 

 A recent study indicated that a synthetic fifteen residue peptide (Leu155-

Ile169) from a region of the falcipain-2 prodomain immediately upstream of 

conserved Phe residues (Phe165 and Phe168) inhibited falcipain-2[272]. The 

authors proposed that this segment plays an important role in inhibition of 

falcipain-2. However, inhibition by the peptide was at much lower (104 times less) 

potency than inhibition by our prodomain constructs, which acted at sub-

nanomolar concentrations. In our model, the Leu155-Ile169 residues form the !1-

helix. As noted, these residues represent an insertion relative to cathepsin L and 
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cathepsin K. The !1 helix does not appear to actively inhibit falcipain-2, but 

rather appears to provide structural stability through an interaction with the !2 

helix. It is thus likely that the full prodomain inhibits falcipain-2 differently from the 

small peptide studied recently[272], as for this peptide to come within the 

proximity of the falcipain-2 active site would require replacement of the !3 helix 

and a novel fold relative to other papain-family proteases. 

 Our work defines the minimum inhibitory region of the falcipain-2 

prodomain. We show that several residues conserved across cathepsin L sub-

family proteases are necessary for this inhibition, and present a structural model 

for the interaction of the falcipain-2 prodomain with both its own mature domain 

and that of other proteases. As natural inhibitors of parasite protease activity, 

propeptides present a promising basis for design of small molecules to treat 

malaria. 

5.8. Methods used to characterize falcipain-2 prodomain inhibition 

5.8.1. Reagents 

Benzyloxycarbonyl-Leu-Arg-7-amino-4 methyl coumarin (Z-Leu-Arg-AMC) and Z-

Phe-Arg-AMC were from Peptides International. Restriction endonucleases and 

polymerases were from New England Biolabs. Oligonucleotides were 

synthesized at the Biomolecular Resource Center, University of California, San 

Francisco, and by Integrated DNA Technologies. The synthetic peptide was from 

AnaSpec. All other reagents were from Sigma-Aldrich or as mentioned in the 

text. 
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5.8.2. PCR and Sequencing 

All DNA fragments were amplified from the pTOP-FP2 plasmid, which encodes 

the falcipain-2 gene[258]. The sequence of each construct was confirmed by 

DNA sequencing at the Biomolecular Resource Center, University of California, 

San Francisco. Portions of the falcipain-2 gene were amplified using primers 

specific for each construct ([265]; Table S1). 

5.8.3. Cloning, Expression, and Refolding of Different Prodomain 

Constructs 

Amplified DNA fragments were digested with BamHI and HindIII, ligated into 

digested plasmids (pRSET-B; Invitrogen) and used to transform AD (DE3) pLys 

E. coli (Invitrogen). Cells were induced with "-D-thio-galactopyranoside, and 

recombinant proteins were solubilized in 8 M urea, 20 mM Tris-Cl, pH 8.0 at 

room temperature for 60 min with gentle shaking. Insoluble material was 

separated by centrifugation at 27,000 g for 30 min at 4C. For the purification of 

the recombinant protein, the supernatant was incubated with nickel-nitrilotriacetic 

acid resin (Ni-NTA; Qiagen) and purified under denaturing conditions, as 

previously described[258]. Ni-NTA purified propeptides were bound to SP-

sepharose columns (Amersham Bioscience) and eluted by a step-wise gradient 

of 0-1 M NaCl in 8 M urea, 20 mM Tris-Cl, pH 8.0. The denatured proteins were 

diluted 100-fold (final concentration 20 µg/ml) in 100 mM Tris-Cl, 1 mM EDTA, 

250 mM L-arginine pH 9.0, refolded at 10–12C for 20 h, and concentrated using 

a 10 kDa cut-off membrane (Millipore) to 10 ml. Insoluble protein was removed 

using a 0.45 µm syringe filter (Millipore). 
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5.8.4. Inhibition of Falcipain-2 by the Prodomain 

Inhibitor kinetics were calculated as previously described[221]. In brief, different 

concentrations of prodomain constructs (2– 50 nM) were pre-incubated with 2 nM 

falcipain-2 in 100 mM sodium acetate, 5 mM DTT, pH 5.5 for 10 min at room 

temperature. The substrate Z-Leu-Arg-AMC (10 µM) was added, and 

fluorescence (excitation 355 nm; emission 460 nm) was continuously measured 

for 20 min at room temperature with a Labsystems Fluroskan Ascent 

spectrofluorometer. Enzyme concentration was determined by titration with the 

irreversible inhibitor morpholine urea-phenylanine-homophenylanine fluoromethyl 

ketone. Ki values were determined by nonlinear regression analysis using PRISM 

(GraphPad Software). 

5.8.5. Inhibition of other Proteases by the Falcipain-2 Prodomain 

Substrates were Z-Leu-Arg-AMC (10 µM) for falcipain-2, falcipain-3, and cruzain; 

Z-Phe-Arg-AMC (10 µM) for cathepsin L and cathepsin K; Z-Arg-Arg-AMC (10 

µM) for cathepsin B; Pro-Arg-AMC (10 µM) for cathepsin C; and FITC-casein (8 

µg / µl) for the other studied proteases. For each reaction, 1 mg of purified 

falcipain-2 prodomain (or, for controls, no prodomain) and 2-10 nM of each 

enzyme were incubated for 10 min in 350 ml of 100 mM sodium acetate, 5 mM 

DTT, pH 5.5  (for !-chymotrypsin and collagenase 10 mM Tris, pH 7.5), 

substrate was added, and substrate hydrolysis was monitored as described 

above or, for FITC-casein, as previously described[259].  

5.8.6. Circular Dichroism  

Experiments were performed on a Jasco J-175 spectropolarimeter. Signals were 
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monitored between 195 and 300 nm in 20 mM sodium phosphate, pH 5.8 at 20C. 

Purified proteins were concentrated (200 µg/µl) using a 10-kDa cutoff Amicon 

ultraconcentrater (Millipore) and transferred to the phosphate buffer. All 

experiments were performed in a quartz cell of 1 cm path length (Hellma). 

5.8.7. Falcipain-2 Modeling 

Falcipain-2 residues 161–484, encompassing the full mature domain and the C-

terminal region of the prodomain, were aligned with procathepsin L, procathepsin 

K, and procaricain, at sequence identities of 20–25% in the prodomain region. 

100 homology models were built based on the crystallographic structures of 

these proteins as templates (PDB codes were 1CS8, 1BY8, and 1PCI, 

respectively) and the crystallographic structure of mature falcipain- 2 (1YVB), 

using the standard ‘automodel’ routine of MODELLER-9v4[266]. Models were 

evaluated with the Z-DOPE statistical potential[70] and the TSVMod protocol for 

predicting absolute model error[109]. The model receiving the best Z-DOPE 

score was subjected to loop refinement of residues 15–20 (sequence NKQYNS), 

restraining the first 14 residues to a helical conformation, using the ‘loop’ routine 

of MODELLER-9v4[267]. 

5.8.8. Cathepsin-B Modeling 

The prodomain of falcipain-2 was modeled in complex with the crystallographic 

structure of mature cathepsin B. The same homology modeling and loop 

modeling procedures were performed as for falcipain-2, here based on the 

crystallographic structures of the prodomain regions of procathepsin L, 

procathepsin K, and procaricain, and the solved structure of procathepsin B 
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(PDB code 3PBH), as templates. Structural alignments of procathepsin L and 

cathepsin B were performed with the SALIGN command of MODELLER-

9v4[244]. 
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Chapter 6. Resources associated with this dissertation 

6.1. PCSS WebServer 

The algorithm presented in Chapter 2 was converted into a publically available 

web server titled “Peptide classification based on sequence and structure” 

(PCSS). It is available at www.salilab.org/pcss. The server trains on a user-

defined input set of positive and negative peptides to build an SVM model for 

scoring peptides to be evaluated, which can be uploaded by the user in a 

separate step. The model is based on the sequence and structure features 

described in the algorithm. The server also outputs the Receiver-Operator 

Characteristic curves to indicate the discriminatory ability of the model for the 

input dataset. 

%

6.2. GrBah dataset of granzyme B substrates 

We compiled a dataset of all experimentally verified Granzyme B substrates, 

describing the protein name and identifier, cleavage sequence and location, the 

type of experiment used to define the site, and the publication that conducted the 

study. This dataset, which we refer to as GrBah, is available as supplemental 

material in [93]. 

6.3. Predicted protease cleavage sites 

Proteome-wide predictions of Granzyme B and caspase cleavage sites 

generated in Chapter 2 are available at www.salilab.org/pcss 
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6.4. Atomic Domino module 

The peptide docking method, which incorporates the atomic DOMINO procedure 

described in Chapter 3, is available as a module as part of the Integrated 

Modeling Platform (IMP; http://www.integrativemodeling.org/). 

6.5. Mass spectrometry datasets 

All experimentally generated results described in Chapter 4 are available as 

supplemental data in their respective publications. 

6.6. Host Pathogen predictions 

The ModTie algorithm for predicting large-scale host-pathogen interactions is 

available at http://pibase.janelia.org/modtie/. Predictions made as part of the 

study described in Chapter 5 are available at http://salilab.org/hostpathogen/. 

The sequence-based algorithm for making predictions described in the same 

chapter is available upon request. 

6.7. Falcipain 2 model 

The comparative models generated as part of the Falcipain-2 study in Chapter 5 

are available upon request. 



! %,+!

 

Chapter 7. References 

I8% O)/,&0%@8%#/$%O8T8%9()"/3)/0%4/350361."*27*6/2+.3586/2+.35*35+./90+325")%
A")',,$+/;&%):%3(,%Z#3+)/#*%>'#$,<=%):%@'+,/',&%):%3(,%L/+3,$%@3#3,&%):%
><,"+'#0%Iggh8%F;DIE[%48%IdWfH8%

f8% A,3&#*#7+0%\8%#/$%G8Q8%G-&&,**0%4.6+3:.8;.:39+.:*35+./90+325"*35*-3212<3091*
"="+.;">*5.?*:3"02!./3."*95:*9661309+325")%M-""%Y4+/%Q+)3,'(/)*0%fHHe8%)FDcE[%
48%dccWbH8%

d8% @3,+/0%>80%G8%T)&'#0%#/$%A8%>*)=0%@A/..8:3;.5"32591*;2:.135<*27*6/2+.35*
35+./90+325"*95:*02;61.B."*3"*<235<*C962"D2;30")%M-"",/3%)4+/+)/%+/%
&3"-'3-"#*%.+)*);=0%fHII8%5)DfE[%48%fHHWfHe8%

c8% T#&0%O8T80%,3%#*80%4/2+.35*"3;319/3+3."*-.=25:*:3",16A3:.*-/3:<.*+26212<=)%O)-"/#*%
):%<)*,'-*#"%.+)*);=0%Igge8%5A@DdE[%48%bcIWbce8%

b8% @3,+/0%>8%#/$%A8%>*)=0%E25+.B+,91*"6.037303+=*35*6.6+3:.8;.:39+.:*6/2+.35*
35+./90+325")%AV)@%YZ\0%fHHe8%;DjE[%48%,fbfc8%

h8% B=&)/0%U8O8%#/$%A8\8%P"+;(30%F5+/35"30911=*,5"+/,0+,/.:*6/2+.35"*95:*+A.3/*
7,50+325")%Z#3%G,6%T)*%M,**%Q+)*0%fHHb8%?DdE[%48%IgjWfHe8%

j8% V)/$)/0%Z80%B8%T)6&()6+3XW>33+#&0%#/$%Y8%@'(-,*,"WN-"<#/0%@A.*"+/,0+,/91*
-9"3"*27*6.6+3:.86/2+.35*-35:35<*"+/9+.<3.")%@3"-'3-",0%fHIH8%)ADfE[%48%IeeWgg8%

e8% !)-;(0%Z8G80%&03.50.C962"D"*"3<591*+/95":,0+325*G52?1.:<.*.5!3/25;.5+>*+A.*
0255.0+325"*;96"*:9+9-9".)%>//#*&%):%3(,%Z,1%])"7%>'#$,<=%):%@'+,/',&0%
fHHf8%FD)[%48%bebWbej8%

g8% !)-*$0%M8T80%,3%#*80%$H(>*+A.*"+9+,"*27*+A.*IJKJ*.,G9/=2+30*135.9/*;2+37*/."2,/0.)%
Z-'*,+'%#'+$&%",&,#"'(0%fHHg8%;ADB#3#.#&,E[%48%BIhjWBIeH8%

IH8% U#=/,&0%M80%,3%#*80%F5+/35"30*:3"2/:./*3"*9*02;;25*7.9+,/.*27*A,-*6/2+.35"*7/2;*
72,/*.,G9/=2+30*35+./90+2;.")%AV)@%')<4-3#3+)/#*%.+)*);=0%fHHh8%5DeE[%48%
,IHH8%

II8% G-&&,**0%G8Q8%#/$%98O8%!+.&)/0%L*09/.7,1*:3"2/:./135.""*35*+A.*6/2+.2;.>*"3+."*72/*
35+./90+325*95:*+9/<.+"*72/*7,+,/.*+A./963.")%N\Q@%*,33,"&0%fHHe8%BA5DeE[%48%
IfjIWIfjb8%

If8% >*.,"0%N80%,3%#*80%M.+./;3535<*+A.*9/0A3+.0+,/."*27*;90/2;21.0,19/*9"".;-13.")%
fHHj8%@BCDjIjHE[%48%hedWhgc8%

Id8% M,)*0%>80%,3%#*80%MN(FON>*9*:9+9-9".*27*:2;93586.6+3:.*35+./90+325")%Z-'*,+'%
#'+$&%",&,#"'(0%fHHj8%;BDB#3#.#&,E[%48%BbbjWBbhH8%

Ic8% ^#/(,,0%A80%,3%#*80%4.6P>*9*"+/,0+,/91*:9+9-9".*27*5258/.:,5:95+*6/2+.3586.6+3:.*
02;61.B.")%Z-'*,+'%#'+$&%",&,#"'(0%fHIH8%;ADB#3#.#&,%+&&-,E[%48%BbcbWbI8%

Ib8% >(<#$0%T80%P8%!-0%#/$%^8%U,*<&0%(.0A953";*27*79"+*6.6+3:.*/.02<53+325*-=*&QR*
:2;935")%>/;,1%M(,<%C/3%\$%\/;*0%fHHe8%@DDcHE[%48%jhfhWdH8%

Ih8% O,<3(0%A8%#/$%@8%!+#//+0%4MS*:2;935">*721:35<*95:*-35:35<)%Q+)'(,<+&3"=0%fHHj8%
@?DdHE[%48%ejHIWe8%

Ij8% 9)/+7+#/0%G80%,3%#*80%L*&6.037303+=*(96*72/*+A.*4MS*M2;935*T9;31=)%AV)@%Q+)*0%
fHHe8%

Ie8% U#""+&0%Q8k8%#/$%P8>8%V+<0%(.0A953";*95:*/21.*27*4MS*:2;935"*35*"3<59135<*
02;61.B*9"".;-1=)%O)-"/#*%):%',**%&'+,/',0%fHHI8%))@DA3%IeE[%48%dfIgWdfdI8%



! %,,!

Ig8% N#;,".,";0%980%O8M8%M,")33+/+0%#/$%Y8%T+'(+,*+/0%&+/,0+,/91*6/.:30+325*27*6.6+3:."*
-2,5:*+2*(QE*019""*F)%O%T)*%Q+)*0%fHHh8%;B?DfE[%48%bfIWch8%

fH8% V#:-,/3,0%\8T8%#/$%A8>8%G,'(,0%4/.:30+325*27*(QE86.6+3:.*-35:35<>*9*"="+.;9+30*
95:*02;6/.A.5"3!.*2!./!3.?)%M-"",/3%4(#"<#',-3+'#*%$,&+;/0%fHHg8%)BDfeE[%48%
dfHgWdffH8%

fI8% ^#/(,,0%A80%,3%#*80%4/2+.3586.6+3:.*35+./90+325"*9:26+*+A.*"9;.*"+/,0+,/91*;2+37"*
9"*;252;./30*6/2+.35*721:")%@3"-'3-",0%fHHg8%)DDeE[%48%IIfeWdh8%

ff8% T+$+'0%L80%,3%#*80%4/2+.35*:3"2/:./*35*+A.*A,;95*:3".9"2;.>*,5721:2;30"*27*
A,;95*<.5.+30*:3".9".")%QTM%;,/)<+'&0%fHHg8%)C(2IJJK()[%48%@If8%

fd8% B#6,=0%Z8\80%!8%9"#6,0%#/$%98O8%!+.&)/0%Q2?*!3/,"."*A3U90G*0.11*/.<,19+325)%
9",/$&%+/%.+)'(,<+'#*%&'+,/',&0%fHII8%;?DdE[%48%IbgWIhg8%

fc8% G)&&0%M8>8%#/$%T8>8%A)+"+,"0%4/2+.35*9<</.<9+325*95:*5.,/2:.<.5./9+3!.*
:3".9".)%Z#3-",%T,$+'+/,0%fHHc8%)C(2IJJK[%48%@IHWj8%

fb8% >*.,"0%N80%,3%#*80%@A.*;21.0,19/*9/0A3+.0+,/.*27*+A.*5,01.9/*62/.*02;61.B)%
Z#3-",0%fHHj8%@BCDjIjHE[%48%hgbWjHI8%

fh8% i+#0%O80%,3%#*80%Q,5+35<+35*025+935"*9*A3<A1=*025"./!.:*5,01.9/*.B62/+*"3<591)%
U-<#/%<)*,'-*#"%;,/,3+'&0%fHHd8%)5DIfE[%48%IdgdWIcHd8%

fj8% P#*7,"0%T8A8%#/$%P8C8%V+47+/0%EA9/90+./3V9+325*27*+A.*5,01.9/*120913V9+325*
"3<591*27*+A.*-2/59*:3".9".*!3/,"*621=;./9".)%O)-"/#*%):%6+")*);=0%fHHf8%
D?DIhE[%48%echHWechj8%

fe8% @3,..+/&0%M8\80%&+/,0+,/91*;30/2-3212<=*9+*+A.*69+A2<.58A2"+*35+./790.)%M,**-*#"%
<+'").+)*);=0%fHHb8%DDgE[%48%IffjWIfdh8%

fg8% 9)6#"0%M80%,3%#*80%&;9118;21.0,1.*(M(I*95+9<253"+"*/.!.91*9-.//95+*6WR*
"3<59135<*35*0950./>*3;61309+325"*72/*+A./96=)%A")',,$+/;&%):%3(,%Z#3+)/#*%
>'#$,<=%):%@'+,/',&%):%3(,%L/+3,$%@3#3,&%):%><,"+'#0%fHHh8%)C;DhE[%48%IeeeW
Iegd8%

dH8% \+'(*,"0%O80%4.6+3:."*9"*6/2+.35*-35:35<*"3+.*;3;.+30")%M-"",/3%)4+/+)/%+/%
'(,<+'#*%.+)*);=0%fHHe8%)5DhE[%48%jHjWjId8%

dI8% G-.+/&3,+/0%T8%#/$%T8]8%Z+60%4.6+3:30*;2:,19+2/"*27*6/2+.3586/2+.35*
35+./90+325">*6/2</.""*95:*0A911.5<."*35*02;6,+9+32591*:."3<5)%Q+)4)*=<,"&0%
fHHg8%F)DjE[%48%bHbWId8%

df8% P+'7&3"p<0%@8>80%R8%>*+3#*)0%#/$%O8%R,&7+WY?#0%L5*.5:2"+9+358:./3!.:*6.6+3:.*
35+./90+"*?3+A*35+.</35"*95:*/.<,19+."*90+35*0=+2"G.1.+25*95:*;3</9+325*27*
.5:2+A.1391*0.11")%9(,%O)-"/#*%):%.+)*);+'#*%'(,<+&3"=0%fHHc8%5DFDIgE[%48%
fHIjeWfHIeb8%

dd8% Z#+$,"0%N8%#/$%O8%>/;*+&3,"0%4.6+3:."*35*+A.*+/.9+;.5+*27*LFM&)%M-""%Y4+/%@3"-'3%
Q+)*0%fHHg8%)FDcE[%48%cjdWef8%

dc8% U#=)-7#0%k80%,3%#*80%F5A3-3+35<*QF#8K*35+.</9".*-=*"A37+35<*3+"*213<2;./3V9+325*
.X,313-/3,;)%A")',,$+/;&%):%3(,%Z#3+)/#*%>'#$,<=%):%@'+,/',&%):%3(,%L/+3,$%
@3#3,&%):%><,"+'#0%fHHj8%)C@DfHE[%48%edIhWedfI8%

db8% U#)0%O80%,3%#*80%F:.5+37309+325*95:*/9+32591*/.:."3<5*27*6.6+3:.*13<95:"*+2*E%F4KY*9*
52!.1*-32;9/G./*72/*0950./")%AV)@%M)<4-3%Q+)*0%fHHe8%@DeE[%48%,IHHHIde8%

dh8% A-"',**0%>8P80%O8%T'M*-&7,=0%#/$%O8%G)&&?)(/0%(2/.*+A95*25.*/.9"25*+2*/.+A35G*
+A.*,".*27*6.6+3:."*35*!90035.*:."3<5)%Z#3-",%",6+,1&%B"-;%$+&')6,"=0%fHHj8%
?DbE[%48%cHcWcIc8%



! %,-!

dj8% G)/0%B80%O8%V-)0%#/$%B8%T)'(*=WG)&,/0%EI*/.<3258:./3!.:*6.6+3:."*35A3-3+*
+/95"1209+325*95:*7,50+325*27*-.+9*6/2+.35*G359".*E*35*!3!2)%9(,%O)-"/#*%):%
.+)*);+'#*%'(,<+&3"=0%Iggb8%5DCDcIE[%48%fcIeHWfcIej8%

de8% k-'7,"<#/0%G8%#/$%O8%R,""0%QY*(22"*ZQ*[K\\I]>*$77303.5+*;.+A2:*72/*+A.*
6/.69/9+325*27*6.6+23:"*^213<2*[O8",-"+3+,+.:*<1=035."]_*-=*",-;252;./*
"213:6A9".*"=5+A."3"8%O%><%M(,"/%@)'8%

dg8% Q#*$#-:0%M8%#/$%T898%A+&#.#"")0%&+9-1.*A93/635"*?3+A*-.+986.6+3:.">*/2,+.*+2*
+90G1.*6/2+.3586/2+.35*35+./90+325")%9(,%?)-"/#*%):%4(=&+'#*%'(,<+&3"=%Q0%fHHe8%
))5DfbE[%48%jbeIWgI8%

cH8% U#"3+;0%!8G8@80%9898%9"#/0%#/$%T8V8%@<=3(,0%F5+/9;21.0,19/*:3",16A3:.*-25:*
9//95<.;.5+"*35*525A2;212<2,"*6/2+.35")%A")3,+/%&'+,/',%[%#%4-.*+'#3+)/%):%
3(,%A")3,+/%@)'+,3=0%fHHb8%)@DfE[%48%cjcWcef8%

cI8% 9)/+7+#/0%G80%,3%#*80%F:.5+37=35<*"6.037303+=*6/2731."*72/*6.6+3:.*/.02<53+325*
;2:,1."*7/2;*6A9<.8:3"619=.:*6.6+3:.*`)%/#3-",8')<0%fHHj8%

cf8% 9)/+7+#/0%G80%,3%#*80%L*&6.037303+=*(96*72/*+A.*4MS*M2;935*T9;31=)%AV)@%Q+)*0%
fHHe8%

cd8% R#&#/)60%O80%!8%A+")XX+0%#/$%>8%L6,;,&0%EA9/90+./3V35<*E19""*F*ZZ*:2;935"*
:.735."*G.=*"6.037303+=*:.+./;3595+"*95:*<.5./9+."*;,+95+*:2;935"*?3+A*52!.1*
"6.037303+3.")%M(,<+&3"=%q#<4F%.+)*);=0%fHHI8%

cc8% @4#"7&0%>8Q80%,3%#*80%M3"+350+*13<95:*6/.7./.50."*27*&/0*A2;212<=*R*:2;935"*7/2;*
&/0Y*a."Y*L-1Y*E2/+90+35Y*6WR-6IY*4HE<9;;9Y*E/GY*95:*b/-I)%A")',,$+/;&%):%3(,%
Z#3+)/#*%>'#$,<=%):%@'+,/',&%):%3(,%L/+3,$%@3#3,&%):%><,"+'#0%Iggh8%F;DcE[%48%
IbcHWIbcc8%

cb8% V+0%T80%,3%#*80%&.1.0+35<*26+3;,;*.,G9/=2+30*35+.</91*;.;-/95.*6/2+.35"*72/*
"+/,0+,/.*:.+./;359+325*-=*/963:*.B6/.""325*95:*"21,-313V9+325*"0/..535<)%
fHHg8%;ABDdE[%48%efHWedH8%

ch8% Q,=,"0%T80%,3%#*80%E2;-359+2/391*"=5+A."3"*27*6.6+3:.*9//9="*25+2*9*;30/20A36)%
@'+,/',%DZ,1%])"70%Z]E0%fHHj8%;)ADbebeE[%48%Ieee8%

cj8% @)/;0%\80%,3%#*80%L*A3<A*.77303.50=*"+/9+.<=*72/*-35:35<*6/26./+=*0A9/90+./3V9+325*
27*6.6+3:.8-35:35<*:2;935")%T)*,'-*#"%q#<4F%',**-*#"%4")3,)<+'&%[%TMA0%
fHHh8%BDeE[%48%IdheWIdeI8%

ce8% Z,$-6#0%^8%#/$%G8Q8%G-&&,**0%H35.9/*;2+37">*.!21,+3259/=*35+./90+325*"?3+0A.")%
N\Q@%*,33,"&0%fHHb8%BDFDIbE[%48%ddcfWddcb8%

cg8% T#("-&0%@80%,3%#*80%b12-91*&.X,.5035<*27*4/2+.21=+30*E1.9!9<.*&3+."*35*L626+2"3"*
-=*&6.03730*H9-.135<*27*4/2+.35*O*@./;353)%fHHe8%);@[%48%ehhWejh8%

bH8% B+,**#0%N80%,3%#*80%'5:./"+95:35<*.,G9/=2+30*135.9/*;2+37"*95:*+A.3/*/21.*35*0.11*
"3<59135<*95:*/.<,19+325)%N")/3+,"&%+/%.+)&'+,/',%[%#%?)-"/#*%#/$%6+"3-#*%
*+."#"=0%fHHe8%);[%48%hbeHWhhHd8%

bI8% Q)=$0%@8\80%,3%#*80%424&>*9*02;6,+9+32591*+221*72/*;2:.135<*95:*6/.:30+35<*
6/2+.9".*"6.037303+=)%O)-"/#*%):%.+)+/:)"<#3+'&%#/$%')<4-3#3+)/#*%.+)*);=0%
fHHb8%;DdE[%48%bbIWeb8%

bf8% V)(<r**,"0%980%,3%#*80%@2?9/:*02;6,+./8-9".:*01.9!9<.*"3+.*6/.:30+325*27*
0="+.35.*.5:26.6+3:9".")%Q+)*%M(,<0%fHHd8%;A@DhE[%48%eggWgHg8%

bd8% Q#'7,&0%M80%,3%#*80%b/9cE9">*9*-323572/;9+30"*+221*72/*"02/.8-9".:*6/.:30+325*27*
E9"69".8*95:*b/95V=;.*c801.9!9<.*"3+."*35*6/2+.35*".X,.50.")%Z-'*,+'%>'+$&%
G,&0%fHHb8%;;DP,.%@,"6,"%+&&-,E[%48%PfHeWId8%



! %-.!

bc8% U-#/;0%U8WB80%,3%#*80%F502/62/9+35<*A3::.5*(9/G2!*;2:.1"*72/*3:.5+37=35<*
6/2+.35*G359".8"6.03730*6A2"6A2/=19+325*"3+.")%O)-"/#*%):%M)<4-3#3+)/#*%
M(,<+&3"=0%fHHb8%5?DIHE[%48%IHdfWIHcI8%

bb8% T'V#-;(*+/0%P8>80%98%U)-0%#/$%P8%P#/;0%4/.:30+325*27*-35:35<*"3+."*27*6.6+3:.*
/.02<53+325*:2;935">*95*9661309+325*25*b/-I*95:*&L4*&QI*:2;935")%O%T)*%Q+)*0%
fHHh8%;BDDcE[%48%IdffWdc8%

bh8% Z+,*&,/0%T80%,3%#*80%%.139-1.*6/.:30+325*27*@80.11*.63+26."*,"35<*5.,/91*5.+?2/G"*
?3+A*52!.1*".X,.50.*/.6/.".5+9+325")%A")3,+/%&'+,/',%[%#%4-.*+'#3+)/%):%3(,%
A")3,+/%@)'+,3=0%fHHd8%)5DbE[%48%IHHjWIHIj8%

bj8% U,0%A80%,3%#*80%@2?9/:*X,95+3+9+3!.*0A9/90+./3V9+325*27*+A.*-35:35<*6/2731.*
-.+?..5*+A.*A,;95*9;6A36A="358K*&QR*:2;935*95:*3+"*6.6+3:.*13<95:")%><+/)%
>'+$&0%fHHg8%

be8% V+-0%980%,3%#*80%E2;6,+9+32591*6/.:30+325*27*+A.*"6.037303+3."*27*6/2+.9"2;.*
35+./90+325*?3+A*95+3<.5*6/2+.35)%M,**%T)*%C<<-/)*0%fHHg8%?DfE[%48%IdbWcf8%

bg8% G#6,(0%Q80%,3%#*80%%2".++9*T1.B4.6M20G*9-8353+32>*"3;,1+95.2,"*721:35<Y*:20G35<*
95:*/.735.;.5+*27*6.6+3:."*25+2*+A.3/*/.0.6+2/")%AV)@%YZ\0%fHII8%?DcE[%48%
,Iegdc8%

hH8% G#6,(0%Q80%Z8%V)/$)/0%#/$%Y8%@'(-,*,"WN-"<#/0%&,-895<"+/2;*;2:.135<*27*
02;61.B."*-.+?..5*71.B3-1.*6.6+3:."*95:*<12-,19/*6/2+.35")%A")3,+/&0%fHIH8%
DADgE[%48%fHfgWcH8%

hI8% G)(*0%M8>80%,3%#*80%4/2+.35*"+/,0+,/.*6/.:30+325*,"35<*%2".++9)%T,3()$&%+/%
,/X=<)*);=0%fHHc8%;A;[%48%hhWgd8%

hf8% >/3,&0%C80%M=59M20G>*L*5.?*;21.0,19/*:=59;30"8-9".:*91<2/3+A;*72/*6/2+.358
6.6+3:.*:20G35<*3501,:35<*/.0.6+2/*71.B3-313+=)%A")3,+/&0%fHIH8%DADbE[%48%IHecW
IIHc8%

hd8% >"-/%A"#&#$0%A8%#/$%Z8%!#-3(#<0%L*5.?*6.6+3:.*:20G35<*"+/9+.<=*,"35<*9*;.95*
73.1:*+.0A53X,.*?3+A*;,+,911=*2/+A2<2591*H9+35*"X,9/.*"9;6135<)%O%M)<4-3%
>+$,$%T)*%B,&0%fHHe8%55DIIE[%48%eIbWfg8%

hc8% !,(*(##"0%B8R80%,3%#*80%(21.0,19/*/.02<53+325*27*+A.*35A3-3+2/*Lb8KRdR*-=*QF#8K*
6/2+.9".>*02572/;9+325911=*71.B3-1.*:20G35<*-=*.!21,+3259/=*6/2</9;;35<)%
M(,<+&3"=%q#<4F%.+)*);=0%Iggb8%5DbE[%48%dIjWdfc8%

hb8% V+-0%@80%,3%#*80%L*6A="3091*/.7./.50.*"+9+.*,5373."*+A.*"+/,0+,/.8:./3!.:*62+.5+391*27*
;.95*72/0.*72/*6/2+.35*721:35<*95:*-35:35<)%A")3,+/&0%fHHc8%B?DIE[%48%gdWIHI8%

hh8% Q-+0%U8WU80%,3%#*80%&+/,0+,/91*6/.:30+325*27*6.6+3:."*-35:35<*+2*(QE*019""*F*
;21.0,1.")%A")3,+/&0%fHHh8%?;DIE[%48%cdWbf8%

hj8% Q)"$/,"0%>8O8%#/$%G8%>.#;=#/0%L-*353+32*6/.:30+325*27*6.6+3:.8(QE*-35:35<*
<.2;.+/=*72/*:3!./".*019""*F*(QE*9112+=6.")%A")3,+/&0%fHHh8%?;DdE[%48%bIfWfh8%

he8% N#;,".,";0%980%O8WM8%M,")33+/+0%#/$%Y8%T+'(+,*+/0%&+/,0+,/91*6/.:30+325*27*6.6+3:."*
-2,5:*+2*(QE*019""*F)%O%T)*%Q+)*0%fHHh8%;B?DfE[%48%bfIWch8%

hg8% @'(#:")3(0%U8B8%#/$%M8>8%N*)-$#&0%4/.:30+35<*6.6+3:.*-35:35<*+2*(QE*620G.+"*
!39*;21.0,19/*;2:.135<Y*3;61303+*"21!9+325Y*95:*<12-91*26+3;3V9+325)%A")3,+/&0%
fHHc8%B@DdE[%48%bdcWbh8%

jH8% @(,/0%T8W]8%#/$%>8%@#*+0%&+9+3"+3091*62+.5+391*72/*9""."";.5+*95:*6/.:30+325*27*
6/2+.35*"+/,0+,/.")%A")3,+/%@'+0%fHHh8%)BDIIE[%48%fbHjWfc8%



! %-%!

jI8% 9)/;0%O8M80%98P8%9#/0%#/$%@8%G#/;#/#3(#/0%(2:.135<*+A.*"+/,0+,/.*27*-2,5:*
6.6+3:.*13<95:"*+2*;9U2/*A3"+202;69+3-313+=*02;61.B)%A")3,+/%@'+0%fHHc8%);DgE[%
48%fbfdWdf8%

jf8% Z+60%T8]8%#/$%U8%P,+/&3,+/0%L*71.B3-1.*:20G35<*6/20.:,/.*72/*+A.*.B612/9+325*27*
6.6+3:.*-35:35<*".1.0+3!3+=*+2*G52?5*"+/,0+,/."*95:*A2;212<=*;2:.1"*27*4MS*
:2;935")%O%><%M(,<%@)'0%fHHb8%)5DDcHE[%48%IcHjfWg8%

jd8% @3#/,6#0%C8%#/$%@8%P#**+/0%L118L+2;*(25+.*E9/12*L66/290A*+2*4/2+.3584.6+3:.*
c35:35<)%O%T)*%Q+)*0%fHHg8%

jc8% U)-0%980%,3%#*80%E2;6,+9+32591*9591="3"*95:*6/.:30+325*27*+A.*-35:35<*;2+37*95:*
6/2+.35*35+./90+35<*69/+5./"*27*+A.*L-1*&QR*:2;935)%AV)@%M)<4-3%Q+)*0%fHHh8%
5DIE[%48%,I8%

jb8% U)-0%980%,3%#*80%4/.:30+325*27*-35:35<*977353+3."*-.+?..5*+A.*A,;95*9;6A36A="358
K*&QR*:2;935*95:*3+"*6.6+3:.*13<95:"*,"35<*A2;212<=*;2:.135<Y*;21.0,19/*
:=59;30"*95:*;21.0,19/*73.1:*9591="3")%O%A")3,)<,%G,&0%fHHh8%BDIE[%48%dfWcd8%

jh8% R-"'+/&7+0%T8%#/$%>8%R)*+/&7+0%&+.6"*+2?9/:"*71.B3-1.*:20G35<>*;2:.135<*27*
+A/..8:3;.5"32591*"+/,0+,/."*27*+A.*5,01.9/*/.0.6+2/"*-2,5:*?3+A*6.6+3:.*
13<95:"*;3;30G35<*02890+3!9+2/"e*".X,.50.")%O%@3,")+$%Q+)'(,<%T)*%Q+)*0%fHHj8%
)C;DdWbE[%48%dbjWhH8%

jj8% M(#-$(-"=0%@8%#/$%O8O8%!"#=0%F:.5+37309+325*27*"+/,0+,/91*;.0A953";"*27*QF#8K*
6/2+.9".*"6.037303+=*,"35<*02;6,+9+32591*6.6+3:.*:20G35<>*3;61309+325"*72/*:/,<*
/."3"+950.)%@3"-'3-",0%fHHg8%)DDIfE[%48%IhdhWce8%

je8% @))$0%^8B8%#/$%B8%Q#7,"0%%.0963+,19+325*95:*:."3<5*27*6/2+.35*-35:35<*6.6+3:.*
"+/,0+,/."*95:*".X,.50.")%O%T)*%Q+)*0%fHHh8%;BDDdE[%48%gIjWfj8%

jg8% 9#=*)"0%G8M80%@8A8%M-**,/0%#/$%@8O8%T#"3+/0%L626+2"3">*025+/211.:*:.;213+325*9+*+A.*
0.11,19/*1.!.1)%Z#3-",%",6+,1&8%T)*,'-*#"%',**%.+)*);=0%fHHe8%FDdE[%48%fdIWfcI8%

eH8% R#-:<#//0%@8U8%#/$%P8M8%\#"/&(#10%F5:,0+325*27*9626+2"3"*-=*0950./*
0A.;2+A./96=)%\54,"+<,/3#*%',**%",&,#"'(0%fHHH8%5B?DIE[%48%cfWcg8%

eI8% A#"$)0%O80%,3%#*80%@A.*-3212<=*27*0=+2+2B30*0.11*</95,1.*.B20=+2"3"*69+A?9=>*
</95V=;."*A9!.*.!21!.:*+2*35:,0.*0.11*:.9+A*95:*35719;;9+325)%T+'").,&%
C/:,'30%fHHg8%))DcE[%48%cbfWg8%

ef8% Z+'()*&)/0%B8P8%#/$%Z8>8%9()"/.,""=0%L626+2"3")*H37.*95:*:.9+A*:.03"325")%
@'+,/',0%fHHd8%5FFDbhHcE[%48%fIcWb8%

ed8% Q",$,<,=,"0%>8O80%G8G8%9)1/&,/$0%#/$%98O8%V,=0%'".*27*6/2+.9".*6/2+.2;30"*+2*
:3"02!./*</95V=;.*c*",-"+/9+.")%C<<-/)*%G,&0%fHHb8%;5DIWdE[%48%IcdWbd8%

ec8% M#&'+)*#WG)&,/0%V80%,3%#*80%E1.9!9<.*-=*</95V=;.*c*3"*"+/25<1=*6/.:30+3!.*27*
9,+295+3<.5*"+9+,">*3;61309+325"*72/*353+39+325*27*9,+23;;,53+=)%O%\54%T,$0%
Iggg8%)FCDhE[%48%eIbWfh8%

eb8% O)(/&)/0%M8\8%#/$%@8%R)"/.*-3(0%E9"69".*01.9!9<.*3"*52+*72/*.!./=25.)%M,**0%
fHHe8%);@DbE[%48%jfHWI8%

eh8% P+*7+/&0%T8G80%,3%#*80%4/2+.35*3:.5+37309+325*95:*9591="3"*+221"*35*+A.*$B4L&=*
"./!./)%T,3()$&%T)*%Q+)*0%Iggg8%))5[%48%bdIWbf8%

ej8% !#"#=WT#*4#"3+$#0%U8T80%,3%#*80%E9&4/.:30+2/>*9*5.?*02;6,+./8-9".:*+221*72/*
09"69".*",-"+/9+.*6/.:30+325)%Q+)+/:)"<#3+'&0%fHHb8%5)(2IJJK()[%48%+IhgWjh8%

ee8% ^,"&4-"3,/0%O80%,3%#*80%&3+.4/.:30+35<*+A.*01.9!9<.*27*6/2+.359".*",-"+/9+.")%
9",/$&%Q+)'(,<%@'+0%fHHg8%;@DjE[%48%dIgWfd8%



! %-&!

eg8% P,,0%V8O8R80%98P8%9#/0%#/$%@8%G#/;#/#3(#/0%&#(8-9".:*6/.:30+325*27*09"69".*
",-"+/9+.*01.9!9<.*"3+.")%QTM%Q+)+/:)"<#3+'&0%fHHh8%D(2IJJK(B[%48%@Ic8%

gH8% ]#/;0%k8G80%4/.:30+325*27*09"69".*01.9!9<.*"3+."*,"35<*c9=."395*-328-9"3"*
7,50+325*5.,/91*5.+?2/G")%Q+)+/:)"<#3+'&0%fHHb8%5)DgE[%48%IedIWj8%

gI8% U-..#"$0%@8O80%@A.*"+/,0+,/91*9"6.0+"*27*13;3+.:*6/2+.21="3"*27*59+3!.*6/2+.35")%
Q+)'(+<%Q+)4(=&%>'3#0%Igge8%);A5DfE[%48%IgIWfHh8%

gf8% 9+<<,"0%O8M80%,3%#*80%&+/,0+,/91*95:*G35.+30*:.+./;3595+"*27*6/2+.9".*",-"+/9+.")%
Z#3-",%&3"-'3-"#*%q#<4F%<)*,'-*#"%.+)*);=0%fHHg8%)?DIHE[%48%IIHIWIIHe8%

gd8% Q#"7#/0%B8980%,3%#*80%4/.:30+325*27*6/2+.9".*",-"+/9+."*,"35<*".X,.50.*95:*
"+/,0+,/.*7.9+,/.")%Q+)+/:)"<#3+'&0%fHIH8%5?DIcE[%48%IjIcWff8%

gc8% ^#/%B#<<,0%A80%,3%#*80%L591="3"*27*6/2+.35*6/20.""35<*-=*O8+./;3591*6/2+.2;30"*
/.!.91"*52!.1*"6.03."8"6.03730*",-"+/9+.*:.+./;3595+"*27*</95V=;.*c*2/+A212<")%
T)*%M,**%A")3,)<+'&0%fHHe8%

gb8% @'(,'(3,"0%C8%#/$%>8%Q,";,"0%N5*+A.*90+3!.*"3+.*27*6/2+.9".")*R)*(96635<*+A.*
90+3!.*"3+.*27*696935D*"6.03730*6.6+3:.*35A3-3+2/"*27*696935)%Q+)'(,<%Q+)4(=&%
G,&%M)<<-/0%Ighe8%;5DbE[%48%egeWgHf8%

gh8% Vr3(+0%>8L8%#/$%@8O8%T#"3+/0%@A.*EL&cLQ>*9*".9/0A9-1.*:9+9-9".*27*09"69".*
",-"+/9+.")%M,**%B,#3(%B+::,"0%fHHj8%)@DcE[%48%hcIWbH8%

gj8% M"))7&0%!8\80%,3%#*80%Z.-H2<2>*9*".X,.50.*12<2*<.5./9+2/)%!,/)<,%G,&0%fHHc8%
)@DhE[%48%IIeeWgH8%

ge8% R,""0%B8>80%,3%#*80%&,/!3!91*;2+2/*5.,/25*6/2+.35*;2:,19+."*5.,/258"6.03730*
9626+2"3")%A")'%Z#3*%>'#$%@'+%L@>0%fHHH8%FDDfcE[%48%IddIfWj8%

gg8% >&(.-"/,"0%T80%,3%#*80%b.5.*25+212<=>*+221*72/*+A.*,537309+325*27*-3212<=)*@A.*
b.5.*N5+212<=*E25"2/+3,;)%Z#3%!,/,30%fHHH8%5BDIE[%48%fbWg8%

IHH8% ]-&3,0%^8O80%,3%#*80%E="+.35.*6/2+.9".*35A3-3+325*6/.!.5+"*;3+20A25:/391*9626+2"3"8
35:,035<*790+2/*[LFT]*/.1.9".)%M,**%B,#3(%B+::,"0%fHHb8%)5DIIE[%48%IccbWe8%

IHI8% G#6#;/#/0%V80%,3%#*80%Q.9+8"A20G*6/2+.35*fJ*95+9<253V."*9626+2"3"835:,035<*
790+2/)%Z#3%M,**%Q+)*0%fHHI8%;DgE[%48%edgWcd8%

IHf8% V),.0%M8G8R80%O8V8%U#""+&0%#/$%M8@8%M"#+70%b/95V=;.*c*6/2+.21=V."*/.0.6+2/"*
3;62/+95+*+2*6/2137./9+325*95:*",/!3!91Y*+36635<*+A.*-91950.*+2?9/:*9626+2"3")%O%
Q+)*%M(,<0%fHHh8%5A)DdeE[%48%fedfhWdb8%

IHd8% ^=#&0%@80%,3%#*80%F5!21!.;.5+*27*",/!3!91*;2+2/*5.,/25*[&(O]*6/2+.35*35*0.11*
:.9+A)%U-<%T)*%!,/,30%fHHf8%))DffE[%48%fjbIWhc8%

IHc8% ]+*<#X0%!8%#/$%B8Z8%!"#/;,"0%H.,G20=+.*/.0/,3+;.5+*95:*3"0A.;30*-/935*35U,/=)%
Z,-")<)*,'-*#"%<,$+'+/,0%fHIH8%)5DfE[%48%IgdWfHc8%

IHb8% Z,-<#//0%U80%,3%#*80%E=+2+2B30*@*1=;6A20=+."*35*9,+23;;,5.*95:*:.<.5./9+3!.*
EO&*:3".9".")%9",/$&%Z,-")&'+0%fHHf8%5BDhE[%48%dIdWg8%

IHh8% P,,0%V8O80%98P8%9#/0%#/$%@8%G#/;#/#3(#/0%&#(8-9".:*6/.:30+325*27*09"69".*
",-"+/9+.*01.9!9<.*"3+.")%QTM%Q+)+/:)"<#3+'&0%fHHh8%D(2IJJK(B[%48%@Ic8%

IHj8% 9()"/.,""=0%Z8>80%,3%#*80%L*02;-359+2/391*966/290A*:.735."*"6.037303+3."*27*
;.;-./"*27*+A.*09"69".*79;31=*95:*</95V=;.*c)*T,50+32591*/.19+325"A36"*
."+9-13"A.:*72/*G.=*;.:39+2/"*27*9626+2"3")%O%Q+)*%M(,<0%Iggj8%5D5DfgE[%48%
IjgHjWII8%

IHe8% A+,4,"0%L80%,3%#*80%@9/<.+*".1.0+325*95:*9552+9+325*72/*+A.*"+/,0+,/91*<.52;30"*27*
+A.*9;3:2A=:/219".*95:*.5219".*",6./79;313.")%fHHg8%)C[%48%IHjWIfb8%



! %-'!

IHg8% \"#<+#/0%B80%,3%#*80%Q2?*?.11*095*+A.*900,/90=*27*02;69/9+3!.*6/2+.35*"+/,0+,/.*
;2:.1"*-.*6/.:30+.:g%A")3,+/%@'+0%fHHe8%)DDIIE[%48%IeeIWgd8%

IIH8% M(#7"#6#"3=0%@8%#/$%G8%@#/'(,X0%&="+.;9+30*9591="3"*27*9::.:8!91,.*35*"3;61.*
02;69/9+3!.*;2:.1"*27*6/2+.35*"+/,0+,/.)%@3"-'3-",0%fHHc8%)5DeE[%48%IchIWjH8%

III8% R#.&'(0%P8%#/$%M8%@#/$,"0%M30+3259/=*27*6/2+.35*".025:9/=*"+/,0+,/.>*69++./5*
/.02<53+325*27*A=:/2<.58-25:.:*95:*<.2;.+/3091*7.9+,/.")%Q+)4)*=<,"&0%Iged8%
55DIfE[%48%fbjjWhdj8%

IIf8% O)/,&0%B8980%4/2+.35*".025:9/=*"+/,0+,/.*6/.:30+325*-9".:*25*62"3+3258"6.03730*
"02/35<*;9+/30.")%O%T)*%Q+)*0%Iggg8%5F5DfE[%48%IgbWfHf8%

IId8% O)/,&0%B898%#/$%O8O8%P#"$0%4/.:30+325*27*:3"2/:./.:*/.<325"*35*6/2+.35"*7/2;*
62"3+325*"6.03730*"02/.*;9+/30.")%A")3,+/&0%fHHd8%B;(2IJJK(?[%48%bjdWe8%

IIc8% O)#'(+<&0%980%(9G35<*H9/<.8&091.*&#(*H.9/535<*4/90+30910%+/%L:!950."*35*
h./5.1*(.+A2:"*8*&,662/+*#.0+2/*H.9/535<0%Q8%@'()*7)4:0%Q-";,&0%M8%#/$%@<)*#0%
>80%\$+3)"8%Iggg0%TC9WA",&&[%Q)&3)/8%

IIb8% @3,//+'7,0%U8G8%#/$%!8@8%@#*6,&,/0%E9"69".">*6/.69/9+325*95:*0A9/90+./3V9+325)%
T,3()$&0%Iggg8%)DDcE[%48%dIdWg8%

IIh8% V#&7,"0%R80%,3%#*80%F57./.5+391*26+3;3V9+325*72/*"3;,1+95.2,"*73++35<*27*;,1+361.*
02;625.5+"*35+2*9*0/=2$(*;96*27*+A.3/*9"".;-1=)%fHHg8%;AADIE[%48%IeHWIgc8%

IIj8% @#*+0%>8%#/$%98%Q*-/$,**0%E2;69/9+3!.*6/2+.35*;2:.1135<*-=*"9+3"790+325*27*
"69+391*/."+/935+")%Iggd8%5;@DdE[%48%jjgWeIb8%

IIe8% N-*$#0%@80%,3%#*80%E.11*+=6.*"6.03730*35!21!.;.5+*27*:.9+A*/.0.6+2/*95:*
;3+20A25:/391*69+A?9="*35*:/,<835:,0.:*9626+2"3")%Y/');,/,0%fHHI8%5CDgE[%48%
IHhdWIHjb8%

IIg8% @3,4'X=/&7#0%>80%,3%#*80%&+9,/2"62/35.*95:*025!.5+32591*95+30950./*:/,<"*35:,0.*
2!./196635<Y*=.+*:3"+350+*69+A?9="*27*9626+2"3"*95:*09"69".*90+3!9+325)%
Y/');,/,0%fHHI8%5CDIHE[%48%IIgdWIfHf8%

IfH8% Q")1/0%O8V8%#/$%P8R8%G).,"3&0%$!3:.50.*+A9+*966/2B3;9+.1=*.3<A+=*6./*0.5+*27*
+A.*"21,-1.*6/2+.35"*7/2;*$A/130A*9"03+."*0.11"*9/.*O916A9890.+=19+.:)%9(,%
O)-"/#*%):%.+)*);+'#*%'(,<+&3"=0%Igjh8%5B)DcE[%48%IHHgWIHIc8%

IfI8% >."#(<&`/0%V80%,3%#*80%$5<35../35<*",-+313"35*95:*3+"*",-"+/9+."*72/*.77303.5+*
13<9+325*27*6.6+3:.*-25:"*35*9X,.2,"*"21,+325)%Q+)'(,<+&3"=0%IggI8%;CDIjE[%48%
cIbIWcIbg8%

Iff8% M(#/;0%98R80%,3%#*80%&,-+313<9".>*9*+221*72/*".;3"=5+A."3"*27*6/2+.35")%A")',,$+/;&%
):%3(,%Z#3+)/#*%>'#$,<=%):%@'+,/',&%):%3(,%L/+3,$%@3#3,&%):%><,"+'#0%Iggc8%
F)DfhE[%48%IfbccWIfbce8%

Ifd8% @'(+**+/;0%Y8%#/$%M8T8%Y6,"#**0%4/2+.2;.8:./3!.:Y*:9+9-9".8".9/0A9-1.*6.6+3:.*
13-/9/3."*72/*3:.5+37=35<*6/2+.9".*01.9!9<.*"3+.")%Z#3-",%.+)3,'(/)*);=0%fHHe8%
5?DhE[%48%hebWhgc8%

Ifc8% @3,//+'7,0%U8G80%,3%#*80%F5+./5911=*X,.50A.:*71,2/."0.5+*6.6+3:.*",-"+/9+."*
:3"012".*+A.*",-"3+.*6/.7./.50."*27*A,;95*09"69"."*KY*RY*iY*f*95:*j)%Q+)'(,<%O0%
fHHH8%;BC($L(5[%48%bhdWe8%

Ifb8% \*+#&0%O8\80%,3%#*80%E2;69/9+3!.*.!91,9+325*27*;9""*"6.0+/2;.+/=*619+72/;"*,".:*
35*19/<.8"091.*6/2+.2;30"*35!."+3<9+325")%Z#3-",%<,3()$&0%fHHb8%5DgE[%48%hhjW
hjb8%

Ifh8% Q,"<#/0%U8T80%,3%#*80%@A.*4/2+.35*M9+9*c95G)%>'3#%'"=&3#**);"#4(+'#8%@,'3+)/%B0%
Q+)*);+'#*%'"=&3#**);"#4(=0%fHHf8%BADA3%h%%Z)%IE[%48%eggWgHj8%



! %-(!

Ifj8% A+,4,"0%L80%,3%#*80%(2:c9".Y*9*:9+9-9".*27*9552+9+.:*02;69/9+3!.*6/2+.35*
"+/,0+,/.*;2:.1"Y*95:*9""2039+.:*/."2,/0.")%Z-'*,+'%#'+$&%",&,#"'(0%fHII8%
;FDB#3#.#&,%+&&-,E[%48%BchbWcjc8%

Ife8% N+//0%G8B80%,3%#*80%479;>*0195"Y*?.-*+221"*95:*"./!30.")%Z-'*,+'%#'+$&%",&,#"'(0%
fHHh8%;@DB#3#.#&,%+&&-,E[%48%BfcjWbI8%

Ifg8% M(#3"W#"=#<)/3"+0%>80%,3%#*80%(FO@>*+A.*(21.0,19/*FO@./90+325*:9+9-9".)%
Z-'*,+'%#'+$&%",&,#"'(0%fHHj8%;BDB#3#.#&,%+&&-,E[%48%BbjfWc8%

IdH8% R,""+,/0%@80%,3%#*80%F5+L0+8826.5*"2,/0.*/."2,/0.*72/*;21.0,19/*35+./90+325*:9+9)%
Z-'*,+'%#'+$&%",&,#"'(0%fHHj8%;BDB#3#.#&,%+&&-,E[%48%BbhIWb8%

IdI8% T+&("#0%!8G80%,3%#*80%Q,;95*6/2+.35*/.7./.50.*:9+9-9".88IJJi*,6:9+.)%Z-'*,+'%
#'+$&%",&,#"'(0%fHHh8%;@DB#3#.#&,%+&&-,E[%48%BcIIWc8%

Idf8% T#,",0%@80%R8%U,=<#/&0%#/$%T8%R-+4,"0%c3ObN>*9*E=+2"096.*61,<35*+2*9"".""*
2!.//.6/.".5+9+325*27*<.5.*25+212<=*09+.<2/3."*35*-3212<3091*5.+?2/G")%
Q+)+/:)"<#3+'&%DY5:)"$0%\/;*#/$E0%fHHb8%5)DIhE[%48%dcceWdccg8%

Idd8% @(#//)/0%A80%,3%#*80%E=+2"096.>*9*"27+?9/.*.5!3/25;.5+*72/*35+.</9+.:*;2:.1"*27*
-32;21.0,19/*35+./90+325*5.+?2/G")%!,/)<,%",&,#"'(0%fHHd8%);DIIE[%48%fcgeW
fbHc8%

Idc8% R#"#;+#//+0%A8%#/$%O8%P)/;0%QMLER>*+9G35<*+A.*&(%@8O8E2%/.0+*/29:*+2*
/.6/.""325)%Y/');,/,0%fHHj8%5?DdjE[%48%bcdgWbccg8%

Idb8% N+&'(*,0%P80%,3%#*80%Q,;95*QMLEf*A3"+25.*:.90.+=19".*90+3!3+=*3"*9""2039+.:*?3+A*
QMLER*35*!3!2)%9(,%O)-"/#*%):%.+)*);+'#*%'(,<+&3"=0%fHHI8%5D?DdeE[%48%dbefhW
dbedb8%

Idh8% @(+0%]80%,3%#*80%&A9/6Y*95*35:,03-1.*02790+2/*+A9+*35+.</9+."*5,01.9/*/.0.6+2/*
/.6/.""325*95:*90+3!9+325)%!,/,&%q#<4F%$,6,*)4<,/30%fHHI8%)BDgE[%48%IIcHW
IIbI8%

Idj8% 9#7,X#1#0%@80%,3%#*80%L*0.11*0=01.8:.6.5:.5+*028/.6/.""2/*;.:39+."*
6A2+2/.0.6+2/*0.118"6.03730*5,01.9/*/.0.6+2/*7,50+325)%9(,%\TQY%?)-"/#*0%fHHj8%
5?DdE[%48%jhcWjjc8%

Ide8% \&'#::+30%N80%,3%#*80%E1.9!9<.*95:*0=+2619";30*/.120913V9+325*27*A3"+25.*
:.90.+=19".*R*9/.*3;62/+95+*72/*9626+2"3"*6/2</.""325)%T)*,'-*#"%#/$%',**-*#"%
.+)*);=0%fHHj8%5DDfE[%48%bbcWbhj8%

Idg8% V+,.,"<#/0%O8%#/$%k8%N#/0%O,01.9/*?9/>*+A.*</95V=;.*L8-2;-)%M-"",/3%)4+/+)/%
+/%+<<-/)*);=0%fHHd8%)BDbE[%48%bbdWbbg8%

IcH8% Q)*$,/0%O8\80%T8O8%A,#"30%#/$%G8P8%O)(/&3)/,0%L5+30950./*90+3!3+3."*27*A3"+25.*
:.90.+=19".*35A3-3+2/")%Z#3-",%",6+,1&%B"-;%$+&')6,"=0%fHHh8%BDgE[%48%jhgW
jec8%

IcI8% @')330%N8V80%,3%#*80%E9"69".8j*01.9!."*A3"+25.*:.90.+=19".*f*95:*9-213"A."*3+"*
+/95"0/36+325*/.6/.""2/*7,50+325)%9(,%O)-"/#*%):%.+)*);+'#*%'(,<+&3"=0%fHHe8%
5A;DfeE[%48%IgcggWIgbIH8%

Icf8% ^#"&(#6&7=0%>80%@A.*O8.5:*/,1.)%M,**0%Iggf8%?FDbE[%48%jfbWjdb8%
Icd8% U-0%i8%#/$%T8>8%V#X#"0%@A.*E2%O%*;2+37*025+/21"*+A.*/.0/,3+;.5+*27*

02/.6/.""2/"*-=*5,01.9/*A2/;25.*/.0.6+2/")%Z#3-",0%Iggg8%@C5DhjbjE[%48%gdW
gh8%

Icc8% 9pX&`"0%O80%,3%#*80%$77.0+*27*09"69".*01.9!9<.8"3+.*6A2"6A2/=19+325*25*6/2+.21="3")%
9(,%Q+)'(,<+'#*%?)-"/#*0%fHHd8%;D5DA3%IE[%48%IdjWIcd8%



! %-)!

Icb8% Y*):&&)/0%T8U80%,3%#*80%E=+2G./9+358Kj*3"*9*,".7,1*"./,;*-32;9/G./*72/*.9/1=*
:.+./;359+325*27*/."625".*27*-/.9"+*09/0352;9"*+2*0A.;2+A./96=)%M*+/+'#*%
'#/',"%",&,#"'(%[%#/%)::+'+#*%?)-"/#*%):%3(,%><,"+'#/%>&&)'+#3+)/%:)"%M#/',"%
G,&,#"'(0%fHHj8%);DIIE[%48%dIgeWdfHh8%

Ich8% Q"#+&3,$0%>8M80%O8R8%O-$+',0%#/$%O8>8%P,**&0%&=5+A."3"*27*6/2+.35"*-=*",-+313<9".)%
T,3()$&%+/%,/X=<)*);=0%Iggj8%5AF[%48%fgeWdId8%

Icj8% \$$=0%@8G80%4/2731.*A3::.5*(9/G2!*;2:.1")%Q+)+/:)"<#3+'&0%Igge8%)@DgE[%48%jbbW
hd8%

Ice8% T,*)0%N8%#/$%>8%@#*+0%T21:*9""."";.5+*72/*02;69/9+3!.*6/2+.35*"+/,0+,/.*
;2:.135<)%fHHj8%)?DIIE[%48%fcIfWfcfh8%

Icg8% \&1#"0%Z8%#/$%>8%@#*+0%E2;69/9+3!.*(2:.135<*27*M/,<*@9/<.+*4/2+.35")%fHHj[%48%
fIbWfdh8%

IbH8% M)*,0%G8Z8%#/$%!8P8%U#"30%E=+2"2130*N8<1=02"=19+325*3"*9-,5:95+*35*5./!.*
+./;3591")%O)-"/#*%):%Z,-")'(,<+&3"=0%fHHI8%DFDbE[%48%IHeHWIHeg8%

IbI8% >7+<)3)0%]80%,3%#*80%H20913V9+325*27*+A.*N8b10OL0*+/95"7./9".*95:*N8b10OL08
;2:373.:*6/2+.35"*35*/9+*0./.-.119/*02/+.B)%Q"#+/%G,&,#"'(0%fHHd8%F??DfE[%48%
IgcWfHb8%

Ibf8% Yq#4)&FB)//,**0%Z80%,3%#*80%N<+8M.6.5:.5+*P8EA/2;2"2;.8H35G.:*4/2+.35*
b1=02"=19+325*F"*9*%.X,3"3+.*(2:37309+325*35*&2;9+30*E.11*T,50+325*95:*$;-/=2*
#39-313+=)%T)*,'-*#"%#/$%',**-*#"%.+)*);=0%fHHc8%5@DcE[%48%IheHWIhgH8%

Ibd8% M)4,*#/$0%G8O80%O8P8%Q-**,/0%#/$%!8P8%U#"30%E/2""8+91G*-.+?..5*b10OL0=19+325*
95:*6A2"6A2/=19+325>*/21."*35*35",135*/."3"+950.*95:*<1,02".*+2B303+=)%><,"+'#/%
O)-"/#*%):%A(=&+)*);=%W%\/$)'"+/)*);=%>/$%T,3#.)*+&<0%fHHe8%5FBDIE[%48%\IjW
\fe8%

Ibc8% M()-0%98W]80%!8P8%U#"30%#/$%M8^8%B#/;0%08(=0*F"*b1=02"=19+.:*9+*@A/.2535.*WjY*9*
h52?5*4A2"6A2/=19+325*&3+.*95:*9*(,+9+32591*Q2+*&62+*35*H=;6A2;9")%O)-"/#*%
):%Q+)*);+'#*%M(,<+&3"=0%Iggb8%5DCDdfE[%48%IeghIWIeghb8%

Ibb8% B-0%i8V80%,3%#*80%Q=6./<1=0.;39*35A3-3+"*.5:2+A.1391*53+/30*2B3:.*"=5+A9".*90+3!3+=*
-=*62"++/95"19+32591*;2:37309+325*9+*+A.*LG+*"3+.)%O)-"/#*%):%M*+/+'#*%
C/6,&3+;#3+)/0%fHHI8%)CADgE[%48%IdcIWIdce8%

Ibh8% R,**=0%P8!80%T8\8%B#(<-&0%#/$%!8P8%U#"30%%OL*621=;./9".*FF*3"*9*<1=026/2+.35)*
(2:37309+325*27*+A.*ENNQ8+./;3591*:2;935*-=*N8b10OL0)%O)-"/#*%):%Q+)*);+'#*%
M(,<+&3"=0%Iggd8%5?ADIcE[%48%IHcIhWIHcfc8%

Ibj8% M)*,0%G8Z8%#/$%!8P8%U#"30%b1=02"=19+325*&3+."*T195G*4A2"6A2/=19+325*&3+."*25*
&=596"35*F)%O)-"/#*%):%Z,-")'(,<+&3"=0%Iggg8%D;DIE[%48%cIeWcfe8%

Ibe8% V+-0%N80%,3%#*80%N8b10OL0=19+325*/.<,19+."*6A2"6A2/=19+325*27*+9,>*L*;.0A953";*
35!21!.:*35*L1VA.3;./C962"D"*:3".9".)%A")',,$+/;&%):%3(,%Z#3+)/#*%>'#$,<=%):%
@'+,/',&%):%3(,%L/+3,$%@3#3,&%):%><,"+'#0%fHHc8%)C)DfgE[%48%IHeHcWIHeHg8%

Ibg8% !"+::+3(0%V8@80%T8%T#3(,&0%#/$%Q8%@'(<+3X0%k!L;=123:*6/.0,/"2/*6/2+.35*3"*
;2:373.:*?3+A*N!135G.:*O!90.+=1<1,02"9;35.)%O)-"/#*%):%Z,-")&'+,/',%
G,&,#"'(0%Iggb8%@)DfE[%48%fjHWfje8%

IhH8% P#/;0%k80%T8%!-',70%#/$%!8P8%U#"30%E/2""8+91G*-.+?..5*b10OL0=19+325*95:*
6A2"6A2/=19+325>*&3+.8"6.03730*6A2"6A2/=19+325*:=59;30"*35*/."625".*+2*<12-911=*
.1.!9+.:*N8b10OL0)%A")',,$+/;&%):%3(,%Z#3+)/#*%>'#$,<=%):%@'+,/',&0%fHHe8%
)CBDdjE[%48%IdjgdWIdjge8%



! %-*!

IhI8% P#/;0%k80%>8%A#/$,=0%#/$%!8P8%U#"30%M=59;30*F5+./619=*-.+?..5*N8H35G.:*O8
L0.+=1<1,02"9;35=19+325*95:*b1=02<.5*&=5+A9".*h359".8R8:.6.5:.5+*
4A2"6A2/=19+325)%T)*,'-*#"%sq#<4F%M,**-*#"%A")3,)<+'&0%fHHj8%?DeE[%48%IdhbW
Idjg8%

Ihf8% M()-$(#"=0%M8%#/$%T8%T#//0%M.02:35<*"3<591135<*5.+?2/G"*-=*;9""*
"6.0+/2;.+/=8-9".:*6/2+.2;30")%Z#3-",%",6+,1&8%T)*,'-*#"%',**%.+)*);=0%fHIH8%
))DhE[%48%cfjWcdg8%

Ihd8% 9"+/+$#$0%O8M80%,3%#*80%b12-91*F:.5+37309+325*95:*EA9/90+./3V9+325*27*c2+A*N8
b10OL0=19+325*95:*4A2"6A2/=19+325*9+*+A.*(,/35.*&=596".)*)%@-.<+33,$0%fHIf8%

Ihc8% M(#*7*,=0%G8O80%,3%#*80%F:.5+37309+325*27*6/2+.35*N8b10OL0=19+325*"3+."*,"35<*
.1.0+/25*+/95"7./*:3""2039+325*;9""*"6.0+/2;.+/=*25*59+3!.*6.6+3:.")%
A")',,$+/;&%):%3(,%Z#3+)/#*%>'#$,<=%):%@'+,/',&0%fHHg8%)C?DffE[%48%eegcW
eegg8%

Ihb8% Z#;#3#0%]8%#/$%T8%Q-";,"0%ZA.9+*<./;*9<<1,+3535)*(21.0,19/*0A9/90+./3"+30"*
95:*"6.037303+=*72/*",<9/*-35:35<)%Igjc8%

Ihh8% V+-0%U80%G8!8%@#$=;)60%#/$%O8G8%]#3,&0%L*(2:.1*72/*%95:2;*&9;6135<*95:*
$"+3;9+325*27*%.19+3!.*4/2+.35*L-,5:950.*35*&A2+<,5*4/2+.2;30")%>/#*=3+'#*%
M(,<+&3"=0%fHHc8%D?DIcE[%48%cIgdWcfHI8%

Ihj8% @(+/)$#0%R80%T8%9)<+3#0%#/$%]8%C&(+(#<#0%.;4LF*E910l72/*+A.*."+3;9+325*27*
6/2+.35*9-,5:950.*7/2;*19/<.8"091.*3:.5+37309+325*:9+9*-=*13X,3:*
0A/2;9+2</96A=8+95:.;*;9""*"6.0+/2;.+/=)%Q+)+/:)"<#3+'&%DY5:)"$0%
\/;*#/$E0%fHIH8%5?DcE[%48%bjhWbjj8%

Ihe8% ^)&&,**,"0%R80%,3%#*80%N8H35G.:*O8L0.+=1<1,02"9;35.*4/2+.2;30"*27*42"+"=596+30*
M.5"3+=*4/.69/9+325"*'"35<*H.0+35*Z.9G*L77353+=*EA/2;9+2</96A=*95:*(9""*
&6.0+/2;.+/=)%T)*,'-*#"%sq#<4F%M,**-*#"%A")3,)<+'&0%fHHh8%BDbE[%48%gfdWgdc8%

Ihg8% @'(1#"3X0%B8%#/$%@8A8%!=;+0%L5*3+./9+3!.*"+9+3"+3091*966/290A*+2*+A.*
3:.5+37309+325*27*6/2+.35*6A2"6A2/=19+325*;2+37"*7/2;*19/<.8"091.*:9+9*".+")%
Z#3-",%.+)3,'(/)*);=0%fHHb8%5;DIIE[%48%IdgIWIdge8%

IjH8% Y*&,/0%O8^80%,3%#*80%m,95+3+9+3!.*4A2"6A26/2+.2;30"*%.!.91"*Z3:."6/.9:*T,11*
4A2"6A2/=19+325*&3+.*N00,6950=*M,/35<*(3+2"3")%@'+8%@+;/#*80%fHIH8%;DIHcE[%48%
"#d8%

IjI8% V#X#"-&0%T8Q80%,3%#*80%&+/,0+,/.*27*A,;95*N8b10OL0*+/95"7./9".*95:*3+"*02;61.B*
?3+A*9*6.6+3:.*",-"+/9+.)%Z#3-",0%fHII8%@?FDjddIE[%48%bhcWbhj8%

Ijf8% >/$"-&+,"0%Z80%G8%Z-&&+/)60%#/$%U8O8%P)*:&)/0%T3/.M20G>*T9"+*35+./90+325*
/.735.;.5+*35*;21.0,19/*:20G35<)%A")3,+/&0%fHHj8%?FDIE[%48%IdgWIbg8%

Ijd8% M)**#"30%T8>80%b12-91*025+/21*27*<.5.*.B6/.""325*35*=.9"+*-=*+A.*E0/d8O2+*
02;61.B)%!,/,0%fHHd8%;);[%48%IWIh8%

Ijc8% O#'7&)/0%@8A8%#/$%G8%9?+#/0%N8<1=02"=19+325*27*.,G9/=2+30*+/95"0/36+325*790+2/">*
F;61309+325"*72/*;.0A953";"*27*+/95"0/36+32591*/.<,19+325)%M,**0%Igee8%BBDIE[%48%
IfbWIdd8%

Ijb8% 9#/;0%V8W]80%,3%#*80%m,95+3+9+3!.*4A2"6A26/2+.2;.*4/273135<*27*Z5+R98;.:39+.:*
&3<59135<*O.+?2/G)%T)*,'-*#"%sq#<4F%M,**-*#"%A")3,)<+'&0%fHHj8%?DIIE[%48%
IgbfWIghj8%

Ijh8% ]#'(+,0%Z80%,3%#*80%F5*&31302*L591="3"*27*4A2"6A26/2+.2;.*M9+9*&,<<."+"*9*%30A8
<.+8/30A./*4/20.""*27*4A2"6A2"3+.*L00,;,19+325*2!./*$!21,+325)%T)*,'-*#"%
sq#<4F%M,**-*#"%A")3,)<+'&0%fHHg8%ADbE[%48%IHhIWIHjI8%



! %-+!

Ijj8% >:,=#/0%Z8Q80%@8A8%N-*3)/0%#/$%N8\8%G,;/+,"0%4./7,"325*0A/2;9+2</96A=*690G35<*
;9+./391"*72/*6/2+.35"*95:*6.6+3:.")%O)-"/#*%):%M(")<#3);"#4(=%>0%IggI8%
B@@DHE[%48%fhjWfjg8%

Ije8% ]#)0%B80%,3%#*80%Q3<A*b1,02".*F50/.9"."*L5<32623.+358I*@/95"0/36+325*35*
(30/2!9"0,19/*$5:2+A.1391*E.11"*+A/2,<A*(.+A=1<1=2B91*(2:37309+325*27*;&35RL)%
O)-"/#*%):%Q+)*);+'#*%M(,<+&3"=0%fHHj8%5A5DcfE[%48%dIHdeWdIHcb8%

Ijg8% V-.#&0%P8>8%#/$%O8>8%U#/)6,"0%T,50+32591*$B6/.""325*27*N8135G.:*b10OL0*
@/95"7./9".)%O)-"/#*%):%Q+)*);+'#*%M(,<+&3"=0%fHHH8%5DBDIbE[%48%IHgedWIHgee8%

IeH8% M#""+**)0%V8B80%O8>8%N"),<<+/;0%#/$%V8R8%T#(#*0%@9/<.+.:*35*#3!2*N8b10OL0*
&.5"2/"*%.!.91*M3"0/.+.*E2;69/+;.5+8"6.03730*M=59;30"*:,/35<*&3<591*
@/95":,0+325)%O)-"/#*%):%Q+)*);+'#*%M(,<+&3"=0%fHII8%5A?DeE[%48%hhbHWhhbe8%

IeI8% N"#/'+&')0%U80%,3%#*80%N8b10OL0*62"+8+/95"19+32591*;2:37309+325"*/.<,19+.*+A.*
.5+/=*27*5.,/25"*35+2*95*9B25*-/950A35<*6/2</9;)%B,6,*)4<,/3#*%
Z,-").+)*);=0%fHHg8%?FDfWdE[%48%IhfWIjd8%

Ief8% N,?3)6#0%>80%,3%#*80%M=5.35*13<A+*0A935*/.<,19+."*9B2591*+/97730G35<*95:*"=596+30*
1.!.1"*27*c9""225)%9(,%O)-"/#*%):%M,**%Q+)*);=0%fHHg8%)ABDfE[%48%dcIWdbb8%

Ied8% U-/3,"0%980%@A.*L<.*27*E/2""+91G>*4A2"6A2/=19+325Y*'-3X,3+359+325Y*95:*c.=25:)%
T)*,'-*#"%M,**0%fHHj8%5ADbE[%48%jdHWjde8%

Iec8% U#"30%!8P80%,3%#*80%E/2""*@91G*c.+?..5*N8b10OL0=19+325*95:*4A2"6A2/=19+325>*
%21."*35*&3<59135<Y*@/95"0/36+325Y*95:*EA/2530*M3".9".)%>//-#*%G,6+,1%):%
Q+)'(,<+&3"=0%fHII8%ACDIE[%48%efbWebe8%

Ieb8% A,3")&7+0%T8B8%#/$%G8O8%B,&(#+,&0%T,50+325*95:*/.<,19+325*27*0,11358%FOb*
,-3X,3+35*13<9".")%Z#3-",%",6+,1&8%T)*,'-*#"%',**%.+)*);=0%fHHb8%?DIE[%48%gWfH8%

Ieh8% G,5#'(0%O8\80%,3%#*80%m,95+37309+325*27*N8<1=02"=19+325*"+230A32;.+/=*95:*
:=59;30"*,"35<*/."21!9-1.*;9""*+9<")%Z#3-",%M(,<+'#*%Q+)*);=0%fHIH8%?DgE[%48%
hcbWhbI8%

Iej8% P#/;0%k80%,3%#*80%$B+.5"3!.*E/2""+91G*c.+?..5*N8b10OL0=19+325*95:*
4A2"6A2/=19+325*%.<,19+."*E=+2G35."3")%@'+8%@+;/#*80%fHIH8%;DIHcE[%48%"#f8%

Iee8% 9"+/+$#$0%O8M80%,3%#*80%E2;6/.A.5"3!.*F:.5+37309+325*27*4A2"6A2/=19+325*&3+."*35*
42"+"=596+30*M.5"3+=*4/.69/9+325")%T)*,'-*#"%sq#<4F%M,**-*#"%A")3,)<+'&0%
fHHh8%BDbE[%48%gIcWgff8%

Ieg8% A+/7&,0%T8P8U80%,3%#*80%&.1.0+3!.*F"219+325*9+*+A.*T.;+2;21.*H.!.1*27*
4A2"6A26.6+3:."*7/2;*4/2+.21=+30*M3<."+"*'"35<*IM8O952HE8$&F8(&n(&*95:*
@3+953,;*NB3:.*4/.021,;5")%>/#*=3+'#*%M(,<+&3"=0%fHHc8%D?DIcE[%48%dgdbW
dgcd8%

IgH8% T#3&--"#0%>80%,3%#*80%N8H35G.:*O8L0.+=1<1,02"9;35.*F"*4/.".5+*25*+A.*
$B+/90.11,19/*M2;935*27*O2+0A*%.0.6+2/")%O)-"/#*%):%Q+)*);+'#*%M(,<+&3"=0%
fHHe8%5A;DbIE[%48%dbcehWdbcgb8%

IgI8% U-0%]80%,3%#*80%F50/.9".:*$5V=;9+30*N8b10OL0=19+325*27*(3+20A25:/391*4/2+.35"*
F;693/"*(3+20A25:/391*T,50+325*35*E9/:390*(=20=+."*$B62".:*+2*Q3<A*b1,02".)%
O)-"/#*%):%Q+)*);+'#*%M(,<+&3"=0%fHHg8%5A@DIE[%48%bcjWbbb8%

Igf8% Tr/3,"0%@80%T8%P#=0%#/$%N8%N"+&'(7/,'(30%&3<59135<*:,/35<*69+A2<.5*357.0+325)%
@'+,/',q#4)&F&%@9R\%[%&+;/#*%3"#/&$-'3+)/%7/)1*,$;,%,/6+")/<,/30%fHHh8%
5CC?DddbE[%48%",b8%



! %-,!

Igd8% M)**+/&0%@8G80%,3%#*80%@2?9/:*9*02;6/.A.5"3!.*9+19"*27*+A.*6A="3091*35+./90+2;.*27*
&900A9/2;=0."*0./.!3"39.)%T)*,'-*#"%q#<4F%',**-*#"%4")3,)<+'&%[%TMA0%fHHj8%
?DdE[%48%cdgWcbH8%

Igc8% U#"30%!8980%>8R8%G#<#/+0%#/$%\8T8%T#"')33,0%Q2?*02;61.+.*9/.*0,//.5+*=.9"+*
95:*A,;95*6/2+.35835+./90+325*5.+?2/G"g%!,/)<,%.+)*);=0%fHHh8%DDIIE[%48%
IfH8%

Igb8% O#/&,/0%G80%,3%#*80%L*c9=."395*5.+?2/G"*966/290A*72/*6/.:30+35<*6/2+.3586/2+.35*
35+./90+325"*7/2;*<.52;30*:9+9)%@'+,/',%DZ,1%])"70%Z]E0%fHHd8%;C5DbhccE[%48%
ccgWcbd8%

Igh8% V,,0%C80%,3%#*80%L*6/2-9-313"+30*7,50+32591*5.+?2/G*27*=.9"+*<.5.")%@'+,/',%DZ,1%
])"70%Z]E0%fHHc8%;C?DbjHIE[%48%IbbbWIbbe8%

Igj8% !-33<#'(,"0%>8\8%#/$%N8@8%M)**+/&0%%.913V35<*+A.*6/2;3".*27*<.52;30"*35*
-32;.:3091*/.".9/0A)%O>T>%[%3(,%?)-"/#*%):%3(,%><,"+'#/%T,$+'#*%>&&)'+#3+)/0%
fHHb8%5F@DIIE[%48%IdggWIcHf8%

Ige8% P,&3."))70%O80%,3%#*80%@A.*4/2+.35*M9+9*c95G>*,537=35<*+A.*9/0A3!.)%Z-'*,+'%#'+$&%
",&,#"'(0%fHHf8%;CDIE[%48%fcbWfce8%

Igg8% Q#$,"0%!8B80%B8%Q,3,*0%#/$%M8P8^8%U);-,0%cFOM>*+A.*c32;21.0,19/*F5+./90+325*
O.+?2/G*M9+9-9".)%Z-'*,+'%#'+$&%",&,#"'(0%fHHd8%;)DIE[%48%fceWfbH8%

fHH8% B#6+&0%N8A80%,3%#*80%4/2+.35*02;61.B*02;62"3+325"*6/.:30+.:*-=*"+/,0+,/91*
"3;319/3+=)%Z-'*,+'%>'+$&%G,&0%fHHh8%;@DIHE[%48%fgcdWbf8%

fHI8% B#6+&0%N8A80%,3%#*80%Q2"+*69+A2<.5*6/2+.35*35+./90+325"*6/.:30+.:*-=*02;69/9+3!.*
;2:.135<)%A")3,+/%@'+0%fHHj8%)?DIfE[%48%fbebWgh8%

fHf8% ]-0%U80%,3%#*80%L552+9+325*+/95"7./*-.+?..5*<.52;.">*6/2+.3586/2+.35*35+./212<"*
95:*6/2+.358MOL*/.<,12<")%!,/)<,%",&,#"'(0%fHHc8%)@DhE[%48%IIHjWIIIe8%

fHd8% T+7#0%@8%#/$%Q8%G)&30%4/2+.3586/2+.35*35+./90+325"*;2/.*025"./!.:*?3+A35*
"6.03."*+A95*90/2""*"6.03.")%AV)@%')<4-3#3+)/#*%.+)*);=0%fHHh8%5DjE[%48%,jg8%

fHc8% T")17#0%G80%>8%A#3X#70%#/$%U8%U,"X,*0%F"*+A./.*9*-39"*35*6/2+.2;.*/.".9/0Ag%
!,/)<,%",&,#"'(0%fHHI8%))DIfE[%48%IgjIWIgjd8%

fHb8% O#/&,/0%G80%B8%!",,/.#-<0%#/$%T8%!,"&3,+/0%%.19+35<*?A21.8<.52;.*.B6/.""325*
:9+9*?3+A*6/2+.3586/2+.35*35+./90+325")%!,/)<,%",&,#"'(0%fHHf8%)5DIE[%48%djW
ch8%

fHh8% @#&&,33+0%M8T8%#/$%\8O8%G-.+/0%b.5.+30*/.X,3/.;.5+"*72/*;=02-90+./391*",/!3!91*
:,/35<*357.0+325)%A")',,$+/;&%):%3(,%Z#3+)/#*%>'#$,<=%):%@'+,/',&%):%3(,%
L/+3,$%@3#3,&%):%><,"+'#0%fHHd8%)CCDffE[%48%IfgegWIfggc8%

fHj8% G#'(<#/0%U80%,3%#*80%'53X,.*+/95"0/36+2;.*"3<59+,/.*27*(=02-90+./3,;*
+,-./0,12"3"*35*6,1;259/=*+,-./0,12"3")%C/:,'3+)/%#/$%+<<-/+3=0%fHHh8%D@DfE[%
48%IfddWIfcf8%

fHe8% M(#-&&#.,*0%B80%,3%#*80%'53X,.*<.5.*.B6/.""325*6/2731."*27*A,;95*;90/26A9<."*
95:*:.5:/3+30*0.11"*+2*6A=12<.5.+30911=*:3"+350+*69/9"3+.")%Q*))$0%fHHd8%)C5DfE[%
48%hjfWheI8%

fHg8% Q)=*,0%\8C80%,3%#*80%bN>>@./;T35:./8826.5*"2,/0.*"27+?9/.*72/*900.""35<*b.5.*
N5+212<=*3572/;9+325*95:*735:35<*"3<5373095+1=*.5/30A.:*b.5.*N5+212<=*+./;"*
9""2039+.:*?3+A*9*13"+*27*<.5.")%Q+)+/:)"<#3+'&0%fHHc8%5CDIeE[%48%djIHWb8%

fIH8% !-3+,"",X0%T8!80%,3%#*80%L,+26A9<=*3"*9*:.7.5".*;.0A953";*35A3-3+35<*cEb*95:*
(=02-90+./3,;*+,-./0,12"3"*",/!3!91*35*357.0+.:*;90/26A9<.")%M,**0%fHHc8%
))FDhE[%48%jbdWjhh8%



! %--!

fII8% @+/;(0%@8Q80%,3%#*80%Q,;95*F%b(*35:,0."*9,+26A9<=*+2*.13;359+.*35+/90.11,19/*
;=02-90+./39)%@'+,/',%DZ,1%])"70%Z]E0%fHHh8%;);DbjgfE[%48%IcdeWIccI8%

fIf8% B,",3+'0%^80%L,+26A9<=*9"*95*3;;,5.*:.7.5".*;.0A953";)%M-"",/3%)4+/+)/%+/%
+<<-/)*);=0%fHHh8%)ADcE[%48%djbWdef8%

fId8% ^,";/,0%C80%,3%#*80%L,+26A9<=*35*3;;,5.*:.7.5".*9<935"+*(=02-90+./3,;*
+,-./0,12"3")%>-3)4(#;=0%fHHh8%5DdE[%48%IjbWIje8%

fIc8% 9#3-&)60%G8V80%\8^8%R))/+/0%#/$%B8O8%V+4<#/0%L*<.52;30*6./"6.0+3!.*25*6/2+.35*
79;313.")%@'+,/',%DZ,1%])"70%Z]E0%Iggj8%5DADbddeE[%48%hdIWhdj8%

fIb8% Z,$-6#0%^8%#/$%G8Q8%G-&&,**0%4.6+3:."*;.:39+35<*35+./90+325*5.+?2/G">*5.?*
1.9:"*9+*19"+)%M-"",/3%)4+/+)/%+/%.+)3,'(/)*);=0%fHHh8%)DDbE[%48%chbWcjI8%

fIh8% Z,$-6#0%^80%,3%#*80%&="+.;9+30*:3"02!./=*27*5.?*/.02<53+325*6.6+3:."*;.:39+35<*
6/2+.35*35+./90+325*5.+?2/G")%AV)@%Q+)*0%fHHb8%;DIfE[%48%,cHb8%

fIj8% 9)/;0%>8U8]80%,3%#*80%L*02;-35.:*.B6./3;.5+91*95:*02;6,+9+32591*"+/9+.<=*+2*
:.735.*6/2+.35*35+./90+325*5.+?2/G"*72/*6.6+3:.*/.02<53+325*;2:,1.")%@'+,/',%
DZ,1%])"70%Z]E0%fHHf8%5FBDbbbdE[%48%dfIWdfc8%

fIe8% T#"3+WG,/)<0%T80%,3%#*80%E2;69/9+3!.*6/2+.35*"+/,0+,/.*;2:.135<*27*<.5."*95:*
<.52;.")%fHHH8%5F[%48%fgIWdfb8%

fIg8% P#/;0%@8i80%,3%#*80%&+/,0+,/91*-9"3"*72/*,53X,.*;.0A953";"*27*721:35<*95:*
A.;2<12-35*-35:35<*-=*9*;919/391*6/2+.9".)%A")',,$+/;&%):%3(,%Z#3+)/#*%
>'#$,<=%):%@'+,/',&%):%3(,%L/+3,$%@3#3,&%):%><,"+'#0%fHHh8%)C;DdIE[%48%
IIbHdWIIbHe8%

ffH8% T-"X+/0%>8!80%,3%#*80%&EN4>*9*"+/,0+,/91*019""37309+325*27*6/2+.35"*:9+9-9".*72/*+A.*
35!."+3<9+325*27*".X,.50."*95:*"+/,0+,/.")%O)-"/#*%):%<)*,'-*#"%.+)*);=0%Iggb8%
5@DDcE[%48%bdhWbcH8%

ffI8% A#/$,=0%R8M80%,3%#*80%T91"+9+35Y*9*0="+.35.*6/2+.9".*35A3-3+2/*27*419";2:3,;*
7910369/,;Y*790313+9+."*./=+A/20=+.*35!9"325)%AV)@%4#3();,/&0%fHHh8%5DIIE[%48%
,IIj8%

fff8% Y&3,"<#/0%>80%,3%#*80%T2/;9+325*27*7,50+32591*0/2""8"6.03."*A.+./2:3;./"*27*
2/53+A35.*:.09/-2B=19".)%Q+)'(,<+&3"=0%Iggc8%;;DchE[%48%IdhhfWIdhhj8%

ffd8% R+,"&X,/.#-<0%N80%,3%#*80%F;693/;.5+*27*;90/26A9<.*7,50+325*-=*35A3-3+2/"*27*
2/53+A35.*:.09/-2B=19".*90+3!3+=)%C/:,'3+)/%#/$%+<<-/+3=0%Igej8%BBDIHE[%48%
fchIWfchc8%

ffc8% B#&%!-43#0%G80%,3%#*80%R8L;3522B=8K89;3526/2695.*95:*:./3!9+3!."*A9!.*95*
95+36/2137./9+3!.*.77.0+*25*0,1+,/.:*419";2:3,;*7910369/,;*-=*:.0/.9"35<*
35+/90.11,19/*621=9;35.*0250.5+/9+325")%>/3+<+'").+#*%#;,/3&%#/$%
'(,<)3(,"#4=0%fHHb8%@FDjE[%48%febjWfehc8%

ffb8% @+/;(0%@80%,3%#*80%L5+31.3"A;95391*.77.0+*27*R89;3522B=8K89;3526/2695.*3"*:,.*+2*
621=9;35.*:.61.+325)%>/3+<+'").+#*%#;,/3&%#/$%'(,<)3(,"#4=0%fHHj8%B)DfE[%48%
bfeWbdc8%

ffh8% U-+X+/;#0%\8!80%,3%#*80%&+/,0+,/."*27*<1=026/2+.35*F-916A9*95:*3+"*02;61.B*?3+A*
!25*Z311.-/95:*790+2/*LK*:2;935)%@'+,/',%DZ,1%])"70%Z]E0%fHHf8%5FDDbbecE[%
48%IIjhWIIjg8%

ffj8% U+**0%>8^8@80%4/.8./=+A/20=+30*;919/39*!90035.">*+2?9/:"*</.9+./*.773090=)%Z#3-",%
",6+,1&%C<<-/)*);=0%fHHh8%?DIE[%48%fIWdf8%

ffe8% T)'7,/(#-430%N8A80%,3%#*80%@211813G.*/.0.6+2/*[@H%]*621=;2/6A3";"*35*L7/3095*
0A31:/.5>*E2;;25*@H%8d*!9/395+"*6/.:3"62".*+2*".!./.*;919/39)%A")',,$+/;&%):%



! &..!

3(,%Z#3+)/#*%>'#$,<=%):%@'+,/',&%):%3(,%L/+3,$%@3#3,&%):%><,"+'#0%fHHh8%
)C;DIE[%48%IjjWIef8%

ffg8% P,,$#**0%!8B80%,3%#*80%M377./.5+391*.!3:.50.*27*59+,/91*".1.0+325*25*+?2*1.9:35<*
"62/2V23+.*"+9<.*;919/39*!90035.*095:3:9+.*95+3<.5")%C/3,"/#3+)/#*%?)-"/#*%:)"%
4#"#&+3)*);=0%fHHj8%;DDIE[%48%jjWeb8%

fdH8% R#.&'(0%P80%,3%#*80%L+2;30*"+/,0+,/.*27*+A.*90+35>MO9".*F*02;61.B)%Z#3-",0%IggH8%
;@DDhfeeE[%48%djWcc8%

fdI8% !-`"+/0%C8%#/$%M8%$,%M(#&3,**+,"0%49+A2<.530*;=02-90+./39*:3"/,6+*+A.*
;90/26A9<.*90+35*7319;.5+*5.+?2/G)%C/:,'3+)/%#/$%+<<-/+3=0%fHHH8%?ADbE[%48%
fhbbWfhhf8%

fdf8% !#"'t#WA`",X0%Q8\80%G8%T)/$"#;u/WN*)",&0%#/$%O8%V-/#WU,"","#0%F5+./5913V9+325*
27*(=02-90+./3,;*+,-./0,12"3"*-=*;90/263520=+2"3"*35*52586A9<20=+30*0.11")%
T+'").+#*%4#3();,/,&+&0%fHHd8%;BDfE[%48%cgWbb8%

fdd8% @(),<#7,"0%Q8>8%#/$%>8G8%A#/'(,/7)0%M.036A./35<*6/2+.3586/2+.35*
35+./90+325")*49/+*FF)*E2;6,+9+32591*;.+A2:"*+2*6/.:30+*6/2+.35*95:*:2;935*
35+./90+325*69/+5./")%AV)@%')<4-3#3+)/#*%.+)*);=0%fHHj8%;DcE[%48%,cd8%

fdc8% @4"+/X#70%\8%#/$%U8%T#";#*+30%E2//.19+.:*".X,.50.8"3<59+,/."*9"*;9/G./"*27*
6/2+.3586/2+.35*35+./90+325)%O)-"/#*%):%<)*,'-*#"%.+)*);=0%fHHI8%;))DcE[%48%
heIWhgf8%

fdb8% T#-","0%@80%>8%G#+0%#/$%>8%@#*+0%T35:35<*E,/."*72/*@/263091*M3".9".">*F"*N6.5*
&2,/0.*L5*L5"?./g%fHHc8%?[%48%IhgWIjb8%

fdh8% U,+;,&0%T80%,3%#*80%E/=6+2Mc>*9*E/=6+2"62/3:3,;*-323572/;9+30"*/."2,/0.*,6:9+.)%
Z-'*,+'%#'+$&%",&,#"'(0%fHHh8%;@DB#3#.#&,%+&&-,E[%48%BcIgWff8%

fdj8% U,"3XWN)1*,"0%M80%,3%#*80%b.5.Mc>*9*/."2,/0.*72/*6/2G9/=2+30*95:*.,G9/=2+30*
2/<953";")%Z-'*,+'%#'+$&%",&,#"'(0%fHHc8%;5DB#3#.#&,%+&&-,E[%48%BddgWcd8%

fde8% M(,/0%N80%,3%#*80%N/+A2(EH8Mc>*X,./=35<*9*02;6/.A.5"3!.*;,1+38"6.03."*
0211.0+325*27*2/+A212<*</2,6")%Z-'*,+'%#'+$&%",&,#"'(0%fHHh8%;@DB#3#.#&,%
+&&-,E[%48%BdhdWe8%

fdg8% @3),'7,"30%M8O80%,3%#*80%419";2Mc*!W>*5.?*122G"Y*5.?*<.52;.")%9",/$&%+/%
4#"#&+3)*);=0%fHHh8%55DIfE[%48%bcdWbch8%

fcH8% R+&&+/;,"0%O8M80%,3%#*80%@2B2Mc>*900.""35<*+A.*@2B2619";9*<25:33*<.52;.)%
Z-'*,+'%#'+$&%",&,#"'(0%fHHd8%;)DIE[%48%fdcWfdh8%

fcI8% \&1#"0%Z80%,3%#*80%@221"*72/*02;69/9+3!.*6/2+.35*"+/,0+,/.*;2:.135<*95:*
9591="3")%fHHd8%;)DIdE[%48%ddjbWddeH8%

fcf8% @<+3(0%98N8%#/$%T8@8%P#3,"<#/0%F:.5+37309+325*27*02;;25*;21.0,19/*
",-".X,.50.")%O)-"/#*%):%<)*,'-*#"%.+)*);=0%IgeI8%)@DDIE[%48%IgbWIgj8%

fcd8% >*3&'(-*0%@8N80%,3%#*80%b966.:*cHL&@*95:*4&F8cHL&@>*9*5.?*<.5./9+325*27*6/2+.35*
:9+9-9".*".9/0A*6/2</9;")%Z-'*,+'%#'+$&%",&,#"'(0%Iggj8%5BDIjE[%48%ddegW
dcHf8%

fcc8% T#"3+WG,/)<0%T80%T8%T#$(-&-$(#/0%#/$%>8%@#*+0%L13<5;.5+*27*6/2+.35*
".X,.50."*-=*+A.3/*6/2731.")%fHHc8%);DcE[%48%IHjIWIHej8%

fcb8% T,*)0%N80%G8%@#/'(,X0%#/$%>8%@#*+0%&+9+3"+3091*62+.5+391"*72/*721:*9""."";.5+)%fHHf8%
))DfE[%48%cdHWcce8%

fch8% \"#<+#/0%B80%,3%#*80%L*02;62"3+.*"02/.*72/*6/.:30+35<*.//2/"*35*6/2+.35*"+/,0+,/.*
;2:.1")%fHHh8%)BDjE[%48%IhbdWIhhh8%



! &.%!

fcj8% B#6+&0%N8A8%#/$%>8%@#*+0%4FcL&$>*9*02;6/.A.5"3!.*:9+9-9".*27*"+/,0+,/911=*
:.735.:*6/2+.35*35+./790.")%Q+)+/:)"<#3+'&0%fHHb8%5)DgE[%48%IgHIWj8%

fce8% @-0%>8C80%,3%#*80%L*<.5.*9+19"*27*+A.*;2,".*95:*A,;95*6/2+.358.502:35<*
+/95"0/36+2;.")%A")'%Z#3*%>'#$%@'+%L@>0%fHHc8%)C)DIhE[%48%hHhfWj8%

fcg8% U-..#"$0%98O8A80%,3%#*80%$5".;-1*IJJf)%Z-'*,+'%#'+$&%",&,#"'(0%fHHj8%
;BDB#3#.#&,%+&&-,E[%48%BhIHWj8%

fbH8% M#<)/0%\80%,3%#*80%@A.*b.5.*N5+212<=*L552+9+325*[bNL]*M9+9-9".>*"A9/35<*
G52?1.:<.*35*'536/2+*?3+A*b.5.*N5+212<=)%Z-'*,+'%#'+$&%",&,#"'(0%fHHc8%
;5DB#3#.#&,%+&&-,E[%48%BfhfWh8%

fbI8% >..#&0%>8G80%,3%#*80%F;;,5.*/."625".*35*"31302*[F%F&]>*3;;,5.8"6.03730*<.5."*
3:.5+373.:*7/2;*9*02;6.5:3,;*27*;30/29//9=*.B6/.""325*:9+9)%!,/,&%#/$%
+<<-/+3=0%fHHb8%?DcE[%48%dIgWddI8%

fbf8% \$;#"0%G80%T8%B)<"#'(,60%#/$%>8\8%V#&(0%b.5.*$B6/.""325*N;53-,">*OEcF*<.5.*
.B6/.""325*95:*A=-/3:3V9+325*9//9=*:9+9*/.62"3+2/=)%Z-'*,+'%#'+$&%",&,#"'(0%
fHHf8%;CDIE[%48%fHjWfIH8%

fbd8% !",,/1))$0%Q8T80%,3%#*80%(919/39)%V#/',30%fHHb8%;?BDgchgE[%48%IcejWIcge8%
fbc8% G)&,/3(#*0%A8O80%E="+.35.*6/2+.9"."*27*;919/39*69/9"3+.")%C/3,"/#3+)/#*%?)-"/#*%

:)"%4#"#&+3)*);=0%fHHc8%;@DIdWIcE[%48%IcegWIcgg8%
fbb8% @(,/#+0%Q8G80%,3%#*80%EA9/90+./3V9+325*27*59+3!.*95:*/.02;-3595+*7910369358IY*9*

6/3503691*+/26A2V23+.*0="+.35.*6/2+.9".*95:*."".5+391*A.;2<12-359".*27*
419";2:3,;*7910369/,;)%9(,%O)-"/#*%):%.+)*);+'#*%'(,<+&3"=0%fHHH8%5DBDdjE[%
48%fgHHHWfgHIH8%

fbh8% @+?1#*+0%A8@8%#/$%A8O8%G)&,/3(#*0%b.5.*:3"/,6+325*02573/;"*9*0/3+3091*/21.*72/*+A.*
0="+.35.*6/2+.9".*7910369358I*35*A.;2<12-35*A=:/21="3"*-=*419";2:3,;*
7910369/,;)%A")',,$+/;&%):%3(,%Z#3+)/#*%>'#$,<=%):%@'+,/',&%):%3(,%L/+3,$%
@3#3,&%):%><,"+'#0%fHHc8%)C)DIdE[%48%cdecWcdeg8%

fbj8% @+?1#*+0%A8@80%,3%#*80%$B6/.""325*95:*0A9/90+./3V9+325*27*+A.*419";2:3,;*
7910369/,;*A9.;2<12-359".*7910369358R)%9(,%Q+)'(,<+'#*%?)-"/#*0%fHHI8%
;?CDA3%fE[%48%ceIWceg8%

fbe8% @+?1#*+0%A8@80%Q8G8%@(,/#+0%#/$%A8O8%G)&,/3(#*0%T21:35<*27*+A.*419";2:3,;*
7910369/,;*0="+.35.*6/2+.9".*7910369358I*3"*;.:39+.:*-=*9*0A96./25.813G.*
6.6+3:.*95:*52+*+A.*6/2:2;935)%9(,%O)-"/#*%):%.+)*);+'#*%'(,<+&3"=0%fHHf8%
5DDDIjE[%48%IcgIHWIcgIb8%

fbg8% A#/$,=0%R8M80%,3%#*80%@A.*419";2:3,;*7910369/,;*0="+.35.*6/2+.9".*7910369358I*
096+,/."*3+"*",-"+/9+.Y*A.;2<12-35Y*!39*9*,53X,.*;2+37)%A")',,$+/;&%):%3(,%
Z#3+)/#*%>'#$,<=%):%@'+,/',&%):%3(,%L/+3,$%@3#3,&%):%><,"+'#0%fHHb8%
)C5DfhE[%48%gIdeWgIcd8%

fhH8% @-."#<#/+#/0%@80%A8@8%@+?1#*+0%#/$%A8O8%G)&,/3(#*0%T91036935*0="+.35.*6/2+.9"."*
/.X,3/.*-369/+3+.*;2+37"*72/*+/97730G35<*+2*+A.*419";2:3,;*7910369/,;*722:*
!90,21.)%9(,%O)-"/#*%):%.+)*);+'#*%'(,<+&3"=0%fHHj8%5A5DdcE[%48%fcghIWfcghg8%

fhI8% P+,$,"#/$,"&0%Q80%!8%R#-*<#//0%#/$%R8%@'(+**+/;0%T,50+325"*27*6/26.6+3:.*69/+"*
35*0="+.35.*6/2+.9".")%M-"",/3%4")3,+/%q#<4F%4,43+$,%&'+,/',0%fHHd8%@DbE[%48%
dHgWdfh8%

fhf8% R",-&'(0%@80%,3%#*80%L5*.!21,+3259/31=*025"./!.:*+/369/+3+.*+/=6+26A95*;2+37*
"+9-313V."*+A.*6/2:2;935"*27*09+A.6"35*H813G.*0="+.35.*6/2+.9".")%\-")4,#/%
?)-"/#*%):%.+)'(,<+&3"=%l%N\Q@0%fHHH8%5?DDIHE[%48%fghbWfgjf8%



! &.&!

fhd8% ^,"/,30%980%,3%#*80%4/20.""35<*27*+A.*696935*6/.0,/"2/)*@A.*3253V9+325*"+9+.*27*9*
025"./!.:*9;352*903:*;2+37*?3+A35*+A.*4/2*/.<325*69/+30369+."*35*+A.*/.<,19+325*
27*35+/9;21.0,19/*6/20.""35<)%9(,%O)-"/#*%):%.+)*);+'#*%'(,<+&3"=0%Iggb8%
5DCDIeE[%48%IHedeWIHech8%

fhc8% M)-*)<.,0%G80%,3%#*80%&+/,0+,/.*27*A,;95*6/209+A.6"35*H*/.!.91"*+A.*;21.0,19/*
-9"3"*27*35A3-3+325*-=*+A.*6/2".<;.5+)%9(,%\TQY%?)-"/#*0%Iggh8%)BDfHE[%48%
bcgfWbbHd8%

fhb8% A#/$,=0%R8M80%,3%#*80%%.<,19+2/=*.1.;.5+"*?3+A35*+A.*6/2:2;935*27*7910369358IY*9*
0="+.35.*6/2+.9".*27*+A.*;919/39*69/9"3+.*419";2:3,;*7910369/,;)%AV)@%YZ\0%
fHHg8%@DbE[%48%,bhgc8%

fhh8% \&1#"0%Z80%,3%#*80%E2;69/9+3!.*6/2+.35*"+/,0+,/.*;2:.135<*,"35<*(NM$HH$%)%
fHHh8%!MNJLOP(B[%48%L/+3%b8h8IWb8h8dH8%

fhj8% N+&,"0%>80%G8R8%B)0%#/$%>8%@#*+0%(2:.135<*27*1226"*35*6/2+.35*"+/,0+,/.")%A")3,+/%
@'+0%fHHH8%FDgE[%48%IjbdWjd8%

fhe8% M=;*,"0%T80%,3%#*80%&+/,0+,/.*27*/9+*6/209+A.6"35*c>*;2:.1*72/*35A3-3+325*27*
0="+.35.*6/2+.9".*90+3!3+=*-=*+A.*6/2/.<325)%@3"-'3-",%DV)/$)/0%\/;*#/$%[%
IggdE0%Iggh8%@DcE[%48%cHbWcIh8%

fhg8% 9-"70%B80%,3%#*80%E/="+91*"+/,0+,/."*27*A,;95*6/209+A.6"35*c*9+*R)I*95:*R)R*
L5<"+/2;"*/."21,+325*/.!.91*95*35+./90+325*;2+37*-.+?..5*9*696935813G.*
0="+.35.*6/2+.9".*95:*3+"*6/26.6+3:.)%N\Q@%*,33,"&0%Iggh8%;A@DdE[%48%fIIWfIc8%

fjH8% !")6,&0%T8G80%,3%#*80%&+/,0+,/91*-9"3"*72/*"6.037303+=*27*696935813G.*0="+.35.*
6/2+.9".*6/2/.<325"*+2?9/:*+A.3/*02<59+.*.5V=;.")%A")3,+/&0%Igge8%;5DcE[%48%
bHcWbIc8%

fjI8% !-#=0%O80%,3%#*80%42+.50=*95:*".1.0+3!3+=*27*35A3-3+325*27*09+A.6"35*hY*H*95:*&*-=*
+A.3/*/."6.0+3!.*6/26.6+3:.")%\-")4,#/%?)-"/#*%):%.+)'(,<+&3"=%l%N\Q@0%fHHH8%
5?DDfHE[%48%hdIIWhdIe8%

fjf8% R)"$,0%G80%,3%#*80%L*6/2:2;935*6.6+3:.*27*419";2:3,;*7910369/,;*0="+.35.*
6/2+.9".*[7910369358I]*35A3-3+"*;919/39*69/9"3+.*:.!.126;.5+)%O)-"/#*%):%
<,$+'+/#*%'(,<+&3"=0%fHHe8%B)DIIE[%48%dIIhWdIfd8%

%
 



! &.'!

%




