
UC Irvine
UC Irvine Previously Published Works

Title
Global Ocean Particulate Organic Phosphorus, Carbon, Oxygen for Respiration, and 
Nitrogen (GO-POPCORN)

Permalink
https://escholarship.org/uc/item/3g39n105

Journal
Scientific Data, 9(1)

ISSN
2052-4463

Authors
Tanioka, Tatsuro
Larkin, Alyse A
Moreno, Allison R
et al.

Publication Date
2022

DOI
10.1038/s41597-022-01809-1
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3g39n105
https://escholarship.org/uc/item/3g39n105#author
https://escholarship.org
http://www.cdlib.org/


1Scientific Data |           (2022) 9:688  | https://doi.org/10.1038/s41597-022-01809-1

www.nature.com/scientificdata

Global Ocean Particulate Organic 
Phosphorus, Carbon, Oxygen for 
Respiration, and Nitrogen (GO-
POPCORN)
Tatsuro Tanioka   1, Alyse A. Larkin   1, Allison R. Moreno2,3, Melissa L. Brock   2, 
Adam J. Fagan1, Catherine A. Garcia   1,4, Nathan S. Garcia   1, Skylar D. Gerace1,  
Jenna A. Lee   1,5, Michael W. Lomas   6 & Adam C. Martiny   1,2 ✉

Concentrations and elemental stoichiometry of suspended particulate organic carbon, nitrogen, 
phosphorus, and oxygen demand for respiration (C:N:P:−O2) play a vital role in characterizing and 
quantifying marine elemental cycles. Here, we present Version 2 of the Global Ocean Particulate Organic 
Phosphorus, Carbon, Oxygen for Respiration, and Nitrogen (GO-POPCORN) dataset. Version 1 is a 
previously published dataset of particulate organic matter from 70 different studies between 1971 and 
2010, while Version 2 is comprised of data collected from recent cruises between 2011 and 2020. The 
combined GO-POPCORN dataset contains 2673 paired surface POC/N/P measurements from 70°S to 
73°N across all major ocean basins at high spatial resolution. Version 2 also includes 965 measurements 
of oxygen demand for organic carbon respiration. This new dataset can help validate and calibrate the 
next generation of global ocean biogeochemical models with flexible elemental stoichiometry. We 
expect that incorporating variable C:N:P:-O2 into models will help improve our estimates of key ocean 
biogeochemical fluxes such as carbon export, nitrogen fixation, and organic matter remineralization.

Background & Summary
The elemental ratio between carbon (C), nitrogen (N), phosphorus (P), and oxygen (O2) demand for respi-
ration is a fundamental quantity that couples nutrient uptake by primary producers, organic carbon export, 
and remineralization1–3. Most ocean biogeochemical models from the pre-CMIP6 era have exclusively used the 
fixed canonical Redfield C:N:P and respiration quotient -O2:C of 106:16:1 and 1, respectively, to link nutrient 
uptake and convert to and from organic carbon. However, it is now widely accepted in the oceanographic com-
munity that C:N:P:-O2 in the surface ocean are variable through space and time. Previous global compilation 
studies4,5 have shown that C:P and N:P are systematically higher than the Redfield ratios of 106:1 and 16:1 in 
the nutrient-deplete subtropical gyres, lower in the nutrient-rich subpolar and polar regions, and approximately 
equal to the Redfield values in the tropical and upwelling regions. The respiration quotient of particulate organic 
matter (POM) in terms of -O2:C and -O2:P has also been shown to be spatially variable through direct observa-
tions and inverse modeling6–8. In light of these recent observations, our understanding of the oceanic ecosystem 
elemental stoichiometry has evolved rapidly over the last ten years.

Here we present Version 2 (“v2”) of the Global Ocean Particulate Organic Phosphorus, Carbon, Oxygen 
for Respiration, and Nitrogen (GO-POPCORN) dataset (Fig. 1). We refer to Version 1 (“v1”) as a previously 
published data compilation9, in which POC/N/P was collated from 70 cruises and time-series between 1971 
and 2010. Version 1 has served multiple purposes, such as calibration and validation of ocean biogeochemical 
models, including those used in the latest coupled model intercomparison project (CMIP6)10–12, and identifying 
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drivers of global-scale spatiotemporal variability in C:N:P13,14. However, several limitations of GO-POPCORN 
v1 were identified. First, there was a significant bias towards regions of frequent oceanographic research, leading 
to samples being concentrated in the North Atlantic, Eastern North Pacific Ocean, Mediterranean Ocean, and 
near the Palmer Station in the Southern Ocean (Fig. 1). Second, aggregated data samples were collected using 
different techniques, such as differing blank measurements and detection limits. Third, a large proportion of 
measurements came from time-series studies at a fixed geographical location: Hawaiian Ocean Time-series 
(HOT), Bermuda Atlantic Time-series Study (BATS), and CARIACO Ocean Time-series program.

GO-POPCORN v2 is a new compendium of global POC/N/P collected between 2011 and 2020 as part 
of Bio-GO-SHIP (the Biological initiative for the Global Ocean Ship-based Hydrographic Investigations 
Program)15,16 and the Arctic Integrated Ecosystem Research Program (IERP)17. The v2 dataset contains 2581 
paired measurements (of which 2093 measurements are from the surface ocean) of POC/N/P and 965 meas-
urements of particulate chemical oxygen demand (PCOD), which is the oxygen needed for full respiration of 
organic carbon7. The new version has a comprehensive geographic range, and the samples were collected across 
all major oceanic regions from 70°S to 73°N (Fig. 2) across 2188 stations using a consistent methodology and 
quality control (Table 1).

Median C:N:P for paired surface POM samples from GO-POPCORN v1 and v2 are 140:19:1 and 136:21:1, 
respectively (Fig. 3). The data spread is noticeably smaller in v2 compared to v1. Specifically, the interquartile 
range (IQR) in v2 is reduced by a factor of 2–3 compared to that of v1 (IQR of C:P, N:P, C:N in versions 1 and 2 
are [103, 13, 2] and [43, 6, 1], respectively). About 90% of observed C:P and N:P from v2 are above the Redfield 
ratios of 106 and 16, respectively (Fig. 3a,b). This contrasts with v1, where only 75% of samples collected have 
C:P and N:P above the Redfield ratios. In both versions, the observed mode for C:N is around the Redfield C:N 
of 6.7, but values are more tightly clustered around 5–8 in v2 (Fig. 3c). The median -O2:C from v2 is 1.14, with 
an IQR of 0.17 (Fig. 3d). Thus, surface organic matter is generally more reduced than pure carbohydrate, with a 
respiration quotient of 1 (i.e., Redfield -O2:C)18,19. In summary, both the quantity and the quality of the data have 
significantly improved in v2 over v1.

Methods
GO-POPCORN v1 is an exhaustive compilation of POM collected by 70 independent studies and cruises from 
1971 to 2010. Refer to the original description paper9 for more details on how the v1 dataset was compiled.

GO-POPCORN v2 comprises samples from 12 recent cruises between 2011 and 2020 (Table 1). These sam-
pling efforts have been supported by GO-SHIP (C13.520, I07N21, I09N22, and P1823), SOCCOM and Plymouth 
Marine Laboratory Atlantic Meridional Transect (AMT-2824), National Science Foundation Dimensions of 
Biodiversity (AE131925, BVAL4626, NH141827), and North Pacific Research Board Arctic Integrated Ecosystem 
Research Program (OS170128, OS190128, SKQ201709S29, SKQ201813S29).

The POM samples were collected and analyzed using the consistent sampling method described previ-
ously30–33. Briefly, 3–8 L seawater was collected from the flow-through underway system or CTD. Samples from 
underway systems were filtered using 30 µm nylon mesh to remove large particles from the sample. Samples were 
then collected on GF/F filters (Whatman, nominal pore size 0.7 µm) that were precombusted at 500 °C for 5 h 
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Fig. 1  Distribution of paired POC/N/P measurements in the surface ocean. Samples from GO-POPCORN v1 
(n = 580) and v2 (n = 2093) are shown in blue and red, respectively.
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to remove any traces of inorganic carbon as well as organic contaminants. Whenever possible, POC, PON, and 
POP were sampled in triplicate, and PCOD was sampled in sextuplicate. Triplicate sampling occurred hourly 
in cruises AMT-28 and I07N; every 4 hours for C13.5, I09N, and P18; and once a day for AE1319, BVAL46, 
NH1418, OS1701, OS1901, SKQ201709S, and SKQ201813S. Differences in the sample collection are based on 
differences in the hypotheses being tested. For example, hourly sampling in AMT-28 and I07N is aimed toward 
capturing the diurnal changes in elemental stoichiometry34.

POC and PON samples were measured using a CN Flash 1112 EA or 240-XA/440-XA elemental analyzer 
and were calibrated using a known quantity of atropine (C17H23NO3). Inorganic carbonates were removed using 
concentrated hydrochloric acid fumes before analysis by storing filters in a desiccator for 24 hours. The mean 
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Fig. 2  Geographical distribution of paired POC/N/P measurements in the surface ocean. The number of 
paired POC/N/P measurements binned by (a) every 20° of latitude, (b) every 30° of longitude, and (c) by 
oceanographic basins for GO-POPCORN v1 (blue) and v2 (red). [Abbreviations: ATL = Atlantic Ocean, 
PAC = Pacific Ocean, IND = Indian Ocean, SO = Southern Ocean, ARC = Arctic Ocean].
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Fig. 3  Summary of observed C:N:P:−O2 in the surface ocean. The histogram of (a) C:P, (b) N:P, (c) C:N, and 
(d) −O2:C from GO-POPCORN v1 (blue) and v2 (red). Black dashed lines are Redfield C:N:P and −O2:C of 
106:16:1 and 1.0, respectively, for comparison. Please note a difference in the total number of observations for 
each elemental ratio and that −O2:C was not measured in v1.
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detection limits for POC and PON, defined as ~3x standard deviation of the low standards, are ~2.4 μg and 
~3.0 μg, respectively. POP was analyzed using the modified ash-hydrolysis method described previously with 
spectrophotometric detection at 885 nm35,36. The detection limit for POP is ~0.3 μg. It is important to note that 
measured particulate N and P are not devoid of inorganic N (e.g., aerosol-derived particulate nitrogen species) 
and P (e.g., polyphosphate granules), respectively. Furthermore, POM analyzed using this protocol includes 
contributions of dead materials in addition to live plankton cells, including a wide diversity of heterotrophs.

PCOD was quantified using the new, modified assay7 based on the determination of residual potassium 
dichromate following organic matter oxidation with silver sulfate as the catalyst under the strongly acidic con-
dition at 150 °C for 2h37–39. As dichromate does not oxidize ammonium, the assay aims explicitly to quantify the 
oxygen demand from organic carbon (but not organic nitrogen). To remove the interference of chloride ions 
from the precipitation of silver chloride, mercuric sulfate was added40. Dichromate was quantified by absorbance 
at 600 nm using HACH-certified phthalate-based COD standards. We could not directly quantify the detection 
limit for PCOD as the PCOD chemistry method is highly sensitive (see Technical Validation).

Data Records
Data of GO-POPCORN are publicly available in CSV format uploaded to Dryad for Version 1 (https://doi.
org/10.5061/dryad.d702p)41 and Version 2 (https://doi.org/10.5061/dryad.05qfttf5h)42. GO-POPCORN datasets 
are distributed under a CC0 1.0 Universal Public Domain Dedication license.

Technical Validation
In GO-POPCORN v1, most studies used similar techniques and sample volumes, but there are many slight 
deviations in the technical approach, including the measurement sensitivity, detection limits, the number of 
replicates, and the overall cleanliness (i.e., contamination) of procedures9. It is also worth noting that the POP 
measurements were grossly undersampled compared to POC and PON measurements in GO-POPCORN v1.

In GO-POPCORN v2, the POM samples were collected and quantified using consistent protocols. Before 
POM sampling, all the carboys used were rinsed at least twice with the pre-filtered underway seawater. The fil-
tered volume of seawater was consistent between all POM (POC/N and POP) samples at each station and varied 
on a per-station basis to ensure that the amount of collected material was minimally impacted by the difference 
in filtration time. Initial rinsing and the large sampling volume were aimed at reducing the effect of a time delay 
caused by the underway system. The methods used for quantifying POC/N43 and POP36 are based on previously 
described and validated standard techniques.

POM described in this dataset are “small size-class” samples, where a 30 µm nylon mesh pre-filter was 
attached to the underway outlet to remove large plankton and particulates. In the Southern Ocean Section of 
the P18 cruise, we have separately collected “large-class” of POM >30 µm and showed that the larger particles 
constitute, on average, 17% of the total POC and PON concentrations and 31% of the total POP concentration32. 

Cruise (Program) Year #Stations

Latitude Longitude POC PON POP PCOD C:P N:P C:N
−
O2:C

Ref.min max min max (# Samples) (Geometric mean)

AE1319 (NSF) 2013 15 32 55 −69 −40 123 111 111 0 145 12 11.6 NA 25,31,45

AMT-28 (PML AMT, 
SOCCOM, NSF) 2018 709 −48 50 −53 −6 741 741 775 771 155 23 6.7 1.2 8,24,34

BVAL46 (BATS, NSF) 2011 18 20 39 −66 −64 0 0 197 0 NA NA NA NA 26,31,45

C13.5 (GO-SHIP) 2020 112 −41 35 −74 17 112 112 112 0 155 22 7.1 NA 20

I07N (GO-SHIP) 2018 719 −30 18 40 69 732 733 727 0 121 19 6.4 NA 21

I09N (GO-SHIP) 2016 238 −31 18 85 110 235 235 236 0 134 19 7.1 NA 22,30,31,34

NH1418 (NSF) 2014 88 −3 19 −158 −150 159 159 180 0 142 23 6.1 NA 27,31,33

P18 (GO-SHIP) 2016–2017 193 −70 29 −116 −100 194 194 194 194 130 21 6.2 1.1 7,23,32

OS1701 (Arctic IERP) 2017 30 67 72 −169 −154 106 106 105 0 96 13 7.4 NA This study

OS1901 (Arctic IERP) 2019 38 63 73 −171 −154 137 137 137 0 150 21 7.2 NA This study

SKQ201709S (Arctic 
IERP) 2017 14 63 69 −173 −165 72 72 72 0 142 18 8.0 NA This study

SKQ201813S (Arctic 
IERP) 2018 14 63 69 −172 −164 53 53 53 0 113 17 6.7 NA This study

Summary 2011–2020 2188 −70 73 −173 110 2664 2653 2899 965 137 21 6.7 1.1

Table 1.  Summary of data in GO-POPCORN Version 2, including the number of stations and particulate 
organic matter (POM) samples and the mean elemental ratios. We operationally define the sampling station as a 
distinct pair of longitude and longitude. Similar descriptions for GO-POPCORN Version 1 are listed in Table 1 
of Martiny et al.9. [Abbreviations: POC = Particulate Organic Carbon, PON = Particulate Organic Nitrogen, 
POP = Particulate Organic Phosphorus, PCOD = Particulate Chemical Oxygen Demand, BATS = Bermuda 
Atlantic Time-series Study, GO-SHIP = Global Ocean Ship-based Hydrographic Investigations Program, 
NSF = National Science Foundation, PML AMT = Plymouth Marine Laboratory Atlantic Meridional Transect, 
SOCCOM = Southern Ocean Carbon and Climate Observations and Modeling project, IERP = Integrated 
Ecosystem Research Program].
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The same study showed that a large size fraction of POM in P18 had statistically lower C:P, C:N, and N:P com-
pared to a small size fraction of POM. However, the general effect of particle size on the C:N:P stoichiometry of 
POM is not yet clear.

For the technical validation of the novel PCOD assay, we tested for (1) interference using standard additions 
of a HACH-certified phthalate-based COD standard, (2) a linear correspondence between input amounts and 
absorbance, (3) the degree of variance with respect to POC measurement technique, and (4) biases for different 
substrates. In summary, we found that (1) the sample interference is limited, (2) there is indeed a linear relation-
ship between filtered sample volume and PCOD, (3) variance for PCOD is higher compared to POC; hence it is 
vital to prepare and oxidize the high volume of POC to minimize relative error and ensure accurate determina-
tion of -O2:C, and (4) a high correspondence between theoretical and observed values for different substrates. A 
full detailed description of PCOD assay validation is described elsewhere7.

Usage Notes
This dataset is the most comprehensive global compilation of surface POM and PCOD. By combining this data-
set with datasets of temperature, nutrients, and plankton community composition, regional and global drivers 
of C:N:P:-O2 can be identified. The dataset is also useful for evaluating outputs from ocean biogeochemical 
models with flexible C:N:P:-O2 stoichiometry, with important implications for future ocean carbon, nitrogen, 
and oxygen dynamics.

Code availability
Code and data used to reproduce all the figures and tables are available in the GitHub repository https://github.
com/tanio003/GOPOPCORN_Data_Codes and archived here (https://doi.org/10.5281/zenodo.6967484)44.
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