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K-Optimal Randomization Tests for Association in Practical

Metric Spaces Using Nearest Neighbor Methods

James MacQueen

University of California, Los Angeles

Jan Stallaert

University of Texas, Austin

Abstract

Let Xi; Yi, i = 1; 2; :::;N be pairs of random variables, eachXi in M1, each Yi in M2,

whereM1 andM2 are metric spaces with distances d1 and d2, respectively. It is desired

to test the hypothesis H0 that the Yi are identically distributed and independent of

the Xi. Let Si be the set of K nearest neighbors of Xi in distance d1 and let Vi be the

average of the distances d2(Yj ; Yk) such that Xj and Xk are in Si. Then V = 1

N

P
Vi

will tend to be small if there is an association between the Xi and the Yi and V

can be used to test H0. An approximate randomization test based on the normal

approximation to V was proposed by MacQueen (1991a). This was found to work in

a wide range of situations but a satisfactory objective method for the choice of K was

not established.

This paper provides a practical objective method of choosing K which is part of a

new test. The test statistic p� is de�ned as the minimum over K = 2; 3; : : : ; N � 1 of

the signi�cance probabilities of the above test. This test statistic being generally too

di�cult to obtain exactly, is evaluated approximately by taking the minimum over the

normal approximation estimates p̂K of the signi�cance probabilities pK for eachK. The

resulting test statistic p̂� = minK p̂K is then evaluated by approximate randomization

based on a sample of random pairings of the Xi and the Yi, getting p̂� for each and

then calculating an approximate signi�cance probability p̂ as the proportion of these

less than or equal to p̂� from the original data. Because p̂ is an unbiased estimate of

the true signi�cance probability and can be made as accurate as desired by increasing

the number of random pairings, it can be used as a measure of strength in the usual

way, and if a formal procedure is desired, rejecting H0 if p̂ � � will accomplish this

with a Type I error of not more than � + ", with " small.

The test is applied to a variety of simulated data sets of quite di�erent kinds and

found to be a practical and convincing test. In the multivariate situation the test

performs respectably well in comparison to the F test when all the assumptions of this

test are in e�ect.

Keywords: Association; Metric Space; Randomization Test
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1 Introduction and Overview

Given a sample of N pairs, (X1; Y1); (X2; Y2); : : : ; (XN ; YN ), Xi in M1, Yi in M2, where M1

andM2 are metric spaces with respective distance functions d1 and d2, it is desired to test the

hypothesis H0 that the Yi are independent and identically distributed and also independent

of the Xi. This paper describes a test which is intended to work against the large class of

alternatives to H0, where for each x in M1 there is a distribution for Y given X = x, and

this distribution tends to concentrate in a region which varies smoothly with x.

A simple test of H0 based on K nearest neighbor regression (Fix and Hodges, 1951, 1952)

has been proposed by MacQueen (1991a). This test is as follows: Let Si be the set of K

nearest neighbors of Xi in distance d1, and let Ti be the corresponding set of Y values. Let

Vi, here called the within-set variation of the Yj in Ti, be the sum of the K(K�1)=2 pairwise

distances between the Yj in Ti, divided by K(K � 1)=2. Then V = 1

N

P
i Vi, which can be

called the average within-set variation, will be relatively small under the above described

alternative to H0. With this test statistic V , a formal randomization test with Type I error

� is easily performed. This is done by �nding a largest number V� such that P [V
0 � V�] � �

where V 0 is computed from a random pairing of the sample Yi with the Xi. Then H0 is

rejected if V � V�. Alternatively, the signi�cance probability of the average within-set

variation V , pK = pK(Y ) = P [V 0 � V ], may be calculated and H0 rejected if pK � �.

This test is an exact conditional test, that is, given the data, with H0 holding, the Yi are

already paired at random with the Xi and so the distribution of V under H0 is equal to the

randomization distribution of V , which in principle we know from the data.

The probability pK can be computed exactly in very small samples, N � 12, say, and

approximated very well by calculating V 0 for a large sample of random pairings. It can also

be estimated reasonably well by a normal approximation to the distribution of V 0. This

latter approximation has an important role in implementing the K-Optimal test.

Unfortunately, the performance of the above test depends strongly on K and no objective

basis for choosing K is immediately evident. The \K-Optimal" test of H0 was devised
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as a solution to this problem. Briey, the \K-Optimal" test is based on (approximately)

minimizing the signi�cance probability pK for the above test by a direct search over K to

produce an \Optimal" K called K�. As explained in Section 2, randomization is used to

control Type I error. The main purpose of this paper is to describe this latter test and report

some simulation experiments illustrating and substantiating its usefulness.

Contrary to most conventional methods for detecting association, the proposed method

does not require an explicit estimate of a regression function to calculate the signi�cance

probability. The test is based directly on the data and the logic underlying the nearest

neighbor idea as expressed in the alternative to H0 described above. This itself may be

regarded as a paraphrase of a fundamental idea in science called, usually, the continuity of

nature and expressed, often, by saying `like causes have like e�ects'. Here this becomes the

simple idea that if sample elements in the X space are close, the corresponding elements in

the Y space should tend to be close. (But note another kind of departure from H0 described

and illustrated in Section 3.2 below for which the K-optimal test is automatically sensitive,

and thus provides for sensitivity to a kind of relationship not a�orded by any conventional

test for association known to the authors.)

However, if the �nal goal is to develop a predictive model, the proposed method can still

be useful as a preliminary step, and if H0 is clearly rejected one can at this point develop a

suitable predictive model. In so far as the proposed method has good power against a wide

variety of alternatives, it reduces the chance of adopting an erroneous attitude towards H0

in the direction of accepting H0 due to an inappropriate predictive model, e.g., using a linear

regression function instead of some non-linear one. For this reason it was deemed imperative

to get a reading on the power of the test in a context where a known and good method was

available for comparison.

In the experiments reported in section 3, we compared the new method with methods

speci�cally designed for the situation being examined. In the case of Euclidean data | with

both linear and non-linear regression functions | the comparison was made with the F test,

which is known to give good, if not maximal, power, and from the tables in section 3 it can
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be seen that even in these situations the K-Optimal test gives results very close to the ones

obtained with these specialized methods. We did not speci�cally compare the new method

to non-parametric regression methods. The reason is that the multitude of such methods

would | practically speaking | yield an unwieldy computational task outside the scope

of this paper, lest one restricts his/her attention to an arbitrary selection of them. But, as

mentioned before, all regression methods (e.g., ordinary linear regression) detect association

when, given the observed X values, the predicted values and observed values for Y are close,

and they proceed by rejecting H0 if the total of these residuals (or their squares) is small.

Our method does not go through this intermediate prediction step and detects association

based directly on the observed Y values. In our opinion, the fact that the proposed method

does not depend upon the power of any predictive method is a useful advantage, for it means

that the method can be used to complement the other (prediction-based) methods to detect

association. The method is perhaps maximally free of parametric assumptions as among such

tests, and that it uses only distance (and/or similarity) measurement strongly suggests it

will have equally good power in the nominal domain of application where such measurement

is all that is available.

A considerable use is made here of
P

ij dij as a measure of sample variation for metric space

data. Cover (1968, p.52) introduced and de�ned the idea of the rth moment of distribution

P on a metric space, by Edr(X;X 0) where X and X 0 are i.i.d., with the common distribution

P . This is the same idea as \variation" whether applied to a sample or the population,

but we prefer the term variation on the grounds that the term moment used with numerical

variables almost never measures variability or variance even. (For this, the term central

moment has to be used. This concept itself can be applied to metric space variables by

taking the average distance from a \center" or \centroid". Sverdrup-Thygeson (1981) has

treated this idea and established the law of large numbers for the centers and the variation

around them.)

Whatever it is called, the concept of variation seems to be a fundamental idea for statistics

in metric spaces. At the same time it is a relatively simple and easily understood idea, even

4



simpler than the idea of \sample variance" 1

N

P
(xi � �x)2 used with numerical idea. The

latter is in fact 1/2 the sample variation of order 2 when the space is actually Euclidean, and

so, except for factor 1/2, \variance" is a special case of variation. For further remarks on the

simplicity of variation, which has some pedagogical signi�cance, see Section 4 below. The

formula for the variance of the sample variation of order r is given by MacQueen (1991b).

Cover's remarks suggest a general way of measuring association for the joint distribution

of Y and X, and/or departures from H0. This is to calculate at each x, Cover's second

moment of Y givenX = x, that is E(dr(Y; Y 0) jX = x) de�ned as above except now Y and Y 0

are independent with the conditional distribution of Y givenX = x. Call this V r(Y jX = x).

If Y and X are independent then this will be equal to V r(Y ) and some reasonable and

convenient measure of the di�erence between V r(Y jX = x) and the constant V r(Y ), such

as the expected squared di�erence, becomes a measure of departure from independence.

In these terms the proposed test may be described as being sensitive to departures from

H0 of the form E(V 1(Y j X)) < V 1(Y ). It is to be noted that V 1(Y j X = x) might be

larger than V 1(Y ) for some x regions but smaller in others, and average to something close

to V 1(Y ) so the proposed test is not suited for detecting this kind of relationship.

While it appears to be possible to devise a test which would be sensitive to the more

general class of alternatives, that is, V r(Y jX = x) 6= V r(Y ), a really good way to proceed is

not evident. One possible test might be based on the Vi, since each is a plausible estimate of

V 1(Y jX = Xi) in lieu of a sample where there are a good number of Y 's for each di�erent

X. Then, for example, T =
P
(Vi � V �)2 where V � =

P
d(Yi; Yj)=(N(N � 1), the sum being

taken over all pairs i; j, would provide a test statistic which should be sensitive to \almost

any" departure from H0.

However, implementing such a test still leaves the problem of choosing K open, and

implementing the obvious \K-optimal" variant would present formidable problems. Also

in the design of the K-Optimal test, the alternative to H0 of primary interest is where the

distribution of Y given X = x is concentrated in some region which varies smoothly with x.

There is no obvious reason why a test based on T would be any improvement in this case.
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So this range of possibilities is left open for future research on the problem of detecting a

relationship in which the variation of the distribution changes withX, but where the location

of the distribution tends to be constant.

The notion of a metric space is very general, of course, so the potential range of application

of tests for association with metric space data is very great. All that is required is that there

be a relevant way of measuring the distance between pairs of elements of the kind of interest.

If all else fails, this is usually possible to do by judgment methods, making available tests

for association in certain complex situations arising in the social sciences, as, for example,

the relationship between the \form" of government and the amount and \form" of war, or

between the \management style" and the productivity of the �rm. In these cases, similarity

is often the more natural concept to use, as opposed to dissimilarity or \distance", but

such data is easily handled by a transformation such as s = exp(�d) and its inverse, d

being distance, and s being similarity on a scale where s = 1 means identity and s = 0 is

the maximum possible dissimilarity. Also, it should be noted that if sample elements are

described in several di�erent metric spaces | as is the case in ordinary multivariate data

| they can be combined into a single metric space by taking a weighted average of their

respective distances.

It is this wide range of potential applications that is interesting to the statistician and

accounts for the term practical in the above title, which is to be emphasized, lest the reader

thinks our interest lies only in the mathematical elegance of the metric space idea.

While there is a substantial literature on K nearest neighbor methods for multi-variate

data, there is only a relatively small amount of work on the association testing problem

at the general metric space level. Fix and Hodges (1951,1953) introduced nearest neighbor

regression ideas and applied them to the classi�cation problem. Cover and Hart (1967) give a

general formulation of the nearest neighbor concepts in a general metric space context. They

formulate the regression problem itself in a very general way. Speci�cally, they introduced

a general decision problem with sample X's in a metric space, which is that of estimating a

parameter � associated with each X, with this parameter itself residing in a general metric
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space, and this decision problem has an arbitrary loss function. This model contains the

model used here in which both Xi and Yi are in metric spaces although Cover and Hart

do not treat the test for the association problem per se. MacQueen (1968) discussed the

possibility of testing for association using clustering. This method is described in Section 4

below and compared with the proposed K-Optimal test, which is found to be superior.

A good portion of the work on statistics in metric spaces, including hypothesis testing

by randomization, has been reviewed by Diaconis (1988) who gives a number of references.

Good (1994) reviews many applications of randomization tests including several which make

use of a general distance function although none of the �ndings he describes are directly

comparable to what is done here.

The method described here only tests whether there is some association between X and

Y and we assume the X space is �xed, even though it may itself be a product space. The

approach is easily extended to the variable selection problem using one or another of the

familiar approaches to this problem, for example, the well known non-parametric approach

of Forsythe et al. (1973). Following their logic, the K-optimal test would be applied to the

original data with and without a variable included, using the weighted sum metric on the

product spaces as suggested above, with the coe�cient adjusted to produce unit variation for

each X variable. The di�erence between these two signi�cance probabilities would become a

test statistic, and the �nal tests would be obtained by repeating this on many samples where

the X variable to be added was put in a random order with respect to the other variables.

The �nal signi�cance probability for adding the variable would be based on randomization

distributions of these di�erences, and would consist of the proportion of di�erence in the

randomized sample at or below the di�erence from the original data. If signi�cant, the claim

would be that the improvement in the test statistic in the original data was too great to be

accounted for under the hypothesis that the variable in question was unrelated, even jointly,

with the other variables. The �nal signi�cance probability itself would be a useful index of

strength of the variable and might be used for comparison with other variables that might

be used. Of course, if an irrelevant variable were to be added, we expect the signi�cance
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probability to go down.

This is getting a bit computational intensive, but is easily seen to be feasible even on

the PC, with moderate sample sizes, and modest number of variables, for say N = 100 and

seven predictor variables.

We have run the K-Optimal test on many simulated data sets of the kind found in the

statistical literature. So far, the K-Optimal tests has always done about as well as other

methods which it occurred to us to try, and sometimes much better. The experiments

reported here are typical of those we have done and are chosen to illustrate the general tenor

of our experience.

The paper is organized as follows. The K-Optimal test is described in more detail in

Section 2 and its practical implementation is described in a subsection there.

Section 3 presents a variety of applications of the test to simulated data sets in order to

illustrate the test and to help evaluate its usefulness.

In these experiments, signi�cance probability is interpreted somewhat freely as an indica-

tion of statistical power, which is of course the real objective of the research. If test A has a

smaller signi�cance probability than test B on the same data set, referred to conventionally

and somewhat imprecisely by saying the test A is \more signi�cant", then it is reasonable to

conclude that for the alternative to H0 at hand | vague though it may be | the probability

of rejection for test A is obviously larger than for test B, for the entire range of prespeci�ed

� levels between the two signi�cance probabilities. In this case there is an instance | a

sample of size one, if you will | where test A has superior power to B, for a range of �

values, and for the general kind of alternative hypothesis described above.

Although in any given situation a more extensive power study would be possible and

power curves could be obtained, we were content to sample the power using just this sig-

ni�cance probability comparison, but do so for a relatively wide range of situations. The

entire range of possible situations is hopelessly large and no attempt to sample this range

systematically was made. Instead, the situations were chosen on the basis of interest on the

part of the investigators, but hopefully with some appeal to the interests of scientists and
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statisticians generally.

Section 3.1 gives a sample of comparisons of the K-Optimal test to the standard mul-

tivariate test for association with multivariate data where a conventional test based on F

is available for comparison. It is found in these comparisons that the K-Optimal test does

almost as well as the standard test even when all the assumption of the standard method

are in place (i.e., normally distributed errors with constant variance and a linear regression

function).

It was expected on rough intuitive grounds that, if the relationship between X and Y

is relatively \noisy" | meaning the sample Y have high within-set variation for each X

| then K� would be relatively large, (other things being equal) because a larger K would

mean each of the within-set variations Vi and hence V would have relatively low sample

variation, which as usual, should translate into stronger signi�cance and so a larger K would

be produced from the search. To check this intuition �� was varied systematically in some

of the samples described in Section 3.1. The value of K� did tend to increase with �� in

con�rmation of this.

On the other hand, it is intuitively clear that relatively small values of K have the

potential advantage being able to track the relationship between X and Y more precisely

and hence produce lower and possibly more signi�cant values of the test statistic V , which is

chosen just to be able to do this. This suggests that if the underlying relationship betweenX

and Y is relatively complex, meaning the location of the Y 's tends to vary rapidly with X, the

values ofK� would tend to be relatively smaller. To check this hypothesis, an experiment was

done in which the \noise" was kept constant, while the complexity was varied. Speci�cally,

a sinusoidal regression function was used, and the frequency was stepwise increased. The

results from this experiment are described in Section 3.2. The value of K� was found to

decrease as the frequency increased, as expected. The potential sensitivity of K� to these

important features of the underlying relationship and the possiblity that it makes a good

tradeo� between these conicting factors, is regarded as a promising feature of the method.

Section 3.2 also discusses briey the possible interpretation of amuch larger-than-expected
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value for V . This can happen if pairs of X points which are very close tend to have their

associated Y values further apart than one would expect under H0. Application of the K-

Optimal method to measure and detect this is straight forward and may be of interest in

certain situations, and a simulated data set is analysed to illustrate the possibility.

Section 3.3 shows how the test may be applied in the commonly occurring situation where

the observed elements are described by lists of qualitative attributes. It also illustrates how

with such relatively complex and qualitative data, the test might show clearly the presence

of a strong relationship which would not be obvious from inspection. For this data set the

K-Optimal test is compared with another promising method based on clustering (MacQueen,

1965, 1968), and is found to be noticeably more powerful.

Section 3.4 illustrates application to 0/1 data where the true regression function is a

Boolean function of k variables, observed with error in the dependent variable. It turns out

to be surprisingly easy to detect the presence of such highly non-linear relationships with

the K-Optimal tests, and the reason (somewhat obvious in retrospect) appears to be that

\simple" Boolean functions have a certain kind of limited continuity. Speci�cally, the value

of such functions is usually constant over small subsets of adjacent values of the predictor

variables. The K-Optimal method locates the right and relatively small values of K where

the dependent values are almost constant and the test statistic obligingly has a relatively

small value for this reason.

Section 3.5 o�ers a brief discussion of alternative methods of choosingK, including several

rules of thumb for choosing K, and also a method based on optimizing V instead of pK . It

is argued that, in general, the K-Optimal method is superior to the other methods.

2 The K-Optimal Test

The sets of nearest neighbors require a convention in their de�nition because of ties. Here

Si, the set of K nearest neighbors of Xi, is determined by �rst ordering the X's in increasing

d1 distance from Xi, taking any tied values in increasing order of their subscripts. Then Si

is just the �rst K elements in this order.

10



For simplicity in notation, abbreviate the sample sequence X1;X2; :::;XN by X and the

sample sequence Y1; Y2; :::; YN by Y . Then de�ne V just as above, that is, V = V (Y ) =

1

N

P
i Vi where Vi is the sum of all pairwise distances d2(Yj; Yk), divided by K(K�1)=2, such

that Xj and Xk are in Si. Then letting Y 0 be a random permutation of the elements of Y ,

de�ne pK , as above, by pK(X;Y ) = P [V (Y 0) � V (Y )] or just P [V 0 � V ]. As was mentioned

above, pK is the conventional signi�cance probability of the randomization test where H0 is

rejected if V is less than or equal to a certain critical value, V�, this being chosen so that

the probability of rejection is at most � for some speci�ed �, e.g., 0.05. Of course, pK may

itself be regarded as a test statistic and the test is to reject H0 if pK � �.

Now consider a di�erent test, whose test statistic is p� = p�(X;Y ) = minK pK(X;Y )

where the minimum is taken over the meaningful choices of K, that is, the range from

K = 2 to K = N � 1. With p� so de�ned, let p = P [p�(X;Y 0) � p�(X;Y )] where again Y 0

is a random permutation of the Yi. The \K-optimal" test with Type I error �, is to reject

H0 if p � �, and p is its conventional signi�cance probability.

It is clear after a little consideration that p is too di�cult to obtain exactly in most cases,

and we will be content to work with the approximation de�ned in Section 2 just below.

Notice that comparison of di�erent values of K through pK , rather than through the

test statistic V is critical to the idea of K-optimal tests, since the meaning of V changes as

K varies, depending heavily on the spread of the distribution of V . The di�erent values of

V as K varies become directly comparable through transformation to pK. Note also that

even though p is a complicated function of the data, it has a conceptually straight forward

randomization distribution and the Type I error of the procedure of rejecting H0 if p � � is

exactly �. Thus in spite of the fact that p� is based on a search over the N � 2 meaningful

values of values of K, the test is not biased in the direction of excessive rejection of H0.

The search for the optimal K represents a certain amount of data \massage" but since the

\massage" is applied equally to the randomized data sets, it has been rendered harmless.

The main risk is bias in the other direction, that is, towards low power. The search

for the minimum over K of pK(X;Y
0) may take advantage too well of the appearance of
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relationship occurring in the pairing of random permutations Y 0 with X so that p�(X;Y 0)

will too often be small and below p�(X;Y ) thus raising p more than we would like. Thus,

while under H0, the Type I error is exactly �, the critical question is, does the test have a

useful level of power? The experiments reported below answer this a�rmatively.

Note that p, being the conventional signi�cance probability for the test, could be employed

as usual, e.g., in comparing the power of di�erent methods or in using p values as indices of

the relative strength of certain relationships, and generally, using the signi�cance probability

as an aid to judgment. The estimate of p described below may be used in this same way.

Implementation

To implement the K-optimal tests two approximations are used. First, the normal approx-

imation is used for each individual K = 2; 3; :::; N � 1, to get an estimate p̂K of each pK,

and then p� = minK pK(X;Y ) is approximated by p̂�(X;Y ) = minK p̂K(X;Y ). Second, the

signi�cance probability p = P [p�(X;Y 0) � p�(X;Y )] is approximated by what will be called

here \brute force" randomization: A random sample of R permutations, Y 0

r , r = 1; 2; :::; R, is

taken using the computer. For each r = 1; 2; :::; R, p̂�(X;Y 0

r ) is computed as just described,

that is, by applying the normal approximation for each K = 2; 3:::; N � 1 to get an esti-

mate p̂K(X;Y
0

r ) of the probability that (another) random permutation, say Y 00, would have

V (Y 00) � V (Y 0

r ), and then taking the minimum of these over K to get p̂�(X;Y 0

r ). Finally the

signi�cance probability p = P [p�(X;Y 0) � p�(X;Y )] is estimated as

p̂ =
Number of r such that p̂�(X;Y 0

r ) � p̂�(X;Y )

R

Actually, since the normal approximation z = (V 0 � EV 0)=�(V 0) is monotone with p̂K,

the search over the K is done with the corresponding z's and in fact the relative frequency is

likewise just the number of times in the sample of R permutations Y 0

r , the lowest z over the

N � 2 values of K falls at or below the lowest z value for the original sample. This minimal

z-value is called Z�.

The formulae for EV 0 and �(V 0) have been derived in a slightly di�erent form by Mac-
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Queen (1991a). They are given in Appendix 1. (A transcription error in this reference is

corrected.)

Note that p̂ is the unbiased estimate from the sample of R values, of the true signi�cance

probability of the test statistic p̂� regarded as a test statistic in its own right, and this is true

even if there is error in taking the minimum value over the p̂K instead of the pK . For this

reason, we will hereafter use the term K-Optimal to refer to the test based on p̂� and then

p̂ is an estimate of the signi�cance probability. Nevertheless, for understanding the method,

and for theoretical reasons, it is desirable to know something about the accuracy of this step

in the approximation.

Figure 1: Empirical Distribution of V 0 and Normal Approximation

This was checked directly by simulation for a few data sets with N = 30. That is, at
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each K, pK was estimated directly by 1,000,000 randomizations. A small systematic bias in

the normal approximation was discovered, and this is illustrated in Fig. 1, where a plot of

the normal approximation based on the exact formulae for the mean and variance of V 0 is

compared with the plot of the empirical distribution of V 0 based on sampling 1,000,000 ran-

dom pairings. The solid line shows the normal approximation, the dashed line the empirical

distribution of V 0.

The bias shown here was very consistent as K varied. Because the slight bias was

consistent in shape, the order of the signi�cance probabilities for the two methods as K

varied were virtually identical. Thus the optimalK itself as between the two approximations,

di�ered only by one or two in nearly every case, and of course the z values and the estimated

signi�cance probabilities di�ered but little between the two methods. This was especially

true when the relationship in the data was very sensitive to K. On the other hand when

the data was actually linear, there was a tendency for the pK values to vary only slightly

over a wide range of K values, and so of course the optimal K would be more variable. But

because the pK varied only slightly even if the values of K for the two methods di�ered, �nal

estimates were virtually identical for the two ways of estimating the pK .

In any case, our conclusion is that it would not make much di�erence whether a large

sample of permutations was used at each K to get an estimate for pK, or the normal ap-

proximation, but the latter is preferable simply because it is free of sampling error itself, and

taking very large samples at each K is impractical, considering that it is necessary to take

such a sample at each K and then do this for each r in the brute force simulation.

From Figure 1 it can be seen that in the left tail the normal approximation under estimates

P [V 0 � V ] and if one were to base his judgment on the signi�cance probability obtained by

such approximation, a decision in favor of the alternative to H0 will too often be adopted for

a range of small � values. For example, for a data set with N = 30 and K = 8 (see the data

set lin1 in Section 3.5), a z-value of {2.67 was calculated, but a brute force randomization

with R = 100; 000 shows that an estimate for P [V 0 � V ] is 0.0160 and it is di�cult to

reconcile this probability estimate with P [Z � �2:67] = 0:0038 obtained from the normal
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distribution.

Now, even when p̂K underestimates pK in some range, our estimate p̂ does not system-

atically underestimate p in any range, since in the K-Optimal test the values for p̂K lose

their interpretation of probability and are merely regarded as test statistics, and the signi�-

cance probability p is directly estimated by simulating its actual distribution via brute force

randomization. Unlike the normal approximation for the individual values of K, we were

not able to �nd an accurate and easily implementable mathematical approximation for the

distribution of p�, the minimum of the N � 2 z-values.

The error produced by random sampling from the permutation distribution in the \brute

force" randomization, is, practically speaking, a negligible problem in most cases, because

in today's computational environment, R can usually be made as large as necessary to ease

any doubts about the statistical signi�cance revealed by p̂.

A detailed analysis of the sampling error in approximate randomization tests based on

sampling from the permutation distribution has been given by Marriott (1979). The point

is that the number of times p̂�(X;Y 0) � p̂�(X;Y ) is a binomial random variable with the

parameter P [p̂�(X;Y 0) � p̂�(X;Y )] and if R is small and cannot be increased, a more

re�ned analysis of the meaning of p̂ can be made on this basis. For example, there are

con�dence limits for the true signi�cance probability and the standard error of p̂ is estimated

as sp̂ =
q
p̂(1� p̂)=(R� 1). These re�nements do not appear to be of much practical interest

in the situation under consideration because it is usually possible to make R very large if

necessary. In our test results, we used R = 2; 000, unless otherwise stated, so for p̂ = 0:01,

sp̂ = 0:002, and a little consideration shows that treating p̂ = 0:01 as if p = 0:01 is not a

serious error.
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3 Illustrative Applications

3.1 Application to multiple regression

Here the multiple regression situation is chosen for comparison in order to obtain a reading

on how well the K-optimal tests perform in a situation where there is a known test with

good if not maximal power. A number of data sets were simulated with linear and non-linear

regression functions, with approximately normal errors having constant variance based on the

sum of 12 computer generated numbers, uniformly distributed on (0; 1). The conventional

F test based on linear regression was applied to these sets, along with the K-optimal test,

using Euclidean distance for the X vectors. Samples of various sizes were generated, also

varying in the number of predictor variables, and in strength of association. Also, several

di�erent polynomial forms were generated.

Problem k N K� Z� �� Obs R2 P(F ) P(R2) p̂

lin0 1 30 16 -2.4578 3 0.11 0.0398 0.0408 0.1155

lin1 1 30 16 -3.7974 2 0.24 0.0034 0.0035 0.0095

lin2 1 30 14 -4.8023 1.5 0.35 0.0003 0.0003 0.0005

lin3 1 30 14 -8.3370 1 0.57 0.0000 0.0000 0.0000

lin4 3 30 14 -3.0941 5 0.20 0.0314 0.0327 0.0150

lin5 3 30 6 -3.3562 3 0.46 0.0003 0.0003 0.0075

lin6 5 30 3 -1.2300 8 0.00 0.4475 0.4451 0.4335

lin7 5 30 3 -1.4906 4 0.10 0.1847 0.1843 0.3225

lin8 5 30 3 -1.7240 3 0.17 0.0858 0.0868 0.2275

Table 1: Linear Regression with f(x) =
Pk

i=1 xi

Some typical results for the simple linear regression are given in Table 1. There were

nine simulated data sets as indicated in the table, chosen to explore the range of low to

moderate R2 values. These varied in the number of predictor variables as well, as given in

the column labeled k. In each case the X's were independent and uniformly distributed.

The unadjusted R2 from ordinary multiple regression is given for each sample in the column

labeled accordingly. The usual signi�cance probability based on the F test is in the column

labeled P(F ). In addition, an approximate randomization test was applied to R2 itself. This

was based on sampling from the distribution of R2 under random pairing of the Y values
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with the X vectors. For each model, for each sample, 100,000 randomizations were taken and

the results are displayed under the column labeled P(R2). Comparison of this column with

P(F ) con�rms that the F test is robust and is a credible estimate of the true signi�cance

probability estimated under H0, a fact that is generally accepted in practice.

As expected, the F test gave stronger signi�cance levels in most data sets. The data

set lin0 gave a signi�cance probability of 0.0398 using the F test, but only 0.1155 for the

K-optimal method. However this is the only instance where the decision would be di�erent

under the conventional 0.05 level test or where the overall judgment based on conventional

interpretations of signi�cance probabilities might be di�erent in a substantive way. A some-

what similar discrepancy is seen in the set lin8. The other data sets would lead to virtually

the same decision as a practical matter for both tests with a linear or approximately linear

regression function and with roughly normal errors.

The conclusion is that in this domain the K-optimal test performed quite well in com-

parison to the more powerful F -test. Considering that the actual data is probably never

really linear, and the errors are usually not really normal, the K-optimal test is probably

preferable as a method for detection of association in this range of data.

Table 1 also shows evidence on the relation between �� and K� suggested in the intro-

duction. The four samples lin0 through lin3 are generated exactly in the same way except

�� is decreasing from 3 to 1. Note that K� also decreases roughly. This is also true for

lin4 and 5 which are identical, with K� decreasing from 14 to 6 as �� decreases from 5 to 3.

The samples lin6, lin7 and lin8 show only that K� is not increasing, possibly because K� is

nearing the minimal value of 2.

The non-linear data sets for which multiple regression was applied are shown in Table 2.

In these data sets the true R2 was chosen to be larger than in the linear data sets in order to

have a comparison in this range. But the multiple regression method was given the strong

advantage of having the correct nonlinear function (see Table 2), so only the coe�cients and

the constant term of the three non-linear components of the regression had to be estimated.

With this considerable advantage the linear method is surely an optimal or nearly optimal
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Problem �� Obs R2 P(F ) p̂

s1n30std2 2 0.94 0.0000 0.0000

s2n30std3 3 0.87 0.0000 0.0000

s3n30std5 5 0.68 0.0000 0.0020

s4n30std7 7 0.50 0.0001 0.0240

s5n30std10 10 0.30 0.0064 0.2210

s6n30std5 5 0.53 0.0000 0.0000

Table 2: Non-linear Data sets with f(x) = x1x2x3 + x1 sin x2 + x2
3

procedure. Nevertheless the K-Optimal test found some evidence for association in �ve out

of the six examples (using the conventional 0.05 criterion). Of course application of the linear

regression itself without using the non- linear terms was expected to produce essentially a

horizontal regression surface and did so in the few instances which were actually computed.

A hunting expedition with trial an error over polynomial forms would probably pick up good

evidence of association here. But how would one proceed with such a search in the range

of highly nonlinear data and how much adjustment should be made in the signi�cance level

reported by the F test when, say, the three squared terms were added? So here, where the

chances of model misspeci�cation are very high the K-Optimal method may be preferred

because of the objectivity and accuracy and distribution-free character of the signi�cance

probability it provides.

3.2 K-optimal tests as a function of complexity

To examine the question of how K� varied as a function of the complexity of the underlying

regression function, �ve sinusoidal regression functions on the interval [0; 1] were used. These

were fj(x) = sin(2��j x) where the frequency �j was varied in steps from 0.25 to 3. Samples

of 30 pairs were prepared at each of these frquencies with X having values at 30 equally

spaced values, that is, at Xi = (i � 1)=29, i = 1; 2; :::; 30; with Yi = fj(Xi) + �i where the

�i are i.i.d., and approximately normal with a standard deviation of �� = :3. The data set

sin300 is plotted in Figure 2 as an illustration.

The results are presented in Table 3. A point of interest is that the value of K� tends to
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Figure 2: Scatterplot of the sample for sin300

Problem �j n K� Z� �� P(d0) p̂

sin25 0.25 30 11 -5.1690 0.3 0.0135 0.0005

sin50 0.50 30 11 -3.0488 0.3 0.0305 0.0300

sin100 1.00 30 7 -9.1651 0.3 0.0000 0.0000

sin150 1.50 30 5 -6.3559 0.3 0.0000 0.0000

sin200 2.00 30 3 -4.8653 0.3 0.0000 0.0005

sin250 2.50 30 3 -4.8403 0.3 0.0000 0.0005

sin300 3.00 30 2 -3.7442 0.3 0.0001 0.0075

Table 3: Sinusoidal functions with increasing complexity
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decrease as the frequency increases. The smallest value of K� = 2 occurs with sin300 which

has the highest frequency. Thus the regression function goes through three full cycles over

the range of the X's.

This table includes another test for association based on the Durbin-Watson statistic.

This statistic is commonly and successfully used in time series to see if there is any time

dependent relationship in the residuals from a time series regression analysis. Using this

approach, we found that | except for the data set sin50 | the Durbin-Watson test found

positive auto-correlation at the 1% level, based upon the critical values in the Savin-White

tables. So, the results of the latter test are consistent with the results using the K-Optimal

method. But, in order to get a better estimate of the signi�cance probability for rejectingH0,

we modi�ed the original Durbin-Watson test statistic, and this test statistic d0 was applied

directly to the Y values rather than to the residuals, and was evaluated directly by sampling

the randomization distribution. Thus d0(Y ) =
Pn

i=2(Yi � Yi�1)
2 was computed for each of

the samples in Table 3, and also for 100,000 random pairings of the Y 's with the X's for

each of the six samples. The column labeled P(d0) is the proportion of the random pairings

with d0(Y 0) at or below the observed d0(Y ) in each sample and is a good estimate of the

signi�cance probability of d0 in each case.

The K-Optimal signi�cance probability in the column p̂ (only 2000 randomizations) is

essentially the same as that of the Durbin-Watson statistic except in the case of sin25. In-

spection of this data indicate the di�erence is probably due to two large successive di�erences

whose e�ect on the Durbin-Watson test is enhanced by squaring. Using
P

j Yi � Yi�1 j in

place of d0 =
P
(Yi � Yi�1)

2 as a test statistic would probably make the results from the two

methods even more similar.

That the K-Optimal performs as well as the randomization test using d0 | a test statistic

designed speci�cally for this situation | is encouraging all though not surprising. If K had

been set at 2 and V used as a test statistic without a search over K, the two tests would

be virtually identical because of the convention of taking ties in order of subscript. This

means the two points in each set of nearest neighbors would be the same as those taken in
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the modi�ed Durbin-Watson statistic, except at the end points.

Similarity of p̂ and P(d0) bears also on the question raised in Section 2 of possible loss of

power for the K-Optimal test because the search over K would �nd among the randomiza-

tions too many low z values, just by chance alone. The advantage of the search over K for

the original data tends to compensate or more than compensate, it is hoped, for the former

search. It appears that in this instance the compensation is almost complete, and accounts

for the fact that p̂ shows as much strength of association as P(d0) even though d0 is a test

statistic designed for this situation.

As indicated in the introduction, inspection of the test statistic V shows that if the Y

values associated with several X values are very far apart, more so than would be expected

if the Y 's are independent of the X's, then z would tend to be positive. Thus to detect this

kind of very complex relationship | bordering on discontinuity | the search over K would

be made for the maximum z, and the estimated signi�cance probability would be de�ned

accordingly as the proportion of random pairings where z�, the maximal z, was as large or

larger than z� from the original data. Once again, the Type I error would be distribution

free.

To illustrate this possibility, the above sinusoidal model was used to generate a sample

of 30 observations, except that the frequency was set at twenty cycles over the range of 30

sample pairs. With a frequency this high, successiveX{points have their Y values far apart.

The above procedure based on searching for maximal z was then run. This gaveK� = 3, with

z�, the maximal z, equal to 2.9263 and the proportion in 2000 values of z�(Y 0) which exceed

z� was .036, whereas the minimum z was -1.44 and the proportion of 2000 random minimum

z values below -1.44 was 0.408. This is strong evidence against H0, and in favor of the

hypothesis of a very complex relationship of some sort. In time series applications, negative

autocorrelation would be an example of this phenomenon and the K{Optimal method could

be used in this situation also.
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3.3 Spaces of lists of symbols

Sample elements are sometimes described by lists of attributes, such as, for example, lists

of keywords for documents, or personality checklists for persons. There are many other

examples of data of this form, especially in the social sciences.

The following example illustrates how a test for association with such data may be carried

out. The metric spaces M1 and M2 in this example will each be the space M of sub-sets

of distinct elements from a �nite set S. The distance d between two sets A and B will be

just the number of elements by which the sets di�er, or put another way, it is the number

of elements in AB0 [A0B. In particular and for simplicity and convenience, the sub-sets are

just sub-sets of �ve distinct letters each taken from the �rst nine letters (the \attributes")

of the alphabet so that S = fA;B;C;D;E;F;G;H; Ig. To illustrate if X = H;K;C;A; I

and X 0 = C;B;H;K; J then d(X;X 0) = 4. Such elements from M will be called \words".

A sample was prepared of 30 correlated pairs of such words, (X1; Y1),(X2; Y2),: : :,(X30; Y30),

with eachXi being selected at random fromM , with the associated Yi being a random trans-

formation of Xi produced as follows: First a �xed function g of S onto S, was applied to

each of the letters in Xi to get �ve distinct letters, also an element in M . The result is a

function, say g�, of M onto M , de�ned by g. This function g� might be thought of as the

\true regression function". To add random error to the regression, random mappings f 0 of S

onto S were prepared by selecting at random two elements from the nine elements in S and

interchanging them. Thus if the pair u; v was selected then f 0(u) = v and f 0(v) = u, with

f 0(u) = u otherwise. Such transformations can be generated independently of one another

and applied as necessary to add \error" to the result from g.

For the illustration at hand, four such random mapping based on a random two letter

interchange were applied to each of g�(Xi) to get Yi.

The resulting sample of pairs is shown in Table 4. For convenience in perusal, the letters

in the X words were alphabetized before applying the random transformation.

The reader is invited to make a judgment by inspection, as to whether or not there is

some sort of association. It is perhaps not too di�cult to tell that there is something there,
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X Y X Y

EFGHI HEABG BDEFG ICBGE

CDEGH BIFAD ABCHI IHCDG

ABCFG IFDAC ACDEG HGBCA

ACGHI GABDF ABDGI BHIGD

ACEFG GFDCB ABCFH IFHED

BCEGI ECFDG ABEHI GBCID

CDGHI FBGAH BFGHI CEDAG

ABDFG AHBEF BCEFH HFCED

BDEFI GBIHA CEFHI ADEGC

ABDFH BDIEC CEFGI DHEGB

ABDGH HABDI BCFGH AEDIF

ABCEF EFCHA ADEGI EBCHG

BCEFI CFGEH BDEFG HCBAD

ABCFI IHFDE BCDEG HFACB

ACFGI BFEHG ABDFG CHBEG

Table 4: Data for the List of Symbols

but the statistical task is to make some more precise and quantitative judgment.

The K-optimal test was applied and, with a signi�cance probability of 0.0016, there is

evidently quite strong evidence for association.

For a comparison, another test for association based on clustering was applied. This

simple procedure suggested by MacQueen (1965,1967) consists of partitioning the X's into

K similarity groups and then measuring the Y variation in the partition of the Y 's induced

by the X partition. Because the X's in each group tend to be close to one another the

associated Y values should also be relatively close within each set. Thus the Y within group

variation de�ned by the sum of all pairwise distances within each set, summed over all sets,

just as in theK-optimal test, may be used as a test statistic and evaluated by randomization,

either by computer sampling or by a normal approximation.

This procedure was applied to the X's in the data of Table 4, using a clustering procedure

called KCENTERS, which is variant on the well known K-means procedure appropriate for

metric data. The number of clusters was chosen to be K = 7 on the experiental basis that

that this number is convenient for purposes of data perusal. The clustering procedure is

described in Appendix 2.
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The result after applying the within group variation tests to the associated Y clusters

was a signi�cance probability of 0.051 with 1,000 randomizations, substantially larger than

from the K-optimal (with K� = 8) signi�cance probability of 0.0016, indicating that the

K-optimal test is considerably more powerful.

The clustering method has the advantage that the clusters are available for perusal, and

in fact the usefulness of the clustering as a method of data perusal is enhanced by the K-

optimal test because it has reduced the risk that this analysis is not reading into the data

something not really there.

3.4 Boolean regression

Consider variables x; y; r and s, where each is an expression or sentence which is either true or

false. These can be combined in various ways using the basic connectives, \and",\or",\not"

and \implies", to form other expression and we let f be the resulting expression. For example,

f = [(x) y) OR (r ) s)]. Interpreting 1 as \true" and 0 as \false" in the usual way, such

functions f may be interpreted as true regression functions. Random \error" in observing

f may be expressed by choosing a probability q and making f = 1 with probability q if f

is true, and 0 with probability q if f is not true, and so (1 � q) can be interpreted as the

\noise" in the data set. The elements x; y; r and s are chosen to have truth values with

certain probabilities.

With the 0/1 interpretation in mind any such f becomes a numerical valued function

of the variables x; y; r; s themselves being assigned values 0 or 1 according to their truth or

falsity.

To see if the K-optimal tests could detect such highly non-linear relationships, a number

of samples were prepared with di�erent functions, di�erent values of q, and di�erent sample

sizes. The values of the predictor variables x; y; r; s were taken to be true or false with

probability 0.5 and independent of one another. Only the results for N = 100, are given

and these are in Table 5. The regression function used and the values of p̂ are shown in this

table along with the signi�cance probabilities provided by the K-optimal test.
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Problem k N K� Z� Noise p̂ Function

1bool1 4 100 9 -10.8090 0.10 0.0000 f1
1bool2 4 100 8 -9.1486 0.15 0.0000 f1
2bool1 4 100 8 -4.9724 0.10 0.0000 f2
2bool2 4 100 6 -2.4402 0.15 0.1170 f2
3bool1 4 100 30 -4.5658 0.10 0.0000 f3
3bool2 4 100 12 -8.7540 0.15 0.0000 f3

Table 5: Boolean Regression Functions

The three Boolean functions used were f1 = [(x ) y) AND (r ) s)], f2 = [(x )

y) OR (r ) s)] and f3 = [(x AND y) OR NOT (r AND s)]. There was no di�culty in

detecting the presence of association with q = :8, even with samples of size 30, (not shown)

except in the case of f2 = [(x ) y) OR (r ) s)]. The reason for this is that out of all

the 16 possible patterns of values of x; y; r and s, only one is false. The value of f in this

case becomes close to being independent of the other variables with a constant probability

of 15/16 of being 1.

3.5 Alternative choices for K

As an alternative to using p̂� as a test statistic, we could use V itself, since small values of

V also o�er evidence against H0. This suggests that the value of K minimizing V might be

a good value of K and the associated minimum value of V might be a good test statistic.

This value will be called V �. Signi�cance probabilities could be calculated by brute force

randomization just as with the K-optimal test.

This method was implemented and the results compared with the \K- Optimal" test. In

these comparisons the two methods performed somewhat similarly over a variety of simulated

data sets. Table 6 shows the signi�cance probabilities p̂V -Opt
and the optimal K, labeled

K�

V -Opt
for this method for some of the data sets used in Section 3 for comparison with a \rule

of thumb" choice of K (discussed below). However, there is a tendency for the minimizing

value ofK to be small in some instances when with theK- Optimal test a largeK is obtained.

The reason for this appears to be that the larger values of K give a smaller variance for V
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under randomization, with an attendant stronger signi�cance probability. This explains why

in those cases the K-Optimal method is superior to the V -Optimal method.

Problem K�

V -Opt
p̂V -Opt

K� p̂ dN=4e d
p
Ne dlog

2
Ne � = 2 � = 5

lin0 16 0.3605 16 0.1155 0.1069 0.3004 0.3784 0.0865 0.1015

lin1 16 0.2025 16 0.0095 0.0160 0.0584 0.0946 0.0070 0.0110

s1n30std2 2 0.0035 26 1 0.0000 0.0004 0.0002 0.0001 0.0000 0.0000

s2n30std3 2 0.0130 26 1 0.0000 0.0010 0.0006 0.0003 0.0000 0.0005

sin25 5 0.0115 11 0.0000 0.0002 0.0003 0.0002 0.0005 0.0005

sin50 3 0.0395 11 0.0000 0.0107 0.0094 0.0069 0.0325 0.0150

1bool1 4 0.0175 9 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000

1bool2 5 0.0135 8 0.0300 0.0000 0.0000 0.0000 0.0000 0.0000

Table 6: Results for Alternative Methods for choosing K.

This is illustrated by the data set sin25 where the optimizing K for V � is 5 whereas K�

is 11. The relationship in this data set is quasi-linear and the larger value of K� comes from

the reduction in the variance of V . The advantage of smaller values of K comes from being

able to respond to non-linear changes in the location of the mass of Y as a function of X,

and this is not of great value in the linear cases.

The general issue here seems to be that choice of K is a decision under uncertainty. A

given method for choosing K may be very good against a particular range of situations,

and, when the data is in this range, a strong signi�cance probability is obtained, but if the

method is not powerful for a di�erent range of situations where the data in question happens

to lie, the method reports back in favor of the H0. The K-optimal test appears to be very

unlikely to miss any relatively strong relationship because it is using an inappropriate value

of K.

This issue may be clari�ed by comparing the K-optimal method against various \rules

of thumb" which we previously found appealing. For example having K the smallest integer

greater than or equal to
p
N has some appeal, as being among those rules which Stone

(1977) found to give exact predictions as N becomes large. If a data set is one for which

1These large values for K� are not fully understood, but are occasionally observed especially with a

regression function of a highly nonlinear nature.
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this choice really works is at hand the signi�cance probability is considerably enhanced. The

data set lin5 (not shown in Table 6) illustrates this. With N = 30 the value of K� was 6, and

the rule of thumb with d
p
Ne = 6 would have revealed a signi�cance probability of 0.003210

whereas the K-optimal test gave a signi�cance probability of only 0.0075. Two other rules of

thumb that we thought to be of interest were dlog
2
Ne and dN=4e. For the \rule of thumb"

experiments, we increased R to 100,000.

Each of these performed better than the K-optimal tests when the value of K� was near

these rule of thumb values but the K-optimal test outperformed these as soon as K� was

some distance from the rule of thumb value.

This leads to the possibility that there are other systematic search methods which are

generally more powerful perhaps because they �nd good values of K but because they do

less search and do not su�er as much from �nding spuriously strong values of Z among

the randomizations. For example, taking every third value of K might locate values of K

which provided reasonably powerful tests but would su�er less from the search. With the

�nal signi�cance probability being maintained by the randomization perhaps even a uniform

improvement over the K-optimal procedure would be achieved.

We have explored this possibility in a very small way. Taking every other value of K

and every second value of K, every third value, up to every �fth value, did not give any

improvement over the K-optimal test. These results for � = 2 and � = 5 (� represents the

step size for the values of K considered) are displayed in Table 6. Of course, the case � = 1

is just the K-Optimal procedure already in the table. The possibility of a fully sequential

procedure, where the values of K are chosen on the basis of the results from earlier values is

intriguing. Of course, as long as such a procedure is �xed in advance, the �nal signi�cance

probability will be maintained correctly on the basis of the \brute force" randomization.

But our feeling is that these other search procedures may lead into a morass of method-

ology which however correct it may be from a logical point of view, will gain little power

over the K-optimal method and will lose considerable merit in terms of simplicity and intel-

ligibility.
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4 Conclusion

In the situations where the power of the K-Optimal test was compared to other tests on

the basis of simulated samples, using signi�cance probability as an index of power, the K-

Optimal test was found to be at least as good or slightly superior, and in some instances

distinctly superior in power. In the case of multiple regression superior power was evident

for the F test, but this required that the multiple regression analysis be based on a correctly

speci�ed model. When the accuracy of the speci�cation is unclear and its e�ect on signi�-

cance probabilities produced by F is not known, theK-Optimal test may be well be preferred

even in the multiple regression situation. It requires no speci�cation and the meaning of the

signi�cance probability estimates is clear.

The power shown by the K-Optimal test is evidently due to the robustness of the Nearest

Neighbor logic on which it is based. As was pointed out in the introduction, this logic assumes

very little more than the principle of the continuity of nature, as asserted by the classical

statement \like causes have like e�ects". This basic idea, quanti�ed using the abstract notion

of distance, translates easily and directly into the assertion that if two X points are near,

there is tendency for the associated Y point to be near. The nearest neighbor logic is just

this and its fundamental nature cannot be overemphasized. Thus it is a truism that no

two empirical situations are ever exactly alike except at the abstract level of mathematics,

so similarity is the best we can hope for in using past to help predict the future and thus

better cope with it. The K-Optimal test is a re�nement of the nearest neighbor logic in

that it provides a reasonable measure of association V and a way of putting its strength on

the intrinsic scale called signi�cance probability. The role of K in this is basically just that

it expresses the amassing of evidence in some local way so that the relationship with Y is

better revealed. It appears that the signi�cance probability of the test for association is a

direct measure of the extent to which the many individual facts represented by the Xi bear

on the problem of predicting the Yi , and this accounts for its value in choosing K.

That a very wide range of applied situations can be approached with the same logic is
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a useful feature of the test. Learning to understand the randomization logic is its main

cost. But the logic is exactly that of any non-parametric test, and these are widely used

partly because of their ease of understanding. The only feature of the K-Optimal test which

required some careful thought and practice before it becomes easy and clear, is that while the

test statistic is based on a search over all possible values of a parameter of the method, K,

doing this for all the randomizations keeps the signi�cance probability as exact as desired.

But once this logic is understood and accepted, the ease of application is very evident.

The most technical aspect of the method is the use of the normal approximation. That

this would work well is intuitive to anyone who has studied the central limit theorem, which

is found to be extremely robust in applications. But as was suggested above, the normal

approximation, while helping to understanding why the test might be expected to work

well, is not strictly speaking essential. The signi�cance probabilities derive from the purely

ordinal properties of the test statistic p̂�. Familiarity with the binomial distribution and

unbiased estimation is about all that is required by way of mathematical training for use

and interpretation of p̂ . That the test is based on the random pairings has an easy and

straight forward interpretation. Pairing the Y 's randomly with the X's is just a concrete

simulation of what is meant by asserting they are independent. And when the simulation

is used to deduce the conclusion that a totally unexpected consequence has been observed

under H0, the subjective probability of this hypothesis drops accordingly, from common

sense, from approximate application of Bayes theorem, and because this is the way the mind

works. DeGroot (1973) has discussed the role of signi�cance probabilities in the evaluation

of empirical data, and shows that such subjective probability revisions taking account of

signi�cance probabilities are essentially correct subject to a few obvious provisions, even

though they are not derived rigorously in the Bayesian tradition.

The K-Optimal test, in addition to being very general, is also basically simple and

intuitive. Many data situations where some sort of test for association has been lacking, or

might appear to require development of special and seemingly situation speci�c methods,

can be treated directly by this test.
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Appendix 1: Mean and Variance of V 0

The �rst two moments of the distribution of V 0 can be readily calculated using the following

quantities:

N` = N(N � 1) � � � (N � `)

K` = K(K � 1) � � � (K � `)

A =
nX

i=1

nX

i<j

dY (Yi; Yj)

B =
nX
i=1

nX
i<j

d2Y (Yi; Yj)

C =
nX
i=1

(
nX

j=1

dY (Yi; Yj))
2

D1 = 2B=N1

D2 = (C � 2B)=N2

D3 = 4(A2 � C +B)=N3

uij = j Si \ Sj j

H =
nX
i<j

uij

H2 =
nX

i<j

u2ij

C1 = NK1=2 +H2 �H

C2 = NK2 � 2(H2 �H)

C3 = NK3=4 +N1(K1=2)
2 +H2 �H � 2H(K � 1)2

Then the �rst and second moment are given by the expression:

EV 0 =
2A

N1

and

EV 02 =
4

K1

2N2
(D1C1 +D2C2 +D3C3)

The formulae are essentially from MacQueen (1991a), but the transcription error in

(1991a) has been corrected here.
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Appendix 2: The Method of KCENTERS

This method �rst partitions the X points intoK clusters, and then does a version of analysis

of variance appropriate to the corresponding K groups of Y values in M2. That is, let

Ti be the set of Y values associated with the ith set in the partition of the X's and let

Wi =
P
d2(Yi; Yj) where the sum is taken over all pairs of distances between the elements in

Ti. The test statistic W =
P
Wi=ri where ri is the number of elements in the ith set, is then

evaluated by a randomization test, H0 being rejected if W �W� where the probability of a

random W falling below W� is � (See MacQueen 1965).

The clusters were obtained by a method called \K-Centers" which is a version of \K-

means" appropriate for metric space data. A center for a set of elements (in M1 in this

instance) is any point in the set which minimizes the sum of the distances from itself. The

K- centers program starts with a random set of K distinct elements from the X's, and with

these as initial centers and �nds a partition by sorting the remaining elements on the basis

of nearness to these initial centers. The centers of these sets are then determined, and a new

partition of the basis of nearness to these is found, etc. The total distance of the elements

from their nearest center, usually called the \within-group variation" can only decrease, so

the process converges in a �nite number of iterations. But the �nal centers depend on the

initial choice of centers, so commonly one tries a number of initial centers, and selects �nally

the best one using W variation as a criterion. There is a positive probability of �nding

an optimal set of centers as measured by W since one might select an optimal set at the

beginning each iteration.
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