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Social Foraging in Groups of Search Agents  

with Human Intervention  
 

Daniel S. Schloesser1 (dschloesser@ucmerced.edu), Derek Hollenbeck2 (dhollenbeck@ucmerced.edu),  

& Christopher T. Kello1 (ckello@ucmerced.edu) 
Cognitive and Information Sciences1, Mechanical Engineering2, University of California, Merced  

5200 N. Lake Road, Merced, CA 95343 USA 

 

Abstract 

Intelligent agents coordinate and cooperate flexibly when rules 
and dynamics of interaction can change over time and across 
different tasks and environmental conditions. Loose coupling 
emerges among agents when the rules of interaction are weak 
enough for agents to act independently or interdependently, 
and patterns of interaction vary as a function of conditions. 
Here, we examine collective foraging among simulated agents 
with and without human intervention. We find that loose 
coupling among search agents improved group foraging 
success, and that human players improved performance partly 
by subtle, indirect effects on group interactions. Analyses of 
movement patterns showed that loose coupling enabled 
collections of agents to self-organize and reorganize into a 
greater diversity of ad hoc groupings. 

Keywords: Social foraging; Agent based modeling; Loose 
coupling 

 

Foraging success often depends on cooperation. From lions 

to vultures to humans, cooperative behaviors have been key 

to their success and survival. The interactions needed for 

cooperation are complex and depend on various conditions in 

the environment, social dynamics, and individual differences. 

It would be useful, for example, if interactions among 

collective foragers could provide information about how long 

to spend at one resource before leaving to find another. In the 

present study, we investigate how simple, constrained 

interactions among simulated agents in a foraging game 

affect group performance, and how human players interact 

with simulated agents to improve group performance. 

In social foraging, individual and group search behaviors 

influence the group outcome. Social Foraging Theory aims to 

explain how individual behaviors adapt to optimizing group 

foraging success and fitness (Giraldeau & Caraco, 2000). 

Social foraging is founded on the premise that evolutionary 

advantages can be gained by cooperating with other 

conspecifics. Cooperation occurs when group performance is 

better than any statistical gain expected to occur by mere 

aggregation of individuals (Giraldeau & Caraco, 2000). 

Established benefits of social foraging include greater 

likelihood of finding food resources (Beauchamp, 2005) as 

well as security and mating among other social benefits 

(Todd & Miller, 1999). 

Some species can transition from searching socially and 

cooperatively, to searching independently. For example, 

humans are very capable of making this transition, and we 

need to be able to flexibly couple and uncouple from each 

other, often in various configurations of groupings. Different 

degrees and kinds of coupling are possible, and it seems 

likely that variations in these parameters will result in 

variations from more individual to more collective search 

strategies. Such flexible couplings and configurations may 

serve to balance the degree of exploring new territory versus 

exploiting established territory as a group (Dreller, 1998; 

Seeley, 1983). 

For example, Harel, Spiegel, Getz, and Nathan (2017) 

showed that griffon vultures (Gyps fulvus) switch between 

individual and social foraging strategies in response to social 

cues. They showed that cues beyond proximity allow one 

vulture to see whether others have found food. Vultures emit 

and perceive cues about from a carcass location that alter 

their foraging paths (Harel et al., 2017). The evidence showed 

that individual vultures who previously visited a carcass were 

statistically more likely to be followed when revisiting that 

same carcass location.  

This pattern of social foraging was based on whether a 

vulture was an informed or uninformed forager. Perceivable 

information, like noticeable blood stains after feasting, serve 

as cues that inform nearby vultures to either exploit 

information to join the collective, or explore as an individual 

for fresh carcasses. Social foraging in this case means striking 

the right balance of choices to increase the overall rate of 

consumption and energy intake of the group. Flexibly 

switching between exploration and exploitation was shown 

to increase group search efficiency through interactions 

among vultures that shared information among them (Harel 

et al., 2017).  

The cooperative behaviors of loosely coupled social 

foragers, like vultures, makes them less susceptible to 

predation, improves their chances against other scavenging 

species, and increased foraging success (Lamprecht, 1981). 

These benefits of social foraging have been shown in other 

birds of prey as well (Cortés-Avizanda et al., 2014; Harel et 

al., 2017). The recurrence of social foraging in the animal 

kingdom has led some researchers to study it in humans as 

convergent evidence and for the sake of understanding 

human social foraging per se. For example, in a simulation 

by Beauchamp (2005), the rate of food intake among social 

foragers was found to be less than that of individual foragers, 

but to compensate, social foragers were able to consume food 

patches faster than individual foragers. The net result was an 

increase in the mean food intake rate for social foragers 

which provides a potential safeguard against starvation 

(Beauchamp, 2005).  

In another study, Liu and Passino (2004) created a 

collective foraging model based on an attract-repel rule 

where agents within the group sought to find a “comfortable” 
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position in relation to their nearest neighbors. The 

environment had varying resource gradients that foragers 

could follow to find food, and there was uncertainty in 

agents’ ability to detect and follow gradients, including their 

own positions and velocities. The authors measured cohesion 

between the agents by the average position and velocity of 

the swarm. Closer positions and more similar velocities 

corresponded with cohesive movement. Results showed that 

a balance of attraction and repulsion engendered loose 

coupling and coordinated behaviors of foraging agents as a 

group, and these effects grew with group size. Results also 

showed that the detrimental effects of noise on individual 

foraging behaviors were averaged out in the collective 

groups. In more recent work, Copenhagen, Quint, and 

Gopinathan (2016) implemented cohesion among simulated 

agents using the Lennard-Jones potential, which is a single 

parameterized equation that governs the degree to which 

agents are attracted to or repelled from each other as a 

function of their distance apart (details in Method section).  

Here we report an agent-based simulation of foraging 

agents in which we manipulate the degree of cohesion and 

collective behavior using the Lennard-Jones potential plus a 

formalization of the influence of directional alignment 

among search agents. Our simulation is based on scavenging 

vultures who search for food somewhat independently, while 

also utilizing each other to detect scarce food sources (Cortés-

Avizanda, Jovani, Donázar, & Grimm, 2014; Harel, Spiegel, 

Getz, & Nathan, 2017). Our research question is how loose 

coupling affects group performance. We include a condition 

of human intervention where one of the agents is controlled 

by a human player instead of automatic rules of movement 

and interaction. We expected human intervention to improve 

group performance, and we tested whether humans could 

beneficially influence the behaviors of simulated agents 

indirectly through their rules of interaction. 

Method 

Collective Foraging Game and Participants 

Sixty undergraduate participants volunteered as participants 

for course credit. Participants played a cooperative search 

game based on a previous social foraging model (Vicsek & 

Zafeiris, 2012). The game was implemented in NetLogo and 

each player controlled an on-screen avatar with the use of a 

computer mouse, along with nine other avatars controlled by 

one of four different search algorithms, detailed below. Thus, 

human intervention was always defined as one human player 

with nine automated search agents. In addition to human 

intervention, we also examined a fully automated condition 

of 10 search agents.  

The game was played by searching the 2D space for 

“sheep” represented by gold star targets, which were not 

visible beyond a certain radius around each agent, including 

the human. Targets were placed in the game space one at a 

time, and the goal was to find each one as fast as possible, 

and “consume” it as fast as possible, before moving on to the 

next. Consumption occurred simply by staying over the 

target, so the only way to consume faster was for multiple 

search agents to converge on the target.  

The search space was a 200x200 grid of pixels with 

periodic boundary conditions. The grid was empty except for 

one target at time, located at random. Agents could not “see” 

targets until they came within a 22.5-pixel radius. Automated 

agents immediately headed toward each target upon 

detection, and upon arrival, each agent consumed one unit of 

target “resource” per time step, for 500-time steps (each time 

step was 3.5 ms long). Multiple agents could land on a target 

and together consume it faster. When a target was completely 

consumed, it disappeared, and a new target appeared at a 

random location.  

Rules for Automatic Search Agents 

In the absence of target detection, automated search agents 

moved based on some combination of four possible rules. 

One rule present in all conditions was visual chaining as 

implemented by Cortés-Avizanda et al. (2014): if one agent 

saw a second agent approaching a target, the first agent 

headed towards the second one. This rule favored collective 

foraging because it could effectively extend an individual’s 

“field of view” to include the radii of others in view. The 

three other possible rules added forces that drove search 

agents to converge, align, or wander.  

The first rule was the Lennard-Jones potential 

(Copenhagen et al., 2016; Spears & Spears, 2012) which 

came into effect when agents could see each other, and 

caused agents to converge if in the periphery, and separate as 

they came close to “colliding”, although no collision rules 

were implemented. The second rule caused agents to align 

their movement directions when nearby, and the last added 

variability to movements through a random correlated walk 

(RCW). The governing equations for the cohesion, 

alignment, and RCW parameters are as follows:  

Cohesion (𝑑𝐴𝐽):     𝑑𝐿𝐽 = − ∑ [(
𝑆

𝑟
)

4

− (
𝑆

𝑟
)

3

]𝑖 𝑟̂𝑖  ,   𝑟𝑖 ≤ 𝑑𝑣 

Alignment (𝑑𝐴 ):      𝑑𝐴 = ∑ 𝑑𝑗
⃗⃗⃗⃗ (𝑡 − 𝛿𝑡)𝑗 ,   |𝑑| < 𝑑𝑣   

RCW (𝑑𝑁):      𝑑𝑁 = 𝑈[0,180] − 𝑈[0,180]  

All agents were in constant motion which meant that the 

movement rules only governed turning to change directions. 

U was a random turn from a uniform distribution between 0 

and 180 degrees, the d variables are directional headings, 

position is measured at time t and 𝛿𝑡, s is the separation 

between agents, and the r variables are distances between 

pairs of agents. Rules were combined additively, 𝑑 = 𝑑𝐴 +

 𝑑𝐴𝐽 +  𝑑𝑁, and simulation conditions were defined by 

including or not the alignment and cohesion rules (the RCW 

rule was always in effect). This resulted in four different 

movement conditions: Random (both off), Alignment, 

Cohesion, and Combined (both on). All simulated agents 

were uniformly assigned to one of the four conditions for 

each run of the game, and parameters were tuned to create 

loose coupling between agents in the combined condition. 
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See Figure 1 for general trajectory examples of each 

movement type. 

The human player controlled the movement of one agent by 

placing the mouse at a desired location. Automated agents 

had no effect on the human player, but the human player 

affected automated agents by the rules reviewed above. 

Foraging performance with a human player was compared 

with simulation-only conditions in which all ten agents were 

fully automated. The conditions were otherwise identical.  

 

Figure 1: Example movement trajectories for 2000-time steps 

for each movement condition. Top Left: Random condition. 

Top Right: Alignment condition. Bottom Left: Cohesion 

condition. Bottom Right: Combined condition.  

Procedure and Measures 

The orders of movement conditions were randomized, and 

all participants completed all four movement conditions. 

Agents started each search session in random positions, each 

session ran for 13,500 time steps, which was ~7-8 minutes in 

real time when a human player was included. All agents 

moved at a constant velocity of 1 pixel per simulation time 

step. Performance was measured simply in terms of the 

number of targets found and consumed in each session. This 

measure is composed of the times taken to find each target, 

and times taken to consume them. A “trial” was defined as 

the onset of each new target and lasted until it was completely 

consumed.  

Movement patterns were analyzed in terms of the 

frequencies with which agents acted collectively with other 

agents, as defined by being within view of each other. Each 

search agent, including the human, could have from zero to 

nine other agents in view on each time step while searching 

for a target, and a target could be consumed by one to ten 

agents on each time step of target consumption. We analyze 

the frequencies with which each possible configuration 

occurred over time, as a function of movement condition, and 

with and without the inclusion of a human player.  

Results 

Figure 2 shows mean levels of performance as a function of 

condition and human intervention, where performance 

includes times to detect targets, times to consume them, and 

numbers of targets acquired.   

 

Figure 2: Right: Ten simulated agents (N=60 per condition); 

Left: User and nine simulated agents (N=60 per condition); 

Red: Averaged time to detect; Teal: Averaged time to 

consume; Asterisk: Mean targets found.  

Differences between conditions were tested using a 2 

(Mode: experiment vs. simulation) x 2 (Cohesion: on or off) 

x 2 (Alignment: on or off) repeated-measures analysis of 

variance (ANOVA) with numbers of targets acquired as the 

dependent measure. We found significant main effects for 

Mode, F(1, 59) = 302.45, p < 0.001, ηp
2 = 0.069, Cohesion, 

F(1, 59) = 8.58, p = 0.004, ηp
2 = 0.502, and Alignment, F(1, 

59) = 6.32, p = 0.012, ηp
2 = 0.927. Additionally, results 

indicated a significant two-way interaction between 

Cohesion and Alignment, F(1, 59) = 6.18, p = 0.013, ηp
2 = 

0.614, and a significant three-way interaction between Mode, 

Cohesion, and Alignment, F(1, 59) = 8.73, p = 0.003, ηp
2 = 

0.253. Performance was best in the combined condition for 

both modes, where loose coupling was hypothesized to occur, 

and performance was always improved by a human player. 

The agents benefitted from human intervention the most in 

the combined condition, suggesting that human players were 

best able to beneficially influence search agents when they 

were loosely coupled. 

Time to Detect  

We conducted the same repeated-measures ANOVA using 

time to detect as the dependent measure. There was a 

significant main effects for Cohesion, F(1, 59) = 7.66, p = 

0.008, ηp
2 = 0.162, Alignment, F(1, 59) = 119.18, p < 0.001, 

ηp
2 = 0.312, and Mode, F(1, 59) = 169.94, p < 0.001, ηp

2 = 

0.418. With significant two-way interactions between 

Cohesion and Alignment, F(1, 59) = 38.33, p < 0.001, ηp
2 = 

0.181, and Mode and Alignment, F(1, 59) = 27.59, p < 0.001, 

ηp
2 = 0.105. There was also a significant three-way interaction 

between Mode, Cohesion, and Alignment, F(1, 59) = 18.18, 

p < 0.001, ηp
2 = 0.071. The combined condition again showed 

the best performance, and performance again improve with 

human intervention. However, time to detect benefitted the 

most from humans in the alignment condition, and later 

analyses will show that this benefit came from individual 

foraging separately from the overly aligned and unresponsive 

group of autonomous agents.   
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Time to Consume 

Next we conducted the same repeated-measures ANOVA 

with time to consume as the dependent measure. We found a 

significant main effect of Cohesion, F(1, 59) = 234.72, p < 

0.001, ηp
2 = 0.185, Alignment, F(1, 59) = 2500.57, p < 0.001, 

ηp
2 = 0.927, and Mode, F(1, 59) = 17.61, p < 0.001, ηp

2 = 

0.069. With significant two-way interactions between 

Cohesion and Alignment, F(1, 59) = 432.32, p < 0.001, ηp
2 = 

0.614, Mode and Cohesion, F(1, 59) = 55.82, p < 0.001, ηp
2 

= 0.191, and between Mode and Alignment, F(1, 59) = 86.15, 

p < 0.001, ηp
2 = 0.267. Followed by a significant three-way 

interaction between Mode, Cohesion, and Alignment, F(1, 

59) = 80, p < 0.001, ηp
2 = 0.253. The pattern of results was 

the same time to detect, except that human intervention 

caused an increase in the average time to consume, indicating 

that individual foraging away from the “pack” increased time 

to detect but at the cost of slightly longer times to consume.  

Diversity of Search and Consumption Patterns 

We used entropy to measure the diversity of differently sized 

groupings that occurred during times of search versus times 

of consumption. Our hypothesis was that performance was 

best in the combined condition because search agents were 

loosely coupled and thereby able to change between modes 

of flying together versus flying separately. Entropy served to 

quantify the diversity of groupings, computed over the 

probability of a given agent being in one of ten possible 

grouping states on each time step. We calculated entropy as 

− ∑[𝑝(x𝑖) log(𝑝(x𝑖))] where xi is the number of agents in 

view and p is the associated probability.  

Figure 3 shows a normalized histogram (i.e. probabilities) 

of the numbers of agents in view while searching for a target. 

The first 50-time steps at the start of each trial were excluded 

to avoid transitory effects from the previous trial. Figure 3 

features the autonomous search agents with human 

intervention, but the human player was removed in order to 

focus on measuring coordination of the automated search 

agents, and the degree to which this coordination is 

influenced by human intervention. Figure 4 shows the same 

histogram but for agents without human intervention.  

 

Figure 3: Normalized histogram of the number of agents in 

view during the time to detect period is respective to the nine 

autonomous agents minus the human agent. 

First and foremost, the histograms show a more even 

distribution in the combined condition, whereby search 

agents ranged from individual to collective search and 

consumption in group sizes ranging 1 to 5+. The random and 

cohesion conditions showed less diversity, and the alignment 

condition showed the least. The latter occurred because 

agents flocked entirely together most of the time. The effect 

of human intervention is subtle, so we turn to the entropy 

analyses for a more precise comparison (see Figure 5). 

 

Figure 4: Normalized histogram of the number of agents in 

view during the time to detect period respective to nine 

autonomous agents without human intervention.  

Again, we conducted the same 2 (Mode: experiment vs. 

simulation) x 2 (Cohesion: on or off) x 2 (Alignment: on or 

off) repeated-measures ANOVA as before, but with entropy 

as the dependent measure, where entropy was computed for 

each session in each condition. We found a significant main 

effect of Cohesion, F(1, 59) = 6082.08, p < 0.001, ηp
2 = 0.964, 

and a significant two-way interaction between Cohesion and 

Alignment, F(1, 59) = 117.11, p < 0.001, ηp
2 = 0.958. We also 

found a significant two-way interaction of Mode and 

Alignment, F(1, 59) = 9.47, p = 0.002, ηp
2 = 0.039. The three-

way interaction between Mode, Cohesion, and Alignment 

was non-significant, F(1, 59) = 0.019, p = 0.891, ηp
2 = 0.001.  

 

Figure 5: Mean entropy values by Condition and Mode 

(Simulation and Experiment) 

We conducted one-sample t-tests comparing the difference 

value after subtracting the global mean search entropy values 
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of the simulation searchers for each condition, respectively. 

These effects are largely driven by the influence the 

movement rules had on the coupling between the non-human 

autonomous agents, irrespective of anything the human agent 

was doing. Interestingly, we did find significant effect that 

can be attributed to the influence the human agent’s coupling 

had on the other non-human agents. 

 

Figure 6: Search Entropy difference values for each 

condition. The mean search entropy value was subtracted 

from the average search entropy value for each group of nine 

autonomous searching agents. 

We found a significant departure from zero in the Cohesion 

condition, t(59)= -2.533, p = 0.014, and Random condition, 

t(59)= -2.178, p = 0.033. After correcting the significance 

value for running four independent one-sample t-tests the 

significance threshold is p = 0.125. Therefore, any indirect 

effect the human search had on the autonomous searchers 

during the experiment is marginally significant in the 

Cohesion and Random conditions. We find these results to be 

interesting because the human searcher indirectly influenced 

the searching behaviors of the autonomous searchers beyond 

that of the simulation autonomous searchers when the 

searching behaviors of the autonomous searchers is not as 

complex as it is in the Combined condition. Despite not 

finding any significant difference in the Combined condition, 

both sets of autonomous searchers obeyed the same 

movement rules dependent upon the condition. These effects 

indicate that human players on average decreased the 

diversity of search agent groupings. They displayed some 

indirect effect of coupling beyond the agents without human 

intervention while searching for targets.  

Time to Consume   

For the time to consume entropy analysis we calculated the 

number of agents consuming the target per time step during 

the consuming period of the task. This analysis differs from 

the time to detect analysis in that all agents in both modes 

were included. These analyses serve to examine how 

differences in coupling between conditions and across modes 

influenced the rate of consumption of the targets found. See 

Figure 7 and 8 for the respective normalized plots of the 

number of agents consuming a target. Figure 9 shows the 

corresponding mean entropy values. 

 

Figure 7: Normalized histogram of the number of agents 

consuming the target during the time to consume period for 

autonomous agents with human intervention. 

 

Figure 8: Normalized histogram of the number of agents 

consuming the target during the time to consume period 

without human intervention. 

We conducted the same repeated-measures ANOVA as 

before with the entropy values for time to consume 

distributions as the dependent measure. We observed a 

significant main effect of Cohesion, F(1, 59) = 667.78, p < 

0.001, ηp
2 = 0.74, Alignment, F(1, 59) = 282.25, p < 0.001, 

ηp
2 = 0.541, and Mode, F(1, 59) = 85.78, p < 0.001, ηp

2 = 

0.267. These main effects were qualified by significant two-

way interactions between Cohesion and Alignment, F(1, 59) 

= 222.64, p < 0.001 , ηp
2 = 0.586, Mode and Cohesion, F(1, 

59) = 15.99, p < 0.001, ηp
2 = 0.063, and marginally significant 

two-way interaction between Mode and Alignment, F(1,59) 

= 3.17, p = 0.076, ηp
2 = 0.013. There is a significant three-

way interaction between Mode, Cohesion, and Alignment, 

F(1, 59) = 18.91, p < 0.001, ηp
2 = 0.074. Due to the human 

agent’s ability to flexibly switch between independent and 

collective search strategies, the overall entropy values for that 

mode increased because the human user can leave the group 

to consume targets independently. This created a more 

variable probability distribution, which increased the overall 

entropy for that mode of our study (see Figure 8). 
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Figure 9: Entropy values by Condition and Mode (Simulation 

and Experiment) 

For consuming entropy we found a significant departure 

from zero in all conditions but the Combined condition: 

Combined, t(59) = 1.617, p = 0.111; Cohesion, t(59) = 5.903, 

p < 0.001; Alignment, t(59) = 13.49, p < 0.001; and Random; 

t(59) = 4.305, p < 0.001. See below in Figure 10 for the 

consuming entropy difference scores. As can be seen in 

Figure 10, the consuming entropy was higher for all the 

conditions but the Combined condition. We take this to 

indicate the human intervention increased the overall entropy 

of consuming targets across the conditions. The increased 

entropy provides an indication that there is more variability 

in the balance between searching and consuming targets 

based on the intervention of the human working alongside the 

other autonomous searching agents. 

 

Figure 10: Consumption Entropy difference values for each 

condition. The mean consumption entropy value was 

subtracted from the average consumption entropy value for 

each group of nine autonomous searching agents. 

In general, results followed those for time to detect 

distributions. The combined condition again showed the 

greatest entropy and hence diversity of patterning, as with 

entropy values for time to detect distributions. This result 

further supports the hypothesis that better performance in the 

combined condition was supported by loose coupling. The 

cohesion and random conditions showed moderate levels of 

diversity, and the alignment condition showed the least.  

The biggest difference between time to detect and time to 

consume patterns was that human intervention increased the 

mean entropy values for time to consume across all four 

conditions, and especially in the alignment condition. All the 

analyses taken together, it appears that humans spent a 

substantial portion of time switching between individual and 

collective search strategies. Individual periods decreased the 

diversity of search patterns but increased the diversity of 

consumption patterns. 

DISCUSSION 

In the present study, we found that group performance was 

best in the combined condition when cohesion and alignment 

were both active. The combined condition exhibited loose 

coupling among the human agent and the non-human agents. 

This loose coupling allowed for wider coverage of the area 

while maintaining connection to other agents compared to 

other conditions where agents were usually either all together 

or all independent of each other. The human agents uniformly 

improved performance across all movement conditions, and 

part of this improvement was via the effects of human 

intervention on search agent movement patterns. 

Pairing the time to detect and time to consume entropy 

results provides a more complete picture of how human 

players influenced the non-human agents, and how they 

uniformly improved performance across movement 

conditions. The indirect influence of the human player on 

search agents was subtle and requires further investigation to 

understand how their movements, which were the only means 

of interaction, impacted the group.  

Our collective foraging game was simple which allowed us 

to attribute results to specific manipulations, and possibly 

generalize our results to other more realistic search 

conditions. For example, loose coupling may be beneficial in 

teams of robotic search agents, and human operators may be 

able to influence team coordination simply through their 

movements, as in the present study. Our results may apply to 

other real-world problems, such as search and rescue 

missions, surveillance tasks, and gas leak detection. A 

significant motivation for applying social foraging to 

cognitive engineering problems is that many species have 

been shown to address these problems efficiently using 

strategies of social foraging. Our results contribute to the 

growing body of literature on the complementary benefits 

individual and social foraging, and the conditions under 

which different strategies are most appropriate. 
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