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ABSTRACT OF THE DISSERTATION 
 

Deep learning predicts the impact of non-coding genetic variants in human traits and diseases 
 

 
by 

 

An Zheng 

 

Doctor of Philosophy in Computer Science 

University of California San Diego, 2022 

Professor Melissa Gymrek, Chair 
Professor Hao Su, Co-Chair 

 

In the human genome, the vast majority of DNA is non-coding. Although non-coding 

DNA does not directly encode protein sequences, they are vital to the transcriptional regulation 

of the protein-coding process. Recent genome-wide association studies (GWAS) have shown 

that ~93% of genetic variants driving common human traits and diseases lie within non-coding 

sequences. However, due to the complicated and indirect functions of these non-coding genetic 
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variants, it is difficult for traditional analysis metrics to sift through the large number of non-

coding sequences and pinpoint the variants casual to human diseases and traits. 

In this dissertation, I present AgentBind, a deep learning framework that identifies and 

interprets sequence features most predictive of regulatory activities, such as transcription factor 

binding, histone modification, and chromatin accessibility. I demonstrate that AgentBind is 

applicable to diverse types of biological tasks, including (1) pinpointing sequence features most 

important for transcription factor binding; (2) prioritizing genetic variants in transcriptional 

enhancers associated with human brain disorders; and (3) identifying the dominant 

combinations of lineage-determining and signal-dependent transcription factors driving 

enhancer activation in mice. Collectively, these studies provide a valuable deep learning 

framework and its use cases in decoding the rules within non-coding regulatory regions and 

identifying specific non-coding nucleotides with the strongest effects on human traits and 

diseases.



1 
 

INTRODUCTION 
 

In the human genome, only 1 percent of DNA is made up of protein-coding genes; the rest 

99 percent is non-coding (ENCODE Project Consortium, 2007; Feingold et al., 2004). For a long 

time, non-coding DNA was controversially considered as “junk DNA” without any biological 

functions. However, in 2012, the Encyclopedia of DNA Elements (ENCODE) project, an 

international research program aiming to identify functional elements in the human genome, 

suggested that 76% of the non-coding DNA in the human genome is transcribed and that 42% of 

the genome across all cell types is accessible to genetic regulatory proteins such as transcription 

factors (TFs) (ENCODE Project Consortium, 2012; Pennisi, 2012). The ENCODE project also 

suggested that around 80% of the genome contains elements linked to some biochemical functions. 

These findings are aligned with recent genome-wide association studies (GWAS) which have 

shown that the majority (~93%) of genetic variants driving common human diseases lie in 

regulatory, rather than protein-coding, regions (French et al., 2020; Wells et al., 2019; Spielmann 

et al., 2016; Zhang et al., 2015; Maurano et al., 2012). In recent years, there has been a growing 

number of studies focusing on decoding the functions of non-coding DNA sequences. But while 

it is relatively straightforward to predict the consequences of mutations in coding regions, 

traditional analysis metrics are far from being able to interpret and sift through the large number 

of non-coding variants arising from whole-genome studies. Moreover, pinpointing individual 

causal variants becomes even more challenging when we factor in linkage disequilibrium (LD) 

which results in blocks of variants being co-inherited and difficult to be differentiated in GWAS 

(Eraslan et al., 2019). 

Previously, several machine learning methods based on convolutional neural networks 

(CNNs) have been proposed to help address this challenge (Zhou & Troyanskaya et al., 2015; 
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Quang et al., 2016; Kelley et al., 2016; Quang et al., 2019; Avsec et al., 2021). These metrics 

model the effects of sequence composition on different types of markers of potential regulatory 

regions, including DNAseI hypersensitivity, chromatin accessibility, and transcription factor 

binding. Compared with traditional modeling methods, such as position weight matrix (PWM), 

these deep learning solutions can process DNA sequences of much wider scope (>100 kbp, Kelley 

et al., 2018) and capture more complex DNA sequence patterns and dependencies in large datasets 

(Eraslan et al., 2019). Moreover, due to the nature of deep learning models, deep learning solutions 

allow us to integrate heterogeneous genetic and epigenetic data in a more direct and organic way, 

enabling us to make use of their inner connections. Biological information, such as distance from 

gene regions, 3d genomic structure, recombination rate, or nucleosome occupancy, can be very 

informative for deep learning models to determine functions of non-coding DNA sequences. 

One major challenge that deep learning applications in genomics are facing is that deep 

neural networks are good at recognizing sequence patterns but difficult to interpret. Pinpointing 

the functions of individual nucleotides from well-trained models is non-trivial and being actively 

studied. Several techniques, including in silico mutagenesis, DeepLIFT, and saliency maps, have 

previously been applied to interpret CNN results on DNA sequences (Selvaraju et al., 2017). These 

techniques quantitatively annotate the contribution of each nucleotide in a sequence toward the 

classification prediction. 

However, current deep learning applications in genomics still face several limitations. First, 

many of them use a multi-class training procedure focusing on multiple types of biologically active 

regions, but do not contain inactive regions as controls. Thus, their models cannot learn general 

features that distinguish active vs. inactive genomic regions. Second, the model interpretation 

techniques they use originate from computer vision tasks and have not yet been benchmarked and 
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evaluated on genomic datasets. The strengths and limitations of these interpretation techniques on 

genomic data are largely unknown. Third, deep learning models usually require thousands of 

samples to train, but such a large number of DNA sequences is either very expensive or impossible 

to acquire in many biological experiments. 

Thus, in this dissertation, I present AgentBind, a deep learning framework leveraging both 

neural networks and model interpretation techniques to identify, visualize, and interpret sequence 

features most important for determining biological activities, such as TF binding, histone 

modification, and chromatin accessibility. AgentBind uses a two-step transfer learning scheme, 

including a pre-training step and a fine-tuning step, to enable this framework to accommodate 

smaller datasets. AgentBind applies Grad-CAM (Selvaraju et al., 2017), a post-analytical method 

for neural networks, to compute importance scores for each nucleotide in the input sequences and 

characterize sequence features predictive of biological functions. Chapter 1 in this dissertation 

mainly focuses on evaluating the applicability of AgentBind on genomic data and benchmarking 

model interpretation techniques with a controlled simulated dataset with ground truth available. 

Chapter 2 – 4 show three applications of AgentBind in modeling real-world genomic 

datasets and describe how my colleagues and I use AgentBind to gain biological insights from 

these datasets. In chapter 2, AgentBind is applied to predicting binding at motifs for 38 TFs in a 

lymphoblastoid cell line, scoring the importance of context sequences at base-pair resolution, and 

characterizing context features most predictive of binding. We also find that the choice of training 

data heavily influences classification accuracy and the relative importance of features such as open 

chromatin. 

In chapter 3, my colleagues and I make use of AgentBind to develop a deep learning 

pipeline for prioritizing genetic variants associated with human brain disorders. These variants are 
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predicted to influence brain functions through transcriptional enhancer activities. Specifically, we 

use the AgentBind framework to model genome regions with strong H3K27ac signals, a significant 

marker for enhancer activities, and characterize sequence features predictive of H3K27ac activities. 

We then integrate the AgentBind importance scores with fine-mapping results from GWAS of 

brain-related traits to identify putative causal variants that may act via modulating enhancer 

activity. 

In chapter 4, we evaluated the effects of >50 million single nucleotide polymorphisms 

(SNPs) and short insertions/deletions (indels) provided by five inbred strains of mice on the 

responses of macrophages to interleukin-4 (IL-4), a cytokine that plays pleiotropic roles in 

immunity and tissue homeostasis. By applying AgentBind to epigenetic data for macrophages from 

five different mouse strains, we identify the dominant combinations of lineage-determining and 

signal-dependent transcription factors driving IL-4 enhancer activation. The results further reveal 

mechanisms by which noncoding genetic variation influences absolute levels of enhancer activity 

and their dynamic responses to IL-4, thereby contributing to strain-differential patterns of gene 

expression and phenotypic diversity. 

While exploring the applicability of AgentBind in different scenarios, I used a large 

number of ChIP-seq data for model training and for post-analyses. However, as is discussed above, 

DNA sequence data are very expensive and time-consuming to generate. Thus, my colleagues and 

I designed ChIPs, a toolkit for rapidly simulating ChIP-seq data using statistical models of key 

experimental steps. In chapter 5, I demonstrate how ChIPs can be used for a wide range of 

applications, including benchmarking analysis tools and evaluating the impact of various 

experimental parameters. This ChIP-seq simulation framework is highly efficient and flexible. It 
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can serve as an important component in various ChIP-seq analyses where ground truth data are 

needed. 

Collectively, in this dissertation, I show that AgentBind is a versatile deep learning 

framework and able to recognize and pinpoint sequence features important for biological activities. 

Through a series of use cases, I also demonstrate how we can integrate heterogeneous genetic and 

epigenetic data and exploit this deep learning framework to predict the impact of non-coding 

genetic variants in human traits and diseases. 
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CHAPTER 1 
Chapter 1 AgentBind: a deep learning framework profiling determinants predictive of transcription factor binding 

 
 
AgentBind: a deep learning framework profiling determinants predictive of transcription 

factor binding 
 

1 ____ 
1.1 Introduction 

Gene expression is a biological process in which cells read the genetic code written in the 

DNA and used its information to produce molecule products, such as proteins. In most cases, gene 

expression is regulated through integrated actions of various genomic cis-regulatory elements, 

including promoters, enhancers, silencers, insulators, and tethering elements. Among them, 

enhancers have a leading role in the initiation of gene expression through transcription factors 

(TFs). TFs are proteins that bind to specific DNA sequences and control the rate of transcription 

of genetic information from DNA to messenger RNA (Spitz & Furlong, 2012). Most TFs have 

intrinsic binding preferences to specific motifs, but these motifs cannot completely explain TF 

binding affinity. For example, according to analyses on ENCODE datasets, the motif for a TF 

named SP1 occurs more than 3.6 million times across the human genome, whereas less than 0.76% 

of these occurrences may be bound in vivo in a human lymphoblastoid cell line (GM12878) (The 

ENCODE Project Consortium, 2012; Davis et al., 2018; Zheng et al., 2021, Nature machine 

intelligence). 

Many studies have shown that the sequence context of TF binding sites play an important 

role in the TF binding process (Westholm et al., 2008; Le et al., 2018). Identifying these features 

will allow us to better understand the underlying mechanisms of gene regulation as well as 

pathogenicity of diseases caused by gene regulation disorders. However, traditional algorithms for 

pattern discovery were shown to be inefficient and error-prone in solving this task, especially for 
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large heterogeneous datasets that contain multiple motifs exerting the same biological functions 

and/or depending on each other with various combinations. 

Machine learning techniques have been applied to a broad range of applications in genomic 

tasks, such as identifying tumor samples, annotating gene functions, and predicting genetic 

variants. In recent years they start to grow in popularity in the analyses of TF binding sites. Several 

convolutional neural network (CNN) frameworks, such as DeepSEA (Zhou & Troyanskaya, 2015), 

DanQ (Quang & Xie, 2016) and Basset (Kelley et al., 2016), have been shown to be successful in 

predicting TF binding activities by taking both binding sites and their context regions as input. 

Furthermore, people have introduced various interpretation methods from the computer vision 

field to interpret the classification results from deep learning models into a human understandable 

format. These methods were used to quantitatively annotate each element in the input data based 

on its importance towards binding status. However, these frameworks integrated hundreds of TFs 

in a single model yet did not contain any unbound samples as control. Thus, they may ignore 

genomic features specific to a particular TF yet uncommon overall. 

Here, we will present a novel framework, AgentBind, that takes as input ChIP-seq peaks 

and a motif for a single TF of interest and outputs (1) the predicted binding scores of each 

occurrence of the motif in the genome and (2) per-base-pair annotation scores which indicate the 

importance of each base in determining binding status. AgentBind extracts 1kb DNA sequences 

from the genome and labels each sequence as bound vs. unbound based on overlap with ChIP-seq 

peaks. These sequences are then fed into a CNN model for training. It then utilizes Grad-CAM 

(Selvaraju et al., 2017), a state-of-the-art interpretation method for CNN models, to compute scores 

for each base pair of each input sequence and annotate how strongly they contributed to the 

classification outcome. 
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AgentBind provides three main advantages over published deep learning methods for 

classifying cell-type specific regulatory elements. First, by conditioning on sequences that contain 

the same TF motif in both the positive and negative set, this framework is enabled to focus 

specifically on sequence context features that determine binding status. In contrast, other methods, 

such as DeepSEA and DanQ, consider bound regions only, and thus they primarily capture the 

sequence features of core motifs rather than contexts. Second, during model training, AgentBind 

uses a transfer learning technique and leverages parameters learned by existing models as a starting 

point. Transfer learning has been shown to effectively reduce the requirement of training data 

amount and improve the overall predictive performance compared to training from scratch (Avsec 

et al., 2019). Finally, AgentBind framework focus specifically on interpreting the resulting CNN 

model. By adapting computer vision interpretation techniques to the DNA sequence analysis, it 

can pinpoint specific context features that determine whether a given motif instance is bound. 

In this chapter, we will mainly focus on the design and implementation of AgentBind 

framework and evaluate its performance on controlled simulated datasets with ground-truth 

information available. In the chapter 2 through 4, we will further introduce more applications of 

AgentBind on real biological datasets and discuss what biological insights people can gain through 

this framework. 

 

1.2 Background 

1.2.1 Deep learning models used in genomics 

In recent years, deep learning methods have shown their capability in identifying DNA 

patterns in large genomic datasets and prioritizing nucleotide variants based on their pathogenic 

influences (Zhou & Troyanskaya, 2015; Quang & Xie, 2016; Kelley et al., 2016). Compared with 
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traditional machine learning methods used in genomics, such as support vector machine, deep 

neural networks models show a higher capacity and flexibility in modeling DNA sequences and 

identifying patterns (Zou et al., 2019) and thus have become increasingly popular in a wide range 

of studies in genomics. For example, in cancer genomics, deep learning was applied to extract the 

high-level features of combinatorial somatic mutations for various cancer types (Yuan et al., 2016) 

and learn prognostic information (Yousefi et al., 2017). Similarly, to investigate the pathogenicity 

of autism spectrum disorders, Zhou et al. used a CNN framework to predict the causal regulatory 

variants to autism spectrum disorders (Zhou et al., 2019, Nature genetics). And for nonhuman 

species, Sundaram et al. used a deep neural network model to analyze hundreds of genomic 

variants in primates and identified pathogenic variants shared between human and other primates 

(Sundaram et al., 2018). 

There are three families of neural network architectures commonly used in identifying 

DNA patterns: fully connected, CNN, and recurrent neuron network (RNN) (Zou et al., 2019; 

LeCun et al., 2015). Fully connected neural networks are the ancestor of the other two. It consists 

of multiple layers and connects every neuron in one layer to every neuron in another layer. Fully 

connected neural networks architecture is suitable for generic prediction problems when there are 

no special relations among the input data features. 

CNN models are slightly different from fully connected models: each neuron in a CNN 

model is only connected with a small and continuous subset of neurons in the previous layer. In 

CNN models, parameter matrices (i.e., filters) scan across the input matrix, and compute a 

weighted sum of local context at each position of input (Krizhevsky et al., 2012). This scanning 

process is similar to the traditional position weight matrix (PWM) method in which people use the 

PWM of a motif to scan across a DNA sequence and evaluate the resemblance of the motif with 
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each region in the DNA sequence. In general, CNN models are useful in cases where some spatially 

invariant patterns, such as sub-sequence patterns, in the input are expected. 

RNN models are designed for sequential or time-series data (Goodfellow et al., 2016). 

Hidden layers of the RNN are memory states that retain information from the sequence previously 

observed and are updated at each time step. RNN models can use their internal memory to process 

sequences of variable length. 

 

1.2.2 Model interpretation methods used in genomics 

One major challenge that these deep learning applications are facing is that these deep 

neural networks are good at identifying DNA patterns but not trivially interpretable. Several 

techniques, including in silico mutagenesis, DeepLIFT, and saliency maps, have previously been 

applied to interpret CNN results on DNA sequences (Selvaraju et al., 2017). These methods 

quantitatively annotate the contribution of each nucleotide in a sequence toward the classification 

prediction. 

Among these model interpretation methods, saliency maps are a group of effective efficient 

methods that compute gradients of neural network outputs with respect to each nucleotide. 

Saliency map methods (1) require only one step of forward propagation per sample, (2) can be 

applied to any type of neural network, and (3) can be implemented easily under deep learning 

frameworks such as Tensorflow (Abadi et. al, 2015) and PyTorch (Paszke et al. 2019). 

However, naive implementations, such as the model interpretation method using in Basset 

(Kelley et al., 2016), are highly sensitive to noise and are susceptible to model saturation 

(Shrikumar et al., 2017). Thus, Selvaraju et al. implemented Grad-CAM (Selvaraju et al., 2017), 

an advanced version of saliency maps, which overcomes this challenge using an aggregated 
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distribution map of important sequence features and integrates this distribution map with input 

layer gradients through element-wise multiplication. This method is computationally efficient and 

has been proven to be more stable than the vanilla saliency maps in a wide variety of applications. 

 

1.3 AgentBind framework 

1.3.1 Deep learning architecture and training 

To properly train the models in the AgentBind framework, we applied a two-step transfer 

learning scheme, including a pre-training step and a fine-tuning step, which enabled AgentBind to 

accommodate smaller datasets. In the pre-training step, we trained a CNN model on the dataset 

from DeepSEA, which consists of 4,863,024 sequences of 1kb annotated with 919 ChIP-seq and 

DNase-seq profiles collected from ENCODE (Encode Project Consortium et al., 2020; ENCODE 

Project Consortium, 2012) and the Epigenomics Roadmap Project (Roadmap Epigenomics 

Consortium et al., 2015) across dozens of cell types. This step allows the CNN model to capture 

common DNA patterns in regulatory regions and encode them into its convolutional layers. 

In the fine-tuning step, we trained an individual classification model for the binary input 

dataset of each TF of interest. Notably, instead of training from scratch, we initialized the 

convolutional layers with the parameters we learned in the pre-training step, which allowed the 

model to inherit the encoded common DNA patterns in regulatory regions from the pre-trained 

model and focus only on learning the novel patterns specific to the TF of interest. 

The Agentbind framework is compatible with virtually any CNN architectures. And as 

examples, we evaluated its performance using two popular neural network architectures DeepSEA 

and DanQ, separately. We implemented AgentBind with these two architectures using Tensorflow. 

DeepSEA consists of three convolutional layers and a fully connected layer. In these convolutional 
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layers, the size of filters is uniform (i.e., eight) and stride by one each time. And its fully connected 

layer contains 925 hidden neurons. DanQ consists of one convolutional layer, one bidirectional 

Long short-term memory (biLSTM) layer and a fully connected layer. There are 320 filters in its 

convolutional layer with the filter size as 26. And in its biLSTM layer, drop-out technique was 

used with a rate of 0.5. Its fully connected layer contains 925 hidden neurons same as DeepSEA. 

 

1.3.2 Model interpretation 

We implemented four separate model interpretation techniques discussed in the chapter 

1.2.2, including in silico mutagenesis, vanilla saliency maps, DeepLIFT, and Grad-CAM. Each of 

these methods computes individual scores for each nucleotide of the input sequence indicating its 

importance in determining the model’s prediction. 

For in silico mutagenesis, we performed computational mutations to assess the importance 

of every base of the input sequences. More specifically, we substituted each base with its three 

possible nucleotide substitutions and recorded the changes made by them in terms of the output 

prediction scores. The greatest score change was used to represent the importance of this base. 

For vanilla saliency maps, the importance of each base was quantified using the gradient 

of the output prediction score with respect to this base. This step was accomplished using a 

TensorFlow built-in function “gradients”. 

Grad-CAM is an advanced version of saliency maps which additionally brings in an 

aggregated distribution map of important k-mers and integrates it with the vanilla saliency map 

through element-wise multiplication. In practice, to build a k-mer distribution map for a TF, we 

chose the first convolutional layer as the layer of interest. This layer contains distribution maps for 
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various sequence features. We calculated a weighted average of them using equation (1.1), in 

which 𝐴! represents the 𝑘-th feature map and its weight 𝑎! is calculated using equation (1.2). 

𝐴"#$%&'() = 𝑟𝑒𝑙𝑢(	∑	𝑎!𝐴!) (1.1) 

𝑎! =
1
𝑛0

𝜕𝑦
𝜕𝐴*!

+

*

(1.2) 

In equation (1.2), 𝐴*! is the 𝑖-th neuron in the k-th feature map (out of 𝑛 neurons in total) and 𝑦	is 

the output neuron of the overall neural network. Intuitively, the weight 𝑎! represents the average 

of gradients that flow back to the 𝑘-th feature map. 

In comparison with vanilla saliency map which evaluates the importance of each base 

individually, this aggregated map highlights the regions that are important to the binding activities. 

To combine the best aspects of these two maps, we then merged the aggregated distribution map 

with the vanilla saliency map through element-wise multiplication. 

For DeepLIFT, we used version v0.6.10.0-alpha together with Keras v2.3.1 and applied its 

“revealcancel_fc, rescale_conv” mode for model interpretation. Since DeepLIFT is only 

compatible with Keras (Chollet, 2015), we first constructed a DeepSEA architecture in Keras 

matching the TensorFlow implementation and then imported the pre-trained DeepSEA model 

parameters into this Keras model. The training procedures of fine-tuning were the same as the 

TensorFlow implementation. 

 

1.4 Performance evaluation 

1.4.1 Simulation dataset for benchmarking 

We adapted a previously published evaluation scheme from Shrikumar et al. (Shrikumar 

et al., 2017) and generated a binary dataset with TF motifs embedded at known positions. The 
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binary dataset consists of 50,000 samples for training, 1,000 for cross validation and 1,000 for 

testing, and labels are assigned evenly with same number of positives and negatives. All sequences 

were length 1kb and contained the GATA1 motif (http://compbio.mit.edu/encode-motifs) in the 

center. Context bases were generated by sampling the nucleotides A, C, G, and T at each position 

with probabilities 0.3, 0.2, 0.2 and 0.3 respectively. 

In each positive sample, we randomly embedded 1-3 instances of the TAL1 motif 

(http://compbio.mit.edu/encode-motifs) in the context regions. The number of TAL1 motifs 

embedded in sequences followed a Poisson distribution but truncated after 3. In negative samples, 

there was no TAL1 motif placed in their sequences. These simulated sequences were fed into the 

AgentBind framework and annotated at nucleotide resolution using the model interpretation 

methods described in chapter 1.3.2. 

 

1.4.2 Evaluating AgentBind on benchmarking datasets  

First, we evaluated the classification module of AgentBind and examine its ability on 

recognizing and modeling DNA sequence patterns. The classification performance was quantified 

using area under the receiver operating characteristic curve (auROC) and the precision recall curve 

(auPRC). Both DeepSEA and DanQ performed well on this simulated dataset. DeepSEA achieved 

0.97 auROC and 0.96 auPRC, while DanQ achieved 0.99 auROC and 0.99 auPRC. It is noteworthy 

that the embedded patterns in the simulation dataset is relatively easy to capture for deep learning 

models. In chapter 2, we will further evaluate the performance of these two models in more 

complex scenarios with real-world biological datasets and examine their ability of modeling DNA 

sequences. 
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Next, to benchmark the interpretation module with the use of different interpretation 

methods, we employed five metrics: (1) run time. All timing experiments were tested in a Linux 

environment running Centos 7.4.1708 on a server with 28 cores (Intel® Xeon® CPU E5–2660 v4 

@ 2.00 GHz), NVIDIA® Tesla® K40c GPU, and 125GB RAM. Only a single core was used for 

timing. (2) the percentage of the top 5% scoring bases that overlap embedded motifs (accuracy). 

(3) the percentage of embedded motifs for which at least half of the motif bases are in the top 5% 

scoring bases (recall). (4) auROC when we move the threshold of top scoring bases from 100% to 

0% in (3). (5) signal-to-noise ratios computed as the ratio of scores in embedded motifs to scores 

in background regions. We evaluated all interpretation methods with a DeepSEA architecture, and 

all except DeepLIFT with a DanQ architecture since DeepLIFT doesn’t currently support 

hybridized architectures containing RNNs. 

 

Figure 1.1: Example importance scores for a simulated region. The top shows an example simulated 
sequence, with a central GATA motif and two context TAL1 motifs. Importance scores are shown for each 
method based on a DeepSEA architecture. 
 
 

í���

���

���

0

�

0

1

�

G
CA

M

Position (bp centered at core motif)

GATA1TAL1 TAL1

SM
AP

M
U
T

Simulated sequence:

×10-4

D
ee

pL
IF
T

���� 0 ����

-5

5

0



16 
 

The results show that all the interpretation methods we evaluated, despite of subtle 

performance difference, are able to pinpoint the majority of embedded TAL1 motifs (percentage 

of motif retrieved > 72%; Table 1.1). One example is shown in Figure 1.1, in which there is a 

GATA1 motif in the center and two TAL1 motifs on each side. All four interpretation methods 

can annotate this sequence on a nucleotide-level resolution and highlight the locations of TAL1 

motifs with high importance scores. 

Table 1.1: Comparison of model interpretation techniques. This table shows the performance 
comparison of four interpretation method (in silico saturated mutagenesis, naive saliency map, Grad-CAM, 
and DeepLIFT) under different evaluation metrics. The results from both model architectures, DeepSEA 
and DanQ, are reported. 
 

  
Model architecture 

DeepSEA DanQ 

Metrics 
in silico 
saturated 

mutagenesis 

naive 
saliency 

map 

Grad-
CAM DeepLIFT 

in silico 
saturated 

mutagenesis 

naive 
saliency 

map 

Grad-
CAM 

runtime 
(seconds per 
1k sequence) 

7973 18 62 113 7048 16 62 

recovery 
performance 

- AUC 
0.893 0.871 0.897 0.811 0.986 0.962 0.979 

%motif bases 
recovered 58.15% 61.17% 66.60% 84.33% 91.63% 80.29% 87.43% 

%motifs 
retrieved 71.62% 72.09% 80.01% 99.20% 97.34% 93.67% 95.40% 

signal-noise 
ratio (median 

value) 
1.04 14.36 74.08 2321.83 4.16 31.18 92.79 

 

On the other hand, the results also demonstrate that each interpretation method has unique 

strengths and weaknesses (Table 1.1). For example, in silico mutagenesis generally shows superior 

classification of individual bases (recovery performance – AUC = 0.893 with DeepSEA and 0.986 

with DanQ) but its run time is two orders of magnitude higher than the other methods (Runtime > 
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7000 seconds per 1k sequence with both model architectures). DeepLIFT identifies more 

embedded motif instances whereas Grad-CAM better pinpoints specific important bases (Figure 

1.2). We also computed signal-to-noise ratios for each method by taking the ratio of context scores 

in the embedded TAL1 motif regions to context scores in background regions. Grad-CAM and 

DeepLIFT greatly outperformed alternative methods, indicating these two methods can more 

precisely identify the embedded context motifs. In summary, among these methods, Gram-CAM 

is the most balanced one, with fast run time, high classification accuracy at base pair resolution, 

and applicability to the better performing DanQ architecture. And that was why we chose this 

method in the AgentBind framework for the applications in the following chapters. 

 

Figure 1.2: Comparison of model interpretation methods. ROC curves are shown comparing 
performance of each method to distinguish simulated important vs. neutral context bases. Dashed and solid 
lines denote DeepSEA and DanQ architectures respectively. Green=saliency map (SMAP), cyan=saturated 
mutagenesis (MUT), red=Grad-CAM (GCAM), orange=DeepLIFT. 

 

1.5 Summary and acknowledgements 

This chapter mainly focus on benchmarking AgentBind using a simulated dataset with 

ground-truth available. We evaluated four model interpretation methods with two different deep 

learning models. We found that Grad-CAM is the most balanced one in the aspect of runtime speed, 
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accuracy, and retrieval rates. In the following chapters, we will discuss more about how to apply 

AgentBind in analyzing real-world genomic datasets and what biological insights people can gain 

from this framework. 

The material used in this chapter is taken from the following two papers: (1) Zheng, A., 

Lamkin, M., Wu, C., Su, H., & Gymrek, M. “AgentBind: Profiling Context-specific Determinants 

of Transcription Factor Binding Affinity,” published and presented in the ICML 2019 Workshop 

on Computational Biology (Zheng et al. 2019); (2) Zheng, A., Lamkin, M., Zhao, H., Wu, C., Su, 

H., & Gymrek, M. “Deep neural networks identify sequence context features predictive of 

transcription factor binding,” published on Nature machine intelligence (Zheng et al. 2021, Nature 

machine intelligence). The dissertation author was the primary investigator and author of this 

material. 

These studies were supported in part by NIH/NHGRI 1R21HG010070-01, the Microsoft 

Genomics for Research program, and an Amazon Web Services research award. We thank 

NVIDIA for donating a Tesla K40 GPU to support this project. We additionally thank Christopher 

Benner and Alon Goren for helpful comments. 
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CHAPTER 2 
Chapter 2 Deep neural networks identify sequence context features predictive of transcription factor binding 

 
Deep neural networks identify sequence context features predictive of transcription factor 

binding 
 

2 ___ 
2.1 Introduction 

Binding of transcription factors (TFs) to DNA is one of the major transcriptional regulation 

mechanisms. TFs typically recognize short motifs of 6–12bp (Lambert et al., 2018). However, 

there is often only partial overlap between sequences matching the motif for a particular TF in the 

genome and experimentally determined binding sites (Lambert et al., 2018). For example, we 

found that <1% of approximately 3.6 million SP1 motifs across the human genome are bound in a 

human lymphoblastoid cell line (GM12878). Whether a particular motif instance is bound depends 

on multiple factors, including chromatin accessibility (Zaret et al., 2016), nucleosome positioning 

(Segal et al., 2006), cooperative and competitive binding with other factors (Morgunova et al., 

2017), local GC content (Wang et al., 2012), local DNA tertiary structures (Zhou et al, 2015, 

Proceedings of the National Academy of Sciences; Guo et al., 2018), and inter-position 

dependencies within motifs (Guo et al. 2018). Many of these features are related to sequence 

context in the immediate vicinity of the TF motif itself (Westholm et al., 2008), implying that TF 

binding may be predicted directly from sequence information. 

Several machine learning methods (Alipanahi et al, 2015; Kelley et al, 2018; Kelley et al, 

2016, Lee et al., 2015; Quang et al., 2016; Quang et al., 2019; Zeng et al., 2016; Zhou & 

Troyanskaya, 2015) have proven successful in predicting TF binding from sequence. Many of 

these methods, such as DeepSEA (Zhou & Troyanskaya, 2015) and DanQ (Quang et al., 2016), 

rely on convolutional neural networks (CNNs), which infer important sequence context features 

and learn combinations and orientations of these features that are predictive of binding. However, 
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these frameworks face several limitations. First, they focus on open chromatin regions that are 

active in at least one cell type of interest, but do not consider regions inactive in all cell types as 

controls. Thus, they do not learn general features that distinguish bound vs. unbound genomic 

regions. Second, while these models have shown excellent prediction accuracy for a variety of 

marks and cell types, interpreting CNNs to derive meaningful biological insights remains 

challenging. 

In this chapter, we will present an application of AgentBind, the deep learning framework 

introduced in the previous chapter, to predicting whether a particular instance of a TF motif will 

be bound and interpreting the specific nucleotides with the strongest influence on binding status. 

By conditioning on sequences that contain the core TF motif in both the positive and negative 

samples, this framework specifically learns context features in the vicinity of the core motif. Next, 

we apply Grad-CAM (Selvaraju et al., 2017) to compute importance scores for each nucleotide in 

the context regions and characterize sequence features predictive of TF binding. We find that TF 

binding is largely predicted by open chromatin, and to a lesser extent by TF-specific sequence 

features. The relative importance of these features depends heavily on how positive and negative 

training sets are chosen. Overall, this framework enables novel insights into sequence features 

predictive of TF binding. 

 

2.2 Results 

2.2.1 Predicting binding status of TF motif occurrences 
 

We focused on 38 TFs active in GM12878 with ChIP-sequencing datasets available from 

ENCODE18 and motifs available from JASPAR19. For each TF, we scanned the human reference 

genome (hg19) to identify all instances of its motif, which are referred to as the core motif. We 
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extracted 1kb genomic sequences centered on each core motif instance and labeled each sequence 

as bound (positive) vs. unbound (negative) based on overlap with binding sites identified by ChIP-

sequencing (Figure 2.1a). On average for each TF, we obtained 18,892 sequences as input for the 

baseline model. 

 

Figure 2.1: AgentBind Overview. (a) Method schematic. AgentBind pre-trains a convolutional neural 
network on epigenomic annotations from multiple cell types (top). It then fine-tunes on sequences 
containing a core motif (purple box) for a target TF that are either bound (+) or unbound (−) to learn 
important context features (middle). Grad-CAM is then used to score the contribution of each nucleotide to 
binding predictions (bottom). (b) Pre-training improves TF binding predictions. Receiver operator curves 
(ROC) are shown for the TF SP1 in GM12878 using baseline models with a DanQ architecture. Dashed 
and solid lines show performance with and without pre-training, respectively. (c) Comparison to IMPACT. 
We compared the ability of AgentBind and IMPACT to distinguish bound vs. unbound motifs for four TFs 
in CD4+ Th17 cells. Boxplots show distributions of auROC values for 10 rounds of randomly selecting 
training (80%) vs. testing (20%) motif instances. Middle lines give medians and boxes span from the 25th 
percentile (Q1) to the 75th percentile (Q3). Whiskers extend to Q1–1.5*IQR (minima) and Q3+1.5*IQR 
(maxima), where IQR=Q3-Q1. Dots show the auROC values for individual rounds. Gray=IMPACT. For 
(b) and (c), dark blue=AgentBind without the core motif blocked, dark red=AgentBind with the core motif 
blocked. 
 

In this application, the AgentBind framework consists of (1) pre-training CNNs using 

ChIP-sequencing and DNaseI-sequencing profiles collected from ENCODE (ENCODE Project 
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Consortium, 2012) and the Epigenomics Roadmap Project (Roadmap Epigenomics Consortium et 

al., 2015) across dozens of cell types and (2) fine-tuning an individual model for each TF to 

identify bound vs. unbound sequences as described above. This framework is compatible with 

theoretically any CNN-based architecture. As examples, we evaluated its performance using two 

popular architectures, DeepSEA and DanQ. We evaluated performance using area under the 

receiver operating characteristic curve (auROC) and the precision recall curve (auPRC), and partial 

auROC (pAUC) with false positive rate less than 0.121. Average performance across all TFs is 

high (auROC=0.941 for DanQ and 0.928 for DeepSEA), suggesting that binding is largely 

predictable by local sequence features within a few hundred base pairs of the core motif. In both 

evaluation experiments, pre-training noticeably improves the performance compared with models 

trained from scratch (Figure 2.1b), especially for TFs with low sample sizes such as FOS. This 

improvement is expected, since pre-trained DanQ and DeepSEA are models optimized for large 

datasets. Fine-tuned TF-specific models consistently outperform multi-class models for this 

classification task, with an average auROC increase of 0.033 (range from 0.002 [NFYA] to 0.123 

[NRSF]) for DanQ. Because of its consistently higher performance, subsequent results are reported 

for DanQ unless otherwise specified. 

We tested whether the classification performance could be driven by differences either in 

core motif sequences or nucleotide content not directly relevant to the context features we aimed 

to identify. We first repeated the analyses with the central core motifs masked. In most cases 

performance is only slightly reduced after masking (average auROC decrease 0.015). CTCF is a 

notable exception (auROC=0.945 and 0.798 before and after blocking, respectively), suggesting 

its bound vs. unbound regions have key differences within core motifs despite being similarly 

scored by position weight matrices (PWMs). We further observed that model performance is 
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correlated with the difference in GC content between bound vs. unbound regions (Pearson r=0.58; 

two-sided P=0.00012; n=38, Supplementary Figure 2.1a–b). To ensure that the models focus on 

more specific sequence features, we retrained models using negative and positive datasets with 

matched GC percentages. These models, which are referred to as GC-controlled, have only slightly 

lower performance (mean decrease in auROC=0.013). 

We hypothesized that these models are learning a combination of general sequence features 

characteristic of active regulatory regions in open chromatin and more specific sequence features 

required for each TF. To determine the extent to which the predictions are driven by features of 

open chromatin, we re-trained GC-controlled models restricting all sequences to be within DNaseI 

hypersensitive sites in GM12878. As expected, overall performance for these models, which are 

referred to as DNaseI-controlled, decreases (mean decrease in auROC=0.133 compared to the GC-

controlled model), suggesting open chromatin features make a major contribution to classification 

accuracy for most TFs. Notably, controlling for DNaseI results in greatly reduced sample sizes 

(mean decrease 50%) which may in part drive this trend (Supplementary Figure 2.1c–d). Even 

after controlling for DNaseI, auROC values are above 0.7 for 32/38 TFs, indicating that while 

open chromatin is a major predictor, it does not completely determine binding. 

To additionally investigate the predictive power of chromatin accessibility alone, we used 

AgentBind to predict binding of each TF using GM12878 DNaseI-seq output of pre-trained DanQ 

models. For baseline and GC-controlled datasets, DNaseI alone is highly predictive of binding 

(mean auROC=0.882 and 0.841), although fine-tuned TF-specific models outperform DNaseI 

alone (mean auROC=0.941 and 0.928 for baseline and GC-controlled datasets). On the other hand, 

for DNaseI-controlled data, DNaseI alone is a relatively poor predictor as expected (mean 

auROC=0.634, compared to 0.795 for TF-specific models). 



24 
 

To further determine whether the models identify context features specific to each TF, we 

performed a pairwise comparison in which we used models for each TF to predict binding at motifs 

for all other TFs. For GC-controlled models, binding for most TFs could be predicted well using 

models for most other TFs (Supplementary Figure 2.1e–f). Still, most (33/38) are predicted best 

by their own model (median gain in auROC=0.017 compared to the next best model). For the 5 

TFs predicted better by other models, the performance difference is negligible (median difference 

in auROC=0.0060). For DNaseI-controlled models, TF-specific models tend to show higher 

performance compared to the next best model (Supplementary Figure 2.1g–h). Taken together, 

these results suggest as expected that GC-controlled models largely learn features indicative of 

open chromatin but capture some TF-specific features, whereas DNaseI-controlled models better 

capture features specific to each TF. 

We compared these results with two alternative methods, KSM (Guo et al., 2018) and 

IMPACT (Amariuta et al., 2019), which are not based on deep learning. KSM represents TF motifs 

as a set of aligned k-mers that are overrepresented at TF binding sites and more accurately predicts 

in vivo binding sites than PWM models. We identified KSM motifs for each TF using the same 

set of training and test data as used for AgentBind. For GC-controlled models, AgentBind 

outperforms KSM in predicting binding status for all TFs (median gain in auROC=0.261). For 

DNaseI-controlled models, AgentBind outperforms KSM for 33/38 TFs (median gain in 

auROC=0.182). IMPACT tackles a similar classification task to Agentbind but uses a broad range 

of experimentally determined epigenomic features including ChIP-sequencing, ATAC-sequencing, 

and DNaseI-sequencing profiles. While IMPACT has a variety of applications such as prioritizing 

causal variants for gene expression and complex traits, we only evaluate the application of binding 

site prediction here. We benchmarked each method on four TFs active in CD4+ T cells and applied 
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the same training scheme as the IMPACT study (chapter 2.3.4). AgentBind demonstrated higher 

auROC than IMPACT in all four cases (Figure 2.1c). This suggests that the majority of 

determinants of binding for these TFs can be learned directly from local sequence features. For 

FOXP3 and STAT3, performance was comparable to IMPACT even with core motifs blocked, 

meaning classification decisions were largely based on context sequence rather than differences in 

the core motifs themselves. 

 

2.2.2 Identifying the context-specific determinants of TF binding 

Although deep neural networks achieve high classification accuracy, compared to simpler 

linear models they are not trivially interpretable. In the previous chapter, we have shown that Grad-

CAM is overall performing better with genomic datasets especially because of its fast run time, 

high classification accuracy at base pair resolution, and applicability to the better performing DanQ 

architecture. And thus, we chose Grad-CAM for the downstream analyses of this application. 

We applied Grad-CAM to interpret the GC-controlled models for the 38 TFs and computed 

importance scores for each base in input sequences. As expected, aggregating scores across all 

input sequences for each TF shows that sequences closest to the core motif tend to have the highest 

impact (Figure 2.2a). However, aggregate score profiles differ noticeably for different TFs. For 

example, whereas the important bases for predicting CTCF binding are highly concentrated 

directly adjacent to the motif, important bases for YY1 are spread across the entire 1 kb region 

(Figure 2.2c). In concordance with the results above, differences in core motifs themselves receive 

high importance scores for some TFs (e.g., PU1, CTCF) but not others (e.g., MEF2A, SP1, Figure 

2.2c). Context scores for bound (positive) sequences show far more distinct patterns than for 



26 
 

unbound (negative) sequences (Supplementary Figure 2.2). Therefore, we focus on scores for 

bound sequences for downstream analyses. 

 

Figure 2.2: Interpreting context-specific determinants of TF binding. (a) Aggregate Grad-CAM score 
profiles. For each TF, we computed the average absolute value of the Grad-CAM score per position in 
positive sequences using GC-controlled models with the core motif unblocked (left) or blocked (right). 
Values were Z-normalized across rows. The dendrogram is based on hierarchical clustering of the rows. (b) 
Example Grad-CAM scores for a region (chr1:12289432–12290431 in hg19) containing an SP1 motif. The 
y-axis shows the Grad-CAM score of each nucleotide based on the GC-controlled model. Sequences are 
shown for the central SP1 motif and two regions with high scores corresponding to NFY motifs. (c) 
Example aggregate Grad-CAM profiles. For four representative TFs, average Grad-CAM scores are shown 
for models with the core motif blocked (dark blue) or unblocked (dark red). 
 

2.2.3 Grad-CAM scores give insight into features of TF binding 

We next sought to use Grad-CAM score profiles to identify context sequence features with 

strongest impact on binding status for each motif. We extracted 5-mers from positive sequences 

accounting for the strand of the core motif and tested whether each unique 5-mer is enriched among 

5-mers with highest average Grad-CAM scores for each TF (chapter 2.3.5). The results using the 

baseline models recapitulate multiple known trends (Figure 2.3a). First, the top scoring sequences 

for a TF often closely match the core motif of the TF itself, consistent with previous literature 
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showing homotypic clusters of TF motifs can promote binding (Gotea et al., 2010). For example, 

5-mers from the NRF1 (5’-TGCGCATGCGCA-3’) and ZEB1 (5’-CAGGTG-3’) motifs score 

highly for NRF1 (Fisher’s exact test one-sided P<10−200; OR=14.1 for ATGCG) and ZEB1 

(P<10−200; OR=18.2 for CAGGT), respectively. In some cases, these enrichments are strand 

specific. For instance, the ZEB1 motif is consistently enriched in important context bases for ZEB1, 

whereas its reverse complement is not. Similar trends are observed for other factors such as YY1 

and ZNF143. Second, top 5-mers capture known co-binding relationships. For example, the NFY 

motif scores highly among known co-binders SP1 (Roder et al., 1999) and RFX5 (Dolfini et al., 

2016). Additionally, the motif for AP-1 (5’-TGA G/C TCA-3’), bound by of a dimerization of 

JUN and FOS (van Dam et al., 2001), scores highly for known co-binders CEBPB (Heinz et al., 

2010) and IRF4 (Li et al., 2012). These trends are also observed using GC-controlled and DNaseI-

controlled models (Figure 2.3b–c). 
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Figure 2.3: Identifying key context sequence features for TF binding in GM12878. (a) Enrichment of 
5-mers in the most influential context regions. The heatmap shows the enrichment of each sequence in 
regions with the highest Grad-CAM scores for each TF using baseline models. Heatmaps in (b-c) are the 
same as in (a) but show data for GC-controlled (b) and DNaseI-controlled (c) models. Only 5-mers 
corresponding to top 50 5-mers in at least one of the three models are shown. Colors denote odds ratios, 
and the sizes of the boxes denote statistical significance based on one-sided P-values computed using 
Fisher’s exact tests. Adjusted P-values are based on a Bonferroni correction for the number of 5-mers tested. 
The color scale is capped at 10. Odds ratios higher than 10 are all colored the same. Boxed and annotated 
5-mers correspond to known motifs. The order of TFs (y-axis) and 5-mers (x-axis) is the same for all plots 
and is based on hierarchical clustering of the odds ratio matrix for the baseline model. 
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While these three different models (baseline, GC-controlled, and DNaseI-controlled) 

capture many similar trends, each of them also highlight orthogonal context features relevant to 

TF binding. Baseline models identify many key elements of promoter regions (Figure 2.3a), which 

comprise approximately 56% of ChIP-seq peaks analyzed. For example, top-scoring 5-mers 

include the NFY and ETS motifs, both of which have previously been shown to act as cardinal 

elements of certain promoter regions (Benner et al., 2013). Both baseline and GC-controlled 

models identify clusters of TFs with highest scoring context 5-mers corresponding to known 

pioneer factors (e.g., NFY (Dolfini et al., 2016), RUNX32/AP-1 (Mevel et al., 2019), and 

interferon regulatory factors [IRFs] (Kröger et al., 2017)) which open chromatin and enable 

additional TFs to bind. These pioneer factors motifs are far more strongly enriched in the fine-

tuned models compared to pre-trained DanQ models not trained on negative sequences 

(Supplementary Figure 2.3). 

In DNaseI-controlled models, which only consider sequences already in open chromatin, 

motifs for pioneer factors such as AP-1, RUNX, and IRF are less prevalent in top-scoring 5-mers 

for many TFs (Figure 2.3c), suggesting the pioneer factors do not directly co-bind with those TFs. 

On the other hand, pioneer motifs remain enriched for TFs known to physically co-bind (e.g., AP-

1 motif for IRF4 and CEBPB). We hypothesize these DNaseI-controlled models instead identify 

5-mers that represent cooperative relationships between TFs or sequence elements near the core 

motif required for binding. For some TFs, top 5-mers in DNaseI-controlled models are distinct 

from those in the other models. For example, in the baseline model for NRSF, 5-mers 

corresponding to the pioneer IRF and promoter ETS motifs are most significant, whereas the 

GATA motif (5’-GATAA-3’) is only moderately enriched (one-sided P=0.000045, OR=1.7). 

However, in the DNaseI-controlled model, the GATA motif is highly significant (one-sided 
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P=1.2×10−245, OR=11.5) for NRSF, suggesting a potential role for this sequence in promoting 

nearby NRSF binding after the surrounding region is made accessible by pioneer factors. 

We hypothesized that the sequence context features which promote binding of a particular 

TF to its core motif might differ between motifs in promoter (+/− 3kb from transcription start sites 

[TSS], denoted as “proximal” vs. enhancer regions (>3kb from the nearest TSS, denoted as 

“distal”). We repeated the analysis of top 5-mers separately for proximal and distal binding sites 

(Supplementary Figure 2.4). In some cases, such as for SP1, the highest scoring 5-mers differ 

dramatically between proximal and distal sites. Overall, NFY and NFY-like motifs score highly 

for proximal binding sites but have less influence on distal sites. On the other hand, RUNX, AP-

1, and IRF motifs show stronger scores for distal sites. These results suggest that many features 

influencing binding are orthogonal at promoter vs. enhancer regions and these sites are likely 

governed by separate sets of pioneer and other factors. 

To investigate the ability of the AgentBind framework to capture cell-type specific 

regulatory features, we trained separate GC-controlled models to predict STAT3 binding using 

ChIP-sequencing data from GM12878, CD4+ Th17, and HeLa cells and used each model to predict 

binding in all three cell types. As expected, STAT3 binding in each cell type was best predicted 

by a model trained on that cell type. We computed Grad-CAM scores for each bound sequence 

and repeated the analysis of top scoring 5-mers as described above. Our analysis reveals that some 

enriched 5-mers are shared across multiple cell types whereas others are highly cell-type specific 

(Figure 2.4). For example, RUNX and IRF motifs are enriched only in GM12878 whereas FOX 

and T-box motifs are enriched only in Th17. AP-1 and BATF motifs are enriched in both HeLa 

and GM12878, and ETS motifs are enriched in both Th17 and GM12878. Overall, these results 
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are consistent with a model whereby STAT3 binds to regions made accessible by different 

combinations of pioneer factors in each cell type. 

 

 

Figure 2.4: Cell-type specific enrichment of 5-mers influential for STAT3 binding. Enrichments were 
computed using Fisher’s exact tests as in Fig. 3 using GC-controlled models trained separately in either 
GM12878, HeLa, or CD4+ Th17 cells. (a) Comparison of top-scoring 5-mers for GM12878 vs. CD4+ Th17 
cells. (b) Comparison of top-scoring 5-mers for GM12878 vs. HeLa cells. (c) Comparison of top-scoring 
5-kmers for HeLa vs. CD4+ Th17 cells. The inset table shows the auROC obtained from training each 
model on one cell type and using it to predict STAT3 binding status in another cell type. Dashed horizontal 
and vertical lines denote an adjusted P-value threshold of 0.05, based on a Bonferroni correction for the 
number of 5-mers tested. 
 

Finally, we investigated whether top-scoring SNPs are enriched for properties 

characteristic of causal variants. We find that SNPs with top-scoring Grad-CAM scores (top 0.5%) 

show significantly higher signals of negative selection based on observed allele frequencies 

compared to other SNPs in context regions (two proportion z-test one-sided P=3.3×10−8, 

Supplementary Figure 2.5). Further, we compared Grad-CAM scores to effects of SNPs on 

expression measured through massively parallel reporter assays (MPRA) (Tewhey et al., 2016) in 

LCLs and find that Grad-CAM scores are significantly higher for SNPs that induce expression 

changes in MPRA (Mann-Whitney two-sided P=0.013), although still are only moderately 

predictive of causal variants for gene expression. Overall, these results suggest that context bases 

most influential for TF binding identified by the AgentBind framework may be helpful in 

prioritizing variants relevant to human traits. 
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2.3 Method details 

2.3.1 ChIP-sequencing datasets and preprocessing 

We used FIMO (Grant et al., 2011) v4.12.0 to identify all instances of the motif for each 

TF across the human reference genome (hg19). FIMO takes the reference genome and target motifs 

for each TF as input and returns all occurrences of the target motif (using the default p-value 

threshold p<10−4). Motifs for each TF were obtained from JASPAR. We intersected motif 

instances with binding sites as identified by ChIP-sequencing available for each TF in GM12878 

from the ENCODE Project using a custom script. ENCODE ChIP-sequencing experiments for 

each TF were performed in duplicate and peaks were scored against an appropriate control 

designated by the ENCODE Analysis Working Group. Motif instances (core motifs) were labeled 

as positive if they were fully within ChIP-sequencing peaks for the TF. All other instances were 

labeled as negative. We extended each core motif region to include 1 kb centered at the motif. For 

each sequence, we included it and its reverse complement sequence for the training procedure 

described below. In the experiments that required core motifs to be blocked, we substituted the 

motif region with a string of “N”s of the same length as the JASPAR motif. 

The binary datasets acquired above were highly imbalanced: on average we identified 433 

times more negative than positive sequences. To balance the dataset ratio while alleviating effects 

of differences within the core motif, we chose an identical number of negative and positive 

sequences for each TF while requiring the distribution of motif match p-values to be similar. To 

obtain p-value matched sets, we binned -log10 P-values of motif matches into bins of size 0.1. For 

baseline models, we randomly selected the same number of positive and negative sequences from 

each P-value bin. For GC-controlled models, within each P-value bin, we further binned sequences 
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based on their GC contents to ensure the selected sequences shared the same distribution of GC 

contents in positive and negative datasets. For the DNaseI-controlled models, we only considered 

both positive and negative sequences whose core motifs fall within DNaseI hotspots in GM12878 

(ENCODE accession ENCFF491BOT). We then followed the same procedures as in the GC-

controlled models to match motif P-values and GC content between positive and negative 

sequences. 

 

2.3.2 CNN model architecture and training 

We implemented DeepSEA and DanQ architectures using TensorFlow (Abadi et al. 2015) 

v1.9.0. The well-trained models and their associated code are available in a Github repository 

(https://github.com/Pandaman-Ryan/AgentBind). DeepSEA consists of three convolutional layers 

and two fully connected layers, and DanQ consists of one convolutional layer, one bi-directional 

recursive neural network layer and two fully connected layers. We applied sigmoid cross entropy 

as the loss function for both models. 

The sizes of input datasets vary widely, from 182 to 107,539 total sequences per TF. To 

enable the AgentBind framework to accommodate smaller datasets, we applied a two-step transfer 

learning scheme, including a pre-training step and a fine-tuning step. Transfer learning has been 

shown to dramatically reduce the amount of training needed for related classification tasks and 

improves the overall predictive performance compared to training from scratch (Avsec et al. 2019). 

For pre-training, we downloaded a dataset consisting of 4,863,024 1kb sequences annotated with 

a total of 919 ChIP-seq and DNase-seq profiles available on the DeepSEA website. We left out 

sequences on chromosome 8 for cross validation and sequences on chromosome 9 for testing. We 

applied one-hot encoding to convert nucleotide sequences into 4-element vectors as has been done 
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in previous studies (Kelley et al., 2016; Zhou & Troyanskaya, 2015). “N”s were converted into 

vectors with entries of 0.25 for each of the four nucleotides. During training, we initialized all 

model parameters with random Gaussian noise with mean 0 and standard deviation 10-2 and trained 

this model on the DeepSEA compendium dataset until the loss function converged. In the fine-

tuning step, we used the same architectures as in the pre-training step, and we built an independent 

model for each TF of interest using the labeled dataset described in the previous section. Same as 

the pre-training step, we left out sequences on chromosome 8 and 9 for cross validation and testing 

respectively. From the pre-trained model, we transferred its convolutional layers and RNN layer 

into the new models but initialized the fully connected layers again with random Gaussian noise. 

These new models were further fine-tuned on the TF binary datasets until convergence. 

 

2.3.3 Benchmarking experiment against KSM 

In the KSM experiment, to identify KSMs for each TF, we used the same set of training 

and test data as we used in the GC-controlled and DNaseI-controlled models and kept the central 

61bp in each sequence. KMAC is a de novo motif discovery method for KSM. We applied KMAC 

to identify KSM motifs with k_win set as 61, k_min as 5, k_max as 13, and k_top as 10. Finally, 

we applied KSM to predict the TF binding status of the test data with motifs identified by KMAC 

as input. We quantified the performance evaluation using auROC, partial auROC, and auPRC. 

 

2.3.4 Benchmarking experiment against IMPACT 

The IMPACT study focused on TFs active in T cells and created their own binary (bound 

vs. unbound) datasets for TFs including FOXP3 (Treg), GATA3 (Th2), STAT3 (Th17) and T-BET 

(Th1). The coordinates of motif instances for these four TFs were published on the IMPACT 
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Github repository (https://github.com/immunogenomics/IMPACT). In the benchmarking 

experiment, we used an identical set of motif instances, extending them into 1 kb sequences to 

train the model. 

We applied an identical training scheme as was used by IMPACT: we randomly selected 

80% of the sequences in the input dataset for training and tested on the remaining samples. We 

evaluated the method in four situations using different architectures and core motif treatments 

(DeepSEA or DanQ architecture, with core motif blocked or unblocked), and for each situation we 

conducted 10 parallel trials with different selections of the test set. 

 

2.3.5 Model interpretation methods 

In the implementation of Grad-CAM, we chose the first convolutional layer as the layer of 

interest. This layer contains distribution maps for various sequence features. Following the 

weighting method proposed by the Grad-CAM authors (Selvaraju et al., 2017), we quantified the 

importance of these sequence features and computed a weighted summation of all the distribution 

maps. In comparison with vanilla saliency map which evaluates the importance of each base 

individually, this aggregated map highlights the regions that are important to the binding activities. 

To combine the best aspects of these two maps, we then merged the aggregated distribution map 

with the vanilla saliency map through element-wise multiplication. 

 
2.3.6 K-mer enrichment analysis 

In this analysis, we first segmented all the input sequences into 5-bp subsequences using a 

sliding window and removed subsequences overlapping core motifs in the center. Next, for each 

subsequence, we quantified its importance by averaging the Grad-CAM scores of each base. For 

each factor, we ranked all the subsequences based on their Grad-CAM scores and marked the top 
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1% as top 5-mers. We used a Fisher’s Exact test to determine whether each 5-mer was enriched 

among top 5-mers for each TF. Fisher’s Exact tests were performed using the fisher_exact function 

in the stats module of the Python scipy library v1.3.1. 5-mers were matched to published motifs in 

the Hocomoco (Kulakovskiy et al., 2018) database based on manual inspection. For Figure 2.3 and 

Supplementary Figure 2.3 and 2.4, we obtained the top 50-mers ranked by the maximum odds ratio 

across all TFs separately in each of the three models (baseline, GC-controlled, and DNaseI-

controlled). We merged this set for a total of 77 unique 5-mers and clustered matrices of odds 

ratios for each 5-mer in each TF. For clustering, all insignificant odds ratios (nominal P≥0.01) 

were set to 0. To make heatmaps visually comparable, we used the ordering of 5-mers and TFs 

based on clustering results from the baseline models in each 5-mer heatmap. For the comparison 

of proximal and distal sites, proximal sites were defined as sequences for which the core motif is 

within +/− 3kb from the nearest transcription start site (TSS) and distal sites were defined as 

sequences for which the core motif is >3kb from the nearest TSS. Transcription start sites were 

annotated based on GENCODE v19. 

 
 
2.3.7 Cross cell-type comparison of STAT3 models 

GC-controlled models for STAT3 in three cell types were trained using the procedure 

described above. Samples were labeled as positive vs. negative based on overlap with STAT3 

peaks in GM12878, HeLa (obtained from ENCODE data) and CD4+ Th17 cells (GEO accession 

GSM2545819). Input datasets consisted of 2,648, 792, and 7,652 sequences for GM12878, CD4+ 

Th17, and HeLa, respectively, with equal numbers of positive and negative sequences. 
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2.3.8 Allele frequency analysis 

To quantify selection for a set of genomic positions, we assessed whether those positions 

are depleted of common genetic variation compared to nearby positions. We focused on single 

nucleotide polymorphisms (SNPs) present in gnomAD (Karczewski et al., 2020) overlapping sites 

that were scored by Grad-CAM using GC-controlled models for each TF and computed the 

percentage of SNPs for which the alternate allele is observed only once (termed singletons). This 

“percent singleton” metric has previously been used as a proxy for deleteriousness of a set of SNPs 

(Lek et al., 2016). 

For each TF, we overlapped bound sequences scored by Grad-CAM with SNPs in the 

control samples reported in the gnomAD v2 dataset (Karczewski et al., 2020). For positions 

overlapping gnomAD SNPs, we recorded observed counts of minor alleles. We then labeled sites 

where the minor allele counts were 1 as singletons. We only included samples annotated in 

gnomAD as healthy controls (n=5,442 individuals) in the analysis and required a minimum total 

allele count of 1000. Sites not overlapping a gnomAD SNP (i.e., minor allele count of 0) were 

excluded from singleton analysis. The singleton ratio of a group of sites is then simply defined as 

the percentage of SNPs in that category that are singletons. 

 

2.3.9 CNN model architecture and training 

We obtained MPRA results for expression quantitative trait loci (eQTLs) tested in two 

lymphoblastoid cell lines from Table S1 of Tewhey, et al. (Tewhey et al., 2016). We converted 

SNP rsids to hg19 coordinates based on dbSNP (Sherry et al., 2001) build 147 and retained only 

SNP variants which overlapped positions scored by Grad-CAM in at least one TF of interest in 

DNaseI-controlled models. We further filtered SNPs for which the regulatory effect was not scored 
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in the Tewhey et al. dataset (C.Skew.fdr column set to NA) indicating one or both alleles of the 

SNP did not drive expression of the reporter in the MPRA experiment. We treated variants with 

FDR<5% in the MPRA data (based on the column C.Skew.fdr) as true positives and FDR>=5% 

as true negatives. A total of 116 true positive and 226 true negative SNPs were included in the 

analysis. We then set the Grad-CAM score for each variant as the maximum value recorded across 

all TFs considered at the locus. 

 
2.4 Discussion 

In this chapter, we presented AgentBind, a machine learning framework to predict whether 

instances of TF motifs in the genome were bound vs. unbound in the given cell type and to identify 

the most influential context bases. While we focused on TFs in GM12878 using the DanQ 

architecture, this framework can similarly be applied to a flexible range of CNN model 

architectures for any TF and cell type of interest for which ChIP-sequencing data is available. 

The experiment results support the hypothesis that a variety of context features work 

together to determine whether a motif instance will be bound. The large decrease in auROC values 

after controlling for DNaseI (mean=0.133) suggests the most important binding determinant for 

most TFs is whether its motif falls in a region of active chromatin previously opened by a pioneer 

factor. However, in all the model settings a TF is usually predicted best by its own model. This 

suggests that even after a region is open, for some TFs additional context sequence features, such 

as additional copies of its own motif or those of co-binding TFs, are important for determining 

whether the core motif is bound. 

We generated three different models for each TF, each of which identifies distinct sequence 

features most predictive of TF binding. These different settings highlight how the choice of 

negative vs. positive sequences for training models has a major impact on the features learned. In 
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the baseline and GC-controlled models, we fine-tune existing DanQ models with negative training 

samples from regions of the genome that are inactive in most cell types. Accordingly, the most 

prominent features learned correspond to known motifs for pioneer factors, which predict whether 

a region is open or closed. DNaseI-controlled models, which only consider both positive and 

negative sequences in open chromatin, give decreased importance to pioneer factors and likely 

highlight sequence features most directly related to TF binding. Importantly, the appropriate model 

may depend on the application of interest. For example, baseline models may be most appropriate 

for predicting the impact of a medically relevant variant, where it is simply desirable to have the 

highest prediction accuracy. On the other hand, for the application of learning sequence features 

that directly interact with the TF of interest, DNaseI-controlled models are best. 

This study faced several limitations: (i) modifications to the training process, such as 

varying the lengths of context sequences or training separate models for distal vs. proximal regions, 

are likely to improve performance. (ii) Further, this application relies on PWMs to identify motif 

instances. PWMs suffer from known limitations, including an inability to capture dependencies 

between positions, which may trivially distinguish bound vs. unbound sequences in some cases. 

(iii) Model interpretation techniques can be further improved to extract more complex rules for TF 

binding such as motif spacing, orientation, and combinations. Visualization techniques such as 

DeepResolve (Liu et al., 2019) may reveal additional patterns such as interactions between 

important sequence features learned by CNNs. (iv) TF binding does not necessarily imply 

regulatory function and thus a high-scoring Grad-CAM site may ultimately not affect gene 

regulation of downstream phenotypes. Other methods based on a combination of deep-learning 

and k-mer based approaches have been developed to specifically predict expression from sequence 

content (Kelley et al., 2018; Zeng et al., 2016). In future work, the scores from AgentBind could 
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be integrated into similar frameworks to improve prioritization of disease-associated variants. (v) 

Finally, we mainly focused on the GM12878 cell type. While the results for STAT3 on multiple 

cell types indicate that important context bases are highly cell-type specific, future work is needed 

to further investigate other cell types. 

Altogether, this study provides a valuable machine-learning framework for helping decode 

the rules by which TFs bind their target sites and identifying specific non-coding nucleotides with 

the strongest effects on binding. To facilitate future applications, Grad-CAM scores for all TF 

models studied here and code for running AgentBind on additional datasets are available at 

https://github.com/Pandaman-Ryan/AgentBind. 

 

2.5 Supplementary figures 
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Supplementary Figure 2.1: Model performance related to GC content and open chromatin. (a-b) GC 
content differences correlated with model performance. The x-axis shows the absolute value of the 
difference in mean GC content for positive vs. negative sequences with the motif for each TF. The y-axis 
shows auROCs. Each dot represents one TF. Results in a-b are for baseline models with motifs blocked (a) 
or unblocked (b). (c) Comparison of training data size and change in model performance. The x-axis (log10 
scale) shows the number of training samples. Orange points show the difference in auROC (y-axis) for 
baseline vs. GC-controlled models. Green points show GC-controlled vs. DNaseI-controlled models. Each 
dot represents one TF. (d) Model performance for each TF. The y-axis gives the auROC obtained for 
different models for each TF. Gray=baseline; orange=GC-controlled; green=DNaseI-controlled. TFs are 
ranked by the change in auROC between the DNaseI and GC-controlled models. (e) Comparison of cross-
TF model performance. Heatmaps show the auROC using a GC-controlled model trained on one TF (rows) 
and tested on another TF (columns). Red squares denote the model with highest auROC for each TF. (f) 
Distribution of the difference in auROC between top models and TF-specific models. For TFs where the 
TF-specific model was best, we computed the difference between the TF-specific model and the next best 
model (red). For all other TFs, we compared performance of the best model to the TF-specific model (blue). 
(g-h) are the same as in e-f but based on DNaseI-controlled models. 
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Supplementary Figure 2.2: Aggregate Grad-CAM score profiles for each TF. For each TF, we 
computed the average absolute value of the Grad-CAM score per position in positive sequences using either 
models with the core motif unblocked (left) or blocked (right). Values shown are Z-normalized across rows. 
(a) shows aggregate scores for sequences labeled as positive (bound) and is reproduced from Fig. 2d. (b) 
shows aggregate scores for sequences labeled as negative (unbound). 
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Supplementary Figure 2.3: Comparing key context sequence features identified in pre-trained vs. 
fine-tuned models. The heatmap shows the enrichment of each 5-mer in regions with the highest Grad-
CAM scores for each TF using baseline models before (a) and after (b) fine-tuning. Rows and columns are 
ordered the same as in Fig. 3. Colors denote odds ratios, and the sizes of the boxes denote statistical 
significance as in Figure 2.3. Panel (b) is reproduced from Figure 2.3a for comparison 
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Supplementary Figure 2.4: Context sequence features specific to proximal vs. distal sites. (a) 
Enrichment of 5-mers in high-scoring Grad-CAM regions for proximal (left) and distal (right) binding sites. 
Proximal and distal TF binding sites are defined as described in Online Methods. Rows and columns are 
ordered the same as in Fig. 3. (b-c) are the same as in (a) but show data for GC-controlled (b) and DNaseI-
controlled (c) models. For (a-c), colors denote odds ratios, and the sizes of the boxes denote statistical 
significance as in Figure 2.3. (d) Comparison of top scoring 5-mers in proximal vs. distal SP1 sites. Bars 
show the odds ratio of enrichment of each sequence in top 5-mers for all (gray), proximal (red) and distal 
(blue) SP1 sites. The top 20 5-mers ranked by the best odds ratio across all three SP1 models (all, proximal, 
and distal sites) are shown. Error bars show 95% confidence intervals on odds ratios. (e-f) are the same as 
in (d) but show data for GC-controlled (e) and DNaseI-controlled (f) models. 
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Supplementary Figure 2.5: Singleton rate of context SNPs vs. core motif regions. (a) Singleton rate of 
context SNPs. The plot shows the percent of SNPs in each category that are singletons. Black=all context 
sites, orange=context sites with top 5% Grad-CAM scores, red=context sites with top 0.5% Grad-CAM 
scores. Error bars show +/− 1 s.e. (b) is the same as (a), but additionally shows singleton rates for SNPs in 
core motif regions (blue). The number of SNPs in each category for each TF is annotated above each plot. 
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CHAPTER 3 
Chapter 3 Deep learning predicts regulatory functions of variants in cell-type specific enhancers in brain 

 
Deep learning predicts regulatory functions of variants in cell-type specific enhancers in 

brain 
 

3 ___ 
3.1 Introduction 

Globally, there is nearly 1 in 6 world’s population suffering from neurological and 

psychiatric disorders. Studies have found out that many of these brain disorders, including 

Alzheimer's Disease (AD), schizophrenia, and reduced intelligence, are highly inheritable and the 

majority of genetic variants associated with disease risk are found in transcriptional enhancer 

regions (Nord & West 2020; Li et al., 2018). However, unlike protein-coding regions, pathogenic 

mutations in enhancers are not directly involved in encoding protein sequences and are difficult to 

pinpoint and interpret. Moreover, the behaviors of transcriptional enhancers are highly specific to 

cell types, requiring epigenetic information to accurately characterize (Li, M. et al., 2018). The 

identification process for variant impacts is further complicated when we factor in linkage 

disequilibrium (LD), which results in blocks of variants being co-inherited and difficult to be 

differentiated in the genome-wide association studies (GWAS). 

Recently, numerous fine-mapping techniques have been developed to prioritize putative 

causal variants from GWAS data. To analyze a genetic trait, these techniques first partition the 

human genome into subregions using the LD structures of the genome and then identify the SNPs 

most likely to be causal within each subregion. However, these techniques face several limitations: 

(1) it is difficult to find a causal SNP annotated with large probability when adjacent SNPs are 

highly correlated or the density of non-causal SNPs nearby is high (Schaid et al., 2018); (2) Due 

to enhancers’ specificity to cell types, the pathogenic pathways of putative causal variants toward 

human traits are difficult to determine, even for the ones overlapping with enhancer regions. 
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Deep learning methods have been recently used for modeling non-coding DNA and 

pinpointing nucleotides predictive of regulatory functions, such as chromatin accessibility and 

transcription factor binding (Lai et al., 2021; Zheng et al., 2021, Nature machine intelligence; 

Corces et al., 2020; Avsec et al., 2021; Zhou, 2019, Nature genetics). Here, we make use of both 

deep learning and fine-mapping and develop a pipeline to prioritize genetic variants predicted to 

impact cell-type-specific enhancer activities in the brain and then identify candidate causal variants 

underlying association signals for a variety of brain-related traits (Figure 3.1a). Specifically, we 

first adapt our previously published AgentBind framework to capture features in sequences with 

strong H3K27ac signals and build separate models for four major brain cell types, including 

neurons, microglia, oligodendrocytes, and astrocytes. We additionally incorporate an improved 

model architecture including incorporation of spatial information (Liu et al., 2018) to boost model 

performance. Next, we apply Grad-CAM (Selvaraju et al., 2017) to compute importance scores at 

nucleotide-resolution and characterize sequence features predictive of H3K27ac activities. We find 

that variants predicted to have the highest impact on the H3K27ac signal are under stronger 

negative selection compared to low-impact variants and show a stronger allelic imbalance in the 

H3K27ac signal. Finally, we integrate our scores with fine-mapping results from GWAS of brain-

related traits to identify putative causal variants that may act via modulating enhancer activity. 

 

3.2 Results 

3.2.1 Modeling brain cell-type specific H3K27ac signals 

We obtained published H3K27ac ChIP-sequencing data for four brain cell types (microglia, 

neurons, oligodendrocytes, and astrocytes) (Nott et al., 2019). For each cell type, we collected 

genome sequences overlapping transcriptional enhancer regions (Method: chapter 3.3.1) and 
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acquired 12,074-21,415 non-overlapping H3K27Ac regions. Next, for each cell type, we 

constructed a binary dataset consisting of 1kb sequences centered at H3K27ac peaks (positive 

samples) and randomly chosen sequences with matched GC-content distributions (negative 

samples). We created multiple copies of each sample through window shifting (Method: chapter 

3.3.1) to reduce model overfitting and to ensure model predictions are robust to the relative 

location of H3K27ac signals within each sequence. 

We trained a separate model for each cell type. Our model training process consisted of 

two steps: pre-training and fine-tuning. Previous works (Zheng et al., 2021, Nature machine 

intelligence; Novakovsky et al., 2021) have found that pre-training could noticeably improve the 

performance of deep learning models in modeling genomic sequences, especially for small datasets. 

Similar to AgentBind, we first pre-trained our models using a large published dataset consisting 

of epigenomics profiles across 35 different cell types available from the DeepSEA project (Zhou 

et al., 2015). Next, for each brain cell type, we fine-tuned its model to predict the H3K27ac signal. 

Model performance was evaluated using the area under the receiver operating characteristic curve 

(auROC) and area under the precision-recall curve (auPRC). We left out sequences on 

chromosome 8 for cross-validation and sequences on chromosome 9 for testing. 

We tested two different deep learning architectures: the DanQ (Quang et al., 2016) 

architecture used in AgentBind, and a version of ResNet (He et al., 2016) modified from that used 

in ChromDragoNN (Nair et al., 2019). The ResNet architecture consisted of 5 convolutional layers 

followed by 8 residual blocks and 2 fully connected layers (Method: chapter 3.3.2). The output of 

both models was a single number ranging between 0 to 1, indicating how likely the input sequence 

contained a H3K27ac peak. The more complex ResNet architecture allowed better performance in 
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modeling H3K27ac samples, resulting in an average auROC increase of 0.023 and auPRC increase 

of 0.025 (Figure 3.1b-e). 

 

Figure 3.1: Pipeline Overview. (a) Method schematic. We construct a ResNet model for each type of brain 
cells and capture sequence features unique to the transcriptional enhancers in this type of cells. Next, we 
use Grad-CAM to score the contribution of each nucleotide to enhancer activities. On the other hand, we 
fine-map the SNPs from the GWAS file of each brain trait and identified the SNPs most likely to be causal. 
These putative causal SNPs were then overlapped with the importance scores from Grad-CAM. For each 
cell type and its associated brain trait, we acquire a list of SNPs likely to result in the trait through impacting 
enhancer activities. (b) - (e) CoordConv and ResNet improve model performance in (b) microglia, (c) 
neurons, (d) oligodendrocytes, (e) astrocytes. In each plot, receiver operator curves (ROC) are shown for 
H3K27ac predictions using DanQ (grey dashed line), ResNet (gold solid line), and ResNet + CoordConv 
(red solid line). 
 

To further improve our model, we applied the CoordConv (Liu et al., 2018) technique 

which adds an extra coordinate channel to the input of the first convolutional layer to better encode 

spatial information in the input sequences (Method: chapter 3.3.2). We found this resulted in a 

notable performance boost, with an average auROC and auPRC increase of 0.050 and 0.051, 

respectively. Overall, our final models could predict H3K27ac signal with high accuracy (mean 

auROC=0.966, mean auPRC=0.967; Figure 3.1b-e). Full results are reported in Table 3.1. 

 

a b c

d e

Microglia Neuron

Oligodendrocyte Astrocyte



53 
 

Table 3.1: classification performance. 

 w/o CoordConv w/ CoordConv 
Model architecture DanQ ResNet ResNet 

Metrics auROC auPRC auROC auPRC auROC auPRC 
Microglia 0.882 0.877 0.926 0.921 0.973 0.969 
Neuron 0.911 0.895 0.932 0.922 0.975 0.970 

Oligodendrocyte 0.885 0.901 0.890 0.908 0.950 0.960 
Astrocyte 0.896 0.891 0.919 0.912 0.968 0.968 
Average 0.893 0.891 0.917 0.916 0.966 0.967 

 
 

3.2.2 Identifying sequence features predictive of H3K27ac signal 

We next applied Grad-CAM (Selvaraju et al., 2017), a model interpretation technique 

previously used to infer genomic sequence features learned by deep learning models (Zheng et al., 

2021, Nature machine intelligence), to characterize key sequence features learned by our models. 

We used Grad-CAM to assign nucleotide-level scores to quantifying the importance of each base 

pair in predicting H3K27ac signal (Method: chapter 3.3.3). An example score profile for a single 

sequence is shown in Figure 3.2a. In this example, Grad-CAM scores highlight a short DNA 

sequence that matches with the known PU.1 motif from the JASPAR database (Castro-Mondragon 

et al., 2022) as being critical in predicting the enhancer activity of this locus in microglia. 

Next, we sought to use importance score profiles to identify features most predictive of 

H3K27ac status for each cell type. To this end, we applied two strategies. First, we extracted 6-

mers from positive sequences and tested whether each unique 6-mer is enriched within the 6-mers 

with the highest importance scores (Method chapter 3.3.4; Figure 3.2b). To associate 6-mers with 

known motifs, we used TOMTOM (Gupta et al., 2007), which is a computational tool that can 

align a given sequence with the known motifs. We saw substantial specificity of 6-mer enrichment 

in different cell types. For example, the most predictive 6-mers for microglia are associated with 

ETS, IRF, CEBP, and MEF2 motifs, which correspond to well documented transcription factors 
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important for microglia phenotype and function (Gosselin et al., 2017; Masuda et al., 2012; 

Holtman et al., 2017). There were also 6-mers shared by multiple cell types, as exemplified by 

those associated with NFI motif enriched in astrocytes, neurons, and oligodendrocytes. Different 

members of NFI family have been reported to play an important role in the development of these 

cell types in both mouse and human (Chen et al., 2017; Wilczynska et al., 2009).  

We additionally applied TF-MoDISco (Shrikumar et al., 2018), which leverages per-base 

importance scores to infer enriched motifs. The motifs identified from TF-MoDISco were 

consistent with those inferred from enriched 6-mers (Figure 3.2C). Since this approach exceeds 

the length limitation of the k-mer approach, we were able to uncover additional motifs associated 

with high importance scores, as exemplified by an additional RUNX motif for microglia, 

consistent with the established role of Runx1 (Zusso et al., 2012). 

 

 

Figure 3.2: Interpreting H3K27ac regions and identifying enriched motifs. (a) Example of importance 
scores for a region (chr1:12289432–12290431 in hg19) containing an SP1 motif. The y-axis shows the 
importance score of each nucleotide based on the ResNet+Coordconv model. In this example, a short DNA 
sequence that matches with the known PU.1 motif is annotated with high scores. (b) Enrichment of 6-mers 
in the most influential context regions. The heatmap shows the enrichment of each 6-mer in regions with 
the highest importance scores for each cell type. (c) Enriched motifs highlighted by TF-MoDISco for four 
brain cells. 
 

3.2.3 High-scoring variants show biological significance 
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To evaluate our variant-level scores, we next checked whether the predicted importance of 

a variant correlates with its biological impact. We first examined allelic imbalance based on 

available ATAC-seq reads for microglia (Method: chapter 3.3.6). Briefly, an imbalance of reads 

from each allele at a heterozygous single nucleotide polymorphism (SNP) indicates a bias in 

regulatory activity between the two genome copies. We found that variant-level importance scores 

computed based on microglia models are correlated with allelic imbalance scores (Pearson 

r2=0.760; two-sided p=6.70*10-3; Figure 3.3a), whereas imbalance scores computed for other cell 

types show no correlation with the allelic imbalance p-values for microglia. SNPs with low allelic 

imbalance p-values are strongly enriched with high importance scores (Method: chapter 3.3.6; 

two-sided fisher exact test p=2.48*10-22, Odds ratio=2.80). These results indicate that our scores 

are indeed predictive of enhancer activity. 

We next tested whether variants predicted to have a high impact on H3K27ac in the brain 

show signals of nature selection. We hypothesized that variants with high impact on brain 

regulatory activity would tend to be deleterious and thus kept at low frequencies in the population. 

Indeed, we found that in all cell types, rare variants (MAF<10-4 based on gnomAD; Method: 

chapter 3.3.5) have higher average importance scores (Figure 3.3b) and the importance scores 

follow a downward trend with the increase of MAF. We additional examined the percentage of 

variants in different Grad-CAM score bins that are singletons, meaning the variant has only been 

observed in a single individual. This “percent singletons” has been previously used as a proxy for 

the deleteriousness of different variant categories11. Variants with top-scoring importance scores 

(top 5% of Grad-CAM scores) show significantly higher singleton percentages (Two-sided p = 

6.04*10-27; Figure 3.3c) for all cell types. This trend is further pronounced when restricting to the 

top 0.5% of high-scoring variants (p=3.48*10-7). Taken together, these results suggest that variants 
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with high impacts on brain enhancer activity are deleterious and are likely targeted by purifying 

selection. 

 

 

Figure 3.3: Investigating the biological significance of importance scores. In all figures, dots show the 
average importance scores and error bars show +/− 1 standard errors. (a) The relationship between allelic 
imbalance p-values and importance scores. The linear regression result is shown with the red line. (b) - (c) 
The relationship between MAF (based on the control samples in gnomAD v2.1.1) and importance scores 
in (b) microglia, (c) neurons, (d) oligodendrocytes, and (e) astrocytes. Pearson r2 values measuring the 
linear relationships are annotated in plots. (f) The plot shows the percent of SNPs in each category that are 
singletons. Grey=all sites, gold=positions with top 5% importance scores, red=positions with top 0.5% 
importance scores. 

 
 

3.2.4 Linking high-scoring variants with brain traits and disorders 

Previous studies have demonstrated an enrichment between cell-type specific brain 

enhancers and various neurological and psychiatric disorders3. To investigate whether variants 

predicted to disrupt enhancer activity might contribute to brain-related complex traits, we analyzed 

GWAS summary statistics for 8 traits and disorders (Alzheimer’s disease (AD), schizophrenia, 

major depressive disorder (MDD), bipolar disorder (BD), autism spectrum disorder (ASD), 

intelligence, risky behaviors, and insomnia; Method: chapter 3.3.7). We first applied FINEMAP 

Microglia Neuron

Oligodendrocyte Astrocyte

a b c

d ef

r-squared = -0.877

r-squared = -0.964

r-squared = -0.997 r-squared = -0.998
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12 to identify candidate causal variants for each trait (leniently defined as inclusion in 95% credible 

sets for each locus and posterior inclusion probability [PIP]>1%). Notably, we did not apply 

annotation-based fine-mapping tools since our AgentBind annotations score only a small subset of 

variants and are thus expected to result in unreliable results using these methods. Overall, we found 

only a minority (0.744% variants on average) of GWAS variants are overlapped with our H3K27ac 

datasets and this number continue to drop to 0.194% for variants within the 95% credible sets. 

We identified candidate causal variants with high impact on H3K27ac (top 20% of scores) 

predicted by Grad-CAM for the relevant cell type for each trait as predicted by Nott et al (Nott et 

al., 2019). Several SNPs we found to be associated with AD, including rs7920721 and rs10933431, 

were also investigated by other studies. The importance score of SNP rs7920721 was higher than 

97.2% of its neighbors and with 14.2% probability to be a causal variant to AD (Figure 3.4a). This 

variant is adjacent to ECHDC3, a gene whose expression was altered in AD brains compared with 

controls (Desikan et al., 2015). And studies showed that rs7920721 is significantly associated with 

increased risk for AD in genome-wide through proxy case-control analysis and meta-analysis 

(Desikan et al., 2015; Witoelar et al., 2018; Liu et al., 2017; Efthymiou & Goate, 2017; Yin et al., 

2019). Moreover, a large transethnic GWAS study revealed that the association between this 

variant and AD is exclusive to humans lacking APOE ɛ4 alleles (Jun et al., 2017). Another SNP 

rs10933431 (Figure 3.4b) was also found genome-wide significant in meta-analyses (Kunkle et al., 

2019; Marioni et al., 2018; Lambert et al., 2013). This variant regulates INPP5D, a gene associated 

with altered CSF pTau levels, which is a biomarker determining the pathologic process of AD 

(Tan et al., 2021). 
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Figure 3.4: Examples of putative casual SNPs (a) chr10:11720308; rs7920721 and (b) chr2:233981912, 
rs10933431 found in this study. In each Manhattan plot, the putative SNP is annotated with a red star. In 
each importance score distribution plot, the putative SNP is colored as red and surrounding variants not 
passing our filters are colored in gold.   
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For the brain trait of intelligence, there were a couple SNPs we identified that were also 

previously studied. We found SNP rs4500960 (importance score ranked at 91.0% and PIP=12.2%) 

is significantly associated with educational attainment (Kong et al., 2017). Studies also discovered 

that this SNP involves in not only developing intellectual disability, but also other brain disorders 

including schizophrenia (Bansal et al., 2018), risk for alcohol dependence (Rosoff et al., 2021), 

ASD (Okbay et al., 2016), and general cognitive functions (Davies et al., 2018). Okbay et al. 

(Okbay et al., 2016) found that this variant is an intronic variant in TBR1, an important gene for 

differentiation and migration of neurons during brain development. Another SNP rs61786697 

(importance score ranked at 95.8% and PIP=2.1%) is also associated with intelligence. Studies 

(Hauberg et al., 2016; Brum et al., 2021) found this variant changes a promoter for MIR317, a 

conserved and high confidence miRNA linked to a wide range of brain disorders. 

Two SNPs in Supplementary Table 4 are also lead SNPs in GWAS studies for 

schizophrenia (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014): 

rs324017 (importance score ranked at 87.8% and PIP=36.8%) and rs2071407 (importance score 

ranked at 90.5% and PIP=2.1%). Moreover, rs324017 is shown to be associated with the 

expression of LRP1, a gene that strongly implicate in blood-brain barrier function and in the 

etiopathology of developmental disorders, including schizophrenia (Torrico et al., 2019; Pong et 

al., 2020). This variant is one of the lead SNPs in the GWAS study of insomnia (Lane et al., 2019). 

 
 
3.3 Method details 

3.3.1 Brain cells training data 

We obtained ATAC-seq and H3K27ac ChIP-seq data from previous literature (Nott et al., 

2019) for four brain cell types: microglia, neurons, astrocytes, and oligodendrocytes. We mapped 
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these data to the hg19 genome using Bowtie2 v2.3.5 with default parameters (Langmead and 

Salzberg, 2012). Since every cell type has at least three biological replicates of different individuals, 

we first called unfiltered ATAC-seq peaks for each replicate using findPeaks script of HOMER 

v4.11.1 with parameters “-style factor -L 0 -C 0 -fdr 0.9 -size 200” (Heinz et al., 2010). We then 

used IDR v2.0.3 with a threshold at 0.05 (Li et al., 2011) to identify reproducible open chromatin 

regions. Since IDR works with only two replicates at a time, we applied to each pair of replicates 

of the same cell type and merge the reproducible peaks of each pair of replicates using mergePeaks 

script of HOMER with the parameter “-d 200” to reach a final set of reproducible ATAC-seq peaks 

for every cell type. Based on the reproducible ATAC-seq peaks, we computed the normalized 

number of H3K27ac ChIP-seq tags in an expanded region of 1,000 bp and added genomic 

annotations to these regions using annotatePeaks.pl script of HOMER with parameters “-norm 1e7 

-size -500,500”. The normalized tag counts were averaged across replicates of the same cell type. 

We eventually selected a high-confidence set of enhancers for each brain cell type by restricting 

ATAC-seq peaks to be within intronic or intergenic regions based on HOMER annotations and, in 

the meantime, associated with more than 20 averaged, normalized tags of H3K27ac. Our 

processing step resulted in 21,415 enhancers for microglia, 12,074 enhancers for neurons, 15,774 

enhancers for astrocytes, 16,034 enhancers for oligodendrocytes. The sequences of these 

enhancers were positive sequences used in our model training. Our negative sequences were 

generated with matching repeat and GC content as the positive sequences using the “genNullSeqs” 

function of gkmSVM v0.81 (Ghandi et al., 2016). 

To avoid the bias of model training towards open chromatin regions and the ignorance of 

wider contexts, we created 11 copies for each positive and negative sequence with equally 

distanced window shifts with a gap of 100 bp. All copies included the core H3K37ac regions but 
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with different amounts of context areas included upstream and downstream. Positive and negative 

sequences were then one-hot encoded into 1,000 by 4 matrices based on the sequence present in 

the hg19 reference genome. Nucleotides marked as “N” were converted to vectors with entries of 

0.25 for each of the four nucleotides. 

 

3.3.2 ResNet model architecture 

Our ResNet architecture consisted of 5 standalone convolutional layers, 8 residual blocks, 

and 2 fully connected layers. The standalone convolutional layers have kernels with sizes ranging 

between 1 to 5 and the number of channels ranging between 64 to 256. The standalone 

convolutional layers have small kernels: the kernel size of the first two layers is 5, with 128 

channels; the kernel size of the next two layers is 3, with 256 channels. The fifth layer is used for 

dimensionality reduction and has a kernel size of 1 with 64 channels. These convolutional layers 

are used for extracting basic sequence features such as motifs and motif combinations. The 8 

residual blocks were constructed the same as in ChromDragoNN (Nair et al. 2019), with a 

standalone convolutional layer after every two blocks. Batch normalization layers were used after 

all convolutional layers. The final two layers were fully connected layers with 1000 neurons each. 

This model takes one-hot encoded 1000 bp sequences as input and outputs a number ranging 

between 0 to 1 for each of them to indicate whether it is predicted to contain and H3K27ac signal. 

Previous works (Liu et al., 2019; El Jurdi et al., 2021; Zhu et al., 2021) have shown that 

adding into convolutional layers hard-coded channels for the data coordinates can improve their 

transitional invariance property and boost their modeling performance in pattern localization and 

object detection tasks. In our ResNet model, we modified the first convolutional layer into a 

CoordConv layer. The coordinates were defined as the distance from the center of H3K27ac 
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regions, with upstream nucleotides labeled as negative and downstream labeled as positive. These 

coordinates were then re-scaled to range from -1 to 1. 

 

3.3.3 Model interpretation 

We implemented the Grad-CAM method (Selvaraju et al. 2017) to interpret our ResNet 

model by computing an individual score for each nucleotide of the input sequence which indicates 

its importance in determining the model’s prediction. In our implementation of Grad-CAM, we 

chose the second to the last convolutional layer prior to the ResNet blocks as the layer of interest. 

The receptive field of neurons is 13 in the feature maps of this layer, with enough length to cover 

the cores of most of the common transcription factor motifs. Following the weighting method 

proposed in the Grad-CAM method, we calculated the weight of each feature map in this layer and 

used these weights to compute a weighted combination of feature map activations. This gave us a 

coarse importance map for the input sequence. To acquire a finer resolution at the base-pair level, 

we mapped this coarse importance map onto the input sequence and multiplied it with input 

gradients elementwise. We define the scores in the resulting finer resolution map as importance 

scores which are used in downstream analyses. 

 

3.3.4 Sequence feature analysis 

To identify important sequence features, we segmented positive H3K27ac sequences from 

each cell type into 6-bp sequences (6-mers) using a sliding window. We computed the average 

importance score of each 6-mer and ranked all 6-mers based on this score. We defined top-scoring 

sequences as those with the top 1% of scores. Similar to in AgentBind, we then performed a 

Fisher’s Exact Test for each 6-mer to test whether it is enriched in the top-scoring subsequences 
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for that cell type. Tests were performed using the fisher_exact method from the Python scipy.stats 

library (https://docs.scipy.org/doc/scipy/reference/stats.html). The significantly enriched 6-mers 

were aligned with known motifs from JASPAR database (Castro-Mondragon et al., 2022) using 

TOMTOM v5.1.1 (Gupta et al., 2007) to infer most likely motifs associated with every 6-mer. 

We additionally used TF-MoDISco v0.5.16.0 (Shrikumar et al., 2018) to cluster and 

aggregate the importance scores and recover motifs occurring in the H3K27Ac regions. The core 

500 bp of each H3K27ac region and its importance scores were used as input. We use its built-in 

LaplaceNullDist function to generate null distributions with a sampling size of 10000. To enable 

TF-MoDISco to find longer motifs, we set the trim_to_window_size as 500 in its seqlets-to-

patterns factory. 

 

3.3.5 Analysis of variant allele frequencies 

We obtained SNP allele frequencies computed across 5,192 control samples from gnomAD 

(Karczewski et al. 2020) v2.1.1. For each cell type, we collected the minor allele frequencies 

(MAFs) for the gnomAD SNPs that were also scored in our H3K27ac dataset. We defined 

singletons as SNPs whose total allele counts in gnomAD were at least 1,000 and for which the 

alternate allele was observed only once. The singleton ratio of a set of SNPs is defined as the 

percentage of gnomAD SNPs in this set that are singletons. 

 

3.3.6 Allelic imbalance analysis 

We combined the original ATAC-seq data of four different individuals (Nott et al., 2019) 

with additional twelve ATAC-seq data of ex vivo microglia obtained from previous literature 

(Gosselin et al., 2017). We first masked hg19 genome with “N” at positions tested by Alzheimer’s 
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disease GWAS (Jansen et al., 2019) and re-mapped all the sixteen datasets to this masked genome 

using Bowtie2 with parameter “--np 0” meaning no penalty for “N” (Langmead and Salzberg, 

2012). Then we counted the number of reads with different alleles at each position using the 

mpileup tool from samtools v0.1.15 (Danecek et al., 2021) followed by the mpileup2snp function 

of VarScan v2.4.3 (Koboldt et al., 2012). Read counts for the reference and variant allele at each 

masked position were compared by a binomial test to identify significant allelic imbalance. 

In the fisher exact test, we defined the SNPs with top 5% scores (threshold=5.84*10-3) as 

high-scoring variants and SNPs with allelic imbalance p-value lower than 10-10 as the highly 

imbalanced. We used these two thresholds to divide our dataset into four groups and recorded the 

number of SNPs in each group. We used these numbers for the two-sided fisher exact test. 

 

3.3.7 Fine-mapping published GWAS signals 

We used FINEMAP (Benner et al. 2016) v1.4 to fine-map variants in each locus. Linkage 

disequilibrium (LD) for each pair of input variants was computed using the LD computing script 

“CalcLD_1KG_VCF.py” from PAINTOR v3.0 (Kichaev et al, 2017) based on available genotypes 

from the 1000 Genomes Project phase 3 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/). GWAS summary statistics files we 

used are listed in Summplementary Table 4.3. GWAS loci were acquired from their original 

GWAS studies. For studies only providing lead SNPs instead of a range, we defined a GWAS 

locus as a window of 250,000bp with a lead SNP in the center. FINEMAP was run with default 

parameters allowing up to 5 causal SNPs per locus. 
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CHAPTER 4 
Chapter 4 Mechanisms underlying divergent responses of genetically distinct macrophages to IL-4 

 
Mechanisms underlying divergent responses of genetically distinct macrophages to IL-4 

 
4 ___ 
4.1 Introduction 

Noncoding genetic variation is a major driver of phenotypic diversity and the risk of a 

broad spectrum of diseases. For example, of the common single-nucleotide polymorphisms and 

short insertions/deletions identified by genome-wide association studies to be linked to specific 

traits or diseases, ~90% are typically found to reside in noncoding regions of the genome (Farh et 

al., 2015). The recent application of genome-wide approaches to define the regulatory landscapes 

of many different cell types and tissues allows intersection of these variants with cell-specific 

regulatory elements and strongly supports the concept that alteration of transcription factor binding 

sites at these locations is an important mechanism by which they influence gene expression 

(Vierstra et al., 2020; Kilpinen et al., 2013; van der Veeken et al., 2019). Despite these major 

advances, it remains difficult to predict the consequences of most forms of noncoding genetic 

variation. Major challenges that remain include defining the causal variant within a block of 

variants that are in high linkage disequilibrium, identifying the gene that is regulated by the causal 

variant, and understanding the cell type and cell state–specific regulatory landscape in which a 

variant might have a functional consequence (Encode Project Consortium et al., 2020). For 

example, a variant that affects the binding of a signal-dependent transcription factor (SDTF) may 

only be of functional importance in a cell that is responding to a signal that activates that factor 

(Soccio et al., 2015). Also, sequence variants can have a range of effects on transcription factor 

binding motifs, from abolishing or inducing binding by affecting critical nucleotides to 
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quantitatively changing binding by affecting an intermediate affinity motif (Deplancke et al., 2016; 

Grossman et al., 2017; Behera et al., 2018). 

Studies of the impact of natural genetic variation on signal-dependent gene expression have 

demonstrated large differences in absolute levels of gene expression under basal and stimulated 

conditions, which result in corresponding differences in the dynamic range of the response (Fairfax 

et al., 2014; Bakker et al., 2018; Gate et al., 2018). The molecular mechanisms by which genetic 

variation results in these qualitatively and quantitatively different signal-dependent responses 

remain poorly understood but are likely to be of broad relevance to understanding how noncoding 

variation influences responses to signals that regulate development, homeostasis, and disease-

associated patterns of gene expression. 

To investigate the influence of genetic variation on signal-dependent gene expression, we 

performed transcriptomic and epigenetic studies of the responses of macrophages derived from 

five different inbred mouse strains to the anti-inflammatory cytokine interleukin-4 (IL-4) (Figure 

4.1A). The selected strains include both similar and highly divergent strain pairs, allowing 

modeling of the degree of variation between two unrelated individuals (~4 million variants) and 

that observed across large human populations (>50 million variants). Using this approach, we 

previously showed that strain-specific variants that disrupt the recognition motif for one 

macrophage lineage-determining transcription factor (LDTF, e.g., PU.1), besides reducing binding 

of the LDTF itself, also result in decreased binding of other collaborative factors and SDTFs 

(Heinz et al., 2013; Link et al., 2018, Cell). Collectively, these findings supported a model in which 

relatively simple combinations of LDTFs collaborate with an ensemble of additional transcription 

factors to select cell-specific enhancers that provide sites of action of broadly expressed SDTFs 

(Heinz et al., 2010). 
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IL-4 has many biological roles, including regulation of innate and adaptive immunity 

(Gieseck et al., 2018). In macrophages, IL-4 drives an “alternatively activated” program of gene 

expression associated with inhibition of inflammatory responses and promotion of wound repair 

(Gordon et al., 2010). The immediate transcriptional response to IL-4 is mediated by activation of 

signal transducer and activator of transcription 6 (STAT6) (Ostuni et al., 2013; Goenka et al., 

2011), which rapidly induces the expression of direct target genes that include effector proteins 

such as Arginase 1 (Arg1) and transcription factors like peroxisome proliferator–activated receptor 

γ (PPARγ) (Huang et al., 1999; Daniel et al., 2018) and early growth response 2 (EGR2) (Daniel 

et al., 2020). However, the extent to which natural genetic variation influences the program of 

alternative macrophage activation has not been systematically evaluated. Here, we demonstrate 

highly differential IL-4–induced gene expression and enhancer activation in bone marrow–derived 

macrophages (BMDMs) across the five mouse strains, thereby establishing a robust model system 

for quantitative analysis of the effects of natural genetic variation on signal-dependent gene 

expression. Through the application of deep learning methods and motif mutation analysis of 

strain-differential IL-4–activated enhancers, we provide functional evidence for a dominant set of 

LDTFs and SDTFs required for late IL-4 enhancer activation, which include STAT6, PPARγ, and 

EGR2, and validate these findings in Egr2-knockout BMDMs. Assessment of the quantitative 

effects of natural genetic variants on recognition motifs for LDTFs and SDTFs suggests general 

principles by which such variation affects enhancer activity patterns and dynamic signal responses. 

 

4.2 Results 

4.2.1 The response to IL-4 is highly variable in BMDMs from genetically diverse mouse 

strains 
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To investigate how natural genetic variation affects the macrophage response to IL-4, we 

began by performing RNA sequencing (RNA-seq) in BMDMs derived from female BALB/cJ 

(BALB), C57BL/6J (C57), NOD/ShiLtJ (NOD), PWK/PhJ (PWK), and SPRET/EiJ (SPRET) mice 

under basal conditions and following stimulation with IL-4. Time-course experiments in C57 

BMDMs indicated a progressive increase in the number of differentially expressed genes from 1 

to 24 hours. We therefore focused our analysis on the response to IL-4 in BMDMs from the five 

strains at this time point. Weighted gene co-expression network analysis (WGCNA; Langfelder et 

al., 2008) identified numerous modules of highly correlated mRNAs, most of which were driven 

by strain differences (Figure 4.1B). Genes that were positively regulated by IL-4 across strains 

(red module, bottom) were enriched for functional annotations related to negative regulation of 

defense responses. Conversely, the purple (top) module captured genes that were negatively 

regulated by IL-4 and were enriched for pathways associated with positive regulation of 

inflammation (Figure 4.1B). 

Of the 693 genes induced >2-fold in at least one strain, only 26 (3.75%) were induced at 

this threshold in all five strains (Figure 4.1D, Supplementary Figure 4.1C and 4.1D). Conversely, 

more than half of the IL-4-responsive genes identified were induced >2-fold in only a single strain. 

NOD BMDMs were notable for a generally attenuated response to IL-4 (Figure 4.1B, red module, 

and Figure 4.1C, second panel). A similar pattern was observed for down-regulated genes (Figure 

4.1D). Despite these differences at the level of individual genes, similar pathways/gene programs 

were enriched in all strains for both induced and repressed genes (Figure 4.1E). Substantial 

differences in IL-4 target gene expression across strains are illustrated by Arg1, Slc7a2, and Msx3 

(Figure 4.1F). BMDMs from all strains exhibit a significant induction of Arg1 expression, but the 

absolute basal levels and induction folds vary by more than an order of magnitude. Slc7a2 exhibits 
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similar levels of expression in C57 and NOD BMDMs after IL-4 treatment, but its differences at 

the basal level result in an 8.4-fold and 1.2-fold change, respectively. We refer to the pattern of 

reduced responsiveness to IL-4 in this comparison of C57 and NOD as being associated with “high 

basal” activity in the less responsive strain. Conversely, NOD and PWK BMDMs exhibit similar 

levels of basal Slc7a2 expression, but IL-4 only increased Slc7a2 expression more than twofold in 

PWK. We refer to this pattern of reduced responsiveness to IL-4 in NOD compared to PWK as 

being associated with “equal basal” activity. A third category is exemplified by Msx3, which is 

induced in C57 but not in PWK and SPRET BMDMs. In this case, lack of responsiveness is 

associated with low expression of Msx3 under basal conditions. We refer to this pattern as “low 

basal” in the less responsive strain. Quantitative analyses of pairwise comparisons indicate that 

29% of the genes with decreased IL-4-induced gene expression were due to low basal expression, 

36% had no differences before IL-4 stimulation (equal basal), and 35% were the result of a high 

basal expression level in the less responsive strain (Figure 4.1G). 
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Figure 4.1: Response to IL-4 is highly divergent in bone marrow–derived macrophages from different 
mouse strains. (A) Overview of experimental design and main datasets. (B) WGCNA clustering focused 
on strain-differentially regulated genes in IL-4-treated bone marrow-derived macrophages (BMDMs). The 
top hit Metascape pathways are annotated for each module. *q < 0.05, **q < 0.01, ***q < 0.001, ****q < 
0.0001. MAPK, mitogen-activated protein kinase; TNF, tumor necrosis factor. (C) Ratio-ratio plots 
demonstrating the mRNA response to IL-4 in pairwise comparisons. (D) Overlap of genes significantly 
induced or repressed (q < 0.05, >2-fold) after IL-4 treatment in BMDMs from all strains. (E) Gene ontology 
terms enriched in up- and down-regulated genes after 24-hour IL-4 stimulation in BMDMs from all strains. 
Numbers indicate the rank order in pathway analysis. (F) Arg1, Slc7a2, and Msx3 as example genes 
differentially up-regulated by IL-4 in strains. TPM, transcripts per kilobase million. ****q < 0.0001, 
compared to basal. Numbers indicate fold change by IL-4. (G) Categories of strain-differential IL-4 up-
regulated genes based on the differences in basal gene expression. (H) Average log2 gene expression fold 
change between alleles in hybrid (C57 × SPRET F1) and parental strain under 24-hour IL-4 conditions. 
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To investigate local versus distant effects of genetic variation on the differential responses 

to IL-4, we crossed C57 mice with the most genetically distinct SPRET mice to generate F1 

offspring containing each parental chromosome. A total of 91.4% of parental-specific RNA-seq 

reads in the F1 strain are within twofold of their values in C57 and SPRET (blue data points) and 

considered to be due to local (cis) effects of genetic variation (Figure 4.1H), while only 2.8% were 

divergent between the parental strains but not in F1 BMDMs (green data points), indicating trans 

regulation. As NOD macrophages exhibited a broadly attenuated response to IL-4 on the level of 

gene expression, we followed the same strategy using F1 C57 × NOD macrophages. RNA-seq on 

IL-4-stimulated macrophages of F1 C57 × NOD macrophages showed strong convergence of 

expression of genes that were differentially regulated in the parental strain, consistently a major 

contribution of trans regulation. To investigate the point at which this regulation occurs, we 

performed chromatin immunoprecipitation sequencing (ChIP-seq) for RNA polymerase II (Pol II) 

under control and IL-4-stimulated conditions. In contrast to mRNA levels, examination of the IL-

4-dependent changes in gene body RNA Pol II indicated similar magnitude changes in all strains, 

including NOD. These results suggest the presence of a transacting factor in NOD that acts 

downstream of transcription to attenuate mRNA levels. Collectively, these studies uncovered 

notable variation in the cell autonomous responses of BMDMs to IL-4 across these five strains, 

providing a powerful experimental system for investigating mechanisms by which natural genetic 

variation affects signal-dependent gene expression. 

 

4.2.2 Strain-differential IL-4–induced gene expression is associated with differential IL-4 

enhancer activation 



74 
 

To investigate the impact of cis variation on putative transcriptional regulatory elements, 

we defined high-confidence IL-4–activated enhancers as intronic or intergenic open chromatin 

regions based on assay for transposase-accessible chromatin using sequencing (ATAC-seq) with 

at least 2.5-fold increase in H3K27ac (Creyghton et al., 2010) and RNA Pol II (Bonn et al., 2012) 

after IL-4 treatment (Supplementary Figure 4.1, A to D). In 24-hour IL-4–stimulated C57 BMDMs, 

1093 regions exhibited a >2.5-fold increase in H3K27ac, whereas 441 regions exhibited a >2.5-

fold decrease, corresponding to putative IL-4–activated and IL-4–repressed enhancers, 

respectively (Figure 4.2A). Comparison of C57 enhancers to those of other strains under IL-4 

treatment conditions revealed marked differences that scaled with the degree of genetic variation 

(Figure 4.2B and Supplementary Figure 4.1, E and F). We further subdivided these regions into 

“conventional enhancers” (Figure 4.2C, blue) and “super enhancers” (Figure 4.2C, orange), on the 

basis of the density distribution of normalized H3K27ac tag counts (Whyte et al., 2013). Super 

enhancers represent regions of the genome that are highly enriched for cell-specific combinations 

of transcription factors and coregulators and control the expression of genes required for cellular 

identity and critical functions. In comparison to conventional enhancers, super enhancers exhibited 

significantly less variation in H3K27ac in response to IL-4 (Figure 4.2D and Supplementary Figure 

4.1G). For example, IL-4 induction of the Ak2 super enhancer (Figure 4.2E) is highly conserved 

between the five strains. In contrast, a typical example of strain specificity is provided by the 

conventional enhancers associated with the Msx3 gene. These enhancers are IL-4 inducible only 

in BALB, C57, and NOD and absent in PWK and SPRET macrophages (Figure 4.2F). 
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Figure 4.2: Divergent IL-4 response is associated with strain-differential IL-4 enhancer activation. 
(A) Log2 H3K27ac signal at ATAC peaks in C57 BMDMs under basal and IL-4 conditions. FC, fold change. 
(B) Comparison of H3K27ac signal between C57 and BALB or SPRET under the 24-hour IL-4 condition. 
(C) Log2 H3K27ac fold changes after 24-hour IL-4 in C57 versus other strain in enhancers. (D) 
Distributions of IL-4 H3K27ac log2 fold changes. Levene’s test was performed to test response differences 
in conventional versus super enhancers. (E) Ak2 super enhancer responsive to IL-4 and conserved across 
all strains. (F) Msx3 IL-4–induced enhancer in C57, BALB, and NOD, but not PWK and SPRET BMDMs. 
Absolute DeepLIFT scores indicate predicted importance of single nucleotides for enhancer activity. 
Dashed lines represent locations of PWK or SPRET variants. (G) and (H) Enhancers were categorized into 
strain-similar and strain-differential on the basis of fold differences in H3K27ac between C57 and one of 
the other strains. Table with percentages of enhancers containing local genetic variants (G) and the 
percentage of enhancers that contain predicted functional variants (H). (I) Log2-scaled enrichment of 
enhancers with variants at top-scoring positions based on DeepLIFT scores. The enrichment was calculated 
by (% enhancers in one category with top variants) / (% all enhancers with top variants). (G) and (H) are 
based on the top 100 and 20%, respectively. 
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We next compared the fractions of enhancers containing variants in strain-similar 

enhancers (<1.5-fold differences in H3K27ac between strains) to strain-differential enhancers at 

increasing levels of difference (fold differences >1.5 to >4; Figure 4.2G). The fraction of enhancers 

containing variants at strain-similar enhancers ranged from 17 to 19% in the strains most similar 

to C57 (BALB and NOD) to 69 to 93% in the most genetically divergent strains (PWK and 

SPRET). As expected, the fraction of enhancers containing variants increased with increasing 

levels of difference, except for SPRET that may have reached a saturation of variation capacity 

(Figure 4.2G). These findings are not only consistent with local variants affecting enhancer activity 

but also indicate that a substantial fraction of even strongly strain-differential IL-4–induced 

enhancers lack these variants, consistent with previous findings for strain-specific enhancers 

overall (Link et al., 2018, Cell). 

In an effort to distinguish silent variants from those affecting enhancer activities, we trained 

a DeepSEA convolutional neural network to classify enhancers as active or inactive under the 24-

hour IL-4 condition on the basis of local sequence context (Zhou & Troyanskaya, 2015). The 

training data consisted of enhancers active under IL-4 conditions (positive data) and random 

background (negative data). The area under the receiver operating characteristic curve (auROC) 

was 0.894 on test data. We then used DeepLIFT (Shrikumar et al., 2017) to compute the 

importance score of each nucleotide on the basis of the model’s classification decision. Variants 

at positions with top importance scores within surrounding 300 base pair (bp) enhancer regions 

are hypothesized to affect enhancer activity. We considered variants residing in the top 20% of 

importance scores for each region as predicted functional variants. The Msx3 enhancer in Figure 

4.2F illustrates 4 predicted functional variants of 14 variants in PWK and SPRET (red dashed 

lines). By focusing on top-scoring variants rather than all local variants, we saw an expected 
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overall decreased percentage of enhancers with top-scoring variants (Figure 4.2H and 

Supplementary Figure 4.1H). On the other hand, enrichment of predicted functional variants 

increases as a function of importance score threshold and is strongest for enhancers that show the 

highest differences across strains (Figure 4.2I). This is true when considering all strains, including 

SPRET. These results reveal a quantitative impact of variants affecting enhancer under IL-4 

treatment conditions and suggest the extent to which a deep learning approach can distinguish 

potentially functional variants from the silent variants. 

 

4.2.3 IL-4–activated enhancers use preexistent promoter-enhancer interactions to 

regulate gene activity 

Interpretation of effects of genetic variation on distal regulatory elements is facilitated by 

knowledge of cell-specific enhancer-promoter interactions (Nott et al., 2019). To identify 

connections of IL-4–responsive enhancers to target promoters, we performed HiChIP using an 

antibody to H3K4me3 (Mumbach et al., 2016) in C57 BMDMs under basal conditions and after 

24 hours of IL-4 treatment. HiChIP interactions are exemplified in Fig. 3A at the Slc7a2 locus, a 

gene that becomes maximally activated after 24 hours of IL-4 treatment and connects primarily to 

an enhancer-like region within the Mtmr7 gene, which itself is expressed at negligible levels 

(Figure 4.3A). Although we observed instances of IL-4–specific interactions (e.g., yellow loops), 

a differential interaction analysis was unable to identify significantly different interactions between 

basal and IL-4 conditions, supported by the high correlation of interaction intensity between the 

two conditions (Supplementary Figure 4.2A). Moreover, enhancer-promoter interaction intensity 

did not correlate with IL-4–induced gene activity or the level of H3K4me3 at promoters 

(Supplementary Figure 4.2, B and C). However, IL-4-activated promoters mostly interact with IL-
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4–activated enhancers (Fisher’s exact test, P = 2.2 × 10−16), and IL-4-repressed promoters 

strongly interact with IL-4–repressed enhancers (P = 1.2 × 10−15; Figure 4.3B). These results 

suggest a preexistent and relatively stable landscape of enhancer-promoter interactions in 

macrophages, whose regulatory function was activated in response to IL-4. 

Although the HiChIP assay is designed to capture promoter-enhancer interactions based 

on preferential occurrence of H3K4me3 at promoters, we also recovered 145,907 pairs of 

interactive enhancers (Figure 4.3B), consistent with more than one enhancer being in local 

proximity of a target promoter. The H3K27ac correlations between interactive enhancers were 

significantly stronger than those between noninteractive enhancers (Figure 4.3C and 

Supplementary Figure 4.2D), consistent with their being functionally related. Noticeably, the 

closer enhancers, despite being noninteractive on the basis of our data, still have much stronger 

correlation than completely random enhancers, which might be due to more frequent contacts of 

nearby regions within the same interactive domain that were not captured by H3K4me3 HiChIP. 

On the basis of the high correlation of enhancer activity between connected enhancers, we 

hypothesized that enhancer-enhancer interactions could explain strain-differential enhancer when 

local genetic variants were absent (Figure 4.2H). Among 224 interactive enhancers exhibiting 

a >4-fold difference in H3K27ac signal between BALB and C57 under the IL-4 condition, the 

original ~50% of strain-differential enhancers with predicted functional variants was further split 

into 20.5% that had top-scoring variants on both ends and 33.6% that had only local top-scoring 

variants (Figure 4.3D, upper left). Depending on the strain comparison, an additional 8.2 to 19.9% 

of differential enhancers could be explained by genetic variants in interacting enhancers, indicating 

that enhancers may be affected by functional variants in other connected enhancers. Reducing the 

fold change requirement to twofold yielded a smaller proportion of strain-differential enhancers 
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containing local variants overall but significantly increased the proportion having top-scoring 

variants on the connected ends only (15.4 to 26.5%, Fisher’s exact test P = 0.002 for BALB, 2.8 × 

10−5 for NOD, 8.3 × 10−7 for PWK, and 3.3 × 10−10 for SPRET), suggesting that local variants 

have a stronger effect on inducing differential activation than variants at connected enhancers 

(Figure 4.3D, bottom, and Supplementary Figure 4.2E). Figure 4.3E illustrates an enhancer 

affected by genetic variants at the connected enhancer. The enhancer highlighted on the left is 

notably more active in C57 than NOD. This region lacks local variants in NOD but is connected 

to another enhancer ~100 kb away (highlighted on the right) containing multiple variants that are 

predicted to affect activity by deep learning. These findings are consistent with genetic variants at 

an enhancer influencing the activity states of other enhancers that lack local functional variants 

within the same connected network (Waszak et al., 2015; Grubert et al., 2015). 
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Figure 4.3: IL-4 enhancers use preexistent promoter-enhancer interactions to regulate gene activity. 
(A) HiChIP indicates that the Slc7a2 promoter is highly connected with several IL-4-activated enhancers. 
Slc7a2 and Mtmr7 gene expression upon IL-4 stimulation was shown. (B) Different categories of HiChIP 
interactions (right) and enhancer-promoter connections overlapping with IL-4–responsive regulatory 
elements in C57 BMDMs (left). Outer ring indicates induced or repressed promoters, while inner ring 
indicates their connected enhancers associated with IL-4-induced, IL-4-repressed, or IL-4-neutral H3K27ac. 
(C) Correlations of H3K27ac signal between connected enhancers compared to noninteractive enhancers 
using Mann-Whitney U test. (D) Table representing enhancers containing DeepLIFT high-scored genetic 
variants locally or at connected elements in pairwise comparisons between C57 and other strains. (E) Strain-
differential enhancer between C57 and NOD where genetic variants were absent locally but present at a 
connected enhancer with two DeepLIFT high-scored variants (red dashed lines). 
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4.2.4 Motif mutation analysis identifies motifs that are functionally associated with IL-4-

induced enhancer activity 

IL-4 rapidly activates a set of enhancers, most of which exhibit maximal H3K27ac at 1 or 

6 hours and returns to (near) basal levels by 24 hours (Figure 4.4A, top three clusters) when most 

gene expression changes were found. Others are long-lasting or become activated at later time 

points (Figure 4.4A, bottom three clusters). De novo motif enrichment analysis of enhancers 

exhibiting >2.5-fold increase in H3K27ac and RNA Pol II at 1, 6, and 24 hours (Supplementary 

Figure 4.1A) recovered a STAT6 motif as the most enriched motif for all time points (Figure 4.4B). 

Motifs for the lineage-determining factors PU.1 and AP-1 (activator protein 1) family members 

were also recovered in all three classes of enhancers. Notably, an EGR2 motif was significantly 

enriched among enhancers induced at 24 hours. 

As a genetic approach to identify functional transcriptional factor binding motifs, we 

assessed the quantitative impact of the genetic variation provided by the five different strains of 

mice on the IL-4 response of enhancers using the motif mutation analysis tool MAGGIE. 

MAGGIE associates changes of epigenomic features at homologous sequences (e.g., enhancer 

activation or enhancer repression) with motif mutations caused by genetic variation so that it can 

prioritize motifs that likely contribute to the regulatory function (Shen et al., 2020). This analysis 

identified more than a dozen motif clusters in which motif mutations were significantly associated 

with strain-differential IL-4–activated or IL-4–repressed enhancers (Figure 4.4C). The EGR motif 

was found as the top motif associated with enhancer activation at the 24-hour treatment time, as 

well as motifs of known SDTFs STAT6 and PPARγ and macrophage LDTFs PU.1, AP-1, and 

C/EBP (CCAAT/enhancer binding protein) (Figure 4.4C). We also found Kruppel-like factor 

(KLF) motifs associated with IL-4 enhancer activation, which fits with increased KLF4 expression 
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by IL-4, and an nuclear factor erythroid 2-related factor (NRF) motif associated with both enhancer 

activation (Figure 4.4C). 

 
Figure 4.4: Motif analysis identifies motifs functionally associated with IL-4–induced enhancers. (A) 
Heatmap showing the effects of 1-, 6-, and 24-hour IL-4 stimulation on enhancer activation based on 
H3K27ac abundance. (B) Top motifs enriched at ATAC-seq peaks exhibiting gained H3K27ac at different 
time points. (C) MAGGIE motif mutation analysis on strain-differential activated and repressed enhancers 
after 24-hour IL-4. (D) Egr gene expression in C57 BMDMs under basal conditions and after stimulation 
with IL-4, ****q < 0.0001, compared to basal. (E) Example of a strain-differential activated enhancer 
upstream of the Btbd11 gene based on IL-4–induced H3K27ac signal in C57 but not in SPRET BMDMs, 
supported by binding of EGR2 and a functional variant predicted by DeepLIFT that mutates the EGR2 
motif. 
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The identification of STAT6 and PPARγ motif mutations as being functionally associated 

with strain-differential IL-4 activation is consistent with substantial prior work demonstrating the 

importance of these factors in regulating IL-4–dependent gene expression (Daniel et al., 2018; 

Czimmerer et al., 2018). Out of the EGR family members, only Egr2 is expressed in unstimulated 

BMDMs and rapidly induced after IL-4 stimulation (Figure 4.4D). Egr2 has also been associated 

with late IL-4 enhancer activation in a recent study (Daniel et al., 2020). Examination of the Egr2 

locus indicates IL-4-induced binding of STAT6 and PPARγ to a set of upstream super enhancers 

that gain H3K27ac and RNA Pol II signal after IL-4 stimulation. These super enhancers were 

observed in BMDMs of all five different strains that are strongly connected to the Egr2 promoter 

in C57 BMDMs as indicated by H3K4me3 HiChIP interactions. Overall, these findings suggest a 

functionally important role of EGR2 in contributing to IL-4-induced enhancer activation in 

BMDMs. 

 

4.2.5 Quantitative variations in motif affinity determine dynamic responses of IL-4 

enhancers 

We next investigated the possibility that the mutational status of the dominant motifs 

recovered by MAGGIE analysis was sufficient to predict qualitative patterns of strain-differential 

responses of IL-4-induced enhancers. Following the classification of strain-differential mRNA 

responses (Figure 4.1), we used H3K27ac to define three different categories of strain-differential 

IL-4-induced enhancers (Figure 4.5A, left column): enhancers exhibiting lower levels of basal 

activity in the lowly induced strain (low basal); enhancers with a similar level of basal activity 

(equal basal); and enhancers in which a lack of IL-4–induced activity was associated with 

relatively higher basal activity compared with the more responsive strain (high basal). Using these 
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criteria, we identified 760 low basal, 2797 equal basal, and 2013 high basal enhancers from all 

pairwise comparisons of the five strains that exhibited >2-fold differences in H3K27ac induction 

(Figure 4.5B). The closest genes for enhancers of these three categories follow similar trends as 

observed for enhancer activity. Low basal, equal basal, and high basal enhancers are exemplified 

by enhancers associated with the Treml2, Ripk2, and Cd36 genes, respectively (Figure 4.5, C to 

E). 

Consideration of chromatin accessibility as determined by ATAC-seq further uncovered 

potential mechanisms that distinguished the three enhancer categories (Figure 4.5A, right column). 

The enhancers in the low basal category showed low to absent basal ATAC signal in noninduced 

strains, suggesting a lack of LDTFs under the basal condition to preoccupy chromatin required for 

subsequent recruitment of SDTFs after IL-4 stimulation. In contrast, high basal enhancers 

exhibited a higher basal level of ATAC in noninduced strains compared with the induced strains 

(Figure 4.5A, right column), suggesting stronger LDTF binding in noninduced strains under the 

basal condition. Different from the other categories, equal basal enhancers exhibited similar levels 

of chromatin accessibility under both basal and IL-4 conditions between comparative strains, 

suggesting that the recruitment of SDTFs might be the key determinant for the strain difference 

instead of basal LDTF binding. 
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Figure 4.5: Quantitative variations in motif affinity determine dynamic responses of IL-4 enhancers. 
(A) Three different categories of strain-differential IL-4-activated enhancers with distributions of ATAC 
and H3K27ac signal. Dashed lines in each distribution indicate quartiles. (B) Numbers of enhancers in the 
three categories. (C to E) Example of low (C), equal (D), and high (E) basal enhancers with high-impact 
variants predicted by DeepLIFT. (F) MAGGIE motif mutation analysis on different categories of enhancers. 
(G and H) Binding intensities of PU.1 (G) and STAT6 (H) in noninduced and induced strains at different 
categories of enhancers. (I) Graphical representation of the general mechanisms for different categories of 
IL-4–induced enhancers. SNP, single-nucleotide polymorphism; InDel, insertion/deletion. 
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To test the hypotheses above regarding the different determinants for the three categories 

of enhancers, we performed MAGGIE motif mutation analysis on each category of enhancers that 

contain motif mutations. We found that mutations in motifs of LDTFs PU.1/ETS and C/EBP were 

associated with low basal enhancers and resulted in better motifs in induced strains, while 

mutations in motifs of SDTFs EGR, STAT6, PPAR, and NRF/MAF were associated with the equal 

basal category leading to better motifs in induced strains (Figure 4.5F). Mutations in EGR motifs 

were also associated with the low basal category, suggesting another role of EGR2 as a strong 

collaborative factor under the IL-4 condition, which is supported by the notable decrease in open 

chromatin under IL-4 conditions after deletion of Egr2. Of particular interest, the high basal 

category of enhancers was most strongly associated with negative significance scores for LDTF 

PU.1, C/EBP, and AP-1 as well as NRF/MAF, meaning higher motif affinity in noninduced strains 

(Figure 4.5F). 

We validated these findings with our ChIP-seq data by examining the binding profiles of 

PU.1, C/EBPβ, STAT6, PPARγ, and EGR2 in three categories of enhancers. In low basal 

enhancers, we saw significantly reduced binding of PU.1 and C/EBPβ in noninducible strains 

under both basal and IL-4 conditions (Figure 4.5G). This pattern was accompanied by significantly 

weaker binding of SDTFs STAT6, EGR2, and PPARγ after IL-4 stimulation (Figure 4.5H). The 

example in Figure 4.5C showed the absence of C/EBPβ binding in NOD under the basal condition 

likely due to two local variants at high-scored positions according to DeepLIFT that together 

mutated a C/EBP motif. Upon IL-4 stimulation, neither C/EBPβ nor EGR2 was further recruited. 

For equal basal enhancers, we found that PU.1 and C/EBPβ binding was similar under basal 

conditions in induced and noninduced strains (Figure 4.5G). Upon IL-4 stimulation, the induced 

strains displayed significantly stronger binding of SDTFs STAT6, EGR2, and PPARγ (Figure 
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4.5H). In the example in Figure 4.5D, STAT6 binding was strongly induced by IL-4 at the Ripk2 

enhancer in PWK but was absent in SPRET. Despite the clear difference in STAT6 binding, none 

of the local variants between the two strains were predicted functional when using a neural network 

model trained with random genomic backgrounds. To better capture the sequence patterns relevant 

for enhancer activation, we retrained neural networks using noninduced enhancers as the 

background, which emphasized a relatively divergent set of k-mers and focused less on those 

matched with LDTF motifs. As a result, our retrained model assigned a high DeepLIFT score to 

one of the nucleotides in a STAT6 motif that was mutated by a variant in SPRET (Figure 4.5D). 

For high basal enhancers, we found stronger binding of not only the LDTFs PU.1 and C/EBPβ 

(Figure 4.5G) but also the SDTFs STAT6 and PPARγ (Figure 4.5H) in noninduced strains under 

basal conditions. For example, high basal levels of C/EBPβ and STAT6 binding were observed at 

the Cd36 enhancer in NOD mice (Figure 4.5E). The only local variant in PWK was at a predicted 

functional position and mutated a C/EBP motif likely causing the low basal C/EBPβ binding in 

PWK. In concert, these analyses validated the importance of LDTF motif mutations as primary 

determinants of differential enhancer activation in low basal and high basal enhancers, while also 

demonstrating the expected consequences of SDTF motif mutations in determining strain-

differential activation of equal basal enhancers (Figure 4.5I). 

 

4.3 Materials and methods 

4.3.1 Experimental design 

To investigate the influence of genetic variation on signal-dependent gene expression, 

enhancer activation, and transcription factor binding, we performed RNA-seq, ATAC, and ChIP-
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seq to study the responses of macrophages derived from five different inbred mouse (C57, BALB, 

NOD, PWK, and SPRET) strains to the anti-inflammatory cytokine IL-4 (Figure 4.1A). 

Female and male breeder mice for C57, BALB, NOD, PWK, and SPRET mice were 

purchased from the Jackson laboratory. F1 C57 × SPRET mice were crossed, and Egr2fl/fl mice 

were generously donated by Drs. V. Lazarevic and L. Warren (National Institutes of Health) and 

crossed to LyzM-Cre mice (the Jackson laboratory) to achieve myeloid-specific targeted deletion 

of Egr2. Mice were housed at the University of California San Diego animal facility on a 12-

hour/12-hour light/dark cycle with free access to normal chow food and water. All animal 

procedures were in accordance with University of California San Diego research guidelines for the 

care and use of laboratory animals. 8- to 12-week-old healthy female mice were used for all our 

experiments. 

Femur, tibia, and iliac bones from the different mouse strains were flushed with Dulbecco’s 

modified Eagle’s medium (DMEM) high glucose (Corning), and red blood cells were lysed using 

red blood cell lysis buffer (eBioscience). After counting, 20 million bone marrow cells were seeded 

per 15-cm nontissue culture plates in DMEM high glucose (50%) with 20% fetal bovine serum 

(FBS; Omega Biosciences), 30% L929 cell–conditioned laboratory-made media [as source of 

macrophage colony-stimulating factor (M-CSF), as described before (Link et al., 2018, Cell)], 

penicillin/streptomycin + l-glutamine (100 U/ml; Gibco), and amphotericin B (2.5 μg/ml; 

HyClone). After 4 days of differentiation, mouse M-CSF (16.7 ng/ml; Shenandoah Biotechnology) 

was added to the media. After an additional 2 days of culture, adherent cells were scraped and 

subsequently seeded onto tissue culture–treated petri dishes in DMEM containing 10% FBS, 

penicillin/streptomycin + l-glutamine (100 U/ml), amphotericin B (2.5 μg/ml), and M-CSF (16.7 
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ng/ml). Macrophages were left untreated or treated with mouse recombinant IL-4 (20 ng/ml; 

PeproTech) for 1, 6, or 24 hours. 

Cells were fixed with Cytofix/Cytoperm Buffer (BD Biosciences, BD554714) for 10 min 

at room temperature. Cytofix/Cytoperm buffer was removed, and cells were washed twice with 

Hanks’ balanced salt solution containing 2% bovine serum albumin (BSA) and 1 mM EDTA. Cells 

were kept in permeabilization/wash buffer (BD Biosciences, BD554714) for 1 hour at 4°C or until 

the experiment was performed. Fixed cells were blocked using 3% BSA, 0.1% Triton–phosphate-

buffered saline (PBS) for 30 min at room temperature and then with 1/200 of the EGR2 antibody 

(Abcam) overnight at 4°C. The next day, cells were washed with 0.1% Triton-PBS and incubated 

with 1/200 donkey anti-rabbit 555 (Thermo Fisher Scientific, no. A31572) secondary antibody and 

phalloidin (Abcam, ab176759) for staining actin filaments, and nuclei were counterstained with 

4′,6-diamidino-2-phenylindole. After washing with 0.1% Triton-PBS, slides were mounted with 

ProLong Gold Antifade Reagent (Life Technologies, no. 10144). Images were taken using a Leica 

SP8 with light deconvolution microscope. 

 

4.3.2 Data mapping 

Custom genomes were generated for BALB, NOD, PWK, and SPRET mice from the C57 

or mm10 genome as before (Link et al., 2018, Cell) using MMARGE v1.0 (Link et al., 2018, 

Nucleic acids research) and the variant call format (VCF) files from the Mouse Genomes Project 

(Keane et al., 2011). Data generated from different mouse strains were first mapped to their 

respective genomes using STAR v2.5.3 (Dobin et al., 2013) for RNA-seq data or bowtie2 v2.2.9 

(Langmead et al., 2012) for ATAC-seq, ChIP-seq, and HiChIP data. Then, the mapped data were 
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shifted to the mm10 genome using the MMARGE v1.0 “shift” function (Link et al., 2018, Nucleic 

acids research) for downstream comparative analyses. 

 

4.3.3 RNA-seq data analysis 

RNA-seq data processing. Transcripts were quantified using HOMER v4.11.1 

“analyzeRepeats” script (Heinz et al., 2010). Transcripts per kilobase million (TPM) values were 

reported by using the parameters -count exons -condenseGenes -tpm. Log-scaled TPM values were 

computed by log2(TPM + 1). Raw read counts within transcripts were reported by using the 

parameters -count exons -condenseGenes -noadj. Differentially expressed genes were identified 

by feeding raw read counts into DESeq2 (Love et al., 2014) through the “getDiffExpression” script 

of HOMER. IL-4–induced and IL-4–repressed genes were called by fold changes greater than 2 

or less than half, respectively, together with q values smaller than 0.05. Gene ontology analysis 

was performed using Metascape (Zhou et al., 2019, Nature communications). 

Categorization of strain-differential genes. Strain-differential genes were defined on the 

basis of pairwise comparisons between C57 and one of the other strains as being called IL-4–

induced or IL-4–repressed in one strain but not in the other. Strain-differential IL-4–induced genes 

were further classified into three categories based on the relative level of basal expression between 

the induced strain versus the noninduced strain: high basal, equal basal, and low basal. In the high 

basal group, the noninduced strain has at least 1.5-fold greater basal expression level than the 

induced strain. The direction of difference flipped for the low basal group where the induced strain 

has over 1.5-fold greater basal expression than the noninduced strain. The genes in between are 

categorized into the equal basal group. 
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F1 mice data processing. RNA-seq data from F1 mice were mapped to both parental 

genomes (C57 and SPRET) and analyzed in the same way as before (Link et al., 2018, Cell). In 

short, the read counts for each transcript were multiplied by the ratio of reads overlapping 

mutations times 10 and assigned to the parental genomes. Transcripts without any assigned reads 

in one of the F1 alleles were filtered out. To determine cis versus trans effects of genetic variation 

on gene expression, the difference of fold change between parental alleles and F1 alleles were 

calculated. The genes with majorly cis effects were defined by −1 < log2(parental fold change) – 

log2(F1 fold change) < 1, while those with majorly trans effects were defined by F1 fold change 

< parental fold change for genes with over ±2 fold-change in parental alleles. 

 

4.3.4 ATAC-seq and ChIP-seq data analysis 

On the basis of the HOMER tag directories created from mapped sequencing data, the 

reproducible ATAC-seq and transcription factor ChIP-seq peaks were identified by using HOMER 

to call unfiltered 200-bp peaks (parameters -L 0 -C 0 -fdr 0.9 -size 200) and running IDR v2.0.3 

on replicates of the same sample with the default parameters (Li et al., 2011). The levels of histone 

modifications and RNA Pol II were quantified within ±500 bp around the centers of reproducible 

ATAC-seq peaks using HOMER annotatePeak.pl with parameters “-size -500,500 -norm 1e7.” 

The transcription factor binding intensities were quantified within ±300 bp around the identified 

ChIP-seq peaks using parameters “-size -150,150 -norm 1e7.” For comparisons across multiple 

samples (e.g., different time points, mouse strains, and transcription factors), we merged the set of 

peaks first using HOMER mergePeaks “-d given” before quantifying the features above. To 

visualize the average profile of a dataset around a certain set of peaks, we used HOMER 
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annotatePeaks.pl with parameters “-norm 1e7 -size 4000 -hist 20” to help compute the histograms 

of 20-bp bins within ±2000 bp regions. 

 

4.3.5 Identification of IL-4–responsive regulatory elements 

IL-4–responsive enhancers were identified by the strong fold changes of H3K27ac and 

RNA Pol II at intergenic or intronic open chromatin. Reproducible ATAC-seq peaks called from 

each mouse strain for the basal and IL-4 conditions were first merged and then annotated for 

genomic positions and the enrichment of H3K27ac and RNA Pol II within ±500 bp using HOMER 

v4.11.1. On the basis of the genomic annotations from HOMER annotatePeaks.pl, we classified 

regions at promoter-transcription start sites (TSS) as promoters and regions at intergenic or intronic 

positions as enhancers. Regions with less than 16 normalized tags of H3K27ac or less than 8 

normalized tags of RNA Pol II were filtered out. For the remaining promoters and enhancers, we 

computed the fold changes of the normalized tags of H3K27ac and RNA Pol II between basal and 

IL-4 conditions for each mouse strain. Regions were called IL-4–induced or IL-4-repressed if there 

were at least 2.5-fold increases or decreases, respectively, from basal to IL-4 state for both histone 

markers. Regions with less than 1.4-fold changes were called neutral elements. 

 

4.3.6 H3K4me3 HiChIP 

H3K4me3 ChIP-seq HiChIP reference preprocessing. H3K4me3 ChIP-seqs from basal 

and 24-hour IL-4–stimulated macrophages were performed in duplicate with input controls. Fastq 

files were aligned with bowtie2 (Langmead et al., 2012) to the mm10 reference genome, and peak 

calling was done with MACS (Zhang et al., 2008, Genome biology) for each replicate separately. 
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Significant peaks were merged using bedtools (Quinlan et al., 2010) into a general bed file that 

was used as corresponding peak file for MAPS. 

H3K4me3 HiChIP preprocessing. HiChIP sequencing (HiChIP-seq) data were processed 

with MAPS (Juric et al., 2019) at 5000-bp resolution as described previously for proximity 

ligation-assisted ChIP-seq (PLAC-seq) (Nott et al., 2019) for all four samples separately, basal 

and 24-hour IL-4 duplicate samples combined, and a merge of all four samples. 

Differential analysis. To identify interactions that were significantly stronger in Il-4 or 

control, a differential analysis was performed as described in (Nott et al., 2019). Briefly, significant 

interactions that were identified in the combined duplicate analysis of IL-4 and notx were merged 

in a general interaction set. Paired-end read counts that fell within these interactions were 

quantified for each sample separately. The quantified matrix of all significant interactions for all 

cell types was used as input for Limma (Ritchie et al., 2015) differential interaction analysis. A 

linear model was fit, with one pairwise contrast (IL-4 versus control), with and without batch 

correction. No interactions were identified that were significantly different between IL-4 and 

control by either method (false discovery rate < 0.1, and absolute log2 fold change > 1). Hence, 

the combined interaction set (generated using both IL-4 and control samples) was used for 

downstream analysis. 

 

4.3.7 Interactions among promoters and enhancers 

Significant interactions captured by HiChIP-seq were overlapped with previously 

identified active promoters and enhancers for the five mouse strains using HOMER mergePeaks 

“-d 2500” to identify three categories of interactive pairs: enhancer-enhancer, enhancer-promoter, 

and promoter-promoter. Enhancer-promoter interactions have enhancers on one end and promoters 
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on the other end, while enhancer-enhancer or promoter-promoter interactions are the linked pairs 

of enhancers or promoters, respectively. We ended up with 145,907 enhancer-enhancer 

interactions, 81,411 enhancer-promoter interactions, and 10,710 promoter-promoter interactions. 

To better understand the regulatory landscape associated with IL-4 stimulation, we subsequently 

focused on enhancer-promoter interactions that contained IL-4-induced, IL-4-repressed, and/or IL-

4-neutral promoters on one end and IL-4-induced, IL-4-neutral, and/or IL-4-repressed enhancers 

on the other end, and quantified the number of interactions between these possible promoter-

enhancer combinations in nine categories as a contingency table. Fisher’s exact test was applied 

to the contingency table to determine whether any of the categories were significantly different for 

three comparisons of interest: IL-4-induced enhancer/promoter interactions versus noninduced 

enhancer/promoters; IL-4-repressed enhancer/promoter interactions versus nonrepressed 

enhancer/promoters; and IL-4-induced enhancer/promoter interactions versus IL-4-repressed 

enhancer/promoter interactions. For enhancer-enhancer interactions, we preselected enhancers that 

have at least fourfold difference in H3K27ac ChIP-seq tags between any two strains under the 24-

hour IL-4 condition to obtain a set of strongly strain-differential enhancers. We then computed the 

Pearson correlation of H3K27ac tags across the five strains for every pair of interactive enhancers 

among the preselected set. To obtain noninteractive enhancers, we either randomly paired 

preselected enhancers on the same chromosome (same-chromosome random enhancers) or looked 

for enhancers within certain distances but not connected based on our data (distance-matched 

random enhancers). 

 

4.3.8 Motif analysis 
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Motif enrichment analysis. Given a certain set of peaks, we used HOMER 

findMotifsGenome.pl with parameters “-size 200 -mask” to identify de novo motifs and their 

matched known motifs (Heinz et al., 2010). The background sequences were either the default 

random sequences or a different set of peaks from a comparative condition in the main text and in 

the figure legends. 

Motif mutation analysis. To integrate the genetic variation across mouse strains into motif 

analysis, we used MAGGIE, which is able to identify functional motifs out of the currently known 

motifs by testing for the association between motif mutations and the changes in specific 

epigenomic features (Shen et al., 2020). The known motifs are obtained from the JASPAR 

database (Fornes et al., 2020). We applied this tool to strain-differential IL-4-responsive enhancers 

and transcription factor binding sites. Strain-differential IL-4-responsive enhancers were defined 

as previously described for KLA-responsive enhancers (Shen et al., 2020). In brief, from every 

pairwise comparison across the five strains, enhancers identified as “IL-4 activated” or “IL-4 

repressed” only in one of the compared strains were called strain-differential and were pooled 

together. For enhancer sites to be included in the analysis, enhancer activity had to be differentially 

regulated between two strains. As required by MAGGIE, sequences from the genomes of the 

responsive strains were input as “positive sequences,” and those from the other strains as “negative 

sequences.” Strain-differential transcription factor binding sites were defined by reproducible 

ChIP-seq peaks called in one strain but not in the other. Positive sequences and negative sequences 

were specified as sequences from the bound and unbound strains, respectively. The output P values 

with signs indicating directional associations were averaged for clusters of motifs grouped by a 

maximum correlation of motif score differences larger than 0.6. Only motif clusters with at least 
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one member showing a corresponding gene expression larger than 2 TPM in BMDMs were shown 

in figures. 

 

4.3.9 Categorization of IL-4-induced enhancers 

Among the strain-differential IL-4-induced enhancers as described above, we further split 

them into three categories based on the level of H3K27ac under the basal condition in noninduced 

strains. High basal enhancers have more than twofold stronger H3K27ac in noninduced strains, 

while low basal enhancers have more than twofold stronger H3K27ac in induced strains (lower 

basal H3K27ac in noninduced strains). Equal basal enhancers are those in between. 

 

4.3.10 Deep learning 

Neural network training. We adapted a similar strategy as AgentBind (Zheng et al., 2021, 

Nature machine intelligence) for our training procedure. We started with a pretrained DeepSEA 

(Zhou & Troyanskaya, 2015) model consisting of three convolutional layers and two fully 

connected layers and then fine-tuned it to generate three models based on our data: IL-4 active 

enhancers versus random backgrounds (auROC = 0.894), IL-4-induced enhancers versus random 

backgrounds (auROC = 0.919), and IL-4–induced enhancers versus noninduced enhancers 

(auROC = 0.796). The enhancer sequences were extended to 300 bp long. In all experiments, we 

left out sequences on chromosome 8 for cross-validation and sequences on chromosome 9 for 

testing. IL-4 active enhancers and noninduced enhancers were from C57 mice, while IL-4-induced 

enhancers were pooled from all the five strains to reach a comparable sample size. Random 

genomic backgrounds were generated by randomly selecting nearby guanine-cytosine (GC) 

content-matched equal-length sequences on the mm10 genome. We applied binary cross-entropy 
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as the loss function. During each training, the initial learning rate was set as 1 × 10-4 and reduced 

by a factor of 0.9 when learning stagnated. The training process stopped when the loss value had 

not decreased for more than 20 epochs. 

DeepLIFT and importance score. We used DeepLIFT (Shrikumar et al., 2017) to 

generate importance scores with single-nucleotide resolution using uniform nucleotide 

backgrounds. For each input sequence, we generated two sets of scores, one for the original 

sequence and the other for its reverse complement. The final scores were the absolute maximum 

at each aligned position. We defined predicted functional nucleotides by the top 20% (i.e., top 60) 

positions within each input 300-bp sequence. To interpret the most important sequence patterns 

learned by neural networks, we computed the odds ratio of each 5-mer within top 10% of all 5-

mers (Zheng et al., 2021, Nature machine intelligence). Fisher’s exact test was performed to 

determine whether 5-mers were enriched. We used TOMTOM (Gupta et al., 2007) to match 5-

mers with known transcription factor binding motifs. 

 

4.3.11 Data and code availability 

All sequencing data have been made available by deposition in the Gene Expression 

Omnibus (GEO) database: GSE159630. The UCSC genome browser was used to visualize 

sequencing data. The codes for neural network model training and interpretation are available on 

our Github repository: https://github.com/zeyang-shen/macrophage_IL4Response. 

 

4.3.12 Statistical analysis 

Two independent groups were tested using Mann-Whitney U test for medians and using 

Levene’s test for variance. Gene expression comparisons were reported by adjusted P values (i.e., 



99 
 

q values) from DESeq2 (Love et al., 2014). Enrichment was computed by odds ratio and tested by 

Fisher’s exact test. Effect sizes were reported by Cohen’s d. All gene expression data are displayed 

as means with 95% confidence interval. All data distributions are shown with means, 25th 

percentiles, and 75th percentiles. 

 

4.4 Discussion 

In this chapter, we report a systematic investigation of the effects of natural genetic 

variation on signal-dependent gene expression by exploiting the highly divergent responses of 

BMDMs from diverse strains of mice to IL-4. Unexpectedly, despite broad conservation of IL-4 

signaling pathways and downstream transcription factors in all five strains, only 26 of more than 

600 genes observed to be induced >2-fold by IL-4 at 24 hours reached that level of activation in 

all five strains, and more than half were induced in only a single strain. To the extent that this 

remarkable degree of variation observed in BMDMs occurs in tissue macrophages and other cell 

types in vivo, it is likely to have substantial phenotypic consequences with respect to innate and 

adaptive immunity, tissue homeostasis, and wound repair. Notably, only ~25% of the variation in 

response to IL-4 was due to altered dynamic ranges in the context of an equivalent level of basal 

expression. Nearly half of the genes showing strain-specific impairment in IL-4 responsiveness 

exhibited low basal activity, whereas lack of induction was associated with constitutively high 

basal levels of expression in the remaining ~25%. These qualitatively different patterns of strain 

responses to IL-4 imply distinct molecular mechanisms by which genetic variation exerts these 

effects. 

Motif mutation analysis of strain-differential enhancer activation recovered a dominant set 

of motifs recognized by known LDTFs PU.1, C/EBPβ, and AP-1 family members, as well as 
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motifs recognized by SDTFs STAT6 and PPARγ that have been previously established to play 

essential roles in the IL-4 response. In addition, effects of mutations in motifs for EGR, NRF, and 

KLF also strongly implicate these factors as playing important roles in establishing basal and 

induced activities of IL-4–responsive enhancers, which was genetically confirmed for EGR2 in 

this study and a recent study by Daniel et al. (Daniel et al., 2020). It will be of interest in the future 

to perform analogous studies of NRF and KLF factors. 

Analysis of strain-differentially activated enhancers revealed qualitative differences in 

basal and IL-4-dependent activity that were analogous to the qualitative differences observed for 

strain-differentially activated genes. As expected, sequence variants reducing the affinity of 

SDTFs STAT6, PPARγ, and EGR2 were the major forms of variation resulting in strain-

differential IL-4 induction of equal basal enhancers. From the standpoint of interpreting the effects 

of noncoding variation, these types of sequence variants are silent in the absence of IL-4 

stimulation. As also expected, sequence variants strongly reducing the binding affinity of LDTFs 

prevented the generation of open chromatin required for subsequent binding of SDTFs. These 

variants are thus expected to result in loss of enhancer function in a signal-independent manner. 

Of particular significance, these analyses also provide strong evidence that quantitative variation 

in suboptimal motif scores for LDTFs is a major determinant of differences in the absolute levels 

and dynamic range of high basal enhancers across strains. The importance of low-affinity motifs 

in establishing appropriate quantitative levels of gene expression within a given cell type and cell 

specificity across tissues has been extensively evaluated (Farley et al., 2015; Crocker et al., 2015; 

Kribelbauer et al., 2019). Here, we present evidence that improvement of low-affinity motifs for 

LDTFs not only increases basal binding of the corresponding transcription factor but also is 

associated with increased basal binding of STAT6 and PPARγ, thereby rendering their actions 
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partially or fully IL-4 independent. These findings thus provide evidence that quantitative effects 

of genetic variation on LDTF motif scores play major roles in establishing different absolute 

enhancer activity levels and dynamic ranges of their responses to IL-4 that are observed between 

strains. 

To go beyond the discovery of mechanisms mediating the IL-4 response using natural 

genetic variation, a major objective of these studies was to use the resulting datasets as the basis 

for interpreting and predicting the effects of specific variants. As expected, enhancers exhibiting 

strain-specific differences in IL-4 responses were significantly enriched for sequence variants. 

However, the background frequencies of variants in the much larger sets of strain-similar 

enhancers ranged from 17 to 93%, consistent with the vast majority of these variants being silent 

and underscoring the challenges of discriminating them from functional variants. The application 

of recently developed deep learning approaches illustrates both the potential of these methods to 

improve predictive power and their current limitations. Nucleotides predicted by DeepLIFT to be 

of functional importance frequently intersected with variants at strain-differential enhancers that 

significantly altered LDTF or SDTF motifs, with over eightfold enrichment in enhancers with 

strongest strain differences (top 1% variants for C57 versus BALB comparison; Figure 4.2I), 

strongly suggesting causality. Although DeepLIFT scored a substantial fraction of variants present 

in strain-similar enhancers with low importance, a large fraction of remaining strain-similar 

enhancers contained variants associated with high DeepLIFT scores, most likely representing false 

positives. Furthermore, we found that the highest scoring variants in some cases depended on the 

choice of data used to train the convolutional neural network (e.g., using random versus 

noninduced enhancers as negative training examples). This observation has important implications 

with respect to application of deep learning models to identify potential functional variants in 
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disease contexts. The datasets generated by these studies will therefore provide an important 

resource for further improvements in methods for interpretation of local genetic variation. 

These analyses further indicated that 20 to 50% of the most divergent IL-4-responsive 

enhancers lacked any functional variants in the proximity of open chromatin. This fits with 

previous observations that variant-free enhancers can reside in cis-regulatory domains (CRD) 

containing functionally interacting enhancers, suggesting that a variant strongly affecting one 

enhancer within the CRD could have domain-wide effects (Link et al., 2019, Cell). This concept 

was supported and extended here by HiChIP experiments. In addition to demonstrating that the 

IL-4 response was primarily associated with preexisting enhancer-promoter connections, the 

HiChIP assay also captured a large number of enhancer-enhancer interactions. Examination of 

these connected enhancers provided evidence that a substantial fraction of strain-differential 

enhancers lacking local variants were connected to strain-differential enhancers containing 

functional variants. An important future direction will be to further investigate the significance 

and mechanisms underlying these associations. 

Collectively, these studies reveal general mechanisms by which noncoding genetic 

variation influences signal-dependent enhancer activity, thereby contributing to strain-differential 

patterns of gene expression and phenotypic diversity. A major future goal will be to incorporate 

these findings into improved algorithms for prediction of absolute levels and dynamic responses 

of genes to IL-4 at the level of individual genes. 

 

4.5 Supplementary figures 
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Supplementary Figure 4.1: Strain-differential IL-4 induced gene expression is the result of 
differential IL-4 enhancer activation in macrophages derived from genetically diverse mice. (A) 
Enhancer and promoter selection criteria, including criteria for activated, neutral or repressed elements. (B) 
Clustering of ATAC-seq data in strains macrophages stimulated with IL-4 for 24 h. (C) Clustering of 
H3K27ac ChIP-seq data in strains macrophages stimulated with IL-4 for 24 h. (D) Clustering of RNApolII 
ChIP-seq data in strains macrophages stimulated with IL-4 for 24 h. (E) Comparison of C57 ATAC peaks 
with H3K27ac signal to those of NOD or PWK under IL4 treatment conditions. (F) Comparison of C57 
ATAC peaks with RNA Pol2 signal to those of BALB or SPRET under IL4 treatment conditions. (G) Violin 
plots showing the difference in H3K27ac in response to 24 h IL-4 between super enhancers and 
conventional enhancers in BALB, NOD, PWK and SPRET macrophages. Mann-Whitney U test was 
performed to test the difference between super enhancers and conventional enhancers. (H) Percentages of 
enhancers that contain variants at high-ranked positions based on DeepLIFT scores using different cut-offs. 
2G and 2H are based on the top 100% and 20%, respectively. 
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Supplementary Figure 4.2: IL-4 enhancers use pre-existent promoter-enhancer interactions to 
regulate gene activity. (A) The correlation of HiChIP reads between basal and 24 h IL-4 stimulated C57 
macrophages. The reads were counted within the bins of both sides of the connection. Each dot represents 
a connection. (B) Comparison between HiChIP read changes and gene expression changes. (C) Comparison 
between HiChIP read changes and H3K4me3 signal changes. (D) Distance distributions of enhancer pairs. 
Distance-matched random enhancers have similar distances compared to connected enhancers, while the 
distances between same-chromosome random enhancers are spread out. (E) Percentages of interactive 
enhancers that contain predicted functional variants using different cut-offs for C57 versus the other strains. 
Figure 4.3E is based on the top 20%. 
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CHAPTER 5 
Chapter 5 A flexible ChIP-sequencing simulation toolkit 

 
A flexible ChIP-sequencing simulation toolkit 

 
5 ___ 
5.1 Introduction 

Chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) is a 

widely used technology for genome-wide mapping of the location of histone modifications (HMs) 

or DNA-associated proteins such as transcription factors (TFs) and chromatin regulators (CRs) 

(Furey et al., 2012). Dozens of methods have been developed for quantitatively analyzing ChIP-

seq data, including peak callers (Zhang et al., 2008, Genome biology; Harmanci et al., 2014) and 

differential binding tools (Ross-Innes et al., 2012; Love et al., 2014). A major challenge in training 

and evaluating these methods as well as interpreting their results is a lack of reliable ground truth 

data: in most cases, the actual locations and strengths of binding sites or regions enriched for 

certain histone modifications are not known and cannot be reliably measured using orthogonal 

experimental techniques. Computational analysis of ChIP-seq is further complicated by multiple 

sources of noise introduced during the experimental process, including inefficiency or non-

specificity of antibodies, PCR artifacts, and sequencing errors (Meyer et al., 2014; Landt et al., 

2012). 

Accurate simulation of ChIP-seq data can mitigate this challenge, but existing frameworks 

(Humburg et al., 2011; Datta et al., 2019; Zhang et al., 2008, PLoS Computational Biology; 

Subkhankulova et al., 2021) are either cumbersome to apply genome-wide or do not accurately 

capture important sources of variation present in real data such as pulldown non-specificity, 

fragment length variability, or sequencing errors. Importantly, existing simulation tools are not 



108 
 

capable of inferring model parameters from real ChIP-seq datasets, making it difficult to choose 

realistic simulation settings. 

In this chapter, we will present ChIPs (ChIP-seq simulator), a flexible toolkit for rapidly 

simulating ChIP-seq data based on realistic statistical models. ChIPs is a computationally efficient 

command-line solution that allows users to easily specify a wide range of parameters modeling 

key experimental steps and to infer these parameters from existing datasets. We will demonstrate 

the applicability of ChIPs for evaluating the impact of various experimental conditions and for 

benchmarking computational analysis tools. 

 

5.2 Implementation 

5.2.1 Framework architecture 

ChIPs models each major ChIP-seq step (shearing, immunoprecipitation, pulldown, PCR, 

and sequencing) as a distinct module (Figure 5.1a). It assumes binding sites for the target epitope 

and their binding scores (probabilities) are known. Notably, for histone modifications, we use 

binding to refer to genomic localization with the target modification, although the DNA itself is 

not typically bound by the modification. Importantly, each step is modeled in a way that key 

parameters can be inferred from existing datasets. 

Step 1: Shearing. Cross-linked DNA is first sheared to a target fragment length, for 

instance by sonication or enzymatic approaches (Kidder et al., 2011). ChIPs models fragment 

lengths using a gamma distribution (Figure 5.1a; top) based on empirical observation of fragment 

distributions which have long right tails. The fragment length distribution parameters are either 

trivially inferred from paired end read alignments or are approximated from single end data using 

a heuristic method (Supplementary Figure 5.1). 
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Step 2: Immunoprecipitation. Sheared cross-linked DNA is subject to 

immunoprecipitation, during which an antibody is used to enrich the pool of fragments for those 

bound to the epitope of interest. To model this imperfect process, we quantify the ratio, 𝛼, of the 

probability of pulling down a bound versus unbound fragment. This modeled ratio is specific to 

each ChIP-seq experiment and depends on the antibody specificity as well as the fraction of the 

genome bound by the factor of interest. Let f be the fraction of the genome bound by the factor of 

interest and s be the fraction of pulled down reads that originate from true binding sites. ChIPs can 

approximate 𝛼 using equation (5.1). A detailed derivation of this ratio is provided in chapter 5.4. 

𝛼 =
𝑠(1 − 𝑓)
(1 − 𝑠)𝑓

	 (5.1) 

The parameters 𝑓 and 𝑠 can be directly inferred from real data based on binding sites or enriched 

regions (peaks) identified by various peak-calling methods (Supplementary Figure 2). 

Step 3: PCR. PCR is used to amplify pulled down fragments before sequencing. Let 𝑛* 	

represent the number of reads (or read pairs) with 𝑖  PCR duplicates (including the original 

fragment). 𝑛* 	is modeled using a geometric distribution, where 𝑝  gives the probability that a 

fragment has no PCR duplicates. The parameter p is estimated as ,
+-
 , where  𝑛; = ∑ *+!"

!#$
∑ +!"
!#$

 . 

Step 4: Sequencing. Finally, amplified fragments are subject to either paired end or single 

end sequencing. Sequences are based on an input reference genome using the coordinates of each 

fragment. We model the per-base pair substitution, insertion, and deletion rates (Supplementary 

Table 5.2). 

 
 
5.2.2 Implementation details 
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ChIPs is implemented as an open-source C++ project with source code publicly available 

on Github: https://github.com/gymreklab/chips. It consists of two utilities: simreads and learn (Fig. 

1b). The simreads module takes in ChIP-seq model parameters and experimental settings 

(Supplementary Table 5.2), and outputs simulated reads. Input parameters can either be set by the 

user to mimic a future ChIP-seq experiment or learned from existing data using the learn module. 

The user must additionally specify the number of simulation rounds, which denotes the number of 

times the input reference genome is processed by ChIPs. Notably, this number is related, but not 

directly comparable, to the number of experimentally processed cells, since pulldown efficiency 

is not directly included in the current model. We have found that in most settings 25–100 and 1000 

rounds work well for HMs and TFs, respectively. Full implementation details and methods for 

benchmarking experiments are provided in chapter 5.4. 

 

5.3 Results 

5.3.1 Comparison of ChIPs simulation results to real ChIP-seq data 

We evaluated ChIPs using ChIP-seq data generated by the ENCODE Project (ENCODE 

Project Consortium, 2012) for an example histone modification H3K27ac in the GM12878 cell 

line. To evaluate the effect of varying the number of simulation rounds, we simulated reads on 

chromosome 22 using parameters inferred from real data over a range of simulation rounds (1–

10,000). Run time for chromosome 22 ranged from 11 s (1 round) to 15 min (10,000 rounds). 

Resulting reads were aligned to the hg19 reference genome using BWA-MEM (Li, 2013), and 

duplicates were flagged using Picard (Broad Institute, 2018). Visual inspection of the resulting 

coverage profiles shows high similarity between real and simulated data (Figure 5.1c). 
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Figure 5.1: ChIPs overview. (a) Overview of the ChIPs model. ChIPs models four steps: shearing (top), 
pulldown (middle), PCR (bottom), and sequencing. Top: the dark blue histogram shows an example 
fragment length distribution from real paired end ChIP-seq data. The red line shows the best fit gamma 
distribution. Middle: pulldown is modeled using two parameters; 𝑓 (the fraction of the genome bound by 
the factor) and 𝑠 (the probability that a pulled down fragment is bound. Bottom: The dark blue histogram 
shows an example of a distribution of the numbers of PCR duplicates in real ChIP-seq data. The red line 
shows the best fit geometric distribution. (b) Schematic of ChIPs modules. The learn module takes an 
existing ChIP-seq experiment (aligned reads and peaks) and learns model parameters (see Supplementary 
Table 5.2). The simulation module takes as input a set of peaks and model parameters, simulates a ChIP-
seq experiment, and returns raw reads in FASTQ format. Model parameters input to the simulation module 
may either be learned from an existing ChIP-seq dataset (dashed arrow) or manually specified to capture 
planned experimental conditions. Purple borders represent input or output files and black boxes denote 
ChIPs commands. Boxes with solid lines denote required inputs. Boxes with dashed borders denote optional 
inputs. “Exp. params” denotes experimental parameters including the number of reads, read length, and 
number of simulation rounds. “Aln reads” denotes aligned reads in BAM format. (c) Example coverage 
profiles of real versus simulated data. The bottom track shows peaks identified by ENCODE, with 
normalized peak scores between 0 to 1 colored based on a gradient from white to red. The middle track 
shows coverage profiles based on aligned reads from ENCODE, and the top track shows coverage profiles 
based on ChIPs simulations. Coverage profiles were generated using IGV. Coverage profiles may also be 
viewed interactively at https://tinyurl.com/y7x6ggdq. (d) Concordance of read counts between simulated 
versus real ChIP-seq data. chr22 was divided into non-overlapping 5 kb bins. The scatter plot shows the 
comparison of read counts per bin for bins overlapping peaks (dark blue) or background regions (dark red). 
The x- and y-axes are on a log10 scale. The plot shown is for 100 simulated genome copies. (e) Read count 
correlation between real and simulated data as a function of number of simulated genome copies. For each 
number of copies, the correlation was computed between read counts in 5 kb bins overlapping input peaks. 
The x-axis is on a log10 scale. (f) Simulation run time as a function of number of simulated genome copies. 
The x-axis is on a log10 scale. 
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Next, we compared read counts in bins of 5kb and found high correlation between real and 

simulated data in bins containing at least one peak (Fig. 1d; Pearson 𝑟=0.91; 𝑝<10−200; n=1,232 

bins; 100 simulation rounds). Further, correlation with ENCODE data increased as a function of 

the number of simulation rounds but plateaued around 100, suggesting little gain in simulating 

additional rounds compared to the time tradeoff (Figure 5.1e–f). We repeated this analysis on 

multiple additional HMs and TFs in GM12878 with similar results (Supplementary Figure 5.3). 

 

5.3.2 Benchmarking against existing ChIP-seq simulators 

We next benchmarked ChIPs against existing ChIP-seq simulators, which are summarized 

in Supplementary Table 5.1. We focused on two recent methods: (1) ChIPulate (Datta et al., 2019) 

is a method for simulating TF ChIP-seq data using detailed modeling of locus-specific binding 

energies. ChIPulate only simulates reads at bound regions, and does not simulate background 

fragments outside of peak regions, a key feature of real ChIP-seq datasets related to the antibody 

specificity. (2) isChIP (Subkhankulova et al., 2021) is a command-line method for simulating 

ChIP-seq data based on a set of input peaks, model parameters, and sequencing parameters. While 

isChIP performs a similar task to ChIPs, it is not able to infer model parameters from existing 

datasets, which is a key feature of ChIPs. A more detailed description of model differences 

between these tools is provided in chapter 5.4. 

We used ChIPs, ChIPulate, and isChIP to simulate ChIP-seq data based on six different 

ENCODE datasets including 3 HMs (H3K4me1, H3K4me3, and H3K27ac) and 3 TFs (BCLAF1, 

IKZF1, and NFYA) (Supplementary Table 5.3). For each dataset, we used the three methods to 

simulate data for chr22 based on ENCODE peaks and with settings meant to capture similar 

properties of the ENCODE data, including read length and read number. We additionally inferred 
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model parameters using the learn module of ChIPs and used these models to set appropriate 

simulation options for each tool when possible (details are in chapter 5.4). For each tool, we varied 

the number of simulation rounds (similar to the number of cells) from 1 to 10,000. ChIPulate 

simulations took approximately 80 min to complete regardless of the number of simulation rounds, 

although subsequent simulations reused intermediate files and were faster. isChIP consistently 

achieved the fastest run time (e.g., 0.8 min for 1000 rounds on H3K27ac compared to 4.9 min for 

ChIPs). For both isChIP and ChIPs, simulation time was far less than the run time of downstream 

steps of sequence alignment and peak calling. 

For each simulated dataset, we compared to real data using two methods. First, similar to 

above, we aligned simulated reads to the hg19 reference genome and compared read counts in 1kb 

bins containing at least one peak. As expected, correlation with ENCODE increases for all tools 

with additional simulation rounds (Supplementary Figure 5.4a). In all evaluated conditions, we 

found that ChIPs showed superior correlation with ENCODE data. The performance of ChIPs was 

virtually unchanged when using models based on paired versus single end data (Supplementary 

Figure 5.4a). 

Second, to evaluate how well each tool captures noise in real data, we examined the 

distribution of read counts in bins with and without peaks (referred to as peak and background 

regions, Supplementary Figure 4b) between simulated and real data. We further visualized these 

trends using simulated coverage profiles and ENCODE data using the Integrative Genomics 

Viewer (Robinson et al., 2011) (Supplementary Figure 5.5). In all cases, data simulated by ChIPs 

most closely matches read count distributions in peak versus background regions in the ENCODE 

data. As expected, almost no reads from ChIPulate align to background regions. For isChIP, we 

found that using the default background noise level resulted in far higher signal to noise ratios than 



115 
 

in the real data. We attempted to more closely match ENCODE data by performing an additional 

experiment with increased background noise. This in some cases alleviated the bias but still 

matched less closely than ChIPs data (Supplementary Figure 5.4b). 

Taken together, these benchmarking results show that ChIPs most accurately captures 

properties of real ChIP-seq data. Further, whereas ChIPs could learn appropriate model parameters 

from existing datasets, the alternative tools first required detailed user involvement to determine 

realistic simulation settings for a particular dataset type. While it is hard to rule out that further 

tuning of parameters for each method could achieve higher correlation, we found that without a 

method to infer parameters from existing data that it was difficult to choose optimal simulation 

settings. 

 

5.3.3 Demonstration of ChIPs applications 

Finally, to demonstrate the ability of ChIPs to generate ground truth data for evaluating 

analysis tools, we compared performance of multiple peak calling methods on simulated datasets. 

We focused on five representative tools: MACS2 (Zhang et al., 2008, Genome biology), GEM 

(Guo et al., 2012), MUSIC (Harmanci et al., 2014), BCP (Xing et al., 2012), and HOMER (Heinz 

et al., 2010). We measured peak calling performance using simulated datasets representative of 

generic HMs or TFs as described above but with varying degrees of non-specific binding (ChIPs 

s parameter, commonly referred to as a SPOT or FRIP score (Landt et al., 2012); Figure 5.2e–f, 

Supplementary Figure 5.7). As expected, in all settings peak calling performance increased as a 

function of s. No method achieved superior performance across all datasets or metrics. For TFs, 

GEM, MACS2, and HOMER showed similarly high F1 scores for datasets with 𝑠>0.05. For HMs, 

all tools except BCP showed high F1 scores across a range of s values. Notably, this analysis 
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captures only a small subset of possible dataset parameters, and it is likely that results will vary 

depending on specific datasets. Previous work has performed an extensive evaluation of various 

peak calling methods (Thomas et al., 2017). 

 

Figure 5.2: Example ChIPs applications. (a)-(d) Evaluation of the effects of varying experimental 
parameters on peak calling performance. Results are based on simulation of generic TF and HM datasets 
for chr21 as described in chapter 5.4. In each plot the y-axis shows the F1 score computed by comparing 
ground truth peaks to those inferred from simulated datasets using MACS2. a F1 score as a function of the 
total number of reads simulated from chr21. (b) F1 score as a function of read length. (c) F1 score as a 
function of PCR duplicates. The x-axis gives the parameter p, which can be interpreted as the percent of 
fragments with no PCR duplicates (Supplementary Table 5.2). (d) F1 score as a function of mean fragment 
length (bp). Red = HM; Blue = TF; solid lines=paired end reads; dashed lines=single end reads. (e)-(f) 
Evaluation of various peak calling methods on simulated TF (e) and HM (f) datasets with different noise 
levels. Noise levels are quantified using s, the fraction of pulled down reads that originate from true binding 
sites. Blue = BCP; orange = GEM; green = MACS2; red = MUSIC; purple = HOMER. 
 

5.4 Method details 

5.4.1 Model details 

This section provides additional details on the ChIPs model. 
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Step 1: shearing. In the case of paired-end reads, fragment lengths can be determined 

trivially from the mapping locations of paired reads. The observed fragment length (𝑋*) for each 

read pair 𝑖 can be computed based on the mapping coordinates of the two reads. The learn module 

randomly selects 10,000 uniquely aligned read pairs from the input BAM for fitting a gamma 

distribution. Read pairs are filtered to remove fragments that are unaligned, not properly paired, 

marked as duplicates or marked as secondary alignments. Read pairs are further filtered to remove 

fragments with length greater than 3 times the median length of selected fragments. The mean 

fragment length is easily computed as 𝜇	 = ∑ /!
%
!#$
+

	, where 𝑛 is the number of fragments remaining 

after filtering. We then use the method of moments to find maximum likelihood estimates of the 

gamma distribution shape (𝑘) and scale parameters (𝜃): 

𝜃 =
1
𝑛𝜇0(𝑋* 	− 𝜇

+

*0,

)1 (5.2) 

𝑘 =
𝜇
𝜃

(5.3) 

For single-end reads, individual fragment lengths are not directly observed. We outline a novel 

method for estimating fragment length distributions from single-end data in the chapter 5.5. 

Step 2: immunoprecipitation. We use 𝐵* to denote that fragment 𝑖 is bound, 𝐵* to denote 

that fragment 𝑖  is unbound, and 𝐷*  to denote that fragment 𝑖  is pulled down. For fragment 𝑖 , 

assuming the probability that a given bound fragment is pulled down is approximately constant 

over all fragments, the probability of being pulled down can then be written as: 

𝑃(𝐷*) = 𝑃(𝐷, 𝐵*) + 𝑃E𝐷, 𝐵*F = 	𝑃(𝐷|𝐵)𝑃(𝐵*) + 𝑃E𝐷H𝐵FE1 − 	𝑃(𝐵*)F (5.4) 

where 𝑃(𝐷|𝐵) denotes the probability that a given bound fragment will be pulled down and 

𝑃(𝐷|𝐵) denotes the probability that a given unbound fragment will be pulled down. 
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For any fragment 𝑖, we set the probability of it being bound 𝑃(𝐵*) based on the scores of peaks it 

overlaps: 

𝑃(𝐵*) = J
0,																													if	no	overlap

1 −	V1− 𝑆(𝑟),
#∈3

								if	overlap	peak(s) (5.5) 

where 𝑅 is the set of all peak regions overlapping fragment 𝑖 and 𝑆(𝑟) is the probability that peak 

𝑟 is bound. A method for estimating 𝑆(𝑟) is detailed below. 

We compute conditional pulldown probabilities using Bayes' Rule: 

𝑃(𝐷|𝐵) =
𝑃(𝐵|𝐷)𝑃(𝐷)

𝑃(𝐵)
(5.6) 

𝑃E𝐷H𝐵F =
𝑃E𝐵H𝐷F𝑃(𝐷)

𝑃E𝐵F
(5.7) 

where here 𝑃(𝐵|𝐷)  and 𝑃(𝐵|𝐷)  represent averages across all fragments. There is no 

straightforward way to compute 𝑃(𝐷), the average probability that a fragment is pulled down, 

using only observed ChIP-seq reads since we do not actually observe fragments that are not pulled 

down. Thus, we do not attempt to compute these conditional probabilities directly. Instead, we 

take the ratio which cancels 𝑃(𝐷): 

𝛼 =
𝑃(𝐷|𝐵)
𝑃E𝐷H𝐵F

=
𝑃(𝐵|𝐷)𝑃E𝐵F
𝑃E𝐵H𝐷F𝑃(𝐵)

	 (5.8) 

𝑃(𝐵), or the probability that a fragment is bound on average, is equal to 𝑓, the fraction of the 

genome bound by the factor of interest. We can approximate 𝑓 as the sum of the lengths of all 

peaks 𝑙# weighted by their binding probabilities divided by the total length of the genome 𝐺: 

𝑓 ≈
1
𝐺0𝑆(𝑟)𝑙#
#∈3

(5.9) 
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where 𝐺 is the size of the reference genome, 𝑆(𝑟) is the probability peak region 𝑟 is bound as 

described above, and 𝑙# is the length of peak 𝑟, assuming no overlap between peaks. 

𝑃(𝐵|𝐷), or the probability that a fragment is bound given that it is pulled down, is a 

measure of the specificity of the antibody. Assuming the majority of reads falling in peaks are truly 

bound, this can be roughly approximated as the percent of fragments falling within peaks, which 

is denoted as 𝑠. Using these two metrics, 𝑓, and 𝑠 (Supplementary Table 5.1), we can simplify the 

ratio 𝛼 using equation (5.1). And since the ratio 𝛼 is available, for simplicity in simulations we set 

𝑃(𝐷|𝐵) = 1 and 𝑃E𝐷H𝐵F = ,
4
. Substituting into equation (5.8) above, we compute the probability 

that fragment 𝑖 is pulled down as: 

𝑃(𝐷*) = 𝑃(𝐵*) 	+
1
𝛼
E1 − 𝑃(𝐵*)F (5.10) 

where 𝑃(𝐵*) is based on peak scores as defined above. It is noteworthy that, in reality, 𝑃(𝐷|𝐵) is 

likely to be much smaller than 1, since the pulldown process is inefficient, and many fragments 

are lost. Further, the number is likely to vary largely across different experiments. Estimating the 

absolute value of 𝑃(𝐷|𝐵) from real datasets is a topic of future work. 

 

5.4.2 Inferring fragment lengths from single-end reads 

To estimate the fragment length distribution from single-end reads, we assume the length 

distribution follows a gamma distribution with mean 𝜇 and variance 𝑣, and use reads located inside 

ChIP-seq peaks (provided as input) to estimate 𝜇 and 𝑣	which are used to compute 𝑘 and 𝜃. This 

is a heuristic method that provides reasonable estimates of the fragment size distribution, which is 

sufficient for most applications. 
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For each peak 𝑝𝑒𝑎𝑘*, we keep track of two lists, {𝑠𝑡𝑎𝑟𝑡}56$!! 	and {𝑒𝑛𝑑}56$!!. For each 

read overlapping 𝑝𝑒𝑎𝑘* , if the read is on the forward strand, we add its start coordinate to 

{𝑠𝑡𝑎𝑟𝑡}56$!!. If the read is on the reverse strand, we add its start coordinate to {𝑒𝑛𝑑}56$!!. The 

center point of this peak is calculated as: 

𝑐𝑒𝑛𝑡𝑒𝑟56$!* =
𝑚𝑒𝑎𝑛	E{𝑠𝑡𝑎𝑟𝑡}56$!!F + 𝑚𝑒𝑎𝑛	E{𝑒𝑛𝑑}56$!!F

2
	 (5.11) 

For every 𝑝𝑒𝑎𝑘*, we offset the coordinates in {𝑠𝑡𝑎𝑟𝑡}56$!! and {𝑒𝑛𝑑}56$!! by 𝑐𝑒𝑛𝑡𝑒𝑟56$!*, so that 

the coordinates of start points and end points are symmetric around zero. We then concatenate lists 

from each peak to form {𝑠𝑡𝑎𝑟𝑡} and {𝑒𝑛𝑑}: 

{𝑠𝑡𝑎𝑟𝑡} =	⊕*07
+ i{𝑠𝑡𝑎𝑟𝑡}56$!! − 𝑐𝑒𝑛𝑡𝑒𝑟56$!*j	 (5.12) 

{𝑒𝑛𝑑} =	⊕*07
+ i{𝑒𝑛𝑑}56$!! − 𝑐𝑒𝑛𝑡𝑒𝑟56$!*j	 (5.13) 

The mean fragment length 𝜇 can be estimated as: 

𝜇 = 𝑚𝑒𝑎𝑛({𝑒𝑛𝑑}) − 𝑚𝑒𝑎𝑛({𝑠𝑡𝑎𝑟𝑡}) (5.14) 

We calculate the probability density functions, cumulative density functions and expected 

density functions for both {𝑠𝑡𝑎𝑟𝑡} and {𝑒𝑛𝑑}. The expected density function 𝐸𝐷𝐹(𝑥) is defined 

as the expected deviation of a random element in the list to 𝑥: 

𝐸𝐷𝐹89$#9(𝑥) = 	𝐸(|𝑆	 − 	𝑥|) (5.15) 

	 𝐸𝐷𝐹6+%(𝑥) = 	𝐸(|𝐸	 − 	𝑥|) (5.16) 

where 𝑆 is a random element in {𝑠𝑡𝑎𝑟𝑡} and 𝐸 is a random element in {𝑒𝑛𝑑}. 

After computing 𝜇, we reduce the density function of the fragment length distribution from 

𝑝:,<(𝑥) to 𝑝<(𝑥), the probability density function of the fragment length variance. We construct a 

score function 𝐹(𝑣) as shown below. 
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𝐹(𝑣) = 	𝐸< no𝑆 +
𝐿
2oq +	𝐸< no𝐸 −

𝐿
2oq − 𝐸 i

r𝑆 +
𝜇
2
rj − 𝐸 ir𝐸 −

𝜇
2
rj (5.17) 

𝐸< no𝑆 +
𝐿
2oq = 0𝑝<(>) ∗ 𝐸𝐷𝐹{89$#9} i−

𝑥
2j

B

>07

(5.18) 

𝐸< no𝐸 −
𝐿
2oq = 0𝑝<(>) ∗ 𝐸𝐷𝐹{6+%} i−

𝑥
2j

B

>07

(5.19) 

𝐸 ir𝑆 +
𝜇
2
rj = 𝐸𝐷𝐹{89$#9}(𝑥) (5.20) 

𝐸 ir𝐸 −
𝜇
2
rj = 𝐸𝐷𝐹{6+%}(𝑥) (5.21) 

where 𝐿 represents a randomly chosen fragment length. Intuitively, if 𝑣 is guessed correctly, 𝐹(𝑣) 

should be equal to zero. 

To find an optimal 𝑣 that minimizes |𝐹(𝑣)|, we conduct a binary search between 1000 and 

10,000. In practice, we slightly offset the last two items in the score function in equation (5.17) to 

get the score below, which gives slightly more accurate estimation of 𝑣 on real data: 

𝐹(𝑣) = 	𝐸< no𝑆 +
𝐿
2oq +	𝐸< no𝐸 −

𝐿
2oq − 𝐸 tu𝑆 +

𝜇
2 −

𝐸 − 𝜇2	
4 uv − 𝐸 tu𝐸 −

𝜇
2 −

𝑆 + 𝜇2	
4 uv	 (5.22) 

This may be because fragment length distributions are truncated on the left end, with little or no 

fragments with lengths less than 100bp observed, and thus do not follow a true gamma distribution. 

Examples of inferred fragment length distributions from single-end data compared to actual 

fragment length distributions for a variety of datasets is shown in Supplementary Figure 5.1. 

 

5.4.3 ChIPs implementation details 

5.4.3.1 Peak scores 
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A peak score 𝑆(𝑟) is defined for each input peak, where 𝑆(𝑟) gives the probability that a 

fragment overlapping the region is bound. Note we cannot directly estimate this probability from 

bulk ChIP-seq data but assume variability in intensity across peaks is representative of different 

relative binding probabilities. Based on user input, ChIPs computes these binding probabilities 

either based on peak intensities given in an input BED file or based on read counts from an existing 

BAM file. 

If peak intensities are provided, 𝑆(𝑟)  is computed as the score of peak 𝑟 divided by the 

maximum peak intensity. If a BAM file is provided, 𝑆(𝑟) is defined as the number of reads 

overlapping peak 𝑟  divided by the maximum number of reads overlapping any peak. In both cases, 

resulting scores 𝑆(𝑟) are between 0 and 1. 

By specifying the option --no-scale, users may directly input binding scores that will be 

treated directly as probabilities and will not be rescaled. Users may also specify --scale-outliers to 

remove peak intensities greater than 3 times the median score before rescaling peak intensities to 

reduce the effect of outlier peaks. In this case all peaks with scores greater than 3 times the median 

will be set to 1. 

 

5.4.3.2 Learn implementation 

The ChIPs learn module takes a set of input peaks (BED) and aligned reads (BAM) and 

learns parameters for (1) fragment length distribution (𝑘, 𝜃); (2) pull-down efficiency (𝑓, 𝑠); and 

(3) PCR efficiency (𝑝) (Supplementary Table 5.1). BAM files must have PCR duplicates marked 

using a tool such as Picard to enable accurate estimation of PCR parameters. The learn module 

outputs model parameters to a JSON file that can be used as input to the simreads module. We 
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found that the key pulldown parameter, 𝛼, learned, is relatively robust to the peak caller used to 

generate the input peak dataset (Supplementary Figure 5.2). 

 

5.4.3.3 Simulation implementation 

The simreads module takes in a set of peaks, model parameters (e.g., from the learn 

module), experimental parameters (including read length, number of reads), and number of 

simulation rounds, and simulates raw sequencing reads in FASTQ format. First, each copy of the 

genome (equivalent to one simulation round) is randomly fragmented based on the specified 

fragment length gamma distribution. Next, ChIPs decides whether to pull down each fragment 

based on its overlap with input peaks based on 𝑃(𝐵*) described above. Finally, ChIPs generates 

reads from the resulting pool of fragments based on input parameters (using the specified mode 

read length, number of reads, and mode [single/paired]). ChIPs outputs “PCR duplicates” of each 

sequenced read based on the input PCR rate 𝑝. 

In practice, in each round the genome is processed in bins (default size 100kb) to avoid 

storing large fragment pools in memory. In a preprocessing step, ChIPs determine how many reads 

to generate from each simulation round based on the target number of output reads. ChIPs is 

parallelized by performing different simulation rounds on separate threads simultaneously. 

 

5.4.4 Benchmarking experiments 

5.4.4.1 Evaluating ChIPs performance 

To evaluate ChIPs, we compared simulated reads to reads from real ChIP-seq experiments 

using read alignments and peaks generated by ENCODE. All ENCODE accessions for reads and 

peaks are given in Supplementary Table 5.3. We first ran the chips learn module to learn model 



124 
 

parameters based on the ENCODE BAM and BED files for each TF or HM. We used learn 

parameters -c 7 -t bed --scale-outliers. The json model file output by the learn module was used as 

input to the simulate module. We performed various runs using an increasing number of simulation 

rounds (chips simulate argument --nc 1, 5, 10, 50, 100, 500, 1000, 5000, or 10000). We simulated 

single end reads for chr22 using the same read length as the corresponding ENCODE dataset and 

setting the number of reads to twice of the number of aligned reads for chr22 in the real dataset 

since not all simulated reads will uniquely align back to the genome. Resulting reads were aligned 

to the hg19 reference genome using BWA-MEM v0.7.12-r1039, and duplicates were flagged using 

Picard v2.18.11. 

We used the bedtools (v2.27.1) makewindows command to generate a list of non-

overlapping windows across chr22 and the bedtools multicov command to count the number of 

reads from simulated or ENCODE BAM files falling in each 1kb window. We used the bedtools 

intersect command to determine the intersection of each bin with the input peak files. For each bin, 

we determined the Pearson correlation between log10 read counts in each simulated vs. ENCODE 

dataset after adding a pseudocount of 1 read to each bin. 

Timing experiments were performed in a Linux environment running Centos 7.4.1708 on 

a server with 28 cores (Intel® Xeon® CPU E5-2660 v4 @ 2.00GHz) and 125 GB RAM using the 

UNIX “time” command and are based on the “sys” time reported. 

 

5.4.4.2 Comparison to ChIPulate 

We compared performance of ChIPulate [5] to ChIPs based on the datasets described in 

Supplementary Table 5.3 and shown in Supplementary Figures 5.5-5.6. We first computed binding 

energies for each peak required as input. Binding probabilities 𝑆(𝑟)  for each peak 𝑟  were 
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computed as described above by scaling peak scores based on ENCODE data to be between 0 and 

1, similarly setting outlier peaks with scores higher than twice the median to have score 1. Then 

we computed binding energies for each region 𝑟 as: 

𝐸#CDE+% = 𝐸#E+CDE+% + 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙	𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 + ln y
1 − 𝑆(𝑟)
𝑆(𝑟) z (5.23) 

𝐸#CDE+%  and 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙	𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙  are provided as command line inputs to ChIPulate. We set 

chemical potential to 0, which provided the best dynamic range across peak scores and highest 

correlation with real data. Background binding energy was set to the default (1.0). 

ChIPulate parameters were set to achieve the same fragment length distributions, number 

of reads, and read lengths as in ENCODE data. Fragment length (--fragment-length) was set to the 

mean fragment size inferred by ChIPs learn. Read length (--read-length) was set to the read length 

of each dataset, ranging from 36bp to 101bp. Depth (-d) was set to the ratio of the number of reads 

in the ENCODE dataset mapped to chr22 divided by the number of peaks on chr22. We 

additionally set these parameters: p amp=0.50, p ext=0.54, --mu-A=0 based on examples shown 

in ChIPulate documentation. We used the parameter -n to vary the number of copies (simulation 

rounds) from 10 to 10,000. Runs with -n set to 1 or 5 failed and so were excluded from analysis. 

All other parameters were set to default values. Read counts in windows of 1kb were compared 

between simulated and ENCODE datasets using bedtools multicov as described above. 

 

5.4.4.3 Comparison to isChIP 

We similarly evaluated performance of isChIP v1.0 based on the datasets described in 

Supplementary Table 5.3 and shown in Supplementary Figures 5.4-5.5, setting parameters to 

mimic those of real datasets. Read length (-r) and the maximum number of reads (--rd-lim) were 

set based on read lengths and the number of reads aligned to chr22 in ENCODE data. The log of 
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the mean fragment length (-L) was set based on the mean fragment length inferred by ChIPs learn. 

We provided ENCODE peaks as input with option --bscore 0. Using ENCODE peak scores 

directly (--bscore 7) resulted in very poor correlation with real data. We used the parameter --cells 

to vary the number of cells from 1 to 10,000. 

Since we did not have a way to estimate foreground and background parameters (--ground 

option), we evaluated two settings. In the first, we set foreground to the spot score and background 

to the default value of 1. In the second, labeled “HighBG”, we increased the background noise to 

4. 

Unless otherwise specified, we set the number of PCR cycles to 0 (--pcr 0). Attempts to 

run with even small numbers of PCR cycles resulted in unreliable output. Results from setting --

pcr 10 are shown in Supplementary Figure 5.4. 

 

5.4.4.4 Simulating benchmarking peaks 

For experiments shown in Figure 5.2, we generated two sets of datasets meant to represent 

characteristics of either histone modification (HM) or transcription factor (TF) ChIP-seq datasets. 

We simulated a peak file for TF and HM each, with SP1 (bam=ENCFF001TYZ) and H3K27ac 

(bam=ENCFF411MHX) as templates. To generate peaks, we randomly placed peaks on the hg19 

genome sampling peak lengths and scores from distributions observed on real data. In total, we 

simulated 29,579 non-overlapping peaks for the TF dataset and 77,413 for the HM dataset. Results 

in Figure 2 are based on 350 TF peaks and 697 HM peaks on chr21. 

 

5.4.4.4 Evaluating effects of experimental parameters 
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For evaluating experimental parameters (Figure 2a-d), we used ChIPs to simulate reads 

from chr21 based on either the HM or TF peak sets described above. Unless otherwise noted, all 

runs used ChIPs simulate parameters --scale-outliers --numcopies 100 --numreads 100000 --

readlen 36 --gamma-frag 20,15 --pcr rate 0.8. For TF datasets, unless otherwise noted, all runs 

used model options --spot 0.40 --frac 0.001. For HM datasets, unless otherwise noted, all runs used 

model options --spot 0.45 --frac 0.01. For evaluating read number, the --numreads option was set 

to 100, 1000, 10000, 100000, or 1000000. For evaluating read length, the --readlen option was set 

to either 36, 75, 100, 125, 150, or 200. For evaluating PCR rate, the --pcr rate option was set to 

either 0.1, 0.25, 0.5, 0.625, 0.75, 0.875, or 1.0. For evaluating fragment length, the --gamma-frag 

option was set to either 10,14, 21,10, 40,7, 90,4, 200,3, or 400,2. In all cases separate datasets were 

generated for single and paired end reads using the --paired option to specify paired end output. 

Resulting reads were aligned to the hg19 reference genome using BWA-MEM v0.7.12-r1039, and 

duplicates were flagged using Picard v2.18.11. 

 

5.4.4.5 Evaluating peak callers 

We conducted multiple sets of experiments simulating paired-end ChIP-seq datasets with 

different SPOT scores (𝑠 ranging 0.01-0.5 for TF data and 0.01-0.75 for HM data). For each 

simulated dataset, we ran ChIPs simreads using the HM and TF model parameters described above 

and with additional options --paired --region chr21:1-48129895. We benchmarked peakcallers 

macs2 (v2.2.6), GEM (v3.4), MUSIC, BCP (peakranger v1.18), and HOMER. When running these 

peak callers, we applied their default parameter settings except flags indicating the types of input 

data (i.e., TF or HM). 
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To quantitatively evaluate the quality of the predicted peaks, we followed the metrics used 

in (Thomas et al., 2017) and trimmed each peak to 200bp around its summit. Then, we calculated 

the number of real peaks that peak callers retrieved as well as the number of predicted peaks that 

overlap with real peaks. 

 

5.4.5 Function comparison 

Below we compare how key steps of the ChIP-seq process are modeled by ChIPs in 

comparison to other recently developed ChIP-seq simulators (ChIPulate and isChIP). These 

differences are also summarized in Supplementary Table 5.1. 

 

5.4.5.1 Shearing 

• ChIPulate: uses a fixed fragment length. 

• isChIP: models variable fragment lengths drawn from a log-normal distribution with an 

optional size-selection step. 

• ChIPs: models variable fragment lengths drawn from a gamma distribution. Gamma and 

log-normal distributions often appear highly similar, and in practice we have not found this 

difference in fragment length distributions to have a significant impact on simulation 

results. 

 

5.4.5.2 Pulldown and binding efficiency 

• isChIP: models the probability of loss of selected foreground vs. background fragments 

compared to generated fragments. 
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• ChIPulate: models binding efficiencies of each binding site but does not consider 

background regions outside of specified binding sites. 

• ChIPs: models pulldown efficiency using a Bayesian model based on the SPOT score (s) 

and fraction of the genome found (f), both of which can be inferred from real datasets and 

peaks generated by a variety of peak-calling algorithms (Supplementary Figure 5.2). 

 

5.4.5.3 PCR 

• ChIPulate: models the amplification efficiency of each region as well as the number of 

PCR cycles. Of the three tools, the ChIPulate PCR model is most advanced but also most 

computationally intensive. 

• isChIP: copies each fragment 2n times, where n is the number of PCR cycles. In practice, 

because the total number of fragments exponentially increases, this process explodes after 

several cycles. In our simulation experiments, we have found that using even small 

numbers of PCR cycles (e.g., 10) results in unreliable output. 

• ChIPs: models the distribution of the number of duplicate reads. This parameter can be 

easily inferred from existing data and used to simulate realistic PCR duplicate patterns. 

 
 
5.4.5.4 Sequencing 

• ChIPulate: does not model sequencing errors. 

• isChIP: does not model sequencing errors. 

• ChIPs: models base substitution and indel rates based on real Illumina data. 
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5.5 Conclusions 

In summary, we present ChIPs, an efficient command-line program that can rapidly 

generate realistic ChIP-seq data over a wide range of experimental conditions. ChIPs can infer 

model parameters from real data and generate simulated data for both TF and HMs. The whole 

process takes just seconds to minutes for most applications. Our framework is modular, allowing 

future integration of alternative or improved models at various simulation steps. For example, we 

can further model multiple types of biases, such as the ones introduced by specific cross-linking 

steps. Or we can model the biases introduced during pulldown by inherent factors such as GC 

content or DNA accessibility. 

In this study, we benchmarked ChIPs against existing simulation tools and compared 

simulation results with a broad range of real ChIP-seq datasets as ground-truth. While all these 

tools could model multiple aspects of ChIP-seq data, we found that ChIPs most closely captures 

the properties of real ChIP-seq datasets. Another advantage of ChIPs is that, among all simulation 

tools benchmarked in this study, ChIPs is the only method capable of inferring model parameters 

from real data, allowing realistic simulation. 

We demonstrated the utility of ChIPs in several usage scenarios, including benchmarking 

peak calling methods and measuring the effects of experimental conditions on peak detection. 

Some potential future applications include (1) evaluating the effects of genetic variation, such as 

SNPs, indels, or repeats, on observed ChIP-seq signals, (2) modeling effects of biological 

processes, such as DNA replication, on ChIP-seq signals, and (3) analyzing effects of spike-in 

normalization controls. Overall, we envision our framework will serve as a valuable resource for 

future efforts in ChIP-seq analysis. 
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5.6 Supplementary figures 

 

Supplementary Figure 5.1: Inferring fragment length distributions from single-end reads. Green bars 
show a histogram of lengths of 10,000 randomly chosen fragments from GM12878 paired end ChIP-seq 
experiments. Red lines give the best fit gamma distribution learned using observed fragment lengths. Blue 
lines give the fit inferred ignoring pair information using our novel method for learning fragment length 
distributions from single end data. ENCODE accessions are given in Supplementary Table 5.3. 
 



132 
 

 

Supplementary Figure 5.2: Evaluation of pulldown parameter estimation with input TF and HM 
peaks from different peak callers. Each dot in the plots indicates an individual experiment and shows the 
comparison between estimated and expected alpha. Alpha is the ratio of pulldown probabilities of bound 
regions to unbound regions as described in the Supplementary Methods. The expected alpha was used in 
simulating reads and the estimated alpha was computed using our ChIPs learn module. Blue=BCP; 
orange=GEM; green=MACS2; red=MUSIC; purple=HOMER. In (a), (HM), α estimated based on MUSIC 
peaks becomes unreliable for simulated datasets with high s (SPOT) scores. This issue can be mitigated by 
applying the “scale-outliers” option in the learn module which reduces the effect of outlier peaks. In (b), 
(TF), the estimated alpha based on HOMER peaks is higher than expected. This is because HOMER is 
more stringent in deciding peak boundaries: the peak length from HOMER (mean=323.72bp) is smaller 
than the others (mean=746.22bp) and the ground truth (mean=448.80bp), resulting in the f value being 
underestimated and the 𝛼 value being overestimated. 
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Supplementary Figure 5.3: (a)-(d) Concordance of read counts between simulated vs. real ChIP-seq 
data. chr22 was divided into nonoverlapping 5kb bins. The scatter plots show the comparison of read counts 
per bin for bins overlapping peaks (dark blue) or background regions (dark red). The x- and y-axes are on 
a log10 scale. The plot shown is for 100 simulated genome copies. (e) Examples of coverage profiles of 
real vs. simulated data. 
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Supplementary Figure 5.4: Benchmarking of ChIPs against existing simulators. Evaluation of ChIPs 
against existing methods was performed by comparing the simulation results of each to real ChIP-
sequencing datasets covering a range of dataset types (both histone modifications and transcription factors), 
sequencing settings (single vs. paired end reads), and data qualities as measured by SPOT scores (s). a. The 
Pearson correlation between read counts of simulated vs. real (ENCODE) datasets for histone modifications 
and transcription factors was measured across a range of simulation rounds. isChIP was run with multiple 
parameter choices (isChIP: low background and no PCR, isChIP w/PCR: low background and 10 PCR 
cycles, isChIP HighBG: high background and no PCR). For datasets where paired-end data was available 
(BLCAF1 and IZKF1), we evaluated ChIPs using models learned from paired end data (dashed lines) and 
ignoring paired end information (solid lines). All other datasets are single-end. b. Box plots of the relative 
number of reads in peaks vs. background regions in simulated vs. real data per 1kb bins. Left (blue) are the 
peak regions, right (red) are the background regions. The median of the real (ENCODE) data is denoted as 
a dashed line in each plot. Read counts in each bin were normalized by the total number of reads aligned to 
chr22 for each dataset. 
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Supplementary Figure 5.5: Visualization of coverage profiles for different ChIP-seq simulators. 
Examples of coverage profiles of real vs. simulated data (brown=ENCODE, red=ChIPs, olive=isChIP, 
teal=ChIPulate. Brown bars show peaks called in the ENCODE data). Coverage profiles may also be 
viewed interactively at https://tinyurl.com/yblk3gb2. 
 

 
 
Supplementary Figure 5.6: Evaluation of the effects of varying experimental parameters on peak 
calling performance. Results are based on simulation of generic TF and HM datasets for chr21 as described 
in the chapter 5.4. For top plots the y-axis shows the recall (percent of real peaks inferred from simulated 
reads). For bottom plots the y-axis shows the precision (percent of inferred peaks that match simulated real 
peaks). (a) and (e) Recall and precision as a function of the total number of reads simulated from chr21. (b) 
and (f) Recall and precision as a function of read length. (c) and (g) Recall and precision as a function of 
PCR rate. The x-axis gives the parameter p, which can be interpreted as the percent of fragments with no 
PCR duplicates (Supplementary Table 5.2). (d) and (h) Recall and precision as a function of mean fragment 
length. Red=HM; Blue=TF; solid lines=paired end reads; dashed lines=single end reads. 
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Supplementary Figure 5.7: Evaluation of peak calling methods using simulated data. Noise levels are 
quantified using 𝑠, the fraction of pulled down reads that originate from true binding sites. Blue=BCP; 
orange=GEM; green=MACS2; red=MUSIC; purple=HOMER. Top plots show recall and bottom plots 
show precision. 
 
5.7 Supplementary tables 

Supplementary Table 5.1: Comparison of features in existing ChIP-seq simulation tools. 

Feature simchip ChIPulate isChIP ChIPs 

Simulates background noise Yes No Yes Yes 

Learns parameters from real data No No No Yes 

Simulates peaks at user-specified regions No Yes Yes Yes 

Simulates paired end reads No Yes Yes Yes 

Simulates sequencing errors Yes No No Yes 

Simulates PCR No Yes Yes Yes 

Fragment length model NA fixed (1kb) log-normal gamma 

User interface R package R package command-line 

Approximate run time relative to ChIPs - 16 0.16 1 
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Supplementary Table 5.2: ChIPs parameters learned or input by users. 

Parameters learned from real data (learn module) 

Parameter ChIP step simreads 
argument Description 

𝑘 Shearing --gamma-frag 
float,float Parameters of template lengths gamma distribution. 

𝑠 Pulldown --spot float SPOT score (percentage of reads falling in peaks). 

𝑓 Pulldown --frac float The fraction of the genome bound by the target factor. 

𝑝 PCR --pcr_rate float The percentage of fragments with no PCR duplicates. 

User-specified parameters 

Parameter ChIP step simreads 
argument Description 

𝑁 Input --numcopies int The number of rounds (genome copies) to simulate. 

𝑅 Sequencing --numreads int Target number of reads (or read pairs) to simulate. 

𝑙 Sequencing --readlen int Length of output reads. 

 Sequencing --paired Whether to output paired vs. single end data. 

𝑒 Sequencing --sub rate float Sequencing error rate. 

𝑑 Sequencing --del rate float Sequencing deletion rate. 

𝑖 Sequencing --ins rate float Sequencing insertion rate. 
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Supplementary Table 5.3: ENCODE accessions for benchmark datasets. BAM files and peak files 
corresponding to each accession can be found on the ENCODE Project website: 
https://www.encodeproject.org/files/{accession}. 

Cell type Epitope BAM accession PEAK accession Result 
K562 ZBTB2 ENCFF294LPO ENCFF551YGS Supplementary Figure 1 
K562 POLR2B ENCFF454PCU ENCFF729LTY Supplementary Figure 1 
K562 CC2D1A ENCFF054TBR ENCFF051PEB Supplementary Figure 1 
K562 GMEB1 ENCFF809QWF ENCFF154QJU Supplementary Figure 1 
K562 PYGO2 ENCFF288JVH ENCFF078LXS Supplementary Figure 1 
K562 DNMT1 ENCFF987HMB ENCFF958LLL Supplementary Figure 1 

GM12878 RELB ENCFF708KIW ENCFF355VTC Supplementary Figure 1 
GM12878 ETV6 ENCFF425VPI ENCFF959JZX Supplementary Figure 1 
GM12878 TARDBP ENCFF673WUM ENCFF016QUV Supplementary Figure 1 
GM12878 ZNF24 ENCFF699QHD ENCFF882PND Supplementary Figure 1 
GM12878 BACH1 ENCFF518TTP ENCFF866OLZ Supplementary Figure 1 
GM12878 SRF ENCFF387RFR ENCFF500GHH Supplementary Figure 1 
GM12878 H3K27ac ENCFF097SQI ENCFF465WTH Figure 1, Supplementary Figure 4 
GM12878 IKZF1 ENCFF216YZE ENCFF795PEX Supplementary Figure 3,4 
GM12878 H3K4me1 ENCFF252ZII ENCFF966LMJ Supplementary Figure 3,4 

K562 H3K4me3 ENCFF681JQI ENCFF127XXD Supplementary Figure 3,4 
K562 NFYA ENCFF000YUR ENCFF003WYE Supplementary Figure 3,4 

GM12878 BCLAF1 ENCFF671NSO ENCFF222GJV Supplementary Figure 4 
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CHAPTER 6 
CHAPTER 6 Conclusions 

 
 

Conclusions 
 

6 ____ 
In this dissertation, I presented AgentBind, a deep learning framework leveraging neural 

network architectures and state of the art model interpretation techniques to identify, visualize, and 

interpret sequence features predictive of regulatory activities. AgentBind use a two-step transfer 

learning scheme, enable it to accommodate datasets as small as 100 samples. This framework 

applies Grad-CAM, a post-analytical method for neural networks, to compute importance scores 

for each nucleotide in the input sequences and characterize sequence features potentially 

associated with biological functions and human genetic traits. And in chapter 1, I showed the 

applicability of AgentBind on genomic data and benchmarked both its classification and 

interpretation modules using a controlled simulated dataset with ground-truth available. 

Next, I demonstrated how to use AgentBind in real-world biological tasks in chapter 2 – 4. 

In chapter 2, I presented a research work in which my collogues and I applied AgentBind to 

identify and interpret sequence context features most important for predicting whether a particular 

motif instance will be bound by the TF of interest. We applied our framework to predict binding 

at motifs for 38 TFs in a lymphoblastoid cell line, score the importance of context sequences at 

base-pair resolution, and characterize context features most predictive of binding. Another use 

case I presented was to use AgentBind to prioritize genetic variants associated with human brain 

disorder (chapter 3). In this work, we integrated the AgentBind importance score with fine-

mapping results from GWAS and identified putative causal variants that may act via modulating 

enhancer activity. In chapter 4, I demonstrated a use case where my collogues and I applied 

AgentBind to epigenetic data for macrophages from five inbred strains of mice and identified the 
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dominant combinations of LDTFs and SDTFs influencing IL-4 enhancer activation. Our results 

uncover general mechanisms by which noncoding genetic variants influences signal-dependent 

enhancer activity, thereby contributing to strain-differential patterns of gene expression and 

phenotypic diversity. 

These biological findings, together with the benchmarking experiments in chapter 1, 

suggest that AgentBind is a reliable deep learning framework that helps in decoding the rules 

within non-coding DNA sequences and identifying the regulatory functions of non-coding genetic 

variants. This framework has been consistently shown to accurate and flexible in multiple studies 

across various types of biological activities, cells, and species. It has good potential to be extended 

to more applications and enables novel insights into regulation functions of non-coding DNA. 
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