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Daniel Yarlett (daniel.yarlett@gmail.com)2, & Michael Ramscar (michael.ramscar@uni-tuebingen.de)3 

1 Department of Psychological & Brain Sciences, Indiana University, Bloomington 
2 Referral Exchange, San Francisco 3 Department of Linguistics, University of Tübingen 

Abstract 

Distributional models of semantics assume that the meaning 
of a given word is a function of the contexts in which it 
occurs. In line with this, prior research suggests that a word’s 
semantic representation can be manipulated – pushed toward 
a target meaning, for example – by situating that word in 
distributional contexts frequented by the target. Left open to 
question is the role that order plays in the distributional 
construction of meaning. Learning occurs in time, and it can 
produce asymmetric outcomes depending on the order in 
which information is presented. Discriminative learning 
models predict that systematically manipulating a word’s 
preceding context should more strongly influence its meaning 
than should varying what follows. We find support for this 
hypothesis in three experiments in which we manipulated 
subjects’ contextual experience with novel and marginally 
familiar words, while varying the locus of manipulation. 

Keywords: distributional semantics; vector space models; 
discriminative learning; word frequency; semantic priming 

Introduction 
 In the study of human conceptual knowledge, a central 
theoretical question concerns how semantic representations 
are learned from the environment. How do speakers acquire 
knowledge of the meaning of a word and the precise 
contexts of its use? How are they able to make principled 
inferences about its senses and its similarity to other words? 
Inquiries in this domain have focused on two types of 
converging information sources that are thought to underpin 
these representations – perceptual and distributional 
(Andrews, Vigliocco, & Vinson, 2009; Bruni, Tran, & 
Baroni, 2014). Perceptual data derives from experiencing 
words in relation to the world, in connection with objects, 
events, and affordances in the immediate physical 
environment. Distributional data, by contrast, derives from 
experiencing words in relation to other words. While it is 
clear that neither data stream alone suffices to explain 
semantic representation, there appears to be considerable 
redundancy between them (Louwerse, 2007; Riordan & 
Jones, 2010).  
 Distributional models operate on the assumption that the 
similarity between two words is a function of the overlap 
between the contexts in which they occur, a principle 
commonly known as the distributional hypothesis (Firth, 
1957; Miller & Charles, 1991). For instance, encountering 
the word violin in the same context as classical and strings 
supports the inference that these words are semantic 
neighbors. Such an inference will also be supported for 
words that occur in closely related musical contexts, such as 
cello, but not for those that occur in unrelated contexts, such 

as jaguar. One of the key advantages of the distributional 
approach is that it provides an objective and replicable 
method of quantifying meaning, based solely on the 
statistical regularities found in large bodies of text. 
 Since the introduction of Latent Semantic Analysis (LSA; 
Landauer & Dumais, 1997) to the cognitive sciences, a 
variety of different distributional models have been 
proposed to account for semantic phenomena. Within this 
class of models, there is considerable variation in 
implementation (for the latest class, see Baroni, Dinu & 
Kruszewksi, 2014). Nevertheless, they share the same core 
architectural assumption that word meaning is derivable 
from lexical co-occurrence patterns. Words are represented 
as vectors within a high-dimensional semantic space, and 
word meanings as points located within that space. Whereas 
distributionally similar words tend to cluster together, words 
that occur in more distinctive contexts are more dispersed. 
The similarity relations derived from these models can then 
be used to account for phenomena as diverse as semantic 
priming (Jones, Kintsch, & Mewhort, 2006), semantic 
categorization (Bullinaria & Levy, 2007), and visual search 
(Huettig, Quinlan, McDonald, & Altmann, 2006).  
 Implicit in these models is the notion that the lexicon is a 
highly interconnected system. The representation of a given 
word is neither static nor modular, but changes as a function 
of lingustic experience, both with that word in particular, 
and with others within the lexicon. As a demonstration of 
this principle, McDonald and Ramscar (2001) manipulated 
readers’ semantic representations of marginally familiar and 
novel words by situating them in paragraph contexts that 
also contained close associates of a target meaning. For 
instance, subjects who read about a samovar in paragraph 
containing words like boil and electric rated it as closer to 
the meaning of kettle than subjects who read a modified 
version of the paragraph, which contained associates of an 
alternative meaning, urn. Even though subjects never 
directly observed the word kettle in training, their 
representation of the critical item—samovar—was moved 
closer to it, simply by virtue of encountering samovar in a 
similar linguistic context. 

Learning in Time 
 One question that arises from this, is the extent to which 
distributional learning about a particular item is influenced 
by the sequential structure of the context in which it is 
embedded (Elman, 1990; Jones & Mewhort, 2007). 
Language unfolds in time, with one word following another 
in succession. Thus, the influence that the local context 
exerts on the critical item might depend on whether it helps 
predict the occurrence of that item, or is, in turn, predicted 
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by it – that is, whether the context is encountered before or 
after the item. 
 This framing maps naturally onto the the convergent and 
divergent learning hierarchies described by Osgood 
(1949). These abstract schemas capture asymmetries in how 
information is structured in time (Figure 1). In associative 
learning, convergent hierarchies label a situation in which a 
variety of cues are associated with a functionally identical 
outcomes (C1, C2, ...Cx ⇒  O), while divergent hierarchies 
label the inverse scenario, in which a single cue is 
associated with varied outcomes (C ⇒  O1, O2, …Ox). 
Convergent hierarchies have been found to result in greater 
facilitation and positive transfer in learning, whereas 
divergent hierarchies yield interference and negative 
transfer.  

Figure 1: Sequential relationships between linguistic regularities. 
The left side of the figure shows a convergent hierarchy; the right, 
a divergent one (Ramscar, 2013). 

 The temporal asymmetries captured by these schemas 
appear to be ubiquitous in word learning (Ramscar et al., 
2010). Consider the problem of learning the relation 
between a class of things in the world – say, the category 
[ cat ] – and the word that denotes it – cat. Clearly, a sizable 
discrepancy exists between the rich array of perceptual 
features that belong to the class and the comparatively 
sparse acoustic features of the verbal label. Whereas the 
flesh and blood exemplars of the category exhibit a wide 
variety of discriminable features, across various perceptual 
modalities, the label itself comprises a simple sequence of 
sounds, which are likely to be perceived categorically 
(Kuhl, 2000). Accordingly, in a standard category learning 
paradigm, in which a category exemplar precedes its verbal 
label, a convergent hierarchy results. However, simply 
reverse the timing—by placing the label before the exemplar
—and the structure becomes divergent. 
 The terminology used to describe this pair of temporal 
structures varies by research domain. In the study of 
categorization, a distinction is commonly drawn between 
classification, in which subjects predict the class to which 
an exemplar belongs based on its features, in line with a 
convergent schema, and inference, in which subjects predict 
an exemplar’s feature values based on its class, in line with 
a divergent schema (Yamauchi & Markman, 1988). 
Likewise, in the study of causal reasoning, predictive 
reasoning licenses inferences from a variety of possible 
causes to a shared effect—both rain and sprinklers make 
grass wet—in line with a convergent schema, whereas 
diagnostic reasoning licenses inferences from a common 
cause to its possible effects—rain makes grass wet and 

green—in line with a divergent schema (Waldmann & 
Holyoak, 1992; Waldmann, 2000).  
 Learning algorithms can help provide a mechanistic 
account of how the structure of information in time affects 
what is learned in these tasks. A critical assumption shared 
by most models of learning, ranging from classical 
conditioning to perceptrons, is that learning is scaffolded by 
the predictions we make about our environments, and 
powered by the surprise we experience whenever there is a 
mismatch between expectation and reality. Learning 
proceeds as a continual process of updating and refining 
expectations, selectively weighting the most informative 
predictors to relevant outcomes, while eliminating 
redundant or potentially misleading cues. When our 
predictions align with reality, learning asymptotes 
(Rescorla, 1988). 
 To examine how convergent and divergent structures 
affect word learning, Ramscar and colleagues (2010) 
simulated supervised category learning with the Rescorla-
Wagner rule, while manipulating the sequencing of category 
exemplars and verbal labels. The findings were striking: The 
same algorithm, run over the same task, produced 
remarkably different representations of the learning 
environment, depending on the temporal sequencing of 
information: While convergent structures yielded predictive 
representations, divergent structures yielded veridical ones. 
Specifically, convergent schemas facilitated competition 
between the available perceptual features for associative 
weight, resulting in abstraction of the informative 
dimensions that best predicted the category label. By 
contrast, divergent schemas facilitated learning of the actual 
feature probabilities given the label. (For a closely related 
result in a different model architecture, see Yamauchi, Love, 
& Markman, 2002). 
 The differences in these representations can be mapped 
onto the differences between discriminative and generative 
classifiers in machine learning (Ng & Jordan, 2002). In 
learning a verbal category, the problem is to establish the 
likelihood of a category label L given some set of perceptual 
features F. To solve this problem, discriminative classifiers 
learn a direct mapping between features and labels, which 
yields p(L|F). Generative classifiers solve the same problem 
indirectly, by learning the joint probability of p(L, F) and 
relying on Bayesian inference to calculate the posterior 
likelihood of p(L|F). While discriminative classifiers are 
more efficient and better at minimizing error, generative 
classifiers operate with a more complete picture of the 
probability space (Levering & Kurtz, 2014). Convergent 
schemas yield p(L|F); divergent schemas p(L, F). 
 The resultant representations appear to be optimized for 
different tasks. In studies of human category learning, 
convergent schemas benefit the learning of categories that 
require information-integration (Ashby, Maddox, & Bohil, 
2003; Yamauchi et al., 2002), which likely form the 
majority of natural kinds (Rosch & Mervis, 1975). 
However, there are notable drawbacks to categorical 
responding. As a category structure becomes better learned, 
stimulus dimensions that are relevant to a particular 
categorization are selectively attended, such that they 
acquire distinctiveness, while irrelevant dimensions are 
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ignored, or down-weighted, maximizing intra-category 
similarities and inter-category differences (Goldstone, 1994; 
Lawrence, 1949; Nosofsky, 1986). Accordingly, while 
convergent schemas support accurate categorization across 
an array of perceptual domains, they can also systematically 
alter similarity relations, impairing memory for exemplars 
seen in training (Davis & Love, 2010; Dye & Ramscar, 
2009) and distorting judgements of the underlying featural 
space (Yamauchi & Markman, 1998). Likewise, in causal 
inference, whereas predictive reasoning is susceptible to 
blocking effects, diagnostic reasoning is not (Waldmann & 
Holyoak, 1992). The optimal information structure at 
encoding thus depends on the demands imposed at retrieval 
(Tulving & Thomson, 1973). 
 Previous research has examined the effect of these 
asymmetric information structures on category learning and 
causal inference. This paper addresses itself to distributional 
learning, where what is learned is not the relation between 
words and physical referents, but rather that of words in 
relation to each other. 

Table 1: Design differences between studies. 

Studies 
 In the following three experiments, our aims were first, to 
build on the original findings of McDonald and Ramscar 
(2001)—which demonstrated that a pair of words can be 
moved closer together in semantic space even if they have 
never been encountered together—and second, to 
investigate whether readers would attach more weight to the 
associates that occurred before a word of interest, rather 
than after, as predicted by previous simulations (Ramscar et 
al. 2010).  
 The three studies presented here are all variations on the 
same principal design. In training, subjects read short 
passages containing critical words. These passages had been 
constructed such that the contexts occurring before the 
critical item were designed to encourage one set of 
inferences about its meaning, while the contexts occurring 
after it were designed to encourage a different, competing 
set of inferences. This design allowed us to measure the 
relative influence of preceding and succeeding contexts on 
semantic representation. 
 Variations on this design were devised to investigate the 
robustness of the predicted effects of training, and included 
(e.g.) the choice of cover story, the semantic proximity of 

the topic meanings to the critical item and to each other, and 
the precise organization and length of training and test 
blocks (Table 1). Detailed descriptions of each experimental 
design, including counterbalancing and randomization, 
timing procedures, and lexical controls, are available in the 
Supporting Materials. 

The training phase of each study required a set of critical 
items, competitor topic meanings, and a set of close lexical 
associates of each topic. From these materials, a set of 
triplets was created, each of which consisted of a critical 
word and two different topic meanings. One of these topic 
words was designated the preceding topic, and the other, the 
succeeding topic (Table 2). 

Table 2: An example of a training triplet taken from Study 2, in 
which the critical word fugue has been paired with the competing 
topics dream and music.  

For each topic in a given triplet, corpus data were used to 
generate a ranked list of its lexical associates. These were 
used to construct training trigrams, which consisted of the 
critical item and a pair of its topics’ close associates on 
either side of it (Tables 3 & 4). These training trigrams were 
embedded into larger strings, which subjects were 
incidentally exposed to in training. The precise number of 
training trials varied by study. 

Table 3: Abstract representation of the training trigrams for a given 
critical word and its two topic meanings.  

Table 4: Partial training sets in Study 2 for the critical item fugue 
and its topic synonyms dream and music. In Condition 1 (right), 
the ordering of associates is reversed from Condition 2 (left). 

Post-training, two tests were administered. In the first, a 
semantic priming task, a prime word was briefly presented 
on-screen, and subjects were asked to determine whether the 
following word was a real word in English. Each critical 
item was tested in combination with its two competitor 
topics, alternating its position as a prime or target (Table 5). 

Triplet topic1 critical topic2

dream fugue music

Condition 1 Condition 2

T1 

associate1
critical T2 

associate1

T2 

associate1
critical T1 

associate1

T1 

associate2
critical T2 

associate2

T2 

associate2
critical T1 

associate2

… critical … … critical …

T1 

associateN
critical T2 

associateN

T2 

associateN
critical T1 

associateN

{DREAM, critical, MUSIC} {MUSIC, critical, DREAM}

chasing fugue listening listening fugue chasing

lucid fugue classical classical fugue lucid

worthy fugue primal primal fugue worthy

Study 1 2 3

Cover Story Alien 
Grammar

Man vs. 
Machine

Semantic 
Identification

Training 
Design

10 Train-Test 
Blocks

1 Train-Test 
Block

1 Train-Test 
Block

Training 
Length

8 Associates / 
Topic

15 / Topic 15 / Topic

Critical Item Pseudoword LF LF & HF

Topic 
Meanings

Random 
Assignment

Synonyms of 
Critical Item

Semantic 
Category
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Subsequently, in a semantic similarity rating task, subjects 
were asked to rate the similarity of various word pairs on a 
numerical scale, ranging from “unrelated in meaning” to 
“identical in meaning”. Each critical item was alternately 
paired with its two topics (Table 6). 

Table 5: Example test trials from the semantic priming task. 

Table 6: Example test pairs from the semantic rating task. 

A key point of difference between studies was the 
frequency of the critical item: Study 1 employed pseudo-
words, Study 2, low frequency items, and Study 3, a mix of 
high (HF) and low frequency (LF) items. 

Hypotheses 
Priming Semantic priming is a classic paradigm for 
studying representation in semantic memory (Neely, 1991). 
A general finding is that a target item will be processed 
more efficiently when it is preceded by a semantically 
related prime, with the degree of facilitation depending on 
the relatedness of the pair. For instance, bread will be 
processed more quickly and accurately when it is preceded 
by butter than when it is preceded by nurse (Meyer & 
Schvaneveldt, 1971). When what is studied is the extent to 
which recently trained associations can facilitate priming—
as is the case here—the priming is classed as episodic 
(Hayes & Bissett, 1998; McKoon & Ratcliff, 1979). When 
those associations are indirectly trained, it can be further 
classed as mediated (Lowe & McDonald, 2000). 
 In our studies, a key consideration is that lexical 
processing is sensitive to temporal contingencies (Deese, 
1965). If subjects learn about both the associative and 
temporal relations between critical items and their topics, 
then they should be faster and more accurate on lexical 
decision trials that are consistent with the sequences 
observed in training. For example, in training sequences in 
which Topic1 → Critical → Topic2, Topic1 should be a better 
prime to the critical item than Topic2, and Topic2 should be 
better primed by the critical item than Topic1. 

Similarity Similarity judgments can be affected by the 
dimensions of alignment that are currently deemed salient to 
the comparison (Nosofsky, 1986; Tversky, 1977). In the 
domain of perceptual learning, simulations of convergent 
and divergent schemas indicate that they develop different 
feature weights, resulting in correspondingly different 
representations of the similarity space among exemplars 
(Ramscar et al., 2010). 
 If distributional learning is also sensitive to how 
information is structured in time, then the associative 
relations the critical item develops with its topics over 

training should similarly depend on the positioning of their 
associates. When multiple lexical associates serve to predict 
a critical item, the information structure will be convergent; 
when the critical item serves to predict multiple lexical 
associates, the structure will be divergent (see Figure 1).  
 In the convergent case, competition between the lexical 
associates present in the preceding context should 
preferentially weight the shared semantic features they have 
in common with their topic word. By contrast, in the 
divergent case, weights will be tuned according to co-
occurrence rates, which may not select for the most 
predictive dimensions. Convergent learning should therefore 
bring the preceding topic into closer alignment in similarity 
space with the critical item (Dye & Ramscar, 2009). 

Study 1 
 Subjects were told that scientists had intercepted an alien 
communication that they had managed to partially translate, 
but needed further help in order to fully decode. Participants 
were presented with a series of these cryptic messages, and 
instructed to learn as much as they could about the alien 
word in the middle. That critical item was always a 
nonsense word. 

The experiment was designed such that each subject 
completed ten short experimental sessions, comprising both 
training and test, one after the other. This meant that 
participants learned about each critical item in individual 
blocks, rather than learning about multiple items 
simultaneously. The design was fully randomized, such that 
the specific pairing of topic meanings with a given critical 
item varied by participant. At the end of the experiment, 
results were aggregated across all sessions. 

Participants Eighteen Stanford University undergraduates 
participated for course credit. 

Results In the semantic priming task, lexical decision 
accuracy was at ceiling, averaging 98%. However, 
differences in response time were apparent. A paired 
samples t-test revealed that when the critical item served as 
a prime to one of its topics, subjects were significantly faster 
at recognizing succeeding topic words than preceding topic 
words [t(17)=2.30, p=0.017], with a mean 37 ms advantage. 
However, this advantage was mediated by the prime type: 
when the topic words themselves served as primes to the 
critical item, no difference was observed between the 
preceding and succeeding topics [t(17)=0.25, p>0.5].  
 After completing the priming task, subjects rated the 
semantic similarity of each critical item and its competitor 
topics. A sequential learning account suggests that the 
preceding topic word should become more similar to the 
critical item over training. In line with this prediction, 
subjects rated the preceding topic word as significantly 
more similar to the critical item than the succeeding topic 
word [t(17)=2.27, p=0.018]. Non-parametric analyses of the 
data, with the Wilcoxon signed-ranks test, yielded the same 
pattern of results. 

Study 2 
 Subjects were told they were taking part in a study testing 
their ability to distinguish human from artificial intelligence. 

Semantic 
Priming

topic1 ! 
critical

critical ! 
topic1

topic2 ! 
critical

critical ! 
topic2

music ! 
fugue

fugue ! 
music

dream ! 
fugue

fugue ! 
dream

Semantic 
Similarity

topic1  | critical topic2 | critical

music | fugue dream |  fugue
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On each trial, they were presented with a trigram sequence 
(Table 4), and asked to judge whether those words had 
come from a text generated by a human or a computer. In 
this study, critical items were LF words, whose potential 
topic meanings were plausible synonyms (e.g., the critical 
item abscond was matched with the topic words hide and 
flee). The design was counterbalanced such that the position 
of each topic word was split evenly across participants. 
Testing was conducted at the end of the full training session. 

Participants 43 undergraduates at Indiana University, 
Bloomington participated for course credit. 

Results The test results of Study 2 replicate the pattern of 
results in Study 1. In the priming task, lexical decision 
accuracy averaged 86.4% overall and 81.8% for critical 
items. A dependent samples t-test revealed that when the 
critical item served as a prime to one of its topics, subjects 
were faster [t(42)=-1.73, p=0.046] and more accurate 
[t(42)=2.45, p=0.009] at recognizing topic words that had 
followed that item, compared to those that had preceded it. 
A by-items analysis produced a similar pattern for speed 
[t(27)=1.53, p=0.068] and accuracy [t(27)=1.85, p=0.038]. 
This facilitation pattern was not evident when HF topic 
words primed LF critical items. 
 After completing the priming task, subjects rated the 
semantic similarity of each critical item and its competitor 
topics. Consistent with Study 1, a dependent samples T-test 
revealed that preceding topics were rated more similar to 
critical items, both by subjects [t(42)=2.99, p=.002] and 
items [t(13)=2.83, p=0.007]. Non-parametric analyses, with 
the Wilcoxon signed-ranks test, confirmed the pattern of 
results. 

Study 3 
 Subjects were told they were taking part in a study on 
reaction time. Words were presented one by one, and 
subjects were instructed to make a keyboard response every 
time they saw an item that was either a fruit or a piece of 
furniture. Training trigrams (Figure 4) were pseudo-
randomly interspersed throughout this text sequence, with 
the design counterbalanced such that the position of each 
topic word was split evenly across participants. 
 To further assess the extent to which the frequency of the 
critical item might mediate the predicted effects, both HF 
and LF critical words were chosen, and each pair of topic 
meanings was assigned to a pair of unrelated critical items, 
one in each frequency band (e.g., the critical items jacket 
and repast were both assigned the same topic pair). Topic 
meanings were moderately semantically related to each 
other, but not to either critical item. 
 As with Study 2, testing was conducted at the end of the 
full training session. 

Participants 26 undergraduates at Indiana University, 
Bloomington participated for course credit. Two subjects 

were dropped from the similarity analyses for selecting the 
same number for every pair. 

Results Study 3 largely replicated the pattern of results in 
Study 1 and 2. However, in the semantic priming task,  the 
locus of the effect was different: Lexical decision accuracy 
was at ceiling when HF topic words served as targets 
(98.7%). However, when topic words served as primes to 
the critical items, a 2 (training position) by 2 (critical item 
frequency) repeated measures ANOVA revealed main 
effects of item frequency for accuracy [F(1,25)=16.86, 
p<0.001] and RT [F(1,25)=29.49, p<0.001], and of training 
position for accuracy [F(1,25)=3.82, p=.061]: Subjects were 
faster and more accurate at recognizing HF targets overall, 
and more accurate at recognizing critical items that had 
followed that topic in training, compared to those that had 
preceded it. 
 Analysis of the similarity ratings data revealed a main 
effect of training position [F(1,22)=5.09, p=.034], a main 
effect of topic frequency [F(1,22)=10.07, p=.004], and a 
marginally significant interaction between training position 
and critical item frequency [F(1,22)=3.88, p=.062]. Post hoc 
analyses (Tukey HSD) indicated that, as predicted, LF 
critical items became more similar to their topic words over 
training than did HF items. Further, the effect of the training 
manipulation was mediated by the frequency of the critical 
item: The preceding topic word was rated as significantly 
more similar than the succeeding topic word for LF items 
(p<.03), but not for HF items. 

Discussion 
Priming Results Speakers appear to be finely attuned to the 
statistical regularities of their language, allowing them to 
anticipate upcoming linguistic events based on the current 
input (Pickering & Garrod, 2007). This notion is supported 
by our priming results in Studies 1 and 2, which indicate 
that when the critical items served as primes, subjects were 
significantly faster to respond to topic words whose 
associates had occurred after the critical items in training. 
This suggests that episodic priming is sensitive not only to 
temporal contiguity, but also to directionality.  1

Interestingly, however, when the prime order was 
reversed, and the topic words served to prime the critical 
items, the effect disappeared in two of the three studies. The 
effect thus appears to be mediated by the frequency 
relationship between primes and targets.  

At first blush, the results of Studies 1 and 2 may seem 
surprising. In semantic priming, a common finding is that 
while HF targets are responded to more efficiently overall, it 
is LF targets that typically show greater facilitation from 
semantically-related HF primes (Becker, 1979)—not HF 
targets, as in our studies. However, there are important 
differences between studies that test semantic memory (pre-
existing semantic associations in long term memory), and 
those that test episodic memory (associations developed 
over the course of study), like ours.  

 Our results may seem to invite comparison with those reported in associative priming, where the facilitation provided by forwards and backwards priming is 1

frequently indistinguishable (Koriat, 1981; Thompson-Schill et al., 1998). However, the association norms employed in such studies are distinct from the type of 
association built through temporal co-occurrence patterns (Jones et al., 2006; Lund, Burgess, & Audet, 1996), and are thus not directly comparable to our findings.
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While HF words outperform LF words in semantic tasks, 
and appear to be more broadly accessible in the lexicon, in 
episodic paradigms, it is LF words that tend to be better 
recognized and recalled (Gregg, 1976). This is due, at least 
in part, to the fact that HF words occur in many more 
contexts than LF words, making them less associable with 
any given experimental context (Anderson, 1974; Steyvers 
& Malmberg, 2003).  

The studies presented here examined the extent to which 
recently trained semantic and temporal associations 
facilitate priming. As with other episodic tasks, LF words 
should develop stronger associations to other experimental 
items than HF words (the similarity analyses in Study 3 
attest to this). The key consideration is that these 
associations are directional: For a given item, its 
connections to other words may be distinct from its 
connections from other words (Nelson & McEvoy, 2000). It 
follows sensibly then that in Studies 1 and 2, the LF critical 
items served as effective cue to the HF topic words, even 
when the reverse does not obtain (Ramscar et al., 2014). 

Similarity Results Across three studies, critical items were 
rated as more similar to their preceding topics than their 
succeeding topics, a finding predicted by previous modeling 
simulations of convergent and divergent learning schemas. 
As with the priming results, the effect of this training 
manipulation was modulated by the frequency of the critical 
item (Study 3). 

General Discussion 
Learning is a temporal phenomena, and it can produce 

asymmetric outcomes depending on how information is 
structured in time. Such asymmetries have been previously 
documented in causal reasoning (Waldmann & Holyoak, 
1992) and categorization (Ashby et al., 2002; Ramscar et al., 
2010; Yamauchi et al., 2002), and are also attested in 
sequential learning in non-human animals (Chen et al., 
2016). The goal of the present research has been to 
investigate whether these asymmetric effects might be 
similarly observable in distributional learning from reading. 
Across three experiments, our results affirm that they are. 
An obvious next step is to assess whether models that learn 
distributed semantic representations of words can replicate 
these findings (following Jones et al., 2006). 

An additional theoretical possibility raised here is that 
linguistic regularities may play different functional roles 
depending on whether they participate in convergent or 
divergent schemas. Suggestive evidence has been offered in 
artificial language experiments: Whereas stable prefixes and 
their following nouns are better learned, stable suffixes 
increase the similarity among those nouns, helping them 
cohere better as a category (Ramscar, 2013; see also Valian 
& Coulson, 1988). Biases toward prefixing or suffixing may 
thus represent a trade-off between ease of processing and 
learnability, with suffixes facilitating the discovery of 
grammatical categories among young learners (St. Clair, 
Monaghan, & Ramscar, 2009), and prefixes serving to 
reduce uncertainty in online comprehension  and production 
(Dye et al., 2017). This proposal is consistent with the 
finding that in child-directed speech, new words are 

preferentially introduced in utterance-final positions 
(Fernald & Mazzie, 1991), which appears to promote the 
best learning outcomes (Fernald, Thorpe, & Marchman, 
2010; Yu & Smith, 2012). In future research, this framework 
might be extended to address broader typological questions 
on the forces at work in language change and evolution. 
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