Lawrence Berkeley National Laboratory

LBL Publications

Title

Functional Encyclopedia of Bacteria and Archaea

Permalink

https://escholarship.org/uc/item/3g52b0x4

Authors

Blow, M. J. Deutschbauer, A. M. Hoover, C. A. <u>et al.</u>

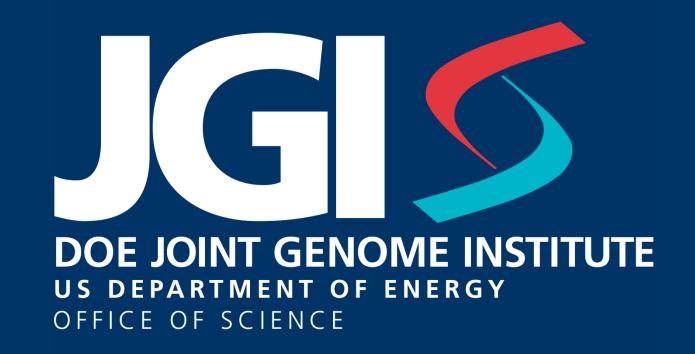
Publication Date 2013-03-26

Chromatin landscaping in algae reveals novel regulation pathway for biofuels production

Chew Yee Ngan¹, Chee-Hong Wong¹, Cindy Choi¹, Abhishek Pratap¹, James Han¹, Chia-Lin Wei¹

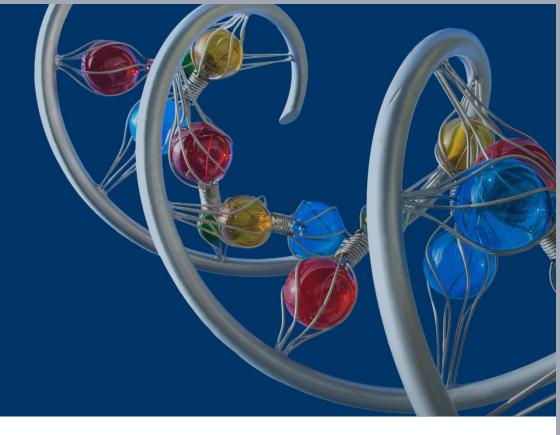
1 Department of Energy Joint Genome Institute // LBNL - Walnut Creek, CA

^aTo whom correspondence may be addressed. E-mail: <u>cyngan@lbl.gov</u>


February 19, 2013

ACKNOWLEDGMENTS:

The work conducted by the US Department of Energy (DOE) Joint Genome Institute is supported by the Office of Science of the DOE under Contract Number DE-AC02-05CH11231. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government, or any agency thereof, or the Regents of the University of California.


DISCLAIMER:

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California

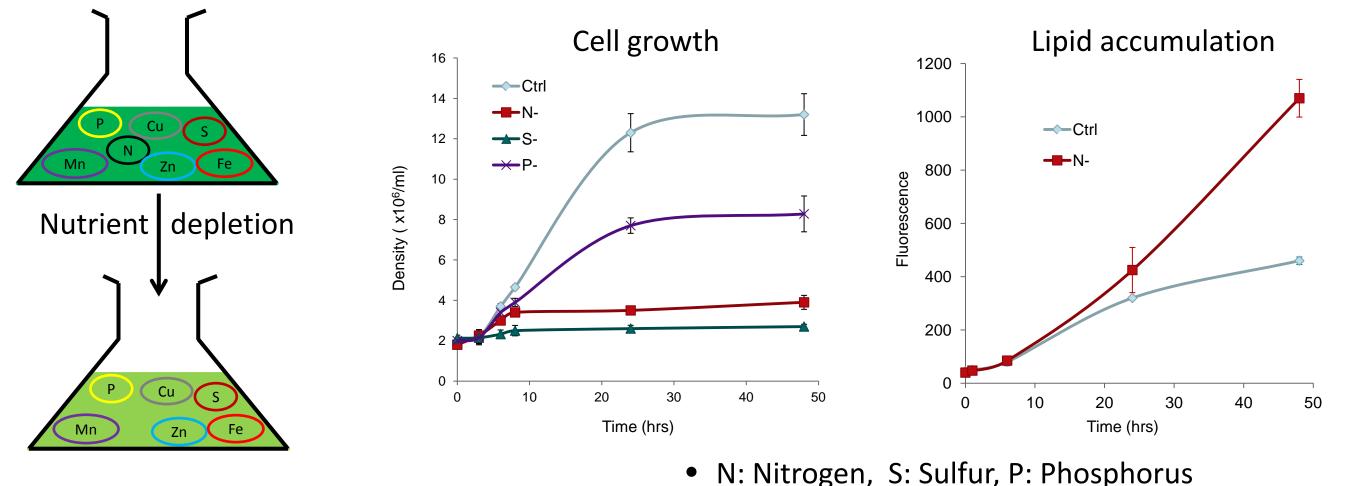
Chromatin landscaping in algae reveals novel regulation pathway for biofuels production

Chew Yee Ngan, Chee-Hong Wong, Cindy Choi, Abhishek Pratap, James Han, Chia-Lin Wei

Summary

The diminishing reserve of fossil fuels calls for the development of biofuels. Biofuels are produced from renewable resources, including photosynthetic organisms, generating clean energy. Microalgae is one of the potential feedstock for biofuels production. It grows easily even in waste water, and poses no competition to agricultural crops for arable land. However, little is known about the algae lipid biosynthetic regulatory mechanisms. Most studies relied on the homology to other plant model organisms, in particular Arabidopsis or through low coverage expression analysis to identify key enzymes. This limits the discovery of new components in the biosynthetic pathways, particularly the genetic regulators and effort to maximize the production efficiency of algal biofuels. Here we report an unprecedented and de novo approach to dissect the algal lipid pathways through disclosing the temporal regulations of chromatin states during lipid biosynthesis. We have generated genome wide chromatin maps in chlamydomonas genome using ChIP-seq targeting 7 histone modifications and RNA polymerase II in a time-series manner throughout conditions activating lipid biosynthesis. To our surprise, the combinatory profiles of histone codes uncovered new regulatory mechanism in gene expression in algae. Coupled with matched RNA-seq data, chromatin changes revealed potential novel regulators and candidate genes involved in the activation of lipid accumulations. Genetic perturbation on these candidate regulators further demonstrated the potential to manipulate the regulatory cascade for lipid synthesis efficiency. Exploring epigenetic landscape in microalgae shown here provides powerful tools needed in improving biofuel production and new technology platform for renewable energy generation, global carbon management, and environmental survey.

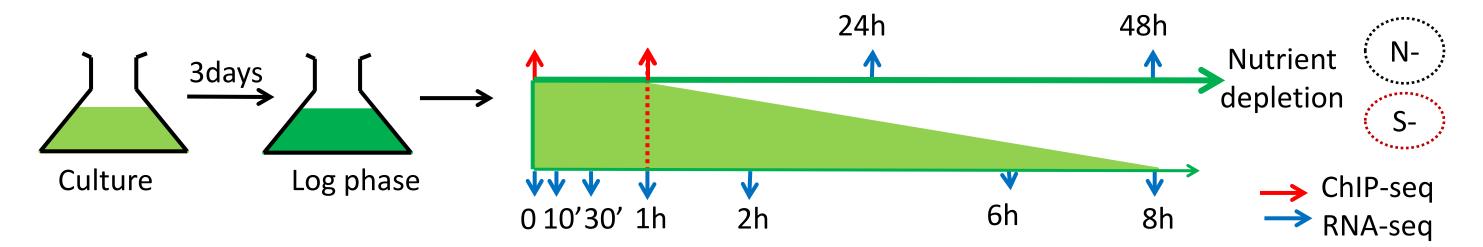
Land Required to Displace All Gasoline in the United States **Com Grain Ethanol** Alga e Biodiesel 2006 Com Crop Service RF 2011 Science


Microalgae potentially produces the highest oil yield with the smallest land area required.

Chlamydomonas as model for algal biofuel feedstock

Chlamydomonas reinhardtii as a reference model

- Unicellular green algae (Chlorophyta), found all over the world, in soil, fresh water, oceans
- The most widely used laboratory species is *Chlamydomonas reinhardtii*
- Cells can grow on a simple medium of inorganic salts, using photosynthesis to provide energy
- Reference genome available


Lack of nutrients induces lipid accumulation chlamydomonas.

- Unique Advantages of Algae as Biofuel Feedstock
- High area productivity
- Non-seasonal, fast growing
- Minimum competition with agriculture
- Flexibility on water quality
- Renewable energy
- Recycles stationary emissions of CO₂

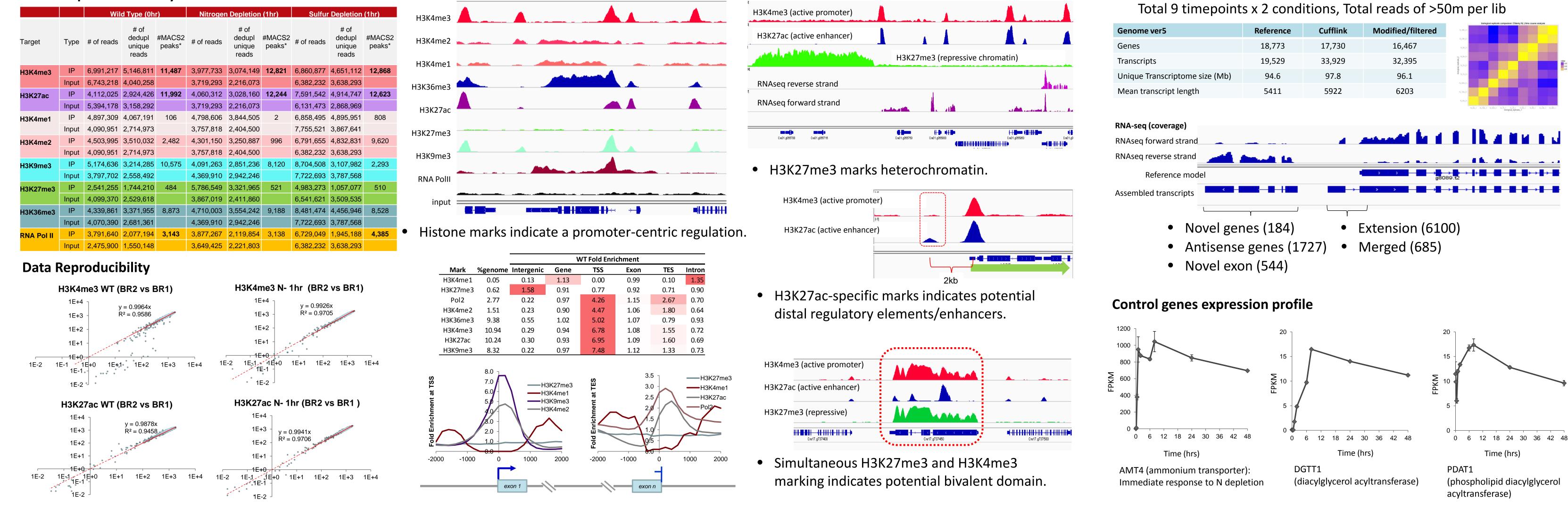
Ref:DOE National Algal Biofuels Technology Roadmap 2010

Experimental Design

Transcriptome

Data summary

Genome ver5	Reference	Cufflink	Modified/filtered
Genes	18,773	17,730	16,467
Transcripts	19,529	33,929	32,395
Unique Transcriptome size (Mb)	94.6	97.8	96.1
Mean transcript length	5411	5922	6203
RNA-seq (coverage)			
RNAseq forward strand			anandi ke i
RNAseq reverse strand	baude La		
Reference model		•	
Assembled transcripts		→	> > <mark>-</mark>


• Novel genes (184) • Extension (6100) Antisense genes (1727) • Merged (685)

Chromatin Landscape

		Wild Type (0hr)			Nitroger	n Depletion	(1hr)	Sulfur Depletion (1hr)			
Farget	Туре	# of reads	# of dedupl unique reads	#MACS2 peaks*	# of reads	# of dedupl unique reads	#MACS2 peaks*	# of reads	# of dedupl unique reads	#MACS2 peaks*	
H3K4me3	IP	6,991,217	5,146,811	11,487	3,977,733	3,074,149	12,821	6,860,877	4,651,112	12,868	
	Input	6,743,218	4,040,258		3,719,293	2,216,073		6,382,232	3,638,293		
H3K27ac	IP	4,112,025	2,924,426	11,992	4,060,312	3,028,160	12,244	7,591,542	4,914,747	12,623	
	Input	5,394,178	3,158,292		3,719,293	2,216,073		6,131,473	2,868,969		
H3K4me1	IP	4,897,309	4,067,191	106	4,798,606	3,844,505	2	6,858,495	4,895,951	808	
	Input	4,090,951	2,714,973		3,757,818	2,404,500		7,755,521	3,867,641		
H3K4me2	IP	4,503,995	3,510,032	2,482	4,301,150	3,250,887	996	6,791,655	4,832,831	9,620	
	Input	4,090,951	2,714,973		3,757,818	2,404,500		6,382,232	3,638,293		
H3K9me3	IP	5,174,636	3,214,285	10,575	4,091,263	2,851,236	8,120	8,704,508	3,107,982	2,293	
	Input	3,797,702	2,558,492		4,369,910	2,942,246		7,722,693	3,787,568		
H3K27me3	IP	2,541,255	1,744,210	484	5,786,549	3,321,965	521	4,983,273	1,057,077	510	
	Input	4,099,370	2,529,618		3,867,019	2,411,860		6,541,621	3,509,535		
H3K36me3	IP	4,339,861	3,371,955	8,873	4,710,003	3,554,242	9,188	8,481,474	4,456,946	8,528	
	Input	4,070,390	2,681,361		4,369,910	2,942,246		7,722,693	3,787,568		
RNA Pol II	IP	3,791,640	2,077,194	3,143	3,877,267	2,119,854	3,138	6,729,049	1,945,188	4,385	
	Input	2,475,900	1,550,148		3,649,425	2,221,803		6,382,232	3,638,293		

Genomic features

Data mining: Searching for common players in lipid biosynthesis pathway

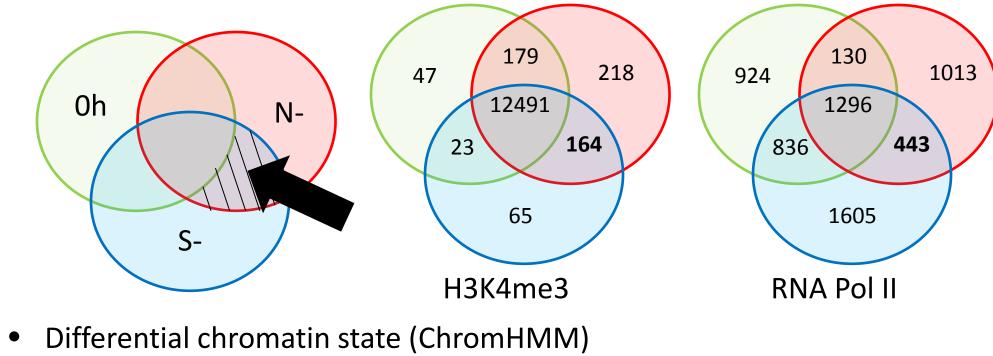
214

7546

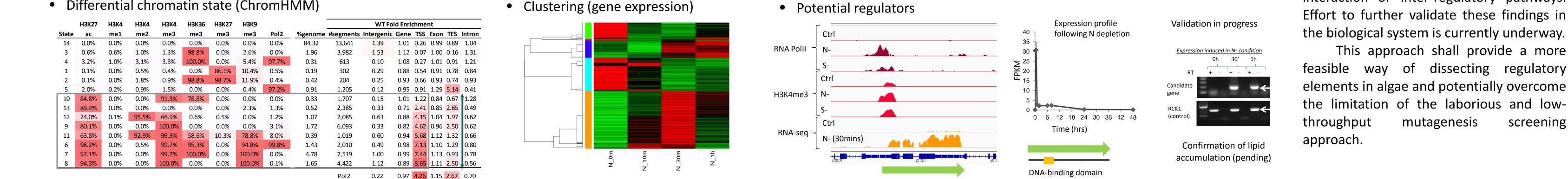
356

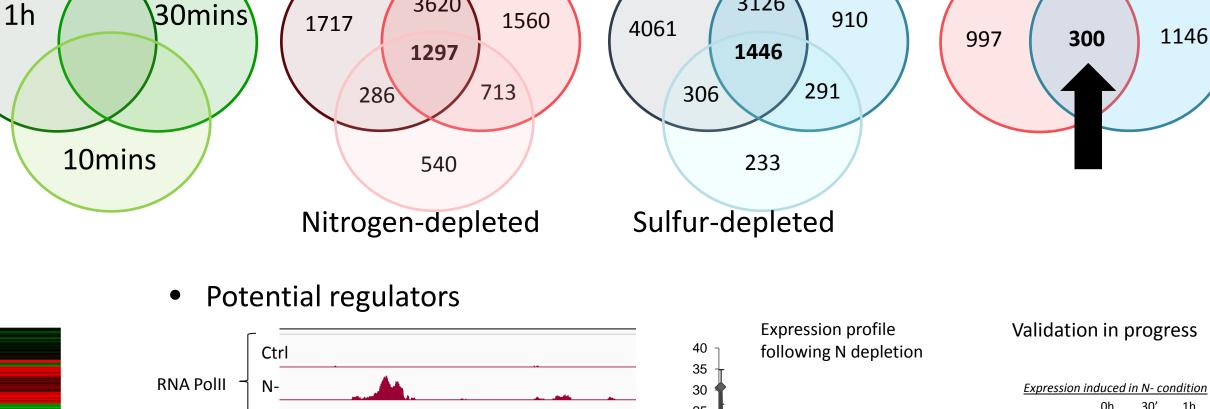
H3K36me3

582


335

539


464


Multiple approaches targeting common differentially regulated components in nitrogen and sulfur depleted conditions.

• Simple differential modified histone marks

	H3K27	H3K4	H3K4	H3K4	H3K36	H3K27	H3K9			WT Fold Enrichment						
State	ac	me1	me2	me3	me3	me3	me3	Pol2	%genome	#segments	Intergenic	Gene	TSS	Exon	TES	Intron
14	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	84.32	13,641	1.39	1.01	0.26	0.99	0.89	1.04
3	0.6%	0.6%	1.0%	1.3%	98.8%	0.0%	2.6%	0.0%	1.96	3,982	1.53	1.12	0.07	1.00	0.16	1.31
4	3.2%	1.0%	3.1%	3.3%	100.0%	0.0%	5.4%	97.7%	0.31	613	0.10	1.08	0.27	1.01	0.91	1.21

3126

Here, we report a pilot attempt to understand the regulation of algae lipid biosynthetic pathways by genome wide chromatin landscaping. Deep sequencing of transcriptome also provide supporting data to further dissect the regulatory pathways.

Discussion

Computational analysis have enabled us to narrow into a smaller group of highly potential regulators. In-depth analysis is still on going to map out a potential interaction or inter-regulatory pathways. Effort to further validate these findings in the biological system is currently underway.

This approach shall provide a more

screening

The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

• Differential gene expression (targeting early response)

3620