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Abstract
Objectives: To evaluate whether combining fast acquisitions with deep-learning reconstruction can provide diagnostically useful images and
quantitative assessment comparable to standard-of-care acquisitions for lumbar spine magnetic resonance imaging (MRI).

Methods: Eighteen patients were imaged with both standard protocol and fast protocol using reduced signal averages, each protocol including
sagittal fat-suppressed T2-weighted, sagittal T1-weighted, and axial T2-weighted 2D fast spin-echo sequences. Fast-acquisition data was addition-
ally reconstructed using vendor-supplied deep-learning reconstruction with three different noise reduction factors. For qualitative analysis, stand-
ard images as well as fast images with and without deep-learning reconstruction were graded by three radiologists on five different categories.
For quantitative analysis, convolutional neural networks were applied to sagittal T1-weighted images to segment intervertebral discs and verte-
bral bodies, and disc heights and vertebral body volumes were derived.

Results: Based on noninferiority testing on qualitative scores, fast images without deep-learning reconstruction were inferior to standard images
for most categories. However, deep-learning reconstruction improved the average scores, and noninferiority was observed over 24 out of 45
comparisons (all with sagittal T2-weighted images while 4/5 comparisons with sagittal T1-weighted and axial T2-weighted images). Interobserver
variability increased with 50 and 75% noise reduction factors. Deep-learning reconstructed fast images with 50% and 75% noise reduction fac-
tors had comparable disc heights and vertebral body volumes to standard images (r2 � 0.86 for disc heights and r2 � 0.98 for vertebral body
volumes).

Conclusions: This study demonstrated that deep-learning-reconstructed fast-acquisition images have the potential to provide noninferior image
quality and comparable quantitative assessment to standard clinical images.

Keywords: lumbar spine MRI; lower back pain; fast acquisition; deep learning reconstruction; clinical MRI; segmentation

Introduction

Lower back pain (LBP) is a major cause of disability responsi-
ble for limiting work related activities and ultimately a cause of
deteriorating quality of life.1 The impact of LBP results in loss
of work productivity and the healthcare expenditure alone
ranges from $50 to $91.8 billion yearly in the United States.2,3

Magnetic resonance imaging (MRI) is extensively used in the
clinical evaluation of LBP, diagnosing abnormalities in the ver-
tebral bodies, intervertebral discs, nerve roots, and spinal cord
related to degenerative disease, osteoporotic compression frac-
ture, trauma, infectious and inflammatory conditions, and
tumors. Even though imaging findings of abnormalities are not
always associated with LBP,4–6 a growing number of studies
have demonstrated that MRI findings can function as impor-
tant biomarkers associated with LBP.7–9

Currently, a standard clinical lumbar spine MRI protocol
consists of high-resolution T1-weighted and T2-weighted 2D
fast-spin echo (FSE) sequences in multiple orientations and

requires approximately 30-minute scan time. When intrave-
nous contrast injection is required, additional post-contrast
sequences are acquired, further increasing the total scan time.
Remaining still in the MRI scanner for a long duration can be
a challenge for patients particularly when in pain, and can
generate motion artifacts. Reducing acquisition time would
improve patient experience and image quality in the setting of
LBP. Furthermore, a shorter clinical protocol time would
allow for adding special quantitative imaging10,11 as part of
routine imaging to look beyond structural abnormalities.

Numerous strategies have been developed for fast acquisition;
partial Fourier,12,13 parallel imaging,14,15 and compressed sens-
ing,16 which exploit k-space data redundancy or spatial correla-
tion, are the most common schemes to shorten acquisition times.
However, these acceleration approaches suffer from reduced
signal-to-noise ratio (SNR) or blurring,17–19 and application of
those would not provide sufficient imaging quality for clinical
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2D FSE lumbar spine imaging that normally uses multiple signal
averaging (number of excitations [NEX] > 1) to achieve suffi-
cient SNR.

Recently, deep-learning (DL) based methods have been rap-
idly developed for various MRI research areas including
undersampled data reconstruction,20,21 segmentation,22

super-resolution,23 and denoising.24 In particular, a DL
reconstruction method employing a deep convolutional neu-
ral network, which directly applies to raw k-space data, has
been developed to improve SNR and to reduce ringing arti-
facts (commercially available as AIR Recon DL, GE
Healthcare).25 The feasibility of this particular DL reconstruc-
tion to improve SNR while providing similar or improved
diagnostic capability compared to conventional reconstruc-
tion has been validated for high-resolution post-operative
pituitary imaging,26 late gadolinium enhancement cardiac
imaging,27 and clinical assessment of the prostate cancer,28

the peripheral nerve,29 and the hip and shoulder,30,31 but has
not been validated comprehensively for clinical lumbar spine
MRI at 3 T yet.

In this study we evaluated the application of DL reconstruc-
tion to fast, reduced-NEX acquisitions for 2D clinical lumbar
spine MRI in comparison to standard acquisitions through
both qualitative and quantitative analysis. Qualitative analy-
sis was based on radiologists’ evaluation. Quantitative analy-
sis was performed by applying previously developed
DL-based segmentation algorithms to segment intervertebral
discs and vertebral bodies and to compare extracted disc
heights and vertebral body volumes,32 which can be impor-
tant biomarkers associated with spine degeneration33–35 and
biomechanical modeling.36

Materials and methods
Image acquisition and reconstruction

This study was conducted in accordance with and approval
by the local institution review board with waived informed
consent. Images and raw k-space data from 18 patients with
LBP, scanned between March to June 2020 at our institution,
were retrospectively collected. A GE 3 T SIGNA Premier MRI
scanner and a table-embedded 32-channel spine posterior coil
array (GE Healthcare, Waukesha, WI, USA) were used for
imaging.

Two different clinical protocols were used at our institution
for lumbar spine MRI, a musculoskeletal (MSK) radiology
lumbar spine protocol and a neuroradiology lumbar spine

protocol. The MSK radiology protocol was tailored for better
depiction of orthopedic and rheumatologic disorders while
the neuroradiology protocol for better depiction of spinal
cord and peripheral nerve disorders (exploits a longer TE for
T2-weighted sequences). These standard lumbar spine proto-
cols consisted of sagittal fat-saturated T2-weighted 2D fast
spin-echo (FSE) (SAG T2 FS) sequence, sagittal T1-weighted
2D FSE (SAG T1) sequence, axial T2-weighted 2D FSE (AX
T2) sequence, axial T1-weighted 2D FSE sequence, and coro-
nal T1-weighted 2D FSE sequence. These clinical sequences
used a NEX of 1–2 to achieve SNR for a high diagnostic con-
fidence, and all imaging parameters were within ranges rec-
ommended by the Back Pain Consortium (BACPAC) Spine
Imaging Working Group.37 For each patient, imaging using
one of these clinical protocols based on physicians’ order was
performed, and then imaging with a fast protocol consisting
of SAG T2 FS, SAG T1, and AX T2 sequences, with only a
NEX reduced to 0.5–1, was also performed. With 0.5 NEX
prescription, partial Fourier was applied along the ky dimen-
sion.12,13 Table 1 shows image parameters for SAG T2 FS,
SAG T1, and AX T2 sequences for both MSK radiology and
neuroradiology protocols, with denoting NEX for both stand-
ard and fast acquisition protocols and approximate scan
times.

The vendor-supplied prototype version of AIR Recon DL
was applied to raw k-space data from the reduced-NEX fast
acquisition protocol offline. AIR Recon DL pipeline included
a deep convolutional neural network with 4.4 million param-
eters in approximately 10 000 kernels, and designed to
improve input data’s SNR while enhancing sharpness and
reducing ringing artifacts.25 The deep convolution neural net-
work was trained using pairs of images representing near-
perfect images (high-resolution images with minimal ringing
and very low noise levels) and synthesized images of lower
resolution versions with more truncation artifacts and higher
noise levels.25 Data with 0.5 NEX acquisition was also
included for training data sets. Image augmentation included
rotations and flips, intensity gradients, phase manipulations,
and additional Gaussian noise, to add robustness, and over 4
million unique image/augmentation combinations over vari-
ous anatomy were used for training.25 The raw data was
reconstructed using the algorithm with three different noise
reduction factors, 25%, 50%, and 75%. Vendor’s standard
reconstruction computer with multiple CPU cores was used
for reconstruction, and each DL reconstruction took approxi-
mately one minute.

Table 1. MSK radiology and neuroradiology lumbar spine protocols

MSK Radiology Protocol Neuroradiology Protocol

Sequences SAG T2 FS SAG T1 AX T2 SAG T2 FS SAG T1 AX T2

TE [ms] 67 8 60 78 8 96
TR [ms]a 5000 700 6000 5000 700 6000
FOV [cm] 26 26 18 26 26 18
Slice thickness [mm] 3 3 4 3 3 4
Slice number 20–32 20–32 45–84 20–32 20–32 45–84
Echo train length 16 4 16 16 4 18
Matrix size 392�224 352�224 256�192 384�224 352�192 292�192
Readout b bandwidth [kHz] 683.3 683.3 683.3 6100 6100 6100
NEX 2 (1) 2 (0.5) 1 (0.5) 2 (1) 2 (0.5) 1 (0.5)
Scan time [mins: secs]b 4:30 (2:15) 3:30 (1:20) 4:30 (2:30) 4:30 (2:15) 3:30 (1:20) 4:30 (2:30)

a Depending on patient weights, the TR and resultant scan times slightly varied, but the average values are indicated.
b The NEX and scan time for standard clinical and fast protocols are denoted outside and within parentheses, respectively.
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Qualitative assessment and statistical analysis

For all of three sequences (SAG T2 FS, SAG T1, and AX T2),
original images from the standard clinical acquisitions and
fast acquisitions, and DL-reconstructed images from the fast
acquisitions with 25%, 50%, and 75% noise reduction fac-
tors (will name those as Standard images, Fast images, and
Fast-DL images (or Fast DL25, Fast DL50, and Fast DL75
images), respectively) were evaluated. Patient information
was anonymized, and image details such as the NEX, the
application of DL reconstruction algorithm, and DL recon-
struction noise reduction factor, were all removed from the
DICOM header. Qualitative image assessment was performed
by three board-certified radiologists specializing in neuroradi-
ology or MSK radiology, CC (neuroradiologist), TML (MSK
radiologist) and JVM (neuroradiologist), with 25, 26, and
5 years of experience, respectively.

All image series from the two lumbar spine protocols were
randomly ordered for each sequence (90 series for each
sequence, five series for each of 18 patients) and presented to
the radiologists. The radiologists graded each series sequen-
tially for five different categories, “Apparent SNR,” “Ability
to Discern Anatomical Structures,” “Diagnostic Confidence,”
“Overall Image Quality,” and “Presence of Artifacts.” The
first four categories were rated on a Likert scale of 1 to 5 (1–
5: poor to excellent), while the last metric was rated as binary,
0 (no artifacts) and 1 (artifacts), as described in Table 2.
Radiologists were blinded to each other’s rating.

Noninferiority testing38,39 was performed to compare the
average scores of Fast and Fast-DL images from the three
radiologists to those from Standard images. The null and
alternative hypotheses for the first four categories were: H0:
lD � lS � �dl and H1: lD � lS > �dl where lD represents
the average scores from Fast or Fast-DL groups while
lS represents those from Standard groups. The noninferiority
margin �dl was set as �0.5. For the “Presence of Artifacts,”
the null and alternative hypotheses were: H0: lD � lS � db

and H1: lD � lS < db where the noninferiority margin db

was set as 0.2 (as a lower difference was improvement with
this category). A one-sided Wilcoxon signed-rank test was
performed to assess noninferiority, and P values were calcu-
lated using normal approximation and continuity correc-
tion.40,41 The P values were adjusted using the false discovery
rate (FDR) to correct for multiple testing.42

Interobserver agreement of scores by the three radiologists
for each category and each sequence was conducted using a
Conger’s kappa (j) coefficient with quadratic weighting.43

The coefficient was interpreted as follows: j< 0, no agree-
ment; 0 < j� 0.2, slight agreement; 0.2 < j� 0.4, fair agree-
ment; 0.4 < j� 0.6, moderate agreement; 0.6 < j� 0.8,

substantial agreement; and 0.8 < j� 1, almost perfect
agreement.

Automatic segmentation and quantitative analysis

Two convolutional neural networks incorporating 2D V-Net
architecture,44 previously trained with 27 and 24 SAG T1
patient data sets (for intervertebral discs and vertebral bodies
respectively)32 were used to segment intervertebral discs and
vertebral bodies separately. After acquiring segmentation masks
on each image slice, 2D slice masks were reconstructed into 3D
volume masks and postprocessed to smooth, fill holes, and iden-
tify largest connected components. Disc segmentation masks
were used to calculate intervertebral disc height by computing a
3D centroid for each disc to find the most central slice and
extracting the shortest side length from a minimum bounding
rectangle of the disc segmentation. The vertebral body segmen-
tation masks were used to calculate each vertebral body volume
by summing the number of foreground pixels for each body
and converting to patient-based space. Segmented discs (mostly
located between T12 and S1 vertebral bodies) or vertebral
bodies (among T12-S1 vertebral bodies) were manually
matched between Standard, Fast, and Fast-DL images. These
derived quantities from Fast and Fast-DL images were com-
pared to those from Standard images using correlation analysis.

Results
Patient population

The study included 18 patients (10 males and 8 females), with
patient age ranging from 31 to 82 years (median age of
61 years). Thirteen out of 18 patients were imaged with the
MSK radiology protocol while the other five patients were
imaged with the neuroradiology protocol. Various common
degenerative spine abnormalities were demonstrated on their
MR images such as Modic changes in vertebral endplates, disc
osteophytes, annular fissures, disc protrusion, disc extrusion,
spinal and foraminal stenoses, and facet arthropathy and cyst,
and some patients had previous surgery or metal implants.

Reconstructed images with and without DL

reconstruction

Figure 1 compares Standard, Fast, and Fast-DL images from a
63-year-old male patient with LBP for more than six weeks,
acquired with the MSK lumbar spine protocol. Sagittal
images (Figure 1A–B) show Modic type I endplate changes in
the posterior L3 and L4 vertebral bodies (fibrovascular end-
plate change) and an L3–L4 disc extrusion resulting in mild
central canal stenosis. On axial images at L3–L4 disc
(Figure 1C), mild facet arthropathy and moderate right

Table 2. Ratings for apparent SNR, ability to discern anatomical structure, diagnostic confidence, overall image quality, and presence of artifacts, used for

radiologists’ qualitative assessment

Score Apparent SNRa
Ability to Discern

Anatomical Structurea
Diagnostic

Confidencea
Overall Image

Qualitya
Presence of

Artifactsb

0 - - - - No
1 Too noisy, image uninterpretable Not visible No diagnostic value Terrible Yes
2 Noise moderately affects interpretation Barely visible Very limited diagnostic value Poor -
3 Noise mildly limits interpretation Adequately visible Acceptable for most diagnosis Average -
4 No adverse effects on interpretation Good visibility Good for majority of diagnosis Good -
5 Optimal SNR Excellent visibility Optimal Excellent -

a Rated on a Likert scale of 1 to 5.
b Rated as binary (0 or 1).
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foraminal narrowing were identified. Fast images provided a
lower SNR than Standard images as expected, but the reduc-
tion of noise was perceived with Fast-DL images while degen-
eration in vertebral bodies, discs, spinal cord, and facet joints
was well visualized.

Images from a 73-year-old male patient acquired with the
neuroradiology protocol are shown in Figure 2. SAG T2 FS
images show decreased contrast over discs and intervertebral
bodies while increased contrast between spinal cord and cere-
brospinal fluid compared to Figure 1 due to a higher TE. This
patient had dessiccated (dehydrated) intervertebral discs and
small Schmorl’s nodes (endplate disc herniations) in the L1, L3,
L4, and L5 vertebral bodies (Figure 2B). Disc protrusions and
mild-moderate central canal stenoses at L3–L4 and L4–L5 discs
(Figure 2A) and mild facet arthropathy with mild left foraminal
narrowing (Figure 2C) were also identified. These abnormalities
were again well-visualized on Fast-DL images.

Figure 3 compares Standard, Fast, and Fast DL50 images
from other two patients (78 year-old and 39 year-old males) visu-
alizing different anatomical structures/pathologies. The patient in
Figure 3A had transitional lumbosacral anatomy and had moder-
ate neuroforaminal stenosis at the L5–S1 disc level and severe L4
and L5 facet arthropathy. Figure 3B shows central annular fis-
sure (bright signal depicted by an arrow). These abnormal struc-
tures were well delineated with Fast DL50 images again.

Qualitative assessment

The mean Likert scores over the three radiologists for all 18
patients are summarized in Figure 4 as box plots for the cate-
gories of “Apparent SNR,” “Ability to Discern Anatomical

Structures,” “Diagnostic Confidence,” and “Overall Image
Quality.” The means and standard deviations of the average
scores from the three radiologists are presented in Table 3 for
the five categories including the “Presence of Artifacts.” The
mean scores from the Fast groups were lower than those from
the Standard groups for the first four categories, but with DL
reconstruction, the mean scores improved.

Table 4 shows the results of the noninferiority tests. The
(Pseudo)median40 of the difference scores between Fast/Fast
DL groups and Standard groups as well as the P values from
the one-sided tests for the specified noninferior margins are
indicated. The mean scores from Fast groups were statistically
inferior to those from standard groups for four to five catego-
ries of all sequences. However, with Sag T2 FS, all Fast DL
groups with the three different noise reduction factors showed
statistical noninferiority compared to the Standard groups
across all categories. For SAG T1, Fast DL25 and Fast DL50
images received inferior scores for most of categories, while
Fast DL75 images showed noninferiority for “Apparent
SNR,” “Ability to Discern Anatomical Structures,” and
“Diagnostic Confidence.” For AX T2, Fast DL50 images
attained statistically noninferior scores for “Apparent SNR,”
“Ability to Discern Anatomical Structures,” and “Diagnostic
Confidence.”

Conger’s j coefficients to check interobserver agreement
are shown in Table 5. There was no to slight agreement on
“Presence of Artifacts” (j< 0.2), but for other criteria, fair to
moderate agreement was demonstrated for SAG T2 (0.255 <
j< 0.550), and slight to moderate agreement for SAG T1
(0.051 < j< 0.550). The AX T2 sequence exhibited less
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agreement (�0.003 < j< 0.516) than the other two sequen-
ces. Overall, Fast DL75 groups and Fast DL50 groups
showed the least agreement among the radiologists, suggest-
ing varying levels of perception of DL-reconstructed images.

Automatic segmentation and quantitative analysis

Figure 5 shows standard SAG T1 images (A, D) and compares
segmentation masks of intervertebral discs (B, E) and verte-
bral bodies (C, F) attained from Standard, Fast, and Fast-DL
images of two patients. Patient A was the same with the
patient in Figure 1. Segmentation masks shown were right
after applying convolutional neural networks and before
applying additional post-processing. With Standard images,
all discs were segmented well; however, with Fast images and

Fast-DL images using a lower noise reduction factor, some
pixels within the disc regions were not included for the L1–L2
disc mask (Patient A) and L4–L5 disc mask (Patient B),
respectively. By incorporating DL reconstruction with a 50%
or 75% noise reduction factor, both discs were segmented
well, similarly to Standard images. For the vertebral bodies,
segmentation worked well with Fast images and the Fast-DL
images except the T12 vertebral body that included some
imaging artifacts at the interface of the vertebral body and fat,
probably caused by 0.5 NEX (partial Fourier) acquisition.

Correlation plots of intervertebral disc heights and verte-
bral body volumes extracted from segmentation masks of
Fast and Fast-DL images vs those from Standard images are
shown in Figure 6. Linear equations and the correlation of
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Figure 4. Box plots summarizing qualitative assessment. Radiologists’ scores over the 18 patients for the Standard, Fast, Fast DL25, Fast DL50, and Fast

DL75 groups are compared as box plots on “Apparent SNR,” “Ability to Discern Anatomical Structures,” “Diagnostic confidence,” and “Overall Image
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Table 3. Summary of the mean scores over the three radiologists

Apparent SNR Anatomical Structures Diagnostic Confidence Overall Image Quality Presence of Artifacts

SAG T2 FS
Standard 3.30 6 0.61 3.50 6 0.63 3.56 6 0.68 3.37 6 0.67 0.54 6 0.30
Fast 2.61 6 0.62 2.91 6 0.56 3.06 6 0.61 2.81 6 0.64 0.50 6 0.24
Fast DL25 3.10 6 0.66 3.26 6 0.66 3.35 6 0.60 3.19 6 0.75 0.49 6 0.27
Fast DL50 3.52 6 0.60 3.60 6 0.58 3.61 6 0.63 3.35 6 0.80 0.65 6 0.21
Fast DL75 3.94 6 0.73 3.85 6 0.65 3.87 6 0.69 3.63 6 0.83 0.67 6 0.28

SAG T1
Standard 3.63 6 0.75 3.76 6 0.61 3.72 6 0.59 3.59 6 0.74 0.57 6 0.30
Fast 2.52 6 0.49 2.96 6 0.44 2.96 6 0.39 2.63 6 0.53 0.76 6 0.28
Fast DL25 2.98 6 0.76 3.22 6 0.60 3.28 6 0.64 2.94 6 0.69 0.74 6 0.27
Fast DL50 3.31 6 0.62 3.46 6 0.58 3.46 6 0.61 3.22 6 0.71 0.80 6 0.26
Fast DL75 3.63 6 0.50 3.54 6 0.56 3.54 6 0.56 3.31 6 0.65 0.76 6 0.30

AX T2
Standard 3.30 6 0.57 3.52 6 0.45 3.63 6 0.39 3.61 6 0.47 0.57 6 0.22
Fast 2.74 6 0.51 3.13 6 0.49 3.17 6 0.45 2.85 6 0.50 0.63 6 0.25
Fast DL25 3.13 6 0.49 3.20 6 0.53 3.31 6 0.49 3.09 6 0.48 0.76 6 0.22
Fast DL50 3.41 6 0.49 3.44 6 0.57 3.48 6 0.42 3.30 6 0.40 0.81 6 0.23
Fast DL75 3.46 6 0.36 3.15 6 0.57 3.30 6 0.48 3.06 6 0.61 0.85 6 0.21

The mean scores and standard deviations over the 18 patients are presented for the Standard, Fast, Fast DL25, Fast DL50, and Fast DL75 groups on five
different categories.
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determination (r2) were also denoted. Significant correlations
were observed for all cases for both the intervertebral disc
height and vertebral body volume. By applying DL recon-
struction, r2 further increased, and the highest r2 was achieved
when the noise reduction factor was 50% for disc heights
(r2¼ 0.87) and when the noise reduction factor was 75% for
vertebral body volumes (r2¼ 0.99). Table 6 compares the
mean and standard deviations of extracted disc heights and
intervertebral body volumes over the segmented discs and ver-
tebral bodies. The mean and standard deviation (SD) of disc
height from Standard images was 10.69 6 2.30 mm, and the
difference was �1.31%, �0.84%, and �0.84% for Fast, Fast
DL25, Fast DL50, and Fast DL75 images, respectively. The
mean intervertebral body volume of Standard images was
26.98 6 9.33 cm3, and the difference was �2.19%, �1.45%,

�0.79%, and �0.52% for the other image groups,
respectively.

Discussion

In this work, we demonstrate that fast image acquisition with
DL reconstruction has a potential to provide clinically diag-
nostic image quality for lumbar spine MRI while significantly
shortening the exam duration. Additionally, we showed that
convolutional neural networks trained with standard clinical
images can reliably segment both intervertebral discs and ver-
tebral bodies on Fast-DL images. Our patients had various
LBP-associated imaging findings including degeneration in
discs, vertebral bodies, facet joints with spinal canal and fora-
minal nerve compromise, while some patients had prior

Table 4. Noninferiority tests comparing scores of Fast and Fast-DL groups with those of Standard group on five different categories

Apparent SNR Anatomical Structures Diagnostic Confidence Overall Image Quality Presence of Artifacts

(Pseudo)

mediana P valueb
(Pseudo)

mediana P valueb
(Pseudo)

mediana P valueb
(Pseudo)

mediana P valueb
(Pseudo)

mediana P valueb

SAG T2 FS
Fast vs St. �0.667 .894 �0.500 .788 �0.500 .456 �0.500 .587 0.000 .002*
Fast DL25 vs St. �0.167 .013* �0.167 .001* �0.167 .001* �0.167 .007* 0.000 .003*
Fast DL50 vs St. 0.167 .001* 0.167 .001* 0.000 .000* 0.000 .013* 0.000 .007*
Fast DL75 vs St. 0.667 .000* 0.333 .001* 0.333 .000* 0.333 .002* 0.000 .006*

SAG T1
Fast vs St. �1.167 1.000 �0.833 .986 �0.833 .972 �1.000 .999 0.167 .123
Fast DL25 vs St. �0.667 1.000 �0.667 .893 �0.500 .562 �0.667 .999 0.167 .123
Fast DL50 vs St. �0.333 .079 �0.333 .087 �0.333 .046* �0.333 .210 0.167 .268
Fast DL75 vs St. 0.000 .019* �0.167 .033* �0.167 .029* �0.333 .201 0.167 .123

AX T2
Fast vs St. �0.500 .703 �0.333 .109 �0.500 .319 �0.667 .984 0.000 .010*
Fast DL25 vs. St. �0.167 .006* �0.333 .129 �0.333 .195 �0.500 .914 0.167 .430
Fast DL50 vs St. 0.167 .001* 0.000 .014* �0.167 .014* �0.333 .320 0.333 .716
Fast DL75 vs St. 0.167 .001* �0.333 .129 �0.333 .195 �0.500 .914 0.333 .716

a (Pseudo)median of difference scores between Fast/Fast-DL groups and Standard groups.
b P values of noninferior tests (one-sided Wilcoxon singed-rank tests) with an inferior bound of �0.5 for the first four criteria and 0.25 for “Presence of

Artifacts.”
* Indicates statistical noninferiority (P< .05) based on noninferior tests.

Table 5. Conger’s j coefficients to assess interobserver variability

Apparent SNR Anatomical Structures Diagnostic Confidence Overall Image Quality Presence of Artifacts

SAG T2 FS
Standard 0.427a 0.379 0.512 0.549 0.176
Fast 0.517 0.378 0.348 0.435 0.071
Fast DL25 0.419 0.488 0.481 0.531 0.087
Fast DL50 0.234 0.371 0.421 0.506 0.007
Fast DL75 0.255 0.336 0.413 0.331 0.126

SAG T1
Standard 0.515 0.488 0.449 0.479 0.140
Fast 0.300 0.255 0.158 0.300 0.156
Fast DL25 0.552 0.482 0.447 0.458 0.118
Fast DL50 0.222 0.369 0.377 0.397 0.143
Fast DL75 0.052 0.216 0.216 0.192 0.250

AX T2
Standard 0.266 0.381 0.162 0.292 0.046
Fast 0.376 0.516 0.319 0.353 0.046
Fast DL25 0.184 0.327 0.239 0.229 �0.031
Fast DL50 0.078 0.219 0.121 0.073 0.122
Fast DL75 �0.003 0.166 0.069 0.124 0.045

The coefficients were interpreted as follows: j< 0, no agreement; 0 < j� 0.2, slight agreement; 0.2 < j� 0.4, fair agreement; 0.4 < j� 0.6, moderate
agreement; 0.6 < j� 0.8, substantial agreement; and 0.8 < j� 1, almost perfect agreement.

a Bold text was used with agreement > 0.4.
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surgery, thus increasing the generalizability of our assessment
and analysis to the broad-spectrum of clinical pathologies.

Although the radiologists evaluated “Apparent SNR” using a
1–5 scale without any quantitative measurement, we found that
their mean “Apparent SNR” scores were, to some extent, in agree-
ment with the expected SNR variations across different imaging
groups. Fast images had a theoretical SNR reduction of 29/50/
29% compared to Standard images, based on NEX differences,
for SAG T2 FS, SAG T1, and AX T2, respectively. The mean
scores for Fast images were lower than those for Standard images
for all sequences. With SAG T2 FS and AX T2, DL reconstruction
with noise reduction factors of 25% or higher provided mean
scores that were noninferior to those of Standard images, while
with SAG T1, only DL reconstruction with only a noise reduction
factor of 75% provided a noninferior score (the P values for Fast
DL50 images of SAG T1 for non-inferiority was .079).

For comparing qualitative scores between different imaging
groups, we used a noninferiority test38,39 instead of a standard

significance test. A significance test is to determine whether
there is a significance difference between groups (ie, one group
is superior to the other) by checking if the P values is smaller
than .05. However, with this test, justifying similarity with P �
0.05 is not appropriate as a high P values can be resulted from
a lack of evidence in difference or a lack of statistical power due
to a small sample size.45 An equivalent/noninferiority test has
been specifically proposed to demonstrate similarity by checking
whether the confidence interval of the difference is within a pre-
determined equivalence or noninferiority margin. In this study,
we used the noninferiority test as we wanted to prove whether
Fast-DL images are not worse than Standard images (can be
equivalent or superior) rather than these are equivalent to
Standard images. There is no standard about what should be
noninferiority/equivalent margins for radiology research yet,46

but here we used the noninferiority margins of �0.5 for a 5-
point scale and 0.2 for a binary scale, which were 12.5 and
20% of total ranges of scores respectively.

Standard Fast Fast DL25 Fast DL50 Fast DL75Standard

Patient A

Patient B

L1

L2

L3

L4

L5

S1

L1

L2

L3

L4

L5
S1

A B

C

D E

F

T12

T12

Figure 5. Disc and vertebral body segmentation masks. (A, D) Standard SAG T1 images, and segmentation masks of discs (B, E) and vertebral bodies

(C, F) attained from Standard, Fast, and Fast-DL images of two patients. Some pixels within the disc regions were missed on Fast images, as denoted by

arrows in (B, E), but disc segmentation was improved on Fast-DL images. For vertebral bodies, segmentation worked well over all the vertebral bodies

except the T12 vertebral body on Fast and Fast-DL images in Patient B (F).
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Based on qualitative assessment, the Fast-DL images with
all of 25, 50, and 75% noise reduction factors from SAG
T2 FS were noninferior (comparable or superior) to the
standard clinical images in all categories, “Apparent SNR,”
“Ability to Discern Anatomical Structures,” “Diagnostic
Confidence,” “Overall Image Quality,” and “Presence of
Artifacts.” With either SAG T1 or AX T2, Fast DL50 and
Fast DL75 images provided statistically noninferior scores
for four out of 10 comparisons. However, statistically infe-
rior scores were recorded for “Overall Image Quality” and
“Presence of Artifacts” on Fast DL50 and Fast DL75
images in both sequences. We believe that this was not due
to problems with DL reconstruction, but was rather due to
enhanced motion/flow artifacts with partial Fourier acquisi-
tion (0.5 NEX) of the fast protocol, and DL reconstruction
might make the artifacts more apparent due to increased
SNR. Enhanced wrapping/ghost artifacts with DL recon-
struction have been previously reported.27,29 For the fast
protocol, parallel imaging can be also used by exploiting
multi-coil elements of posterior array coils. We expect
motion/flow artifacts would not be that enhanced with the
use of parallel imaging. For reconstruction, parallel imaging
reconstruction can be applied to fill missing k-space data
first, followed by DL reconstruction.

There was interobserver variability when assessing image
quality by three radiologists. We observed that radiologist 1
(neuroradiologist) perceived standard images to have overall
better image quality, while radiologists 2 (MSK radiologist)
and 3 (neuroradiologist) were favorable to DL-reconstructed
images, yielding the lowest Conger’s coefficients for Fast
DL75 images. These variabilities made demonstrating statisti-
cal noninferiority more challenging. Radiologists have inher-
ent biases, with some preferring realistic image textures and
others sharper and smooth images,47 similarly to what DL
reconstructions provide. In addition, differences in clinical
disease experience between neuroradiologists and MSK radi-
ologists may further explain the variability in interpretation
of spine imaging with differing anatomical focuses.48 To
exploit DL-reconstructed images in clinics, there is a need to
validate DL-reconstructed images with many more radiolog-
ists with different background.

Despite the presence of interobserver variability, DL-based
segmentation algorithms that were trained using clinical
standard SAG T1 images worked well for Fast-DL images.
Segmentation results visually looked better on Fast-DL images
than on Fast images, and extracted disc height and vertebral
body volumes were better correlated between Fast DL50/Fast
DL75 images and Standard images. Even though further
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Figure 6. Correlation plots over extracted biomarkers. Disc heights (A–D) and vertebral body volumes (E–H) measured from Fast and Fast-DL images are

compared to those from Standard images. Linear equations and the correlation of determination (r2) are denoted. The highest correlation was achieved

when the noise reduction factor was 50% for disc heights (r2¼ 0.87) and when the noise reduction factor was 75% for vertebral body volumes (r2¼ 0.99).

Table 6. Measured disc heights and vertebral body volumes based on automatic DL segmentations for each image group, and coefficients of

determination between Fast/Fast-DL images and Standard images

Intervertebral Disc Height Vertebral Body Volume

Images Mean 6 SD (mm) Coefficient of Determination (r2) Mean 6 SD (cm3) Coefficient of Determination (r2)

Standard 10.69 6 2.30 - 26.98 6 9.33 -
Fast 10.50 6 2.52 0.81 26.39 6 9.30 0.97
Fast DL25 10.55 6 2.52 0.84 26.59 6 9.28 0.97
Fast DL50 10.60 6 2.41 0.87 26.74 6 9.34 0.98
Fast DL75 10.60 6 2.43 0.86 26.84 6 9.38 0.99
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investigations are needed, the DL-reconstructed images
seemed to be robust to machine algorithms.

This study has several limitations. First, the sample size of
this study might not be sufficient to fully evaluate the ability
of DL reconstruction in a wide range of lumbar spine patholo-
gies. Secondly, the methods for qualitative assessment by radi-
ologists can be improved. For example, the “Ability to
Discern Anatomical Structures” was rated as one score, even
though there are multiple complicated structures to evaluate.
Individual scorings for delineation of vertebral bodies, discs,
spinal cords, nerve roots, and facet joints, as used in studies
such as Bratke G et al.49 or Sun et al.50 can allow for more
comprehensive and objective evaluation. Furthermore, the
presence of artifacts was rated as a binary score, but it may
not be appropriate to evaluate the overall level of artifacts
from various sources. Additionally, the ratio of NEX used
between the fast and standard protocols was not equivalent
between difference sequences. If the ratio had been kept
equivalent, the effects of DL reconstruction might have been
fairly evaluated between different sequences. Another issue
might have arisen from MR data acquisition order during
patient scans; fast protocol acquisitions were always per-
formed after standard protocol acquisitions. This might have
resulted in more motion artifacts in Fast images though we
believe the effects would be minimal as imaging time for the
fast protocols were under 10 minutes. Randomization of the
order might have eliminated this potential problem. Lastly,
these fast scans were not directly compared with other known
fast imaging methods such as partial Fourier, parallel imag-
ing, and compressed sensing, and data from only one vendor’s
MRI scanner were involved in this study.

Conclusions

This study demonstrates that DL reconstruction combined
with fast acquisitions has a potential to provide diagnostic
image quality noninferior to standard-care-of images. The dif-
ference in qualitative scores between Standard images and
Fast-DL images varied with image parameters and sequences,
but overall, this lumbar spine protocol, which was 52%
faster, was able to provide scores noninferior to the standard
protocol for apparent SNR, visualization of anatomical struc-
tures, and diagnostic confidence. However, larger studies
involving multiple vendors are needed to assess the accuracy
of these fast scans in diagnosing various pathologies and to
compare the performance with other fast imaging methods
such as parallel imaging and compressed sensing. We also
validated that previously trained convolutional neural net-
works based on standard clinical SAG T1 images can reliably
segment discs and vertebral bodies of DL-reconstructed
images. The combination of fast acquisition, DL reconstruc-
tion, and DL-based image analysis will potentially enable a
path for an efficient clinical workflow for patients with LBP.
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