
Computers & Graphics 27 (2003) 725–734

ARTICLE IN PRESS
*Correspondin

+1-530-752-476

E-mail addre

0097-8493/$ - see

doi:10.1016/S009
Graphics hardware

Recent advances in hardware-accelerated volume rendering

Kwan-Liu Maa,*, Eric B. Luma, Shigeru Murakib

aDepartment of Computer Science, University of California at Davis, 2063 Engineering II, One Shields Avenue, Davis,

CA 95616 8562, USA
bNational Institute of Advanced Industrial Science and Technology (AIST), Aomi 2-41-6, Koto-Ku, Tokyo 135-0064, Japan
Abstract

The programmability and texture support of consumer graphics accelerators have drawn a lot of attention from

visualization researchers, resulting in some very important advances in interactive volume data visualization. For many

applications, scientists can now perform routine data visualization and analysis tasks on their desktop PC with a

consumer graphics card that was designed mainly for playing video games. This paper presents several representative

hardware-accelerated algorithms that have been introduced recently to address the problems of classification,

illumination, non-photorealistic rendering, decoding, and image compositing in volume data visualization.

r 2003 Elsevier Ltd. All rights reserved.

Keywords: 3D texture; Data compression; Data visualization; Graphics hardware; Image processing; Volume rendering
1. Introduction

Volume rendering is a powerful technique for

visualizing sampled data describing physical phenomena

or structures in 3-space, from molecular structures and

dynamics, neuron structure, the anatomy of the human

body, chemical reactions inside a furnace, air flow

surrounding a vehicle, ocean temperature distribution,

to the birth of our solar system. The advent of hardware

support for real-time volume rendering has made this

3-D rendering technique even more attractive for a

growing range of applications. Notable examples

include SGI RealityEngine’s support of texture map-

ping [1], the VolumePro volume rendering acceleration

board [2], and reconfigurable volume rendering systems

such as VIZARD II which uses FPGA for fast design

changes [3]. More recently, driven by the video game

industry, advances and innovations in consumer gra-

phics hardware have been made at a rather fast

pace. The low cost and high performance of the

consumer graphics cards have led to many creative uses
g author. Tel.: +1-530-752-6958; fax:

7.

ss: ma@cs.ucdavis.edu (K.-L. Ma).

front matter r 2003 Elsevier Ltd. All rights reserve

7-8493(03)00146-8
of several advanced features, such as high precision

arithmetic and programmability, for volume graphics

applications.

This paper gives an overview of the evolving

commercial hardware support for volume rendering

and samples of representative research results in

advancing the art of hardware-accelerated volume

rendering. Specifically, we describe how graphics accel-

erators can be used to assist volume classification, how

illumination and non-photorealistic rendering (NPR)

can be added to increase the clarity of the visualization,

how to accelerate the rendering of time-varying data,

and different hardware options for the construction of a

cluster of PCs for interactive volume graphics applica-

tions. Finally, we suggest directions for further research.
2. Texture hardware features and volume rendering

Volume rendering involves resampling, classification,

shading, and compositing. The latest consumer graphics

cards designed mainly for playing video games can

accelerate almost all the volume rendering calculations,

making possible real-time rendering rates.
d.



ARTICLE IN PRESS
K.-L. Ma et al. / Computers & Graphics 27 (2003) 725–734726
With texture hardware support, volume rendering is

done by drawing a set of view-aligned polygon slices that

sample a 3-D texture containing the volume data, as

shown in Fig. 1. These slices are composited using

hardware alpha-blending to derive the final image. The

resampling step of volume rendering uses a reconstruc-

tion filter kernel, and the shape of this filter can have a

strong influence on the quality of the resulting visualiza-

tion. Older graphics hardware was limited in supporting

only 2-D textures and, thus, performing bilinear

interpolation. Employing 3-D textures permits the use

of tri-linear filtering which helps improves image quality.

Hadwiger et al. [4] show how to employ the program-

mable features of the graphics cards to perform higher

quality filtering such as bi-cubic filtering using a B-spline

filter kernel.

In exploratory data visualization, it is desirable to

freely change viewing and rendering parameters and

immediately receive visual feedback. Since the perfor-

mance of a texture hardware volume renderer is mainly

limited by the fill rates and the data transfer rates

between the main memory and video memory, in order

to achieve maximum interactivity we must carefully

utilize the available video memory space. Since the

volumes being visualized are typically tens or hundreds

of megabytes in size, we cannot afford to store classified

volume (i.e., RGBA data for every voxel) whenever a

new classification is done. Similarly, for lighting

calculations storing the gradient vectors is also not

feasible. Section 4 describes two techniques for deriving

gradient values for lighting calculations.

Storage space can be saved by making use of lookup

tables in the form of either dependent textures or
Fig. 1. Texture hardware volume rendering is done by drawing

a set of view-aligned polygon slices that sample a 3-D texture

volume containing the volume data.
paletted textures. Dependent textures treat the values in

one texture as texture coordinates into a second lookup

texture. By treating per voxel volume information as

texture coordinates, and storing lighting or transfer

function information in the lookup texture, it is possible

to change the appearance of an entire volume through

variations in a relatively small lookup texture. An

alternative method is the use of paletted textures, where

each texel stores an index into a color lookup table that

is applied during rasterization. The primary difference

between the two methods is that dependent textures

require the use of two textures, and the filtering is done

prior to the table lookup, which can be contrasted with

paletted textures that require a single texture and are

filtered during rasterization using color values after the

lookup have occurred. Since filtering typically involves

linear interpolation it is desirable to use paletted textures

for quantities that have non-linear mappings between

index and color such as normals stored using a single-

index lookup table, or for temporal compression as will

be described in a later section. Fig. 2 illustrates the

difference between these two methods. The use of

paletted textures is discussed further in Section 7.2.

Multi-texturing permits several textures to be com-

bined on a single polygon during the rendering process.

By utilizing several separate volumetric textures that

store, for example, scalar data value, gradient magni-

tude, and gradient direction, it is possible to combine

these contributions for enhanced visualizations. We

describe how to mix different rendering styles with

multi-texturing in Section 5. Furthermore, the program-

mable feature recently added to consumer graphics

hardware provides far more flexibility in how the

different texture data is combined during rendering.

Specifically, fragment programs in OpenGL and pixel

shaders in Direct-3D allow for the use of programs that

are executed on a per pixel basis during rasterization.

This functionality provides the developers with further

control over how the texture data and linearly inter-

polated vertex attributes, like color and texture coordi-

nates, are combined.
3. Classification

In volume rendering, each voxel must be first mapped

to a color and an opacity value before the projection and

compositing calculations are done. This mapping is

equivalent to a classification of the volume. There has

been a great deal of research devoted to the generation

of transfer functions for volume classification [5].

A straightforward method for implementing a 1-D

transfer function that maps each scalar value to a color

and opacity is to use paletted textures, with the palette

consisting of the transfer function, or 1-D dependent

textures, with the 1-D lookup textures containing the



ARTICLE IN PRESS

Fig. 2. Paletted texture versus dependent texture, as used for storing transfer functions.

Fig. 3. Using a 10-D classification function it is possible to

straightforwardly derive a visualization showing the brain and a

part of the head with the skin, skull, and other soft tissues

removed. The Image was generated by Fan-Yin Tzeng.

K.-L. Ma et al. / Computers & Graphics 27 (2003) 725–734 727
opacity and color maps. In order to reduce the

integration errors from the discrete slice sampling of a

volume, Engel et al. [6] introduce a method that applies

a 1-D transfer function classification using 2-D- rather

than 1-D dependent textures. Their pre-integrated

volume rendering technique reduces color and opacity

integration errors by using two texture samples, one

from each of a pair of neighboring slices, and a 2-D

lookup table texture that maps the integration of a

segment with those scalar values into a pre-computed

color and opacity. Kniss et al. [7] describe an interface

for specifying 3-D transfer functions, and how they can

be applied in hardware using dependent textures. By

storing each data value used for classification as a

coordinate in a 3-D dependent texture, arbitrarily

mapping between those factors and a color and opacity

pair can be achieved. They also describe how 3-D

transfer functions can be implemented as separable 2-D

and 1-D transfer functions to reduce the size of the

transfer function texture, with the trade-off of less

control in the types of transfer function mappings

available.

Tzeng et al. [8] present a new method for specifying

higher-dimensional classification functions through an

interactive paint-based interface. The user simply paints

on a few slices from the volume to give hints about how

the classification should be done. Abstracted from the

user is the generation of a higher-dimensional classifica-

tion function using artificial neural networks which are

implemented using pixel shaders. The network uses the

painted regions as training data to ‘learn’ a classification

function to map voxels into uncertainty over whether

the given voxel is part of the material of interest which

can then be used as opacity. The classification function

uses as inputs a voxel’s scalar value, the values of its six

neighbors, and its x; y; z location. The scalar value is

fundamental information directly from that voxel, its

neighboring values provide information that can be

incorporated for gradient and texture, while position

can be used to take into account a materials structural
properties. Two materials might have similar scalar

values, but they are much less likely to also have similar

texture and location. Thus, by using higher-dimensional

classification functions, it is possible to better differ-

entiate the materials for visualization. Fig. 3 shows an

example, which would not be made possible with 1-D or

2-D transfer function.

4. Lighting

Lighting can greatly increase the visual quality of

volume rendered images by providing subtle depth cues

and feature highlighting. To include lighting, however,

normalized gradient direction of each voxel must be

either pre-computed and stored or calculated on the fly.



ARTICLE IN PRESS
K.-L. Ma et al. / Computers & Graphics 27 (2003) 725–734728
Rather than saving the normal vector for every voxel

which would significantly increase the storage require-

ments, we can use paletted textures and store for each

texel an index into a normal lookup table, with each

direction quantized to one of 240 vectors obtained from

the faces of a subdivided version of a combined

dodecahedron and icosahedron [9]. This approach only

requires one byte per voxel to store normal directions.

If there is insufficient space to store precomputed

normals, we can compute the normal vectors on the fly.

To calculate the normal information on the fly, the

newer hardware permits enough texture lookups in a

single pass to derive gradient information based on

neighboring texels. By sampling the six nearest neigh-

bors, we can calculate the gradient of that voxel and

apply lighting calculations accordingly. This yields high-

precision normals without the extra storage and loss of

precision due to the use of normal maps. Rendering

performance can become bandwidth limited with respect

to the graphics bus. Thus, when rendering a large

volume dataset that does not fit into video memory, the

use of dynamically calculated normals can improve

performance. The cost of sending normal maps across

the graphics bus for each frame is eliminated entirely

and is replaced with a more expensive rasterization

stage. If both the volume data and the normal maps

could fit entirely in the video memory, then the faster

rasterization from using pre-computed normals would

result in higher performance.
5. Non-photorealistic rendering

NPR can be used to illustrate subtle spatial relation-

ships that might not be visible with more realistic

rendering techniques. NPR for volumetric data visuali-

zation has recently become an area of active research.

Treavett and Chen [10] show how pen-and-ink rendering

can be applied to volume visualization. Ebert and

Rheigans [11] describe a number of NPR techniques

that can be applied to volume rendering. They show that

non-photorealistic methods can enhance features and

improve depth perception. When NPR methods are

utilized, interactivity becomes even more critical because

each NPR technique adds its own set of additional

parameters that must be specified. For example, if hue-

valued shading is utilized, for best results the variation

in color should be carefully specified with respect to

both hue, saturation and value until the result desired by

the user is met. Much like for the transfer function

specification, there is no ‘correct’ set of parameters that

can be utilized for all data sets since these parameters

vary widely depending on what type of features the user

would like to accentuate or de-emphasize. In fact, often

the user does not know what type of rendering style is

desired, only through experience and experimentation
can parameters be found that are suited for their

particular application. In addition, it might be desired

to mix photorealistic and NPR styles when rendering a

single volume. This would require multiple sets of

transfer functions and lighting parameters, multiplying

the number of parameters that must be set as well as the

need for interactivity. Thus, when NPR is used in a

volume rendering context, interactive response is essen-

tial with respect to viewpoint, transfer function, and

NPR parameter space.

Unfortunately, many factors make interactive NPR

difficult. First, the addition of NPR techniques only

adds to the number of calculations required in the

rendering process. As a simple example, silhouette edge

rendering requires the additional calculations associated

with silhouette edge detection. Furthermore, the stan-

dard technique of rendering lower resolution data or

rendering to a lower resolution window to achieve

interactivity is often not suited to the needs of the user

when selecting NPR parameters. NPR can be used

effectively to clarify fine structures in a volume. In order

to specify rendering parameters optimized for viewing

these structures, the volume must be rendered at high

resolutions. For example if a user is trying to accentuate

blood vessels in a data set by manipulating the

parameters associated with silhouette and gradient, it

is necessary that the volume be rendered at a sufficiently

high resolution to a screen resolution high enough to

view the vessels clearly.

These two requirements, interactivity and high

resolution, can be met by using hardware accelerated

rendering techniques and a PC cluster, respectively. Lum

and Ma [12] show how to employ a number of features

found in modern consumer graphics cards, including 3-

D textures, multi-texturing, and paletted textures, to

implement several NPR techniques in hardware such as

hue-varied shading, silhouette illustration and depth-

based color cues. By using multiple graphics cards

spread across a PC cluster, they are able to render high-

resolution volumes at frame rates interactive enough for

the tuning of view, transfer function, and NPR

parameters. The interactivity they achieve makes possi-

ble the creation of highly effective non-photorealistic

visualizations which would not be possible with less

interactive methods. Fig. 4 displays an NPR example in

contrast to regular volume rendering.

In order to combine the different NPR styles in

hardware, they make use of multiple rendering passes

with variations in texture palette to implement the

different techniques. Specifically, the original scalar data

are stored in one paletted texture, while the quantized

normals are stored in a second paletted texture. The first

pass renders the volume with hue-varied shading which

is accomplished by rendering polygons with the mod-

ulation of two textures. One is the scalar data texture

which has a palette containing the transfer function,



ARTICLE IN PRESS

Fig. 4. Top: Direct volume rendering of confocal microscopic ganglion data. Bottom: NPR of the same volume data shows the

ganglion structure more clearly.

K.-L. Ma et al. / Computers & Graphics 27 (2003) 725–734 729
while the other texture stores paletted normals, with a

palette set such that the color entry for each indexed

normal is set to the hue and intensity calculated for that

normal direction. The second rendering pass applies

specular highlights and silhouette edges. During this

pass, opacity from the transfer function is utilized in a

scalar data texture that is modulated with silhouette and

specular contributions stored in a paletted normal

texture. The palette for this second texture is set white

and opaque for normal directions that yield specular

highlights, black and opaque for normal directions that
are perpendicular to the view direction and correspond

to silhouette edges, and transparent for all other

directions. Additional non-photorealistic techniques

can be applied by modulating each pass with more

textures, such as a 1-D hue-varied texture that is varied

along the view direction to show aerial perspective

(variation in color based on depth), or a gradient texture

with opacity varied based on gradient value to better

illustrate surfaces.

Stompel et al. [13] apply hardware-accelerated NPR

to the visualization of multi-valued volume data and



ARTICLE IN PRESS

Fig. 5. Hardware-accelerated volume rendering of vorticity field and stroke-based rendering of velocity field. Stroke size and color can

be changed interactively. Images were generated by Aleksander Stompel.

K.-L. Ma et al. / Computers & Graphics 27 (2003) 725–734730
time-varying volume data. One or more variables are

used to either highlight important features in another

variable, or add contextual information to the visualiza-

tion using different NPR styles. For time-varying data,

rendering of each time step also takes into account the

values at neighboring time steps to reinforce the

perception of the changing features in the data over

time. Similarly, hardware-accelerated rendering enables

interactive tuning and selection of a set of rendering

parameters and methods to derive effective visualiza-

tions. Fig. 5 shows rendering of stroke volumetric

textures for the visualization of turbulent flow.
6. Rendering isosurfaces from 3-D texture

Isosurface visualization is widely used in many

engineering and medical applications. Isosurfaces are

mostly extracted in a view-independent manner and

represented as triangular meshes that can be efficiently

rendered with polygon graphics hardware. The amount

of time required for isosurface extraction is heavily

dependent on which isovalue is used, where some

isovalues can result in extremely dense geometry and

thus high polygon counts, hampering interactive render-

ing. Using texture hardware, it is possible to approx-

imate the appearance of an isosurface in a view-

dependent way. The rendering cost, however, is

independent of the isovalue selected.

Engel et al. [6] extend the pre-integration method to

render an isosurface using view aligned polygon slices

that transverse a 3-D texture and achieve a 1 frame=s
rendering rate for 256� 256� 256 volume data using an

nVidia GeForce3. Lum and Ma [14] also render

isosurfaces from 3-D texture with lighting using normals

from gradient directions that are calculated dynamically

at the location of ray-isosurface intersections estimated
with sub-voxel precision using a pixel shader. In order to

reduce the number of pixels that must be rasterized

using the computationally expensive gradient calculating

pixel shader, they employ a two-pass rendering method

where the first pass sets the z-buffer for those pixels

where an isosurface intersection occurs, and the second

pass renders the lit isosurface where there is z-buffer

equality. Using an ATI Radeon 9700 Pro card, they can

achieve 1:6 frames=s for 512� 512� 512 volume data.

Fig. 6 shows an isosurface visualization example using

their technique.
7. Large volume data

The size of the volume that can be rendered

interactively is limited by the amount of video memory

the graphics card contains. The sheer size of a data set

from a contemporary scientific application can easily

overwhelm a commodity graphics card which typically

has up to 256 MB: For data too large to completely fit in

the video memory, the rendering performance is thus

limited by how fast data can be transferred from the

main memory to the video memory.

7.1. Rendering a single large-volume data set

The female anatomical images set of the visible

human data set is about 39 GB; and the male one is

over 60 GB: Such sizes overwhelm even the largest

main memory possible for a single PC. Guthe et al.

[15] develop a compressed hierarchical wavelet

representation of the volume data that can be efficiently

decompressed on-the-fly in software and transferred

to the video memory, and rendered using hardware

texture mapping. Level-of-detail rendering is done

based on both the view and an error metric. According



ARTICLE IN PRESS

Fig. 6. Hardware-assisted isosurface rendering of the CT Christmas tree data.

Fig. 7. Comparing image quality for interactive rendering of the visible human male data. Left: low quality, 7:1 fps: Middle: medium

quality, 5:4 fps: Right: high quality, 2:8 fps: Images are provided by Stefan Guthe at WSI/GRIS, University of T .ubingen.

K.-L. Ma et al. / Computers & Graphics 27 (2003) 725–734 731
to their experimental results, they can use a data

compression ratio of 30:1 without introducing visually

noticeable artifacts. With run-length Huffman

coding, decompression is about 50 MB=s: Further

performance improvement is achieved by caching

the decompressed data for subsequent frames. They

are thus able to achieve interactive rendering of the

visible female data on a single 2 GHz Pentium 4 PC

with an nVidia GeForce 4. For data larger than the

main memory can hold, their technique can be

generalized for out-of-core rendering. Fig. 7 compares

the quality of images rendered at different level of

details.

7.2. Rendering time-varying data

Many applications produce large-scale time-varying

volume data sets. Scientists’ ability to animate time-

varying phenomena is absolutely essential to ensure
correct interpretation and analysis of the data, to

provoke insights and to communicate their findings

with others. Hardware-accelerated volume rendering,

while offering realtime rendering rates, requires the

loading of the volume data into the texture memory of

the video card prior to rendering. Even though a single

time step of the data might fit in the video memory, the

complete time-varying volume data set may consist of

hundreds to thousands of time steps which would not fit

in the video memory. Rendering performance is thus

determined by how fast the time steps can be transferred

into the video memory. One solution is to treat video

memory, main memory, and disk as a three-level cache

for volume rendering. By compressing the volume data

we increase the amount of data that can fit in each level

while decreasing the I=O costs of transferring data

between these levels. In this way, the interactive volume

rendering of very large data sets is possible using

commodity PC hardware.



ARTICLE IN PRESS
K.-L. Ma et al. / Computers & Graphics 27 (2003) 725–734732
Lum et al. [16] develop a solution based on the

temporal encoding of indexed volumetric data that can

quickly be decoded in hardware. The method makes

extensive use of support for the changing of color

palettes without reloading volume textures. The

cycling of color palettes can be used to create simple

animations from static images. Similarly, the use of

color palette manipulation allows a single scalar value to

represent multiple time steps values. Even though this

results in lossy compression, according to their test

results, in most cases the differences between the

compressed and uncompressed visualizations are hard

to discern.

This approach actually compresses the index data,

rather than color data, to avoid recompressing the

volume when modifying the color or opacity transfer

functions. The encoding process consists of mapping

sequences of scalars into a single scalar index. The

discrete cosine transform (DCT) is used for this process

which by itself is reversible and does not compress the

data. Rather, this transform is selected since it puts more

energy into fewer coefficients, thus allowing the less

important, lower energy, coefficients to be quantized

more coarsely, thus using less data.

When the encoding is complete, the sequence of scalar

values is calculated for each possible index. Rather than

using the inverse DCT, a mapping for each index for

each time frame is determined that minimizes the mean

square error of the decoded value. The decoding is done

during rendering and uses an extension of OpenGL to

allow the palette of all textures to be changed at once.

Fig. 8 shows the encoding process.

Using four times compression, on an AMD 1:2 GHz

Athlon with 768 Mbytes of main memory and a

GeForce 3 with 64 Mbytes of texture memory, 1492

time steps of a 256� 256� 256 volumetric data set can

be rendered in an out-of-core fashion at approximately

6:8 frames=s using 256 object aligned textured polygons.

Since the main memory can hold 280 time steps of the
Fig. 8. DCT-based encoding. In this example, the window size

is 4 and only the first three coefficients are stored into an 8-bit

value.
data, if rendered in-core, 25:8 frames=s can be achieved.

Without compression, the same 280 time steps no longer

fit in main memory and would need to be swapped into

main memory in an out-of-core manner. A memory-

resident subset of this uncompressed data can be

rendered at about 11:5 frames=s; compared to the

25:8 frames=s with compression. These results were

obtained when rendering the volume to a 512�512

window, with the volume occupying more than half the

window area.

Note that there is a distinct tradeoff between the

compression ratio and rendering performance versus the

quality of the compressed volume. This gives users a

degree of flexibility in choosing the compression ratios

that best meet their needs. For example, if a scientist is

interested in viewing a short time sequence at high

quality, since it lower compression ratio can be used. On

the other hand, to view a very long sequence of data at

high speeds, a higher compression rate can be selected.

The scientist can combine compression ratios to preview

a data set at a coarser temporal resolution and then

view a specific time sequence of interest with less

compression.
8. Volume rendering clusters and image compositing

hardware

Parallel volume rendering offers a feasible solution to

the large data visualization problem by distributing both

the data and rendering calculations among multiple

computers connected by a network. In sort-last parallel

volume rendering, each processor creates an image of its

assigned subvolume, which is blended together with

other images to derive the final image. Improving the

efficiency of this compositing step, which requires

interprocessor communication, is the key to scalable,

interactive rendering. Parallel software compositing

algorithms generally are sufficiently efficient in previous

parallel rendering systems where the rendering calcula-

tions dominate the cost. The increased use of hardware-

accelerated volume rendering demands further accelera-

tion of the image compositing step. An optimized

algorithm introduced recently can support rendering

rates at 5–20 frames=s [17]. However, to achieve real-

time rendering rates, over 30 frames=s; we must seek

hardware solutions.

Several specialized hardware architectures and devices

have been developed to support real-time image

compositing for demanding graphics applications using

a cluster of graphics-enhanced PCs. Sepia [18], Light-

ning-2 [19] and Metabuffer [20] were developed for the

construction of large display subsystems for distributed

clusters. Sepia is a commodity-based architecture

implemented by custom PCI cards connected to a

high-speed network for image acquisition, compositing,



ARTICLE IN PRESS

Fig. 9. Image compositing boards fabricated by Mitsubishi Precision Co., Ltd.

K.-L. Ma et al. / Computers & Graphics 27 (2003) 725–734 733
and display. It supports pipelined associative blending

operations in a sort-last configuration. The second

generation of Sepia [21] incorporates a high-speed

network interface. Lightning-2 is a hardware system

that employs scanline-based pixel mapping and provides

a DVI-to-DVI interface which delivers pixel data from

graphics accelerators to remote tiled displays. It scales in

both the number of rendering nodes and the number of

displays supported, and allows any pixel data generated

from any node to be dynamically mapped to any

location on any display. However, using DVI limits

the compositing to RGB data so semitransparent

volume rendering cannot be efficiently supported.

Metabuffer based on a mesh interconnect is similar

to Lightning-2 in supporting a rich set of viewport

mappings but it also offers multi-resolution

support.

Muraki et al. [21] describe a compositing hardware

system designed specifically for the construction of

volume graphics clusters. Their approach, based on

binary-tree compositing, results in reduced circuitry,

scalable performance and logðnÞ latency. Their compo-

siting hardware system consists of PCI interface boards

and an eight-way compositing device. The compositing

hardware has a 21-stage pipeline with 36-bit bandwidth.

Most of the hardware on the interface boards and the

compositing device is implemented using FPGAs. Fig. 9

displays the compositing boards.

The advantage of this system is the scalability that

comes from the octree connectivity of the compositing

devices. A prototype 17-node cluster system connecting

two 8-node clusters with consumer graphics cards

(GeForce 4 Ti4600), is capable of delivering 115, 45

and 22 fps rendering rates, respectively, for 256�
256; 512� 512 and 768� 768 image sizes.

While some of these hardware solutions have become

commercially available, it is still prohibitively expensive

to build a large system using these specialized composit-

ing devices.
9. Conclusion

We have presented a variety of ways to exploit the

high precision, programmable, texture mapping features

of consumer graphics hardware for advancing the state

of the art in volume data visualization. At the time of

this writing, the representative consumer graphics cards

on the market are nVidia GeForce FX and ATI Radeon

9800 Pro. New graphics cards which offer more video

memory and programmable features are made available

every year. It is thus difficult to exploit the full potential

power of these graphics cards before they get replaced.

Computer graphics researchers were never before given

so much power and freedom in using hardware for

creative design of visualization techniques. In this

article, we limit our discussion to rectilinear-grid volume

data. However, it is clear that the advanced features of

the newer cards can be exploited for interactive

visualization of unstructured volume data and vector

data.
Acknowledgements

This work has been sponsored in part by the US

National Science Foundation under Contracts ACI

9983641 (PECASE award) and ACI 9982251 (the

LSSDSV program); the US Department of Energy

under Memorandum Agreements No. DE-FC02-

01ER41202 (SciDAC program) and No. B523578; the

National Institute of Health through the Human Brain

Project; and a United States Department of Education

Government Assistance in Areas of National Need

(DOE-GAANN) Grant P200A980307. The confocal

microscopic data set was provided by Dr. Leo Chalupa

at the Division of Biological Sciences of the University

of California at Davis. The turbulent flow data set was

provided by Dr. GuoWei He at ICASE/NASA LaRC.

The CT-dataset XMasTree was generated from a real



ARTICLE IN PRESS
K.-L. Ma et al. / Computers & Graphics 27 (2003) 725–734734
world Christmas Tree by the Department of Radiology,

University of Vienna and the Institute of Computer

Graphics and Algorithms, Vienna University of Tech-

nology. The authors would especially like to thank the

editors, Gunter Knittel and Bengt-Olaf Schneider, for

the suggestions that they provided to improve the

manuscript.
References

[1] Cabral B, Cam N, Foran J. Accelerated volume rendering

and tomographic reconstruction using texture mapping

hardware. In: Proceedings of the 1994 Symposium on

Volume Visualization; 1994. p. 91–8, Washington DC.

[2] Pfister H, Hardenbergh J, Knittel J, Lauer H, Seiler L. The

VolumePro real-time ray-casting system. In: Proceedings

of SIGGRAPH ’99 Conference; 1999. p. 251–60, Los

Angeles, CA.

[3] MeiXner M, Kanus U, Wetekam G, Hirche J, Ehlert A,

StraXer W, Doggett M, Forthmann P, Proksa R. VIZARD

II: a reconfigurable interactive volume rendering system.

In: Proceedings of the Eurographics Workshop on

Graphics Hardware; 2002, Saarbucken, Germany.

[4] Hadwiger M, TheuXl T, Hauser H, Gr .oller E. Hardware-

accelerated high-quality filtering on PC hardware. In:

Proceedings of the Vision, Modeling, and Visualization;

2001. p. 105–12, Stuttgart, Germany.

[5] Pfister H, Lorensen B, Bajaj C, Kindlmann G, Schroeder

W, Sobierajski Avila L, Martin K, Machiraju R, Lee J.

The transfer function bake-off. IEEE Computer Graphics

and Applications 2001;21(3):16–22.

[6] Engel K, Kraus M, Ertl T. High-quality pre-integrated

volume rendering using hardware-accelerated pixel shad-

ing. In: Proceedings of the Graphics Hardware 2001; 2001,

Los Angeles, CA.

[7] Kniss J, Kindlmann G, Hansen C. Multidimensional

transfer functions for interactive volume rendering. Trans-

actions on Visualization and Computer Graphics

2002;8(3):270–85.

[8] Tzegn F-Y, Lum E, Ma K-L. A novel interface for higher-

dimensional classification of volume data. In: Proceedings

of IEEE Visualization 2003 Conference; 2003. (To appear)

Seattle, WA, October, 19–24.

[9] Van Gelder A, Hoffman U. Direct volume rendering with

shading via three-dimension textures. In: ACM Sympo-

sium on Volume Visualization ’96 Conference Proceedings;

1996, San Francisco, CA.
[10] Treavett S, Chen M. Pen-and-ink rendering in volume

visualisation. In: Proceedings of IEEE Visualization 2000

Conference; 2000. p. 203–9, Salt Lake City, UT.

[11] Ebert D, Rheingans P. Volume illustration: non-photo-

realistic rendering of volume models. In: Proceedings of

IEEE Visualization 2000 Conference; 2000. p. 195–202,

Salt Lake City, UT.

[12] Lum EB, Ma K-L. Hardware-accelerated parallel non-

photorealistic volume rendering. In: Proceedings of the

International Symposium on Nonphotorealistic Anima-

tion and Rendering; 2002. p. 67–74, Annecy, France.

[13] Stompel A, Lum E, Ma K-L. Visualization of multi-

dimensional, multivariate volume data using hardware-

accelerated non-photorealistic rendering techniques. In:

Proceedings of Pacific Graphics 2002 Conference; 2002.

p. 394–402, Beijing, China.

[14] Lum E, Ma K-L, Rendering isosurfaces directly from 3-d

textures. Technical Report CSE-2003-10, Department of

Computer Science, University of California at Davis, April

2003.

[15] Guthe S, Wand M, Gonser J, W. StraXer, Interactive

rendering of large volume data sets. In: Proceedings of

Visualization 2002 Conference; 2002. p. 53–60, Boston,

MA.

[16] Lum EB, Ma K-L. Non-photorealistic rendering using

watercolor inspired textures and illumination. In: Pacific

Graphics ’01 Conference Proceedings; 2001, Tokyo, Japan.

[17] Stompel A, Ma K-L, Lum E, Ahrens J, Patchett J. SLIC:

scheduled linear image compositing for parallel volume

rendering. Technical Report CSE-2003-8, Department of

Computer Science, University of California at Davis,

March 2003.

[18] Moll L, Heirich A, Shand M. Sepia: Scalable 3-d

compositing using PCI pamette. In: Proceedings of IEEE

Symposium on FPGAs for Custom Computing Machines;

1999. p. 146–55, Napa, CA.

[19] Gordon S, Eldridge M, Patterson D, Webb A, Berman S,

Levy C, Ca*ywood R, Taverira M, Hunt S, Hanrahan P.

A high performance display subsystem for PC clusters.

In: Proceedings of SIGGRAPH 2001 Conference; 2001.

p. 141–8, Los Angeles, CA.

[20] Blanke WJ, Fussell DS, Bajaj C, Zhang X. The metabuffer:

a scalable multiresolution multidisplay 3-d graphics system

using commodity rendering engines. Technical Report

No. 2000-16, University of Texas at Austin, 2000.

[21] Lombeyda S, Moll L, Shand M, Breen D, Heirich A.

Scalable interactive volume rendering using off-the-shelf

components. In: Proceedings of the 2001 Symposium on

Parallel and Large-Data Visualization and Graphics; 2001.

p. 115–21, San Diego, CA.


	Recent advances in hardware-accelerated volume rendering
	Introduction
	Texture hardware features and volume rendering
	Classification
	Lighting
	Non-photorealistic rendering
	Rendering isosurfaces from 3-D texture
	Large volume data
	Rendering a single large-volume data set
	Rendering time-varying data

	Volume rendering clusters and image compositing hardware
	Conclusion
	Acknowledgements
	References


