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Abstract

How a host's microbiome changes over its lifespan can influence development and aging. 

As these temporal patterns have only been described in detail for a handful of hosts, an important

next step is to compare microbiome succession more broadly and investigate why it varies. Here 

we characterize the temporal dynamics and stability of the bumble bee worker gut microbiome. 

Bumble bees have simple and host-specific gut microbiomes, and their microbial dynamics may 

influence health and pollination services. We used 16S rRNA gene sequencing, qPCR, and 

metagenomics to characterize gut microbiomes over the lifespan of Bombus impatiens workers. 

We also sequenced gut transcriptomes to examine host factors that may control the microbiome. 

At the community level, microbiome assembly is highly predictable and similar to patterns of 

primary succession observed in the human gut. But at the strain level, partitioning of bacterial 

variants among colonies suggests stochastic colonization events similar to those observed in flies

and nematodes. We also find strong differences in temporal dynamics among symbiont species, 

suggesting ecological differences among microbiome members in colonization and persistence. 

Finally, we show that both the gut microbiome and host transcriptome—including expression of 

key immunity genes—stabilize, as opposed to senesce, with age. We suggest that in highly social

groups such as bumble bees, maintenance of both microbiomes and immunity contribute to the 

inclusive fitness of workers, and thus remain under selection even in old age. Our findings 

provide a foundation for exploring the mechanisms and functional outcomes of bee microbiome 

succession.
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Understanding how and why microbial communities change over time is a fundamental 

goal of microbial ecology (1–3). For host-associated microbiomes, the local environment can 

change dramatically across the host lifespan, influencing their temporal dynamics (4–8). These 

dynamics may also have functional consequences, possibly influencing or regulating host 

development and life history processes (5, 9–11). We have an increasingly clear picture of 

microbiome succession in humans and in certain models for biomedical and symbiosis research 

[e.g., (12–18)], for which a range of methods have been used to describe dynamics of both 

microbes and host processes in great detail. Patterns can vary substantially across hosts. For 

example, in primary succession, stochastic colonization dynamics observed in D. melanogaster 

and C. elegans (13, 14, 19) contrast with predictable gut microbiome assembly in human infants 

and honey bees (20–22). On the other hand, convergent patterns are also observed, especially 

with respect to microbiome maintenance in old age. In humans, gut microbiome composition 

becomes more variable in the elderly, with losses of core symbiont species (23–26). In lab 

models, gut microbiomes also shift (though in various ways) in old age (17, 27–29); these shifts 

may constitute a form of senescence, both responding and contributing to deterioration of gut 

physiology and immunity (28, 30, 31). However, given major biological differences, it is difficult

to explain why we see divergent or convergent successional trajectories among these groups.

Marker gene-based studies of microbiome succession from a greater diversity of hosts 

suggest a much broader array of temporal patterns in nature. For example, microbiome assembly 

can differ even between closely related hosts [e.g., humans and chimps (32)], and in some hosts, 

microbiome senescence does not seem to occur (33). However, typical marker gene (e.g., 16S 

rRNA) amplicon sequence datasets lack information on taxa not amplified by the chosen primer 

set, on absolute abundance, and on activity (e.g. live versus dead, replicating versus dormant). 
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Short amplicon datasets of conserved genes also lack phylogenetic resolution below the species 

(i.e. ASV) level, masking subspecies or strain-level dynamics. Furthermore, many of these 

studies lack data on host processes that might impact microbes, such as immune responses, 

especially at spatial and temporal scales relevant to microbial dynamics. For a general 

understanding of how and why host-associated microbiomes change over time, it is crucial to 

develop a broader range of host-microbiome systems, studied with a comprehensive set of host- 

and microbe-level analyses.

Eusocial corbiculate bees (honey bees, bumble bees, and stingless bees) are a promising 

group for comparative, in-depth studies of microbiome dynamics. First, these bees are key 

pollinators in natural and agricultural ecosystems, and bacterial symbionts have functional roles 

in host health (34–36). Therefore, the dynamics of these microbes could have important 

consequences for bees as well as plants. Bees are threatened by a variety of anthropogenic 

stressors (37), and baseline temporal variability in the microbiome needs to be measured in order

to observe perturbations and study resilience (38, 39). Second, these three bee clades are related, 

are ecologically similar in many respects, and share some conserved symbiont taxa, but they also

differ in key life history and ecological traits, as well as in the composition and functional 

potential of their microbiomes (34, 35, 40). This contrast among close relatives provides an 

opportunity to study how host traits shape the evolution of microbiome dynamics. Third, social 

bees have host-specific and very simple gut microbiomes, dominated by just a few core bacterial 

lineages (41). This simplicity makes it easier to delve below community-level patterns to study 

the temporal dynamics of individual species and strains within the microbiome. Distinct 

microbial taxa may exhibit different life history strategies that shape colonization and persistence
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[e.g., (42–45)]. These strategies are poorly understood for microbes within host-associated 

communities, but are likely important for shaping community-level succession (45).

Gut microbiome temporal dynamics have been relatively well-studied in the Western 

honey bee (Apis mellifera). The gut microbiome is completely different between larvae and adult

workers (46), and it continues to change in composition and abundance as workers age (15, 22, 

47–49). However, as A. mellifera workers go through a highly stereotyped sequence of tasks 

over time (age polyethism) (50), age and task effects are difficult to disentangle. For example, 

honey bees do not defecate until they become foragers and leave the hive for the first time (51); 

this could contribute to a decrease in microbial abundance from young nurses to older workers

(47). Indeed, differences in task performance alone (in-hive tasks versus foraging) are associated 

with microbiome differences in age-matched workers (52). Furthermore, the oldest workers are 

those who overwinter and enter a phase with distinct metabolic, immunological, thermal, and 

behavioral (e.g., lack of defecation) characteristics (47, 53, 54). The gut microbiome can be quite

stable into old age in these long-lived workers (55). It is unclear to what extent gut microbial 

succession in A. mellifera will extend to other bees that lack strong age polyethism and unique 

overwintering phenotypes.

Bumble bees (Bombus spp.) differ from honey bees in many ways that likely relate to 

microbiome dynamics (35). Workers exhibit comparatively weak age polyethism (temporal 

division of labor); tasks are generally carried out by workers of all ages, though some tasks are 

more likely to be performed at certain ages (56). Symbionts are transmitted between generations 

by a single queen, instead of by a large group of workers as in honey bees; this changes the 

bottleneck size, and potentially, selection on caste-specific maintenance processes (35). They 

also lack certain bacteria characteristic of honey bees and have gained Candidatus 
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Schmidhempelia bombi (hereafter, Schmidhempelia) (41, 57). A unique practical advantage of 

bumble bees is that full colonies can be reared indoors. This provides an opportunity to study 

intrinsic aging processes under optimal conditions, in the absence of environmental variation, 

and to sample microbiomes of very old bees that would normally be rare due to extrinsic 

mortality. Moreover, the bumble bee gut microbiome seems uniquely prone to disturbance: field-

collected workers are often found to lack the core symbionts and instead harbor opportunistic 

environmental bacteria (35, 58, 59). This phenomenon has been linked to colony age, but old 

colonies will also tend to have older workers on average (59). Whether microbiome disturbance 

is due to individual senescence has not been fully resolved.

Previous work has outlined the early stages of gut microbiome succession in bumble bees

(60–62), but there is no information on what happens to the microbiome in old age. We also lack 

information on the temporal dynamics of endogenous processes (e.g., immunity) in the bee gut 

that control gut microbes, and may be controlled by them (63, 64). Gut physiology and immunity

senesce in many animals [e.g., (8, 28, 30, 65)], but these processes—and senescence generally—

may operate quite differently between different castes of eusocial insects (66, 67). In bumble 

bees, a solitary queen founds the colony and produces cohorts of (mostly) nonreproductive 

workers; reproductive offspring (queens and males) are produced toward the end of the colony 

cycle (68). Given that: i) age-specific survival probabilities are similar over much of the bumble 

bee worker lifespan (69, 70), ii) even old workers contribute to colony reproduction (56), and iii)

there is a need to transmit the core gut symbionts—and not pathogens or parasites—to new 

queens (35), one may expect only minimal senescence of worker microbiomes, gut physiology, 

and immunity. Indeed, some aspects of systemic immunity in bumble bees remain stable or 

increase with age (71).
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Our main research questions are: how is the bumble bee gut microbiome assembled and 

maintained through the lifespan—are patterns predictable, and are they convergent with other 

host systems? Do species within the gut microbiome vary in their temporal dynamics, and can 

this give us clues into ecological differences? How does the host's gut transcriptional landscape 

change in concert with the microbiome? And, is the microbiome disturbance that is widely 

observed in wild bumble bee populations due to individual senescence? To address these 

questions, we conducted a cross-sectional microbiome and transcriptomic survey of Bombus 

impatiens, focusing on dynamics during the adult stage of workers. We used high-temporal-

resolution sampling and a variety of molecular methods (16S rRNA amplicon sequencing, 

metagenomics, qPCR, RNAseq) to provide a detailed characterization of microbiome succession 

and gut processes over the lifespan. Our findings develop bumble bees as a case study with 

which to compare dynamics with other social insects and hosts generally, and have implications 

for microbiome disturbance and bumble bee health.

Materials and Methods

1. Bumble bee rearing

For the main study, three commercially reared bumble bee (Bombus impatiens) colonies 

were obtained from Koppert Biological Systems and reared in the laboratory. Upon arrival, all of

the cocoons (containing worker pupae) present in each colony were moved to separate containers

in a 35 °C incubator. We monitored the cocoons daily, and marked all newly emerged adult 

worker bees with numbered tags, affixed with wood glue to the thorax. Tagged bees were then 
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returned to their colony of origin. Three newly emerged bees per colony were sampled (see 

below) instead of returned to the colony. To maintain colonies, we provided non-sterile pollen 

dough (ground pollen mixed with syrup) every 3-4 days. Non-sterile sucrose syrup (50% w/v) 

was provided ad libitum through an enclosed foraging area connected to the main nest. 

We used cross-sectional sampling to measure changes in gut microbiomes and 

transcriptomes over the worker lifespan (Fig. S1). For the first week of adult life, we sampled 

one bee per colony per day, in order to have higher temporal resolution for the colonization 

phase, which we expected to be dynamic. Thereafter, for colonies B and Y—which had more 

tagged bees available, because more pupae were present—we sampled one bee every other day 

in age (e.g. 9, 11, 13 days old). For colony W, sampling occurred every fourth day in age. 

Sampling entailed anesthetizing bees on ice and removing the gut with 70% ethanol-sterilized 

forceps. The midgut and hindgut were separated at the pylorus and each stored in 0.1 ml 

DNA/RNA Shield (Zymo) at -80 °C until nucleic acid extractions.

Sampling continued until all of the originally tagged bees had either died or been 

collected—up to 59 days old (colonies Y and W) or 75 days old (colony B) (Fig. S1). These 

maximum ages are similar to, or greater than, the average lifespan for indoor-reared workers of 

Bombus impatiens (72, 73) and other Bombus species (74, 75). They greatly exceed the average 

lifespan of free-foraging bumble bee workers (76–78).

A smaller set of samples were collected from colonies reared from field-collected queens 

of B. impatiens (3 colonies) and B. ternarius (1 colony). Queens were collected from New 

Hampshire, USA (B. impatiens: 44.221788, -71.735138; B. ternarius: 44.221034, -71.774747). 

They were then reared in small Ziploc containers in the closet of a private residence at ~60% 

relative humidity and at 28 °C. The colonies were fed pollen and nectar as described above. 
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Newly eclosed (emerged) bees were tagged and returned to the colony, and combined midgut 

and hindgut samples were collected from younger (4-14 days old) and older (37-47 days old) 

workers and males. Samples were stored in 95% ethanol at -20 °C. Finally, we also sampled 11 

larvae from two additional commercial B. impatiens colonies. Whole larvae were stored in 95% 

ethanol at -20 °C.

2. Nucleic acid extractions and qPCR

All samples were homogenized with a sterile pestle prior to extractions. For hindguts 

sampled from the commercial colonies, we extracted both DNA and RNA using the Zymo 

Quick-DNA/RNA kit, following the manufacturer's protocol. For all other samples we extracted 

only DNA using the ZymoBIOMICS DNA kit. Six extraction blanks and three cross-

contamination controls (0.l ml of a OD600 10.0 suspension of Sodalis praecaptivus cells in PBS) 

were included alongside the gut samples.

For hindguts and midguts of the commercial bees, bacterial titers were measured by 

SYBR Green-based quantitative PCR targeting the 16S rRNA gene (with universal 27F/355R 

primers), as described in ref. (22). Absolute copy numbers were calculated using standard curves

generated from serially diluted plasmid DNA carrying the target gene. Estimates of copy 

numbers per gut sample were calculated by multiplying values from qPCR reactions (containing 

1 μl template) by the volume of gDNA eluted from each extracted sample.

3. Library prep and sequencing
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For 16S rRNA gene sequencing, gDNA (excepting larval samples) were first PCR-

amplified using universal primers targeting the V4 region (515F/806R) and conditions as detailed

in ref. (79). Addition of dual-indexed barcodes, magnetic bead purifications, and additional 

library preparation steps also followed the protocols in ref. (79). Libraries (including the 

extraction blanks and three PCR no-template controls) were pooled and sequenced on an 

Illumina iSeq with 2 x 150 chemistry. Samples were split among three separate sequencing runs, 

as listed in the supplementary metadata file. For larvae, library prep and 16S rRNA gene (V4 

region) sequencing (Illumina NovaSeq 2 x 250) were conducted separately by Novogene.

A total of 57 hindguts from the commercial colonies, spanning the range of ages in our 

sample set (including newly emerged bees), were selected for RNAseq. Library prep for host 

mRNA sequencing was conducted by Novogene using the NEB Next Ultra II RNA library prep 

kit. Libraries were sequenced on an Illumina NovaSeq with 2 x 150 chemistry, resulting in an 

average of 23.7 M raw paired-end reads per sample. The same set of hindguts used for RNAseq 

were initially selected for shotgun metagenomics, excepting the newly emerged bees, which had 

very low amounts of bacterial DNA. Five gDNA samples did not pass QC, and three of these 

were replaced by other hindgut samples from bees "adjacent" in age, for a total of 46 samples. 

Library prep was conducted by Novogene, using the NEB Next Ultra II DNA Library prep kit. 

Libraries were sequenced on an Illumina NextSeq with 2 x 150 chemistry, with an average of 

22.4 M raw paired-end reads per sample.

4. Bioinformatic analyses
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16S rRNA gene amplicons from the three iSeq runs were combined for data processing. 

Adapters and primers were removed using cutadapt (80). Sequences were then quality-filtered, 

trimmed, and denoised to generate amplicon sequence variants (ASVs) by DADA2 (81). Only 

the forward reads were used, as the reverse reads were poor quality. Taxonomy was assigned to 

ASVs using the SILVA v. 138.1 database (82). Data processing and analysis was conducted in R

v. 4.1.1, following the general approach described in ref. (83). Additional detail is provided in 

the Supplemental Methods.

The workflow for processing the RNAseq data, from raw reads to gene-level counts, is 

described in the Supplemental Methods. Analysis of count data in R followed the general 

approach of ref. (84), using limma (85) and edgeR (86) packages. Genes were filtered using the 

filterByExpr function, with normalization factors calculated by the TMM method. To use 

pairwise differential expression analyses, we grouped bees into four age classes: new: 0-1 days, 

N = 12; young: 3-19 days, N = 16; middle: 23-43 days, N = 15; old: 47-75 days, N = 14. Age 

classes were delineated such that they would have roughly similar sample sizes, and were chosen

before statistical analysis of the data. We calculated the number of differentially expressed genes 

(DEGs) between age classes using linear models of log counts-per-million (log-CPM) values in 

limma. The design matrix (~ 0 + age + colony) and contrasts were designed for pairwise 

comparisons of sequential age classes (e.g., young versus middle-aged). DEGs were defined as 

genes with a p value <0.05 after false discovery rate (FDR) adjustment for multiple comparisons.

To analyze expression patterns of genes that might be linked to microbiome dynamics, we 

focused first on antimicrobial peptides (AMPs) and dual oxidase, which generates reactive 

oxygen species (ROS). AMPs and ROS are major effectors in the insect gut epithelial immune 

response, and are known to regulate gut microbes in bumble bees and other insects (87–89). To 
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investigate how host immune regulation may change with age, we also analyze key genes in the 

Imd and Toll pathways, which control expression of these effectors (88, 90). The specific genes 

we included are listed in Table S1.

The workflow for processing the shotgun metagenomic data is described in the 

Supplemental Methods. phyloFlash (91) was used to analyze the non-bacterial taxonomic 

composition of SSU rRNA genes. To assemble the data, we used megahit (92) (default 

parameters) for single-sample assemblies (93). After binning (see Supplemental Methods), we 

used dRep (94) to obtain a dereplicated set of 15 high-quality, approximately subspecies-level

(95) bacterial metagenome-assembled genomes (MAGs) with an average nucleotide identity 

(ANI) threshold of 98% (Table S2). MAGs were classified using GTDB-Tk (96). For further 

analyses, we mapped each sample's reads against the concatenated set of MAGs using bowtie2. 

The relative abundance of each MAG in each sample, normalized by sequencing depth, was 

measured as the number of reads per kilobase per million mapped reads (RPKM). inStrain (95) 

was used to resolve strain-level diversity. Specifically, we characterized strain-level clusters 

(generated by the inStrain compare function) belonging to each of the MAGs, and visualized 

their distribution across bee gut samples using cytoscape (97). The default Prefuse Force 

Directed Layout was used to visualize the bee-strain network shown in Fig. 4. We also 

conducted a non-clustering-based and MAG-specific analysis of strain sharing with 99.99% 

population ANI as a cutoff for differentiating strains. Finally, we used iRep (98) to estimate the 

instantaneous population-average replication rates for MAGs of Schmidhempelia and 

Gilliamella, the two taxa that varied in abundance with age. These data can provide insight into 

the relative contributions of cell replication and mortality to bacterial population dynamics (98). 

Additional detail for these analyses is included in the Supplemental Methods.
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5. Statistical analyses

To model changes in bacterial titer with age, we fit logistic curves to the data using the 

SSlogis and nls functions in R. To test whether changes in community composition were 

associated with age and colony, we used distance-based redundancy analysis (db-RDA) with the 

Bray-Curtis dissimilarity metric, as implemented in the vegan package (99). To identify bacteria 

whose relative abundance changed with age after the colonization phase, we focused on only the 

eight dominant genera shown in Fig. 2, leaving aside very low-abundance taxa (< 1% mean 

relative abundance across gut samples) that are less likely to influence host function or overall 

microbiome dynamics. Then we conducted Spearman's correlations and adjusted p values using 

FDR. For the three taxa with an FDR-corrected p value < 0.05, we used linear mixed effects 

models to further test whether age predicted changes in relative abundance, including colony as a

random effect. The latter approach was also used to test whether the relative abundance of 

Schmidhempelia and Gilliamella MAGs varied with age. Strain partitioning by colony versus age

(the four discrete age classes described above) was analyzed by the following method: for all 

MAGs, chi-squared tests were conducted to test whether bees belonging to the same colony or 

age class tended to have a higher number of shared strains; p values from these tests were 

corrected for multiple comparisons by FDR. To model replication indices of Schmidhempelia 

and Gilliamella as a function of age and colony, we first conducted linear regressions including 

the interaction term; these did not provide a significantly better fit to the data than models lacking

an interaction, so the results we report are from the latter. We used the glht function in the 
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multcomp package for posthoc tests of Schmidhempelia replication indices among the three 

colonies.

Results 

We focused our study on changes with aging during the adult stage, when the 

characteristic gut microbiome is known to be present (35). As microbiome colonization in adult 

bees could be influenced by larval symbionts that persist through metamorphosis (5), we also 

characterized microbiomes in larvae. Larval microbiomes are dominated by Lactobacillus and 

Apilactobacillus (Fig. S2), which are also present in the gut of adult worker bees (Fig. 2A). 

Despite this overlap, microbiomes are largely restructured across metamorphosis, with other 

adult-associated bacteria very rare in larvae (mean relative abundances in 16S rRNA amplicon 

libraries: Schmidhempelia, 9.92 x 10-4; Gilliamella, 4.12 x 10-5, Snodgrassella, 3.97 x 10-3). 

Newly emerged adults (< 24 hours post-emergence) have very few bacteria in either the midgut 

or hindgut (Fig. 1A). 16S amplicon profiles (Fig. S3) show large proportions of reagent 

contaminants, such as Burkholderia, the most abundant taxon in our extraction blanks (see 

Supplemental Methods), further indicating a scarcity of bacteria in these bees' guts (100). These 

< 24-hour-old bees are not included in further 16S-based analyses. As bees mature, the gut 

bacterial community exhibits logistic growth, stabilizing after approx. 4 days, with much higher 

abundances in the hindgut than in the midgut (Fig. 1A). Therefore, we focus on the adult worker 

hindgut in the following analyses, which involve commercially reared colonies unless otherwise 

noted. Alpha diversity also increases quickly in young bees, from a monodominance of 

Schmidhempelia to a stable community of ~8 bacterial groups (Fig. 2A). There was no evidence 

of a change in absolute abundance or alpha diversity in old bees (Figs. 1A, 1B). These patterns 
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are highly consistent among the three replicate colonies (Figs. 1, 2). Community composition 

also changes with age (db-RDA, F= 17.9, p < 0.001) (Fig. 1C), and only weakly differs between 

the three replicate colonies (db-RDA, F = 2.15, p = 0.036).

Despite exposure to microbes present in the diet and rearing environment, gut 

microbiomes of workers from both commercial B. impatiens and wild-queen-derived B. 

impatiens and B. ternarius colonies are almost entirely dominated by the core, host-specialized 

bacterial taxa known to be prevalent in bumble bees (35) (Figs. 2A, S3). Bacteria previously 

observed in microbiome-disrupted bumble bees, such as Enterobacteriaceae (58, 101, 102) and 

Fructobacillus (59, 103), are virtually absent from the 16S rRNA gene amplicon datasets, 

including commercial bee midguts (Fig. S4) and hindguts (Fig. 2A) and wild-queen-derived 

colonies (Fig. S5). The single exception is a male bee from one of the latter colonies, which has a

large proportion of Klebsiella (Enterobacteriaceae) and fungal sequences (Fig. S5).

After the colonization phase, hindgut microbiome composition is generally stable 

throughout the adult stage (Fig. 2A), with only three taxa changing in relative abundance: 

Schmidhempelia steadily decreases (t = -4.47, p < 0.001) (Fig. 2B) while Gilliamella (t = 7.02, p 

< 0.001) (Fig. 2B) and Bombiscardovia (t = 3.05, p = 0.003) increase. These are relative 

abundances, derived from compositional 16S rRNA amplicon profiles. Changes in relative 

abundances of taxa can be misleading when the absolute abundance of the entire community 

changes [e.g., (104)]. Indeed, using taxon-specific population sizes estimated by correcting 

relative abundances with qPCR data, Bombiscardovia does not significantly increase with age 

after the colonization phase (t = 1.31, p = 0.19) (Fig. S6). Otherwise, similar patterns are found: 

Schmidhempelia decreases, Gilliamella increases, and other dominant bacterial taxa generally 
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remain stable (Fig. S6). Schmidhempelia and Gillamella show the same pattern in B. impatiens 

colonies reared from wild queens (Fig. 2C). 

Metagenomic data provide further support for a Schmidhempelia/Gilliamella transition 

with age. Using read mapping to metagenome-assembled-genomes (MAGs) as another 

compositional measure of bacterial abundance, we find the same switch (Schmidhempelia: t = -

3.27, p = 0.002; Gilliamella: t = 4.62, p < 0.001) (Fig. 3). Metagenomes also show that gut 

microbiomes are dominated by core bacteria. All of the MAGs belong to bee-specific bacterial 

taxa (Table S2); SSU rRNA genes from fungi (homologous to bacterial 16S rRNA genes) are 

generally rare relative to those from bacteria, though with elevated proportions in a few of the 

youngest and oldest bees in our sample set (Fig. S7). SSU rRNA genes from other non-bacterial 

microbes are practically non-existent. We also detect diet-derived plant sequences. Excepting the

youngest bees, proportions of plant sequences are generally low and do not show any clear trends

with age (Fig. S7).

Analysis of amplicon sequence variants (ASVs), the finest level of resolution available 

with our 16S sequencing approach, shows that the major core taxa comprise only a single ASV 

generally ubiquitous across samples (Fig. S8). We used metagenomic data to reveal further 

layers of diversity beyond ASVs. Some (but not all) of the major bacterial groups comprise 

multiple MAGs with < 98% ANI ["subspecies", following (95)] (Fig. 3, Table S2). Using 

inStrain, which compares single-nucleotide variants between samples' reads aligned to a common

reference (95), we find that MAGs contain additional strain-level diversity. For most MAGs, this

diversity is clearly partitioned by colony, but not by age (Fig. 4, Fig. S9). All of the MAGs from 

Gram-negative bacterial taxa (Snodgrassella, Schmidhempelia, Gilliamella), but only some of 

those from Gram-positive taxa, are more likely to be shared within than between colonies (FDR-
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adjusted p < 0.05) (Fig. S9). We also used metagenomic data to examine in situ population-

average replication rates, focusing on the two taxa that shift with age. Schmidhempelia has much 

lower replication indices in colony B (posthoc pairwise contrasts: W vs. B, t = 10.69, p < 0.001; 

Y vs. B, t = 14.29, p < 0.001; W vs. Y, t = 1.35, p = 0.38) (Fig. 5). There is also a weak negative 

effect of age on Schmidhempelia replication (t = -2.65, p = 0.013). Gilliamella replication indices

do not significantly differ between colonies (t = -1.32, p = 0.22) or due to age (t = 0.197, p = 

0.89) (Fig. 5), although sample sizes are also smaller due to lower coverage.

Host gene expression profiles in the hindgut change as bees mature and reach "middle 

age" (~3-6 weeks old) (Fig. 6A). Between newly emerged and young bees, and young and 

middle-aged bees, there are 2696 and 6136 differentially expressed genes (DEGs), respectively. 

Thereafter, gut gene expression profiles do not change with age in a consistent way (Fig. 6A): 

there are zero DEGs comparing middle-aged and old bees. Of the immunity effectors we 

analyzed, most show low levels of gene expression in newly emerged bees, with upregulation in 

older age cohorts (Fig. 6B). Dual oxidase [which generates reactive oxygen species (ROS) (87, 

88)], and three of the four antimicrobial peptides, increase in expression as bees mature. 

Catalase, which degrades ROS to maintain redox balance (105), is highly expressed in newly 

emerged bees—possibly to prevent self-harm in the absence of abundant microbial cells (64)—

and is subsequently downregulated (Fig. 6B). Signaling genes in the Imd and Toll pathways 

show variable patterns. Imd and relish decrease in expression with age, while cactus and dorsal 

expression do not significantly differ between any age classes (Fig. S10).

Discussion
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Our study provides an initial picture of how the bumble bee worker microbiome changes 

throughout adult life, and how these changes correlate with the expression of key host genes. 

Overall, the gut microbiome and host transcriptome are highly dynamic during the initial 

assembly phase. These changes continue over the longer-term maintenance phase, but their 

magnitude and direction vary among symbiont species and host genes. Both the microbiome and 

transcriptome appear to stabilize, as opposed to senesce, in old age. We discuss each of these 

phases in turn.

Assembly

In adult bumble bees, microbiome assembly appears to be an example of primary 

succession. Amounts of bacterial DNA in newly emerged adult guts are very low (Fig. 1A), and 

previous work finding these guts generally devoid of culturable bacteria (106, 107) suggests that 

at least some of this DNA derives from nonviable cells. Larvae harbor Lactobacillus and 

Apilactobacillus (Fig. S2), taxa also present in adult guts (Fig. 2A). Although transmission 

through metamorphosis is theoretically possible (5), these bacteria may instead be cleared during

pupation and reacquired from the nest environment by newly emerged adults. Other dominant 

bacteria in adult guts such as Schmidhempelia, Snodgrassella, and Gilliamella were either very 

rare or absent from larvae, indicating de novo colonization of adults. Developmental 

restructuring of the microbiome has been found in other Bombus species (108) and in Apis 

mellifera (46), but why it occurs is not fully clear. Larvae and adults interact through 

trophallaxis, and both consume pollen and honey from communal stores in the nest (68, 75, 109).

Thus, nutritional and microbial inputs into the gut are likely similar. Potentially, aspects of larval
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gut morphology, physiology, or immunity create less hospitable conditions for colonization by 

the core symbionts of adults. The trypanosomatid Crithidia bombi, a common gut parasite in 

adult bumble bees, is also unable to infect larvae (110). High osmotic potential in the larval gut 

has been suggested to inhibit Crithidia infection (110), and may be a factor inhibiting bacterial 

colonization as well.

Coupled with a low expression of immunity effectors (Fig. 6B), the low abundance of 

pathogen-protective (111, 112) core gut bacteria suggests that newly emerged adults are 

particularly vulnerable to microbiome disruption. Similarly, human infants are prone to 

infections while their immune system, microbiome, and gut microenvironment mature (113). The

microbiome disruption phenomenon widely observed in field-collected bumble bee workers as 

well as queens (35) may begin during the assembly phase. In Bombus griseocollis, workers do 

not leave the nest for the first couple of days after emergence; most activities, including foraging,

begin by the fourth or fifth day (56). By this point, the core gut microbiome is established and 

expression of immune effectors has increased (Fig. 1, Fig. 2, Fig. 6B). The timing of the onset of 

foraging therefore limits direct exposure to stressors during this vulnerable period. However, 

environmental microbes and chemicals are present in food stores and other substrates, presenting

an opportunity for microbiome perturbations even in bees restricted to the nest.

Microbiome assembly dynamics in bumble bees are both predictable and convergent with

other hosts. Temporal patterns of microbiome abundance, diversity, and composition (Fig. 1) are 

highly similar among replicate colonies. Moreover, these patterns are evident despite our cross-

sectional study design, suggesting that temporal variation in microbiomes outweighs 

interindividual variation. Early successional patterns showed similarities to those observed in 

honey bees (22) and human infants (4, 20, 104, 114) and, more generally, to heterotrophic 
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microbial communities supplied with external carbon sources (3). However, there are also 

marked differences with gut microbiome assembly in other invertebrates, such as flies (D. 

melanogaster) and nematodes (C. elegans). In these hosts, bacterial colonization is highly 

stochastic and can lead to microbiome compositions that are stably distinct among individuals

(13, 14, 19). These hosts also generally harbor non-host-restricted, flexible, environmentally 

acquired gut microbiomes (115). In contrast, the symbiosis between social bees and their gut 

microbes is ancient and specific (34, 41). By living in dense colonies, social bees enrich their 

local environment with core symbionts, favoring predictable assembly. Functional redundancy 

among bacterial species may also be lower in social bees than flies and nematodes, possibly 

selecting for stronger host control over microbiome establishment.

Despite predictable assembly at the community level (Figs. 1, 2), we also observe 

evidence for stochastic colonization at the strain level. Strain-level diversity is clearly partitioned

between the three replicate colonies (Fig. 4), a pattern not evident in the ASV (Fig. S8) or 

subspecies (Fig. 3) data. Notably, all Gram-negative bacterial genomes exhibited significant 

colony partitioning, while only some of the Gram-positive genomes did so (Fig. S9). Gram-

positive bacteria may be more likely to survive outside the host, facilitating dispersal among 

colonies. Similarly, Gram-positive gut bacteria of honey bees can be transmitted via hive 

surfaces, with less reliance on social contact than Gram-negative species (22). Differences in 

social structuring among mammalian microbiome members have also been linked to bacterial 

physiology (116, 117).

There are multiple potential explanations for the origin of the colony-partitioning pattern.

One is an interaction between host and symbiont genotypes (106). There may also be genotype-

by-environment effects; to give one example, bee colonies of different sizes may have different 
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thermoregulatory capacities and temperatures (118); this could act as an ecological filter for 

strains with different thermal tolerances (107). In addition to intrinsic physiological differences 

between strains, differences in temperature or other environmental factors may explain why the 

inferred replication rates of Schmidhempelia differed substantially between colonies (Fig. 5). A 

final explanation is founder (or foundress) effects. Bumble bee colonies are initiated by a single 

foundress queen, who is the source of gut symbionts for her offspring (35, 60). A diverse pool of 

strains may be stochastically sorted into a single foundress queen's gut, with the established 

population resistant to subsequent invasion [i.e., priority effects (2)]. This process may be 

analogous to the neutral bottlenecking described for bacterial strain partitioning among skin 

pores (119) or the stochastic colonization of individual guts of flies and nematodes (13, 14, 19).

Maintenance

Gut microbiome abundance and composition generally stabilize after the colonization 

phase in newly emerged adults. However, the ratio of two of the core symbiont species, both 

members of the family Orbaceae, continues to shift with age. The worker gut starts as a near 

monoculture of Schmidhempelia (Fig. 2A). This finding matches previous work: in the B. 

impatiens genome project, which used DNA from a one-day-old male, the only bacterial genome

with substantial representation belonged to Schmidhempelia (57). Over time, Schmidhempelia 

progressively declines in relative abundance, while Gilliamella increases. This shift is evident in 

both the amplicon (Fig. 2B) and metagenome datasets (Fig. 3) and across the three replicate 

colonies. We observe the same pattern in wild-derived colonies (Fig. 2C), suggesting that it is a 

common feature of microbiome succession in B. impatiens. 
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The functional consequences of the switch from Schmidhempelia to Gilliamella are 

unknown. In honey bees, Gilliamella can ferment pollen cell wall components (120), with 

products (short-chain fatty acids) potentially providing bees with a supplemental energy source 

and lowering gut pH (121). Gilliamella likely perform similar functions in bumble bees, 

although bumble bee-derived strains have fewer capabilities for degrading and fermenting pollen

components (35, 122). Acidification is thought to limit infection by Crithidia bombi, a 

trypanosomatid parasite of bumble bees (123). An increase in Gilliamella may thus contribute to 

the metabolism and defense of older bees.

Presumably, changes in Schmidhempelia abundance over time also affect hosts, as well as

other gut microbial species. Differences between Schmidhempelia and Gilliamella metabolism 

are evident from genome analyses (57, 120). Whereas Gilliamella is a facultative anaerobe with 

an intact TCA cycle, Schmidhempelia is inferred to be an obligately anaerobic fermenter, 

producing acetate and other short-chain fatty acids (57). These products would acidify the gut, 

potentially inhibiting parasites and facilitating subsequent colonization by core symbionts. 

However, as Schmidhempelia has not been cultured (35), we lack experimental evidence for its 

effects on hosts or other microbes.

The temporal dynamics of Schmidhempelia and Gilliamella point to distinct life history 

strategies, perhaps exemplifying the competition-colonization trade-off shown in various 

microbial communities [e.g., (42–44)]. For example, Schmidhempelia may be a pioneer colonizer

or ruderal (124), one that is good at dispersing to and exploiting unoccupied gut habitat. 

Gilliamella may be a better competitor, successfully excluding Schmidhempelia with time. The 

nature of this competition remains to be determined. Schmidhempelia replication rates appear to 

be generally stable with age after the colonization phase (Fig. 5), suggesting that declines in 
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population size are driven by increased mortality over time, rather than by a dwindling resource 

supply slowing replication. Increased mortality could be due to interference competition, where 

Gilliamella directly antagonizes Schmidhempelia, possibly by using type VI secretion systems 

[possessed by both species (57, 125)] or other means. It could also be due to apparent 

competition, where Gilliamella growth induces increased expression of host immune responses 

(Fig. 6B) that are more harmful to Schmidhempelia than to Gilliamella (64). Although the 

mechanisms are unknown, our data support the existence of variation in life history strategies 

within the gut microbiome. Such differences are likely to be important drivers of coexistence and

community function.

As with the microbiome, gene expression profiles in the hindgut are dynamic up to ~3-6 

weeks of age ("middle age"), with many differentially expressed genes between newly emerged, 

young, and middle age (Fig. 6A). Multiple genes involved in production of antimicrobial 

peptides (AMPs) and reactive oxygen species (ROS), key components of gut epithelial immunity

(87, 88), increase in expression over this time frame (Fig. 6B). In contrast, components of Imd 

and Toll signaling pathways either decrease in expression or remain stable with age (Fig. S10). 

Pathogen infection induces these pathways, which then activate immune effectors (88, 90). In 

this experiment, non-core microbes are almost entirely absent from the hindgut (Fig. 2A), so 

induction by pathogens is expected to be minimal. Potentially, the temporal patterns we observe 

could be due to a shift from low (but more inducible) effector expression to high (and more 

constitutive) expression with age. These patterns contrast with systemic (hemolymph) immune 

defenses, which decrease with age in bumble bees (71, 126). Differing selective pressures on 

defense could underlie this discrepancy; for example, gut infection may be more likely to occur 

or more likely to spread to nestmates (via feces) than hemolymph infection. Currently however, 

23

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502



comparisons between datasets are complicated by the fact that colony age may influence 

immunity independently of individual age (71). 

Changes in gut immunity (Fig. 6B, Fig. S10) appear to be an intrinsic property of aging 

in B. impatiens workers, as they occur despite continuous food availability, static environmental 

conditions in the laboratory, and an apparent lack of pathogen infection. As hypothesized for 

systemic immunity (71), they may represent a plastic adjustment of host defense. For example, 

increases in constitutive expression of AMPs and ROS may have evolved in response to 

heightened infection risk with age. An alternative hypothesis is that increases in immune 

effectors represent unregulated inflammation, a common feature of animal immunosenescence

(65). In D. melanogaster, increased AMP expression with age is linked to increased gut bacterial 

load and to deteriorating gut integrity (8, 29). However, total gut bacterial load in bumble bees is 

stable (Fig. 1A), and the only taxon that increases in abundance is Gilliamella (Fig. 2B, Fig. 3, 

Fig. S6), one of the core bumble bee-specialized symbionts (35). While Gilliamella may induce 

bee AMP expression (64), such a response with age could be interpreted as a sign of 

strengthening, as opposed to deteriorating, immunity.

Unusually, these changes in immunity (and other endogenous processes) decelerate with 

age. No genes are differentially expressed in the hindgut between middle-aged and old bumble 

bees (Fig. 6A). In contrast, transcriptomic changes in old age have long been observed in 

Drosophila, C. elegans, mice, and humans [e.g., (127–130)]. In a fish model, the gut 

transcriptome is also markedly different toward the end of the lifespan, and is associated with 

upregulated immunity and an enrichment of potentially pathogenic bacteria (27).

Gut immunity and microbiomes are likely to covary, and we find that microbiome 

dynamics also slow as bees enter old age. This stability contrasts with the major microbiome 
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changes observed between life stages (Fig. S2) and earlier in the adult stage (Fig. 1, Fig. 2). Total

microbial abundance is stable in old bees (Fig. 1A), and there is no evidence of microbiome 

disruption—with the exception of a single male from a wild-derived colony (Fig. S5)—or loss of

any symbionts besides Schmidhempelia (Fig. 2). All bees were reared indoors, and indoor-reared 

bumble bees have been shown to have lower gut microbiome diversity (35, 101, 102). However, 

the bees studied here were exposed to non-core microbes in their food and rearing environment, 

and previous work has documented occasionally large numbers of Enterobacteriaceae and other 

non-core bacteria in indoor-reared B. impatiens when exposed to stressors (131–133). The 

microbiome stability we observe in old bees indicates a lack of intrinsic senescence processes 

that would disrupt core symbionts and allow invasion, rather than simply a lack of exposure to 

non-core microbes. Bumble bees therefore contrast with humans (23–26), as well as other 

animals such as flies, mice, and fish (17, 27–29), which exhibit microbiome senescence (or at 

least community-wide shifts during aging) even when reared in the laboratory. Our data also 

weigh against the hypothesis that individual senescence underlies the microbiome disturbance 

observed in wild bumble bee populations. As mentioned above, it is the youngest bees that 

appear to be the most vulnerable. These results support previous work finding microbiome 

disruption to be concentrated in young bumble bees (102).

There are many potential proximate causes of microbiome stability in old age. Communal

living may buffer microbiome disturbances by providing a continuous source of microbes that 

can be transmitted between individuals or via a shared social environment, such as a nest (116, 

117, 134, 135). In our experiment, diet was kept constant, and bees appear to consume pollen 

even in old age based on the presence of plant DNA in metagenomes (Fig. S7) and observations 

of gut color. Our transcriptomic data also suggest that the gut microenvironment stabilizes after 
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bees reach middle age (Fig. 6A). In addition to inoculation from nestmates, a steady resource 

supply, structural integrity, and maintenance of immune responses in the gut (Fig. 6B) likely 

help maintain stable core microbiomes. One caveat is that these bees were not able to fly, a factor

that should be addressed in future work. Bee flight is metabolically costly, reduces lifespan, and 

affects systemic immune responses (136–138). Free-foraging honey bee workers do exhibit 

changes in gut microbial abundance, composition, and replication rates with age (15, 22, 47, 48, 

55). On the other hand, as noted earlier, temporal changes in the honey bee gut microbiome may 

be primarily driven by a shift from performing in-nest tasks to foraging (52). In overwintering 

honey bee workers, which do not forage much, if at all, the gut microbiome is largely stable into 

old age (55).

In the bumble bee gut, senescence of the microbiome and of endogenous processes (such 

as immunity) appears to be either absent, or compressed into such a short window that we did not

observe it. We hypothesize that this is explained by the unique selection pressures that 

accompany eusociality. Evolutionary theories of aging suggest that in a non-social host 

organism, i) selection against late-acting, deleterious variants—either host alleles or microbes—

should be weak, and ii) such variants may trade off with early-life, pre-reproductive benefits

(139–141). The situation is different in bumble bee workers, which often complete their entire 

life cycle before colony reproduction occurs at the end of the season (68). According to theory, 

the strength of selection should be maximal up until the onset of reproduction (141). In eusocial 

insects, what counts is the colony’s production of sexual offspring (142), as workers are usually 

sterile. Hence, for most of the colony lifespan, maintenance of microbiomes and immunity in 

workers should be under strong selection even in old age, given their expected effects on 

inclusive fitness (i.e., overall colony reproductive success). Core gut symbionts may contribute 
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indirectly (e.g., via nutrition) to worker performance—brood care, foraging, defense, etc.—

which in turn will affect production of new queens and males at the end of the colony cycle. 

Workers may also benefit their reproductive siblings (the new queens and males) by acting as a 

vector for core symbionts, and not for pathogens or parasites. Microbiomes of at least some other

highly social animals do not appear to become destabilized in old age (32, 33, 55), raising the 

question of whether group living contributes to differences in microbiome senescence. In 

general, organisms display diverse patterns of mortality and reproduction with age (143), and 

such diversity appears to extend to microbiome dynamics.

Variation in microbiome dynamics may also be expected within species, especially in 

eusocial insects, which contain castes subject to unique selection pressures (144). Our study 

focused exclusively on the nonreproductive worker caste, but future work should examine how 

microbiomes change with age in reproductives. In honey bees, these dynamics differ between 

queens and workers [e.g., (145–147)]. Queen-worker differences may also apply to bumble bees, 

even though—unlike honey bees (34)—bumble bee queens acquire gut bacterial communities 

compositionally similar to those of workers (60, 148). In Bombus lantschouensis, pre-diapause 

queens show large decreases in core gut symbionts with age (61), strongly contrasting with the 

stability we observe in B. impatiens workers. Potentially, only a small number of core symbionts 

are needed for successful transmission, favoring a reduction in titer before diapause (e.g., (149)). 

Queen-worker differences in microbiome dynamics may also be related to immunity. For 

example, queens have been reported to exhibit stronger resistance to gut parasite infection, and 

distinct immune activity in hemolymph, relative to age-matched workers (150).

Conclusions
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Even in the relatively simple gut microbial communities of laboratory-reared worker 

bees, we see a complex assortment of temporal patterns that differ between symbiont taxa, vary 

with phylogenetic scale, and decelerate as hosts age. Some of these patterns are convergent with 

those in other hosts. At the level of symbiont species and genera, assembly is predictable, with 

dynamics similar to those of human infant gut microbiomes. At the strain level, assembly 

resembles the stochastic colonization dynamics observed in flies and nematodes. We also find 

unique temporal patterns that contrast with those in other hosts: in bumble bee workers, neither 

gut microbiomes nor gut immunity appear to senesce. This stability may be due to the important 

contributions of each to inclusive fitness, even in old age. Temporal dynamics differ markedly 

among bacterial symbiont species, suggesting distinct ecological strategies within the 

microbiome for colonization and persistence. Many of the patterns we observe would be 

undetectable by 16S rRNA gene sequencing, emphasizing the need to use quantitative and 

higher-resolution methods to study microbiome dynamics. We also characterize the 

transcriptomic landscape of the bumble bee gut, finding that expression of genes involved in 

immunity (and other processes) changes in similar ways to the microbiome over host age—likely

due to bidirectional feedbacks or to common selection pressures acting on both. A priority for 

future work is to determine the mechanisms underlying these microbial and immunological 

dynamics, and to assess functional consequences for bumble bee health and pollination services.
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Figure 1. Changes in gut microbiome abundance, diversity, and composition over the worker 
lifespan. A total of 103 bees were sampled, consisting of 44, 23, and 36 from colonies B, W, and 
Y, respectively. A) qPCR-based measurements of bacterial titer as a function of age, showing 
patterns for each replicate colony and gut region. Solid lines are logistic curves fitted to the data. 
B) Alpha diversity of bacterial communities in hindguts of ≥1-day-old bees only, characterized 
by 16S rRNA gene sequencing. C) Beta diversity of the same hindgut samples visualized as an 
ordination (non-metric multidimensional scaling) of Bray-Curtis dissimilarities.
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Figure 2. Dynamics of dominant hindgut microbiome taxa (≥ 1% mean relative abundance 
across samples) over the lifespan. A) 16S-based relative abundances of the top genera. A total of 
94 bees are shown, consisting of 41, 20, and 33 from colonies B, W, and Y, respectively. One 
taxon belonging to the Bifidobacteriaceae was not classified to the genus level using the SILVA 
database. Also note that the sampling interval varied among the three colonies (see Methods and 
Fig. S1). B) 16S-based relative abundances (in the same hindgut samples) for Schmidhempelia 
and Gilliamella, the only two taxa that varied significantly with age. Lines are linear models 
fitted to the data, with 95% confidence intervals in gray. C) Relative abundances of 
Schmidhempelia and Gilliamella in whole guts of seven workers from three Bombus impatiens 
colonies reared from wild queens.
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Figure 3. Coverage-based abundance estimates of all metagenome-assembled genomes (MAGs) 
in 46 worker hindgut samples from the three commercial colonies. Abundance for a given 
sample is normalized to sequencing depth and MAG size, by measuring reads per kilobase per 
million mapped reads (RPKM). Lines are linear models fitted to the data, with 95% confidence 
intervals. Some genera contain multiple MAGs with < 98% average nucleotide identity; in these 
cases, congeneric MAGs are shown in different colors. MAGs are listed and described in Table 
S2.
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Figure 4. Networks of bacterial strain composition in the 46 worker hindgut metagenomes, 
showing bee gut sample (large circle) grouping by colony versus age class. Strain clusters (small 
diamonds) from all MAGs are shown; strain sharing within and between colonies is shown for 
each MAG individually in Fig. S9. Clusters are derived from hierarchical clustering of pairwise 
comparisons of population ANI, a metric calculated by inStrain (see Methods).
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Figure 5. Instantaneous population-average replication rates, estimated for Schmidhempelia and 
Gilliamella, the two taxa that vary in abundance with age. A replication index value of 1.5 
corresponds to half of the cells making one copy of their genome; with a value of 2, all cells are 
making one copy [see ref. (98)]. However, note that these are population averages, and bacteria 
can make multiple copies of their genome simultaneously. Some data points are missing due to 
low coverage of the MAG in a given sample.
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Figure 6. Dynamics and stability of host hindgut gene expression over the lifespan. Ages and 
sample sizes of age classes: new: 0-1 days, N = 12; young: 3-19 days, N = 16; middle: 23-43 
days, N = 15; old: 47-75 days, N = 14. A) Principal coordinates analysis showing similarity in 
gene expression profiles between bees of different age classes. Similarity is quantified as leading 
log2-fold changes, which are defined as the quadratic mean of the largest log2-fold changes 
between a pair of samples. The number of differentially expressed genes (DEGs) is shown for 
each pair of sequential age classes. B) Expression levels of key immunity genes (Table S1) 
normalized to library size (log2 counts per million) over bee age. Dashed lines show significant 
differences in expression between sequential age classes (FDR-adjusted p < 0.05).
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