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Determination of the Molecular Structures of Ferric Enterobactin 
and Ferric Enantioenterobactin using Racemic Crystallography

Timothy C. Johnstone1 and Elizabeth M. Nolan1,*

1Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 
Cambridge, MA 02139, USA

Abstract

Enterobactin is a secondary metabolite produced by Enterobacteriaceae for acquiring iron, an 

essential metal nutrient. The biosynthesis and utilization of enterobactin permits many Gram-

negative bacteria to thrive in environments where low soluble iron concentrations would otherwise 

preclude survival. Despite extensive work carried out on this celebrated molecule since its 

discovery over 40 years ago, the ferric enterobactin complex has eluded crystallographic structural 

characterization. We report the successful growth of single crystals containing ferric enterobactin 

using racemic crystallization, a method that involves cocrystallization of a chiral molecule with its 

mirror image. The structures of ferric enterobactin and ferric enantioenterobactin obtained in this 

work provide a definitive assignment of the stereochemistry at the metal center and reveal 

secondary coordination sphere interactions. The structures were employed in computational 

investigations of the interactions of these complexes with two enterobactin-binding proteins, 

which illuminate the influence of metal-centered chirality on these interactions. This work 

highlights the utility of small-molecule racemic crystallography for obtaining elusive structures of 

coordination complexes.
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Introduction

Iron is an essential metal nutrient for nearly all organisms. The ubiquitous use of iron in 

biology can be rationalized on the basis of its capability of performing chemical reactions 

that are required for life and its availability, which results from its abundance in the natural 

environment.1 Iron is the most abundant transition metal in the Earth’s crust.2 In aerobic 

solutions at neutral pH, iron exists predominantly as the insoluble ferric hydroxide (Ksp = 

10−39).3 Thus, concentrations of aqueous iron available in the environment are substantially 

lower than the intracellular iron concentrations that are required by most organisms (1 μM-1 

mM).4,5 Bacteria must obtain nutrient iron from the environment and, to overcome the low 

solubility of Fe(III), many bacteria biosynthesize and secrete siderophores, small molecule 

chelators that exhibit high affinity for Fe(III).6 Enterobactin (ent, Figure 1) is a 

triscatecholate siderophore produced by Gram-negative bacteria that include Escherichia 
coli, Klebsiella pneumoniae, and Salmonella spp.7,8 Other bacterial species, such as Yersinia 
enterocolitica, Pseudomonas aeruginosa, and Neisseria gonorrhoeae, do not produce 

enterobactin but express enterobactin receptors and are therefore able to import its iron 

complex as a xenosiderophore.9–11

Enterobactin producers express an iterative non-ribosomal peptide synthetase that assembles 

enterobactin, a 12-membered cyclic trilactone with three pendent 2,3-dihydroxybenzamide 

(DHB) arms, from chrosimate and L-serine.12 Deprotonation of the DHB moieties generates 

three catecholate ligands that bind Fe(III) to afford a hexadentate coordination complex, 

[Fe(ent)]3− (Figure 1). This complex is recognized and bound by outer membrane 

siderophore transport machinery, which is expressed by enterobactin-utilizing microbes 

confronted with iron-limited conditions, and subsequently transported to the cytoplasm. One 

remarkable feature of enterobactin is the strength of its iron binding. With a reported 

formation constant of 1052, enterobactin is the strongest iron chelator yet identified in the 

natural world.13 Since its discovery, studies of enterobactin have elucidated many facets of 

its biology and chemistry, and provided the community with a textbook example of “metals 

in biology.” Moreover, investigations of its coordination chemistry have informed ligand 

design in transition metal and rare earth metal chemistry.14 In recent years, the importance 

of this molecule has been underscored by investigations revealing that enterobactin and 

related metabolites play important roles during bacterial infections, as well as the rise in 

antibiotic resistance in many bacterial pathogens that utilize enterobactin.15–20 Modified 

enterobactin scaffolds have been investigated as targeted antibiotic delivery vehicles.21–24

Decades of investigation have uncovered the coordination chemistry of enterobactin;4 

however, despite over 40 years of research, the atomic-resolution structure of the complex 

has yet to be reported. Structural investigations on proteins that bind [Fe(ent)]3− have 

provided some snapshots of this coordination complex and its hydrolysis products, however. 

These studies have addressed siderocalin (Scn), a component of the mammalian immune 

system that binds to and prevents bacterial uptake of ferric triscatecholate siderophore 

complexes,25 as well as FeuA, a membrane transport protein that contributes to iron-uptake 

by Bacillus subtilis.26 The crystal structure obtained from co-crystallization of Scn and 

[Fe(ent)]3− suggests that the protein binds the siderophore complex at a three-fold 

symmetric pocket, but the macrolactone ring hydrolyzed during crystallization, which 
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prevented an investigation of the structure of the metal complex.25 A crystal structure of 

FeuA·[Fe(ent)]3− was also reported but, as described below, the bound siderophore complex 

exhibits significant distortion from its equilibrium geometry, providing limited insight into 

its ground state structure.26

We report the successful growth of crystals containing [Fe(ent)]3− and describe the structure 

of this ferric siderophore as determined by single-crystal X-ray diffraction. Successful 

crystallogenesis was achieved by racemic crystallization where the enantiomeric complex, 

ferric enantioenterobactin ([Fe(D-ent)]3−), was included in the crystallization conditions to 

provide a racemic mixture ([Fe(DL-ent)]3−). We compare the crystal structures to the 

structural information previously obtained from various spectroscopic, computational, and 

diffraction techniques. This structural analysis, coupled with theoretical calculations, 

provides insight into secondary coordination sphere hydrogen bonding interactions. Finally, 

protein-docking studies were conducted to investigate the interactions of both [Fe(ent)]3− 

and [Fe(D-ent)]3− with either Scn or FeuA.

Results and Discussion

Design

Because [Fe(ent)]3− had eluded crystallization, we considered departures from conventional 

strategies, including the methods used to crystallize analogous complexes.27–30 We first 

exchanged the potassium counterions introduced during the synthesis of [Fe(ent)]3− for 

tetraphenylarsonium ions, which confer excellent solubility in organic solvent and possess 

features that we reasoned would facilitate crystallization of the ferric siderophore complex. 

The tetraphenylarsonium ion is closer in volume to [Fe(ent)]3− than K+, rigid, highly 

symmetric (point group S4), and has a roughly spherical envelope. Moreover, it has a high 

concentration of arene rings that could participate in π-stacking interactions with 

[Fe(ent)]3−.

The most notable feature of our crystallization strategy was the deliberate attempt to co-

crystallize [Fe(ent)]3− and its mirror image, [Fe(D-ent)]3−. This method, termed racemic 

crystallization,31 is based on the principle that chiral molecules crystallize more readily if 

they have the capacity to form a racemic crystal.32 A theoretical basis for such facilitated 

crystallogenesis has been proposed for macromolecular crystals, in which the number of 

intermolecular contacts is typically maximized.33 Centrosymmetry, permitted by the 

presence of both enantiomers, increases the number of rigid-body degrees of freedom, 

maximizing the number of contacts. Racemic crystallography has afforded crystal structures 

of proteins,34 peptides,35,36 nucleic acids,37,38 and supramolecular complexes39 in instances 

where enantiomerically pure compounds failed to yield diffraction-quality crystals. As 

opposed to protein crystals, which pack in a manner that maximizes the number of 

intermolecular contacts,34 the dominant factor in the crystallization of small molecules is the 

maximizing of close-packing.40,41 The cocrystallization of enantiomers allows for the 

presence of crystallographic symmetry elements such as glide planes and inversion centers 

that favor the closest packing of arbitrarily-shaped molecules,40,41 as in space group no. 14 

(P21/c, P21/n), which is the most common among the small molecule crystal structures 

deposited in the Cambridge Structural Database (CSD).
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Synthesis and Crystallization

Enterobactin and enantioenterobactin were prepared as described previously from L-serine 

and D-serine, respectively.42 Deprotonation and metalation of a 1:1 mixture of enterobactin 

and enantioenterobactin provided the potassium salts of the ferric complexes.43 Salt 

metathesis with (AsPh4)Cl afforded (AsPh4)3[Fe(DL-ent)] as a deep red microcrystalline 

solid. This salt exhibits excellent solubility in alcohols and polar aprotic solvents, but is 

insoluble in alkanes, non-polar aromatics, water, and diethyl ether. High-resolution mass 

spectrometry confirmed the identity of the product as AsPh4
+ and [Fe(DL-ent)]3− 

(Supporting Information). The optical absorption spectrum of (AsPh4)3[Fe(DL-ent)] exhibits 

the same features as that of K3[Fe(ent)], but the lack of circular dichroism (CD) features in 

the visible range for the former sample contrasts with their presence for the latter (Figure 2A 

and 2B). These results confirm that (AsPh4)3[Fe(DL-ent)] contains the desired enantiomeric 

coordination complexes in a 1:1 ratio.

A variety of crystallization conditions were screened as described in the Supporting 

Information. Ultimately, deep red tablets were obtained over the course of two months by 

restricted vapor-phase diffusion of diethyl ether through a 1-mm diameter orifice into a 

DMF solution of the salt at −20 °C.

Crystal Structure

A suitable tablet was selected and analyzed by single-crystal X-ray diffraction. Indexing of 

the diffraction pattern afforded unit cell parameters consistent with a primitive monoclinic 

Bravais lattice and revealed that the broad parallel faces of the tablet comprise the basal 

pinacoid, form {001}, which is parallel to the crystallographic ab plane (Figure S1). Further 

analysis of the diffraction pattern revealed the Laue symmetry to be 2/m and the intensity 

statistics of the reflections suggest that the crystal is centrosymmetric (⟨|E2 − 1|⟩ = 0.862). 

Analysis of the systematically absent reflections indicated that the crystal formed in the 

centrosymmetric space group type P21/n (no. 14).

The structure was solved using intrinsic phasing44 and the ferric complex anion, three 

tetraphenylarsonium cations, a water molecule, and a DMF molecule were readily apparent 

in the electron density map (Figure S2). The tetraphenylarsonium cations demonstrate 

minimal π-interactions with each other, but participate in extensive π-interactions with the 

2,3-DHB arms of [Fe(DL-ent)]3− (Figure S3). These π-interactions appear to be the 

dominant intermolecular forces present in the crystal. Details of the refinement are provided 

in the Supporting Information (Table S1). The composition of the crystal is assigned as 

(AsPh4)3[Fe(DL-ent)]·H2O·6DMF, which was corroborated by isopycnic flotation density 

measurements using 1,6-dibromohexane and hexane (Figure S4). All of the molecules in the 

crystal reside on general positions and the ferric complex is oriented with the pseudo three-

fold axis approximately parallel to the crystallographic c axis (Figure S5).

Molecular Structure of Ferric Enterobactin

The [Fe(ent)]3− and [Fe(D-ent)]3− complexes are equivalent by crystallographic symmetry. 

Analysis will therefore be restricted to the naturally occurring enantiomer unless otherwise 

indicated. The Fe(III) complex is monomeric, featuring one iron atom chelated by a single 
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hexadentate enterobactin ligand (Figure 2C). The ligand coordinates the metal with three 

bidentate chelate arms in a cis conformation, where the term cis indicates that the oxygen 

atoms at the ortho-positions of the 2,3-DHB arms bind at one facially-disposed set of 

coordination sites and those at the meta-positions bind at the remaining sites.45

Primary coordination sphere—[Fe(ent)]3− has chiral centers at each of the three serine 

units of the macrolactone ring as well as the tris-bidentate chelated metal center. The L-

serine units necessarily have S stereochemistry, but the tris-bidentate chelated metal center 

could have either Δ or Λ stereochemistry depending on whether the three ligands are 

arranged in a right-handed or left-handed propeller, respectively. Spectroscopic comparison 

with model compounds indicates that [Cr(ent)]3− preferentially forms the diastereomer with 

Δ stereochemistry and NMR studies of [Ga(ent)]3− indicate that it forms a single 

diastereomer, albeit of unknown stereochemistry at the metal.46–48 Based on the similarities 

between these metal ions and Fe(III), [Fe(ent)]3− has been accepted to exist as a single 

diastereomer with Δ stereochemistry. Moreover, crystal structures of enterobactin complexes 

of V(IV), Si(IV), Ge(IV), and Ti(IV) show that these complexes all assume a Δ 

configuration.27,29,30,49 The present crystal structure affords a definitive Δ assignment to 

[Fe(ent)]3−, which is readily distinguished from [Fe(D-ent)]3− by the stereochemistry at the 

serine units (Figure 2C). The relationship between the CD spectra of [Fe(ent)]3− and [Fe(D-

ent)]3− indicates that the handedness of the latter is opposite at the metal center.50 Indeed, in 

the present structure, [Fe(D-ent)]3− has Λ stereochemistry (Figure S6).

The present crystallographic data also provide a definitive assessment of the coordination 

geometry at the iron center. Early NMR studies used coupling constants from [Ga(ent)]3− to 

generate models of the structure of [Fe(ent)]3− with the assumption that the metal center has 

an octahedral geometry.46 Enforcing octahedral coordination, however, required severely 

distorted amide bonds. Subsequent crystallographic characterization of K3[Fe(catecholate)3] 

revealed that the metal center in this complex has a distorted octahedral geometry with D3 

symmetry.48 The parameter that best describes this deformation is the twist angle α, which 

transforms from octahedral (α = 60°) to trigonal prismatic (α = 0°) (Figure 2D). For 

K3[Fe(catecholate)3], α = 44(1)°.48

Prior comparison of the electronic absorption and magnetic circular dichroism spectra of 

[Fe(catecholate)3]3− and [Fe(ent)3]3− suggested that the latter also features iron in an 

approximately D3-symmetric coordination sphere (distorted octahedral/trigonal 

prismatic).48,51 The crystallographic data confirm this assignment (Figure 2D) and provide 

an experimental twist angle of 36.6(3)°, which is close to the value predicted by molecular 

mechanics (α= 34.7°) and to that experimentally observed in a synthetic analogue of 

[Fe(ent)3]3− named [Fe(TRENCAM)]3− (α = 37.4°).28,52 In [Fe(ent)3]3−, the Fe–Oortho 

bonds are slightly longer (2.032(9)-2.041(8) Å) than the Fe–Ometa bonds 

(1.965(9)-2.0190(97) Å) and this variation can be attributed to second coordination sphere 

interactions as described below.

Secondary coordination sphere—The amide groups deviate from planarity (ω = 

170(1)°), but to less of an extent than the ≈90° initially predicted on the basis of an NMR 

analysis of [Ga(ent)]3−.46 The amide hydrogen atoms, which were explicitly located in the 
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difference Fourier synthesis, form hydrogen bonds with the ortho oxygen atoms (Figure 3). 

The N–H–O angles, which range from 129.3-138.7°, deviate from 180°, but the N⋯O 

distances of 2.571(16)-2.639(16) Å are indicative of strong interactions (Table S3). An 

Atoms in Molecules analysis of the topology of the electron density of [Fe(ent)3]3− obtained 

from DFT calculations revealed (3, −1) N–H⋯O bond critical points with properties 

indicative of closed-shell donor-acceptor interactions (ρ = 0.049 au, ∇2ρ = 0.12) (Figure 

3).53,54

The crystal contains a water molecule in close proximity to the meta oxygen atoms of two of 

the 2,3-DHB arms (Figure 3). We suspect that the water molecule hydrogen bonds to the 

iron complex, but the hydrogen atoms on the water molecule could not be located in the 

difference map. Nevertheless, we do observe that the Fe–Ometa bond lengths for the arms in 

proximity to the water (2.019(9) and 2.01(1) Å) are longer than that of the remaining arm 

(1.966(8) Å). Geometry optimization of [Fe(ent)]3− in the gas phase reproduces the 

differential in Fe–O bond lengths between the meta and ortho positions discussed above. Re-

optimization of the structure of [Fe(ent)]3− following explicit inclusion of a water molecule 

hydrogen-bound to one meta oxygen atom resulted in lengthening of the corresponding Fe–

Ometa bond (Figure 3). Thus, when dissolved in water, the lengths of the Fe–Ometa and Fe–

Oortho bonds become more similar. These results are consistent with EXAFS data of 

K3[Fe(ent)] recorded in the solid state and in aqueous solution.43,55

Macrolactone backbone—The projections of the carbonyl C–O vectors onto the pseudo 

C3 axis of the molecule are all directed away from the metal center. This macrolactone 

conformation has also been observed in crystal structures of (i) the parent serine trilactone 

and (ii) enterobactin complexes of Si(IV), Ti(IV), Ge(IV), and V(IV).29,30,56

In the present structure, the complex anion resides on a fully general position such that no 

crystallographic symmetry is imposed on the trilactone ring, which deviates significantly 

from three-fold rotational symmetry. This deviation is perhaps most evident in the 

orientation of the lactone carbonyl moieties, two of which are pointed outward from the 

center of the trilactone ring and one of which is pointed inward (Figure S3). The values of 

the various torsion angles in the enterobactin scaffold are consistent with the ranges 

expected from NMR coupling constants obtained with [Ga(ent)]3− (Table S2).46 These 

results indicate that although the chirality at the metal center is dictated by the structure of 

the trilactone, the backbone ring has a fair degree of flexibility, which could play a role in its 

interaction with proteins.

Protein Docking

We employed the crystal structures of [Fe(ent)]3− and [Fe(D-ent)]3− to further evaluate the 

interaction of these complexes with two siderophore-binding proteins, Scn and FeuA. The 

crystal structure of Scn bound to hydrolyzed [Fe(ent)]3− indicates that the siderophore 

complex binds to the protein at a calyx bearing a triad of positively charged arginine and 

lysine residues that participate in cation–π interactions with the catecholate rings.25 Using 

the crystallographic geometries, [Fe(ent)]3− and [Fe(D-ent)]3− were computationally docked 

into apo Scn with both the protein and the ligand treated as rigid bodies. Both [Fe(ent)]3− 
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and [Fe(D-ent)]3− bind in the calyx with the arginine and lysine residues of the protein 

positioned between the catecholate rings as observed in the crystal structure with hydrolyzed 

[Fe(ent)]3−. (Figure 4A). The estimated binding energies of the two enantiomers differ by 

less than 2.5 kcal mol−1, which is less than the estimated standard error for the docking 

program (Table S6).57 These results are consistent with the similar experimental binding 

affinities that Scn exhibits for [Fe(ent)]3− and [Fe(D-ent)]3−.58

FeuA is the cognate receptor for ferric bacillibactin, a triscatecholate siderophore complex 

similar to [Fe(ent)]3− but with a trilactone backbone comprised of threonine and a glycine 

spacer between the trilactone and 2,3-DHB of each arm. In contrast to ferric enterobactin, 

ferric bacillibactin has Λ chirality at the metal center. Biophysical studies indicate that FeuA 

binds preferentially to iron triscatecholate complexes with Λ chirality, but also coordinates 

[Fe(ent)]3− despite its Δ configuration in solution.59 The crystal structure of FeuA·

[Fe(ent)]3− shows [Fe(ent)]3− in the same binding pocket that is occupied by ferric 

bacillibactin in the crystal structure of FeuA·[Fe(bacillibactin)]3−.26 The iron center in FeuA·

[Fe(ent)]3− has a nearly trigonal prismatic coordination geometry with a slight Λ twist.26 

Although all spectroscopic data indicate that [Fe(ent)]3− has Δ chirality in solution, this 

result indicates that FeuA distorts the coordination complex sufficiently to reverse the 

chirality at the metal center. Docking of [Fe(D-ent)]3− into apo FeuA resulted in binding in 

approximately the same manner as the distorted [Fe(ent)]3− from the protein crystal structure 

(Figure 4B, Table S6). We were unable to dock [Fe(ent)]3− as a rigid unit into the same 

binding pocket. In agreement with prior studies,59 these results highlight that FeuA is 

structurally preorganized to bind complexes with Λ chirality. These results allow us to 

predict that FeuA will bind [Fe(D-ent)]3− more strongly than [Fe(ent)]3−, an experiment that 

has, to the best of our knowledge, not yet been carried out.

Conclusion

We employed racemic crystallography to obtain single crystals of [Fe(DL-ent)]3− suitable 

for X-ray crystallographic structural determination. We believe that this strategy will prove 

useful in the structural characterization of other ferric siderophore complexes that prove to 

be difficult to crystallize. The structure of [Fe(ent)]3− provides a definitive confirmation of 

the accepted structure based on spectroscopic studies and comparison with other metal-

bound forms of enterobactin. We have measured the key variable describing the distortion of 

the [Fe(ent)]3− coordination sphere, the twist angle α, which has been unattainable from 

previous spectroscopic studies. Intramolecular and intermolecular second coordination 

sphere interactions were found to have subtle, yet observable, influences on the primary 

coordination sphere. Finally, we computationally investigated the interaction of [Fe(ent)]3− 

with the proteins Scn and FeuA, and described these interactions as a function of the 

chirality of the metal complex. In closing, from a fundamental standpoint, it is gratifying to 

have realized the structural determination of this historically important complex. This work 

may also help to shed light on the interactions that occur between [Fe(DL-ent)]3− and 

proteins involved in bacterial iron acquisition and the mammalian immune response. Such 

information may contribute to the development of new strategies to combat pathogenic 

bacteria that rely on enterobactin and related metabolites for iron acquisition, many of which 

currently pose a significant health risk as we approach a post-antibiotic era.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Deprotonation and binding of Fe(III) by enterobactin to give [Fe(ent)]3−. Highlighted: the 

primary triscatecholate coordination sphere (blue), the intramolecular secondary sphere 

interactions (red), and the trilactone backbone (green).
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Figure 2. 
Characterization of [Fe(ent)]3−. (a) Optical absorption spectra of 200 μM [Fe(ent)]3− and 

[Fe(DL-ent)]3− in DMF. (b) Circular dichroism spectra of 5 mM [Fe(ent)]3− and [Fe(DL-

ent)]3− in DMF. (c) Molecular graph of the ferric enterobactin complex anion with thermal 

ellipsoids drawn at the 50% probability level and hydrogen atoms shown as spheres of 

arbitrary radius. Color code: Fe orange, O red, N blue, C grey, H white. (d) Primary 

coordination polyhedron of [Fe(ent)]3− with blue faces, red spheres representing oxygen 

atoms at the vertices, and the central iron atom as an orange sphere. The individual angles 

averaged to obtain the twist angle α are indicated.
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Figure 3. 
Second coordination sphere interactions. (a) Molecular graph of [Fe(ent)]3− with thermal 

ellipsoids drawn at the 50% probability level and intramolecular hydrogen bonds to amides 

and intermolecular hydrogen bonds to the water of crystallization (O3) shown as dashed 

lines. Fe⋯O1: 2.035(9) Å, Fe⋯O2: 2.0190(97) Å, Fe⋯O4: 1.965(9) Å, O3⋯O2: 2.67(2) Å, 

O3⋯O5: 2.86(2) Å, O3⋯O4: 4.29(2) Å. Color code: Fe orange, O red, N blue, C grey, H 

white (carbon-bound hydrogen atoms removed for clarity). (b) Ball-and-stick diagram of the 

computationally-optimized structure of [Fe(ent)]3− with a water molecule (O3) forming a 

hydrogen bond to O2. Fe⋯O1: 2.085 Å Fe⋯O2: 2.040 Å, Fe⋯O4: 1.990 Å, O3⋯O2: 2.750 

Å. Identical color code. (c) Electron density (black) and associated gradient (blue) for the 

computationally-optimized structure of [Fe(ent)]3− without any additional intermolecular 

interactions. (3, −1) bond critical points are shown as blue discs, (3, −2) ring critical points 

as orange discs, and (3, −3) nuclear attractors as brown discs. Bond paths are shown as solid 

maroon lines and the van der Waals surface is highlighted with a thick black line. (d) 
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Laplacian of the electron density with positive values contoured in solid lines and negative 

values contoured with dashed lines. Critical points and bond paths are indicated as in (c).
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Figure 4. 
Protein docking studies with [Fe(D-ent)]3− shown as sticks with orange carbon atoms, 

[Fe(ent)]3− shown as sticks with blue carbon atoms, and proteins shown as translucent wheat 

surfaces encasing lines. (a) The crystallographically-determined structure of [Fe(D-ent)]3− 

docked into FeuA (PDB: 2XUZ). [Fe(ent)]3− could not be successfully docked into the 

binding site. (b) The crystallographically-determined structures of [Fe(D-ent)]3− and [Fe(D-

ent)]3− docked into Scn (PBD: 1L6M).
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