UCLA

Posters

Title

ACT2: Lab-Scale Actuated Sensing Testbeds

Permalink

https://escholarship.org/uc/item/3g8355kv

Authors

Karthik Dantu Jonathan Friedman Aman Kansal <u>et al.</u>

Publication Date

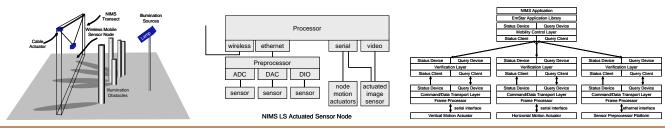
2005

Center for Embedded Networked Sensing

Lab-Scale Actuated Sensing Testbeds

Karthik Dantu, Jonathan Friedman, Aman Kansal, David Lee, Richard Pon, Mohammad Rahimi, Lisa Shirachi, Ilias Tsigkogiannis, Deborah Estrin, William Kaiser, Mani Srivastava, and Gaurav Sukhatme

NIMS LS: Exploring Infrastructure-assisted Actuated Sensing of Environmental Phenomena


Emulation of Environmental Phenomenon

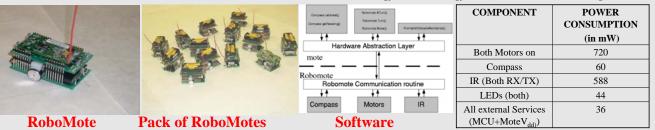
- Modular Emstar-based software organization with embedded R
- Algorithm verification via robotic hardware-in-loop emulation E.g. CENS research on adaptive sampling, sensor calibration

Static and dynamic phenomena, such as light distribution in

- statistical computing environment
- Seamless migration to deployment using NIMS Field System

Flexible Actuated Sensing Node

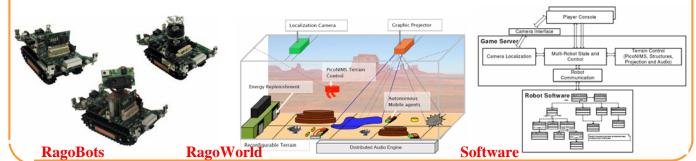
RoboMote: Ultra-lowpower Mobile Mote for Research in Mobile Sensor Networks


Benefits of Mobility

ecosystems

- Adaptive deployment, network repair, active event detection, energy harvesting, ...
- **Application exploration using RoboMotes:**
 - Detection of level sets: use control law that uses local sensing to drive mobile sensor node towards the gradient
 - Bacteria inspired light tracking: locate and track light sources using biased random walk analogous to bacteria tracking food sources

- Mobile platform with 2 motors carries a Mica2 mote
 - Application and netwok processing: Mica2
 - Low-level Processing: AVR 8-bit microcontroller with 8K Flash, 512 byte RAM, and 512 byte EEPROM
 - Mobility: 2 motors, 15-20 cm/s speed, 36 pulses/cm odometer, 5 degree precision compass, 300 gm payload, software PI controller, IR object avoidance system
 - Energy: 345 mAh energy source, 15-20 minute wall recharge time


RagoBots and RagoWorld for Mobile Sensing Research, and Education in a Fun Setting

Design Goals

- Research tool for mobile sensor networks with distributed control and coordination
 - Ecology of mobile sensors co-existing with static sensors
 - Controllable and realistic artificial terrain
- Fun education tool for sensor networks and embedded systems Expose students to sensor networking problem and algorithms in a controllable and fun setting while emulating physical world realism
 - E.g. exploring sensor network resource allocation as a game

System Components

- **RagoBots**
 - Small form-factor, low-power, reconfigurable architecture
 - Hierarchical modularity: "nerve", "brain", "head", "neck", 'body"
 - Tracked mobility substrate for all-terrain operation
 - Multimodal sensor suite: imager, microphone, IR ranging and
 - avoidance, RFID reader, ultrasound, light, temperature, humidity etc. Software environment: dynamically downloadable modules, scripting
 - RagoWorld: modular, reconfigurable artificial terrain
 - Electronically-controlled actuated structures using shape-memory alloys permit creation of new terrain environments

UCLA – UCR – Caltech – USC – CSU – JPL – UC Merced