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ABSTRACT OF THE DISSERTATION

Scalable Online Decision Making: Algorithm Design and Fundamental Limits

By

Pouya Mollaebrahim Ghari

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Irvine, 2024

Assistant Professor Yanning Shen, Chair

Decision-making and real-time prediction in non-stationary and dynamic environments present

significant challenges for the application of machine learning and artificial intelligence in

operational settings. In these environments, deploying pre-trained models for real-time

predictions on data streams often yields suboptimal results due to potential distribution

shifts between the training data and the incoming data stream. Moreover, the computational

complexity of online decision-making algorithms is crucial, as timely decisions must be made

before new data points are received. Furthermore, these algorithms should be designed to

maintain affordable memory complexity, as the sheer volume of streaming data cannot be

stored in batch. This thesis presents several novel online decision-making and real-time

prediction algorithms that effectively address the challenges of non-stationary environments

while ensuring computational and memory efficiency.

Novel online multi-kernel learning algorithms for real-time prediction on data streams are

introduced, with theoretical guarantees and experimental results demonstrating their ad-

vantages in both accuracy and computational efficiency over state-of-the-art online kernel

learning algorithms. In online decision-making, feedback is typically observed after each

decision round through interactions with the environment. This thesis introduces novel

algorithms for online decision-making under uncertain observations. Theoretical analysis and

xi



experimental results demonstrate the effectiveness of the proposed algorithms in handling

uncertainty during decision-making.

Meanwhile, federated learning is well-regarded for its ability to facilitate distributed model

training while ensuring data privacy, as clients retain their data without sharing it with

the central server that coordinates the collaboration. Most previous research assumes that

clients have static batches of training data. However, in many cases, clients need to make

real-time predictions on streaming data in non-stationary environments. Another significant

challenge in federated learning is the heterogeneity of data distribution among clients. To

address these challenges, this thesis introduces novel personalized online federated learning

algorithms. The proposed algorithms enjoy theoretical guarantees, and experiments on real

datasets demonstrate their superiority over existing online federated learning approaches in

real-time prediction, particularly in the presence of heterogeneous data distribution among

clients.

xii



Chapter 1

Graph-Aided Online Multi-Kernel

Learning

1.1 Introduction

The need for function approximation arises in many machine learning studies including

regression, classification, and reinforcement learning, see e.g., [27]. This chapter studies

supervised function approximation where given data samples {(xt, yt)}Tt=1, the goal is to find

the function f(·), such that the difference between f(xt) and yt is minimized. In this context,

kernel learning methods exhibit reliable performance. Specifically, the function approximation

problem becomes tractable under the assumption that f(·) belongs to a reproducing kernel

Hilbert space [133]. In some cases, it is imperative to perform function approximation task

in an online fashion. For instance, when the volume of data is large and is collected in a

sequential fashion, it is impossible to store or process it in batch. Furthermore, suffering

from the well-known problem of ‘curse of dimensionality’ [11, 136], kernel learning methods

are not suitable for sequential settings. This has motivated studies on online single kernel

1



learning [104, 41, 12, 162] to address the curse of dimensionality. Specifically, approximating

kernels by finite-dimensional feature representations such as random Fourier feature by [123]

and Nyström method by [150], function approximation task becomes scalable. Furthermore,

kernel approximation with finite-dimensional features has been extensively studied by e.g.

[141, 130, 134, 40].

Most of prior studies rely on a pre-selected kernel; however, such selection requires prior

information which may not be available. By contrast, utilizing a dictionary of multiple kernel

in lieu of a pre-selected kernel provides more flexible approach to obtain more accurate

function approximations as it can learn combination of kernels [140, 85]. Multiple kernel

learning successfully has been employed in many learning methods as well as practical

applications including cross domain learning [45] and computer vision applications [15]. To

utilize the merits of multi-kernel learning several algorithms have been emerged (see e.g.

[124, 35, 69]) which exhibit well-documented advantages compared to their single kernel

learning counterparts. However, the mentioned algorithms are suitable to apply to batch

kernel learning cases and are less efficient or even intractable when it comes to performing

kernel learning in an online fashion. In order to make multiple kernel learning amenable for

online function approximation, several algorithms have been proposed in the literature (see e.g.

[77, 131]). However, the aforementioned algorithms suffer from the curse of dimensionality

and are not scalable to deal with large volume of data. Enabled by the random feature

approximation by [123], scalable online multi-kernel learning algorithms have been developed

by [132, 137]. In particular, the aforementioned algorithms perform function approximation

by learning the linear combination of random feature kernel approximations.

One of the most important challenges of MKL is the proper selection of kernels in the

dictionary, which influences both computational complexity and accuracy of the function

approximation significantly. However, selecting an appropriate kernel dictionary requires

prior information. When such information is not available, one solution is to include a large

2



number of kernels in the dictionary. In this case, employing all kernels in the dictionary may

not be a feasible choice. Data-driven selection of subset of kernels in a given dictionary can

alleviate the computational complexity. Furthermore, data-driven subset selection of kernels

can enhance the accuracy of function approximation by pruning irrelevant kernels. The goal

of the present chapter is to select a subset of kernels in a given dictionary at each time instant

in order to alleviate the computational complexity and improve function approximation

accuracy. To this end, our proposed algorithms construct a graph whose vertices represent

kernels such that a subset of kernels is selected based on the structure of the graph. In this

case, function approximations given by the chosen subset of kernels can be viewed as feedback

collected from a graph which is called feedback graph. Relative to existing online multi-kernel

learning approaches, our novelty can be summarized as follows:

• Different from existing works which employ all kernels in the dictionary, while only

learning the combination coefficients, our proposed algorithms only use a subset of

kernels at each time instant according to a feedback graph.

• An adaptive and disciplined framework is developed to construct a feedback graph

at each time instant according to the loss incurred by kernel-based approximants. A

novel OMKL algorithm is proposed to select kernels according to the graph-structured

feedback (OMKL-GF) which achieves sublinear regret.

• Construction of the feedback graph at each time instant increases the computational

burden of multi-kernel learning. To address this issue, a similarity feedback graph is

constructed based on the similarity among kernels, which does not require observing

the data samples beforehand. The resulting algorithm is called Online Multi-Kernel

Learning with Similarity-based Feedback Graph (OMKL-SFG). It is proved that the

proposed OMKL-SFG achieves a sub-linear regret.

• A novel algorithm called OMKL-SFG-R is proposed to adaptively refine the structure

3



of the similarity-based feedback graph ‘on the fly.’ It is proved that the OMKL-SFG-R

enjoys the sublinear regret tighter than OMKL-SFG and OMKL-GF.

• Experiments on real datasets showcase the effectiveness of our proposed algorithms in

comparison with other state-of-the-art OMKL baselines.

The remainder of this chapter is organized as follows. Section 1.2 discusses preliminaries

of random-feature based multi-kernel learning. Section 1.3 presents the proposed OMKL-

GF algorithm and its regret analysis. Furthermore, Section 1.4 presents the OMKL-SFG

and OMKL-SFG-R algorithms along with their theoretical performance in terms of regret.

Experimental results are provided in Section 1.5 to study performance of MKL algorithms on

several real datasets. Finally, Section 1.6 concludes the chapter. It is also worth noting that

the materials in this chapter are fully included in [62] and partially included in [58].

1.2 Preliminaries

Given samples (x1, y1), · · · , (xT , yT ), with xt ∈ Rd and yt ∈ R, the function approximation

problem can be written as the following optimization problem

min
f∈H

1

T

T∑
t=1

(
C(f(xt), yt) + λΩ(∥f∥2H)

)
(1.1)

where C(·, ·) denotes the cost function, which is specified according to the learning task.

For example, in regression task C(·, ·) can be least square function. In (1.1), λ denotes the

regularization coefficient and Ω(·) represents a non-decreasing function, which is used to

prevent over-fitting and control model complexity.

4



1.2.1 Function Approximation with Reproducing Hilbert Kernel

Space

Let κ(x,xt) : Rd × Rd → R represent a symmetric positive definite kernel function which

measures the similarity between x and xt. In the context of kernel based learning, it is assumed

that the sought f(·) belongs to the reproducing Hilbert kernel space (RHKS) H := {f |f(x) =∑∞
t=1 αtκ(x,xt)}. A kernel is reproducing if it satisfies ⟨κ(x,xt), κ(x,xt′)⟩H = κ(xt,xt′)

where ⟨·, ·⟩H denotes vector inner product in Hilbert space, with the RKHS norm defined as

∥f∥2H :=
∑

t

∑
t′ αtαt′κ(xt,xt′). The representer theorem states that the optimal solution of

(1.1) can be expressed as follows given finite data samples [148]

f̂(x) =
T∑
t=1

αtκ(x,xt) := α
⊤κ(x) (1.2)

where α := [α1, . . . , αT ]
⊤ denotes the vector of unknown coefficients to be estimated, and

κ(x) := [κ(x,x1), . . . , κ(x,xT )]
⊤. Furthermore, it can be observed that the dimension of

α increases with the number of data samples T . This is known as ‘curse of dimensionality’

[148] and arises as a major challenge for solving (1.1) in an online fashion.

1.2.2 Random Fourier Feature Approximation

One way to cope with the increasing number of variables to be estimated is to employ

random feature (RF) approximation [123]. As in [123], we will approximate κ(·) in (1.2)

using shift-invariant kernels which satisfy κ(xt,xt′) = κ(xt − xt′). However, relying on a

pre-selected kernel often requires prior information that may not be available. To cope with

this, multi-kernel learning can be exploited which learns the kernel as a combination of a

sufficiently rich dictionary of kernels {κi}Ni=1. The kernel combination is itself a kernel [133].

Let κi(xt−xt′) be the i-th kernel in the dictionary of N absolutely integrable kernels. In this
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case, its Fourier transform πκi
(ψ) exists and can be viewed as probability density function

(PDF) if the kernel is normalized such that κi(0) = 1. Specifically, it can be written as

κi(xt − xt′) =

∫
πκi

(ψ)ejψ
⊤(xt−xt′ )dψ := Eπκi (ψ)[e

jψ⊤(xt−xt′ )]. (1.3)

Let {ψi,j}Dj=1 be a set of vectors which are independently and identically distributed (i.i.d)

samples from πκi
(ψ). Hence, κi(xt − xt′) can be approximated by the ensemble mean

κ̂i,c(xt − xt′) := 1
D

∑D
j=1 e

jψ⊤
i,j(xt−xt′ ). Furthermore, the real part of κ̂i,c(xt − xt′) also

constitutes an unbiased estimator of κi(xt − xt′) which can be written as κ̂i(xt − xt′) =

z⊤i (xt)zi(xt′) [123], where

zi(xt) :=
1√
D
[ sin(ψ⊤

i,1xt), · · · , sin(ψ⊤
i,Dxt), cos(ψ

⊤
i,1xt), · · · , cos(ψ⊤

i,Dxt)].

Replacing κi(x,xt) with κ̂i(x− xt), f̂(x) in (1.2) can be approximated as

f̂RF,i(x) =
T∑
t=1

αtκ̂i(x− xt) =
T∑
t=1

αtz
⊤
i (x)zi(xt) = θ

⊤
i zi(x) (1.4)

where θi ∈ R2D is a vector whose dimension does not increase with the number of data

samples. Therefore, utilizing RF approximation can make the function approximation problem

amenable for online implementation. Furthermore, the loss of the i-th kernel can be calculated

as

L(θ⊤i zi(xt), yt) = C(θ⊤i zi(xt), yt) + λΩ(∥θi∥2). (1.5)

1.2.3 Online MKL as Online Learning with Expert Advice

Online learning with expert advice studies the problem where a learner performs the online

learning task by interacting with a set of experts, see e.g. [19]). At each time instant, the
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learner observes the advice given by experts, and then utilize the received advice to make a

decision in real time [8, 106, 73]. In multi-kernel learning, each kernel can be viewed as an

expert. Specifically, the approximation obtained by the i-th kernel, can be viewed as the advice

given by κi(·). In particular, when multiple kernels are employed, function approximation can

be performed by functions in the form f(x) =
∑N

i=1 w̄ifi(x) where
∑N

i=1 w̄i = 1 [133]. Also,

fi(x) ∈ Hi where Hi is an RKHS induced by the kernel κi. Replacing fi(x) with f̂RF,i(x),

the function f(x) can be approximated as

f̂RF(x) =
N∑
i=1

w̄if̂RF,i(x),
N∑
i=1

w̄i = 1 (1.6)

where the approximation f̂RF(x) is a linear combination of approximations (advice) given by

kernels in the dictionary. When all kernels are involved in function approximation at every

time instants, the multi-kernel learning problem with RF approximation can be formulated

as

min
{w̄i,θi}

T∑
t=1

(
C

(
N∑
i=1

w̄iθ
⊤
i zi(xt), yt

)
+ λΩ(∥θi∥2)

)
(1.7a)

s.t.
N∑
i=1

w̄i = 1, w̄i ≥ 0, ∀1 ≤ t ≤ T. (1.7b)

In online MKL where data samples come sequentially, the optimization problem cannot be

solved in batch. Online convex optimization methods can be utilized to update {w̄i}Ni=1,

{θi}Ni=1 upon receiving new datum xt at each time instant t [132, 137]. Let w̄i,t and θi,t

denote the values of w̄i and θi at time t. Upon receiving new datum xt and computing the

loss L(θ⊤i,tzi(xt), yt), using the online gradient descent, θi,t can be updated as

θi,t+1 = θi,t − η∇L(θ⊤i,tzi(xt), yt) (1.8)
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where η is the learning rate. Furthermore, using multiplicative update, the value of w̄i,t can

be updated as

wi,t+1 = wi,t exp
(
−ηL(θ⊤i,tzi(xt), yt)

)
(1.9a)

w̄i,t+1 =
wi,t+1∑N
j=1 wj,t+1

. (1.9b)

Employing the update rules in (1.8) and (1.9) w̄i,t and θi,t can be updated in an online fashion

without storing data in batch.

1.2.4 Assumptions

In order to analyze the proposed algorithms, we apply stochastic regret [73] to measure the

difference between expected cumulative loss of the proposed algorithms and the best function

approximant in the hindsight. Let f ∗(·) denote the best function approximant in hindsight

which can be obtained as

f ∗(·) ∈ arg min
f∗
i ,i∈{1,...,N}

T∑
t=1

L(f ∗
i (xt), yt) (1.10a)

f ∗
i (·) ∈ arg min

f∈Hi

T∑
t=1

L(f(xt), yt). (1.10b)

Hence, the stochastic regret is defined as

T∑
t=1

Et[L(f̂RF(xt), yt)]−
T∑
t=1

L(f ∗(xt), yt) (1.11)

where Et[·] denotes the expected value at time instant t given the loss observations in prior

times. Furthermore, the performance of proposed algorithms is analyzed under the following

assumptions:
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(A1) The loss function L(θ⊤i,tzi(xt), yt) is convex with respect to θi,t at each time instant t.

(A2) For θ in a bounded set T which satisfies ∥θ∥ ≤ Cθ the loss and its gradient are bounded

as L(θ⊤i,tzi(xt), yt) ∈ [0, 1] and ∥∇L(θ⊤i,tzi(xt), yt)∥ ≤ L, respectively.

(A3) Kernels {κi}Ni=1 are shift-invariant (i.e. κi(x,x
′) = κi(x − x′), ∀i: i = 1, . . . , N),

standardized and bounded. Each datum ∥xt∥ ≤ 1.

Note that (A1) can be satisfied by many convex loss functions such as least squares loss and

logistic loss. Moreover, (A2) states that the losses are bounded and L-Lipschitz continuous.

(A3) states that kernels are assumed to be shift-invariant, standardized and bounded, meaning

that |κi(x)| ≤ 1, ∀i, ∀x. In what follows, we introduce a general graph-aided OMKL

framework, where only a subset of kernels in the dictionary are chosen at each time instant.

1.3 Online Multi-Kernel Learning with Bipartite Feed-

back Graph

The present section introduces an OMKL approach which selects a subset of kernels using a

bipartite graph constructed adaptively at each time instant based on the observed losses.

1.3.1 Data-driven Graph-based Kernel Selection

Instead of combining the entire dictionary of the kernels, in the present chapter, we will

consider combining a subset of kernels {κi(·), i ∈ St} at time instant t instead, where St is

the index set of the chosen subset of kernels at time instant t. Hence, the original function
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approximation problem boils down to

min
{w̄i,t,θi}

T∑
t=1

(
C

(∑
i∈St

w̄i,tθ
⊤
i zi(xt), yt

)
+ λΩ(∥θi∥2)

)
(1.12a)

s.t.
∑
i∈St

w̄i,t = 1, w̄i,t ≥ 0, ∀1 ≤ t ≤ T. (1.12b)

Upon defining the normalized weights w̄i,t =
wi,t∑

j∈St wj,t
, (1.12) can be re-written as

min
{wi,t},{θi}

T∑
t=1

L

(∑
i∈St

wi,t∑
j∈St wj,t

θ⊤i zi(xt), yt

)
(1.13a)

s.t.wi,t ≥ 0, ∀1 ≤ i ≤ N, ∀1 ≤ t ≤ T. (1.13b)

However, (1.13) assumes that {St}Tt=1 are preselected sets. In this section, we study data-

driven scheme which can adaptively select a subset of kernels ‘on the fly’ upon receiving

new data samples. In order to adaptively choose the subset of kernels, the present section

models the pruned kernel combination as feedback collected from a graph, that is constructed

in an online fashion. By doing this, the proposed approach trims irrelevant kernels in the

dictionary to both improve the function approximation accuracy and reduce the computational

complexity of MKL.

Consider a time varying bipartite graph [7] Bt at time t, which consists of two sets of nodes:

N kernel nodes {vk,1, ..., vk,N} and J selective nodes {vs,1, ..., vs,J} where vk,i and vs,j are the

i-th kernel node and j-th selective node, respectively. And the edges of the graph represents

the association between the kernel nodes and the selective nodes. Specifically, an edge

between vk,i and vs,j exists at time t if the i-th kernel is assigned to j-th selective node. The

construction of the graph will be discussed in Section 1.3.2 .

At each time instant, one of the selective nodes vs,j is chosen, and the subset of kernel nodes

connected to vs,j will be used for the instantaneous function approximation at time t, [c.f.
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(1.13)]. Then, the loss L(f̂RF,i(xt), yt) is observed for every kernel in the chosen subset and

θi,t is updated as

θi,t+1 = θi,t − η
∇L(θ⊤i,tzi(xt), yt)

qi,t
1i∈St , (1.14)

where qi,t is the probability that the loss of associated kernel is observed and 1i∈St denotes

the indicator function such that 1i∈St = 1 if i ∈ St and 1i∈St = 0 otherwise. The value of qi,t

depends on how the bipartite graph is generated. Upon receiving a new datum xt, the value

of the weight wi is updated ‘on the fly’. Let wi,t denote the weighting coefficient wi at time

instant t. We leverage multiplicative update for weights wi,t as

wi,t+1 = wi,t exp(−ηℓi,t) (1.15)

where ℓi,t denotes the importance sampling loss estimates [4] associated with the i-th kernel

as follows

ℓi,t =
L(f̂RF,i(xt), yt)

qi,t
1i∈St (1.16)

which is the observed loss L(f̂RF,i(xt), yt) divided by the probability qi,t. The function

approximation can be obtained as

f̂RF(xt) =
∑
i∈St

wi,t∑
m∈St wm,t

f̂RF,i(xt) (1.17)

where f̂RF,i(·) is defined in (1.4).

Then the selective nodes are assigned to weights {uj,t+1} according to the the kernel nodes’

weights {wi,t+1}. Indeed, each selective node’s weight {uj,t+1} is the total summation of

weights of kernel nodes which are connected to this selective node. Specifically the weight of
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Algorithm 1 Data Driven (Bipartite) Graph-based Kernel Selection

1: Input: Shift-invariant kernels κi, i = 1, . . . , N , step size η > 0, weights {wi,t}Ni=1,
{uj,t}Jj=1, bipartite graph Bt and datum xt.

2: Set uj,t =
∑

∀i:vk,i→vs,j
wi,t.

3: Obtain pj,t via (1.19).
4: Choose one selective node vs,j according to PMF pt = (p1,t, ..., pJ,t).

5: Predict f̂RF(xt) =
∑

i∈St
wi,t∑

m∈St wm,t
f̂RF,i(xt) with f̂RF,i(xt) in (1.4).

6: Obtain loss L(f̂RF,i(xt), yt) for all i ∈ St.
7: Update θi,t+1 via (1.14) for all i ∈ St.
8: Update wi,t+1 via (1.15).

9: Output: f̂RF(xt), {wi,t+1}Ni=1, {θi,t+1}Ni=1

vs,j is obtained via

uj,t+1 =
∑

∀i:vk,i→vs,j

wi,t+1. (1.18)

Note that the weights of the selective nodes are determined by its adjacent kernel nodes,

which indicates the reliability of the corresponding kernel-based function estimate. Hence,

the probability according to which a selective node is chosen in the next time instant can be

updated as

pj,t+1 = (1− ηe)
uj,t+1

Ut+1

+
ηe
J

(1.19)

where Ut+1 :=
∑J

j=1 uj,t+1, and 0 < ηe ≤ 1 is the exploration rate. The term ηe
J

is introduced

to tradeoff between exploitation and exploration. The first term on the right hand side of

(1.19) implies choosing a selective node with larger weight uj,t+1 with higher probability. And

the term ηe
J

is used to to promote exploration. Algorithm 1 summarizes the data driven

kernel selection scheme presented in this section.

To sum up, each kernel is viewed as an expert and at each time instant a subset of function

approximations provided by these experts is combined. In this regard, the RF approximation

f̂RF,i(xt) can be viewed as the feedback provided by i-th kernel node, and the proposed
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framework models the pruned kernel combination as feedback collected from a graph, where the

feedback are combined only if the corresponding kernel node is connected to the chosen selective

node. By doing this, the proposed approach trims irrelevant kernels in the dictionary to both

improve the function approximation accuracy and reduce the computational complexity of

MKL. The graph construction approach will be proposed in the ensuing subsection.

1.3.2 Online Bipartite Feedback Graph Construction

Construction of the time varying graph is of utmost importance, as it affects both function

approximation accuracy and computational complexity. In this regard, a graph is successful

if it can provide a subset of kernels which results in smallest possible loss. Indeed, considering

computational complexity, the graph should provide a limited number of kernels which obtain

minimum loss. To this end, we aim to propose a generating method for graph. Specifically,

using the weights {wi,t+1}Ni=1 obtained via (1.15), the structure of the graph is reconstructed

in a stochastic manner stated below to be leveraged in the next time instant.

Increasing the number of kernel nodes connected to vs,j , increases the computational complex-

ity of performing function approximation by choosing vs,j. Therefore, the graph generation

algorithm should be designed to limit the number of kernel nodes connected to each selective

node. Let M denote the maximum number of kernel nodes connected to each selective node.

The procedure to generate the graph Bt+1 is presented in Algorithm 2. Let At+1 represent the

N × J sub-adjacency matrix between two disjoint subsets {vs,1, ..., vs,J} and {vk,1, ..., vk,N}.

Notation At+1(i, j) represents the element in i-th row and j-th column of the sub-adjacency

matrix At+1 and it is equal to 1 if vk,i is connected to vs,j, and 0 otherwise.

Each selective node vs,j draws kernel nodes vk,i in M independent trials and in each trial

selective node draws only one kernel node. We put more weight on kernels which obtain less

loss in a sense that the probability that selective node vs,j draws the kernel node vk,i in a

13



Algorithm 2 Generating Bipartite Feedback Graph

1: Input: Shift-invariant kernels κi, weighting coefficient wi,t, i = 1, . . . , N , exploration
coefficient ηe and the maximum degree of each selective node M .

2: Initialize: Sub-adjacency matrix At+1 = 0N×J .
3: for j = 1, ..., J do
4: for i = 1, ..., N do
5: Set πij,t+1 = (1− ηe

j)
wi,t+1∑N
i=1 wi,t+1

+ ηej

N
.

6: end for
7: for k = 1, ...,M do
8: Choose one of nodes vk,i drawn according to the probability mass function (PMF)

πj,t+1 = (π1j,t+1, ..., πNj,t+1).
9: Set At+1(i, j) = 1.
10: end for
11: end for
12: Output: Bipartite feedback graph Bt+1 with adjacency matrix At+1

(a) A bipartite feedback graph consists of J
selective nodes and N kernel nodes.

(b) The chosen selective node (vs,2 as an ex-
ample) and edges associated with it are high-
lighted.

Figure 1.1: A bipartite feedback graph generated by Algorithm 2.

trial at time t+ 1 is

πij,t+1 = (1− ηe
j)

wi,t+1∑N
k=1wk,t+1

+
ηe

j

N
(1.20)

Note that the first term in (1.20) discriminates between kernels based on their weights which is

determined by their loss in function approximation [c.f. (1.15)]. Furthermore, the second term

allows exploration over all kernel nodes. Specially, the selective node vs,j draws kernel nodes

according to uniform distribution if ηe = 1. Furthermore, note that ηe
j is a non-increasing

function of j for 0 < ηe ≤ 1. The selective node vs,1 puts more weight on exploration in
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Algorithm 3 OMKL with (Bipartite) Graph Feedback (OMKL-GF)

1: Input: Shift-invariant kernels κi, i = 1, . . . , N , step size η > 0 and the number of
random features D.

2: Initialize: θi,1 = 0, wi,1 = 1, i = 1, ..., N , generate B1 using Algorithm 2 given wi,1, ∀i
3: for t = 1, ..., T do
4: Receive one datum xt.
5: Obtain f̂RF(xt), {wi,t+1}Ni=1, {θi,t+1}Ni=1 using Algorithm 1 given Bt, {wi,t}Ni=1, {θi,t}Ni=1.
6: Generate Bt+1 using Algorithm 2 with {wi,t+1}Ni=1.
7: end for

comparison with others while vs,J considers more exploitation than all the other selective

nodes. Therefore, the selective nodes entail different level of exploration and exploitation.

Based on the definition of πij,t+1 in (1.20), the probability that the i-th kernel node is

connected to vs,j is 1− (1− πij,t+1)
M , where (1− πij,t+1)

M is the probability that the i-th

kernel node is chosen by vs,j in none of M trials. Therefore, the probability of observing the

loss of the i-th kernel at time t+ 1 is given by

qi,t+1 =
J∑

j=1

pj,t+1

(
1− (1− πij,t+1)

M
)

(1.21)

for 1 ≤ i ≤ N . The value of qi,t+1 is computed and used for importance sampling loss estimate

in (1.16). The graph generation framework is summarized in Algorithm 2. And Figure 1.1

illustrates an example of the constructed bipartite feedback graph.

At each time instant t, the bipartite graph Bt is used for choosing a selective node, and

henceforth subset of the kernels. Then the weights of the selected kernels are updated according

to the loss [c.f.(1.14) and (1.15)]. And the graph can be constructed using Algorithm 2, based

on which, the function approximation can be carried out by choosing one of the selective

nodes which leads to selecting a subset of kernels. Our proposed online multi-kernel learning

with graph-structured feedback (OMKL-GF) is summarized in Algorithm 3.

Computational Complexity. At time instant t, OMKL-GF needs to store a real 2D random
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feature vector in addition to a weighting vector for each kernel in conjunction with a weighting

vector for each selective node. As the number of kernels is in general larger than the number

of selective nodes, the required memory is of order O(dDN). The per-iteration complexity

of our OMKL-GF (e.g. calculating inner products) is O(dDM + JN). In comparison, the

per-iteration complexity of OMKR developed by [131] is O(tdN), while more contemporary

online RF-based OMKL approaches proposed by [137, 132] both have per-iteration complexity

O(dDN). Hence, OMKL-GF can significantly reduce the per iteration complexity especially

when J ≤M << N .

1.3.3 Regret Analysis

This subsection presents the regret analysis of OMKL-GF. In order to analyze the regret for

OMKL-GF, we first establish an intermediate result in the following lemma.

Lemma 1.1. The regret of the proposed OMKL-GF under (A1) and (A2) with respect to a

preselected kernel κi where Fi = {f̂i|f̂i(x) = θ⊤zi(x),∀θ ∈ R2D} satisfies the following bound

T∑
t=1

Et[L(f̂RF(xt), yt)]−
T∑
t=1

L(f̂ ∗
i (xt), yt)

<
lnN

η
+
∥θ∗i ∥2

2η
+ ηeJT +

ηNT

2(1− ηe)
+

ηL2NJT

2η2e
(1.22)

where θ∗i is associated with the best RF function approximant f̂ ∗
i (xt) = θ∗⊤i zi(xt) and

the expectation at time t is taken with respect to PMFs pt and πj,t in (1.19) and (1.20),

respectively.

Proof. see Appendix A.2.

The next theorem further characterizes the difference between the loss of OMKL-GF relative

to the best functional estimator in the RKHS.
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Theorem 1.1. The following bound holds with probability at least 1 − 28(σi

ϵ
)2 exp(− Dϵ2

4d+8
)

under (A1)–(A3) for ϵ > 0 and with f ∗
i belonging to RKHS Hi as in (1.10b)

T∑
t=1

Et[L(f̂RF(xt), yt)]− min
i∈{1,...,N}

T∑
t=1

L(f ∗
i (xt), yt)

<
lnN

η
+
∥θ∗i ∥2

2η
+ ηeJT + ϵLTC +

ηNT

2(1− ηe)
+

ηL2NJT

2η2e
(1.23)

where C is a constant, and σ2
i is the second order moment of the RF vector norm which

can be defined as σ2
i := Eπκi (ψ)[∥ψ∥2]. The expectation at time t is taken with respect to the

randomness in pt and πj,t defined in (1.19) and (1.20), respectively.

Proof. see Appendix A.3.

According to Theorem 1.1, by setting

η = O

(√
lnN

N
T− 3

4

)
, ηe = O

(
N

1
6T− 1

4

)
, J = O

(
N

1
3

)
, ϵ = O

(
T− 1

4

)
(1.24)

in (1.23), the stochastic static regret in (1.11) satisfies O
(√

N lnNT
3
4

)
. Thus, by selecting

appropriate parameters, our proposed OMKL-GF achieves sublinear regret in expectation

with respect to the best static function approximant in (1.11). Note that while proper

settings of ϵ and η relies on the knowledge of T , such information may not be necessary, via

employing, e.g., doubling trick [19]. Considering (1.23), the probability 1−28(σi

ϵ
)2 exp(− Dϵ2

4d+8
)

is an increasing function of D such that for a fixed ϵ, always there are some values for D

which result in positive probability. Furthermore, (1.23) shows that by setting ϵ = O(T− 1
4 )

and D = O(
√
T lnT ), the sublinear regret of O(

√
N lnNT

3
4 ) can be obtained with high

probability of 1−O( 1√
T
).

The computational complexity of kernel learning algorithms play an important role in their

applicability. Bipartite feedback graph construction at each time instant increases the
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computational complexity of OMKL-GF. To further alleviate the computational burden of

multi-kernel learning the ensuing section investigates the problem of choosing a subset of

kernels using a feedback graph while the graph is not constructed at every time instant.

1.4 Online Multi-Kernel Learning with Similarity-based

Feedback Graph

Note that OMKL-GF is a data-driven kernel selection scheme where a bipartite feedback graph

is constructed at every time instant. However, online feedback graph construction increases

the computational complexity of OMKL-GF. This section proposes a novel algorithmic

framework to construct the feedback graph in an offline fashion such that the proposed

algorithms do not need to construct the feedback graph at every time instant. Moreover,

the bipartite feedback graph Bt constructed by Algorithm 2 do not exploit the relationship

among kernels. Hence, in this section, the similarity among kernels is measured which will

facilitate constructing the feedback graph in an offline fashion in such a way that at each

time instant a subset of dissimilar kernels are chosen to avoid unnecessary computation. The

present section first introduces a disciplined way to construct feedback graph based on kernel

similarities in an offline fashion. Based on the constructed feedback graph, a novel online

MKL algorithm (called OMKL-SFG) is developed to select a subset of kernels which is proved

to obtain sub-linear regret. Furthermore, to obtain tighter regret bound a modification of

OMKL-SFG algorithm (called OMKL-SFG-R) is proposed which refines the structure of the

feedback graph to choose a subset of kernels. OMKL-SFG-R entails more computation than

OMKL-SFG.
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1.4.1 Offline Similarity-based Feedback Graph Construction

The similarity between two shift invariant kernels κi and κj is measured through divergence

between κi and κj. As κi and κj has smaller divergence, they are considered to be more

similar. The present chapter measures the divergence between a pair of kernels using the

Bregman divergence.

Let Ω be a d-dimensional convex set. Bregman divergence defined for a strictly convex and

differentiable function F (·) : Ω→ R as (see, e.g. [13, 10])

BF (ω1,ω2) = F (ω1)− F (ω2)−∇F (ω2)
⊤(ω1 − ω2). (1.25)

Based on Bregman divergence, the divergence between two shift invariant kernels κi and κj

can be measured through the function ∆(κi, κj) which is defined as

∆(κi, κj) =

∫
BF (κi(ρ), κj(ρ)) dρ (1.26)

where ρ ∈ Rd. As it can be inferred from (1.26), ∆(κi, κj) measures the divergence between

two kernels κi and κj using the aggregation of Bregman divergence on every point ρ in the

input space. As ∆(κi, κj) decreases, kernels κi and κj are considered to be more similar. Note

that instead of defining the divergence as in (1.26), one can define the divergence function

∆(κi, κj) as the expected Bregman divergence over points ρ. However, taking the expectation

requires knowing the distribution of input data samples which may not be available priori.

Furthermore, the distribution of input space may change over time and as a result calculating

the expected value of Bregman divergence in an offline fashion over the input space may not

be feasible. Moreover, squared Euclidean divergence BF (κi(ρ), κj(ρ)) = ∥κi(ρ)− κj(ρ)∥2 is

generated by the function F (ω) = ∥ω∥2. Let ∆S(·, ·) denotes the function ∆(·, ·) when the
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Bregman divergence is obtained by F (ω) = ∥ω∥2. In this case, we have

∆S(κi, κj) =

∫
|κi(ρ)− κj(ρ)|2dρ. (1.27)

The following Lemma states that the function ∆S(κi, κj) exists for each pair of absolutely

integrable kernels.

Lemma 1.2. Under the assumption that kernels {κi}Ni=1 are absolutely integrable, bounded

and normalized such that κi(0) = 1, ∀i : 1 ≤ i ≤ N , the function ∆S(κi, κj) is bounded and

exists for each pair of kernels κi(·) and κj(·).

Proof. Since kernels {κi(ρ)}Ni=1 are assumed to be bounded as 0 ≤ κi(ρ) ≤ 1, ∀ρ, 1 ≤ i ≤ N ,

it can be concluded that |κi(ρ)− κj(ρ)|2 ≤ |κi(ρ)− κj(ρ)|. Thus, it can be inferred that

∫
|κi(ρ)− κj(ρ)|2dρ ≤

∫
|κi(ρ)− κj(ρ)|dρ. (1.28)

Furthermore, based on the Triangular inequality, it can be written that

∫
|κi(ρ)− κj(ρ)|dρ ≤

∫
|κi(ρ)|dρ+

∫
|κj(ρ)|dρ. (1.29)

Based on (1.28), (1.29) and the fact that kernels are absolutely integrable, we can conclude

that the function ∆S(κi, κj) is bounded and exists for each pair of kernels κi(·) and κj(·).

Furthermore, the following lemma states that the average difference between function ap-

proximations given by each pair of kernels is bounded above in accordance with the function

∆S(·, ·) defined in (1.27).

Lemma 1.3. Let Cm := maxi
∑T

t=1 |αi,t|2 where {αi,t}Tt=1 are weights for (1.2) associated

with the i-th kernel κi(·). Also, let x is bounded as ∥x∥ ≤ 1 and kernels are absolutely

integrable. Then, the average difference between function approximations given by κi(·) and
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κj(·) is bounded above as

1

Ud

∫
|f̂i(x)− f̂j(x)|2dx ≤

2Cm

Ud

T∑
t=1

(∆S(κi, κj) + 2Ud) (1.30)

where f̂i(x) denotes the function approximation given by κi(·) as in (1.2) and Ud represents

d-dimensional Euclidean unit norm ball volume.

Proof. See Appendix A.4.

Let G := (V , E) be a directed graph with vertex vi ∈ V which represents the i-th kernel κi.

In this case, there is a self-loop for each vi ∈ V which means (i, i) ∈ E . Furthermore, an edge

from vi to vj is appended to E if

1

|Nout
i |

∑
m∈Nout

i

∆(κm(ρ), κj(ρ)) ≥ γi (1.31)

where γi is a threshold for vi and Nout
i denote the current out-neighborhood set of vi which

means j ∈ Nout
i if (i, j) ∈ E . Using the (1.31) to append edges to the graph G, a vertex vj

associated with the kernel κj is added to the out-neighborhood set of vi if it is dissimilar to

the current out-neighbors of vi. Therefore, the subset of vertices which are out-neighbors of

vi, are jointly dissimilar. Since a subset of function approximations associated with kernels

will be chosen using the graph G, the chosen subset of function approximations can be viewed

as feedback collected from the graph G and as a result the graph G is called feedback graph.

Specifically in order to restrict the number of out-neighbors for each node to M , the value of

γi is obtained as

γi = argmax
γ
{γ||Nout

i | = M}. (1.32)

Note that M is a preselected parameter in the algorithm and increasing the value of M
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Algorithm 4 Generating Similarity based Feedback Graph

1: Input: Shift-invariant kernels κi, i = 1, ..., N .
2: for i = 1, ..., N do
3: Append (i, i) to E .
4: Obtain γi via (1.32).
5: Append (i, j) to E if 1

|Nout
i |
∑

m∈Nout
i

∆(κm(ρ), κj(ρ)) ≥ γi.

6: end for
7: Output: Similarity-based Feedback Graph G.

(a) A similarity-based feedback graph with 5
kernel nodes.

(b) As an example, the chosen node (v2) and
its out-neighbors are highlighted.

Figure 1.2: An example of similarity-based feedback graph generated by Algorithm 4.

increases the connectivity of the feedback graph. At each time instant, one of the nodes are

drawn and the function approximation is carried out using the combination of a subset of

kernels which are out-neighbors of the chosen node. Therefore, increase in M can increase the

exploration in the approximation task while it increases the computational complexity. The

feedback graph construction procedure is summarized in Algorithm 9. It can be observed from

(1.26) that the function ∆(κi, κj) can be considered as a measure of divergence, and henceforth

dissimilarity between kernels κi(·) and κj(·) without knowing data samples {xt}Tt=1. This helps

reduction of computational complexity of the function approximation since (dis)similarity

among kernels in the dictionary can be measured offline before observing data samples and

as a result the computation required to perform Algorithm 4 can be performed offline.

At each time instant, one of the vertices of the feedback graph is drawn according to a PMF

as it will be explained in the next section. Then, the function approximation is performed

using the kernels associated with out-neighbors of the chosen vertex. Therefore, based on the
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feedback graph construction in Algorithm 4, at each time instant a subset of dissimilar kernels

is chosen to avoid unnecessary computation since it is expected that similar kernels provide

comparatively similar approximations. See also Figure 1.2 for an example of similarity based

feedback graph where the number of kernels is 5 and vi represents a Gaussian kernel with

bandwidth of 10i−3. For each node vi, γi is selected so that the number of out-neighbors of vi

is 3.

1.4.2 Kernel Selection with Offline Feedback Graph

The present section studies how to select a subset of kernels using the feedback graph G and

prior observations of losses associated with kernels. Assume that each kernel is associated

with a set of weights {wi,t}Ni=1 where wi,t is the weight associated with the i-th kernel κi. The

weight wi,t indicates the accuracy of the function approximation given by the κi at time t and

its value can be updated when more and more information is being revealed. Furthermore, a

set of weights {ui,t}Ni=1 is assigned to V such that ui,t is the weight associated with vi ∈ V

at time instant t, which indicates the accuracy of function approximation when the node vi

is drawn. In order to choose a subset of kernels at time t, one of the vertices in V is drawn

according to the PMF pt

pi,t = (1− ξ)
ui,t

Ut

+
ξ

|D|
1i∈D, i = 1, . . . , N (1.33)

where ξ is the exploration rate and Ut :=
∑N

i=1 ui,t. D represents the dominating set of

G, and |D| denotes the cardinality of D. Let St denote the subset of kernel indices chosen

at time t, and It denote the index of the kernel drawn according to the PMF pt in (1.33).

Therefore, i ∈ St if i ∈ Nout
It

, which means that the loss associated with the i-th kernel is

calculated if the i-th kernel is an out-neighbor of the It-th node. In turn, the RF-based
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function approximation can be obtained as

f̂RF(xt) =
∑

i∈Nout
It

wi,t∑
j∈Nout

It

wj,t

f̂RF,i(xt). (1.34)

Furthermore, the importance sampling loss estimate ℓi,t at time instant t is defined as

ℓi,t =
L(θ⊤i,tzi(xt), yt)

qi,t
1i∈St , i = 1, . . . , N (1.35)

where qi,t is the probability that i ∈ St and it can be computed as

qi,t =
∑
j∈Nin

i

pj,t (1.36)

where Nin
i denote the in-neighborhood set of vi which means j ∈ Nin

i if (j, i) ∈ E . In addition,

the importance sampling function approximation estimate ℓ̂i,t at time instant t associated

with vi ∈ V is defined as

ℓ̂i,t =
L(f̂RF(xt), yt)

pi,t
1It=i. (1.37)

Using the importance sampling loss estimate in (1.36), θi,t can be updated as

θi,t+1 = θi,t − η∇ℓi,t = θi,t − η
∇L(θ⊤i,tzi(xt), yt)

qi,t
1i∈St , (1.38)

where η is the learning rate. Moreover, the multiplicative update is employed to update wi,t

and ui,t based on importance sampling loss estimates in (1.35) and (1.37) as follows

wi,t+1 = wi,t exp(−ηℓi,t), i = 1, . . . , N (1.39a)

ui,t+1 = ui,t exp(−ηℓ̂i,t), i = 1, . . . , N. (1.39b)
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Algorithm 5 OMKL with Similarity-based Feedback Graph (OMKL-SFG)

1: Input: Shift-invariant kernels κi, i = 1, . . . , N , learning rate η, exploration rate ξ, the
number of random features D.

2: Initialize: θi,1 = 0, wi,1 = 1, i = 1, . . . , N , Construct the feedback graph G via
Algorithm 4.

3: for t = 1, . . . , T do
4: Receive one datum xt.
5: Draw one of nodes vi ∈ V according to the PMF pt = (p1,t, ..., pN,t) in (1.33).

6: Predict f̂RF(xt) via (1.34).
7: Calculate loss L(f̂RF,i(xt), yt) for all i ∈ St.
8: Update θi,t+1 via (1.38).
9: Update wi,t+1 and ui,t+1 via (1.39).
10: end for

The procedure to choose a subset of kernels at each time instant for function approximation

is summarized in Algorithm 5. This algorithm is called OMKL-SFG which stands for Online

Multi Kernel Learning with Similarity based Feedback Graph. Figure 1.2b illustrates the

case when v2 is drawn by the Algorithm 5 as an example. Then the function approximation

is performed using kernels associated with out-neighbors of v2, which are v1, v2 and v3

highlighted in Figure 1.2b.

The following Theorem presents the upper bound for cumulative stochastic regret of OMKL-

SFG.

Theorem 1.2. Under (A1) and (A2), let j∗ = argmin∀j:1≤j≤N

∑T
t=1 L(f ∗

j (xt), yt). Then for

any i ∈ Nin
j∗, the stochastic regret of OMKL-SFG satisfies

T∑
t=1

Et[L(f̂RF(xt), yt)]−
T∑
t=1

L(f ∗(xt), yt)

≤ lnN |Nout
i |

η
+

(1 + ϵ)C2

2η
+ ϵLTC + (ξ +

ηN

2
− ηξ

2
)T +

η

2

T∑
t=1

(
1

q̄i,t
+

L2

qj∗,t
) (1.40)

with probability at least 1− 28(
σj∗

ϵ
)2 exp(− Dϵ2

4d+8
) under (A1)-(A3) for any ϵ > 0. Furthermore,

1
q̄i,t

=
∑

j∈Nout
i

wj,t

qj,tWi,t
, C is a constant and σ2

j∗ is the second moment of πκj∗ (ψ).
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Proof. The proof is deferred to Appendix A.5.

The regret bound in (1.40) depends on 1
q̄i,t

and 1
qj∗,t

. Since, there is a self-loop for all vk ∈ V ,

it can be written that qk,t ≥ pk,t. In addition, based on (1.33), we can conclude that pk,t >
ξ
|D| ,

∀vk ∈ V and as a result qk,t >
ξ
|D| , ∀vk ∈ V . Therefore, in the worst case where qj∗,t = O( ξ

|D|),

considering

η = O

(√
lnN

N
T− 2

3

)
, ϵ = ξ = O

(
T− 1

3

)
, D = O

(
T

2
3 lnT

)
(1.41)

OMKL-SFG can achieve regret bound of O(
√
N lnNT

2
3 ) with high probability of 1−O(T− 1

3 ).

Moreover, comparing regret bound of OMKL-SFG with that of OMKL-GF, it can be observed

that OMKL-SFG obtains tighter regret than OMKL-GF. The reason behind this is that

the regret bound of both OMKL-SFG and OMKL-GF depend on 1/qj∗,t (c.f. (1.40) and

(A.40)) and OMKL-SFG performs more exploration than OMKL-GF in the sense that using

OMKL-SFG the lower bound for the probability qi,t, ∀i is larger than that of OMKL-GF.

Specifically, using OMKL-GF, qi,t > η2e/NJ (c.f. (A.41)). Setting ηe = O(N 1
6T− 1

4 ) and

J = O(N 1
3 ) as it is specified in (1.24), it can be concluded that

qi,t > O
(

1

N
√
T

)
,∀i ∈ {1, . . . , N},∀t ∈ {1, . . . , T} (1.42)

when OMKL-GF is employed. Moreover, since using OMKL-SFG, qi,t > ξ
|D| , choosing

ξ = O(T− 1
3 ) as in (1.41) and considering the fact that |D| ≤ N , the lower bound of qi,t when

OMKL-SFG is employed is obtained as

qi,t > O
(

1

NT
1
3

)
,∀i ∈ {1, . . . , N},∀t ∈ {1, . . . , T}. (1.43)

Comparing (1.42) with (1.43), it can be concluded that OMKL-SFG can provide larger lower

bound for qj∗,t than that of OMKL-GF. This enables OMKL-SFG to obtain tighter regret
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upper bound than OMKL-GF. Since the regret bound of O(
√
T ) is more satisfactory than

the regret bound of O(T 2
3 ), in what follows the structure of the feedback graph is refined at

each time instant so that the regret of O(
√
T ) can be achieved.

1.4.3 OMKL with Similarity-based Feedback Graph Refinement

This subsection further improves the OMKL-SFG by refining the offline feedback graph ‘on

the fly’, so that the resulting algorithm achieves a tighter sub-linear regret of O(
√
T ). To

this end, at each time instant the offline feedback graph G constructed by the Algorithm 4 is

refined to a feedback graph G ′t based on the observed losses. To begin with, let’s define set

D′
t as

D′
t :=

{
i

∣∣∣∣ui,t

Ut

≥ 1

1− ξ
(β − ξ

N
)

}
(1.44)

where β is a pre-selected constant. According to (1.33), it can be inferred that pi,t ≥ β, ∀i ∈ D′
t.

Let G ′t = (V , E ′t) be a graph such that D′
t is a dominating set of G ′t. Suppose at each time

instant t, G ′t is employed as the feedback graph instead of G. In this case, it is ensured that

there is at least one edge from D′
t to each vi ∈ V \D′

t, i.e., D′
t is a dominating set of G ′t. In this

case, we have qi,t ≥ β, ∀vi ∈ V. To this end, at each time instant t, G ′t can be constructed

based on G by expanding E to E ′t such that D′
t would be a dominating set of G ′t. Specifically,

at each time instant t, the edge (di,t, i) is appended to E ′t, if there is not any edge from D′
t to

vi, where

di,t = argmax
j∈D′

t

∆(κi, κj). (1.45)

27



Algorithm 6 OMKL with Similarity Feedback Graph Refinement (OMKL-SFG-R)

1: Input: Shift-invariant kernels κi, i = 1, . . . , N , learning rate η > 0, exploration rate
ξ > 0, the number of random features D and the constant β > 0.

2: Initialize: θi,1 = 0, wi,1 = 1, i = 1, . . . , N , Construct the feedback graph G via
Algorithm 4.

3: for t = 1, . . . , T do
4: Receive one datum xt.
5: Set E ′t = E and obtain di,t, ∀i ∈ V \ D′

t by (1.45).
6: For all i ∈ V \ D′

t, append (di,t, i) to E ′t if (di,t, i) /∈ E .
7: Draw one of nodes vi ∈ V according to the PMF pt = (p1,t, ..., pN,t) in (1.46).

8: Predict f̂RF(xt) via (1.47).
9: Calculate loss L(f̂RF,i(xt), yt) for all i ∈ St.
10: Update θi,t+1 via (1.38).
11: Update wi,t+1 and ui,t+1 via (1.39).
12: end for

Hence, there is at least one edge from D′
t to vi ∈ V \ D′

t, meaning D′
t is a dominating set for

G ′t. Then one of the vertices in V is drawn according to the PMF pt, with

pi,t = (1− ξ)
ui,t

Ut

+
ξ

|D′
t|
1i∈D′

t
, i = 1, . . . , N. (1.46)

Let Nout
i,t and Nin

i,t denote sets of out-neighbors and in-neighbors of vi in G ′t, respectively.

According to (1.44) and (1.46), we have qi,t ≥ β, ∀vi ∈ V where qi,t =
∑

j∈Nin
i,t
pj,t. The

RF-based function approximation can be written as

f̂RF(xt) =
∑

i∈Nout
It

wi,t∑
j∈Nout

It

wj,t

f̂RF,i(xt). (1.47)

According to (1.47), θi,t, wi,t and ui,t can be updated using (1.38), (1.39a) and (1.39b),

respectively. The procedure is summarized in Algorithm 6, which is called OMKL-SFG-R,

and its performance in terms of regret analysis is presented in the following Theorem.
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Theorem 1.3. Under (A1)–(A3), the stochastic regret of OMKL-SFG-R satisfies

T∑
t=1

Et[L(f̂RF(xt), yt)]−
T∑
t=1

L(f ∗(xt), yt)

≤2 lnN

η
+

(1 + ϵ)C2

2η
+ ϵLTC + (ξ +

η

2

L2 +Nβ + 1

β
− ηξ

2
)T (1.48)

with probability at least 1− 28(
σj∗

ϵ
)2 exp(− Dϵ2

4d+8
) for any ϵ > 0 and any β ≤ 1

N
.

Proof. The proof can be found in Appendix A.6.

According to Theorem 1.3, by setting

η = O

(√
lnN

NT

)
, ϵ = ξ = O

(√
1

T

)
, D = O(T lnT ) (1.49)

and β = O(1) such that β ≤ 1
N
, OMKL-SFG-R can achieve regret bound of O(

√
TN lnN)

using the feedback graph G ′t with probability of 1−O(1). According to Theorem 1.3, larger

D leads to larger probability that the regret bound in (1.48) holds true. Thus, in order to

achieve regret of O(
√
TN lnN) with high probability, OMKL-SFG-R should set sufficiently

large value of order O(T lnT ) for D. However, note that since some edges may be added to

G to construct G ′t, using G ′t instead of G may cause increase in computational complexity of

function approximation.

Computational Complexity. Both OMKL-SFG and OMKL-SFG-R need to store a

set of d-dimensional vectors {ψi,j}Dj=1 per kernel in addition to two weighting coefficients

{wi,t}Ni=1 and {ui,t}Ni=1. Furthermore, both OMKL-SFG and OMKL-SFG-R need to store

adjacency matrix of G which is N ×N matrix. In order to perform required computation for

(1.45), OMKL-SFG-R needs to store the divergence ∆(κi, κj) between any pair of kernels in

the dictionary. Therefore, the memory requirement for both algorithms are O(dDN +N2).

Consider the case where the number of out-neighbors of each node vi in G satisfies M < N , the
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per-iteration complexity of OMKL-SFG including calculation of inner products is O(dDM).

Therefore, it can be inferred that OMKL-SFG incurs less computational complexity than

OMKL-GF since recall that the per-iteration complexity of OMKL-GF is O(dDM + JN).

Therefore, it can be concluded that the offline feedback graph construction indeed can alleviate

the computational complexity compared with OMKL-GF in section 1.3. Due to the graph

refinement procedure, the complexity of OMKL-SFG-R is higher than OMKL-SFG. According

to Algorithm 6, there is a possibility that all nodes in the graph are out-neighbors of one node

in D′
t. Therefore, the worst-case per-iteration computational complexity of OMKL-SFG-R is

O(dDN). Furthermore, the computational complexities of OMKL-SFG and OMKL-SFG-R

are lower than state-or-art multi-kernel learning algorithms provided that the per-iteration

computational complexity of OMKR is O(tdN) [131], and the per-iteration computational

complexity of RF-based online multi-kernel learning algorithms proposed in [132] and [137]

are O(dDN).

Regret Bounds Comparison. The algorithm OMKR [131] achieves regret of O(
√
T lnN).

However, since per iteration computational complexity of OMKR is O(tdN), OMKR requires

much more computations than the proposed graph-aided OMKL algorithms. Furthermore,

Raker [137] obtains regret of O(
√
T lnN) with high probability when the number of random

features D is set to O(T lnT ). Therefore, employing all kernels in the dictionary, Raker

obtains tighter regret bound than those of the proposed graph-aided OMKL algorithms.

However, the proposed graph-aided OMKL algorithms require less computations than Raker.

Comparison with Online Learning. In online learning with expert advice, there is

a learner interacts with a set of experts such that at each round of learning the learner

choose one of the experts and takes its advice for either decision making or prediction [19, 8].

The learner may observe the loss associated with a subset of experts after decision making

and in this regard this can be modeled by a graph which is called feedback graph (see e.g.

[106, 29, 4]). In all algorithms proposed in this chapter, each kernel can be viewed as an
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expert. However, there are two major innovative differences compared with online learning

with feedback graph: i) the proposed algorithm constructs and refines the feedback graph

to improve the performance of learning task while in online learning, the feedback graph is

generated in an adversarial manner. ii) in this chapter, each expert (kernel) is a learner itself

and experts implement an online scheme for self-improvement.

1.5 Experiments

This section presents experimental results over real datasets downloaded from UCI Machine

Learning Repository [44]. The accuracy of different approaches are evaluated using mean

square error (MSE). Due to the randomness in the random features extracted for function

approximation, we average the MSE over R = 20 different sets of random features. The MSE

at time t is computed as

MSEt =
1

R

R∑
r=1

1

t

t∑
τ=1

(f̂RF(xτ )− yτ )
2. (1.50)

The number of random features is D = 50. The kernel dictionary contains 76 kernels including

51 RBF kernels and 25 Laplacian kernels. The bandwidth of the i-th (1 ≤ i ≤ 51) RBF

kernel is 10σi with σi =
2i−52
25

. And the value of the i-th (1 ≤ i ≤ 25) Laplacian kernel’s

parameter is 10λi where λi =
i−13
6

. For fairness of evaluation, parameters ξ, η and ηe are

set to 0.1√
t
for all algorithms at time step t. More precise results can be obtained with more

extensive parameter tuning. The performance of kernel learning algorithms is evaluated

through several real datasets:

Airfoil: This dataset comprises 1, 503 different size airfoils at various wind tunnel speeds

and each data sample xt includes 5 features such as frequency and chord length. The output

yt is scaled sound pressure level in decibels [14].

Bias: This dataset contains 7, 750 samples. Each sample has 21 features including maximum
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and minimum temperatures of present-day, and geographic auxiliary variables for the purpose

of bias correction of next-day minimum air temperatures. The goal is to predict next-day

minimum air temperature [25].

Concrete: This dataset contains 1, 030 samples of 8 features, such as the amount of cement

or water in a concrete. The goal is to predict concrete compressive strength [156].

Naval: contains 11, 934 samples of 15 features of a naval vessel characterized by a gas turbine

propulsion plant including the ship speed and gas turbine shaft torque. The goal is to predict

the lever position [31].

Parameter λ is set to 10−3 for all proposed algorithms OMKL-GF, OMKL-SFG and OMKL-

SFG-R. Generating the bipartite graph Bt at every time instant can increase the computational

complexity of the proposed OMKL-GF while it cannot improve MSE considerably. To

further decrease the computational complexity of our proposed OMKL-GF, we terminate

generating Bt after 300 time instants, meaning that Bt = B300 if t > 300. The number

of selective nodes for OMKL-GF is set to be 2. Furthermore, the feedback graph G in

Algorithm 4 is generated with the divergence function ∆(·, ·) defined using Bregman divergence

in (1.25) when F (ω) = ∥ω∥2. The greedy set cover algorithm by [28] is utilized to find the

dominating set D of the feedback graph G. Moreover, in order to speed up OMKL-SFG

and OMKL-SFG-R, after 300 time instants, OMKL-SFG-R chooses It = argmaxi
ui,t

Ut
. All

experiments were carried out using Intel(R) Core(TM) i7-10510U CPU @ 1.80 GHz 2.30

GHz processor with a 64-bit Windows operating system. Codes are available at https:

//github.com/pouyamghari/Graph-Aided-Online-Multi-Kernel-Learning.
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1.5.1 Number of Selected Kernels

The present subsection studies the effect of the maximum number of selected kernels M on

the performance of the proposed OMKL-GF, OMKL-SFG and OMKL-SFG-R. Figure 1.3

illustrates the MSE and its standard deviation of the proposed OMKL-GF, OMKL-SFG and

OMKL-SFG-R with the change in the number of selected kernels. The standard deviation

and the MSE are obtained over R = 20 sets of i.i.d random features (c.f. (1.50)). Figure 1.3

shows the advantage of data-driven kernel selection by OMKL-GF since increasing M from

M = 10 to M = 20 does not result in lower MSE for Airfoil, Bias and Naval datasets. Figure

1.3 indicates that for OMKL-SFG and OMKL-SFG-R choosing moderate value for M such

as M = 10 obtains MSE comparatively close to the MSE associated with optimal M . Figure

3 illustrates that OMKL-GF can obtain lower MSE than OMKL-SFG although OMKL-SFG

achieves tighter regret upper bound than that of OMKL-GF. Regret upper bounds deal

with worst cases. According to Theorems 1.1 and 1.2, the worst cases for OMKL-GF and

OMKL-SFG happen when the probability of observing the loss of the best kernel (i.e. qj∗,t

where j∗ defined in Theorem 1.2) is close to its minimum value for almost all t. For both

algorithms qj∗,t is close to its minimum value for almost all t if the probability of choosing

the best kernel for function approximation is small for all t, which is unlikely to happen

although it is not impossible. In addition, both OMKL-GF and OMKL-SFG choose a subset

of kernels using a trade-off between exploitation and exploration. OMKL-SFG performs

more exploration in choosing a subset of kernels than OMKL-GF in the sense that using

OMKL-SFG lower bound for qj∗,t is larger than that of OMKL-GF (see (1.42) and (1.43)).

OMKL-GF performs more exploitation than OMKL-SFG since using OMKL-GF the structure

of the graph is changing every time instant to enable OMKL-GF to choose optimal subset

of kernels while using OMKL-SFG the structure of the graph is fixed and independent of

prior loss observations. Results in Figure 1.3 show that the proper selection of M along

with data-driven kernel selection can enable OMKL-GF to choose a more powerful subset of
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(a) Airfoil dataset. (b) Bias dataset.

(c) Concrete dataset. (d) Naval dataset.

Figure 1.3: MSE and standard deviation performance of Graph-aided MKL algorithms on
real datasets with the change in the number of selected kernels.

kernels than that of OMKL-SFG which leads to better accuracy of OMKL-GF. Moreover,

since using OMKL-SFG-R, qi,t ≥ β, choosing β = O(1), it can be concluded that qj∗,t ≥ O(1)

when OMKL-SFG-R is employed. Therefore, OMKL-SFG-R performs more exploration

than OMKL-SFG which leads to tighter regret upper bound for OMKL-SFG-R. However,

employing OMKL-SFG-R increases the probability that the kernels with comparatively poor

prior performance being among the chosen subset of kernels. This is against exploitation and

degrades the MSE performance of OMKL-SFG-R compared to OMKL-SFG. Furthermore,

Figure 1.4 depicts that the run time of the proposed graph-aided OMKL algorithms with the

change in the number of selected kernels. Figure 1.4 shows that a larger M leads to longer

run time which is expected as larger M increases the complexity. Moreover, numerical results

associated with Figures 1.3 and 1.4 are also presented in Tables A.1, A.2, A.3 in Appendix

A.1.

34



(a) Airfoil dataset. (b) Bias dataset.

(c) Concrete dataset. (d) Naval dataset.

Figure 1.4: Run Time performance of Graph-aided MKL algorithms on real datasets with
the change in the number of selected kernels.

1.5.2 MSE and Run Time Performance Compared to Baselines

The performance of the proposed algorithms OMKL-GF, OMKL-SFG and OMKL-SFG-R

are compared with the following kernel learning benchmarks:

• OMKR: online multi-kernel regression approach proposed by [131].

• RBF-1: online single kernel regression approach [131] using a radial basis function

(RBF) with bandwidth of 1.

• POLY-2: online single kernel regression approach [131] using a polynomial kernel with

degree of 2.

• RFOMKR: online multi-kernel learning approach utilizes RF approximation [132].

• Raker: RF-based online multi-kernel learning [137].
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Table 1.1: MSE(×10−3) of MKL algorithms on real datasets.

Algorithms Airfoil Bias Concrete Naval
OMKR 32.68 15.54 41.72 9.22
RBF-1 33.17 15.96 41.73 11.99
POLY-2 355.67 23.36 50.06 90.06
RFOMKR 350.52 405.44 210.42 347.06
Raker 28.64 12.70 35.22 11.35
OMKL-GF 25.73 8.15 34.45 5.11
OMKL-SFG 32.49 12.06 37.75 5.35
OMKL-SFG-R 33.99 13.24 38.58 7.89

Table 1.2: Run time(s) of MKL algorithms on real datasets.

Algorithms Airfoil Bias Concrete Naval
OMKR 889.36 80010.03 547.93 163688.82
RBF-1 14.39 3914.67 6.60 1499.78
POLY-2 7.22 195.19 3.33 951.93
RFOMKR 2.17 27.72 1.53 18.37
Raker 3.81 46.28 2.71 31.24
OMKL-GF 2.56 17.01 2.06 10.63
OMKL-SFG 1.65 13.58 1.34 9.00
OMKL-SFG-R 2.81 17.86 2.24 11.45

The maximum number of kernels chosen by OMKL-GF at each time instant is 10. In

addition, for OMKL-SFG, to determine the value of γi for each vertex vi ∈ V, the number

of out-neighbors for each node is set to be 10. For OMKL-SFG-R, at each time, β is set to

β = (1− ξ)ū[10,t] +
ξ
N

where ū[10,t] denote the tenth greatest value in the sequence {ui,t

Ut
}Ni=1.

Tables 1.1 and Table 1.2 list MSE and run time performance of alternative algorithms on

real datasets, respectively. It can be observed from Table 1.1 that the proposed OMKL-GF

significantly outperforms all benchmark algorithms, which corroborate the effectiveness of

data-driven feedback graph based kernel pruning. Furthermore, MSEs reported in Table 1.1

indicates that the accuracy of OMKL-SFG is comparable with that of Raker which employs

all kernels in the dictionary while OMKL-SFG chooses a subset of kernels at each time
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(a) Airfoil dataset. (b) Bias dataset.

(c) Concrete dataset. (d) Naval dataset.

Figure 1.5: MSE performance of MKL algorithms on real datasets.

instant. Table 1.2 shows that OMKL-GF and OMKL-SFG are more efficient than all other

alternatives, since thanks to the graph-aided pruning only a subset of kernels instead of all

kernels in the dictionary are employed at each time instant. In addition, OMKL-SFG is

the fastest due to the offline graph construction. Although OMKL-SFG-R enjoys tighter

sub-linear regret than those of OMKL-GF and OMKL-SFG by including a larger number

kernels in the selected subset, employing OMKL-SFG-R requires more computation and

increases the run time which can be inferred from the results in the Table 1.2.

Figure 1.5 illustrates the MSE of OMKR, Raker and proposed algorithms over time. It can

be seen that as time goes, performance gain of OMKL-GF becomes more remarkable. This

confirms the effectiveness of the data-driven kernel selection in a sense that the proposed

OMKL-GF learns the optimal subset of kernels in the dictionary ‘on the fly’.
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(a) Airfoil dataset. (b) Bias dataset.

(c) Concrete dataset. (d) Naval dataset.

Figure 1.6: Regret of proposed OMKL algorithms on real datasets.

1.5.3 Regret Performance

The present section presents the regret performance of the proposed OMKL-GF, OMKL-SFG

and OMKL-SFG-R. The maximum number of kernels chosen by OMKL-GF at each time

instant is 10. In addition, using OMKL-SFG, at each time instant 10 kernels are chosen

to perform the function approximation task. For OMKL-SFG-R, at each time, β is set to

β = (1− ξ)ū[10,t] +
ξ
N
. Figure 1.6 illustrates the regret of the proposed algorithms over time.

1.6 Conclusion

This chapter develops online multi-kernel learning algorithms for non-linear function learning.

By constructing a bipartite feedback graph at every time instant, OMKL-GF chooses a subset

of kernels to both prune irrelevant kernels and decrease the computational complexity. It is
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proved that OMKL-GF can obtain regret of O(T 3
4 ). To further alleviate the computational

burden of multi-kernel learning, a feedback graph is constructed in an offline fashion based on

the similarities among kernels. Using the similarity-based feedback graph, a subset of kernels

is chosen and the resulting algorithm is called OMKL-SFG. It is proved that OMKL-SFG can

achieve sub-linear regret of O(T 2
3 ). Furthermore, refining the similarity-based feedback graph

structure at each time instant, OMKL-SFG-R is proposed, which enjoys sub-linear regret of

O(
√
T ). Moreover, experiments on real datasets demonstrate that by choosing a subset of

kernels, OMKL-GF can obtain lower MSE in comparison with other online kernel learning

algorithms including OMKR and Raker. Furthermore, experiments show that OMKL-GF

and OMKL-SFG have considerably lower run time compared to online multi-kernel learning

algorithms OMKR and Raker.
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Chapter 2

Online Learning with Uncertain

Feedback Graphs

2.1 Introduction

Online learning with expert advice considers the case where there exists a learner and a

set of experts, where the learner interacts with the experts to make a decision [19]. At

each time instant, the learner chooses one of the experts and it takes the action advised by

the chosen expert, then incurs the loss associated with the taken action. Such framework

can be used to model different learning tasks such as online multi-kernel learning see e.g.,

[137]. Conventional online learning literature mostly focuses on two settings, full information

setting [101, 18, 74, 127] or bandit setting [8, 68, 127, 153]. In the full information setting, at

each time instant, the learner can observe the loss associated with all experts. By contrast,

in the bandit setting, the learner can only observe the loss associated with the chosen expert.

However, in some applications such as the web advertising problem, where a user clicks on

an ad and information about other related ads is revealed, the learner can make partial
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observations of losses associated with a subset of experts. In cases where querying for advice

from expert incurs cost, the learner may choose to observe the loss of subset of experts, see

e.g. [5, 57]. To cope with this scenario, online learning with feedback graphs was developed

in [106], where partial observations of losses are modeled using a directed feedback graph.

Each node represents an expert, and an edge from node i to node j exists if the learner

can observe the loss associated with expert j while choosing expert i. The observations of

losses associated with other experts are called side observations. The full information and

the bandit settings are both special cases of online learning with either a fully connected

feedback graph or a feedback graph with only self loops. Given the feedback graph either

before or after decision making, [4] has proposed algorithms with sub-linear regret bounds.

Online learning with feedback graphs and sleeping experts has been studied in [33] where at

each time instant, a subset of experts may not be available. [34] has studied the case where

there is a dependency between the feedback graph and expert losses. Moreover, [68] has

proposed an algorithm for bandit setting which obtains sub-linear regret with respect to the

best switching expert selection strategy.

Most of existing works rely on the assumption that the feedback graph in known perfectly

before decision making [3, 4, 102, 33, 6], or after decision making [4, 87, 88, 126, 34]. However,

such information may not be available in practice. In addition, due to possible uncertainty of

the environment, the feedback graph may be uncertain. As an example, consider an online

clothing store that offers discount on an item for new customers. Suppose there are two

brands A and B producing similar shirts at comparable price. The store has small and

medium sizes of brand A and medium and large sizes shirts of brand B in stock. Assuming

that the store offers discount on brand B. If the user accepts the offer, and buys a medium

size shirt of brand B, it implies the user is also interested in shirts of brand A. Moreover, if

the user buys a large size of shirt B, this indicates no interest in shirts of brand A. Otherwise,

if the user declines the offer of brand B, it only shows the user is not interested in shirts

of brand B but no information is available about the preference of the user on the shirts of
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brand A. Considering the case where the exact feedback graph may not be available, [29]

shows that not knowing the entire feedback graph can make the side observations useless

and the learner may simply ignore them. [86] studies the case where the exact feedback

graph is unknown but is known to be generated from the Erdös-Rényi model. However, such

assumption may not be valid in practice. In addition, both [29] and [86] assume that the loss

associated with the chosen expert is guaranteed to be observed. Moreover, the probabilistic

feedback graph in stochastic setting has been studied in [95] where the loss of each expert

randomly generated using a certain probability distribution.

The present chapter extensively studies the case where the learner only has access to a

feedback graph that may contain uncertainties, namely nominal feedback graph, and the

learner may not be able to observe the loss associated with the chosen expert. Moreover,

the present chapter studies non-stochastic adversarial online learning problems where at

each time instant, the environment privately selects a loss function. The learner relies on

the nominal feedback graph to choose among experts, and then incurs a loss associated

with the chosen expert. At the same time, it observes the loss associated with a subset of

experts resulting from the unknown actual feedback graph. Furthermore, different from [29]

and [86], the present work does not assume that it is guaranteed that the learner observes

the loss associated with the chosen expert. This is true in, e.g., apple tasting problem [75].

The present work studies various cases of potential uncertainties, and develops novel online

learning algorithms to cope with different uncertainties in the nominal feedback graph. Regret

analysis is provided to prove that our novel algorithms can achieve sublinear regret under

mild conditions. Experiments on a number of real datasets are presented to showcase the

effectiveness of our novel algorithms. It is also worth noting that the materials in this chapter

are fully included in [64] and partially included in [60].
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2.2 Problem Statement

Consider the case where there exist K experts and the learner chooses to take the advice of

one of the experts at each time instant t. Let Gt = (V , Et) represent the directed nominal

feedback graph at time t with a set of vertices V , where the vertex vi ∈ V represents the i-th

expert, and there exist an edge from vi to vj (i.e. (i, j) ∈ Et), if the learner observes the loss

associated with the j-th expert (i.e. ℓt(vj)) with probability pij while choosing the i-th expert.

Let N in
i,t and N out

i,t represent in-neighborhood and out-neighborhood of vi in Gt, respectively.

Thus, vj ∈ N out
i,t if there is an edge from vi to vj at time t (i.e. (i, j) ∈ Et). Similarly, vj ∈ N in

i,t

if there is an edge from vj to vi at time t (i.e. (j, i) ∈ Et). The present chapter considers

non-stochastic adversarial online learning problems. At each time instant t, the environment

privately selects a loss function ℓt(.) with ℓt(.) : V → [0, 1], and the nominal feedback graph

Gt is revealed to the learner before decision making. The learner then chooses one of the

experts to take its advice. Then, the learner will incur the loss associated with the chosen

expert. Let It denote the index of the chosen expert. Note that the learner observes ℓt(vIt)

with probability of pItIt , hence the loss remains unknown with the probability of 1− pItIt .

The present chapter discusses different potential uncertainties in the feedback graphs, and

develops novel algorithms for online learning with uncertain feedback graph. Specifically, two

cases are discussed: i) online learning with informative probabilistic feedback graph: where

the probability pij associated with each edge is given along with the nominal feedback graph

Gt; and ii) online learning with uninformative probabilistic feedback graph: where only the

nominal feedback graph Gt is revealed, but not the probabilities.
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2.3 Online Learning with Informative Probabilistic Feed-

back Graphs

First consider the case where {pij} are given along with the Gt. This can be the case in various

applications. For instance, consider a network of agents in a wireless sensor network that

cooperate with each other on certain tasks such as environmental monitoring. Online learning

algorithms distributed over spatial locations have been employed in climate informatics field

[17, 111]. Assume that each agent in the network keeps updating its local model, and there is

a central unit (learner) wishes to perform a learning task based on models and data samples

distributed among agents. In this case, the agents in the network can be viewed as experts.

Consider the case where the learner chooses one of the experts and sends a request for the

corresponding expert advice through a wireless link. Subset of experts which receive the

request, send their advice to the learner. However, due to uncertainty in the environment or

power limitation, some of the agents in the network including the chosen one may not detect

the request. Therefore, the learner can only observe the advice of subset of agents in the

network which detect its request. In this case, the learner can model probable advice that it

can receive from experts with a nominal feedback graph. If learner knows the characteristics of

the environment which is true in many wireless communication applications, the probabilities

associated with edges in the nominal feedback graph is revealed.

At each time instant t, upon selecting an expert and observing the losses of a subset of

experts, the weights {wi,t}Ki=1 which indicate the reliability of experts can be updated as

follows

wi,t+1 = wi,t exp
(
−ηℓ̂t(vi)

)
, ∀i ∈ [K] (2.1)

where [K] := {1, . . . , K} and η is the learning rate. Function ℓ̂t(vi) denotes the importance
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Algorithm 7 Exp3-IP: Online learning with informative probabilistic feedback graph

1: Input:learning rate η > 0.
2: Initialize: wi,1 = 1, ∀i ∈ [K].
3: for t = 1, . . . , T do
4: Observe Gt = (V , Et) and choose one of the experts according to the PMF πt in (2.4).
5: Observe {ℓt(vi)}vi∈St and calculate loss estimate ℓ̂t(vi), ∀i ∈ [K] via (2.2).
6: Update wi,t+1, ∀i ∈ [K] via (2.1).
7: end for

sampling loss estimate which can be obtained as

ℓ̂t(vi) =
ℓt(vi)

qi,t
I(vi ∈ St) (2.2)

where St represent the set of vertices associated with experts whose losses are observed by the

learner at time instant t. The indicator function is denoted by I(.) and qi,t is the probability

that the loss ℓt(vi) is observed. Its value depends on the algorithm, and will be specified

later.

Let At denote the adjacency matrix of the nominal feedback graph Gt with At(i, j) denoting

the (i, j)th entry of At. Let Xij be a Bernoulli random process with random variables

Xij(t) = 1 with probability pij. When the learner chooses the i-th expert at time t, the

learner observes ℓt(vj) only if vj ∈ N out
i,t and Xij(t) = 1. Let Ft denote the number of losses

observed by the learner. Due to the stochastic nature of the observations available to the

learner, Ft is a random variable. Furthermore, let Fi,t denote the expected number of observed

losses if the learner chooses the i-th expert at time t. Thus, we can write

Fi,t = Et[Ft|It = i, At] =
∑

∀j:vj∈N out
i,t

E[Xij(t)] =
∑

∀j:vj∈N out
i,t

pij. (2.3)

The learner then chooses one expert according to the probability mass function (PMF)

45



πt := (π1,t, . . . , πK,t) with

πi,t = (1− η)
wi,t

Wt

+ η
Fi,t∑

j∈Dt
Fj,t

I(vi ∈ Dt) (2.4)

whereWt :=
∑K

i=1wi,t, and Dt denotes the dominating set of graph Gt. Note that a dominating

set D of a graph is a subset of vertices such that there is an edge from at least one vertex

in D to any vertex not in D. It can be observed from (2.4) that η controls the trade-off

between exploitation and exploration. With a smaller η, more emphasis is placed on the first

term which promotes exploitation, and the learner tends to choose the expert with larger wi,t.

The second term allows the learner to select experts in the dominating set Dt with certain

probability independent of their performance in previous rounds. Based on (2.4), qi,t in (2.2)

can be computed as

qi,t =
∑

∀j:vj∈N in
i,t

πj,tpji. (2.5)

The overall algorithm for online learning with uncertain feedback graph in the informative

probabilistic setting, termed Exp3-IP, is summarized in Algorithm 7. In order to analyze the

performance of Algorithm 7, as well as the ensuing algorithms, we first preset two assumptions

needed:

(A1) 0 ≤ ℓt(vi) ≤ 1, ∀t : t ∈ {1, . . . , T},∀i : i ∈ {1, . . . , K}.

(A2) If (i, j) ∈ Et, the learner can observe the loss associated with the j-th expert with

probability at least ϵ > 0 when it chooses the i-th expert, and (i, i) ∈ Et, ∀i.

Note that (A1) is a general assumption in online learning literature e.g., [3]. And (A2)

assumes a nonzero probability of observing (but not guaranteed observation of) the loss

associated with the chosen expert ℓt(vIt). The following theorem presents the regret bound

for Exp3-IP.
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Theorem 2.1. Under (A1), the expected regret of Exp3-IP can be bounded by

T∑
t=1

Et[ℓt(vIt)]−min
vi∈V

T∑
t=1

ℓt(vi) ≤
lnK

η
+ η(1− η

2
)T +

η

2

T∑
t=1

K∑
i=1

πi,t

qi,t
. (2.6)

Proof of Theorem 2.1 is included in Appendix B.1. It can be seen from Theorem 2.1 that

the value of πi,t/qi,t plays an important role in regret bound. Choosing an expert using

(2.4), it is ensured that every vertex in Dt is chosen by the learner with non-zero probability.

Moreover, since there is at least one edge from a node in Dt to any node not in Dt, under

(A2), the probability qi,t, ∀i is non-zero. Lower bounding qi,t, (A2) enables Exp3-IP to achieve

sub-linear regret. Building upon Theorem 2.1, the ensuing lemma further explores under

which circumstances Exp3-IP can achieve sub-linear regret bound.

Lemma 2.1. Let the doubling trick (see e.g. [4]) be employed to determine the value of η

and greedy set cover algorithm (see e.g. [28]) is exploited to derive a dominating set Dt for

the nominal feedback graph Gt. Under (A1) and (A2), the expected regret of Exp3-IP satisfies

T∑
t=1

Et[ℓt(vIt)]−min
vi∈V

T∑
t=1

ℓt(vi) ≤ O


√√√√lnK ln(

K

ϵ
T )

T∑
t=1

α(Gt)
ϵ

+ ln(
K

ϵ
T )

 (2.7)

where α(Gt) denotes the independence number of the nominal feedback graph Gt.

Proof of Lemma 2.1 is included in Appendix B.2. As it is proved in Appendix B.2, the

assumption (i, i) ∈ Et, ∀i in (A2) guarantees that
∑K

i=1
πi,t

qi,t
≤ O

(
α(Gt)

ϵ
ln(KT

ϵ
)
)
(see Lemma

B.1 and (B.25)–(B.28) in Appendix B.2). In order to guarantee the regret bound in (2.7),

it is required that
∑K

i=1
πi,t

qi,t
≤ O

(
α(Gt)

ϵ
ln(KT

ϵ
)
)
holds true. Therefore, without (A2), the

regret bound in (2.7) cannot be satisfied. Furthermore, if the learner does not know the time

horizon T before start decision making, doubling trick can be exploited to determine η. In

particular, using the doubling trick, Exp3-IP adjusts the learning rate η ‘on the fly’ without

47



knowing the time horizon T . At time instant t, as long as

t∑
τ=1

(1 +
1

2

K∑
i=1

πi,τ

qi,τ
) ≤ 2rt (2.8)

holds true, Exp3-IP employs learning rate η =
√

lnK
2rt+1 , where rt ≥ 0 is the smallest integer

that can satisfy the inequality in (2.8). According to (2.7), Exp3-IP can achieve sub-linear

regret. Furthermore, (2.7) shows that the regret bound of Exp3-IP depends on 1
ϵ
. Larger ϵ

indicates that the learner is less uncertain about the nominal feedback graph. In other words

higher confidence of the nominal feedback graph leads to a tighter regret bound.

Comparison with [4]. Exp3-DOM of [4] deals with the cases that the feedback graph

is certain and revealed to the learner before decision making at each time instant. In this

case, Exp3-DOM achieves regret of O
(
ln(K)

√
ln(KT )

∑T
t=1 α(Gt) + ln(K) ln(KT )

)
(see

Theorem 8 in [4]). When the graph is certain such that pij = 1 for all (i, j) ∈ E , then ϵ = 1.

Therefore, when the graph is certain and given to the learner, the proposed Exp3-IP achieves

regret of O
(√

lnK ln(KT )
∑T

t=1 α(Gt) + ln(KT )

)
.

2.4 Online Learning with Uninformative Probabilistic

Feedback Graphs

The previous section deals with the case where the nominal feedback graph Gt can be time-

variant and probabilities associated with edges of Gt are revealed. In this section, we will

study the scenario where the nominal feedback graph Gt is static and is revealed to the

learner while the probabilities {pij} associated with edges are not given, which is called

uninformative probabilistic feedback graph. In this section the nominal feedback graph is

denoted by G = (V , E). In this case, estimates of probabilities {pij} can be updated and
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employed to assist the learner with future decision making. For example, consider the problem

of online advertisement, where a website is trying to decide which product to be advertised

via online survey with a multiple choice question. Specifically, users are asked whether they

are interested in certain product along with possible reasons (cost, color, etc). Note that

the answer to certain product may also indicate the participant’s potential interest in other

products with similar cost or color. For instance, if the participant indicates that he or she is

interested in the product because of its affordable cost, this implies potential interest in other

products with the same or lower price. In this case, the relationship among products can be

modeled by a nominal feedback graph, where an edge exists between two nodes (products) if

they share same or similar attributes (cost, color), which implies that users may be interested

in both products. Such nominal feedback graph can then be used to assist the website to make

a decision on which product to advertise . However, the actual relationship between the the

user’s interests in the products remains uncertain, which leads to uncertainty in the nominal

feedback graph. Since attributes (cost, color, etc) of products do not change over time, the

nominal feedback graph is static, while the probabilities associated with edges in the nominal

feedback graph are unknown. Faced with this practical challenge, two approaches will be

developed in this section, to estimate either the unknown probability or the importance

sampling loss in (2.2), which will then be employed to assist the learner’s decision making.

2.4.1 Estimation-based Approach

In the present subsection, we will further explore the general scenario where the value of pij

may vary across edges, while the nominal feedback graph Gt is static. Since Xij defined under

(2.2) is a mean ergodic random process [120] in this scenario, the sample mean of {Xij(t)}

converges to pij, i.e., the expected value of Xij(t). Let Tij,t represent a set collecting time

instants before t when the learner chooses to take the advice of the i-th expert and there

is an edge between vi and vj in the nominal feedback graph G. In other word, Tij,t can be
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defined as

Tij,t = {τ |Aτ (i, j) = 1, Iτ = i, 0 < τ < t}. (2.9)

Based on the above discussion, pij can be estimated as

p̂ij,t =
1

Cij,t

∑
τ∈Tij,t

Xij(τ) (2.10)

where Cij,t := |Tij,t| is the cardinality of Tij,t. Since Xij is a mean ergodic Bernoulli random

process, p̂ij,t is an unbiased maximum likelihood (ML) estimator of pij.

Note that a sufficient number of observations of the random process Xij is needed, in order

to provide a reliable estimation in (2.10). To this end, the learner performs exploration in

the first KM time instants to ensure that Cij,t ≥ M , ∀(i, j) ∈ Et, where the value of M is

determined by the learner. Specifically, in the first KM time instants, the learner chooses all

experts in V , one by one M times, i.e. the learner selects expert vk, with k = t−
⌊

t
K

⌋
K when

t ≤ KM . For t > KM , the learner draws one of the experts according to the following PMF

πi,t = (1− η)
wi,t

Wt

+
η

|D|
I(vi ∈ D),∀i ∈ [K] (2.11)

where D denotes a dominating set for the nominal feedback graph G. In order to obtain

a reliable loss estimate to assist the learner’s decision making, we will approximate the

importance sampling loss estimate in (2.2) using the estimated probability p̂ij,t. In this

context, the probability of observing ℓt(vi) can be approximated as

q̂i,t =
∑

∀j:vj∈N in
i,t

πj,t(p̂ji,t +
ξ√
M

) (2.12)

where ξ ≥ 1 is a parameter selected by the learner. Then the importance sampling loss
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Algorithm 8 Exp3-UP: Online learning with uninformative probabilistic feedback graphs

1: Input: learning rate η > 0, the minimum number of observations M , G = (V , E).
2: Initialize: wi,1 = 1, ∀i ∈ [K], p̂ij,1 = 0, ∀(i, j)∈E .
3: for t = 1, . . . , T do
4: if t ≤ KM then
5: Set k= t−⌊ t

K
⌋K and draw the expert node vk.

6: else
7: Select one of the experts according to the PMF πt = (π1,t, . . . , πK,t) , with πi,t in

(2.11).
8: end if
9: Observe {(i, ℓt(vi)) : vi ∈ St} and compute ℓ̃t(vi), ∀i ∈ [K] as in (2.13).
10: Update p̂ij,t+1, ∀(i, j) ∈ Et via (2.10).
11: Update wi,t+1, ∀i ∈ [K] via (2.14).
12: end for

estimates can be obtained as

ℓ̃t(vi) =
ℓt(vi)

q̂i,t
I(vi ∈ St). (2.13)

With the estimates in hand, the weights {wi,t}Ki=1 can be updated as follows

wi,t+1 = wi,t exp
(
−ηℓ̃t(vi)

)
, ∀i ∈ [K]. (2.14)

The procedure that the learner chooses among experts when the probabilities are unknown

is presented in Algorithm 8, named Exp3-UP. The following theorem establishes the regret

bound of Exp3-UP.

Theorem 2.2. Under (A1), the expected regret of Exp3-UP satisfies

T∑
t=1

Et[ℓt(vIt)]−min
vi∈V

T∑
t=1

ℓt(vi)

≤ lnK

η
+ (K − 1)M + η(1− η

2
)(T −KM) +

T∑
t=KM+1

K∑
i=1

πi,t

qi,t
(
2ξ√
M

+
η

2
) (2.15)
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with probability at least

δξ :=
T∏

t=KM+1

∏
(i,j)∈Et

(
1− 2 exp(− 2ξ2Cij,t

M + 4ξ
√
M

)

)
.

See proof of Theorem 2.2 in Appendix B.3. The following Corollary states conditions under

which the regret bound in (2.15) holds with high probability, i.e., δξ = 1 − O( 1
T
) and the

proof can be found in Appendix B.4.

Corollary 2.1. If M ≥
(

4ξ ln(KT )
ξ2−ln(KT )

)2
and ξ >

√
ln(KT ), under (A1) and (A2) the expected

regret of Exp3-UP satisfies

T∑
t=1

Et[ℓt(vIt)]−min
vi∈V

T∑
t=1

ℓt(vi) ≤ O
(
α(G)
ϵ

ln(KT )
√
K ln(KT )T

2
3

)
(2.16)

with probability at least 1−O( 1
T
).

Note that according to Algorithm 8 and Corollary 2.1, knowing the value of the time horizon

T is required so that the learner can choose the values for M and ξ to achieve the sublinear

regret bound in (2.16), which may not be feasible, and can be resolved by resorting to

doubling trick. In this case, if 2b < t ≤ 2b+1 where b ∈ N, the learner performs the Exp3-UP

with parameters

η =

√
lnK

2b+1
(2.17a)

M =

⌈
2

2(b+1)
3

1√
K

+ ln 4K

⌉
(2.17b)

ξ =

(
2K

1
4 +

√
4
√
K + 1

)√
ln(K2b+3). (2.17c)

When the learner realizes that the value of M needs to be increased, it then performs

exploration to guarantee that at least M samples of the mean ergodic random process Xij are

observed. The following lemma shows that when doubling trick is employed, Exp3-UP can
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achieve sub-linear regret without knowing the time horizon beforehand, the proof of which is

in Appendix B.5.

Lemma 2.2. Assuming that the doubling trick is employed to determine the value of η, M

and ξ at each time instant and the greedy set cover algorithm is utilized to obtain a dominating

set D of the nominal feedback graph. If T > K, the regret of Exp3-UP satisfies

T∑
t=1

Et[ℓt(vIt)]−min
vi∈V

T∑
t=1

ℓt(vi) ≤ O
(
α(G)
ϵ

ln(T ) ln(KT )
√
K ln(KT )T

2
3 + lnT

)
(2.18)

with probability at least 1−O( 1
K
).

2.4.2 Geometric Resampling-based Approach

Another approach to obtain a reliable loss estimate is to employ geometric resampling.

Similar to Exp3-UP, if t ≤ KM the learner chooses the k-th expert at time instant t where

k = t− ⌊t/K⌋K. In this way, it is guaranteed that at least M samples of the mean ergodic

random process Xij are observed. Based on these observations, a loss estimate is obtained

whose expected value is an approximation of the loss ℓt(vi), ∀i ∈ [K]. At t > KM , the

learner draws one of the experts according to the following PMF

πi,t = (1− η)
wi,t

Wt

+
η

|D|
I(vi ∈ D), ∀i ∈ [K] (2.19)

where D represents a dominating set for G. Furthermore, at each time instant t > KM , let

τ
(t)
i,1 , . . . , τ

(t)
i,M denote the last M time instants before t at which the i-th expert was chosen by

the learner. If (i, j) ∈ E , the learner observes Xij(τ
(t)
i,1 ), . . . , Xij(τ

(t)
i,M ) which are samples of the

random process Xij at τ
(t)
i,1 , . . . , τ

(t)
i,M . Let Yij,1(t), . . . , Yij,M(t) denote a random permutation

of Xij(τ
(t)
i,1 ), . . . , Xij(τ

(t)
i,M). At each time instant t, the learner draws with replacement M

experts according to PMF {πi,t} in (2.19) in M independent trials. Let Pi,1(t), . . . , Pi,M(t)
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be a sequence of random variables associated with vi at time instant t where Pi,u(t) = 1 if

the learner draws the i-th expert at the u-th trial and Pi,u(t) = 0 otherwise. Let

Zi,u(t) =
∑

∀j:vj∈N in
i,t

Pj,u(t)Yji,u(t) (2.20)

for all 1 ≤ u ≤M . An under-estimate of loss can then be obtained as

ℓ̃t(vi) = Qi,tℓt(vi)I(vi ∈ St). (2.21)

where Qi,t := min {{u | 1 ≤ u ≤M,Zi,u(t) = 1} ∪ {M}}, and the expected value of ℓ̃t(vi) can

be written as

Et[ℓ̃t(vi)] =
(
1− (1− qi,t)

M
)
ℓt(vi), (2.22)

see (B.76) – (B.79) in Appendix B.6 for detailed derivation. Then, the weights {wi,t}Ki=1 are

updated as in (2.14) using the loss estimate ℓ̃t(vi) in (2.21). The geometric resampling based

online expert learning framework (Exp3-GR) is summarized in Algorithm 9, and Theorem

2.3 presents its regret bound.

Theorem 2.3. Under (A1) and (A2), the expected regret of Exp3-GR is bounded by

T∑
t=1

Et[ℓt(vIt)]−min
vi∈V

T∑
t=1

ℓt(vi)

≤ lnK

η
+ (K − 1)M +

T∑
t=KM+1

(1− qi,t)
M

+ η(1− η)(T −KM) + η
T∑

t=KM+1

K∑
i=1

πi,t

qi,t
. (2.23)

The proof of Theorem 2.3 is presented in Appendix B.6. Building upon Theorem 2.3, the

following Corollary presents the conditions under which Exp3-GR can obtain sub-linear
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Algorithm 9 Exp3-GR: Exp3 with geometric resampling

1: Input:learning rate η > 0, the minimum number of observations M , G = (V , E).
2: Initialize: wi,1 = 1, ∀i ∈ [K].
3: for t = 1, . . . , T do
4: if t ≤ KM then
5: Set k= t−⌊ t

K
⌋K and draw the expert node vk.

6: else
7: Select one expert according to PMF πt in (2.19).
8: Observe {ℓt(vi) : vi ∈ St} and compute ℓ̃t(vi), ∀i ∈ [K] via (2.21).
9: Update wi,t+1, ∀i ∈ [K] via (2.14).
10: end if
11: end for

regret.

Corollary 2.2. Assume that greedy set cover algorithm is employed to find a dominating set

of the nominal feedback graph G. If M ≥ |D| lnT
2ηϵ

, under (A1) and (A2), Exp3-GR satisfies

T∑
t=1

Et[ℓt(vIt)]−min
vi∈V

T∑
t=1

ℓt(vi) ≤ O
(
α(G)
ϵ

ln(KT )
√
KT lnK

)
. (2.24)

Proof. According to (A2), if (i, j) ∈ E , the learner observes the loss of the j-th expert when

it chooses the i-th expert with probability at least ϵ. Recalling (2.19) it can be inferred that

πi,t > η/|D|, ∀i ∈ D. Combining (2.5) with the fact that for each vi ∈ V there is at least one

edge from D to vi, ∀i ∈ [K], qi,t can be bounded below as

qi,t >
ηϵ

|D|
. (2.25)

Combining the condition M ≥ |D| lnT
2ηϵ

with (2.25), we have Mqi,t ≥ 1
2
lnT which leads to

e−Mqi,t ≤ 1√
T
. Thus, using the fact 1 + x ≤ ex, we have

(1− qi,t)
M ≤ e−Mqi,t ≤ 1√

T
. (2.26)

Hence, the third term in (2.23), i.e.,
∑T

t=t′ (1− qi,t)
M can be bounded by O(

√
T ).
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Furthermore, consider the case where we have η = O(
√

K lnK
T

). Therefore, taking into

account that greedy set cover algorithm is used to determine the dominating set, it can

be inferred that |D| = O(α(G) lnK) (see e.g. [4]) based on which it can be obtained that

M = O(α(G)
ϵ
√
K
lnT
√
T lnK), satisfies the condition M ≥ |D| lnT

2ηϵ
. Hence, the expected regret of

Exp3-GR satisfies (2.24), and the Corollary 2.2 is proved.

Achieving the sub-linear regret in (2.24) requires that the learner knows the time horizon T ,

beforehand which may not be possible in some cases. When the learner does not know T ,

doubling trick can be utilized to achieve sub-linear regret. The following Lemma is proved in

Appendix B.7, shows the regret bound for Exp3-GR when doubling trick is employed to find

values of η and M without knowing the time horizon T . In this case, at time instant t, when

2b < t ≤ 2b+1, parameters η and M can be chosen as η =
√

K lnK
2b+1 ,M =

⌈
(b+1)

√
2b−1|D| ln 2

ϵ
√
K lnK

⌉
.

When the learner realizes that M needs to be increased, it performs exploration to guarantee

that at least M samples of the mean ergodic random process Xij are observed.

Lemma 2.3. Employing doubling trick to select η and M at each time instant, and supposing

that a dominating set for the nominal feedback graph G is obtained using greedy set cover

algorithm, the expected regret of Exp3-GR satisfies

T∑
t=1

Et[ℓt(vIt)]−min
vi∈V

T∑
t=1

ℓt(vi) ≤ O
(
α(G) lnT

ϵ
ln(KT )

√
KT lnK

)
. (2.27)

Comparing Lemma 2.2 with Lemma 2.3, it can be observed that Exp3-GR achieves a tighter

regret bound with probability 1. However, note that choosing an appropriate M for Exp3-GR

requires knowing ϵ or a lower bound of ϵ, which may not be feasible in general, while such

information is not required for Exp3-UP in order to guarantee the regret bound in (2.18).

Comparison with [86]. Note that while Exp3-GR and Exp3-Res proposed in [86] both

employ the geometric resampling technique, there exist two major differences: i) Exp3-Res
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assumes the actual feedback graph is generated from Erdös-Rényi model, and the probabilities

of the presence of edges are equal across all edges, while Exp3-GR considers the unequally

probable case and does not assume that the probabilities of existence of all edges are equal;

and ii) unlike Exp3-Res, Exp3-GR does not assume that the learner is guaranteed to observe

the loss associated with the chosen expert. Furthermore, it is useful to compare the regret

bound of Exp3-GR with that of Exp3-Res when the actual feedback graph is generated from

the Erdös-Rényi model with pij = p, ∀i, j ∈ [K]. In this case, according to Corollary 2.2,

Exp3-GR achieves regret of O
(

ln(KT )
p

√
KT lnK

)
. On the other hand, under the assumption

that p ≥ lnT
2K−2

and knowing that probabilities associated with all edges are equal, Exp3-

Res obtains regret of O
(√

K2 lnK + T lnK
p

)
. Hence, having access to knowledge that the

probabilities associated with all edges are equal enables Exp3-Res to achieve tighter regret

bound than Exp3-GR in this special case.

Dependence of loss and feedback graph. The proposed algorithms Exp3-IP, Exp3-UP

and Exp3-GR can also deal with cases where there is dependence between actual feedback

graphs and losses. Consider the case that the environment generates (xt, yt) stochastically

following certain time-invariant distribution. The i-th expert obtains the input xt and outputs

the prediction ŷi,t. In this case, the loss ℓt(vi) can measure the discrepancy between ŷi,t and

yt using some metrics such as squared loss. Furthermore, assume that the actual feedback

graph at time t denoted by Ht depends on xt. In this case, if the learner knows the possible

relations among experts, the learner can construct the nominal feedback graph G where the

existence of each edge depends on xt. Therefore, the edge between two vertices exist with

some time-invariant probability. Before decision making the learner is uncertain about xt

and as a result the learner can utilize one of the proposed algorithms Exp3-IP, Exp3-UP and

Exp3-GR to decide based on the nominal feedback graph.
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2.5 Experiments

Performance of the proposed algorithms Exp3-IP, Exp3-UP and Exp3-GR are compared with

online learning algorithms Exp3 [8], Exp3.G [3], Exp3-Res [86], Exp3-SET [4] and Exp3-DOM

[4]. Exp3 considers bandit setting, and Exp3-Res assumes Erdös-Rényi model for the feedback

graph. Furthermore, Exp3.G and Exp3-DOM treats the nominal feedback graph Gt as the

actual one without considering uncertainties. Exp3-SET observes the nominal feedback graph

Gt and the loss of out-neighbors of the chosen expert after decision making. Exp3-SET treats

connectivity information given by Gt associated with nodes other than the chosen one as

certain information without considering the uncertainty. Note that Exp3-SET observers

the actual feedback graph partially after decision making since Exp3-SET observes the loss

of chosen experts’ out-neighbors. Performance is tested for regression task on several real

datasets downloaded from the UCI Machine Learning Repository [44]:

Air Quality: This dataset contains 9, 358 responses from sensors in a polluted area, each

with 13 features. The goal is to predict polluting chemical concentration in the air [147].

CCPP: The dataset has 9, 568 samples, with 4 features such as temperature, collected from

a combined cycle power plant. The goal is predicting hourly electrical energy output [146].

Twitter: This dataset contains 14, 000 samples with 77 features including e.g., the length of

discussion on a given topic and the number of new interactive authors. The goal is to predict

average number of active discussion on a certain topic [83].

Tom’s Hardware: The dataset contains 10, 000 samples from a technology forum with 96

features. The goal is to predict the average number of display about a certain topic on Tom’s

hardware [83].

Let (xi, yi) and (x̄i, ȳi) be the i-th data sample and the normalized one, respectively. The

data is normalized as x̄i =
xi

maxj ∥xj∥ , ȳi =
yi−minj yj

maxj yj−minj yj
. Therefore, ∥x̄i∥ ≤ 1, 0 ≤ ȳi ≤ 1,

∀i. In the experiments, there are 9 experts such that each expert is a trained model. In

particular, each expert is trained on 10% of each dataset before the start online learning task
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Table 2.1: Cumulative Regret on various datasets and fully connected nominal feedback
graph in equally probable setting.

Air CCPP Twitter Tom’s

Exp3 47.56 152.34 71.03 45.39
Exp3.G 39.16 122.93 59.72 40.63
Exp3-Res 33.36 100.22 52.64 38.46
Exp3-SET 38.21 122.62 59.28 39.49
Exp3-DOM 39.04 122.16 61.30 41.10

Exp3-IP 33.33 98.22 52.47 37.63
Exp3-UP 35.97 109.87 56.86 38.68
Exp3-GR 33.60 99.91 53.33 38.25

associated with the corresponding dataset. Among them, 8 experts are trained via kernel ridge

regression such that 5 experts exploit RBF kernels with bandwidth of 10−2, 10−1, 1, 10, 100

while 3 experts employ Laplacian kernels with bandwidth of 10−2, 1, 100. Moreover, one

expert is a trained linear regression model. Performance of algorithms are evaluated based

on cumulative regret averaged over 20 independent runs. Recall that cumulative regret of an

algorithm is the cumulative difference between the loss of the algorithm and that of the best

expert in hindsight over time. In experiments, squared loss function is employed to measure

the loss of experts. The learning rate η is set to 0.5√
T
for all algorithms. Note that online

learning algorithms may achieve better regret experimentally with carefully tuned learning

rate. However, for fair comparison, the learning rates of all online learning algorithms are set

to be the same. Parameter M is set as 25 for both Exp3-UP and Exp3-GR and ξ = 1 for

Exp3-UP.

We first tested the equally probable setting where the nominal graph Gt is fully connected

and probabilities pij = 0.5, ∀i, j. Table 2.1 lists the regret performance for various datasets.

It can be observed that, knowing the exact probability enables Exp3-IP to achieve the lowest

regret. Moreover, the proposed Exp3-UP and Exp3-GR obtain lower regret than Exp3.G,

Exp3-SET and Exp3-DOM which treat the nominal feedback graph as actual one. Note

that in this case, the actual feedback graph is indeed generated from the Erdös-Rényi model.
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Table 2.2: Cumulative Regret on various datasets and partially-connected nominal feedback
graph P in unequally probable setting.

Air CCPP Twitter Tom’s

Exp3 47.56 152.97 71.04 45.39
Exp3.G 41.19 128.74 62.21 41.53
Exp3-Res 35.83 109.62 56.55 39.51
Exp3-SET 40.21 129.32 62.22 40.77
Exp3-DOM 41.19 127.84 63.90 41.98

Exp3-IP 32.95 97.37 52.23 37.19
Exp3-UP 38.77 120.97 61.06 40.28
Exp3-GR 33.60 99.59 53.04 38.01

The regret of the proposed Exp3-GR is comparable to that of Exp3-Res while Exp3-Res

makes decision under the assumption that the actual feedback graph is generated from the

Erdös-Rényi model.

We further tested the unequally probable case, when the graph is partially connected. In

particular, vj ∈ N out
i,t if j is either the remainder of i − 1, i, i + 1, i + 4 and i + 6 to 9.

Note that if the remainder is zero, it is considered to be 9. The resulting nominal feedback

graph in this case is represented by P. Therefore, in the nominal feedback graph P, each

node has 5 out-neighbors. As an example, out-neighbors of v1 and v8 are illustrated in

Figure 2.1. The probability associated with each edge is drawn from uniform distribution

U [0.25, 0.5]. Table 2.2 lists the cumulative regret of all algorithms for Air Quality, CCPP,

Twitter and Tom’s Hardware datasets. It can be observed that Exp3-IP obtains the lowest

regret. This shows that knowing the probabilities can indeed help obtain better performance.

Furthermore, it can be observed that Exp3-UP and Exp3-GR can achieve lower regret in

comparison with Exp3 which shows the effectiveness of using the information given by the

uncertain graph. In addition, lower regret of Exp3-UP and Exp3-GR compared to Exp3.G,

Expe-SET and Exp3-DOM indicates that considering the uncertain graph Gt = P as a certain

graph can increase regret. Moreover, it can be observed Exp3-GR outperforms Exp3-Res

when the actual feedback graph is not generated by Erdös-Rényi model. It can be observed
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(a) Out-neighbors of v1 in P. (b) Out-neighbors of v8 in P.

Figure 2.1: Out-neighbors of v1 and v8 are illustrated in partially-connected nominal feedback
graph P .

Table 2.3: Cumulative Regret on various datasets and partially-connected certain nominal
feedback graph P .

Air CCPP Twitter Tom’s

Exp3 46.46 150.23 70.01 45.05
Exp3.G 32.86 96.80 50.52 36.87
Exp3-Res 32.10 98.47 50.68 37.22
Exp3-SET 31.93 97.31 50.24 36.29
Exp3-DOM 32.84 96.39 52.07 37.22

Exp3-IP 33.19 97.37 52.44 36.88
Exp3-UP 35.92 109.93 56.25 38.44
Exp3-GR 33.34 99.08 52.87 37.60

Exp3-IP achieves lower regret than Exp3-GR and Exp3-UP, since the learner has access to

the probabilities, while Exp3-UP and Exp3-GR do not rely on such prior information.

In addition, we tested the performance of algorithms when the nominal feedback graph P is

partially-connected, and the probability associated with each edge is 1. As it can be seen

from Table 2.3, Exp3.G, Exp3-SET, Exp3-DOM and the proposed Exp3-IP which utilize the

certain feedback graph obtain lower regret than those of Exp3-UP and Exp3-GR which treat

the certain feedback graph as uncertain one. In fact, Exp3-UP and Exp3-GR do not know

the probability associated with edges. Furthermore, the regret of Exp3-IP is comparable to

Exp3.G, Exp3-SET and Exp3-DOM.
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2.6 Conclusion

The present chapter studied the problem of online learning with uncertain feedback graphs,

where potential uncertainties in the feedback graphs were modeled using probabilistic models.

Novel algorithms were developed to exploit information revealed by the nominal feedback

graph and different scenarios were discussed. Specifically, in the informative case, where the

probabilities associated with edges are also revealed, Exp3-IP was developed. It is proved

that Exp3-IP can achieve sublinear regret bound. Furthermore, Exp3-UP and Exp3-GR were

developed for the uninformative case. It is proved that Exp3-GR can achieve tighter sublinear

regret bound than that of Exp3-UP when the number of experts is negligible compared to

time horizon, while Exp3-UP requires less prior information than Exp3-GR. Experiments

on a number of real datasets were carried out to demonstrate that our novel algorithms can

effectively address uncertainties in the feedback graph, and help enhance the learning ability

of the learner.
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Chapter 3

Personalized Online Federated

Learning with Multiple Kernels

3.1 Introduction

Kernel learning exhibits well-documented performance in function approximation tasks,

while providing theoretical guarantees associated with different performance metrics, see

e.g. [148, 77, 130]. In some cases, a group of learners aims at collaborating to perform

function approximation without revealing their data. To this end, federated learning has

been emerged as a crucial learning paradigm by enabling a group of learners called clients to

collaborate with each other by communicating with a central server to train a centralized

model [110, 97, 46, 81]. Through this process, clients send model parameters and updates

to the server without revealing their data. Upon receiving updates from clients, the server

updates the model. Therefore, federated learning enables clients to perform kernel learning

for function approximation. In this context, a server and clients collaborate with each other

to learn the optimal kernel. Furthermore, in some practical cases, clients may need to perform
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the function approximation in an online fashion while they are collaborating with the server to

learn the kernel. For example, consider the case where clients may not have enough memory

to store data in batch. In addition, data samples may arrive in a sequential manner such

that clients are not able to perform the function approximation in batch form. There are

major challenges in performing online kernel learning in federated fashion that need to be

addressed:

Communication Efficiency: Communication efficiency arises as a bottleneck in federated

learning (see e.g. [89, 129, 71, 59]). Specifically, limited clients-to-server communication

bandwidth restricts the number of parameters that can be sent from clients to the server.

Heterogeneous Data: The distribution of data observed by a client might be different

from others (see e.g. [139, 99, 30]). Thus, the optimal kernel that is aimed to be learned is

different across clients.

Computational Complexity: Clients should be able to perform function approximation

fast enough in order to make a decision in real-time. Therefore, the computational complexity

of kernel learning methods should be affordable for clients.

Conventional online kernel learning approaches (see e.g. [77, 131]) suffer from ‘curse of dimen-

sionality’ [11] in the sense that the number of parameters that should be learned increases with

the number of observed data. This can make employing conventional online kernel learning

approaches infeasible to perform online federated kernel learning since clients may be required

to send a large number of parameter updates to the server while the available clients-to-server

communication bandwidth is not enough for sending such information. Approximating kernels

by finite-dimensional feature representations (e.g. Nyström method [150] and random feature

method of [123]) makes online kernel learning approaches scalable in the sense that the learner

can choose the number of parameters that should be learned, independent of the number

of observed data samples (see e.g. [104, 12, 162]). Employing finite-dimensional feature

representations of kernels to perform online federated kernel learning, clients can choose the

number of parameters that they should send to the server. Therefore, finite-dimensional
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kernel approximation can better cope with limited clients-to-server communication bandwidth

compared to conventional kernel learning approaches. Random feature (RF) approximation

[123] has been exploited to perform online federated kernel learning when a single pre-selected

kernel function is employed [91, 66]. The choice of the kernel function greatly affects the per-

formance of function approximation when it comes to exploiting only a single kernel function.

Employing multiple kernels instead of a single pre-selected one, can lead to obtaining more

accurate function approximation since multi-kernel learning (MKL) can learn combination of

kernels [85]. Online federated MKL algorithms with theoretical guarantees called vM-KOFL

and eM-KOFL have been proposed in [78]. However, eM-KOFL and vM-KOFL do not

provide personalized MKL models for clients since they learn the same combination of kernels

for all clients.

The present chapter proposes a novel personalized online federated MKL algorithm called

POF-MKL that provides a personalized MKL model for each client while it is ensured that

the available clients-to-server communication bandwidth can afford communication cost of

sending clients’ updates to the server. In order to alleviate the communication cost of MKL,

the propsoed POF-MKL employs RF approximation of kernels and at each time instant,

each client chooses a subset of kernels to send their updates to the server instead of sending

the updates of all kernels. The number of kernels in the chosen subset is selected such that

the required bandwidth to send all clients’ updates does not exceed the available clients-to-

server communication bandwidth. Therefore, clients can send their updates to the server

independent of the number of kernels in the dictionary and as a result a comparatively large

dictionary of kernels can be considered to perform function approximation. Contributions of

the present chapter can be summarized as follows:

• Leveraging the proposed POF-MKL, clients can update a subset of kernels’ parameters

which alleviates computational complexity and communication cost of sending updates

to the server.
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• Through theoretical analysis, it is proved that using the proposed POF-MKL, each

client achieves sub-linear regret with respect to RF approximation of the best kernel

in hindsight associated with the corresponding client data samples (c.f. Theorem 3.1).

Moreover, it is guaranteed that the server achieves sub-linear regret with respect to the

best function approximator (c.f. Theorem 3.2).

• Experiments on real datasets showcase the effectiveness of the proposed POF-MKL

compared to existing online federated kernel learning algorithms.

It is worth noting that the materials in this chapter are included in [61].

3.2 Problem Statement and Preliminaries

This section discusses the problem of online federated learning. To make this chapter self-

contained, we also review random feature-based online kernel learning, which is covered in

greater detail in Section 1.2.

Let there be a set of K clients performing function approximation task in an online fashion.

The k-th client’s goal is to learn the function f using the stream of data samples {(xk,t, yk,t)}Tt=1

such that xk,t ∈ Rd is the data sample observed by the k-th client at time t and yk,t is the

label associated with xk,t. In the kernel learning context, the function f is assumed to belong

to a reproducing kernel Hilbert space (RKHS). The present chapter studies the personalized

federated supervised function approximation problem

min
f∈H

T∑
t=1

K∑
k=1

L(f(xk,t), yk,t) (3.1)

where H represents the RKHS the function f belongs to and L(·, ·) denotes the loss function
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which can be defined as

L(f(x), y) = C(f(x), y) + λΩ(∥f∥2) (3.2)

where C(·, ·) is the cost function (e.g. least squares function for regression task), λ denotes the

regularization coefficient and Ω(·) represents a regularizer function to prevent over-fitting and

control the model complexity. Let Θ be the global parameters of the function f which are

learned through collaboration of clients with the server whilewk be the personalized parameter

of the function f learned locally by the k-th client. Thus, the goal is that the cumulative

difference between f(xk,t;Θ,wk) and yk,t over time is minimized. At each time instant t,

upon observing the data sample xk,t, the k-th client make the prediction f(xk,t;Θ,wk) and

then observes the true label yk,t. Therefore, the function approximation problem that the

server aims at solving can be expressed as minΘ

∑T
t=1

∑K
k=1 L(f(xk,t;Θ,wk), yk,t). Moreover,

finding the local parameters wk by the k-th client can be expressed as the optimization

problem minwk

∑T
t=1 L(f(xk,t;Θ,wk), yk,t). In order to perform the function approximation

task in an online fashion, the k-th client needs to perform the task with the values of Θ and

wk at time t denoted by Θt and wk,t, respectively. Thus, the values of function parameters Θ

and wk should be updated ‘on the fly’. Since the function f(·; ·, ·) belongs to a reproducing

kernel Hilbert space (RKHS), based on the representer theorem [148], given data samples,

the optimal solution for (3.1) can be obtained as

f̂(x) =
T∑
t=1

K∑
k=1

αk,tκ(x,xk,t) (3.3)

where κ(·, ·) denotes symmetric positive definite kernel function such that κ(x,x′) mea-

sures the similarity between x and x′. And αk,t is an unknown coefficient associated

with κ(x,xk,t) which is required to be estimated. In this case, f̂(·) in (3.3) belongs to

the RKHS H := {f(·)|f(x) =
∑∞

t=1

∑K
k=1 αk,tκ(x,xk,t)} such that RKHS norm is de-

fined as ∥f∥2H :=
∑

t

∑
t′ αtαt′κ(xt,xt′). Furthermore, from (3.3), it can be inferred that
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Θt = [α1,1, . . . , αK,1, . . . , α1,t, . . . , αK,t]. Therefore, the number of coefficients {αk,τ}tτ=1, ∀k

that should be estimated to obtain f̂(·) increases over time. This is known as curse of

dimensionality [148] since the computational complexity of function approximation increases

with time. This brings challenge for federated implementation of function approximation

since dimension of updates that should be sent to the server by each client grows over time

and when T is large, the available communication bandwidth may not be enough for clients

to send their updates.

In order to deal with the increasing number of unknown coefficients, one can employ random

Fourier approximation [123]. Assume that κ(·) is a shift-invariant kernel meaning that

κ(x,x′) = κ(x− x′). Let πκ(ρ) denotes the Fourier transform of κ(·). If the kernel function

κ(·) is normalized such that κ(0) = 1, then πκ(ρ) can be viewed as a probability density

function (PDF) (see e.g. [123]). Let ρ1, . . . ,ρD be a set of D independent and identically

distributed (i.i.d) vectors drawn from πκ(·). Let the vector z(x) be defined as

z(x) =
1√
D
[sin(ρ⊤

1 x), . . . , sin(ρ
⊤
Dx), cos(ρ

⊤
1 x), . . . , cos(ρ

⊤
Dx)]. (3.4)

Then, κ̂r(x − x′) = z(x)⊤z(x′) constitutes an unbiased estimator of κ(x − x′) and the

random feature (RF) approximation of f̂(x) in (3.3) can be obtained as

f̂RF(x) =
T∑
t=1

K∑
k=1

αk,tz(xk,t)
⊤z(x) := θ⊤z(x) (3.5)

where in this case θ =
∑T

t=1

∑K
k=1 αk,tz(xk,t). According to (3.4), z(xk,t) is a 2D vector

and as a result it can be concluded that θ is a 2D vector as well. Therefore, using RF

approximation, the vector θ should be estimated whose dimension does not grow over time.

The performance of a kernel learning algorithm depends on the choice of the kernel. Thus,

performing the function approximation using a pre-selected kernel requires prior information

which may not be available. To cope with this, employing a dictionary of kernels in lieu of a pre-
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selected single kernel has been proposed in the literature (see e.g. [140, 85, 105]). Specifically,

the kernel is learned as a combination of kernels in the dictionary. Let κ1(·), . . . , κN(·) be a

set of N kernels where κi(·) denotes the i-th kernel. The function κ̄(·) belongs to the convex

hull K := {κ̄(x) =
∑N

i=1 βiκi(x), βi ≥ 0,∀i,
∑N

i=1 βi = 1} is a kernel [133]. Therefore, in

online multi-kernel learning, the goal is to learn the convex combination of kernels in the

dictionary to minimize the cumulative regret with respect to the best function approximator

in hindsight. The cumulative regret is defined as the cumulative difference between loss

of the online multi-kernel learning algorithm and that of the best function approximator

in hindsight. Furthermore, for a dataset {(xt, yt)}Tt=1, the best function approximator is

f ∗(·) ∈ argminf∗
i ,i∈[N ]

∑T
t=1 L(f ∗

i (xt), yt) where f ∗
i (·) ∈ argminf∈Hi

∑T
t=1 L(f(xt), yt) such

that Hi is an RKHS induced by κi(·) and [N ] := {1, . . . , N}. Enabled by random feature

approximation, centralized and scalable online multi-kernel learning algorithms have been

proposed in literature (see e.g. [132, 137]). The present chapter proposes an algorithmic

framework for personalized online federated MKL using RF approximation of kernels in the

dictionary.

3.3 Personalized Online Federated Kernel Learning

The present section proposes an algorithmic framework for online federated multi-kernel

learning which can deal with heterogeneous data among clients. To perform function

approximation, RF approximations of kernel functions are employed. For the i-th kernel

κi, vectors ρi,1, . . . ,ρi,D are drawn i.i.d from πκi
(·) to construct the random feature vector

zi(x) =
1√
D
[sin(ρ⊤

i,1x), . . . , sin(ρ
⊤
i,Dx), cos(ρ

⊤
i,1x), . . . , cos(ρ

⊤
i,Dx)]. Then, at time instant t, the

random feature approximation associated with κi(·) can be obtained as f̂RF,it(x) = θ
⊤
i,tzi(x)

where θi,t is the global function parameter associated the i-th kernel at time t.
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3.3.1 Algorithm

At each time instant t, the server transmits global function parameters θi,t, ∀i ∈ [N ] to

all clients. The k-th client, assigns the weight wik,t to the i-th kernel which indicates the

confidence of the k-th client at time t in the function approximation given by the i-th kernel.

Upon receiving new data sample xk,t, the k-th client performs the function approximation

combining kernels’ RF approximations as

f̂(xk,t; Θ̂t,wk,t) =
N∑
i=1

wik,t

Wk,t

θ⊤i,tzi(xk,t) =
N∑
i=1

wik,t

Wk,t

f̂RF,it(xk,t;θi,t) (3.6)

where Θ̂t = [θ1,t, . . . ,θN,t], wk,t = [w1k,t, . . . , wNk,t] and Wk,t =
∑N

i=1 wik,t. As it can be

inferred from (3.6), each client constructs its own personalized combination of kernels. Upon

observing the true label yk,t, the k-th client calculates the losses L(f̂RF,it(xk,t;θi,t), yk,t),

∀i ∈ [N ]. Then, the k-th client leverages calculated losses to locally update both global and

local parameters. Let θik,t+1 and wik,t+1 denote the k-th client’s local updates of θi,t and wik,t,

respectively. Specifically, the k-th client utilizes multiplicative update rule to update wik,t as

wik,t+1 = wik,t exp
(
−ηkL(f̂RF,it(xk,t;θi,t), yk,t)

)
,∀i ∈ [N ] (3.7)

where ηk is the learning rate of the k-th client. Note that the k-th client (∀k ∈ [K]) does

not send its updated local parameter wk,t+1 to the server. Clients send their locally updated

global parameters to the server (i.e. θik,t+1). Aggregating local updates, the server updates

global parameters to Θ̂t+1. If all clients send updates associated with all kernels (i.e. θik,t+1,

∀i ∈ [N ]), this requires sending 2ND parameters by each client at each time instant. When

the number of both clients and kernels are large, the available client-to-server communication

bandwidth may not be enough to afford sending 2NDK parameters per time instant even for

small values of D. Note that reducing N and D degrade the performance of online federated

MKL. Reducing N (the number of kernels), decreases the flexibility of clients to construct
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their ideal kernel using convex combination of kernels in the dictionary. Reducing D can

degrade the accuracy of RF approximation.

The present chapter proposes an algorithmic framework to enable clients to perform online

function approximation with sufficiently large dictionary of kernels while the available clients-

to-server communication bandwidth can afford sending updates from clients to the server

when a desirable value for the number of random features D is chosen. To this end, at each

time instant, each client randomly chooses a subset of M kernels among all N kernels in

the dictionary. Then, each client updates and sends the global parameters of the chosen M

kernels to the server instead of updating and sending global parameters of all kernels. To

choose a subset of M kernels, each client splits kernels into some bins and draws randomly

one of the bins at each time instant. Each bin contains at most M kernels and each client

updates and sends global parameters associated with kernels in the chosen bin. In order

to distribute kernels among bins, at first the k-th client sorts kernels in descending order

according to kernels’ weights {wik,t}Ni=1. Let Bj represents the j-th bin of kernels. The k-th

client adds kernels from sorted list one by one to Bj until either all kernels are assigned to a

bin or the number of kernels in Bj reaches M . When there are some kernels that are not

assigned to any bins while there are M kernels in Bj, the k-th client opens the bin Bj+1 and

adds kernels to this bin. This continues until all kernels are assigned to a bin. As it can be

inferred from the procedure of distributing kernels into bins, the number of bins at every

client is m =
⌈
N
M

⌉
. Furthermore, it can be concluded that B1 includes M kernels with the

largest weights while the bin Bm includes N − (m− 1)M kernels with lowest weights. The

k-th client assigns the weight ujk,t at time t to Bj defined as ujk,t =
∑

κi∈Bj
wik,t. The k-th

client draws one of the bins according to the probability mass function (PMF) qk,t defined as

qjk,t = (1− ξk)
ujk,t

Uk,t

+
ξk
m
, ∀j ∈ [m] (3.8)

where Uk,t =
∑m

j=1 ujk,t and 0 < ξk ≤ 1 is an exploration rate determined by the k-th client.
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Algorithm 10 The k-th client kernel subset selection at time t.

1: Input:Weights wik,t, ∀i ∈ [N ], parameter M and exploration rate 0 < ξk ≤ 1.
2: Sort the kernels in descending order with respect to weights {wik,t}Ni=1.
3: Obtain the index sequence s1, . . . , sN such that wsbk,t ≤ wsak,t if b > a, ∀a, b ∈ [N ].
4: Open bin B1 and initialize j = 1.
5: for all i ∈ [N ], the k-th client do
6: if the bin Bj includes less than M kernels then
7: Adds the si-th kernel to Bj.
8: else
9: Opens new bin Bj+1, adds the si-th kernel to Bj+1 and updates j ← j + 1.
10: end if
11: end for
12: Draw an index Ik,t via PMF qk,t in (3.8).
13: Output: Sk,t: indices set of kernels in the selected bin BIk,t

Let Ik,t be the index of the chosen bin by the k-th client at time t. The PMF in (3.8)

constitutes trade-off between exploitation and exploration. According to the first term in the

right hand side of (3.8), it is more probable that the k-th client draws a bin which includes

kernels with larger weights wik,t. Hence, it is more probable that the k-th client collaborates

in updating the global parameters of a kernel with larger weight wik,t. Let Sk,t denotes the set

which includes the indices of kernels in the chosen bin at time t. The Algorithm 10 summarizes

the procedure that the k-th client determines the set Sk,t. According to Algorithm 10, kernel

subset selection is personalized since each client chooses its own subset of kernels to update

their parameters.

Let pik,t denotes the probability that i ∈ Sk,t. Then pik,t = qbik,t where bi is the index of

the bin which includes the i-th kernel. The k-th client updates global parameters locally as

follows

θik,t+1 = θi,t − η
∇L(θ⊤i,tzi(xk,t), yk,t)

pik,t
1i∈Sk,t

(3.9)

where 1i∈Sk,t
denotes an indicator function and it is 1 when i ∈ Sk,t. The update rule in (3.9)

implies that when i /∈ Sk,t, the k-th client does not update θi,t (i.e. θik,t+1 = θi,t). Therefore,
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Algorithm 11 Personalized Online Federated Multi-Kernel Learning (POF-MKL)

1: Input:Kernels κi, i = 1, ..., N , learning rate η > 0 and the number of random features D.

2: Initialize: θi,1 = 0, wik,1 = 1, ∀i ∈ [N ], ∀k ∈ [K].
3: for t = 1, . . . , T do
4: The server transmits the global parameters Θ̂t = [θ1,t, . . . ,θN,t] to all clients.
5: for all k ∈ [K], the kth client do
6: Receive one datum xk,t.

7: Predicts f̂(xk,t; Θ̂t,wk,t) via (3.6).

8: Calculates losses L(f̂RF,it(xk,t;θi,t), yk,t), ∀i ∈ [N ].
9: Updates wik,t+1, ∀i ∈ [N ] via (3.7).
10: Selects a subset of kernel indices Sk,t using Algorithm 10.
11: Updates θik,t+1, ∀i ∈ Sk,t via (3.9) and sends θik,t+1, ∀i ∈ Sk,t to the server.
12: end for
13: The server updates θi,t+1, ∀i ∈ [N ] via (3.10).
14: end for

the k-th client sends θik,t+1 to the server only if i ∈ Sk,t. Therefore, at each time instant, each

client needs to send at most 2MD parameters to the server. Let Ci,t be a set of client indices

such that k ∈ Ci,t if the k-th client sends θik,t+1 to the server. Upon aggregating updates

from clients, the server updates θi,t as

θi,t+1 = θi,t −
1

K

∑
k∈Ci,t

(θi,t − θik,t+1) = θi,t −
η

K

K∑
k=1

∇L(θ⊤i,tzi(xk,t), yk,t)

pik,t
1i∈Sk,t

. (3.10)

Algorithm 11 summarizes the proposed personalized online federated multi-kernel learning

algorithm called POF-MKL. It is useful to note that using our proposed POF-MKL, the server

cannot find the gradients ∇L(θ⊤i,tzi(xk,t), yk,t) from updates received from clients. Instead,

the server can find ∇L(θ⊤i,tzi(xk,t), yk,t)/pik,t where pik,t is a time-varying value determined

locally by the k-th client. This can promote the privacy of the proposed POF-MKL since

exchanging the gradients can be hazardous to the privacy of federated learning (see e.g.

[164, 56]).

Complexity. Each client needs to store d-dimensional D random feature vectors for each
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kernel. Therefore, the memory requirement of each client to implement function approximation

using POF-MKL is O(dND). Using POF-MKL, at each time instant, each client needs

to perform O(dND) operations including inner products and summations. Furthermore,

when ξk < 1, in order to choose a subset of kernels, the k-th client needs to sort kernels

which imposes worst case computational complexity of O(N logN). However, when ξk = 1,

according to PMF in (3.8), the k-th client chooses one bin uniformly at random and as a

result in this case the k-th client does not need to sort kernels. Therefore, setting ξk < 1, the

computational complexity for the k-th client is O(dND +N logN) while setting ξk = 1, the

computational complexity of the k-th client at each time instant is O(dND).

3.3.2 Regret Analysis

The present section analyzes the regret of the proposed POF-MKL. Specifically, two types

of regret Rk,T and Rs,T are considered for the k-th client and the server, respectively. The

performance of the k-th client utilizing POF-MKL is analyzed in terms of regret defined as

Rk,T =
T∑
t=1

L(f̂(xk,t; Θ̂t,wk,t), yk,t)− min
i∈[N ]

T∑
t=1

L(f̂RF,it(xk,t;θi,t), yk,t) (3.11)

where Rk,T measures the cumulative difference between the loss of the k-th client and

the loss of the RF approximation of the kernel with minimum loss among all kernels’ RF

approximations. Let α∗
ik,t, ∀t ∈ [T ], ∀k ∈ [K] represents the optimal coefficients associated

with the i-th kernel such that f ∗
i (x) =

∑T
t=1

∑K
k=1 α

∗
ik,tκi(x,xk,t). Then the best function

approximator is defined as f ∗(·) ∈ argminf∗
i ,i∈[N ]

∑T
t=1

∑K
k=1 L(f ∗

i (xk,t), yk,t). Furthermore,

the regret of the server is defined as the cumulative difference between the loss of POF-MKL

and that of the best function approximator over all data samples distributed among clients
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which can be expressed as

Rs,T =
T∑
t=1

K∑
k=1

L(f̂(xk,t; Θ̂t,wk,t), yk,t)−
T∑
t=1

K∑
k=1

L(f ∗(xk,t), yk,t). (3.12)

In order to analyze the regret of POF-MKL, suppose that the following assumptions hold

true:

(A1) L(θ⊤i,tzi(xk,t), yk,t), ∀k ∈ [K] is convex with respect to θi,t at each time instant t.

(A2) For θ in a bounded set satisfying ∥θ∥ ≤ C, the loss function and its gradient are

bounded as 0 ≤ L(θ⊤zi(xk,t), yk,t) ≤ 1 and ∥∇L(θ⊤zi(xk,t), yk,t)∥ ≤ L. Moreover, each

data sample is bounded as ∥xk,t∥ ≤ 1, ∀k ∈ [K], ∀t ∈ [T ].

(A3) Kernels κi(·), ∀i ∈ [N ] are shift-invariant with κi(0) = 1, ∀i ∈ [N ].

The following theorem investigates the regret of the k-th client according to the k-th client

data. The proof of the following Theorem can be found in Appendix C.1.

Theorem 3.1. Under (A1)–(A3), the regret of the k-th client with respect to the best kernel

satisfies

T∑
t=1

L(f̂(xk,t; Θ̂t,wk,t), yk,t)− min
i∈[N ]

T∑
t=1

L(f̂RF,it(xk,t;θi,t), yk,t) ≤
lnN

ηk
+

ηk
2
T. (3.13)

Theorem 3.1 shows that by setting ηk = O
(

1√
T

)
, the k-th client achieves sub-linear regret of

O(
√
T ). Furthermore, Theorem 3.1 shows that POF-MKL can deal with heterogeneous data

among clients since the regret of each client defined in (3.11) is calculated with respect to

the corresponding client data. The following theorem studies the regret of the server with

respect to the best function approximator. The proof can be found in Appendix C.2.

Theorem 3.2. Let i∗ := argmini∈[N ]

∑T
t=1

∑K
k=1 L(f ∗

i (xk,t), yk,t) and σi be the second Fourier

moment of the i-th kernel. Under (A1)–(A3), the regret of the server with respect to the best
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function approximator satisfies

T∑
t=1

K∑
k=1

L(f̂(xk,t; Θ̂t,wk,t), yk,t)−
T∑
t=1

K∑
k=1

L(f ∗(xk,t), yk,t)

≤KC2

2η
+

η

2

T∑
t=1

K∑
k=1

L2

pi∗k,t
+

K∑
k=1

(
lnN

ηk
+

ηk
2
T

)
+ ϵLKTC (3.14)

with probability at least 1− 28
(
σi∗
ϵ

)2
exp

(
− Dϵ2

4(d+2)

)
where C := maxi∈[N ]

∑T
t=1

∑K
k=1 α

∗
ik,t.

As it can be inferred from (3.14), the regret of the server with respect to the best function

approximator depends on 1
pi∗k,t

. From (3.8) and the fact that pik,t = qbik,t, it can be concluded

that pi∗k,t >
ξk
m
. Thus, setting ξk = O(1), then pik,t > O(MN ). The regret bound in (3.14)

shows that setting η = O
(√

M
NT

)
and ϵ = ηk =

1√
T
, ∀k ∈ [K], the server obtains regret of

O
(√

N
M
T
)
with probability at least 1− 28

(
σi∗
ϵ

)2
exp

(
− Dϵ2

4(d+2)

)
. This shows that increasing

M tighten the regret bound and increasing D increases the probability that the regret bound

in (3.14) holds true. However, using POF-MKL, each client needs to transmit MD parameters

at each time instant. Since both M and D are determined by the algorithm POF-MKL, this

shows that POF-MKL can provide flexibility to tighten regret bound while the available

clients-to-server communication bandwidth can afford transmission of clients’ updates to the

server. It is useful to mention that choosing larger value for ξk increases the lower bound

of pi∗k,t and as a result the optimal choice for ξk in terms of regret is ξk = 1. However,

choosing smaller values for ξk makes the value of pik,t more dependent on weights {wik,t}Kk=1

(c.f. (3.8)). Therefore, choosing smaller values for ξk makes pik,t less predictable. This makes

estimating ∇L(θ⊤i,tzi(xk,t), yk,t) given ∇L(θ⊤i,tzi(xk,t), yk,t)/pik,t more difficult which leads to

better protection of privacy.

Comparison with personalized federated learning. In order to deal with heterogeneous

data among clients, personalized federated learning has been studied extensively in the

literature (see [139, 32, 39, 46, 72, 42, 99, 96, 135, 30, 1, 107, 158, 2, 142, 22]). Utilizing
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model-agnostic meta-learning [49], personalized federated learning algorithms have been

proposed in [46, 1]. In [135, 22], personalized federated learning algorithms have been designed

by learning hyper-networks [70]. In [107], a personalized model is a linear combination of a

set of shared component models such that each client constructs its personalized mixture

of models. However, in aforementioned personalized federated learning works, clients are

assumed to store a dataset to perform local updates with. Therefore, when clients are not

able to store data in batch and they have to make a decision upon receiving a new data

sample, aforementioned works in personalized federated learning cannot guarantee sub-linear

regret for clients. However, according to Theorems 3.1 and 3.2, POF-MKL provides sub-linear

regret for clients when clients cannot store data in batch and make decision in an online

fashion.

Comparison with online federated learning [112]. Fed-OMD algorithm has been

proposed in [112] which enables clients to perform their learning task in an online and

federated fashion while it is proved that Fed-OMD enjoys sub-linear regret when the loss

function is convex with respect to parameters required to be learnt at each time instant. The

proposed POF-MKL differs from Fed-OMD in the sense that Fed-OMD cannot guarantee

sub-linear regret when it comes to performing the online learning task with RF approximations

of multiple kernels since the loss function L(
∑N

i=1 wi,tθ
⊤
i,tzi(x), y) is not convex with respect

to both θi,t and wi,t. However, according to Theorems 3.1 and 3.2, the proposed POF-MKL

guarantees sub-linear regret.

Comparison with [78]. Online federated MKL algorithms called vM-KOFL and eM-KOFL

have been presented in [78]. Both POF-MKL and algorithms in [78] exploit random feature

approximation to alleviate computational complexity of online kernel learning. Furthermore,

both POF-MKL and algorithms in [78] learn a linear combination of kernels. The proposed

POF-MKL has the following advantages and innovations compared to vM-KOFL and eM-

KOFL: i) The proposed POF-MKL allows clients to learn their own personalized combination
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of kernels (c.f. (3.6)). As it is proved in Theorem 3.1, the proposed POF-MKL can deal with

heterogeneous data among clients in the sense that using POF-MKL each client guarantees sub-

linear regret with respect to the best kernel RF approximation according to the corresponding

client data. However, both vM-KOFL and eM-KOFL are not able to provide such guarantee.

ii) Using vM-KOFL, each client needs to send (N + 1)D parameters to the server. However,

using the proposed POF-MKL, each client needs to send MD parameters to the server such

that M ≤ N is determined by POF-MKL and can be chosen to be much smaller than N . iii)

In eM-KOFL, the server chooses a kernel at each time instant and clients send their local

updates associated with the chosen kernel by the server. The proposed POF-MKL provides

more flexibility compared to eM-KOFL in the sense that using POF-MKL each client can

send local updates of M ≥ 1 kernels to the server. And each client chooses its own subset of

kernels to send their updates to the server. Therefore, even though POF-MKL sets M to 1,

it is possible that at a time instant the server receives updates associated with all kernels

in the dictionary. It is useful to mention that using eM-KOFL the cumulative regret of all

clients is sub-linear with respect to the best kernel RF approximation with probability 1− δ

where 0 < δ ≤ 1. However, utilizing the update rule in (3.9), using the proposed POF-MKL,

each client obtains sub-linear regret with respect to RF approximation of its best kernel with

probability 1.

3.4 Experiments

We tested the performance of the proposed POF-MKL for online regression task through a set

of experiments. The performance of POF-MKL is compared with the baselines PerFedAvg

[46], OFSKL [112], OFMKL-Avg [112], vM-KOFL [78] and eM-KOFL [78]. PerFedAvg refers

to the personalized federated averaging algorithm in [46]. In the experiments, PerFedAvg

employs a fully connected feedforward neural network model. More information about the
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implementation of PerFedAvg can be found in Appendix C.3. OFSKL and OFMKL-Avg

are two variations of Fed-OMD [112]. OFSKL leverages Fed-OMD [112] when a single radial

basis function (RBF) with bandwidth of 10 is employed to perform the learning task. In

OFMKL-Avg, kernels are learned independently from each other using Fed-OMD [112] and

the prediction is the average of approximations given by kernels. Moreover, vM-KOFL

and eM-KOFL are online federated MKL algorithms of [78] such that vM-KOFL requires

transmission of all kernel updates at every time instant while eM-KOFL requires transmission

of a kernel update at each time instant. In the experiments, each client observes 500 samples

until the end of the learning task meaning that T = 500. The performance of the proposed

POF-MKL and other baselines are tested on the following real datasets downloaded from

UCI machine learning repository [44]: Naval [31], UJI [145], Air [161] and WEC [117]. More

detailed information about datasets can be found in Appendix C.3. Data samples of Naval

and UJI datasets are distributed i.i.d among clients. Data samples in Air and WEC datasets

are distributed non-i.i.d among clients. More inforamtion about distributing data samples

among clients can be found in Appendix C.3. The number of clients for Naval, UJI, Air and

WEC datasets are 23, 42, 240 and 560, respectively. The dictionary of kernels consists of 51

RBFs with different bandwidth such that the bandwidth of the i-th kernel is σi = 10
2i−52

25 . We

consider the case where the clients-to-server communication bandwidth is limited such that

at each time instant, the maximum number of parameters that a client is allowed to transmit

to the server is 1000. Furthermore, the memory and computational capability of clients are

limited such that the maximum value can be picked for the number of random features D

is 100. The experiments were carried for 20 different sets of random feature vectors. The

performance of algorithms is measured using average of mean squared error (MSE) defined as

MSE =
1

20

20∑
j=1

1

KT

T∑
t=1

K∑
k=1

(ŷjk,t − yk,t)
2
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where ŷjk,t denotes the prediction of the k-th client at time instant t corresponding to the j-th

set of random feature vectors. Learning rates are set to η = ηk =
1√
T
, ∀k. Also, exploration

rates are set to ξk = 1, ∀k. The performance of POF-MKL with different ξk is studied in

Appendix C.3. Codes are available at https://github.com/pouyamghari/POF-MKL.

Table 3.1 presents the MSE and run time performance of online federated kernel learning

algorithms on real datasets. Run time refers to average total run time of clients to perform

online learning task on the entire data samples that they observe. In Table 3.1, M refers

to the number of kernels whose updates are sent to the server after prediction at each time

instant. And, D is the number of random features. Comparing MSE of POF-MKL with that

of OFMKL-Avg, it can be concluded that learning the weights to combine kernels provides

higher accuracy than averaging kernels’ predictions. Table 3.1 shows that POF-MKL with

M = 1 provides lower MSE than eM-KOFL. Using eM-KOFL, at each time instant, the

server receives updates belong to only one kernel. However, using POF-MKL with M = 1,

each client sends an update belongs to a kernel which is selected by the client. Therefore,

the server receives updates associated with different kernels even though M = 1. Therefore,

experimental results show the effectiveness of the personalized kernel selection provided by

POF-MKL. It can be observed that POF-MKL with M = 25 obtains lower MSE than those

of POF-MKL with M = 51 and vM-KOFL. Since each client is allowed to send at most 1000

parameters per time instant, if clients send updates of all kernels at every time instant as

this is the case in vM-KOFL, D cannot be chosen to be greater than 9. However, setting

M = 25, POF-MKL can set D = 20 which can improve the accuracy of online regression

task compared to the case where D = 9. Note that according to Theorem 3.2, increase in

D increases the probability that the server achieves sub-linear regret with respect to the

best function approximator. Furthermore, POF-MKL with M = 51 achieves lower MSE

than vM-KOFL even if data samples are distributed i.i.d among clients. This shows that

the proposed POF-MKL can better cope with heterogeneous data among clients which is in

agreement with theoretical results in Theorem 3.1. In fact, the optimal combination of kernels
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Table 3.1: MSE(×10−3) and run time of online federated learning algorithms on real datasets.

MSE(×10−3) Run time(s)
Algorithms M D Naval UJI Air WEC Naval UJI Air WEC
PerFedAvg - - 118.60 63.03 13.68 77.33 44.59 41.67 37.40 33.56
OFSKL 1 100 77.77 61.82 13.65 87.87 0.07 0.06 0.08 0.06
OFMKL-Avg 51 9 33.25 55.44 10.63 34.01 1.51 1.73 0.91 0.47
vM-KOFL 51 9 26.42 51.50 10.58 25.17 2.01 2.22 1.37 0.67
eM-KOFL 1 100 28.64 61.08 21.94 20.14 2.27 10.13 1.45 1.70
POF-MKL 1 100 16.16 33.02 9.27 11.44 1.22 9.02 1.25 1.10
POF-MKL 25 20 16.82 37.34 9.34 11.58 0.69 2.29 0.63 0.52
POF-MKL 51 9 16.65 41.00 9.38 11.97 0.82 1.07 0.81 0.65

can be different across clients. Using POF-MKL, each client constructs its own personalized

combination of kernels which results in lower MSE compared to vM-KOFL. The proposed

POF-MKL with M = 1 and M = 25 runs faster than eM-KOFL. In fact, using POF-MKL,

clients only need to update parameters associated with M kernels while employing vM-KOFL

and eM-KOFL, clients have to update parameters of all kernels. Moreover, POF-MKL obtains

lower MSE than PerFedAvg. Note that since clients are not able to store data in batch, at

each time instant clients update PerFedAvg’s model using only the newly observed data

sample. Therefore, convergence of PerFedAvg is not guaranteed. Experimental results show

that POF-MKL achieves higher accuracy than PerFedAvg in online regression task when it

is not possible for clients to store data in batch. Since OFSKL employs only a pre-selected

single kernel, OFSKL runs faster than POF-MKL. However, utilizing multiple kernels enables

POF-MKL to obtain lower MSE than that of OFSKL. In fact, using POF-MKL clients learn

a linear combination of kernels which is proved to enjoy sub-linear regret with respect to the

best kernel in hindsight while employing OFSKL clients have to make predictions using a

pre-selected kernel. Furthermore, Figure 3.1 illustrates the average regret of clients when

clients employ vM-KOFL and the proposed POF-MKL with different M parameters. From

Figure 3.1, it can be observed that the proposed POF-MKL achieves sub-linear regret.
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(a) Naval dataset. (b) UJI dataset.

(c) Air dataset. (d) WEC dataset.

Figure 3.1: Average regret of clients.

3.5 Conclusion

The present chapter proposed a personalized online federated MKL algorithm called POF-

MKL based on RF approximation. Employing the proposed POF-MKL, each client updates

the parameters of a subset of kernels which alleviates the computational complexity of the

client as well as communication cost of sending updated parameters of kernels. Theoretical

analysis proved that using POF-MKL, each client achieves sub-linear regret with respect to

the RF approximation of its best kernel in hindsight which indicates that POF-MKL can deal

heterogeneous data among clients. While each client updates a subset of kernels, it was proved

that the server achieves sub-linear regret with respect to the best function approximator.

Experiments on real datasets showcased the advantages of POF-MKL compared with other

online federated kernel learning algorithms.
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Chapter 4

Online Federated Model Selection

4.1 Introduction

The performance of prediction tasks can be heavily influenced by the choice of model. As

a result, the problem of model selection arises in various applications and studies, such

as reinforcement learning (see, e.g., [36, 47, 93]) where a learner selects a model from a

set of candidate models to be deployed for prediction. Furthermore, in practical scenarios,

data often arrives in a sequential manner, rendering the storage and processing of data in

batches impractical. Consequently, there is a need to conduct model selection in an online

fashion. In this regard, the learner chooses one model among a dictionary of models at

each learning round, and after performing a prediction with the chosen model, the learner

incurs a loss. The best model in hindsight refers to the model with minimum cumulative

loss over all learning rounds while regret is defined as the difference between the loss of the

chosen model and the best model in hindsight. Performing model selection online, the goal

is to minimize cumulative regret. Depending on the available information about the loss,

different online model selection algorithms have been proposed in the literature (see, e.g.,,
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[50, 114, 51, 16, 119, 128]) which are proven to achieve sub-linear regret. The performance

of existing online model selection algorithms depends on the performance of models in the

dictionary. The choice of dictionary requires information about the performance of models

on unseen data, which may not be available a priori. In this case, a richer dictionary of

models may improve the performance. However, in practice, the learner may face storage

limitations, making storing and operating with a large dictionary infeasible. For example,

consider the learner as an edge device performing an online prediction task such as image or

document classification using a set of pre-trained models. In this case, the learner may be

unable to store all models in the memory. Faced with this challenge, the present work aims

at answering the following critical question: How can learners perform online model selection

with a large dictionary of models that requires memory beyond their storage capacity?

To tackle this problem, the present chapter proposes an online federated model selection

and f ine-tuning algorithm called OFMS-FT to enable a group of learners to perform online

prediction employing a large dictionary of models. To this end, the online model selection is

performed in a federated manner in the sense that the group of learners, also known as clients,

interacts with a server to choose a model among all models stored in the server. Specifically,

a server with a significantly larger storage capacity than clients stores a large number of

models. At each round, each client chooses to receive and store a subset of models that can

be fit into its memory and performs its prediction using one of the stored models. Each

client computes the losses of received models and leverages these observed losses to select a

model for prediction in future rounds. Moreover, the distribution of data streams observed

by clients may differ from the distribution of data that models are pre-trained on. At each

round, clients employ the proposed OFMS-FT to adapt models to their data and send the

updates to the server. Upon receiving updates from clients, the server updates models.

In addition to the storage capacity of clients, there are some other challenges that should

be taken into account. Communication efficiency is a critical issue in federated learning
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(see e.g.,, [89, 82, 129, 71]). The available bandwidth for client-to-server communication is

usually limited which restricts the amount of information that can be sent to the server. To

deal with limited communication bandwidth, using the proposed OFMS-FT, at each round

the server chooses a subset of clients to fine-tune their received models. Moreover, in some

cases, the distribution of data samples may be different across clients [139, 160, 99]. Thus,

different clients can have different models as the best model in hindsight. Through regret

analysis, it is proven that by employing OFMS-FT, each client enjoys sub-linear regret with

respect to its best model in hindsight. This shows that OFMS-FT effectively deals with

heterogeneous data distributions among clients. In addition, the regret analysis of the present

chapter proves that the server achieves sub-linear regret with respect to the best model in

hindsight. Furthermore, regret analysis shows that increase in communication bandwidth

and memory of clients improves the regret bounds. This indicates efficient usage of resources

by OFMS-FT. Experiments on regression and image classification datasets showcase the

effectiveness of OFMS-FT compared with state-of-the-art alternatives. It is also worth noting

that the materials in this chapter are included in [63].

4.2 Problem Statement

Consider a set ofN clients interacting with a server to perform sequential prediction. There are

a set ofK models f1(·; ·), . . . , fK(·; ·) stored at the server. The set of models f1(·; ·), . . . , fK(·; ·)

is called dictionary of models. Due to clients’ limited memory, clients are not able to store all

models f1(·; ·), . . . , fK(·; ·) and a server with larger storage capacity stores models. Let [K]

denote the set {1, . . . , K}. At each learning round t, client i receives a data sample xi,t and

makes a prediction for xi,t. Specifically, at learning round t, client i picks a model among

the dictionary of models f1(·; ·), . . . , fK(·; ·) and makes prediction fIi,t(xi,t;θIi,t,t) where Ii,t

denote the index of the chosen model by client i at learning round t and θk,t represents the
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parameter of model k at learning round t. After making prediction, client i, ∀i ∈ [N ] incurs

loss L(fIi,t(xi,t;θIi,t,t), yi,t) and observes label yi,t associated with xi,t. This continues until

the time horizon T . The loss function L(·, ·) is the same across all clients and depends on the

task performed by clients. For example, if clients perform regression tasks, the loss function

L(·, ·) can be the mean square error function while if clients perform classification tasks the

loss function L(·, ·) can be chosen to be cross-entropy loss function. Furthermore, the present

chapter studies the adversarial setting where the label yi,t for any i and t is determined by

the environment through a process unknown to clients. This means that the distribution of

the data stream {(xi,t, yi,t)}Tt=1 observed by client i can be non-stationary (i.e., it can change

over learning rounds) while client i, ∀i ∈ [N ] does not know the distribution from which

(xi,t, yi,t), ∀t is sampled. Moreover, data distribution can be different across clients.

The performance of clients can be measured through the notion of regret which is the difference

between the client’s incurred loss and that of the best model in hindsight. Therefore, the

regret of the i-th client can be formalized as

Ri,T =
T∑
t=1

Et[L(fIi,t(xi,t;θIi,t,t), yi,t)]− min
k∈[K]

T∑
t=1

L(fk(xi,t;θk,t), yi,t), (4.1)

where Et[·] denote the conditional expectation given observed losses in prior learning rounds.

The objective for each client is to minimize their regret by choosing a model from a dictionary

in each learning round. This can be accomplished if clients can identify a subset of models

that perform well with the data they have observed. Assessing the losses of multiple models,

including the selected one, can help clients better evaluate model performance. This can

expedite the identification of models with superior performance, ultimately reducing prediction

loss. However, due to memory constraints, clients cannot compute the loss for all models.

To address this limitation, clients must select a subset of models that can fit within their

memory and calculate the loss for this chosen subset. This information aids in selecting a

model for future learning rounds. Furthermore, to enhance model performance, clients and

86



the server collaborate on fine-tuning models. Let θ∗k be the optimal parameter for the k-th

model which is defined as

θ∗k = argmin
θ

N∑
i=1

T∑
t=1

L(fk(xi,t;θ), yi,t). (4.2)

In this context, the regret of the server in fine-tuning model k is defined as

Sk,T =
1

N

N∑
i=1

T∑
t=1

L(fk(xi,t;θk,t), yi,t)−
1

N

N∑
i=1

T∑
t=1

L(fk(xi,t;θ
∗
k), yi,t). (4.3)

The objective of the server is to orchestrate model fine-tuning to minimize its regrets. This

chapter introduces an algorithmic framework designed to enable clients with limited memory

to conduct online model selection and fine-tuning. Regret analysis in Section 4.4 demonstrates

that employing this algorithm leads to sub-linear regret for clients and the server. Additionally,

the analysis in Section 4.4 illustrates that increasing the memory budget for clients results in

a tighter upper bound on regret for the proposed algorithm.

4.3 Online Federated Model Selection

The present section introduces a disciplined way to enable clients to pick a model among

a dictionary of models beyond the storage capacity of clients while clients enjoy sub-linear

regret with respect to the best model in the dictionary. The proposed algorithm enables

clients to collaborate with each other to fine-tune models in order to adapt models to clients’

data.
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4.3.1 Online Federated Model Selection

Let ck be the cost to store model k. For example, ck can be the amount of memory required

to store the k-th model. Let Bi denote the budget associated with the i-th client, which

can be the memory available by the i-th client to store models. At each learning round,

each client i stores a subset of models that can be fit into the memory of client i. The i-th

client fine-tunes and computes the loss of the stored subset of models. Computing the loss

of multiple models at each learning round enables clients to obtain better evaluation on

the performance of models which can lead to identifying the best model faster. Moreover,

fine-tuning multiple models can result in adapting models to clients’ data faster. In Section

4.4, it is demonstrated that an increase in the number of models that clients can evaluate

and fine-tune leads to tighter regret bounds for the proposed algorithm

At learning round t, the i-th client assigns weight zik,t to the k-th model, which indicates

the credibility of the k-th model with respect to the i-th client. Upon receiving a new data

sample, the i-th client updates the weights {zik,t}Kk=1 based on the observed losses. The

update rule for weights {zik,t}Kk=1 will be specified later in (4.8). Using {zik,t}Kk=1, at learning

round t, the i-th client selects one of the models according to the probability mass function

(PMF) pi,t as

pik,t =
zik,t
Zi,t

,∀k ∈ [K], (4.4)

where Zi,t =
∑K

k=1 zik,t. Let Ii,t denote the index of the selected model by the i-th client

at learning round t. Then client i splits all models except for Ii,t-th model into clusters

Di1,t, . . . ,DimiIi,t
,t such that the cumulative cost of models in each cluster Dij,t does not exceed

Bi − cIi,t . Note that mij,t denote the number of clusters constructed by client i at learning

round t if Ii,t = j. As it will be clarified in Section 4.4, packing models into minimum

number of clusters helps clients to achieve tighter regret bound. Packing models into the
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minimum number of clusters can be viewed as a bin packing problem (see e.g.,, [54]) which

is NP-hard [26]. Several approximation methods have been proposed and analyzed in the

literature [80, 38, 43, 76]. In the present work, models are packed into clusters using the

first-fit-decreasing (FFD) bin packing algorithm (see Algorithm 15 in Appendix D.1). It

has been proved that FFD can pack models into at most 11
9
m∗ + 2

3
clusters where m∗ is the

minimum number of clusters (i.e., optimal solution for the clustering problem) [43].

After packing models into clusters, the i-th client chooses one of the clusters Di1,t, . . . ,DimiIi,t,t
,t

uniformly at random. Let Ji,t be the index of the cluster chosen by client i at learning round

t. The i-th client downloads and stores all models in the cluster DiJi,t,t along with the Ii,t-th

model. Since the cumulative cost of models in DiJi,t,t does not exceed Bi−cIi,t , the cumulative

cost of models in DiJi,t,t in addition to the Ii,t-th model does not exceed the budget Bi. Let

Si,t represents the subset of models stored by client i at learning round t. Upon receiving a

new datum at learning round t, the i-th client performs its prediction task using the Ii,t-th

model. Then, the i-th client incurs loss L(fIi,t(xi,t;θIi,t,t), yi,t). After observing yi,t, the i-th

client computes the loss L(fk(xi,t;θk,t), yi,t), ∀k ∈ Si,t. After computing the losses, the i-th

client obtains the importance sampling loss estimate for the k-th model as

ℓik,t =
L(fk(xi,t;θk,t), yi,t)

qik,t
I(k ∈ Si,t), (4.5)

where I(·) denote the indicator function and qik,t is the probability that the i-th client stores

the k-th model at round t. In order to derive qik,t, note that the probability of storing model

k at learning round t can be conditioned on Ii,t and based on the total probability theorem,

it can be obtained that

qik,t =
K∑
j=1

Pr[Ii,t = j] Pr[k ∈ Si,t|Ii,t = j] =
K∑
j=1

pij,t Pr[k ∈ Si,t|Ii,t = j], (4.6)

where Pr[A|B] denote the probability of event A given that event B occurred. If client i
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chooses the k-th model at learning round t (i.e., Ii,t = k), then client i stores model k meaning

that Pr[k ∈ Si,t|Ii,t = k] = 1. Let mij,t denote the number of clusters when client i chooses

Ii,t = j. Note that if Ii,t = j client i splits all models except for model j into mij,t clusters.

If client i chooses Ii,t = j such that j ̸= k, then client i stores model k at learning round t

if the chosen cluster contains model k. Since only one cluster among mij,t clusters contains

model k and client i chooses one cluster uniformly at random, it can be concluded that

Pr[k ∈ Si,t|Ii,t = j, j ̸= k] = 1
mij,t

. Therefore, according to (4.6), the probability qik,t can be

obtained as

qik,t = pik,t +
∑

∀j:j ̸=k

pij,t
mij,t

. (4.7)

At learning round t, client i updates the weights of models using the multiplicative update

rule as

zik,t+1 = zik,t exp (−ηiℓik,t) , (4.8)

where ηi is the learning rate associated with the i-th client. According to (4.5) and (4.8), if

client i does not observe the loss of model k at learning round t, client i keeps the weight

zik,t+1 the same as zik,t. Conversely, when the loss is observed, a higher loss corresponds to a

greater reduction in the weight zik,t.

4.3.2 Online Model Fine-Tuning

This subsection presents a principled way to enable clients to collaborate with the server to

fine-tune models. If client i participates in fine-tuning at learning round t, client i locally

updates all its stored models in Si,t and sends updated models’ parameters to the server.

Sending updated parameters of a model to the server occupies a portion of communication
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bandwidth. Therefore, the available communication bandwidth may not be enough such that

all clients can send their updates every learning round. In this case, at learning round t, the

server has to choose a subset of clients Gt such that the available bandwidth is sufficient for

all clients in Gt to send their updates to the server.

Let bk be the bandwidth required to send the updated parameters of the k-th model. If

i ∈ Gt, then the i-th client needs the bandwidth ei =
∑

k∈Si,t bk to send updated parameters

of its stored models. Let the available communication bandwidth be denoted by E. Given ei,

∀i ∈ [N ], the server splits clients into α groups N1, . . . ,Nα such that
∑

i∈Nj
ei ≤ E,∀j ∈ [α].

This means that all clients in each group Nj , ∀j ∈ [α] can send their updated model parameters

to the server given the available bandwidth. At each learning round t, the server draws one

of the client groups N1, . . . ,Nα uniformly at random. Clients in the chosen group send their

updated models’ parameters to the server. In other words, Gt := Nιt where ιt represents the

index of the chosen client group at learning round t. Since the probability of choosing a client

group is 1
α
, the probability that a client is chosen by the server to send its updated models

parameters is 1
α
as well. Therefore, to maximize the probability that a client is chosen by the

server to be in Gt, the server can split clients into a minimum number of groups. To do this,

bin-packing algorithms such as FFD [43] can be employed.

Define the importance sampling loss gradient estimate ∇ℓ̂ik,t associated with client i and

model k as

∇ℓ̂ik,t =
α

qik,t
∇L(fk(xi,t;θk,t), yi,t)I(i ∈ Gt, k ∈ Si,t). (4.9)

Recall that I(·) denote the indicator function. The i-th client updates the models’ parameters

as

θik,t+1 = θk,t − ηf∇ℓ̂ik,t,∀k ∈ Si,t, (4.10)
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where ηf is the fine-tuning learning rate. According to (4.9) and (4.10), if the i-th client is

not chosen for fine-tuning (i.e., i /∈ Gt), then θik,t+1 = θk,t. Thus, if i ∈ Gt, the i-th client

sends locally updated models parameters {θik,t+1}∀k∈Si,t to the server. Let Vk,t denote the

index set of clients such that i ∈ Vk,t if the server receives the update of the k-th model

θik,t+1 from the i-th client. Upon aggregating information from clients, the server updates

model parameters {θk,t}Kk=1 as:

θk,t+1 = θk,t −
1

N

∑
i∈Vk,t

(θk,t − θik,t+1) = θk,t −
ηf
N

N∑
i=1

∇ℓ̂ik,t. (4.11)

The proposed Online Federated Model Selection and Fine-Tuning (OFMS-FT) algorithm

is summarized in Algorithm 12. Steps 5 to 10 in Algorithm 12 outline how client i selects

a subset of models during each learning round t. Subsequently, each client i, ∀i ∈ [N ],

transmits its required bandwidth ei (acquired in step 10) to the server. Upon receiving ei,

∀i ∈ [N ], the server, following steps 12 to 14, determines a subset of clients Gt eligible to

send their updates. Each client i then utilizes its selected model for prediction (step 16) and

computes the loss of its stored model subset, updating the weights zik,t
K
k=1 (step 17). If client

i is included in the server’s selected subset Gt, it transmits its local updates to the server, as

depicted in step 19. Finally, in step 22, the server updates the model parameters for use in

the subsequent learning round.

4.4 Regret Analysis

The present section analyzes the performance of OFMS-FT in terms of cumulative regret. To

analyze the performance of OFMS-FT, it is supposed that the following assumptions hold:

(A1) For any (x, y) and θ, the loss is bounded as 0 ≤ L(fk(x;θ), y) ≤ 1.
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Algorithm 12 OFMS-FT: Online Federated Model Selection and Fine-Tuning

1: Input: Models fk(·;θk,0), costs ck, bk and budgets Bi, E, ∀i, ∀k.
2: Initialize: zik,1 = 1, ∀k, ∀i.
3: for t = 1, . . . , T do
4: for all i ∈ [N ], the ith client do
5: Chooses a model using PMF pi,t in (4.4). Ii,t denote the index of the chosen model.
6: Splits all models except for Ii,t-th model into clusters Di1,t, . . . ,Dimi,t,t such that∑

k∈Dij,t

ck ≤ Bi − cIi,t ,∀j : 1 ≤ j ≤ mi,t.

7: Chooses one cluster among {Dij,t}
mi,t

j=1 uniformly at random where Ji,t is the chosen
cluster index.

8: Constructs the set of model indices Si,t = {Ii,t} ∪ {k|∀k ∈ DiJi,t,t}.
9: Downloads all models whose indices are in Si,t from the server.
10: Sends the bandwidth cost ei =

∑
k∈Si,t bk to the server.

11: end for
12: The server splits clients into α groups N1, . . . ,Nα such that

∑
i∈Nj

ei ≤ E,∀j ∈ [α].

13: The server draws one of the groups {Nj}αj=1 uniformly at random.
14: The server finds Gt := Nιt with ιt as the chosen client group index.
15: for all i ∈ [N ], the ith client do
16: Makes prediction fIi,t(xi,t;θIi,t,t) and computes L(fk(xi,t;θk,t), yi,t), ∀k ∈ Si,t.
17: Updates zik,t, ∀k ∈ Si,t according to (4.8).
18: if i ∈ Gt then
19: Sends θik,t+1, ∀k ∈ Si,t obtained by (4.10) to the server.
20: end if
21: end for
22: The server updates models parameters as in (4.11).
23: end for

(A2) The budget satisfies Bi ≥ ck + cj, ∀k, j ∈ [K], ∀i ∈ [N ].

(A3) The loss function L(fk(x;θ), y) is convex with respect to θ, ∀k ∈ [K].

(A4) The gradient of the loss function is bounded as ∥∇L(fk(x;θ), y)∥ ≤ G, ∀θ, ∀k ∈ [K].

Also, θ belongs to a bounded set such that ∥θ∥2 ≤ R.

Let m∗
ij be the minimum number of clusters if client i splits all models except for model j

such that the cumulative cost of each cluster does not exceed Bi − cj. Define µi = maxj m
∗
ij,

which can be interpreted as the upper bound for the minimum number of clusters that can be
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constructed by client i at each learning round. It can be concluded that µi < K and increase

in budget Bi leads to decrease in µi. The following theorem obtains the upper bound for the

regret of clients and the server in terms of µi.

Theorem 4.1. Assume that clients utilize the first fit decreasing algorithm in order to split

models into clusters Di1,t, . . . ,Dimi,t,t. Under (A1) and (A2), the expected cumulative regret

of the i-th client using OFMS-FT is bounded by

Ri,T ≤
lnK

ηi
+ ηiµiT, (4.12)

which holds for all i ∈ [N ]. Under (A1)–(A4), the cumulative regret of the server in fine-tuning

model k using OFMS-FT is bounded by

Sk,T ≤
R

2ηf
+

1

N

N∑
i=1

µiαηfG
2T . (4.13)

Proof. see Appendix D.2.

If the i-th client sets ηi = O
(√

lnK
µiT

)
, then the i-th client achieves sub-linear regret of

Ri,T ≤ O
(√

(lnK)µiT
)
. (4.14)

If the server sets the fine-tuning learning rate as ηf = 1√
αT
N

∑N
i=1 µi

, then the server achieves

regret of

Sk,T ≤ O


√√√√αT

N

N∑
i=1

µi

 . (4.15)

The regret bounds in (4.14) and (4.15) show that a decrease in µi leads to tighter regret

bound. If the i-th client has a larger budget Bi, the upper bound for the minimum number
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of model clusters µi decreases since client i can split models into clusters with larger budgets.

As an example, consider the special case that all models have the same cost ck = c, ∀k ∈ [K]

while Bi = δic where δi ≥ 2 is an integer. In this case, according to step 6 in Algorithm 12,

the upper bound for the minimum number of clusters is µi =
(K−1)c
(δi−1)c

= K−1
δi−1

. Therefore, as

the budget of a client increases, the client can achieve tighter regret bound. In addition,

larger communication bandwidth enables the server to partition clients into smaller number

of groups α. Thus, according to (4.15), larger communication bandwidth leads to tighter

regret bound for the server.

Challenges of Obtaining Regret in (4.15). Limited memory of clients brings challenges

for obtaining the sub-linear regret in (4.15) since clients cannot calculate the gradient loss of

all models every learning round. To overcome this challenge, the present chapter proposes

update rules (4.9) and (4.10) along with the novel model subset selection presented in steps 5,

6 and 7 of Algorithm 12. In what follows the effectiveness of the proposed update rules and

model subset selection is explained. Employing vanilla online gradient descent update rule

θik,t+1 = θk,t −∇L(fk(xi,t;θk,t), yi,t) locally by clients, can result in regret of O(
√
T ) if client

i knows ∇L(fk(xi,t;θk,t), yi,t), ∀k ∈ [K] at every learning round (see e.g., [73]). This is not

possible since client i has limited memory and is not able to calculate the gradient loss of all

models every learning round. To overcome this challenge, the present chapter proposes the

local update rules in (4.9) and (4.10) which use the gradient loss estimate ∇ℓ̂ik,t instead of true

loss gradient. Using (D.22) of Appendix D.2, it can be concluded that ∇ℓ̂ik,t is an unbiased

estimator of ∇L(fk(xi,t;θk,t), yi,t) meaning that Et[∇ℓ̂ik,t] = ∇L(fk(xi,t;θk,t), yi,t). According

to (4.9), obtaining∇ℓ̂ik,t does not require storing model k and calculating∇L(fk(xi,t;θk,t), yi,t)

every learning round. Hence, ∇ℓ̂ik,t can be obtained every learning round given the limited

memory of client i. However, according to (D.21), (D.23) and (D.24) of Appendix D.2,

employing update rule of (4.10) the regret of the server grows with Et[∥∇ℓ̂ik,t∥2] which is

upper bounded as Et[∥∇ℓ̂ik,t∥2] ≤ αG2

qik,t
(see (D.22b) in Appendix D.2). Therefore, the regret

of the server grows with 1
qik,t

where qik,t is the probability that client i stores model k and
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fine-tunes it at learning round t. Using model subset selection method presented in steps 5, 6

and 7 of Algorithm 12, the probability qik,t is obtained as in (4.7). In (D.14) of Appendix

D.2, it is proven that if clients employ FFD algorithm to cluster models in step 6, then it is

guaranteed that qik,t ≥ 1
2µi

. This lead to guaranteeing the regret upper bound in (4.15).

4.5 Related Works and Discussions

This Section discusses differences, innovations, and improvements provided by the proposed

OFMS-FT compared to related works in the literature.

Online Model Selection. Online model selection algorithms by [50, 114, 51, 16, 119, 128]

have studied either full-information or bandit settings. Full-information refers to cases where

the loss of all models can be observed at every round while in bandit setting only the loss

of the chosen model can be observed. Regret bounds obtained by full-information based

online model selection algorithms cannot be guaranteed if the learner (i.e., a client) cannot

store all models. Moreover, it is useful to mention that the present chapter studies the

adversarial setting where the losses observed by clients at each round are specified by the

environment and may not follow any time-invariant distribution. It is well-known that in

the adversarial bandit setting the learner achieves regret upper bound of O(
√
KT ) (see e.g.,

[119]). The proposed OFMS-FT utilizes the available memory of clients to evaluate a subset

of models every round (see step 16 in Algorithm 12) which helps client i to achieve regret

of O(
√
µiT ) as presented in (4.14). If client i is able to store more than one model, then

µi < K (see below (4.3) and the discussion below Theorem 4.1) which shows that OFMS-FT

utilizes the available memory of clients to improve their regret bound compared to bandit

setting. Moreover, aforementioned online model selection works have not studied online

fine-tuning of models. A model selection algorithm proposed by [118] assumes that each

model (called base learner) comes with a candidate regret bound and utilizes this information
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for model selection. By contrast, the present chapter assumes that there is no available prior

information about the performance of models. Moreover, [115] has studied the problem of

model selection in linear contextual bandits where the reward (can be interpreted as negative

loss in our work) is the linear function of the context (can be interpreted as xi,t in our work).

However, the present chapter does not make this assumption in both theoretical analysis

and experiments. Furthermore, online model selection when models are kernels has been

studied in the literature (see e.g., [154, 163, 94]) where the specific characteristics of kernel

functions are exploited to perform model selection to alleviate computational complexity of

kernel learning.

Online Learning with Partial Observations. Another line of research related to the

focus of the present chapter is online learning with expert advice where a learner interacts

with a set of experts such that at each learning round the learner makes decision based on

advice received from the experts [19]. The learner may observe the loss associated with a

subset of experts after decision making, which can be modeled using a graph called feedback

graph [106, 5, 29, 3, 34]. In online federated model selection, each model can be viewed

as an expert. Employing the proposed OFMS-FT, in addition to performing online model

selection, clients and the server collaborate to fine-tune the models (experts). However,

the aforementioned online learning algorithms do not study the case where the learner can

influence experts. Performing online model selection and fine-tuning jointly in a federated

fashion brings challenges for guarantying sub-linear regret that cannot be overcame using the

existing online learning algorithms. Specifically, due to limited client-to-server communication

bandwidth and limited memory of clients, all clients are not able to fine-tune all models

every learning round. The proposed OFMS-FT introduces a novel model subset selection

in steps 5, 6 and 7 of Algorithm 12 and a novel update rule in (4.9) and (4.10) to fine-tune

models locally by clients in such a way that given limited memory of clients and limited

communication bandwidth, the server achieves sub-linear regret of (4.15).
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Online Federated Learning. The problem of online federated model selection and fine-

tuning is related to online federated learning [24, 112, 37]. [24] has studied learning a global

model when clients receive new data samples while they participate in federated learning.

Online decision-making by clients has not been studied by [24] and hence the regret bound

for clients cannot be guaranteed. An online federated learning algorithm has been proposed

by [37] to cope with the staleness in federated learning. However, it lacks theoretical analysis

when clients need to perform online decision-making. An online mirror descent-based federated

learning algorithm called Fed-OMD has been proposed in [112]. Fed-OMD obtains sub-linear

regret when clients perform their online learning task while collaborating with the server to

learn a single model. However, Fed-OMD cannot guarantee sub-linear regret when it comes

to performing online model selection if clients are unable to store all models in the dictionary.

Furthermore, [78, 66] have studied the problem of online federated learning where each client

learns a kernel-based model employing specific characteristics of kernel functions.

Personalized Model Selection and Fine-Tuning. In addition to online model selection,

online learning and online federated learning discussed in Section 4.5, personalized federated

learning can be related to the focus of this chapter. Employing the proposed OFMS-FT, model

selection and fine-tuning is personalized for clients. According to step 5 in Algorithm 12, each

client chooses a model locally using the personalized PMF pi,t in (4.4) to make a prediction

at round t. This helps each client i, ∀i ∈ [N ] to achieve the sub-linear regret in (4.14).

Furthermore, the choice of models to be fine-tuned locally by each client is personalized

according to step 19 in Algorithm 12. Particularly, qik,t in (4.7) is the probability that the

client i fine-tunes the model k at round t. The probability qik,t is determined by client i and

it can be inferred that the probability to participate in fine-tuning a model is determined by

client i based on its preferences given the limited memory budget. It is useful to add that

personalized federated learning is well-studied topic related to the focus of the present chapter.

In personalized federated learning framework, aggregating information from clients the server

assists clients to learn their own personalized model. Several personalized federated learning
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approaches have been proposed in the literature for example inspired by model-agnostic meta-

learning [49, 46, 1], adding a regularization term to the objective function [72, 42, 96, 103],

among others (see e.g., [39, 30, 107, 135]). However, none of the aforementioned works have

studied online decision making, online federated model selection and fine-tuning when clients

have limited memory and employing them, sub-linear regrets cannot be guaranteed for clients

and the server.

Client Selection. Client selection in federated learning has been extensively explored

in the literature [23, 79, 9, 116, 52]. However, none of the aforementioned works have

specifically studied client selection for online federated learning, where clients utilize the

trained model from federated learning for online predictions. In the proposed OFMS-FT,

the server selects clients for their participation in model fine-tuning uniformly at random.

This choice aims to avoid differentiating among clients and fine-tune models in the favor of

any clients. Nevertheless, an intriguing direction for future research is to investigate how

alternative client selection strategies, beyond uniform selection, could enhance client regret

in the context of online federated learning.

4.6 Experiments

We tested the performance of the proposed OFMS-FT for online model selection through a

set of experiments. The performance of OFMS-FT is compared with the following baselines:

MAB [8], Non-Fed-OMS, RMS-FT, B-Fed-OMFT, FedOMD [112] and PerFedAvg [46]. MAB

refers to the case where the server chooses a model using Exp3 algorithm [8] and transmits

the chosen model to all clients. Then, each client sends the loss of the received model to the

server. Non-Fed-OMS refers to non-federated online model selection where each client stores

a fixed subset of models that can be fit into its memory. At each learning round, each client

chooses one model from the stored subset of models using Exp3 algorithm. RMS-FT denote
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a baseline where at each learning round each client chooses a subset of models uniformly

at random to fine-tune them. The prediction task is then carried out by selecting one of

the chosen models uniformly at random. Furthermore, B-Fed-OMFT stands for Budgeted

Federated Online Model Fine-Tuning. In this approach, the server maintains a set of models

that can be fit into the memory of all clients. Clients collaborate with the server to fine-tune

all models in each learning round. In the B-Fed-OMFT framework, each client employs the

Exp3 algorithm to choose one model to perform the prediction task. Using Fed-OMD [112],

given a pre-trained model, clients and the server fine-tune the model. PerFedAvg refers to

the case where given a pre-trained model, clients and the server fine-tune the model using

Personalized FedAvg [46]. The performance of the proposed OFMS-FT and baselines are

tested on online image classification and online regression tasks. Image classification tasks

are performed over CIFAR-10 [90] and MNIST [92] datasets. Online regression tasks are

performed on Air [161] and WEC [117] datasets. For both image classification datasets, the

server stores 20 pre-trained convolutional neural networks (CNNs). Based on the number of

parameters required to store models, for CIFAR-10 the normalized costs of storing CNNs are

either 0.89 or 1, and for MNIST the normalized costs are either 0.66 or 1. The experiments

were conducted with a single meta-replication, utilizing a consistent random seed for both

the proposed OFMS-FT and all baseline methods. Moreover, for both regression datasets,

the server stores 20 pre-trained fully-connected feedforward neural networks. Since all neural

networks have the same size, the normalized costs of all of them are 1. More details about

models and datasets can be found in Appendix D.3.

There are 50 clients performing image classification task, and 100 clients performing online

regression task. Note that clients are performing the learning task in an online fashion such

that at each learning round each client observes one data sample and predicts its label in real

time. The learning rates ηi for all methods are set to be 10/
√
T where T = 200. Furthermore,

the fine-tuning learning rate is set to ηf = 10−3/
√
T . Since the required bandwidth to send a

model is proportional to the model size, the normalized bandwidth bk associated with the
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Table 4.1: Average and standard deviation of clients’ accuracy over CIFAR-10 and MNIST
datasets. MSE (×10−3) and its standard deviation (×10−3) across clients over Air and WEC
datasets.

Algorithms CIFAR-10 MNIST Air WEC

MAB 61.14%± 10.12% 84.37%± 5.18% 8.97± 6.82 36.96± 8.52
Non-Fed-OMS 65.76%± 12.24% 85.06%± 7.30% 8.82± 6.70 64.84± 40.30
RMS-FT 57.86%± 9.75% 88.33%± 4.25% 7.87± 5.22 18.89± 4.02
B-Fed-OMFT 67.83%± 12.28% 89.46%± 4.71% 8.09± 5.55 31.94± 7.97
Fed-OMD 64.34%± 9.89% 88.69%± 5.16% 11.37± 7.16 30.89± 10.06
PerFedAvg 55.65%± 11.94% 89.71%± 4.93% 11.29± 7.08 30.09± 10.17
OFMS-FT 76.77%± 4.46% 92.05%± 2.69% 7.46± 5.10 7.09± 1.67

(a) MNIST (b) WEC

Figure 4.1: Average regret of clients using OFMS-FT with the change in budget Bi.

k-th model are considered to be the same as the normalized cost ck.

Table 4.1 demonstrates the average and standard deviation of clients’ accuracy over CIFAR-10

and MNIST when the test set is distributed in non-i.i.d manner among clients. For CIFAR-10,

each client receives 155 testing data samples from one class and 5 samples from each of

the other nine classes. In the case of MNIST, each client receives at least 133 samples

from one class and at least 5 samples from the other classes. The 200 testing data samples

are randomly shuffled and are sequentially presented to each client over T = 200 learning

rounds. The accuracy of the client i is defined as Accuracyi =
1
T

∑T
t=1 I(ŷi,t = yi,t) where ŷi,t

denote the class label predicted by the algorithm. The memory budget is Bi = 5, ∀i ∈ [N ].

Each client is able to store up to 50 images. In order to fine-tune models, clients employ
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the last 50 observed images. Moreover, Fed-OMD and PerFedAvg fine-tune one of the 20

pre-trained models such that both fine-tune the same pre-trained model. As can be observed

from Table 4.1, the proposed OFMS-FT achieves higher accuracy than Non-Fed-OMS and

B-Fed-OMFT. This corroborates that having access to larger number of models helps learners

to achieve better learning performance, especially in cases where the learners are faced with

heterogeneous data, and performance of models are unknown in priori. Moreover, from Table

4.1 it can be seen that OFMS-FT achieves higher accuracy than MAB which admits the

effectiveness of observing losses of multiple models at each learning round. Higher accuracy

of OFMS-FT compared with Fed-OMD and PerFedAvg indicates the benefit of fine-tuning

multiple models rather than one. The superior performance of OFMS-FT in comparison to

RMS-FT highlights the efficacy of employing model selection through the PMF defined in

equation (4.4), as opposed to choosing models uniformly at random. In addition, as can be

seen from Table 4.1, the standard deviation of clients’ accuracy associated with OFMS-FT is

considerably lower than other baselines. This shows that using OFMS-FT, accuracy across

clients shows less variations compared with other baselines. Therefore, the results confirm

that OFMS-FT can cope with heterogeneous data of clients in more flexible and henceforth

more effective fashion.

Furthermore, Table 4.1 presents the mean square error (MSE) of online regression and its

standard deviation across clients for Air and WEC datasets. Specifically, MSE of client i is

defined as MSEi =
1
T

∑T
t=1 (ŷi,t − yi,t)

2. In both the Air and WEC datasets, individual data

samples are associated with one of four geographical areas. The distribution of data samples

across clients is non-i.i.d, with 50 clients observing data samples from one specific site, while

the remaining 50 clients observe data samples from another geographical site. At each round,

only half of clients are able to send their updated models to the server. All other settings

are the same as online image classification setting. Results for online regression tasks are

consistent with the conclusions obtained from the results of online image classification task.

Moreover, Figure 4.1 illustrates the average regret of clients using the proposed OFMS-FT
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Table 4.2: MSE (×10−3) and its standard deviation (×10−3) of OFMS-FT across clients over
WEC dataset under varying budgets among clients.

Bi = 3 Bi = 5 MSE

60% 40% 7.96± 1.49
50% 50% 7.85± 1.66
40% 60% 7.32± 1.54

through learning rounds for different values of memory budget Bi. Figure 4.1 depicts the

regret of OFMS-FT through learning on MNIST and WEC datasets. As can be seen, the

increase in Bi leads to obtaining lower regret by clients. Therefore, the results in Figure 4.1

are in agreement with the regret analysis in Section 4.4. Table 4.2 illustrates the sensitivity of

the MSE and its standard deviation, as achieved by the proposed OFMS-FT, to the budget Bi

(∀i ∈ [N ]) over the WEC dataset. In this configuration, the budget varies across clients, with

a subset having Bi = 3 and the remainder Bi = 5. The improvement in MSE becomes evident

as the number of clients with a budget of B = 5 increases. This observation indicates that

an increase in budget enhances the performance of OFMS-FT, aligning with the theoretical

findings presented in Section 4.4.

4.7 Conclusion

Performing online model selection with a large number of models can improve the performance

of online model selection especially when there is not prior information about models. The

present chapter developed a federated learning approach (OFMS-FT) for online model

selection when clients cannot store all models due to limitations in their memory. To adapt

models to clients’ data, employing OFMS-FT clients can collaborate to fine-tune models. It

was proved that both clients and the server achieve sub-linear regret with respect to the best

model in hindsight. Experiments on regression and image classification datasets were carried
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out to showcase that the proposed OFMS-FT achieved better performance in comparison with

non-federated online model selection approach and other state-of-the-art federated learning

algorithms which employ a single model rather than a dictionary of models.
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Chapter 5

Personalized Federated Learning with

Mixture of Models

5.1 Introduction

Federated learning enables a group of learners, known as clients, to collaborate and collectively

train a model under the coordination of a central server, without revealing their data. In

this framework, clients perform local model updates and share these updates with the server.

By aggregating these local updates, the server globally updates the model. Many prior works

in the literature have assumed that each client stores a batch of training data and updates

models locally based on this stored data (see e.g., [113, 97, 129, 20, 107, 149]). However,

in some cases, clients may need to make real-time predictions, and streams of data arrive

sequentially, making it challenging to store and process data in batch. Furthermore, if clients

operate in a non-stationary and dynamic environment, employing pre-trained models may

fall short in prediction accuracy, requiring clients to fine-tune their models to adapt to their

data.
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A federated learning framework, commonly referred to as online federated learning [112, 78],

specifically addresses situations where clients engage in real-time predictions using a shared

global model. After making predictions, clients collaborate with the server to update the

global model for subsequent predictions in the future. Specifically, after making predictions,

clients incur losses and based on the incurred losses, clients update the model locally and

send their local updates to the server. The server updates the global model upon aggregating

local updates and then distributes the updated global model to clients for use in the ongoing

online prediction task. In this context, the performance of clients can be assessed using the

notion of regret [19, 8]. The regret of a client at a given time step is defined as the difference

between its prediction loss and that of the best model in hindsight. The best model in

hindsight is determined as the model that achieves the minimum total prediction loss over

time across all clients’ data. The primary objective is to minimize the cumulative regret of

all clients over time.

In the literature, federated learning algorithms based on online gradient descent have been

proposed that achieve sub-linear regret upper bounds [112, 78]. This suggests that over the

long run, these algorithms perform as well as the best model in hindsight. However, in Section

5.3, this chapter demonstrates that these federated learning algorithms do not obtain tighter

regret bounds compared to the scenario where each client learns its own model locally without

participating in federated learning. This indicates that participation in federated learning

may not provide any benefit for clients performing online prediction. Specifically, if data is

distributed non-i.i.d. among clients and data distributions are time-variant and not known a

priori, it is likely that local model training by clients will achieve better prediction accuracy

than participation in federated learning. Although the benefit of federated learning in online

prediction is not evident in existing theoretical analyses, models learned through federated

learning enjoy higher generalizability as they are trained on all data samples distributed

among clients. This motivates the idea that combining the model learned through federated

learning with the locally learned one may prove effective in scenarios where clients need to
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perform online prediction.

This chapter proposes the Fed-POE (Federated Learning with Personalized Online Ensemble)

algorithm, through which each client constructs a personalized model for online prediction by

adaptively ensembling the locally learned model and the model learned through federated

learning. With Fed-POE, clients can adapt their local models to their data while benefiting

from the higher generalizability of the federated model. Theoretical analysis for convex cases

demonstrates that Fed-POE achieves sublinear regret bounds with respect to both the best

federated and local models in hindsight. This indicates that Fed-POE effectively leverages

the advantages of both federated and local models. Providing such theoretical guarantees

may not be feasible for non-convex models such as neural networks. These models may suffer

from the forgetting process [144, 125], where fine-tuning on streaming data ‘on the fly’ can

lead to forgetting previously observed data samples. To overcome this challenge, the present

chapter proposes a novel framework in which the server periodically stores federated model

parameters over time. Each client adaptively selects a personalized subset of stored models

on the server based on the performance of these models in the client’s online prediction

task. Clients then use the selected models, along with the federated and local models, to

construct an ensemble model for prediction. Clients select a subset of models to both control

the memory and computational complexity of prediction and to prune models with relatively

lower accuracy, thereby improving prediction performance. Theoretical analysis proves that

Fed-POE achieves sublinear regret with respect to the best model in hindsight among the

local model, federated model, and all models stored by the server. The contributions of the

present chapter are summarized as follows:

• Fed-POE enables clients to utilize the advantages of both local and federated models

for online prediction tasks.

• To address the issue of forgetting in online prediction, Fed-POE introduces a novel

federated framework for collaboration between clients and the server.
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• Theoretical analyses for both convex and non-convex cases prove that Fed-POE achieves

sublinear regret with respect to the best model in hindsight.

• Extensive experiments on regression and image classification datasets show that Fed-

POE effectively leverages the benefits of local and federated models, achieving higher

online prediction accuracy compared to state-of-the-art federated learning algorithms.

It is worth noting that the materials in this chapter are included in [65].

5.2 Related Works

Personalized Federated Learning. Personalized federated learning involves developing

individualized models for each client, derived from a global model learned through federated

learning. Several personalized federated learning algorithms have been proposed in the

literature [143, 21, 151, 155]. In [72, 42, 96, 103], clients construct their personalized models

by adding a regularization term to the local objective and using the global federated model.

Algorithms in [46, 1] allow clients to fine-tune the global federated model using model-

agnostic meta-learning [49] to learn their personalized models. With Fed-Rep [30], each client

generates a representation using the global model and learns its own local head for prediction.

Algorithms in [39, 100, 159] enable clients to achieve personalized models by combining local

and global models. However, none of these works have addressed the problem of online

prediction while clients collaborate on training their personalized models.

Federated Learning with Streaming Data. Several studies have explored the problem

of federated learning when clients receive a stream of data in real time. While [24, 109, 108]

investigate federated learning scenarios where clients receive new training data in each learning

round, they do not address the aspect of online prediction by clients. Consequently, these

works cannot provide regret guarantees for online prediction. Additionally, [37] studies the
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issue of staleness in online federated learning to both train and make prediction with the

model; however, it lacks rigorous theoretical analysis. In [112], an online federated learning

algorithm is introduced, utilizing online mirror descent, with a proven sublinear regret bound.

Similarly, [121, 53] propose online federated learning algorithms with guaranteed sublinear

regret. Furthermore, [122] analyzes the benefits of collaboration in online federated learning,

particularly in scenarios where only loss values at queried points are available to clients,

without access to loss gradients. Regarding online federated kernel learning, algorithms are

introduced in [55, 67], albeit without accompanying regret analysis, leading to an absence of

guaranteed regret bounds. In [78], multiple kernel-based models and random feature-based

online federated kernel learning algorithms are proposed, with demonstrated sublinear regret.

5.3 Preliminaries

This section explains the problem of federated learning for real-time prediction and model

training. The present section studies the cases where clients either collaborate in federated

learning or employ online gradient descent methods to locally train the model in real-time.

This study highlights the motivation behind the proposed ensemble approach to federated

learning.

5.3.1 Online Prediction and Federated Learning

Let there are N clients interact with a server to train a model f(·; ·). Also, let [N ] :=

{1, . . . , N}. At each time step t, client i, ∀i ∈ [N ] receives a data sample xi,t ∈ Rd and

makes the prediction f(xi,t;θt) where θt denotes the parameter of the model at time step

t. Note that generalization to the scenario where at each time step, each client receives a

dataset instead of a single data sample is straightforward. After making prediction, client
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i, ∀i ∈ [N ] observes label yi,t. Then client i, ∀i ∈ [N ] computes the loss of its prediction

L(f(xi,t;θt), yi,t) where L(·, ·) denotes the loss function. After computing the loss, clients

send their updates to the server (e.g., by sending the gradient loss ∇L(f(xi,t;θt), yi,t)) and

the server aggregates information from clients to update θt to θt+1 to be used by clients to

make predictions at time step t+ 1. For ease of presentation, it is assumed that all clients

can send their updates to the server every time step. Generalizing the results for the cases

where only a fraction of clients can send their updates is straightforward. Furthermore, it

is assumed that the label yi,t for any i and t is determined by the environment through a

process unknown to the clients. This implies that the data distribution observed by client i

can be non-stationary, and client i, ∀i ∈ [N ] does not know the distribution. Additionally,

the data distribution can differ across clients. The goal is to enable clients to collaborate with

the server to minimize the cumulative regret of clients over time. The regret of client i at

time step t is defined as the difference between the prediction loss L(f(xi,t;θt), yi,t) and the

loss L(f(xi,t;θ
∗), yi,t) corresponding to the model with the optimal parameter θ∗. Therefore,

the average cumulative regret of clients up to time horizon T is defined as

RT =
1

N

T∑
t=1

N∑
i=1

L(f(xi,t;θt), yi,t)−
1

N

T∑
t=1

N∑
i=1

L(f(xi,t;θ
∗), yi,t) (5.1)

where θ∗ denotes the optimal model parameter in hindsight and can be expressed as

θ∗ = argmin
θ

T∑
t=1

N∑
i=1

L(f(xi,t;θ), yi,t). (5.2)

One common way to solve the problem is that clients employ online gradient descent to

update models locally and the server exploits federated averaging [98, 112] to update the

global model.
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5.3.2 Federated Learning with Online Gradient Descent

At each time step t, client i obtains the locally updated model parameter ψi,t+1 as follows:

ψi,t+1 = θt − η∇L(f(xi,t;θt), yi,t) (5.3)

where η is the learning rate. Aggregating locally updated model parameters, the server

obtains the updated global model parameter for time step t+ 1 as

θt+1 =
1

N

N∑
i=1

ψi,t+1. (5.4)

This continues up until the time horizon T . This chapter examines regret under some or all

of the following assumptions:

(A1) The loss function L(f(x;θ), y) is convex with respect to θ.

(A2) The gradient of the loss is bounded as ∥∇L(f(x;θ), y)∥ ≤ G.

(A3) For any x, θ, the loss is bounded as 0 ≤ L(f(x;θ), y) ≤ 1.

The following theorem specifies the regret bound for federated learning employing online

gradient descent under (A1) and (A2).

Theorem 5.1. Employing online gradient descent, the following cumulative regret upper

bound is guaranteed for federated learning under assumptions (A1) and (A2):

1

N

T∑
t=1

N∑
i=1

L(f(xi,t;θt), yi,t)−
1

N

T∑
t=1

N∑
i=1

L(f(xi,t;θ
∗), yi,t) ≤

∥θ∗∥2

2η
+

η

2
G2T. (5.5)

Proof of Theorem 5.1 can be found in Appendix E.1. According to Theorem 5.1, choosing

η = O(
√
1/T ), the cumulative regret in (5.5) is bounded from above as O(

√
T ). If the time
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horizon T is unknown, the doubling trick technique (see e.g., [4]) can be effectively used to

set the learning rate to maintain theoretical guarantees. Consider the case where each client

learns the model locally using online gradient descent without collaborating with other clients

and the server. Let ϕi,t denote the local model parameter learned by client i at time step t,

employing online gradient descent locally. The regret of client i in this case is equivalent to

federated learning regret where there is only one client. Therefore, substituting N = 1 and

θ0 = 0 in (E.7) of Appendix E.1, for the cumulative regret of client i with respect to any θ,

we get

T∑
t=1

L(f(xi,t;ϕi,t), yi,t)−
T∑
t=1

L(f(xi,t;θ), yi,t) ≤
∥θ∥2

2η
+

η

2
G2T. (5.6)

Averaging (5.6) over all clients and substituting θ with θ∗ in (5.6), we obtain

1

N

T∑
t=1

N∑
i=1

L(f(xi,t;ϕi,t), yi,t)−
1

N

T∑
t=1

N∑
i=1

L(f(xi,t;θ
∗), yi,t) ≤

∥θ∗∥2

2η
+

η

2
G2T. (5.7)

Comparing (5.5) with (5.7), it can be inferred that under assumptions (A1) and (A2), federated

learning does not achieve tighter regret bound than the case where each client independently

learns its local model. Hence, from a theoretical standpoint, it remains uncertain whether

collaboration in federated learning yields any improvement over local online model training.

Intuitively, collaboration in federated learning may prove advantageous when there exists

similarity among data samples observed by clients over time. However, in cases where data

distribution is heterogeneous and such similarities are lacking, employing online local training

may yield superior results for a client. Given the lack of prior information on data distribution

in online scenarios, each client can independently assess over time whether utilizing the model

learned through federated learning for predictions is beneficial.

Furthermore, according to assumption (A1), the theoretical guarantees obtained in (5.5)

and (5.7) hold if the loss is convex with respect to the model parameter. However, in the
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case of non-convex models, such as neural networks, these theoretical guarantees are not

applicable. Non-convex models, like neural networks, may encounter the forgetting process

[144, 125], where the model tends to overfit to recently observed data samples. Consequently,

it may not be feasible to derive a single model parameter using online gradient descent that

achieves sublinear regret with respect to the best model in hindsight. The subsequent section

introduces a novel algorithm aimed at assisting clients in addressing such scenarios.

5.4 Personalized Federated Learning Methods

The current section introduces personalized federated learning algorithms where each client

dynamically learns the prediction performance of both the models trained through federated

learning over time and the locally learned model.

5.4.1 Ensemble Learning

At each time step, each client constructs an ensemble model comprising the federated model

and its locally learned model to make a prediction. Let ϕi,t be the model parameter locally

learned by client i such that at each time step t, client i updates ϕi,t via gradient descent as

ϕi,t+1 = ϕi,t − η∇L(f(xi,t;ϕi,t), yi,t). (5.8)

Furthermore, let clients and the server collaborate to update the federated model parameter

θt as outlined in (5.3) and (5.4). At time step t, client i makes the prediction for xi,t using

its personalized ensemble model fi,t(·) expressed as

fi,t(xi,t) =
αi,t

αi,t + βi,t

f(xi,t;θt) +
βi,t

αi,t + βi,t

f(xi,t;ϕi,t) (5.9)
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where αi,t and βi,t represent the weights assigned by client i to the federated and local

models, respectively, indicating the credibility of predictions from each model. After making

predictions and observing the label yi,t, client i computes the loss of predictions from the

federated and local models, updating the weights αi,t and βi,t using the multiplicative update

rule as follows:

αi,t+1 = αi,t exp (−ηcL(f(xi,t;θt), yi,t)) , (5.10a)

βi,t+1 = βi,t exp (−ηcL(f(xi,t;ϕi,t), yi,t)) (5.10b)

where ηc is a learning rate. Client i initializes αi,1 = 1 and βi,1 = 1. The proposed

algorithm is personalized since according to (5.9), each client constructs its own ensemble

model to perform prediction. The personalized regret of client i is defined as Ci,T =∑T
t=1 L(fi,t(xi,t), yi,t)−

∑T
t=1 L(f(xi,t;ϕ

∗
i ), yi,t) where ϕ

∗
i denotes the best hindsight model

parameter for client i which can be expressed as ϕ∗
i = argminϕ

∑T
t=1 L(f(xi,t;ϕi), yi,t). The

following theorem establishes the personalized regret upper bound for client i as well as global

regret of all clients with respect to the best model parameter in hindsight.

Theorem 5.2. Under assumptions (A1)–(A3), employing the ensemble model in (5.9) for

online prediction, the global regret of all clients is bounded from above as

1

N

T∑
t=1

N∑
i=1

L(fi,t(xi,t), yi,t)−
1

N

T∑
t=1

N∑
i=1

L(f(xi,t;θ
∗), yi,t)

≤∥θ
∗∥2

2η
+

ln(2)

ηc
+

η

2
G2T +

ηcT

2
(5.11)

while client i achieves the following personalized regret upper bound:

T∑
t=1

L(fi,t(xi,t), yi,t)−
T∑
t=1

L(f(xi,t;ϕ
∗
i ), yi,t) ≤

∥ϕ∗
i ∥2

2η
+

ln(2)

ηc
+

η

2
G2T +

ηcT

2
. (5.12)

Proof of Theorem 5.2 is given in Appendix E.2. According to (5.11) and (5.12) in Theorem

114



5.2, setting η = O(1/
√
T ), ηc = O(1/

√
T ) both the global regret for all clients and the

personalized regret of each client i achieve a regret bound of O(
√
T ). This demonstrates that

while the ensemble model in (5.9) ensures personalized regret guarantees for each client with

respect to its best model in hindsight, it also enables clients to leverage federated learning,

thus enjoying sublinear regret in comparison to the best global model in hindsight.

Comparison with Federated and Local Models. The main advantage of using the

ensemble model instead of the federated model lies in Theorem 5.2, where it is shown that

the ensemble model can attain the global regret guarantee provided by the federated model

while employing the federated model, achieving the personalized regret guarantee in (5.12) is

not feasible. However, according to (5.6) and (5.7), using the online local training, each client

achieves sublinear regret with respect to its best model while all clients achieve sublinear

regret with respect to the best global model in hindsight. This efficacy of local training

stems from clients adapting the model to their individual data. In contrast, in federated

learning, the model is trained on all data samples across clients, potentially leading to higher

generalizability compared to its local counterpart. If there are similarities in the distribution

of data samples among clients over time, the federated model is anticipated to achieve greater

accuracy in online prediction. However, due to the lack of available information regarding

the relationships between data samples observed by clients before online prediction, these

advantages may not be reflected in theoretical bounds. The proposed method constructs an

ensemble to harness the advantages of both federated and local models for online prediction,

as evidenced by Theorem 5.2. Experimental results in Subsection in 5.5.1 confirm that the

ensemble model achieves superior performance compared to both local and federated models.
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5.4.2 Model Selection

Regret guarantees for the ensemble method, as outlined in Theorem 5.2, are contingent upon

the model’s convexity. However, if the model is non-convex, achieving such guarantees may

not be feasible. Particularly, non-convex models such as neural networks are susceptible

to the forgetting process [144, 125], wherein applying online gradient descent may lead to

overfitting to recently observed data samples. This section introduces a novel algorithm

that allows clients to make online predictions using non-convex models while simultaneously

collaborating to fine-tune the model. The scenario assumes the existence of a pre-trained

model, and the objective for clients is two-fold: to make real-time predictions and to refine

the model for alignment with their preferences. This situation may arise, for instance, in

fine-tuning large foundation models to tailor them to client preferences.

Let the server and clients collaborate to fine-tune the non-convex model f(·; ·). At each time

step t, client i updates the model on the batch of recently observed samples with size b as

ψi,t+1 = θt −
η

b

t∑
τ=t−b

∇L(f(xi,τ ;θt), yi,τ ). (5.13)

Then the server aggregates locally updated parameters and updates the federated model

parameter as in (5.4). Furthermore, each clients learns its own local model by fine-tuning the

pre-trained model locally via online gradient descent as in (5.8) on the batch of b recently

observed samples. While online gradient descent methods are well-known for their efficiency

in handling dynamic environments, employing the update rule of (5.13) for non-convex

models may lead to overfitting to recently observed batches. To mitigate potential forgetting,

the server saves the federated model parameters every n time step, where n is an integer

hyperparameter.

Let Dt represent the set of model parameters stored by the server at time step t. At time

step τ = (j − 1)n + 1, the server adds θτ to Dτ meaning that Dτ+1 = Dτ ∪ {θτ}. Let ρj
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Algorithm 13 Model selection by client i at time step t

1: Input: Dt, M , wights {wij,t}|Dt|
j=1 and Mi,t = ∅.

2: for m = 1, . . . ,M do
3: Sample model index k according to the PMF pij,t =

wij,t∑|Dt|
j=1 wij,t

, ∀j ∈ [|Dt|].
4: if k /∈Mi,t then
5: Append model index k to Mi,t.
6: end if
7: end for
8: Output: Mi,t.

denotes the j-th model parameter in Dt. It can be concluded that ρj = θ(j−1)n+1. The

server continues saving model parameters every n time steps until time step U ≤ T . Client i

assigns a weight wij,t to the j-th model in Dt, which assesses the credibility of the predictions

given by the model parameter ρj. Client i initializes wij,1 = 1. At each time step t, client i

selects M models with replacement from Dt to construct its model set Mi,t. Algorithm 13

illustrates the model selection process conducted by client i at time step t. During each

round of model selection, client i chooses a model according to a probability mass function

(PMF) proportional to weights {wij,t|1 ≤ j ≤ |Dt|} where | · | denotes the cardinality of a

set (see step 3 in Algorithm 13). Client i adds the chosen model to Mi,t if it is not already

present. Therefore, it can be concluded that |Mi,t| ≤ M , ∀i, t. Then at each time step t,

client i downloads all models in Mi,t from the server. Upon receiving the models, client i

constructs an ensemble model f̃i,t(·) as

f̃i,t(x) =
∑

j∈Mi,t

wij,t∑
m∈Mi,t

wim,t

f(x;ρj). (5.14)

Client i makes the prediction for xi,t as

f̄i,t(xi,t) =
γi,t

γi,t + δi,t
fi,t(xi,t) +

δi,t
γi,t + δi,t

f̃i,t(xi,t) (5.15)

where fi,t(xi,t) is the ensemble of local and federated models as defined in (5.9). Furthermore,

γi,t and δi,t are weights assigned by client i to ensemble models fi,t(·) and f̃i,t(·), respectively.
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Algorithm 14 Fed-POE: Federated Learning with Personalized Online Ensemble

1: Input: Model f(·; ·), batch size b, n, U , Di,1 = ∅.
2: for t = 1, . . . , T do
3: The server transmits θt to all clients.
4: for all i ∈ [N ], client i do
5: Performs model selection given Dt according to Algorithm 13 to obtain Mi,t.
6: Makes prediction f̄i,t(xi,t) as in (5.15) using chosen model set Mi,t.

7: Upon receiving yi,t, updates αi,t, βi,t, γi,t, δi,t and {wij,t}|Dt|
j=1 as in (5.10), (5.16) and

(5.17).
8: Updates the local model as ϕi,t+1 = ϕi,t − η

b

∑t
τ=t−b∇L(f(xi,t;ϕi,τ ), yi,t).

9: Updates the federated model as ψi,t+1 = θt − η
b

∑t
τ=t−b∇L(f(xi,τ ;θt), yi,τ ).

10: Sends ψi,t+1 to the server.
11: end for
12: if t ≤ U and t mod n = 0 then
13: The server updates Dt as Dt+1 = Dt ∪ {θt}.
14: end if
15: The server updates θt as θt+1 =

1
N

∑N
i=1ψi,t+1.

16: end for

Upon observing the label yi,t after prediction, client i updates weights γi,t and δi,t as

γi,t+1 = γi,t exp (−ηcL(fi,t(xi,t), yi,t)) , (5.16a)

δi,t+1 = δi,t exp(−ηcL(f̃i,t(xi,t), yi,t)). (5.16b)

Furthermore, αi,t and βi,t which are used to construct fi,t(xi,t) in (5.9) are updated as in

(5.10). The weight wij,t is updated using the importance sampling loss as

wij,t+1 = wij,t exp

(
−ηc
L(f(xi,t;ρj), yi,t)

qij,t
1j∈Mi,t

)
(5.17)

where 1j∈Mi,t
denotes the indicator function and is 1 if j ∈ Mi,t. Moreover, qij,t is the

probability that client i selects the j-th model in Dt to be in Mi,t and can be expressed as

qij,t = 1− (1−pij,t)
M where pij,t is defined in step 3 of Algorithm 13. The proposed algorithm,

named Federated Learning with Personalized Online Ensemble (Fed-POE) is summarized in

Algorithm 14. It is useful to note that the proposed method in Subsection 5.4.1 is a special

case of Fed-POE by setting M = 0 and b = 1.
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Efficiency of Fed-POE. To perform model selection using Fed-POE, clients do not need

to store all model parameters in Dt for all t ∈ [T ]. Instead, the server, which has higher

storage capacity than the clients, stores all model parameters, and clients download a subset

of at most M model parameters. The hyperparameter M can be chosen such that clients

can handle the memory and computational requirements of making predictions with the

selected subset of models. Let CF denote the number of computations required to fine-tune

the model f , and let CI represent the number of computations required to make an inference

with model f . Assume that the complexity of model selection in Algorithm 1 is negligible

compared to fine-tuning and making inferences with model f . According to Algorithm 2, each

client performs 2CF + (M + 2)CI computations per time step. Therefore, the computational

complexity of Fed-POE for each client is O(CF +MCI). Beyond memory and computational

considerations, selecting a subset of models from Dt helps clients improve their prediction

accuracy. Specifically, using the model weights {wij,t} at time step t, client i selects models

that perform better on its data while pruning those with lower performance.

Let hj(xi,t) = f(xi,t;ρj) denote the model associated with the j-th model parameter in

Dt. Furthermore, hloc(xi,t) = f(xi,t;ϕi,t) and hfed(xi,t) = f(xi,t;θt) represent the local and

federated models, respectively, . Let the set of models H be defined as H := {hj | ∀j : 1 ≤

j ≤ |DT |} ∪ {hloc, hfed}. This set H includes all models that can be employed by each client

using Fed-POE. The best model in hindsight h∗ and the best model in hindsight for client i,

h∗
i are defined as

h∗ = min
h∈H

T∑
t=1

N∑
i=1

L(h(xi,t), yi,t), (5.18a)

h∗
i = min

h∈H

T∑
t=1

L(h(xi,t), yi,t). (5.18b)

The following theorem provides the regret upper bound of Fed-POE.

Theorem 5.3. Under assumption (A3), employing Fed-POE in Algorithm 14, the expected
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global regret of all clients is bounded from above as

1

N

T∑
t=1

N∑
i=1

Et[L(f̄i,t(xi,t), yi,t)]−
1

N

T∑
t=1

N∑
i=1

L(h∗(xi,t), yi,t)

≤ ln 2U − ln 2n

ηc
+

ηc
2
(
U

n
+ 1)T + (1− ηc

2n
U)U (5.19)

while client i achieves the following expected personalized regret upper bound:

T∑
t=1

Et[L(f̄i,t(xi,t), yi,t)]−
T∑
t=1

L(h∗
i (xi,t), yi,t)

≤ ln 2U − ln 2n

ηc
+

ηc
2
(
U

n
+ 1)T + (1− ηc

2n
U)U. (5.20)

The expectation is taken with respect to randomization in model selection.

The proof of Theorem 5.3 can be found in Appendix E.3. According to (5.19) and (5.20),

setting ηc = O(1/
√
T ), n = O(

√
T ) and U = O(

√
T ), both the personalized and global regrets

of clients achieve sublinear regret of O(
√
T ). Since clients construct their ensemble models

using a time-varying subset of models, employing existing model selection and ensemble

learning approaches [48, 50, 114, 128, 59, 118] may not ensure the sublinear regrets stated in

Theorem 5.3. However, by using the proposed Algorithm 13, Fed-POE guarantees sublinear

regret bounds while allowing clients the flexibility to select time-varying and personalized

subsets of models for their ensembles.

5.5 Experiments

The present section studies the performance of Fed-POE in Algorithm 14 compared to other

baselines. Experiments are conducted on both image classification and regression tasks. The

performance of federated learning is examined in both convex and non-convex cases. Codes
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are available at https://github.com/pouyamghari/Fed-POE.

5.5.1 Regression

Table 5.1: Average MSE (×10−3) and its stan-
dard deviation (×10−3) across clients for online
regression on Air and WEC datasets.

Methods Air WEC

Local 9.12± 3.59 17.64± 0.44

Ditto 10.65± 5.69 33.88± 16.08

Fed-Rep 10.48± 5.23 35.13± 10.38

Fed-OMD 11.48± 6.84 32.61± 27.38

eM-KOFL 11.51± 6.71 72.29± 62.48

POF-MKL 10.66± 6.07 16.94± 15.92

Fed-POE 9.06± 3.73 11.83± 4.60

The performance of the proposed Fed-POE

is evaluated on online regression tasks. For

these tasks, clients and the server collaborate

to train a random feature kernel-based model,

which is known to be convex [77, 131]. De-

tails about the random feature kernel-based

model used in the experiments can be found

in Appendix E.4. The performance of Fed-

POE is compared with a baseline called Lo-

cal, where clients train their models locally

without participating in federated learning.

Additionally, Fed-POE is compared to per-

sonalized federated learning baselines Ditto [96] and Fed-Rep [30], the online federated learning

baseline Fed-OMD [112], and online federated kernel learning baselines eM-KOFL [78] and

POF-MKL. Mean square error (MSE) is used as the metric to evaluate the performance of al-

gorithms on regression task. MSE for client i can be expressed as MSEi =
1
T

∑T
t=1 (ŷij,t − yi,t)

2

where ŷij,t denotes the prediction of client i at time step t. The performance of algorithms

are tested on two regression datasets Air [161] and WEC [117]. Air dataset is a time-series

dataset that each data sample contains air quality features and the goal is to predict the

concentration of contamination in the air. Each sample in WEC dataset contains features

of different wave energy converters and the goal is to predict power output. Data samples

are distributed non-i.i.d among 400 clients. Time horizon T for both datasets is 250. More

information about datasets and distributed data among clients is presented in Appendix E.4.
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Table 5.1 presents the MSE of algorithms and their standard deviation across clients. For

all algorithms, the learning rates are set to η = ηc = 1/
√
T . Table 5.1 shows that when

data is distributed non-i.i.d. among clients, local model training can achieve higher accuracy

compared to federated learning. For the Air dataset, Local achieves lower MSE than other

federated learning baselines except for Fed-POE. For the WEC dataset, only POF-MKL

achieves lower MSE than Local. This indicates that the performance of federated learning

approaches compared to Local depends on the dataset. By utilizing both federated and

local models, Fed-POE achieves the lowest MSE. Table 5.1 shows that the performance of

Fed-POE relative to other baselines is more consistent across different datasets.

5.5.2 Image Classification

The performance of the proposed Fed-POE on an image classification task is compared with

Local, Ditto [96], Fed-Rep [30], Fed-OMD [112], Fed-ALA [159], and Fed-DS [108]. Fed-ALA

[159] is a personalized federated learning model suitable for deep neural networks, while

Fed-DS [108] is a federated learning algorithm designed to handle data streams. Experiments

are conducted on CIFAR-10 [90] and Fashion MNIST (FMNIST) [152] datasets. CIFAR-10

and FMNIST contain 60, 000 and 70, 000 images. For both CIFAR-10 and FMNIST, a

CNN with a VGG architecture [138], consisting of two blocks, is pre-trained on a subset of

training samples from each dataset. The training datasets are biased towards class 0. More

details about training the CNNs can be found in Appendix E.4. For both the CIFAR-10 and

FMNIST datasets, 10, 000 test samples are sequentially received by clients. There are 20

clients in total, and the data samples are distributed non-i.i.d. among them. For CIFAR-10,

each client is biased towards one specific class, with 55% of the samples belonging to that

class and 5% of the samples belonging to each of the other 9 classes. For FMNIST, each

client is biased towards two classes, and the distribution of samples is time-variant. More

details about the data distribution among clients and experimental setup can be found in

122



Table 5.3: Average accuracy and standard deviation across clients employing Fed-POE for
image classification on CIFAR-10 with varying values of M and batch size b.

M = 0 M = 4 M = 8 M = 16
b = 1 53.80%± 6.71% 62.73%± 8.29% 62.73%± 8.29% 62.73%± 8.26%
b = 10 65.55%± 8.77% 66.50%± 8.00% 66.54%± 8.08% 66.46%± 7.98%
b = 20 65.72%± 8.62% 66.13%± 8.20% 66.64%± 7.94% 66.53%± 8.00%
b = 30 66.83%± 8.54% 66.32%± 7.92% 66.24%± 8.05% 66.39%± 8.02%

Appendix E.4. At each time step, all algorithms employ batch of size 10 for model update.

The learning rates for all algorithms are set to η = 0.01/
√
T and ηc = 1/

√
T . The server

stores models every n = 20 time steps. The metric to evaluate the performance of algorithms

is the accuracy. The accuracy for client i is defined as Accuracyi =
1
T

∑T
t=1 1ŷi,t=yi,t where

ŷi,t denotes the label predicted by client i at time step t.

Table 5.2: Average accuracy and its standard
deviation across clients for image classification.

Methods CIFAR-10 FMNIST

Local 50.35%± 10.11% 78.81%± 2.12%

Ditto 56.87%± 9.06% 78.73%± 1.89%

Fed-Rep 63.86%± 7.97% 79.04%± 1.77%

Fed-OMD 65.09%± 7.39% 74.60%± 6.52%

Fed-ALA 61.48%± 8.88% 75.13%± 6.39%

Fed-DS 64.26%± 7.03% 75.62%± 6.58%

Fed-POE 66.54%± 8.07% 79.23%± 1.88%

Average accuracy and its standard devia-

tion across clients for CIFAR-10 and FM-

NIST are reported in Table 5.2. At each

time step t, clients can store 10 model pa-

rameters. Therefore, M is set to M = 8

for Fed-POE. The results indicate that the

performance of Local relative to federated

learning baselines depends on the dataset.

While Local outperforms all federated base-

lines except for Fed-Rep and Fed-POE on

FMNIST, it obtains the worst accuracy on

CIFAR-10. Conversely, Fed-POE achieves

the highest accuracy for both datasets, indicating that Fed-POE efficiently leverages the

advantages of both federated and local models. To analyze the effect of the number of

models M and batch size b on the Fed-POE performance, experiments are conducted on the
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CIFAR-10 dataset, varying the batch size b and the number of models M selected by each

client to construct the ensemble model. As observed in Table 5.3, the batch size b = 1 results

in the worst accuracy, mainly due to the forgetting process where models overfit to the most

recently observed data. However, increasing the batch size from b = 10 or b = 20 to b = 30

does not significantly improve the accuracy. Larger batch sizes may lead the model to perform

better on older data, as the model is trained on older data over more iterations. Therefore,

this study concludes that a moderate batch size is optimal, considering that increasing the

batch size also increases computational complexity. Table E.1 in Appendix E.4 presents the

accuracy of Fed-POE on both the CIFAR-10 and FMNIST datasets with varying values of M .

The table shows that employing the saved models by the server in Dt improves performance,

as setting M = 0 results in the worst accuracy. Moreover, it can be observed that increasing

M does not necessarily lead to further accuracy improvement. This aligns with the intuition

behind selecting a subset of models rather than using all models.

5.6 Conclusion

This chapter proposed Fed-POE, a personalized federated learning algorithm designed for

online prediction and model fine-tuning. Fed-POE constructs an ensemble using local models

and federated models stored by the server periodically over time. Theoretical analysis

demonstrated that Fed-POE achieves sublinear regret. Experimental results revealed that

the relative performance of local models compared to federated models depends on the

dataset, making the decision between local model training and federated learning challenging.

However, experimental results also show that Fed-POE consistently outperforms both local

and federated models across all datasets. This indicates that Fed-POE effectively leverages

the advantages of both local and federated models.
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Chapter 6

Conclusions

This thesis explored scalability and algorithm design for various challenging scenarios in online

decision-making. Online kernel learning techniques, known for their computational efficiency

and adaptability to dynamic environments, are particularly suitable for online prediction in

non-stationary settings. Chapter 1 introduced online multi-kernel learning algorithms that

enable the use of a large set of kernel-based models while maintaining computational efficiency.

Experiments on regression datasets demonstrated that the proposed algorithms achieve higher

accuracy and greater computational efficiency compared to state-of-the-art online kernel

learning methods. Chapter 2 studied the problem of uncertainty in observations within online

learning. While most existing online learning algorithms cannot achieve sublinear regret

under such uncertainties, it was proven that the proposed algorithms in Chapter 2 attain

sublinear regret.

This thesis investigated personalized online federated learning, focusing on scenarios where

a set of clients collaborates to learn personalized models for online prediction with het-

erogeneously distributed data. Chapter 3 explored the use of online multi-kernel learning

for personalized online federated learning. In the experiments in Chapter 3, the proposed
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algorithm, POF-MKL, outperformed other online federated kernel learning algorithms when

data was distributed heterogeneously among clients. Chapter 4 introduced a novel online

model selection algorithm that leverages federated learning, enabling clients to perform online

model selection using a large set of models beyond their memory capacity. This algorithm

allows for personalized model selection while enabling collaborative model fine-tuning among

clients. Experiments in Chapter 4 demonstrated that the proposed algorithm achieved higher

accuracy than other online model selection and federated learning methods. Finally, Chapter

5 highlighted that in online prediction tasks, the benefit of using online federated learning

over local online model fine-tuning is not always clear. To address this, Chapter 5 proposed a

novel personalized federated learning algorithm in which each client constructs its own model

by combining an ensemble of federated models with its local model for online prediction.

Experiments in Chapter 5 confirmed that the advantage of online federated learning over

local online learning depends on the dataset. However, the proposed algorithm demonstrated

robustness, consistently achieving the highest accuracy across all datasets.
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Appendix A

Supplementary Proofs and

Experiments for Chapter 1

A.1 Supplementary Experimental Results

This section presents more detailed results on MSE and Run time of proposed algorithms

with the change in the number of chosen kernels. Table A.1 lists the MSE and run time

of OMKL-GF with the change in the value of M which is the maximum number of kernels

selected at each time instant by OMKL-GF. For OMKL-SFG and OMKL-SFG-R, the value

of γi is chosen such that for each vertex vi ∈ V , the number of out-neighbors for each node is

M . Tables A.2 and A.3 show both MSE and run time of OMKL-SFG and OMKL-SFG-R

respectively with different values of M .

A.2 Proof of Lemma 1.1

In order to prove Lemma 1.1, we first establish the following lemma as a step stone.
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Table A.1: MSE(×10−3) and run time of OMKL-GF with different M on real datasets.

MSE(×10−3) Run time (s)
Datasets M = 1 M = 5 M = 10 M = 15 M = 20 M = 1 M = 5 M = 10 M = 15 M = 20
Airfoil 49.53 24.95 25.73 26.47 26.91 0.70 1.53 2.56 3.40 4.30
Bias 12.56 7.11 8.15 8.93 9.79 5.44 11.24 17.01 23.17 27.74
Concrete 79.27 34.58 34.45 34.04 33.84 0.55 1.27 2.06 2.82 3.65
Naval 14.60 4.78 5.11 5.69 6.06 3.58 7.61 10.63 14.16 18.11

Table A.2: MSE(×10−3) and run time of OMKL-SFG with different M on real datasets.

MSE(×10−3) Run time (s)
Datasets M = 1 M = 5 M = 10 M = 15 M = 20 M = 1 M = 5 M = 10 M = 15 M = 20
Airfoil 51.03 33.49 32.49 31.82 30.89 1.17 1.36 1.65 1.98 2.27
Bias 12.35 11.78 12.06 12.11 12.13 6.58 9.94 13.57 17.49 21.26
Concrete 79.60 48.03 37.75 33.83 32.59 1.03 1.15 1.34 1.60 1.79
Naval 8.15 6.18 5.35 4.85 4.68 4.45 6.22 9.00 11.69 14.09

Lemma A.1. Let f̂RF,i(.) denote the sequence of estimates generated with a preselected kernel

κi where Fi = {f̂i|f̂i(x) = θ⊤zi(x),∀θ ∈ R2D}. Then, under assumptions (A1) and (A2) the

following bound holds

T∑
t=1

L(f̂RF,i(xt), yt)−
T∑
t=1

L(f̂ ∗
i (xt), yt) ≤

∥θ∗i ∥2

2η
+

T∑
t=1

ηL2

2qi,t
(A.1)

where L is the Lipschitz constant in (A2) and θ∗i is the parameter vector associated with the

best estimator f̂ ∗
i (x) = (θ∗i )

⊤zi(x).

Proof. For θi,t+1 and any fixed θ, it can be written that

∥θi,t+1 − θ∥2 = ∥θi,t − η∇ℓi,t − θ∥2

= ∥θi,t − θ∥2 − 2η∇⊤ℓi,t(θi,t − θ) + ∥η∇ℓi,t∥2. (A.2)
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Table A.3: MSE(×10−3) and run time of OMKL-SFG-R with different M on real datasets.

MSE(×10−3) Run time (s)
Datasets M = 1 M = 5 M = 10 M = 15 M = 20 M = 1 M = 5 M = 10 M = 15 M = 20
Airfoil 106.66 38.03 33.99 32.42 31.21 2.28 2.32 2.81 2.97 3.18
Bias 48.81 14.77 13.24 12.78 12.57 10.87 13.98 17.86 21.13 25.13
Concrete 110.08 50.96 38.58 34.32 32.85 1.91 2.06 2.24 2.51 2.63
Naval 95.37 14.32 7.89 6.03 5.33 6.77 8.55 11.45 13.65 15.84

Furthermore, from the convexity of the loss function with respect to θ in (A1), we can

conclude that

L(θ⊤i,tzi(xt), yt)− L(θ⊤zi(xt), yt) ≤ ∇⊤L(θ⊤i,tzi(xt), yt)(θi,t − θ). (A.3)

Therefore, from (A.3), it can be inferred that

(
L(θ⊤i,tzi(xt), yt)

qi,t
− L(θ

⊤zi(xt), yt)

qi,t

)
1i∈St ≤

∇⊤L(θ⊤i,tzi(xt), yt)

qi,t
(θi,t − θ)1i∈St . (A.4)

Based on (1.35), (A.4) is equivalent to

ℓi,t −
L(θ⊤zi(xt), yt)

qi,t
1i∈St ≤ ∇⊤ℓi,t(θi,t − θ). (A.5)

Combining (A.2) with (A.5), we get

ℓi,t −
L(θ⊤zi(xt), yt)

qi,t
1i∈St ≤

∥θi,t − θ∥2 − ∥θi,t+1 − θ∥2

2η
+

η

2
∥∇ℓi,t∥2. (A.6)
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Taking the expectation of ℓi,t and ∥∇ℓi,t∥2 with respect to 1i∈St , we arrive at

Et[ℓi,t] =
∑
j∈Nin

i

pj,t
L(θ⊤i,tzi(xt), yt)

qi,t
= L(θ⊤i,tzi(xt), yt) (A.7a)

Et[∥∇ℓi,t∥2] =
∑
j∈Nin

i

pj,t
∥∇L(θ⊤i,tzi(xt), yt)∥2

q2i,t
=
∥∇L(θ⊤i,tzi(xt), yt)∥2

qi,t
. (A.7b)

Therefore, taking the expectation with respect to 1i∈St from both sides of (A.6), we obtain

L(θ⊤i,tzi(xt), yt)− L(θ⊤zi(xt), yt)

≤∥θi,t − θ∥
2 − ∥θi,t+1 − θ∥2

2η
+

η∥∇L(θ⊤i,tzi(xt), yt)∥2

2qi,t
. (A.8)

Based on (A2), we have ∥∇L(θ⊤i,tzi(xt), yt)∥2 ≤ L2. Therefore, summing (A.8) over time

from t = 1 to t = T it can be concluded that

T∑
t=1

L(θ⊤i,tzi(xt), yt)−
T∑
t=1

L(θ⊤zi(xt), yt) ≤
∥θ∥2 − ∥θi,T+1 − θ∥2

2η
+

T∑
t=1

ηL2

2qi,t
. (A.9)

Putting θ = θ∗i in (A.9) and taking into account that ∥θi,T+1 − θ∥2 ≥ 0, we can write

T∑
t=1

L(θ⊤i,tzi(xt), yt)−
T∑
t=1

L(θ⊤zi(xt), yt) ≤
∥θ∗i ∥2

2η
+

T∑
t=1

ηL2

2qi,t
(A.10)

which completes the proof of Lemma A.1.

Lemma A.2. Under (A1) and (A2), the following holds

T∑
t=1

Et[L(f̂RF(xt), yt)]−
T∑
t=1

L(f̂RF,i(xt), yt) ≤
lnN

η
+ ηeJT +

ηNT

2(1− ηe)
(A.11)

where η is the learning rate, ηe is the exploration rate, qi,t =
∑J

j=1 pj,t
(
1− (1− πij,t)

M
)
and

N denotes the number of kernels.
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Proof. Let Wt =
∑N

n=1wn,t. For any t we find

Wt+1

Wt

=
J∑

j=1

pj,t
Wt+1

Wt

=
J∑

j=1

pj,t

N∑
i=1

wi,t+1

Wt

=
J∑

j=1

pj,t

N∑
i=1

wi,t

Wt

exp(−ηℓi,t). (A.12)

Based on (1.3), we have

wi,t

Wt

=
πij,t − ηje

N

1− ηje
,∀j ∈ {1, ..., J}. (A.13)

Combining (A.12) with (A.13) obtains

Wt+1

Wt

=
J∑

j=1

pj,t

N∑
i=1

πij,t − ηje
N

1− ηje
exp(−ηℓi,t). (A.14)

Using the inequality e−x ≤ 1− x+ 1
2
x2,∀x ≥ 0, (A.14) leads to

Wt+1

Wt

≤
J∑

j=1

pj,t

N∑
i=1

πij,t − ηje
N

1− ηje

(
1− ηℓi,t +

1

2
(ηℓi,t)

2

)
. (A.15)

Taking logarithm from both sides of inequality (A.15), and use the fact that 1 + x ≤ ex, we

have

ln
Wt+1

Wt

≤
J∑

j=1

pj,t

N∑
i=1

πij,t − ηje
N

1− ηje

(
−ηℓi,t +

1

2
(ηℓi,t)

2

)
. (A.16)

Summing (A.16) over t from 1 to T results in

ln
WT+1

W1

≤
T∑
t=1

J∑
j=1

pj,t

N∑
i=1

πij,t − ηje
N

1− ηje

(
−ηℓi,t +

1

2
(ηℓi,t)

2

)
. (A.17)

Furthermore, recall the updating rule of wi,T+1 in (1.37), for any i we have

ln
WT+1

W1

≥ ln
wi,T+1

W1

= − lnN −
T∑
t=1

ηℓi,t. (A.18)

144



Combining (A.17) with (A.18) results in

T∑
t=1

J∑
j=1

pj,t

N∑
i=1

πij,t

1− ηje
(ηℓi,t)−

T∑
t=1

ηℓi,t

≤ lnN +
T∑
t=1

J∑
j=1

pj,t

N∑
i=1

ηje
N

1− ηje
(ηℓi,t) +

T∑
t=1

J∑
j=1

pj,t

N∑
i=1

πij,t − ηje
N

1− ηje

(
1

2
(ηℓn,t)

2

)
. (A.19)

Multiplying both sides by 1−ηJe
η

, we arrive at

T∑
t=1

J∑
j=1

pj,t

N∑
i=1

πij,t
1− ηJe
1− ηje

ℓi,t −
T∑
t=1

(1− ηJe )ℓi,t

≤1− ηJe
η

lnN +
T∑
t=1

J∑
j=1

pj,t

N∑
i=1

ηje(1− ηJe )

N(1− ηje)
ℓi,t

+
T∑
t=1

J∑
j=1

pj,t

N∑
i=1

(1− ηJe )(πij,t − ηje
N
)

1− ηje
(
η

2
ℓ2i,t). (A.20)

Also, using the fact that 0 < ηe ≤ 1 we can conclude that 1 − ηJe < 1 and for all j ≥ 1,

ηje ≤ ηe, the RHS of (A.20) can be upper bounded by

1− ηJe
η

lnN +
T∑
t=1

J∑
j=1

pj,t

N∑
i=1

ηje(1− ηJe )

N(1− ηje)
ℓi,t +

T∑
t=1

J∑
j=1

pj,t

N∑
i=1

(1− ηJe )(πij,t − ηje
N
)

1− ηje
(
η

2
ℓ2i,t)

≤ lnN

η
+

T∑
t=1

J∑
j=1

pj,t

N∑
i=1

ηe(1− ηJe )

N(1− ηe)
ℓi,t +

T∑
t=1

J∑
j=1

pj,t

N∑
i=1

πij,t − ηje
N

1− ηje
(
η

2
ℓ2i,t). (A.21)

Since 1− ηJe = (1− ηe)(1 + . . .+ ηJ−1
e ) and ηe ≤ 1, the following bound holds for the second

term on the RHS of (A.21)

T∑
t=1

J∑
j=1

pj,t

N∑
i=1

ηe(1− ηJe )

N(1− ηe)
ℓi,t =

T∑
t=1

J∑
j=1

pj,t

N∑
i=1

ηe(1 + . . .+ ηJ−1
e )

N
ℓi,t

≤
T∑
t=1

J∑
j=1

pj,t

N∑
i=1

ηeJ

N
ℓi,t. (A.22)
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Meanwhile, as ηJe ≤ ηje for all j, 1 ≤ j ≤ J , the LHS of (A.20) can be bounded by

T∑
t=1

J∑
j=1

pj,t

N∑
i=1

πij,t
1− ηJe
1− ηje

ℓi,t −
T∑
t=1

(1− ηJe )ℓi,t

≥
T∑
t=1

J∑
j=1

pj,t

N∑
i=1

πij,tℓi,t −
T∑
t=1

ℓi,t. (A.23)

Combining (A.20), (A.21), (A.22) and (A.23), we can conclude that

T∑
t=1

J∑
j=1

pj,t

N∑
i=1

πij,tℓi,t −
T∑
t=1

ℓi,t

≤ lnN

η
+

T∑
t=1

J∑
j=1

pj,t

N∑
i=1

ηeJ

N
ℓi,t +

T∑
t=1

J∑
j=1

pj,t

N∑
i=1

πij,t − ηje
N

1− ηje
(
η

2
ℓ2i,t). (A.24)

Recall the probability of observing the loss of the i-th kernel at time t given in (1.21), the

expected first and second moments of ℓi,t in (1.16) given the losses incurred up to time instant

t− 1, i.e., {L(f̂RF(xτ ), yτ )}t−1
τ=1 can be written as

E[ℓi,t] =
J∑

j=1

pj,t
(
1− (1− πij,t)

M
) L(f̂RF,i(xt), yt)

qi,t
= L(f̂RF,i(xt), yt) (A.25a)

E[ℓ2n,t] =
J∑

j=1

pj,t
(
1− (1− πij,t)

M
) L2(f̂RF,i(xt), yt)

q2i,t
=
L2(f̂RF,i(xt), yt)

qi,t
≤ 1

qi,t
. (A.25b)

Based on (A.25b), the third term in the right hand side of (A.24) can be bounded as follows

T∑
t=1

J∑
j=1

pj,t

N∑
i=1

πij,t − ηje
N

1− ηje
(
η

2
ℓ2n,t) ≤

T∑
t=1

J∑
j=1

pj,t

N∑
i=1

πij,t − ηje
N

1− ηje
(

η

2qi,t
). (A.26)

Taking the expected value of (A.24) at each time t given{L(f̂RF(xτ ), yτ )}t−1
τ=1 and combining
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with (A.25a) and (A.26) we have

T∑
t=1

J∑
j=1

pj,t

N∑
i=1

πij,tL(f̂RF,i(xt), yt)−
T∑
t=1

L(f̂RF,i(xt), yt)

≤ lnN

η
+

T∑
t=1

J∑
j=1

pj,t

N∑
i=1

ηeJ

N
L(f̂RF,i(xt), yt) +

T∑
t=1

J∑
j=1

pj,t

N∑
i=1

πij,t − ηje
N

1− ηje
(

η

2qi,t
). (A.27)

Since
πij,t− η

j
e

N

(1−ηje)qi,t
≤ πij,t

(1−ηe)qi,t
, replace

πij,t− η
j
e

N

qi,t(1−ηje)
by

πij,t

(1−ηe)qi,t
, the inequality in (A.27) still holds

T∑
t=1

J∑
j=1

pj,t

N∑
i=1

πij,tL(f̂RF,i(xt), yt)−
T∑
t=1

L(f̂RF,i(xt), yt)

≤ lnN

η
+

T∑
t=1

J∑
j=1

pj,t

N∑
i=1

ηeJ

N
L(f̂RF,i(xt), yt) +

η

2(1− ηe)

T∑
t=1

J∑
j=1

pj,t

N∑
i=1

πij,t

qi,t
. (A.28)

Moreover, based on (1.21), the probability qi,t can be bounded from below as

qi,t =
J∑

j=1

pj,t
(
1− (1− πij,t)

M
)

=
J∑

j=1

pj,tπij,t

(
1 + (1− πij,t) + . . .+ (1− πij,t)

M−1
)
>

J∑
j=1

pj,tπij,t (A.29)

Therefore, according to (A.29), for the third term in the right hand side of (A.28) we have

η

2(1− ηe)

T∑
t=1

J∑
j=1

pj,t

N∑
i=1

πij,t

qi,t
<

ηNT

2(1− ηe)
. (A.30)

Furthermore, based on that L(f̂RF,i(xt), yt) ≤ 1 in (A2), the following inequality holds

T∑
t=1

J∑
j=1

pj,t

N∑
i=1

ηeJ

N
L(f̂RF,i(xt), yt) ≤

T∑
t=1

J∑
j=1

pj,t

N∑
i=1

ηeJ

N
= ηeJT. (A.31)
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From (A.28), (A.30) and (A.31), we can conclude that

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

πij,tL(f̂RF,i(xt), yt)−
T∑
t=1

L(f̂RF,i(xt), yt)

≤ lnN

η
+ ηeJT +

ηNT

2(1− ηe)
. (A.32)

According to the procedure of generating the graph Bt which is presented in Algorithm 2, for

each selective node vs,j a subset of kernels is chosen using PMF πij,t in M independent trials.

In fact, a subset of kernels is assigned to each node vs,j in M independent trials and in each

trial one kernel is assigned and its associated entry in the sub-adjacency matrix A becomes 1.

Now, let bi represents the frequency that the i-th kernel is chosen in M independent trials.

Thus, {bi}Ni=1 can be viewed as the solution to the following linear equation

b1 + . . .+ bN = M, s.t. bi ≥ 0, bi ∈ N (A.33)

where N denotes the set of natural numbers. There are
(
N+M−1

N

)
different solutions for (A.33).

Let, {bi,k}Ni=1 denotes the k-th set of solution for (A.33). Based on Jensen’s inequality, for

the expected value of L(f̂RF(xt), yt) we have

Et[L(f̂RF(xt), yt)] =
J∑

j=1

pj,t

(N+M−1
N )∑

k=1

(
N∏
i=1

(πij,t)
bi,k

)
L(
∑
i∈St

w̄i,tf̂RF,i(xt), yt)

≤
J∑

j=1

pj,t

(N+M−1
N )∑

k=1

(
N∏
i=1

(πij,t)
bi,k

)∑
i∈St

w̄i,tL(f̂RF,i(xt), yt). (A.34)
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Also, considering (A.34) and the fact that w̄i,t ≤ 1, we can conclude that

Et[L(f̂RF(xt), yt)] ≤
J∑

j=1

pj,t

(N+M−1
N )∑

k=1

(
N∏
i=1

(πij,t)
bi,k

)∑
i∈St

w̄i,tL(f̂RF,i(xt), yt)

≤
J∑

j=1

pj,t

(N+M−1
N )∑

k=1

(
N∏
i=1

(πij,t)
bi,k

)∑
i∈St

L(f̂RF,i(xt), yt). (A.35)

Note that the number of ways to solve (A.33) when the i-th kernel is chosen for at least one

time equals to the number of ways to solve the following problem

b̃1,i + . . .+ b̃N,i = M − 1, s.t. b̃m,i ≥ 0, b̃m,i ∈ N. (A.36)

There are
(
N+M−2

N

)
different solutions for (A.36). Let {b̃(k)m,i}Ni=1 denotes k-th set of solution

for (A.36). Therefore, based on this, from (A.35) we can conclude the following equality

J∑
j=1

pj,t

(N+M−1
N )∑

k=1

(
N∏
i=1

(πij,t)
bi,k

)∑
i∈St

L(f̂RF,i(xt), yt)

=
J∑

j=1

pj,t

N∑
i=1

πij,t

(N+M−2
N )∑

k=1

(
N∏

m=1

(πmj,t)
b̃
(k)
m,i

)
L(f̂RF,i(xt), yt) (A.37)

where
∑(N+M−2

N )
k=1

(∏N
m=1(πmj,t)

b̃
(k)
m,i

)
is the total probability of all

(
N+M−2

N

)
possible solutions

of (A.36). Therefore,
∑(N+M−2

N )
k=1

(∏N
m=1(πmj,t)

b̃
(k)
m,n

)
= 1. Substituting (A.37) into (A.34), we

obtain

Et[L(f̂RF(xt), yt)] ≤
J∑

j=1

pj,t

N∑
i=1

πij,tL(f̂RF,i(xt), yt). (A.38)

Combining (A.32) with (A.38) leads to

T∑
t=1

Et[L(f̂RF(xt), yt)]−
T∑
t=1

L(f̂RF,i(xt), yt) ≤
lnN

η
+ ηeJT +

ηNT

2(1− ηe)
(A.39)
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which concludes to proof of Lemma A.2.

From Lemma A.1 and Lemma A.2, we conclude that for any i : 1 ≤ i ≤ N we have

T∑
t=1

Et[L(f̂RF(xt), yt)]−
T∑
t=1

L(f̂ ∗
i (xt), yt)

≤ lnN

η
+
∥θ∗i ∥2

2η
+ ηeJT +

ηNT

2(1− ηe)
+

η

2

T∑
t=1

L2

qi,t
. (A.40)

From (A.29) and the facts that pj,t > ηe
J

and πij,t > ηje
N
, the following inequality can be

concluded

qi,t ≥
J∑

j=1

pj,tπij,t > p1,tπi1,t >
η2e
NJ

. (A.41)

Therefore, we find qi,t >
η2e
NJ

, ∀i : 1 ≤ i ≤ N , ∀t : 1 ≤ t ≤ T . Combining (A.40) and (A.41)

we can conclude that

T∑
t=1

Et[L(f̂RF(xt), yt)]−
T∑
t=1

L(f̂ ∗
i (xt), yt)

<
lnN

η
+
∥θ∗i ∥2

2η
+ ηeJT +

ηNT

2(1− ηe)
+

ηL2NJT

2η2e
. (A.42)

Hence, Lemma 1.1 is proved.

A.3 Proof of Theorem 1.1

To prove Theorem 1.1, the following lemma is exploited.

Lemma A.3. For the optimal function estimator in Hi expressed as f ∗
i (x) :=

∑T
t=1 α

∗
i,tκi(x,xt)

and its RF-based approximant f̂ ∗
i (x,xt) =

∑T
t=1 α

∗
i,tz

⊤
i (x)zi(xt), the following bound holds
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with probability at least 1− 28(σi

ϵ
)2 exp(− Dϵ2

4d+8
)

∣∣∣∣∣
T∑
t=1

L(f̂ ∗
i (xt), yt)−

T∑
t=1

L(f ∗
i (xt), yt)

∣∣∣∣∣ ≤ ϵLTC (A.43)

where the equality happens if we have C := maxi
∑T

t=1 |α∗
i,t|.

Proof. For a given shift invariant kernel κi, the maximum point-wise error of the random fea-

ture kernel approximant is uniformly bounded with probability at least 1−28(σi

ϵ
)2 exp(− Dϵ2

4d+8
),

by [123]

sup
xj ,xk∈X

|z⊤i (xj)zi(xk)− κi(xj,xk)| < ϵ (A.44)

where σ2
i is the second moment of the Fourier transform of κi. Therefore, under (A3) this im-

plies that supxτ ,xt∈X z⊤i (xτ )zi(xt) ≤ 1+ϵ holds with probability at least 1−28(σi

ϵ
)2 exp(− Dϵ2

4d+8
).

Let C := maxn
∑T

t=1 |α∗
n,t|. Hence, ∥θ∗j∥2 can be bounded from above as

∥θ∗j∥2 ≤ ∥
T∑
t=1

α∗
j,tzj(xt)∥2 ≤ |

T∑
t=1

T∑
τ=1

α∗
j,tα

∗
j,τz

⊤
j (xt)zj(xτ )| ≤ (1 + ϵ)C2 (A.45)

with probability at least 1−28(σi

ϵ
)2 exp(− Dϵ2

4d+8
). Moreover, using the triangle inequality yields

∣∣∣∣∣
T∑
t=1

L(f̂ ∗
j (xt), yt)−

T∑
t=1

L(f ∗
j (xt), yt)

∣∣∣∣∣ ≤
T∑
t=1

∣∣∣L(f̂ ∗
j (xt), yt)− L(f ∗

j (xt), yt)
∣∣∣ . (A.46)

According to Lipschitz continuity of the loss function, it can be concluded that

T∑
t=1

∣∣∣L(f̂ ∗
j (xt), yt)− L(f ∗

j (xt), yt)
∣∣∣

≤
T∑
t=1

L

∣∣∣∣∣
T∑

τ=1

α∗
j,τz

⊤
j (xτ )zn(xt)−

T∑
τ=1

α∗
j,τκj(xτ ,xt)

∣∣∣∣∣. (A.47)
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Using the Cauchy-Schwartz inequality, we can write

T∑
t=1

L

∣∣∣∣∣
T∑

τ=1

α∗
j,τz

⊤
j (xτ )zn(xt)−

T∑
τ=1

α∗
j,τκj(xτ ,xt)

∣∣∣∣∣
≤

T∑
t=1

L

T∑
τ=1

|α∗
j,τ |
∣∣z⊤j (xτ )zj(xt)− κj(xτ ,xt)

∣∣. (A.48)

Using (A.44) and (A.48), we can conclude that the inequality

∣∣∣∣∣
T∑
t=1

L(f̂ ∗
j (xt), yt)−

T∑
t=1

L(f ∗
j (xt), yt)

∣∣∣∣∣ ≤ ϵLTC (A.49)

holds with probability at least 1− 28(σi

ϵ
)2 exp(− Dϵ2

4d+8
).

Combining Lemma 1.1 with Lemma A.3 and (A.45), it can be concluded that the following

bound holds with probability at least 1− 28(σn

ϵ
)2 exp(− Dϵ2

4d+8
),

T∑
t=1

Et[L(f̂RF(xt), yt)]−
T∑
t=1

L(f ∗
i (xt), yt)

=
T∑
t=1

Et[L(f̂RF(xt), yt)]−
T∑
t=1

L(f̂ ∗
i (xt), yt) +

T∑
t=1

L(f̂ ∗
i (xt), yt)−

T∑
t=1

L(f ∗
i (xt), yt)

<
lnN

η
+
∥θ∗i ∥2

2η
+ ηeJT + ϵLTC +

ηNT

2(1− ηe)
+

ηL2NJT

2η2e
(A.50)

which completes the proof of Theorem 1.1.

A.4 Proof of Lemma 1.3

According to (1.2), we obtain

1

Ud

∫
|f̂i(x)− f̂j(x)|2dx =

1

Ud

∫
|

T∑
t=1

αi,tκi(x,xt)−
T∑
t=1

αj,tκj(x,xt)|2dx. (A.51)
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Applying Arithmetic Mean-Geometric Mean inequality on the right hand side of (A.51), we

find

1

Ud

∫
|f̂i(x)− f̂j(x)|2dx

≤ 2

Ud

∫ (
|

T∑
t=1

αi,t (κi(x,xt)− κj(x,xt))|2 + |
T∑
t=1

(αj,t − αi,t)κj(x,xt)|2
)
dx. (A.52)

Using Cauchy-Schwartz inequality, (A.52) can be further relaxed to

1

Ud

∫
|f̂i(x)− f̂j(x)|2dx

≤ 2

Ud

∫
(

T∑
t=1

|αi,t|2)(
T∑
t=1

|κi(x,xt)− κj(x,xt)|2)dx

+
2

Ud

∫
(

T∑
t=1

|αj,t − αi,t|2)(
T∑
t=1

|κj(x,xt)|2)dx. (A.53)

Considering the fact that Cm := maxi
∑T

t=1 |αi,t|2, from (A.53) it can be written that

1

Ud

∫
|f̂i(x)− f̂j(x)|2dx

≤2Cm

Ud

T∑
t=1

∫
|κi(x,xt)− κj(x,xt)|2dx+

4Cm

Ud

T∑
t=1

∫
|κj(x,xt)|2dx. (A.54)

Furthermore, based on (A.54) and the fact that |κj(x,xt)|2 ≤ 1, we can infer that

1

Ud

∫
|f̂i(x)− f̂j(x)|2dx ≤

2Cm

Ud

T∑
t=1

(∆S(κi, κj) + 2Ud) (A.55)

which proves Lemma 1.3.
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A.5 Proof of Theorem 1.2

Furthermore, in order to prove Theorem 1.2, the following intermediate Lemma is also proved.

Lemma A.4. The following inequality holds under (A1) and (A2)

T∑
t=1

Et[L(f̂RF(xt), yt)]−
T∑
t=1

L(f̂RF,i(xt), yt) ≤
lnN

η
+ η(1 +

N

2
− η

2
)T (A.56)

where Li(f̂RF(xt), yt) denote the loss of function approximation when vi is drawn.

Proof. For any t, we can write

Ut+1

Ut

=
N∑
i=1

ui,t+1

Ut

=
N∑
i=1

ui,t

Ut

exp(−ηℓ̂i,t). (A.57)

Based on (1.33), we have
ui,t

Ut
=

pi,t− ξ
|D|1i∈D

1−ξ
and as a result (A.57) can be rewritten as

Ut+1

Ut

=
N∑
i=1

pi,t − ξ
|D|1i∈D

1− ξ
exp(−ηℓ̂i,t). (A.58)

Using the inequality e−x ≤ 1− x+ 1
2
x2,∀x ≥ 0 and (A.58), it can be concluded that

Ut+1

Ut

≤
N∑
i=1

pi,t − ξ
|D|1i∈D

1− ξ

(
1− ηℓ̂i,t +

1

2
(ηℓ̂i,t)

2

)
. (A.59)

Taking logarithm from both sides of inequality (A.59), and use the fact that 1 + x ≤ ex, we

arrive at

ln
Ut+1

Ut

≤
N∑
i=1

pi,t − ξ
|D|1i∈D

1− ξ

(
−ηℓ̂i,t +

1

2
(ηℓ̂i,t)

2

)
. (A.60)
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Summing (A.60) over t leads to

ln
UT+1

U1

≤
T∑
t=1

N∑
i=1

pi,t − ξ
|D|1i∈D

1− ξ

(
−ηℓ̂i,t +

1

2
(ηℓ̂i,t)

2

)
. (A.61)

Furthermore, ln UT+1

U1
can be bounded from below as

ln
UT+1

U1

≥ ln
ui,T+1

U1

= −
T∑
t=1

ηℓ̂i,t − lnN (A.62)

for any i such that 1 ≤ i ≤ N . Combining (A.61) with (A.62), we obtain

T∑
t=1

N∑
i=1

pi,tη

1− ξ
ℓ̂i,t −

T∑
t=1

ηℓ̂i,t

≤ lnN +
T∑
t=1

N∑
i=1

ηξ1i∈D

(1− ξ)|D|
ℓ̂i,t +

T∑
t=1

N∑
i=1

pi,t − ξ
|D|1i∈D

1− ξ

(
1

2
(ηℓ̂i,t)

2

)
. (A.63)

Multiplying both sides by 1−ξ
η

it can be concluded that

T∑
t=1

N∑
i=1

pi,tℓ̂i,t −
T∑
t=1

ℓ̂i,t

≤ lnN

η
+

T∑
t=1

N∑
i=1

ξ1i∈D

|D|
ℓ̂i,t +

T∑
t=1

N∑
i=1

η(pi,t − ξ
|D|1i∈D)

2
ℓ̂2i,t. (A.64)

In addition, taking the expectation of ℓ̂i,t and ℓ̂2i,t, we get

Et[ℓ̂i,t] = pi,t
L(f̂RF,i(xt), yt)

pi,t
= L(f̂RF,i(xt), yt) (A.65a)

Et[ℓ̂
2
i,t] = pi,t

L2(f̂RF,i(xt), yt)

p2i,t
=
L2(f̂RF,i(xt), yt)

pi,t
≤ 1

pi,t
(A.65b)
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Thus, taking the expectation from both sides of (A.64) leads to

T∑
t=1

N∑
i=1

pi,tL(f̂RF(xt), yt)−
T∑
t=1

L(f̂RF,i(xt), yt)

≤ lnN

η
+

T∑
t=1

N∑
i=1

ξ1i∈D

|D|
L(f̂RF(xt), yt) +

T∑
t=1

N∑
i=1

η(pi,t − ξ
|D|1i∈D)

2pi,t
. (A.66)

Taking into account that L(f̂RF(xt), yt) ≤ 1 and based on (A.66) we can write

T∑
t=1

N∑
i=1

pi,tL(f̂RF(xt), yt)−
T∑
t=1

L(f̂RF,i(xt), yt)

≤ lnN

η
+ ξT +

T∑
t=1

N∑
i=1

η(pi,t − ξ
|D|1i∈D)

2pi,t
. (A.67)

Moreover, using (A.67) and the fact that pi,t ≤ 1, it can be concluded that

T∑
t=1

N∑
i=1

pi,tL(f̂RF(xt), yt)−
T∑
t=1

L(f̂RF,i(xt), yt) ≤
lnN

η
+ (ξ +

ηN

2
− ηξ

2
)T. (A.68)

Furthermore, the expected loss incurred by OMKL-SFG given observed losses in prior time

instants can be expressed as

Et[L(f̂RF(xt), yt)] =
N∑
i=1

pi,tL(
∑

j∈Nout
i,t

wj,t∑
k∈Nout

i,t
wk,t

f̂RF,j(xt), yt)

=
N∑
i=1

pi,tL(f̂RF(xt), yt). (A.69)

Therefore, from (A.68) and (A.69), it can be inferred that

T∑
t=1

Et[L(f̂RF(xt), yt)]−
T∑
t=1

L(f̂RF,i(xt), yt) ≤
lnN

η
+ (ξ +

ηN

2
− ηξ

2
)T (A.70)

which establishes the Lemma A.4.
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Furthermore, to prove Theorem 1.2, we prove the following Lemma.

Lemma A.5. For any vi ∈ V and any j ∈ Nout
i , it can be written that

T∑
t=1

Li(f̂RF(xt), yt)−
T∑
t=1

L(f̂RF,j(xt), yt) ≤
ln |Nout

i |
η

+
η

2

T∑
t=1

1

q̄i,t
(A.71)

where 1
q̄i,t

=
∑

j∈Nout
i

wj,t

qj,tWi,t
.

Proof. Let Wi,t =
∑

j∈Nout
i

wj,t. For vi ∈ V we find

Wi,t+1

Wi,t

=
∑

j∈Nout
i

wj,t+1

Wi,t

=
∑

j∈Nout
i

wj,t

Wi,t

exp(−ηℓj,t). (A.72)

The following inequality can be obtained using the inequality e−x ≤ 1− x+ 1
2
x2,∀x ≥ 0 as

follows

Wi,t+1

Wi,t

≤
∑

j∈Nout
i

wj,t

Wi,t

(
1− ηℓj,t +

1

2
(ηℓj,t)

2

)
. (A.73)

Taking the logarithm from both sides of (A.73) and using the inequality 1 + x ≤ ex, we get

ln
Wi,t+1

Wi,t

≤
∑

j∈Nout
i

wj,t

Wi,t

(
−ηℓj,t +

1

2
(ηℓj,t)

2

)
. (A.74)

Summing (A.74) over time, we obtain

ln
Wi,T+1

Wi,1

≤
T∑
t=1

∑
j∈Nout

i

wj,t

Wi,t

(
−ηℓj,t +

1

2
(ηℓj,t)

2

)
. (A.75)

Moreover, for any j ∈ Nout
i , ln

Wi,T+1

Wi,1
can be bounded from below as

ln
Wi,T+1

Wi,1

≥ ln
wj,T+1

Wi,1

= −
T∑
t=1

ηℓj,t − ln |Nout
i | (A.76)
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Combining (A.75) with (A.76), it can concluded that

T∑
t=1

∑
j∈Nout

i

wj,t

Wi,t

ℓj,t −
T∑
t=1

ℓj,t ≤
ln |Nout

i |
η

+
η

2

T∑
t=1

∑
j∈Nout

i

wj,t

Wi,t

ℓ2j,t. (A.77)

For the expected value of ℓi,t and ℓ2i,t, we have

Et[ℓj,t] =
∑

k∈Nout
i

pk,t
L(θ⊤j,tzj(xt), yt)

qj,t
= L(θ⊤j,tzj(xt), yt) (A.78a)

Et[ℓ
2
j,t] =

∑
k∈Nout

i

pk,t
L2(θ⊤j,tzj(xt), yt)

q2j,t
=
L2(θ⊤j,tzj(xt), yt)

qj,t
≤ 1

qj,t
(A.78b)

Taking the expectation from (A.77), we get

T∑
t=1

∑
j∈Nout

i

wj,t

Wi,t

L(θ⊤j,tzj(xt), yt)−
T∑
t=1

L(θ⊤j,tzj(xt), yt)

≤ ln |Nout
i |

η
+

η

2

T∑
t=1

∑
j∈Nout

i

wj,t

qj,tWi,t

. (A.79)

Let 1
q̄i,t

=
∑

j∈Nout
i

wj,t

qj,tWi,t
which is the weighted sum of 1

qj,t
such that j ∈ Nout

i . Furthermore,

according to (1.34), the loss Li(f̂RF(xt), yt) can be written as

Li(f̂RF(xt), yt) = L(
∑

j∈Nout
i

wj,t

Wi,t

f̂RF,j(xt), yt). (A.80)

Based on the Jensen’s inequality Li(f̂RF(xt), yt) can be bounded from above as

Li(f̂RF(xt), yt) ≤
∑

j∈Nout
i

wj,t

Wi,t

L(f̂RF,j(xt), yt). (A.81)
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Using (A.79) and (A.81), we can conclude that

T∑
t=1

Li(f̂RF(xt), yt)−
T∑
t=1

L(θ⊤j,tzj(xt), yt) ≤
ln |Nout

i |
η

+
η

2

T∑
t=1

1

q̄i,t
(A.82)

which proves the Lemma A.5.

Combining Lemma A.4 with Lemma A.5, for any vj ∈ V and any i ∈ Nin
j we obtain

T∑
t=1

Et[L(f̂RF(xt), yt)]−
T∑
t=1

L(f̂RF,j(xt), yt)

≤ lnN |Nout
i |

η
+ (ξ +

ηN

2
− ηξ

2
)T +

η

2

T∑
t=1

1

q̄i,t
. (A.83)

In addition, combining Lemma A.1 with (A.83), for any vj ∈ V and any i ∈ Nin
j we can write

T∑
t=1

Et[L(f̂RF(xt), yt)]−
T∑
t=1

L(f̂ ∗
j (xt), yt)

≤ lnN |Nout
i |

η
+
∥θ∗j∥2

2η
+ (ξ +

ηN

2
− ηξ

2
)T +

η

2

T∑
t=1

(
1

q̄i,t
+

L2

qj,t
) (A.84)

We use the above inequality as a step-stone to prove Theorem 1.2.

Therefore, combining (A.84) with (A.45) and (A.49), it can be inferred that the following

inequality

T∑
t=1

Et[L(f̂RF(xt), yt)]−
T∑
t=1

L(f ∗
j (xt), yt)

≤ lnN |Nout
i |

η
+

(1 + ϵ)C2

2η
+ ϵLTC + (ξ +

ηN

2
− ηξ

2
)T +

η

2

T∑
t=1

(
1

q̄i,t
+

L2

qj,t
) (A.85)

holds for any vj ∈ V and any i ∈ Nin
j with probability at least 1− 28(σi

ϵ
)2 exp(− Dϵ2

4d+8
). This

completes the proof of Theorem 1.2.
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A.6 Proof of Theorem 1.3

According to Theorem 1.2, the following inequality

T∑
t=1

Et[L(f̂RF(xt), yt)]−
T∑
t=1

L(f ∗(xt), yt)

≤ lnN |Nout
i |

η
+

(1 + ϵ)C2

2η
+ ϵLTC + (ξ +

ηN

2
− ηξ

2
)T +

η

2

T∑
t=1

(
1

q̄i,t
+

L2

qj∗,t
) (A.86)

holds with probability at least 1−28(σj∗

ϵ
)2 exp(− Dϵ2

4d+8
) for any ϵ > 0 and any i ∈ Nin

j∗ . When G ′t

is generated by Algorithm 6 as the feedback graph, D′
t is a dominating set of G ′t. Furthermore,

k ∈ D′
t if pk,t ≥ β. Based on (1.36), if i ∈ Nin

k,t (i.e. in-neighborhood of vk in G ′t), qk,t ≥ pi,t.

Also, considering the condition β ≤ 1
N
, it is ensured that D′

t is not an empty set. Moreover,

each node vk in G ′t is out-neighbor of at least one node in D′
t. Thus, we can conclude that

qk,t ≥ β, ∀vk ∈ V . Hence, it can be written that

T∑
t=1

(
1

q̄i,t
+

L2

qj∗,t
) ≥

T∑
t=1

(
∑

j∈Nout
i

wj,t

Wi,tβ
+

L2

β
) =

(L2 + 1)T

β
. (A.87)

Furthermore, since |Nout
i | ≤ N , we have N |Nout

i | ≤ N2. Combining (A.86) with (A.87), it

can be inferred that in this case the stochastic regret of OMKL-SFG-R satisfies

T∑
t=1

Et[L(f̂RF(xt), yt)]−
T∑
t=1

L(f ∗(xt), yt)

≤ 2 lnN

η
+

(1 + ϵ)C2

2η
+ ϵLTC + (ξ +

η

2

L2 +Nβ + 1

β
− ηξ

2
)T (A.88)

with probability at least 1 − 28(
σj∗

ϵ
)2 exp(− Dϵ2

4d+8
) under (A1)-(A3) for any ϵ > 0 and any

β ≤ (1− ξ)maxk
uk,t

Ut
+ ξ

N
. This completes the proof of Theorem 1.3.
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Appendix B

Supplementary Proofs for Chapter 2

B.1 Proof of Theorem 2.1

Recall that Wt =
∑K

i=1wi,t (below (1.35)), we have

Wt+1

Wt

=
K∑
i=1

wi,t+1

Wt

=
K∑
i=1

wi,t

Wt

exp
(
−ηℓ̂t(vi)

)
. (B.1)

According to (1.35), we can write

wi,t

Wt

=
πi,t − ηF̄i,t

1− η
(B.2)

where F̄i,t =
Fi,t∑

j∈Dt
Fj,t
I(vi ∈ Dt). Substituting (B.2) into (B.1) obtains

Wt+1

Wt

=
K∑
i=1

πi,t − ηF̄i,t

1− η
exp

(
−ηℓ̂t(vi)

)
. (B.3)
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Using the inequality e−x ≤ 1− x+ 1
2
x2,∀x ≥ 0, the following inequality holds

Wt+1

Wt

≤
K∑
i=1

πi,t − ηF̄i,t

1− η

(
1− ηℓ̂t(vi) +

1

2
(ηℓ̂t(vi))

2

)
. (B.4)

Taking logarithm of both sides of (B.4) and using the fact that 1 + x ≤ ex, we have

ln
Wt+1

Wt

≤
K∑
i=1

πi,t − ηF̄i,t

1− η

(
−ηℓ̂t(vi) +

1

2
(ηℓ̂t(vi))

2

)
. (B.5)

Summing (B.5) over time obtains

ln
WT+1

W1

≤
T∑
t=1

K∑
i=1

πi,t − ηF̄i,t

1− η

(
−ηℓ̂t(vi) +

1

2
(ηℓ̂t(vi))

2

)
. (B.6)

Furthermore, the left hand side of (B.5) can be bounded from below as

ln
WT+1

W1

≥ ln
wi,T+1

W1

= −η
T∑
t=1

ℓ̂t(vi)− lnK (B.7)

where the equality holds due to the fact that W1 =
∑K

j=1 wj,1 = K. Then, (B.6) and (B.7)

lead to

T∑
t=1

K∑
i=1

ηπi,t

(1− η)
ℓ̂t(vi)− η

T∑
t=1

ℓ̂t(vi) ≤ lnK +
T∑
t=1

∑
i∈Dt

η2F̄i,t

(1− η)
ℓ̂t(vi)

+
T∑
t=1

K∑
i=1

η2
πi,t − ηF̄i,t

2(1− η)
ℓ̂t(vi)

2. (B.8)
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Multiplying both sides of (B.8) by (1−η)
η

T∑
t=1

K∑
i=1

πi,tℓ̂t(vi)−
T∑
t=1

ℓ̂t(vi)

≤ lnK

η
+

T∑
t=1

∑
i∈Dt

ηF̄i,tℓ̂t(vi)

+
T∑
t=1

K∑
i=1

η

2
(πi,t − ηF̄i,t)ℓ̂t(vi)

2. (B.9)

Furthermore, the expected values of ℓ̂t(vi) and ℓ̂t(vi)
2 can be written as

Et[ℓ̂t(vi)] =
K∑
j=1

πj,tpji,t
ℓt(vi)

qi,t
= ℓt(vi) (B.10a)

Et[ℓ̂t(vi)
2
] =

K∑
j=1

πj,tpji,t
ℓt(vi)

2

q2i,t
=

ℓt(vi)
2

qi,t
≤ 1

qi,t
(B.10b)

where the inequality in (B.10b) holds because of (A1) which implies ℓt(vi) ≤ 1. Taking the

expectation of both sides of (B.9), we arrive at

T∑
t=1

K∑
i=1

πi,tℓt(vi)−
T∑
t=1

ℓt(vi)

≤ lnK

η
+

T∑
t=1

K∑
i=1

ηF̄i,tℓt(vi)

+
T∑
t=1

K∑
i=1

η

2
(πi,t − ηF̄i,t)

1

qi,t
. (B.11)

Moreover, using the fact that qi,t ≤ 1 we have

η2

2

T∑
t=1

K∑
i=1

F̄i,t

qi,t
≥ η2

2

T∑
t=1

K∑
i=1

F̄i,t =
η2

2

T∑
t=1

1 =
η2T

2
. (B.12)
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Furthermore, since based on (A1) ℓt(vi) ≤ 1, the second term on the RHS of (B.11) can be

bounded by

η

T∑
t=1

K∑
i=1

F̄i,tℓt(vi) ≤ η
T∑
t=1

K∑
i=1

F̄i,t = η
T∑
t=1

1 = ηT. (B.13)

Combining (B.12), (B.13) with (B.11) we have

T∑
t=1

K∑
i=1

πi,tℓt(vi)−
T∑
t=1

ℓt(vi)

≤ lnK

η
+ ηT − η2T

2
+

η

2

T∑
t=1

K∑
i=1

πi,t

qi,t
. (B.14)

By definition, the first term on the RHS of (B.14) equals to Et[ℓt(vIt)]. In addition, note that

(B.14) holds for all vi ∈ V , hence the following inequality holds

T∑
t=1

Et[ℓt(vIt)]−min
vi∈V

T∑
t=1

ℓt(vi)

≤ lnK

η
+ η(1− η

2
)T +

η

2

T∑
t=1

K∑
i=1

πi,t

qi,t
(B.15)

which completes the proof of Theorem 1.2.

B.2 Proof of Lemma 2.1

Based on Theorem 1.2, the upper bound of the expected regret of Exp3-IP is

T∑
t=1

Et[ℓt(vIt)]−min
vi∈V

T∑
t=1

ℓt(vi) ≤
lnK

η
+ η(1− η

2
)T +

η

2

T∑
t=1

K∑
i=1

πi,t

qi,t
. (B.16)
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Let at each time instant t, Qt is defined as

Qt = 1 +
1

2

K∑
i=1

πi,t

qi,t
. (B.17)

Furthermore, let τr be the largest time instant satisfying
∑τr

t=1Qt ≤ 2r. According to the

doubling trick, at τr−1 + 1, such that
∑τr−1+1

t=1 Qt > 2r−1, the algorithm restarts with

ηr =

√
lnK

2r
. (B.18)

Also, the algorithm starts with r = 0. Therefore, based on (B.16) and (B.18), it can be

concluded that

τr∑
t=1

πi,tℓt(vi)−min
vi∈V

τr∑
t=1

ℓt(vi)≤2
√
2r lnK − lnK

2r+1
τr (B.19)

when 2r−1 <
∑τr

t=1Qt ≤ 2r. The maximum number of restarts required is
⌈
log2

∑T
t=1Qt

⌉
.

Moreover, it can be written that

⌈log2 ∑T
t=1 Qt⌉∑

r=0

2
√
2r lnK <

4
√
lnK√
2− 1

√√√√ T∑
t=1

Qt. (B.20)

Therefore, based on (B.16) and considering the fact that the maximum possible value for

incurred loss at each restart is 1, combining (B.19) with (B.20) leads to

T∑
t=1

Et[ℓt(vIt)]−min
vi∈V

T∑
t=1

ℓt(vi)

≤O


√√√√(lnK)

T∑
t=1

Qt +

⌈
log2

T∑
t=1

Qt

⌉
=O


√√√√lnK

T∑
t=1

(1 +
1

2

K∑
i=1

πi,t

qi,t
) +

⌈
log2

T∑
t=1

Qt

⌉ (B.21)
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Based on (A2), we can write pij ≥ ϵ > 0 if (i, j) ∈ Et. According to (1.36) and the fact that

the i-th expert is chosen by the learner with probability of πi,t, based on (A2) the inequality

qi,t ≥ πi,tϵ holds. Thus, we have

⌈
log2

T∑
t=1

Qt

⌉
= O

(
ln(

K

ϵ
T )

)
. (B.22)

Combining (B.21) with (B.22) obtains

T∑
t=1

Et[ℓt(vIt)]−min
vi∈V

T∑
t=1

ℓt(vi) ≤ O


√√√√lnK

T∑
t=1

(1 +
1

2

K∑
i=1

πi,t

qi,t
) + ln(

K

ϵ
T )

 (B.23)

In addition, the following Lemma is used as a step stone [4].

Lemma B.1. Let G = (V , E) be a directed graph with a set of vertices V and a set of edges

E. Let D ⊆ V be a dominating set for G and p1, . . . , pK be a probability distribution defined

over V, such that pi ≥ β > 0, for i ∈ D. Then

K∑
i=1

pi∑
j:j→i pj

≤ 2α(G) ln(1 +

⌈
K2

β|D|

⌉
+K

α(G)
) + 2|D| (B.24)

where α(G) represents independence number for the graph G.

Based on Lemma B.1 and (A2), we get

K∑
i=1

πi,t∑
∀j:j∈N in

i,t
πj,t

< 2α(Gt) ln(1 +

⌈
K3

ηϵ

⌉
+K

α(Gt)
) + 2|Dt|. (B.25)

Considering the fact that qi,t ≥ ϵ
∑

∀j:j∈N in
i,t
πj,t which is induced by (A2), from (B.25), it can

be inferred that

K∑
i=1

πi,t

qi,t
<

2α(Gt)
ϵ

ln(1 +

⌈
K3

ηϵ

⌉
+K

α(Gt)
) +

2|Dt|
ϵ

. (B.26)
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Furthermore, if greedy set cover algorithm by [28] is employed to obtain the dominating set

|Dt|, it can be written that [4]

|Dt| = O(α(Gt) lnK). (B.27)

Therefore, from (B.26) we can conclude that

K∑
i=1

πi,t

qi,t
≤ O

(
α(Gt)
ϵ

ln(
KT

ϵ
)

)
(B.28)

Combining (B.23) with (B.27) and (B.28), we arrive at

T∑
t=1

Et[ℓt(vIt)]−min
vi∈V

T∑
t=1

ℓt(vi) ≤ O


√√√√lnK ln(

K

ϵ
T )

T∑
t=1

α(Gt)
ϵ

+ ln(
K

ϵ
T )

 (B.29)

which completes the proof of Lemma 1.3.

B.3 Proof of Theorem 2.2

In order to prove Theorem 2.2, let’s first consider when t ≤ KM . When the learner

chooses among experts in a deterministic fashion. The (expected) loss can be written as

Et[ℓt(vi)] = ℓt(vk). Since ℓt(vi) ≤ 1, we have

KM∑
t=1

Et[ℓt(vi)]−
KM∑
t=1

ℓt(vi) ≤ (K − 1)M. (B.30)

On the other hand, for any t > KM , the following equality holds

Wt+1

Wt

=
K∑
i=1

wi,t+1

Wt

=
K∑
i=1

wi,t

Wt

exp
(
−ηℓ̃t(vi)

)
. (B.31)
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Recall (1.10), we have

wi,t

Wt

=
πi,t − η ˆ̄Fi,t

1− η
(B.32)

where ˆ̄Fi,t =
η
|D|I(vi ∈ Dt). Following similar steps from (B.3) to (B.8), and from (B.31) and

(B.32) we obtain

T∑
t=t′

K∑
i=1

πi,tℓ̃t(vi)−
T∑

t=t′

ℓ̃t(vi) ≤
lnK

η
+

T∑
t=t′

K∑
i=1

η ˆ̄Fi,tℓ̃t(vi)

+
T∑

t=t′

K∑
i=1

η

2
(πi,t − η ˆ̄Fi,t)ℓ̃t(vi)

2 (B.33)

where t′ = KM + 1. In addition, the expected value of ℓ̃t(vi) and ℓ̃t(vi)
2 at time instant t

can be written as

Et[ℓ̃t(vi)] =
∑

∀j:vj∈N in
i,t

πj,tpji
1

q̂i,t
ℓt(vi) =

qi,t
q̂i,t

ℓt(vi) (B.34a)

Et[ℓ̃t(vi)
2
] =

∑
∀j:vj∈N in

i,t

πj,tpji
1

q̂2i,t
ℓt(vi)

2 =
qi,t
q̂2i,t

ℓt(vi)
2 ≤ qi,t

q̂2i,t
. (B.34b)

Let eij,t := |p̂ij,t − pij|. According to (1.11), the probability that q̂i,t ≥ qi,t is at least∏
∀j:vj∈N in

i,t
Pr(eij,t ≤ ξ/

√
M) since the incidents {eij,t ≤ ξ/

√
M , ∀(i, j) ∈ E} are independent

from each other. Let ε denote ξ/
√
M and µi,t :=

1
q̂i,t
− 1

qi,t
, we have

µi,t =
qi,t − q̂i,t
q̂i,tqi,t

=

∑
∀j:vj∈N in

i,t
πj,t(pji − p̂ji,t − ε)

q̂i,tqi,t
≥ −

∑
∀j:vj∈N in

i,t
2πj,tε

q2i,t
(B.35)

where the last inequality holds with probability
∏

∀j:vj∈N in
i,t
Pr(eij,t ≤ ε). Therefore, the
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following inequalities hold with the probability
∏

∀j:vj∈N in
i,t
Pr(eij,t ≤ ε)

ℓt(vi)−
∑

∀j:vj∈N in
i,t

2πj,tε

qi,t
ℓt(vi) ≤ Et[ℓ̃t(vi)] = ℓt(vi) + qi,tµi,tℓt(vi) ≤ ℓt(vi) (B.36a)

Et[ℓ̃t(vi)
2
] ≤ 1

qi,t
. (B.36b)

Taking expectation of both sides of (B.33) and combining with (B.36), we obtain the following

inequality

T∑
t=t′

K∑
i=1

πi,tℓt(vi)−
T∑

t=t′

ℓt(vi)−
T∑

t=t′

K∑
i=1

πi,t

∑
∀j:vj∈N in

i,t

2πj,tε

qi,t
ℓt(vi)

≤ lnK

η
+

T∑
t=t′

K∑
i=1

η ˆ̄Fi,tℓt(vi) +
∑
t=t′

K∑
i=1

η

2
(πi,t − η ˆ̄Fi,t)

1

qi,t

≤ lnK

η
+

T∑
t=t′

K∑
i=1

η ˆ̄Fi,t +
T∑

t=t′

K∑
i=1

η

2
(πi,t − η ˆ̄Fi,t)

1

qi,t
(B.37)

which holds with probability at least
∏

(i,j)∈Et Pr(eij,t′ ≤ ε, . . . , eij,T ≤ ε). Applying the chain

rule for one term in the product, we have

Pr(eij,t′ ≤ ε, . . . , eij,T ≤ ε) = Pr(eij,t′ ≤ ε)
T∏

t=t′+1

Pr(eij,t ≤ ε | eij,t−1 ≤ ε, . . . , eij,t′ ≤ ε)

≥
T∏

t=t′

Pr(eij,t ≤ ε). (B.38)

In order to obtain the lower bound of the probability Pr(eij,t ≤ εij,t), the Bernstein inequality

is employed. To this end consider the following lemma [157].

Lemma B.2. Let ζ1 . . . ζn be independent random variables with

E[ζi] = 0,∀i : 1 ≤ i ≤ n (B.39a)

|E[ζmi ]| ≤ m!

2
b2iH

m−2,m = 2, 3, . . . ,∀i : 1 ≤ i ≤ n. (B.39b)
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Then for x ≥ 0, we have

Pr(|ζ1 + . . .+ ζn| ≥ xBn) ≤ 2 exp(−
x2

2

1 + xH
Bn

) (B.40)

where B2
n = b21 + . . .+ b2n.

Let θij(t) := Xij(t) − pij, ∀(i, j) ∈ Et. Since Xij(t) follows Bernoulli distribution with the

parameter pij, it can be readily obtained that E[θij(t)] = 0. Furthermore, for the moment

generating function of θij(t), we have

Mθij(t)(z) = (1− pij)e
−pijz + pije

(1−pij)z. (B.41)

Therefore, the expected value of θmij (t), m = 2, 3, . . . satisfies

E[θmij (t)] =
dmMθij(t)(z)

dzm
|z=0= (−pij)m(1− pij) + (1− pij)

mpij. (B.42)

From (B.42), we can conclude that

|E[θmij (t)]| ≤ pij(1− pij) ≤
1

4
≤ m!

8
=

m!

2

(
1

2

)2

× 1m−2,m = 2, 3, . . . (B.43)

Thus, letting bi =
1
2
, H = 1 in Lemma B.2 and combining with (B.43), the following inequality

can be obtained

Pr

| ∑
τ∈Tij,t

θij(τ)| ≥
ξCij,t√
M


=Pr

| ∑
τ∈Tij,t

Xij(τ)− pij| ≥
ξCij,t√
M


≤2 exp

(
−
2ξ2

Cij,t

M

1 + 4ξ√
M

)
= 2 exp

(
− 2ξ2Cij,t

M + 4ξ
√
M

)
(B.44)
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which leads to

Pr(eij,t ≥ ε) ≤ 2 exp

(
− 2ξ2Cij,t

M + 4ξ
√
M

)
(B.45)

Therefore, (B.37) holds with probability at least

δξ =
T∏

t=t′

∏
(i,j)∈Et

(
1− 2 exp(− 2ξ2Cij,t

M + 4ξ
√
M

)

)
. (B.46)

Since
∑

∀j:vj∈N in
i,t
πj,t ≤ 1 and ε = ξ√

M
, the following inequality holds

T∑
t=t′

K∑
i=1

πi,t

∑
∀j:vj∈N in

i,t

2πj,tε

qi,t
=

T∑
t=t′

K∑
i=1

πi,t

∑
∀j:vj∈N in

i,t

2πj,t
ξ√
M

qi,t
≤

T∑
t=t′

K∑
i=1

2πi,tξ

qi,t
√
M

. (B.47)

Using (B.47) and the fact that 1
qi,t
≥ 1, (B.37) can be rewritten as

T∑
t=t′

K∑
i=1

πi,tℓt(vi)−
T∑

t=t′

ℓt(vi) ≤
lnK

η
+

T∑
t=t′

η(1− η

2
) +

T∑
t=t′

K∑
i=1

πi,t

qi,t
(
2ξ√
M

+
η

2
) (B.48)

Combining (B.48) with (B.30) results in following inequality

T∑
t=1

Et[ℓt(vIt)]−
T∑
t=1

ℓt(vi)

≤ lnK

η
+ (K − 1)M + η(1− η

2
)(T −KM) +

T∑
t=t′

K∑
i=1

πi,t

qi,t
(
2ξ√
M

+
η

2
) (B.49)

which holds with probability at least δξ and the proof of Theorem 2.2 is completed.

B.4 Proof of Corollary 2.1

The proof of Corollary 2.1 will be built upon the following Lemma.
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Lemma B.3. Let ζ1, . . . , ζN (N > 1) be a sequence of real positive numbers such that

∀i : 1 ≤ i ≤ N , 0 < ζi < 1 and ∀n : 1 ≤ n ≤ N ,
∑n

i=1 ζi < 1. Then, it can be written that

N∏
i=1

(1− ζi) > 1−
N∑
i=1

ζi (B.50)

Proof. We prove this Lemma using mathematical induction. Firstly, Consider (B.50) for

N = 2

(1− ζ1)(1− ζ2) = 1− ζ1 − ζ2 + ζ1ζ2 > 1− ζ1 − ζ2. (B.51)

Assuming that (B.50) holds for N = n. Then, based on (B.51) we have for N = n+ 1

n+1∏
i=1

(1− ζi) =

(
n∏

i=1

(1− ζi)

)
× (1− ζn+1) > (1−

n∑
i=1

ζi)(1− ζn+1) > 1−
n+1∑
i=1

ζi. (B.52)

Hence, (B.50) also holds for N = n+ 1, and Lemma A.4 is proved by induction.

Assuming M satisfies

M ≥
(

4ξ ln(KT )

ξ2 − ln(KT )

)2

. (B.53)

Hence, (B.53) can be re-written as

1

K2T 2
≥ exp(− 2ξ2

√
M√

M + 4ξ
) ≥ exp(− 2ξ2Cij,t

M + 4ξ
√
M

) (B.54)

where the second inequality holds since Cij,t ≥M . Let t′ = KM + 1. Note that the regret

bound in (1.47) holds with probability at least δξ in (B.46). According to Lemma A.4, we
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can obtain the following inequality

δξ =
T∏

t=t′

∏
(i,j)∈Et

(
1− 2 exp(− 2ξ2Cij,t

M + 4ξ
√
M

)

)

>1−
∑

(i,j)∈Et

T∑
t=t′

2 exp(− 2ξ2Cij,t

M + 4ξ
√
M

). (B.55)

Combining (B.54) with (B.55) obtains

δξ ≥ 1− 2(T −KM)|E|
K2T 2

(B.56)

where |E| denotes the cardinality of the E . Since G does not change over time, |E| is a

constant. According to (B.56), it can be readily obtained that when (B.53) holds, the regret

bound in (1.47) holds with probability at least of order 1−O( 1
T
). Consider the case where

the learner sets η, M and ξ as follows

η = O(
√

lnK

T
) (B.57a)

M = O( 1√
K

T
2
3 ) (B.57b)

ξ = O(K
1
4

√
ln(KT )). (B.57c)

Putting η, M and ξ in (B.57) into (1.47) and based on Lemma A.5, it can be concluded that

the expected regret of Exp3-UP satisfies

T∑
t=1

Et[ℓt(vIt)]−
T∑
t=1

ℓt(vi) ≤ O
(
α(G)
ϵ

ln(KT )(
√
T lnK +

√
K ln(KT )T

2
3 )

)
(B.58)

with probability at least 1−O( 1
T
).
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B.5 Proof of Lemma 2.2

In this section, doubling trick technique is employed such that Exp3-UP can achieve sub-linear

regret. If 2b < t ≤ 2b+1, the value of the learning rate ηb, Mb and ξb are

ηb =

√
lnK

2b+1
(B.59a)

Mb =

⌈
2

2(b+1)
3

1√
K

+ ln 4K

⌉
(B.59b)

ξb =

(
2K

1
4 +

√
4
√
K + 1

)√
ln(K2b+3) (B.59c)

When the learner realizes that t > 2b+1, the algorithm restarts with ηb+1, Mb+1 and ξb+1. The

algorithm starts with b = ⌈log2K⌉. Therefore, when t < 2⌈log2 K⌉, the value of ηb, Mb and ξb

are set with respect to b = ⌈log2K⌉. LetMi denotes a set which includes the time instants

when the learner chooses the i-th expert in a deterministic fashion for exploration. Specifically,

when at time instant τ , the learner chooses the i-th expert for exploration without using the

PMF in (1.10), the time instant τ is appended toMi. At each restart the learner chooses the

experts one by one for the exploration until the condition |Mi| ≥Mb, ∀i ∈ [K] is satisfied.

Then, the learner chooses among experts according to PMF in (2.11) using the learning rate

ηb. Therefore, based on Theorem 2.2, for each b, the algorithm satisfies

Tb∑
t=2b+1

Et[ℓt(vIt)]−
Tb∑

t=2b+1

ℓt(vi)

≤ lnK

ηb
+ (K − 1)(Mb −Mb−1) + ηb(1−

ηb
2
)(Tb − 2b −K(Mb −Mb−1))

+

Tb∑
t=2b+1

K∑
i=1

πi,t

qi,t
(
2ξb√
Mb

+
ηb
2
) (B.60)
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with probability at least δb where it can be expressed as

δb =

Tb∏
t=t′b

∏
(i,j)∈Et

(
1− 2 exp(− 2ξ2bCij,t

Mb + 4ξb
√
Mb

)

)
(B.61)

where Tb denote the greatest time instant which satisfies 2b < Tb ≤ 2b+1 and t′b can be written

as

t′b = min(Tb−1 +K(Mb −Mb−1) + 1, Tb). (B.62)

Note that Mb−1 = 0 when b = ⌈log2K⌉. Since for each b, Mb and ξb in (B.59) meet the

following condition

Mb ≥
(

4ξb ln(4KTb)

ξ2b − ln(4KTb)

)2

, (B.63)

it can be concluded that the following inequality holds true

1

16K2T 2
b

≥ exp(− 2ξ2b
√
Mb√

Mb + 4ξb
) ≥ exp(− 2ξ2bCij,t

Mb + 4ξb
√
Mb

), (B.64)

and as a result according to Lemma A.4 we can write

δb > 1−
∑

(i,j)∈Et

Tb∑
t=t′b

2 exp(− 2ξ2bCij,t

Mb + 4ξb
√
Mb

). (B.65)

Combining (B.64) with (B.65), it can be concluded that

δb > 1−max(0,
(Tb − t′b)|ETb

|
8K2T 2

b

). (B.66)
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Therefore, for each b from (B.60), (B.66) and Lemma A.5 it can be inferred that

Tb∑
t=2b+1

Et[ℓt(vIt)]−
Tb∑

t=2b+1

ℓt(vi) ≤ O(ω) (B.67)

where ω := α(G)
ϵ

ln(KTb)(
√
Tb lnK+

√
K ln(KTb)T

2
3
b ) holds with probability at least 1−O( 1

Tb
).

Summing (B.67) over all possible values of b, from b := ⌈log2K⌉ to ⌈log2 T ⌉ and taking into

account that the maximum value of the loss at each restart is 1, we arrive at

T∑
t=1

Et[ℓt(vIt)]−
T∑
t=1

ℓt(vi) ≤
⌈log2 T ⌉∑

b=⌈log2 K⌉

O (ω) + ⌈log2 T ⌉ − ⌈log2K⌉

≤ O (ω lnT ) +O(lnT ) (B.68)

which holds with probability at least

∆ =

⌈log2 T ⌉∏
b=⌈log2 K⌉

(
1−max(0,

(Tb − t′b)|ETb
|

8K2T 2
b

)

)
. (B.69)

When b = ⌈log2K⌉, we have Tb ≥ 2K. Furthermore, when ⌈log2K⌉ < b ≤ ⌊log2 T ⌋, it can

be concluded that Tb = 2Tb−1. Therefore, we can write

⌊log2 T ⌋∑
b=⌈log2 K⌉

max(0,
(Tb − t′b)|ETb

|
8K2T 2

b

)

<

⌊log2 T ⌋∑
b=⌈log2 K⌉

1

8Tb

≤ 1

8K
(

⌊log2 T ⌋∑
b=⌈log2 K⌉

(
1

2
)b−⌈log2 K⌉)

=
1

8K
(2− (

1

2
)⌊log2 T ⌋−⌈log2 K⌉). (B.70)

Based on (B.70) and under the assumption that T > K, we find

⌈log2 T ⌉∑
b=⌈log2 K⌉

max(0,
(Tb − t′b)|ETb

|
8K2T 2

b

) <
1

8K
(2− (

1

2
)⌊log2 T ⌋−⌈log2 K⌉) +

1

8T
<

3

8K
. (B.71)
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Thus, ∆ meet the conditions in the Lemma A.4 and it can be inferred that

∆ >1−
⌈log2 T ⌉∑

b=⌈log2 K⌉

max(0,
(Tb − t′b)|ETb

|
8K2T 2

b

) ≥ 1−O( 1
K

).

Therefore, in this case, Exp3-UP satisfies

T∑
t=1

Et[ℓt(vIt)]−
T∑
t=1

ℓt(vi)

≤O
(
α(G)
ϵ

ln(T ) ln(KT )(
√
T lnK +

√
K ln(KT )T

2
3 )

)
(B.72)

with probability at least 1−O( 1
K
). This completes the proof of Lemma 1.2.

B.6 Proof of Theorem 2.3

Since Exp3-GR chooses the experts one by one for the exploration at the first KM time

instants, Et[ℓt(vi)] = ℓt(vk) and (B.30) hold true. In addition, for t > KM we have

Wt+1

Wt

=
K∑
i=1

wi,t+1

Wt

=
K∑
i=1

wi,t

Wt

exp
(
−ηℓ̃t(vi)

)
. (B.73)

According to (1.28),
wi,t

Wt
can be expressed as

wi,t

Wt

=
πi,t − η

|D|I(vi ∈ D)
1− η

. (B.74)
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Following similar steps performed to obtain (B.9) from (B.1) and (B.2), given (B.73) and

(B.74) we get

T∑
t=t′

K∑
i=1

πi,tℓ̃t(vi)−
T∑

t=t′

ℓ̃t(vi)

≤ lnK

η
+

T∑
t=t′

∑
i∈D

η

|D|
ℓ̃t(vi) +

T∑
t=t′

K∑
i=1

η

2
(πi,t −

η

|D|
I(vi ∈ D))ℓ̃t(vi)2 (B.75)

where t′ = KM+1. According to (1.1), expected value of loss estimate ℓ̃t(vi) can be expressed

as

Et[ℓ̃t(vi)] =
∑

∀j:vj∈N in
i,t

πj,tpjiEt[Qi,t]ℓt(vi) = qi,tEt[Qi,t]ℓt(vi) (B.76a)

Et[ℓ̃t(vi)
2
] =

∑
∀j:vj∈N in

i,t

πj,tpjiEt[Q
2
i,t]ℓt(vi)

2 = qi,tEt[Q
2
i,t]ℓt(vi)

2. (B.76b)

Note that the expected values depend on random variable {Zi,u(t)}Mu=1 in (1.2), where Pi,u(t)

and Yij,u(t), ∀i ∈ [K], ∀(i, j) ∈ Et are independent Bernoulli random variables with parameters

πi,t and pij, respectively. Therefore, {Zi,u(t)}Mu=1 are also Bernoulli random variables with

expected value

Et[Zi,u(t)] = Et

 ∑
∀j:vj∈N in

i,t

Pj,u(t)Yji,u(t)

 =
∑

∀j:vj∈N in
i,t

Et[Pj,u(t)]Et[Yji,u(t)]

=
∑

∀j:vj∈N in
i,t

πj,tpji = qi,t. (B.77)
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In other words, Zi,u(t) is a Bernoulli random variable whose value is 1 with probability qi,t.

The expected value of Qi,t and Q2
i,t can henceforth be written as

Et[Qi,t] =
M∑
u=1

uqi,t(1− qi,t)
u−1 +M(1− qi,t)

M

=
1− (Mqi,t + 1)(1− qi,t)

M

qi,t
+M(1− qi,t)

M =
1− (1− qi,t)

M

qi,t
(B.78a)

Et[Q
2
i,t] =

M∑
u=1

u2qi,t(1− qi,t)
u−1 +M2(1− qi,t)

M

=
2− 2(1− qM+2

i,t )

q2i,t
− 1 + (2M + 3)(1− qi,t)

M+1

qi,t

− (M + 1)2(1− qi,t)
M +M2(1− qi,t)

M

=
2− 2(1− qM+2

i,t )

q2i,t
− 1 + (2M + 3)(1− qi,t)

M+1

qi,t

− (2M + 1)(1− qi,t)
M . (B.78b)

Combining (B.76) with (B.78), we arrive at

Et[ℓ̃t(vi)] =qi,t
1− (1− qi,t)

M

qi,t
ℓt(vi) =

(
1− (1− qi,t)

M
)
ℓt(vi) ≤ ℓt(vi) (B.79a)

Et[ℓ̃t(vi)
2
] =

(
2− 2(1− qM+2

i,t )

qi,t
− 1

)
ℓt(vi)

2 + (2M + 3)(1− qi,t)
M+1ℓt(vi)

2

− qi,t(2M + 1)(1− qi,t)
Mℓt(vi)

2 ≤ 2

qi,t
. (B.79b)

Combining (B.75) and (B.79), it can be concluded that

T∑
t=t′

K∑
i=1

πi,tℓt(vi)−
T∑

t=t′

ℓt(vi)−
T∑

t=t′

K∑
i=1

πi,t(1− qi,t)
Mℓt(vi)

≤ lnK

η
+

T∑
t=t′

K∑
i=1

η

2
(πi,t −

η

|D|
I(vi ∈ D))

2

qi,t
+

T∑
t=t′

∑
i∈D

η

|D|
ℓt(vi). (B.80)
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According to (A1) ℓt(vi) ≤ 1 and using the fact that 2
qi,t
≥ 2, (B.80) can be further bounded

by

T∑
t=t′

K∑
i=1

πi,tℓt(vi)−
T∑

t=t′

ℓt(vi) (B.81)

≤ lnK

η
+

T∑
t=t′

(1− qi,t)
M +

T∑
t=t′

∑
i∈D

η − η2

|D|
+

T∑
t=t′

K∑
i=1

η
πi,t

qi,t

=
lnK

η
+

T∑
t=t′

(1− qi,t)
M+ η(1− η)(T −KM) + η

T∑
t=t′

K∑
i=1

πi,t

qi,t
.

Note that when t > t′, we have Et[ℓt(vIt)] =
∑K

i=1 πi,tℓt(vi). Combining (B.30) with (B.81)

leads to

T∑
t=1

Et[ℓt(vIt)]−
T∑
t=1

ℓt(vi)

≤ lnK

η
+ (K − 1)M +

T∑
t=t′

(1− qi,t)
M + η(1− η)(T −KM) + η

T∑
t=t′

K∑
i=1

πi,t

qi,t
(B.82)

which completes the proof of Theorem 2.3.

B.7 Proof of Lemma 2.3

In this section, the doubling trick is employed to choose η and M when the learner does not

know the time horizon T beforehand. At time instant t, when 2b < t ≤ 2b+1, ηb and Mb the

are chosen as

ηb =

√
K lnK

2b+1
,Mb =

⌈
(b+ 1)

√
2b−1|D| ln 2

ϵ
√
K lnK

⌉
. (B.83)
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When t > 2b+1 holds true, the algorithm restarts with ηb+1 and Mb+1. The algorithm starts

with b = 0. At each restart, the algorithm chooses the experts one by one for exploration

until the condition that each expert is chosen at least Mb times is met. Then, the learner

uses the last Mb observed samples from each expert to perform geometric resampling. In this

case, for each b, Exp3-GR satisfies

Tb∑
t=2b+1

Et[ℓt(vIt)]−min
vi∈V

Tb∑
t=2b+1

ℓt(vi) (B.84)

≤ lnK

ηb
+ (K − 1)(Mb −Mb−1) +

Tb∑
t=t′b

(1− qi,t)
Mb

+ ηb(1− ηb)(Tb − 2b −K(Mb −Mb−1)) + ηb

Tb∑
t=t′b

K∑
i=1

πi,t

qi,t

where Tb denote the greatest time instant which satisfies 2b < Tb ≤ 2b+1 and t′b can be

expressed as in (B.62). Note that when b = 0, we have Mb−1 = 0. Taking into account that

the maximum loss at each restart is 1, summing (B.84) over all possible values for b obtains

T∑
t=1

Et[ℓt(vIt)]−min
vi∈V

T∑
t=1

ℓt(vi)

≤⌈log2 T ⌉+
⌊log2 T ⌋∑
b=0

lnK

ηb
+ (K − 1)M

+

⌊log2 T ⌋∑
b=0

ηb(1− ηb)(Tb − 2b −K(Mb −Mb−1))

+

⌊log2 T ⌋∑
b=0

ηb

Tb∑
t=t′b

K∑
i=1

πi,t

qi,t
+

⌊log2 T ⌋∑
b=0

Tb∑
t=t′b

(1− qi,t)
Mb (B.85)

where M is the number of samples for each expert when b = ⌊log2 T ⌋ which are used for

geometric resampling. According to (B.83) and the fact that D is obtained using the greedy
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set cover algorithm, we have

M = O
(
α(G)
ϵ
√
K

lnT
√
T lnK

)
. (B.86)

Furthermore, for each b, the inequality qi,t >
ηbϵ
|D| holds. Therefore, according to (B.83), we

can write Mbqi,t >
b+1
2

ln 2. Thus, it can be concluded that (1 − qi,t)
Mb ≤ e−Mbqi,t < 1√

2b+1

from which we obtain

⌊log2 T ⌋∑
b=0

Tb∑
t=t′b

(1− qi,t)
Mb <

⌊log2 T ⌋∑
b=0

Tb − 2b√
2b+1

≤
⌊log2 T ⌋∑
b=0

√
2b−1 ≤

√
2T − 1

2−
√
2
. (B.87)

In addition, based on the Lemma A.5, it can be written that

⌊log2 T ⌋∑
b=0

ηb

Tb∑
t=t′b

K∑
i=1

πi,t

qi,t

≤
⌊log2 T ⌋∑
b=0

√
K lnK

2b+1
(Tb − 2b)O

(
α(G)
ϵ

ln(KT )

)
≤⌈log2 T ⌉

√
2b−1K lnKO

(
α(G)
ϵ

ln(KT )

)
=O

(
α(G)
ϵ

(lnT ) ln(KT )
√
KT lnK

)
. (B.88)

Therefore, combining (B.85) with (B.86), (B.87) and (B.88), it can be inferred that Exp3-GR

satisfies

T∑
t=1

Et[ℓt(vIt)]−min
vi∈V

T∑
t=1

ℓt(vi) ≤ O
(
α(G) lnT

ϵ
ln(KT )

√
KT lnK

)
(B.89)

which completes the proof of Lemma 1.3.
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Appendix C

Supplementary Proofs and

Experiments for Chapter 3

C.1 Proof of Theorem 3.1

Since Wk,t =
∑N

i=1wik,t and according to (3.7), we can write

Wk,t+1

Wk,t

=
N∑
i=1

wk,t+1

Wk,t

=
N∑
i=1

wik,t

Wk,t

exp
(
−ηkL(f̂RF,it(xk,t;θi,t), yk,t)

)
. (C.1)

Using the inequality e−x ≤ 1− x+ 1
2
x2,∀x ≥ 0, the upper bound of (C.1) can be obtained as

Wk,t+1

Wk,t

≤
N∑
i=1

wik,t

Wk,t

(
1− ηkL(f̂RF,it(xk,t;θi,t), yk,t) +

η2k
2
L2(f̂RF,it(xk,t;θi,t), yk,t)

)
. (C.2)

Using the inequality 1 + x ≤ ex and taking the logarithm from both sides of (C.2), we get

ln
Wk,t+1

Wk,t

≤
N∑
i=1

wik,t

Wk,t

(
−ηkL(f̂RF,it(xk,t;θi,t), yk,t) +

η2k
2
L2(f̂RF,it(xk,t;θi,t), yk,t)

)
. (C.3)
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According to (A2), L2(f̂RF,it(xk,t;θi,t), yk,t) ≤ 1. Therefore, from (C.3), we can conclude that

ln
Wk,t+1

Wk,t

≤
N∑
i=1

wik,t

Wk,t

(
η2k
2
− ηkL(f̂RF,it(xk,t;θi,t), yk,t)

)
. (C.4)

Summing (C.4) over time, we arrive at

ln
Wk,T+1

Wk,1

≤
T∑
t=1

N∑
i=1

wik,t

Wk,t

(
η2k
2
− ηkL(f̂RF,it(xk,t;θi,t), yk,t)

)
. (C.5)

Moreover, for any i ∈ [N ], ln
Wk,T+1

Wk,1
can be lower bounded as

ln
Wk,T+1

Wk,1

≥ ln
wik,T+1

Wk,1

= −ηk
T∑
t=1

L(f̂RF,it(xk,t;θi,t), yk,t)− lnN. (C.6)

Combining (C.5) with (C.6), we obtain

T∑
t=1

N∑
i=1

wik,t

Wk,t

L(f̂RF,it(xk,t;θi,t), yk,t)−
T∑
t=1

L(f̂RF,it(xk,t;θi,t), yk,t) ≤
lnN

ηk
+

ηk
2
T. (C.7)

Since the loss function L(·, ·) is convex, using (C.7) and Jensen inequality we can write

T∑
t=1

L

(
N∑
i=1

wik,t

Wk,t

f̂RF,it(xk,t;θi,t), yk,t

)
−

T∑
t=1

L(f̂RF,it(xk,t;θi,t), yk,t) ≤
lnN

ηk
+

ηk
2
T

(C.8)

which proves the Theorem 3.1.

C.2 Proof of Theorem 3.2

In order to prove Theorem 3.2, the following Lemma is used as a stepstone.

Lemma C.1. Let α∗
ik,t, ∀t ∈ [T ], ∀k ∈ [K] represents the optimal coefficients associ-
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ated with the i-th kernel such that f ∗
i (x) =

∑T
t=1

∑K
k=1 α

∗
ik,tκi(x,xk,t). And f̂ ∗

i (x) =

(θ∗i )
⊤zi(x) denotes the best RF-based estimator associated with the i-th kernel such that

θ∗i =
∑T

t=1

∑K
k=1 α

∗
ik,tzi(xk,t). Under assumptions (A1)–(A3), using POF-MKL, the RF

approximation of the i-th kernel satisfies

T∑
t=1

K∑
k=1

L(f̂RF,it(xk,t;θi,t), yk,t)−
T∑
t=1

K∑
k=1

L(f̂ ∗
i (xk,t), yk,t)

≤K∥θ∗i ∥2

2η
+

η

2

T∑
t=1

K∑
k=1

L2

pik,t
. (C.9)

Proof. Let ℓik,t be the importance sampling loss estimate defined as

ℓik,t =
L(θ⊤i,tzi(xk,t), yk,t)

pik,t
1i∈Sk,t

. (C.10)

Then according to (1.11), for any fixed θ, it can be written that

∥∥∥∥∥ 1

K

K∑
k=1

θik,t+1 − θ

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

K

K∑
k=1

(θi,t − η∇ℓik,t)− θ

∥∥∥∥∥
2

=

∥∥∥∥∥θi,t − θ − η

K

K∑
k=1

∇ℓik,t

∥∥∥∥∥
2

= ∥θi,t − θ∥2 −
2η

K

(
K∑
k=1

∇⊤ℓik,t

)
(θi,t − θ) +

∥∥∥∥∥ η

K

K∑
k=1

∇ℓik,t

∥∥∥∥∥
2

(C.11)

According to the convexity of the loss function L(θ⊤x, y) with respect to θ as stated in (A1),

we find

L(θ⊤i,tzi(xk,t), yk,t)− L(θ⊤zi(xk,t), yk,t) ≤ ∇⊤L(θ⊤i,tzi(xk,t), yk,t)(θi,t − θ). (C.12)

185



Multiplying both sides of (C.12) by
1i∈Sk,t

pik,t
, we get

(
L(θ⊤i,tzi(xk,t), yk,t)

pik,t
− L(θ

⊤zi(xk,t), yk,t)

pik,t

)
1i∈Sk,t

≤
∇⊤L(θ⊤i,tzi(xk,t), yk,t)

pik,t
(θi,t − θ)1i∈Sk,t

. (C.13)

Summing (C.13) over k, ∀k ∈ [K], we arrive at

K∑
k=1

(
L(θ⊤i,tzi(xk,t), yk,t)

pik,t
− L(θ

⊤zi(xk,t), yk,t)

pik,t

)
1i∈Sk,t

≤

(
K∑
k=1

∇⊤L(θ⊤i,tzi(xk,t), yk,t)

pik,t
1i∈Sk,t

)
(θi,t − θ). (C.14)

Based on the definition of ℓik,t, (C.14) can be rewritten as

K∑
k=1

ℓik,t −
K∑
k=1

L(θ⊤zi(xk,t), yk,t)

pik,t
1i∈Sk,t

≤

(
K∑
k=1

∇⊤ℓik,t

)
(θi,t − θ). (C.15)

According to (C.11), (C.15) is equivalent to

K∑
k=1

ℓik,t −
K∑
k=1

L(θ⊤zi(xk,t), yk,t)

pik,t
1i∈Sk,t

≤K

2η

∥θi,t − θ∥2 −
∥∥∥∥∥ 1

K

K∑
k=1

θik,t+1 − θ

∥∥∥∥∥
2

+

∥∥∥∥∥ η

K

K∑
k=1

∇ℓik,t

∥∥∥∥∥
2
 (C.16)

Expectations of ℓik,t and ∥∇ℓik,t∥2 with respect to 1i∈Sk,t
can be calculated as

Et[ℓik,t] =
L(θ⊤i,tzi(xk,t), yk,t)

pik,t
pik,t = L(θ⊤i,tzi(xk,t), yk,t) (C.17a)

Et[∥∇ℓik,t∥2] =
∥∇L(θ⊤i,tzi(xk,t), yk,t)∥2

p2ik,t
pik,t =

∥∇L(θ⊤i,tzi(xk,t), yk,t)∥2

pik,t
. (C.17b)
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Furthermore, using AM-GM inequality and (C.17b), it can be concluded that

Et

[
∥

K∑
k=1

∇ℓik,t∥2
]
≤ Et

[
K

K∑
k=1

∥∇ℓik,t∥2
]
≤ K

K∑
k=1

∥∇L(θ⊤i,tzi(xk,t), yk,t)∥2

pik,t
. (C.18)

According to (3.10), considering the fact that

∥θi,t+1 − θ∥2 =

∥∥∥∥∥ 1

K

K∑
k=1

θik,t+1 − θ

∥∥∥∥∥
2

taking the expectation from (C.16) with respect to 1i∈Sk,t
, ∀k ∈ [K] leads to

K∑
k=1

L(θ⊤i,tzi(xk,t), yk,t)−
K∑
k=1

L(θ⊤zi(xk,t), yk,t)

≤K

2η

(
∥θi,t − θ∥2 − ∥θi,t+1 − θ∥2

)
+

η

2

K∑
k=1

∥∇L(θ⊤i,tzi(xk,t), yk,t)∥2

pik,t
. (C.19)

According to (A2), we can conclude that ∥∇L(θ⊤i,tzi(xk,t), yk,t)∥2 ≤ L2. Hence, summing

(C.19) over time, given the fact that θi,1 = 0, ∀i ∈ [N ], we get

T∑
t=1

K∑
k=1

L(θ⊤i,tzi(xk,t), yk,t)−
T∑
t=1

K∑
k=1

L(θ⊤zi(xk,t), yk,t)

≤K

2η

(
∥θ∥2 − ∥θi,T+1 − θ∥2

)
+

η

2

T∑
t=1

K∑
k=1

L2

pik,t
. (C.20)

Replacing θ with θ∗i and considering the fact that ∥θi,T+1 − θ∥2 ≥ 0, we obtain

T∑
t=1

K∑
k=1

L(θ⊤i,tzi(xk,t), yk,t)−
T∑
t=1

K∑
k=1

L((θ∗i )⊤zi(xk,t), yk,t) ≤
K∥θ∗i ∥2

2η
+

η

2

T∑
t=1

K∑
k=1

L2

pik,t

which proves the Lemma C.1.

In order to proof Theorem 3.2, we leverage the results obtained in the proofs of Lemma 1.2

and Theorem 3.1. Since (C.8) holds true for any i, summing (C.8) over all k ∈ [K], for any i
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we can write

T∑
t=1

K∑
k=1

L(f̂(xk,t; Θ̂t,wk,t), yk,t)−
T∑
t=1

K∑
k=1

L(f̂RF,it(xk,t;θi,t), yk,t)

≤
K∑
k=1

(
lnN

ηk
+

ηk
2
T

)
. (C.21)

Combining (C.21) with (1.44), we arrive at

T∑
t=1

K∑
k=1

L(f̂(xk,t; Θ̂t,wk,t), yk,t)−
T∑
t=1

K∑
k=1

L(f̂ ∗
i (xk,t), yk,t)

≤K∥θ∗i ∥2

2η
+

η

2

T∑
t=1

K∑
k=1

L2

pik,t
+

K∑
k=1

(
lnN

ηk
+

ηk
2
T

)
. (C.22)

According to claim 1 in [123], it can be written that supx,x′ |z⊤i (x)zi(x′) − κi(x,x
′)| ≤ ϵ

holds true with probability greater than 1 − 28
(
σi

ϵ

)2
exp

(
− Dϵ2

4(d+2)

)
where σi is the second

Fourier moment of the i-th kernel κi(·). Furthermore, according to (A3), the loss function is

L-Lipschitz continuous and as a result it can be written that

T∑
t=1

K∑
k=1

|L(f̂ ∗
i (xk,t), yk,t)− L(f ∗

i (xk,t), yk,t)|

≤
T∑
t=1

K∑
k=1

L

∣∣∣∣∣
T∑

τ=1

K∑
j=1

α∗
ij,τz

⊤
i (xj,τ )zi(xk,t)−

T∑
τ=1

K∑
j=1

α∗
ij,τκi(xj,τ ,xk,t)

∣∣∣∣∣. (C.23)

Applying Cauchy-Schwartz inequality to the right hand side of (C.23), the left hand side of

(C.23) can be bounded from above as

T∑
t=1

K∑
k=1

|L(f̂ ∗
i (xk,t), yk,t)− L(f ∗

i (xk,t), yk,t)|

≤
T∑
t=1

K∑
k=1

L

T∑
τ=1

K∑
j=1

|α∗
ij,τ ||z⊤i (xj,τ )zi(xk,t)− κi(xj,τ ,xk,t)|. (C.24)
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Let C := maxi∈[N ]

∑T
t=1

∑K
k=1 α

∗
ik,t. Therefore, we can conclude that

T∑
t=1

K∑
k=1

|L(f̂ ∗
i (xk,t), yk,t)− L(f ∗

i (xk,t), yk,t)| ≤ ϵLKTC (C.25)

with probability at least 1− 28
(
σi

ϵ

)2
exp

(
− Dϵ2

4(d+2)

)
. Moreover, using Triangle inequality, we

can write

T∑
t=1

K∑
k=1

L(f̂ ∗
i (xk,t), yk,t)−

T∑
t=1

K∑
k=1

L(f ∗
i (xk,t), yk,t)

≤

∣∣∣∣∣
T∑
t=1

K∑
k=1

L(f̂ ∗
i (xk,t), yk,t)− L(f ∗

i (xk,t), yk,t)

∣∣∣∣∣
≤

T∑
t=1

K∑
k=1

|L(f̂ ∗
i (xk,t), yk,t)− L(f ∗

i (xk,t), yk,t)| ≤ ϵLKTC (C.26)

which holds true with probability at least 1−28
(
σi

ϵ

)2
exp

(
− Dϵ2

4(d+2)

)
. Moreover, for z⊤i (x)zi(x

′)

we can write

z⊤i (x)zi(x
′) =

1

D

D∑
j=1

(sin(ρ⊤
i,jx) sin(ρ

⊤
i,jx

′) + cos(ρ⊤
i,jx) cos(ρ

⊤
i,jx

′)). (C.27)

Based on arithmetic-mean geometric-mean, (C.27) can be relaxed to

z⊤i (x)zi(x
′) ≤ 1

D

D∑
j=1

1

2
(sin2(ρ⊤

i,jx) + sin2(ρ⊤
i,jx

′) + cos2(ρ⊤
i,jx) + cos2(ρ⊤

i,jx
′)) = 1.

(C.28)

Thus, given the fact that |z⊤i (x)zi(x′)| ≤ 1, ∥θ∗i ∥2 can be bounded as

∥θ∗i ∥2 ≤
T∑
t=1

K∑
k=1

T∑
τ=1

K∑
j=1

|α∗
ik,tα

∗
ij,τz

⊤
i (xj,τ )zi(xk,t)| ≤ C2. (C.29)
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Combining (C.26) and (C.29) with (C.22) yields

T∑
t=1

K∑
k=1

L(f̂(xk,t; Θ̂t,wk,t), yk,t)−
T∑
t=1

K∑
k=1

L(f ∗
i (xk,t), yk,t)

≤KC2

2η
+

η

2

T∑
t=1

K∑
k=1

L2

pik,t
+

K∑
k=1

(
lnN

ηk
+

ηk
2
T

)
+ ϵLKTC (C.30)

which holds true for any i ∈ [N ] with probability at least 1−28
(
σi

ϵ

)2
exp

(
− Dϵ2

4(d+2)

)
. Therefore,

this proves the Theorem 3.2.

C.3 Supplementary Experimental Results and Details

This section presents further experimental results testing different aspects of the proposed

algorithm POF-MKL. Moreover, this section provides more detailed information about

experimental setup associated with results in section 3.4. The performance of federated kernel

learning algorithms are tested on the following datasets:

• Naval: The dataset consists of 11, 500 samples. Each sample has 15 features of a a

naval vessel. The goal is to predict lever position [31].

• UJI: The dataset consists of 21, 000 data samples. Each data sample has 520 features

which are WiFi fingerprints. The goal is to predict the geographical longitude associated

with each data sample.

• Air: The dataset consists of 120, 000 samples with 14 features including information

related to air quality such as concentration of some chemicals in the air. Data samples

are collected from 4 different geographical sites. The goal is to predict the concentration

of CO in the air [161]. For each site there are 30, 000 samples in the dataset.

• WEC: The dataset consists of 280, 000 samples with 48 features of wave energy
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converters. Data samples are collected from 4 different geographical sites. The goal is

to predict total power output [117]. For each site, there are 70, 000 samples.

Data samples of Naval and UJI datasets are distributed i.i.d among clients. The number of

clients for Naval and UJI datasets are 23 and 42, respectively. Data samples in Air and WEC

datasets are distributed non-i.i.d among clients. The number of clients for Air and WEC

datasets are 240 and 560, respectively. For both Air and WEC datasets, there are 4 different

geographical sites that each sample belongs to one of them. Each client observes 350 samples

from one site and 50 samples from each of the rest of 3 sites. Moreover, PerFedAvg uses a

feedforward neural network model. Each layer is a fully-connected dense layer with at most

20 neurons. Neurons in hidden layers exploit ReLU activation functions. Since each client

cannot transmit more than 1000 parameters to the server, the number of hidden layers is

determined in a way that the number of the neural network’s parameters to be less than 1000.

The number of parameters depends on the number of features in data samples. Therefore,

the number of hidden layers varies across different datasets. For each dataset, given the

number of features, the maximum number of hidden layers with 20 neurons is chosen. All

experiments were carried out using Intel(R) Core(TM) i7-10510U CPU @ 1.80 GHz 2.30 GHz

processor with a 64-bit Windows operating system.

Table C.1 presents average MSE along with MSE standard deviation calculated over 20

different sets of random feature vectors. As it can be seen from Table C.1, the proposed

POF-MKL provides lower standard deviation compared to all other baselines. This shows

that the proposed POF-MKL is less sensitive to the choice of random features. Furthermore,

Table C.2 reports the average cumulative regret of clients along with the standard deviation

of regret among clients. As it can be inferred from Table C.2, the proposed POF-MKL

obtains lower regret than other online federated MKL algorithms. Moreover, for Air and

WEC datasets, the standard deviation of regret among clients associated with POF-MKL is

considerably lower than those of other online federated MKL algorithms. Note that data
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Table C.1: MSE(×10−3) and standard deviation(×10−3) of online federated learning algo-
rithms on real datasets.

Algorithms M D Naval UJI Air WEC
OFSKL 1 100 77.77± 1.04 61.82± 2.76 13.65± 0.61 87.87± 3.93
OFMKL-Avg 51 9 33.25± 1.46 55.44± 2.48 10.63± 0.47 34.01± 1.52
vM-KOFL 51 9 26.42± 1.16 51.50± 2.30 10.58± 0.47 25.17± 1.12
eM-KOFL 1 100 28.64± 1.32 61.08± 2.73 21.94± 1.16 20.14± 0.93
POF-MKL 1 100 16.16± 0.72 33.02± 1.48 9.27± 0.41 11.44± 0.52
POF-MKL 25 20 16.82± 0.74 37.34± 1.67 9.34± 0.42 11.58± 0.53
POF-MKL 51 9 16.65± 0.74 41.00± 1.83 9.38± 0.42 11.97± 0.55

Table C.2: Average regret and its standard deviation across clients for online federated MKL
learning algorithms.

Algorithms M D Naval UJI Air WEC
OFMKL-Avg 51 9 16.95± 0.39 24.23± 20.33 3.05± 2.83 17.07± 14.52
vM-KOFL 51 9 13.40± 0.39 22.28± 15.56 3.02± 2.79 12.65± 11.53
eM-KOFL 1 100 14.92± 0.65 27.26± 19.79 8.53± 2.51 10.43± 8.28
POF-MKL 1 100 8.33± 0.39 13.23± 8.80 2.95± 2.08 6.37± 5.28
POF-MKL 25 20 8.67± 0.39 15.41± 9.58 2.98± 2.12 6.41± 5.39
POF-MKL 51 9 8.55± 0.39 17.23± 10.07 3.01± 2.15 6.51± 5.57

samples in Air and WEC datasets are distributed non-i.i.d among clients. Therefore, the

results in Table C.2 confirm that the proposed POF-MKL can better deal with heterogeneous

data among clients.

Figure C.1 illustrates the average regret of clients employing POF-MKL with the change

in the value of exploration rate ξk when the exploration rate of all clients are the same. In

particular, Figure C.1 depicts the performance of POF-MKL for M = 1 and M = 25 with the

change in ξk. According to the PMF qk,t defined in (1.10), the increase in ξk leads to increase

in exploration such that if ξk = 1, the k-th client chooses a subset of kernels uniformly at

random. Figure C.1 indicates that the optimal choice of ξk in terms of regret depends on the

dataset distributed among clients as well as the number of chosen kernels M . Moreover, the
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(a) Naval dataset. (b) Air dataset. (c) WEC dataset.

Figure C.1: Average cumulative regret of clients with the change in the value of exploration
rate (ξk).

choice of ξk is related to the computational complexity of executing POF-MKL by clients.

Specifically, when ξk < 1, in order to choose a subset of kernels, the k-th client needs to sort

kernels which imposes worst case computational complexity of O(N logN). However, when

ξk = 1, according to PMF in (1.10), the k-th client chooses one bin uniformly at random and

as a result in this case the k-th client does not need to sort kernels. Also, it is useful to note

that as it can be inferred from (1.11), clients can leverage the exploration rate ξk to send

their updates to the server without revealing both the gradient of loss and the loss of kernels

which can promote the privacy of the proposed POF-MKL.
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Appendix D

Supplementary Proofs and

Experiments for Chapter 4

D.1 First Fit Decreasing Algorithm

In this chapter, first fit decreasing algorithm is employed to split models into clusters. To

begin with, order models by decreasing cost. Let s(1), . . . , s(K − 1) denote the indices of

all models except for the Ii,t-th model ordered in ascending manner according to models’

costs such that if i ≤ j, then cs(i) ≤ cs(j). At the k-th step of clustering, client i checks

whether the s(k)-th model can be fit into any currently existing clusters according to budget

Bi − cIi,t . The s(k)-th model is put into the first cluster that it can be fit into. Otherwise,

if it cannot be fit into any opened cluster, then it is assigned to a new cluster indexed by

mi,t + 1. This continues until all models except for the Ii,t-th model are corresponded to a

cluster. Algorithm 15 summarizes the clustering procedure performed by the i-th client.
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Algorithm 15 Cluster Generation by Client i at Learning Round t

1: Input: Chosen model index Ii,t, costs ck, ∀k ∈ [K] and budget Bi.
2: Initialize: mi,t = 1.
3: Order all models except for the Ii,t-th model by decreasing cost to obtain s(1), . . . , s(K−1).

4: for k = 1, . . . , K − 1 do
5: Set j = 1 and d = 0
6: while d = 0 and j ≤ mi,t do
7: if

∑
m∈Dij,t

cm + cs(k) ≤ Bi − cIi,t then
8: Set d = 1 and j = j + 1
9: end if
10: end while
11: if j = mi,t + 1 and d = 0 then
12: Assign the s(k)-th model to a new cluster Di(mi,t+1),t.
13: Update mi,t = mi,t + 1.
14: end if
15: end for
16: Output: {Di1,t, . . . ,Dimi,t,t}

D.2 Proof of Theorem 4.1

In order to prove Theorem 4.1, the following Lemma is used as the step-stone.

Lemma D.1. Under (A1) and (A2), the regret of the i-th client with respect to any model k

is bounded from above as

T∑
t=1

Et[L(fIi,t(xi,t;θIi,t,t), yi,t)]−
T∑
t=1

L(fk(xi,t;θk,t), yi,t) ≤
lnK

ηi
+ ηiµiT. (D.1)

Proof. Recall that Zi,t =
∑K

k=1 zik,t. Therefore, we can write

Zi,t+1

Zi,t

=
K∑
k=1

zik,t+1

Zi,t

=
K∑
k=1

zik,t
Zi,t

exp (−ηiℓik,t). (D.2)

According to (4.4),
zik,t
Zi,t

= pik,t and as a result (D.2) can be rewritten as

Zi,t+1

Zi,t

=
K∑
k=1

pik,t exp (−ηiℓik,t). (D.3)
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Combining the inequality e−x ≤ 1− x+ 1
2
x2,∀x ≥ 0 with (D.2) we can conclude that

Zi,t+1

Zi,t

≤
K∑
k=1

pik,t

(
1− ηiℓik,t +

1

2
(ηiℓik,t)

2

)
. (D.4)

Employing the inequality 1+x ≤ ex and taking logarithm from both sides of (D.4), we arrive

at

ln
Zi,t+1

Zi,t

≤
K∑
k=1

pik,t

(
−ηiℓik,t +

1

2
(ηiℓik,t)

2

)
. (D.5)

Summing (D.5) over learning rounds leads to

ln
Zi,T+1

Zi,1

≤
T∑
t=1

K∑
k=1

pik,t

(
−ηiℓik,t +

1

2
(ηiℓik,t)

2

)
. (D.6)

In addition, ln
Zi,T+1

Zi,1
can be bounded from below as

ln
Zi,T+1

Zi,1

≥ ln
zik,T+1

Zi,1

= −ηi
T∑
t=1

ℓik,t − lnK, (D.7)

which holds for any k ∈ [K]. Combining (D.6) with (D.7), we get

T∑
t=1

K∑
k=1

pik,tℓik,t −
T∑
t=1

ℓik,t ≤
lnK

ηi
+

ηi
2

T∑
t=1

K∑
k=1

pik,tℓ
2
ik,t. (D.8)

Considering (1.33) and (1.34), given the observed losses in prior rounds the expected value

of ℓik,t can be obtained as

Et[ℓik,t] =
L(fk(xi,t;θk,t), yi,t)

qik,t
pik,t +

∑
∀j:j ̸=k

L(fk(xi,t;θk,t), yi,t)

qik,t

pij,t
mij,t

=
L(fk(xi,t;θk,t), yi,t)

qik,t

(
pik,t +

∑
∀j:j ̸=k

pij,t
mij,t

)
= L(fk(xi,t;θk,t), yi,t). (D.9)
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Moreover, based on the assumption that 0 ≤ L(fk(xi,t;θk,t), yi,t) ≤ 1, given the observed

losses in prior rounds, the expected value of ℓ2ik,t can be bounded from above as

Et[ℓ
2
ik,t] =

L2(fk(xi,t;θk,t), yi,t)

q2ik,t

(
pik,t +

∑
∀j:j ̸=k

pij,t
mij,t

)

=
L2(fk(xi,t;θk,t), yi,t)

qik,t
≤ 1

qik,t
. (D.10)

Taking the expectation from both sides of (D.8), we obtain

T∑
t=1

K∑
k=1

pik,tL(fk(xi,t;θk,t), yi,t)−
T∑
t=1

L(fk(xi,t;θk,t), yi,t) ≤
lnK

ηi
+

ηi
2

T∑
t=1

K∑
k=1

pik,t
qik,t

.

(D.11)

In addition, it can be written that

T∑
t=1

Et[L(fIi,t(xi,t;θIi,t,t), yi,t)] =
T∑
t=1

K∑
k=1

pik,tL(fk(xi,t;θk,t), yi,t). (D.12)

Therefore, from (D.11) we arrive at

T∑
t=1

Et[L(fIi,t(xi,t;θIi,t,t), yi,t)]−
T∑
t=1

L(fk(xi,t;θk,t), yi,t) ≤
lnK

ηi
+

ηi
2

T∑
t=1

K∑
k=1

pik,t
qik,t

.

(D.13)

According to Algorithm 12, at each learning round, client i splits all models except for the

chosen model into clusters. Let νij be the minimum number of clusters when client i chooses

Ii,t = j and splits all models except for model j into clusters. If client i employs FFD

algorithm to split models, the number of clusters mij,t when client i chooses Ii,t = j satisfies

mij,t ≤ 11
9
νij +

2
3
[43]. Let µi be defined as µi = maxj νij . Therefore, it can be concluded that
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mij,t ≤ 11
9
µi +

2
3
≤ 2µi. Thus, it can be written that

qik,t ≥ pik,t +
1− pik,t
2µi

≥ 1

2µi

(D.14)

Combining (D.13) with (D.14) yields

T∑
t=1

Et[L(fIi,t(xi,t;θIi,t,t), yi,t)]−
T∑
t=1

L(fk(xi,t;θk,t), yi,t) ≤
lnK

ηi
+ ηiµiT. (D.15)

which proves the lemma.

In what follows the server regret upper bound in fine-tuning model k is obtained. Let ℓ̂ik,t

denote the fine-tuning importance sampling loss estimate at learning round t associated with

the i-th client and the k-th model, defined as

ℓ̂ik,t =
α

qik,t
L(fk(xi,t;θk,t), yi,t)I(i ∈ Gt, k ∈ Si,t). (D.16)

According to (4.11), for any fixed θ and k ∈ [K], it can be written that

∥θk,t+1 − θ∥2 =

∥∥∥∥∥θk,t − θ − ηf
N

N∑
i=1

∇ℓ̂ik,t

∥∥∥∥∥
2

= ∥θk,t − θ∥2 −
2ηf
N

N∑
i=1

∇⊤ℓ̂ik,t(θk,t − θ) +

∥∥∥∥∥ηfN
N∑
i=1

∇ℓ̂ik,t

∥∥∥∥∥
2

. (D.17)

Moreover, due to the convexity of the loss function L(·, ·), for any learning round t, we find

that

∇⊤L(fk(xi,t;θk,t), yi,t)(θ − θk,t) ≤ L(fk(xi,t;θ), yi,t)− L(fk(xi,t;θk,t), yi,t) (D.18)

198



Multiplying both sides of (D.18) by
αI(i∈Gt,k∈Si,t)

qik,t
, we get

∇⊤ℓ̂ik,t(θ − θk,t) ≤
α

qik,t
L(fk(xi,t;θ), yi,t)I(i ∈ Gt, k ∈ Si,t)− ℓ̂ik,t. (D.19)

Summing (D.19) over clients, we obtain

N∑
i=1

ℓ̂ik,t −
N∑
i=1

α

qik,t
L(fk(xi,t;θ), yi,t)I(i ∈ Gt, k ∈ Si,t) ≤

N∑
i=1

∇⊤ℓ̂ik,t(θk,t − θ). (D.20)

Combining (D.17) with (D.20) leads to

N∑
i=1

ℓ̂ik,t −
N∑
i=1

α

qik,t
L(fk(xi,t;θ), yi,t)I(i ∈ Gt, k ∈ Si,t)

≤ N

2ηf
(∥θk,t − θ∥2 − ∥θk,t+1 − θ∥2) +

ηf
2N

∥∥∥∥∥
N∑
i=1

∇ℓ̂ik,t

∥∥∥∥∥
2

. (D.21)

Moreover, the expected value of ℓ̂ik,t and ∥∇ℓ̂ik,t∥2 with respect to I(i ∈ Gt, k ∈ Si,t) can be

obtained as

Et[ℓ̂ik,t] =
α

qik,t
L(fk(xi,t;θk,t), yi,t)×

(
pik,t
α

+
∑

∀j:j ̸=k

pij,t
αmij,t

)

= L(fk(xi,t;θk,t), yi,t) (D.22a)

Et[∥∇ℓ̂ik,t∥2] =
α2

q2ik,t
∥∇L(fk(xi,t;θk,t), yi,t)∥2 ×

(
pik,t
α

+
∑

∀j:j ̸=k

pij,t
αmij,t

)

=
α

qik,t
∥∇L(fk(xi,t;θk,t), yi,t)∥2 ≤

αG2

qik,t
(D.22b)

where the last inequality in (D.22b) can be concluded from the assumption (A3) where

∥∇L(f(xi,t;θk,t), yi,t)∥ ≤ G. In addition, using arithmetic mean geometric mean (AM-GM)
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inequality we find

∥∥∥∥∥
N∑
i=1

∇ℓ̂ik,t

∥∥∥∥∥
2

≤ N
N∑
i=1

∥∇ℓ̂ik,t∥2. (D.23)

Therefore, using (D.22) and (D.23), taking the expectation from both sides of (D.21), it can

be written that

N∑
i=1

L(fk(xi,t;θk,t), yi,t)−
N∑
i=1

L(fk(xi,t;θ), yi,t)

≤ N

2ηf
(∥θk,t − θ∥2 − ∥θk,t+1 − θ∥2) +

ηfG
2

2

N∑
i=1

α

qik,t
. (D.24)

Summing (D.24) over learning rounds yields

N∑
i=1

T∑
t=1

L(fk(xi,t;θk,t), yi,t)−
N∑
i=1

T∑
t=1

L(fk(xi,t;θ), yi,t)

≤ N

2ηf
(∥θk,1 − θ∥2 − ∥θk,T+1 − θ∥2) +

ηfG
2

2

T∑
t=1

N∑
i=1

α

qik,t
. (D.25)

Plugging in θ = θ∗k in (D.25) and considering the facts that θk,1 = 0 and ∥θk,T+1 − θ∥2 ≥ 0,

we arrive at

N∑
i=1

T∑
t=1

L(fk(xi,t;θk,t), yi,t)−
N∑
i=1

T∑
t=1

L(fk(xi,t;θ
∗
k), yi,t)

≤ N

2ηf
∥θ∗k∥2 +

ηfG
2

2

T∑
t=1

N∑
i=1

α

qik,t
(D.26)

According to (D.14), it can be concluded that 1
qik,t
≤ 2µi. Therefore, considering assumption

(A4), we get

N∑
i=1

T∑
t=1

L(fk(xi,t;θk,t), yi,t)−
N∑
i=1

T∑
t=1

L(fk(xi,t;θ
∗
k), yi,t) ≤

NR

2ηf
+

N∑
i=1

µiαηfG
2T (D.27)
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which proves (4.13) and completes the proof of Theorem 4.1.

D.3 Supplementary Experimental Results and Details

The performance of both the proposed OFMS-FT method and other baseline approaches

is evaluated through online image classification and online regression tasks. The image

classification experiments involve the utilization of the CIFAR-10 and MNIST datasets.

CIFAR-10 and MNIST are well-known computer vision datasets, comprising a total of 60, 000

and 70, 000 color images, respectively, distributed across 10 distinct classes. Each dataset

includes 10, 000 test samples, with the remaining samples designated for training. To facilitate

model selection, as outlined in Section 4.6, we train a set of 20 models using the training

data from CIFAR-10 and MNIST. These models encompass two distinct architectural designs,

resulting in ten models trained under each architecture. For each class label within these

datasets, two models with differing architectures are trained. These models exhibit a bias

towards the specific class label they are trained on, utilizing a portion of the training dataset

that contains a greater number of samples from that class compared to the other classes. For

the CIFAR-10 dataset, ten CNNs are trained using the VGG architecture [138] with 2 blocks,

while the remaining ten are trained using VGG architecture with 3 blocks. The training data

for each model is non-i.i.d. sampled from the 50, 000 training samples. Precisely, each CNN

is trained on 9, 500 training data samples, consisting of 5, 000 samples from one class and

500 samples drawn from the training set of each of the other nine classes. Similarly, for the

MNIST dataset, ten CNNs are trained using VGG with one block, and the other ten are

trained using VGG with 2 blocks. To train each model, 6, 900 data samples are drawn from

the training set, with 6, 000 samples belonging to one class and 100 samples from each of

the other nine classes. Additionally, the testing data samples for CIFAR-10 and MNIST are

distributed among clients in a non-i.i.d. manner. For CIFAR-10, each client receives 155
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testing data samples from one class and 5 samples from each of the other nine classes. In

the case of MNIST, each client receives at least 133 samples from one class and at least 5

samples from the other classes. The 200 testing data samples are randomly shuffled and

are sequentially presented to each client over T = 200 learning rounds. Moreover, for online

regression task, the performance of algorithms are tested on the following datasets [84]:

• Air: Each data sample has 14 features including information related to air quality such

as concentration of some chemicals in the air. Data samples are collected from different

geographical sites. The goal is to predict the concentration of CO in the air [161].

• WEC: Each data sample has 48 features of wave energy converters. Data samples are

collected from 4 different geographical sites. The goal is to predict total power output

[117].

For each regression dataset, 20 fully-connected feedforward neural networks are trained.

All neural networks have 5 hidden layers each with 100 hidden neurons. ReLU activation

function is employed for all hidden neurons in all networks. In order to train models for Air

dataset, 10 neural networks are trained on 30, 000 samples from the site Dongsi with different

initialization while other 10 neural networks are trained on 30, 000 samples of Dingling site

with different initialization. In the experiments, data samples of Air dataset are distributed

non-i.i.d among clients such that 50 clients observe data samples from Aotizhongxin site

while other 50 clients observe data samples from Changping site. To train models for WEC

dataset, 10 neural networks are trained on 70, 000 samples from the site in Sydney with

different initialization. The remaining 10 neural networks are trained on 70, 000 samples

from the site in Tasmania with different initialization. Data samples of WEC dataset are

distributed non-i.i.d among clients such that 50 clients observe data samples from Adelaide

site while other 50 clients observe data samples from Perth site. In the experiments, using

Fed-OMD and PerFedAvg, each client performs one epoch of stochastic gradient descent
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Table D.1: Average and standard deviation of clients’ accuracy using OFMS-FT over CIFAR-
10 and MNIST with the change in budget.

Budget CIFAR-10 MNIST

Bi = 2,∀i ∈ [N ] 70.01%± 6.96% 89.87%± 3.33%
Bi = 5,∀i ∈ [N ] 76.77%± 4.46% 92.05%± 2.69%
Bi = 10,∀i ∈ [N ] 79.90%± 4.23% 92.93%± 2.58%

Table D.2: Average and standard deviation of clients’ MSE (×10−3) using OFMS-FT over
Air and WEC with the change in budget.

Budget Air WEC

Bi = 2,∀i ∈ [N ] 7.51± 4.82 8.27± 1.56
Bi = 5,∀i ∈ [N ] 7.46± 5.10 7.09± 1.67
Bi = 10,∀i ∈ [N ] 7.38± 4.86 6.99± 1.63

(SGD) with learning rate of 0.001 on its batch of data to fine-tune the model. In order to

perform fine-tuning, clients start to update models after 50 learning rounds so that clients

can store 50 samples in batch. All experiments were carried out using Intel(R) Core(TM)

i7-10510U CPU @ 1.80 GHz 2.30 GHz processor with a 64-bit Windows operating system.

Table D.1 shows the average accuracy of clients along with its standard deviation on CIFAR-10

and MNIST datasets with the change in the memory budget when clients employ OFMS-FT.

Moreover, Table D.2 demonstrates the average MSE and its standard deviation across clients

for different memory budgets on Air and WEC datasets when clients use OFMS-FT. Results

in Tables D.1 and D.2 confirm that if clients have larger memory, the accuracy of OFMS-FT

improves.

We report the run times of algorithms in Table D.3. Run time refers to average total run

time of clients to perform their prediction task on the entire data samples that they observe

up until time horizon T . In Table D.3, OFMS-FT, Bi = 5, and OFMS-FT, Bi = 2 refer
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Table D.3: Average run time (s) of clients on CIFAR-10, MNIST, Air and WEC datasets.

Algorithms CIFAR-10 MNIST Air WEC

MAB 9.43 9.34 8.89 9.51
Non-Fed-OMS 57.38 62.09 57.56 52.70
Fed-OMD 32.80 23.24 15.86 15.64
PerFedAvg 47.61 32.21 19.29 22.03
OFMS-FT, Bi = 5, ∀i 145.91 99.49 55.59 55.69
OFMS-FT, Bi = 2, ∀i 64.42 43.06 27.78 28.82

to the proposed algorithm with budgets Bi = 5 and Bi = 2, respectively. Table D.3 shows

that other algorithms run faster than OFMS-FT while OFMS-FT outperforms others in

terms of accuracy (see Table 4.1). OFMS-FT runs slower since OFMS-FT evaluates and

fine-tunes multiple models at each round. Comparing the run times of OFMS-FT, Bi = 5

with OFMS-FT, Bi = 2 shows that the time complexity of OFMS-FT can be controlled by

budget. In time-sensitive scenarios, the budget can be chosen such that OFMS-FT can fulfill

required computations before the start of the next round.

D.4 Supplementary Discussions and Analysis

This section presents extended discussions on performance analysis of OFMS-FT.

D.4.1 Supplementary Analysis

In sections 4.3 and 4.4, it is assumed that at each learning round t, each client observes one

data sample and communicate with the server every learning round. This subsection analyzes

the regret of OFMS-FT when clients communicate with the server every n ≥ 1 learning

rounds. Every round that clients communicate with the server called communication round.
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Therefore, the number of communication rounds U is ⌊T
n
⌋. Let the communication u occurs

at learning round τu. Without loss of generality, we can assume that τu = n(u−1)+1. In this

case, at communication round u, client i draws the model index Ii,u using the PMF specified

in (4.4). Then client i splits all models except for model Ii,u into clusters Di1,u, . . . ,Dimi,u,u

such that the cumulative cost of models in each cluster does not exceed Bi − cIi,u . Then

client i draws one of the clusters uniformly at random. Let Ji,u denote the index of the

selected cluster. Client i downloads all models in Ji,u-th cluster in addition to model Ii,u.

Upon receiving models, client i computes the importance loss estimate as

ℓik,u =

τu+1−1∑
t=τu

L(fk(xi,t;θk,u), yi,t)

qik,u
I(k ∈ Si,u) (D.28)

where θk,u denote the parameter of model k between communications rounds u and u + 1

and Si,u is a subset of models stored by client i between communications rounds u and u+ 1.

Also, qik,u can be obtained as

qik,u = pik,τu +
∑

∀j:j ̸=k

pij,τu
mij,u

(D.29)

where mij,u denote the number of model clusters at communication round u if Ii,u = j.

Moreover, importance sampling gradient estimate is calculated as follows by client i

∇ℓ̂ik,u =

τu+1−1∑
t=τu

α

qik,u
∇L(fk(xi,t;θk,u), yi,t)I(i ∈ Du, k ∈ Si,u) (D.30)

where Du represents a subset of clients chosen by the server at communication round u to

fine-tune models. The rest of procedures and definitions are the same as Algorithm 12 and

Section 4.3. Moreover, when clients communicate with the server every n learning rounds,
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the i-th client regret Ri,T and the server regret Sk,T associated with model k are defined as

Ri,T =
U∑

u=1

Eu

[
τu+1−1∑
t=τu

L(fIi,u(xi,t;θk,u), yi,t)

]
− min

k∈[K]

U∑
u=1

τu+1−1∑
t=τu

L(fk(xi,t;θk,u), yi,t)

(D.31a)

Sk,T =
1

N

N∑
i=1

U∑
u=1

τu+1−1∑
t=τu

L(fk(xi,t;θk,u), yi,t)−
1

N

N∑
i=1

U∑
u=1

τu+1−1∑
t=τu

L(fk(xi,t;θ
∗
k), yi,t)

(D.31b)

where Eu[·] denote the expected value given observed losses up until communication round

u. The following Theorem obtains the regret upper bound for OFMS-FT when clients

communicate with the server every n learning rounds.

Theorem D.1. Assume that client i, ∀i ∈ [N ] communicates with the server every n learning

rounds. Under (A1) and (A2), the expected cumulative regret of the i-th client using OFMS-FT

is bounded by

Ri,T ≤
lnK

ηi
+ ηiµinT. (D.32)

which holds for all i ∈ [N ]. Under (A1)–(A4), the cumulative regret of the server in fine-tuning

model k using OFMS-FT is bounded by

Sk,T ≤
R

2ηf
+

1

N

N∑
i=1

ηfαµiG
2nT (D.33)

Proof. see subSection D.4.2

If client i sets

ηi = O

(√
lnK

µinT

)
, (D.34)
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then the i-th client achieves sub-linear regret of

Ri,T ≤ O
(√

(lnK)µinT
)
, (D.35)

while the server achieves sub-linear regret of

Sk,T ≤ O


√√√√αnT

N

N∑
i=1

µi

 (D.36)

by setting

ηf = O

 1√
αnT
N

∑N
i=1 µi

 . (D.37)

As can be inferred from theorem D.1 and regret analysis presented in this subsection, the

increase in n, degrades the regret upper bound of both clients and the server. Increase in n

causes that clients update their stored models fewer times and this reduces the flexibility of

model selection for clients. Also, increase in n leads to fine-tuning models less often which

can adversely affect the prediction accuracy of models.

D.4.2 Proof of Theorem D.1

Substituting ℓik,t with ℓik,u in (D.2) and following the steps from (D.2) to (D.8), we get

U∑
u=1

K∑
k=1

pik,τuℓik,u −
U∑

u=1

ℓik,u ≤
lnK

ηi
+

ηi
2

U∑
u=1

K∑
k=1

pik,τuℓ
2
ik,u. (D.38)
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Moreover, the expected value of ℓik,u and ℓ2ik,u given observed losses till communication round

u, can be obtained as

Eu[ℓik,u] =

(
τu+1−1∑
t=τu

L(fk(xi,t;θk,u), yi,t)

qik,u

)
×

(
pik,τu +

∑
∀j:j ̸=k

pij,τu
mij,u

)

=

τu+1−1∑
t=τu

L(fk(xi,t;θk,u), yi,t). (D.39)

Furthermore, using arithmetic-mean geometric-mean (AM-GM) inequality, ℓ2ik,u can bounded

from above as

ℓ2ik,u ≤ n

(
τu+1−1∑
t=τu

(
L(fk(xi,t;θk,u), yi,t)

qik,u
I(k ∈ Si,u)

)2
)
. (D.40)

Moreover, based on the assumption that 0 ≤ L(fk(xi,t;θk,u), yi,t) ≤ 1, given the observed

losses in prior rounds, expected value of ℓ2ik,u can be bounded from above as

Eu

[(
L(fk(xi,t;θk,u), yi,t)

qik,u
I(k ∈ Si,u)

)2
]
=
L2(fk(xi,t;θk,u), yi,t)

q2ik,u
×

(
pik,τu +

∑
∀j:j ̸=k

pij,τu
mij,u

)

=
L2(fk(xi,t;θk,u), yi,t)

qik,u
≤ 1

qik,u
. (D.41)

Combining (D.40) with (D.41), we arrive at

Eu[ℓ
2
ik,u] ≤

n2

qik,u
. (D.42)

Taking the expectation from both sides of (D.38) and considering the fact that ξi ≥ 0, it can

be concluded that

U∑
u=1

τu+1∑
t=τu

K∑
k=1

pik,τuL(fk(xi,t;θk,u), yi,t)−
U∑

u=1

τu+1∑
t=τu

L(fk(xi,t;θk,u), yi,t)

≤ lnK

ηi
+

ηin
2

2

U∑
u=1

K∑
k=1

pik,τu
qik,u

. (D.43)

208



Moreover, it can be written that

Eu

[
τu+1−1∑
t=τu

L(fIi,u(xi,t;θk,u), yi,t)

]
=

τu+1∑
t=τu

K∑
k=1

pik,τuL(fk(xi,t;θk,u), yi,t). (D.44)

Considering the facts that (D.14) holds true for pik,τu and qik,u, ∀k ∈ [K] and nU = T , we

can conclude that

U∑
u=1

Eu

[
τu+1−1∑
t=τu

L(fIi,u(xi,t;θk,u), yi,t)

]
−

U∑
u=1

τu+1∑
t=τu

L(fk(xi,t;θk,u), yi,t)

≤ lnK

ηi
+ ηiµinT (D.45)

which obtains the regret of client i using OFMS-FT when the i-th client communicates with

the server every n learning rounds. Similar to ℓ̂ik,t, define ℓ̂ik,u as

ℓ̂ik,u =

τu+1−1∑
t=τu

α

qik,u
L(fk(xi,t;θk,u), yi,t)I(i ∈ Du, k ∈ Si,u) (D.46)

Moreover, substituting ℓ̂ik,t with ℓ̂ik,u in (D.17) and following the derivation steps from (D.17)

to (D.21), we obtain

N∑
i=1

ℓ̂ik,u −
N∑
i=1

τu+1−1∑
t=τu

α

qik,u
L(fk(xi,t;θ), yi,t)I(i ∈ Du, k ∈ Si,u)

≤ N

2ηf
(∥θk,u − θ∥2 − ∥θk,u+1 − θ∥2) +

ηf
2N

∥∥∥∥∥
N∑
i=1

∇ℓ̂ik,u

∥∥∥∥∥
2

. (D.47)
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Expected value of ℓ̂ik,u and ∥∇ℓ̂ik,u∥2 can be obtained as

Eu[ℓ̂ik,u] =

τu+1−1∑
t=τu

α

qik,u
L(fk(xi,t;θk,u), yi,t)×

(
pik,τu
α

+
∑

∀j:j ̸=k

pij,τu
αmij,u

)

=

τu+1−1∑
t=τu

L(fk(xi,t;θk,u), yi,t) (D.48a)

Eu[∥∇ℓ̂ik,u∥2] =
α2

q2ik,u

∥∥∥∥∥
τu+1−1∑
t=τu

∇L(fk(xi,t;θk,u), yi,t)

∥∥∥∥∥
2

×

(
pik,τu
α

+
∑

∀j:j ̸=k

pij,τu
αmij,u

)

=
α

qik,u

∥∥∥∥∥
τu+1−1∑
t=τu

∇L(fk(xi,t;θk,u), yi,t)

∥∥∥∥∥
2

≤ αn

qik,u

τu+1−1∑
t=τu

∥∇L(fk(xi,t;θk,u), yi,t)∥2 ≤
αn2G2

qik,u
(D.48b)

where the last two inequalities in (D.48b) obtained using AM-GM inequality and the assump-

tion that ∥∇L(fk(xi,t;θk,u), yi,t)∥2 ≤ G2. Moreover, using AM-GM inequality and (D.48b),

we can write that

Eu

∥∥∥∥∥
N∑
i=1

∇ℓ̂ik,u

∥∥∥∥∥
2
 ≤ N

N∑
i=1

Eu[∥∇ℓ̂ik,u∥2] ≤ N
N∑
i=1

αn2G2

qik,u
. (D.49)

Taking the expectation from both sides of (D.47), we get

N∑
i=1

τu+1−1∑
t=τu

L(fk(xi,t;θk,u), yi,t)−
N∑
i=1

τu+1−1∑
t=τu

L(fk(xi,t;θ), yi,t)

≤ N

2ηf
(∥θk,u − θ∥2 − ∥θk,u+1 − θ∥2) +

ηf
2

N∑
i=1

αn2G2

qik,u
. (D.50)
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Following derivation steps from (D.24) to (D.26), using (D.50) we can obtain

N∑
i=1

U∑
u=1

τu+1−1∑
t=τu

L(fk(xi,t;θk,u), yi,t)−
N∑
i=1

U∑
u=1

τu+1−1∑
t=τu

L(fk(xi,t;θ
∗
k), yi,t)

≤N∥θ∗k∥2

2ηf
+

ηf
2

N∑
i=1

U∑
u=1

αn2G2

qik,u
. (D.51)

Considering the fact that qik,u ≥ 1
2µi

(see (D.14)), using (D.51) we arrive at

N∑
i=1

U∑
u=1

τu+1−1∑
t=τu

L(fk(xi,t;θk,u), yi,t)−
N∑
i=1

U∑
u=1

τu+1−1∑
t=τu

L(fk(xi,t;θ
∗
k), yi,t)

≤N∥θ∗k∥2

2ηf
+

N∑
i=1

ηfαµiG
2nT (D.52)

which proves the theorem.
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Appendix E

Supplementary Proofs and

Experiments for Chapter 5

E.1 Proof of Theorem 5.1

This section provides the proof of Theorem 5.1. The proof follows similar steps to those

in [112], and it is included here for the sake of completeness and to make the chapter

self-contained.

According to (5.3) and (5.4), for any θ it can be written that

∥θt+1 − θ∥2 =

∥∥∥∥∥ 1

N

N∑
i=1

ϕi,t+1 − θ

∥∥∥∥∥
2

=

∥∥∥∥∥θt − η

N

N∑
i=1

∇L(f(xi,t;θt), yi,t)− θ

∥∥∥∥∥
2

=∥θt − θ∥2 +

∥∥∥∥∥ η

N

N∑
i=1

∇L(f(xi,t;θt), yi,t)

∥∥∥∥∥
2

− 2η

N

N∑
i=1

(θt − θ)⊤∇L(f(xi,t;θt), yi,t). (E.1)
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Due to convexity of L(·, ·) it can be concluded that

2η

N

N∑
i=1

L(f(xi,t;θt), yi,t)− L(f(xi,t;θ), yi,t)

≤2η

N

N∑
i=1

(θt − θ)⊤∇L(f(xi,t;θt), yi,t). (E.2)

Combining (E.1) with (E.2), we get

2η

N

N∑
i=1

L(f(xi,t;θt), yi,t)−
2η

N

N∑
i=1

L(f(xi,t;θ), yi,t)

≤∥θt − θ∥2 − ∥θt+1 − θ∥2 +

∥∥∥∥∥ η

N

N∑
i=1

∇L(f(xi,t;θt), yi,t)

∥∥∥∥∥
2

. (E.3)

Using assumption A2 and Arithmetic Mean Geometric Mean (AM-GM) inequality it can be

written that

∥∥∥∥∥
N∑
i=1

∇L(f(xi,t;θt), yi,t)

∥∥∥∥∥
2

≤ N
N∑
i=1

∥∇L(f(xi,t;θt), yi,t)∥2 ≤ N2G2. (E.4)

Combining (E.3) with (E.4), we arrive at

2η

N

N∑
i=1

L(f(xi,t;θt), yi,t)−
2η

N

N∑
i=1

L(f(xi,t;θ), yi,t)

≤∥θt − θ∥2 − ∥θt+1 − θ∥2 + η2G2. (E.5)

Dividing both sides by 2η
N

yields

N∑
i=1

L(f(xi,t;θt), yi,t)−
N∑
i=1

L(f(xi,t;θ), yi,t)

≤N(∥θt − θ∥2 − ∥θt+1 − θ∥2)
2η

+
ηN

2
G2. (E.6)
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Summing (E.6) over time, we obtain

T∑
t=1

N∑
i=1

L(f(xi,t;θt), yi,t)−
T∑
t=1

N∑
i=1

L(f(xi,t;θ), yi,t)

≤N(∥θ0 − θ∥2 − ∥θT+1 − θ∥2)
2η

+
ηN

2
G2T. (E.7)

Plugging in θ = θ∗ and θ0 = 0 into (E.7) and considering the fact that ∥θT+1 − θ∥2 ≥ 0, we

find

T∑
t=1

N∑
i=1

L(f(xi,t;θt), yi,t)−
T∑
t=1

N∑
i=1

L(f(xi,t;θ
∗), yi,t) ≤

N∥θ∗∥2

2η
+

ηN

2
G2T (E.8)

which proves the Theorem.

E.2 Proof of Theorem 5.2

According to (5.10), we can write

αi,t+1 + βi,t+1

αi,t + βi,t

=
αi,t

αi,t + βi,t

exp (−ηcL(f(xi,t;θt), yi,t))

+
βi,t

αi,t + βi,t

exp (−ηcL(f(xi,t;ϕi,t), yi,t)) . (E.9)

Using the inequality e−x ≤ 1− x+ 1
2
x2,∀x ≥ 0, from (E.9) we arrive at

αi,t+1 + βi,t+1

αi,t + βi,t

≤ αi,t

αi,t + βi,t

(
1− ηcL(f(xi,t;θt), yi,t) +

η2c
2
L2(f(xi,t;θt), yi,t)

)
+

βi,t

αi,t + βi,t

(
1− ηcL(f(xi,t;ϕi,t), yi,t) +

η2c
2
L2(f(xi,t;ϕi,t), yi,t)

)
.

(E.10)
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Taking the logarithm from both sides of (E.10) and using the inequality 1 + x ≤ ex, we get

ln(
αi,t+1 + βi,t+1

αi,t + βi,t

) ≤ αi,t

αi,t + βi,t

(
−ηcL(f(xi,t;θt), yi,t) +

η2c
2
L2(f(xi,t;θt), yi,t)

)
+

βi,t

αi,t+βi,t

(
−ηcL(f(xi,t;ϕi,t), yi,t) +

η2c
2
L2(f(xi,t;ϕi,t), yi,t)

)
.

(E.11)

Considering the assumption that 0 ≤ L(f(x;θ), y) ≤ 1, ∀x,θ, (E.11) can be relaxed to

ln(
αi,t+1 + βi,t+1

αi,t + βi,t

) ≤ αi,t

αi,t + βi,t

(−ηcL(f(xi,t;θt), yi,t))

+
βi,t

αi,t + βi,t

(−ηcL(f(xi,t;ϕi,t), yi,t)) +
η2c
2
. (E.12)

Summing (E.12) over time, we obtain

ln(
αi,T+1 + βi,T+1

αi,1 + βi,1

) ≤ αi,t

αi,t + βi,t

(
−ηc

T∑
t=1

L(f(xi,t;θt), yi,t)

)

+
βi,t

αi,t + βi,t

(
−ηc

T∑
t=1

L(f(xi,t;ϕi,t), yi,t)

)
+

η2cT

2
. (E.13)

According to Hölder’s inequality, for any positive real numbers p and q satisfying 1
p
+ 1

q
= 1,

the following inequality holds:

αi,T+1

p
+

βi,T+1

q
≥ α

1
p

i,T+1β
1
q

i,T+1. (E.14)

To meet the condition 1
p
+ 1

q
= 1, it is necessary that p ≥ 1 and q ≥ 1. Consequently, (E.14)

can be modified to:

αi,T+1 + βi,T+1 ≥ α
1
p

i,T+1β
1
q

i,T+1. (E.15)
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Considering the fact that αi,1 = βi,1 = 1, based on (E.15) we can write

ln(
αi,T+1 + βi,T+1

αi,1 + βi,1

) ≥ 1

p
ln(αi,T+1) +

1

q
ln(βi,T+1)− ln(2). (E.16)

According to the update rule in (E.9), (E.16) is equivalent to

ln(
αi,T+1 + βi,T+1

αi,1 + βi,1

) ≥− ηc
p

T∑
t=1

L(f(xi,t;θt), yi,t)

− ηc
q

T∑
t=1

L(f(xi,t;ϕi,t), yi,t)− ln(2). (E.17)

Combining (E.13) with (E.17) we arrive at

αi,t

αi,t + βi,t

T∑
t=1

L(f(xi,t;θt), yi,t) +
βi,t

αi,t + βi,t

T∑
t=1

L(f(xi,t;ϕi,t), yi,t)

− 1

p

T∑
t=1

L(f(xi,t;θt), yi,t)−
1

q

T∑
t=1

L(f(xi,t;ϕi,t), yi,t) ≤
ln(2)

ηc
+

ηcT

2
. (E.18)

Due to the convexity of L(·, ·), we can write

L(fi,t(xi,t), yi,t) =L
(

αi,t

αi,t + βi,t

f(xi,t;θt) +
βi,t

αi,t + βi,t

f(xi,t;ϕi,t), yi,t

)
≤ αi,t

αi,t + βi,t

T∑
t=1

L(f(xi,t;θt), yi,t)

+
βi,t

αi,t + βi,t

T∑
t=1

L(f(xi,t;ϕi,t), yi,t). (E.19)

Combining (E.18) with (E.19) we get

T∑
t=1

L(fi,t(xi,t), yi,t)−
1

p

T∑
t=1

L(f(xi,t;θt), yi,t)−
1

q

T∑
t=1

L(f(xi,t;ϕi,t), yi,t)

≤ ln(2)

ηc
+

ηcT

2
(E.20)
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Substituting p =∞ and q = 1 in (E.20), we obtain

T∑
t=1

L(fi,t(xi,t), yi,t)−
T∑
t=1

L(f(xi,t;ϕi,t), yi,t) ≤
ln(2)

ηc
+

ηcT

2
. (E.21)

Since Fed-POE updates ϕi,t locally using online gradient descent as outlined in (5.8), according

to (5.6), for any ϕ we can write

T∑
t=1

L(f(xi,t;ϕi,t), yi,t)−
T∑
t=1

L(f(xi,t;ϕ), yi,t) ≤
∥ϕ∥2

2η
+

η

2
G2T. (E.22)

Substituting ϕ∗
i in (E.22) along with combining (E.21) with (E.22), we can conclude that

T∑
t=1

L(fi,t(xi,t), yi,t)−
T∑
t=1

L(f(xi,t;ϕ
∗
i ), yi,t) ≤

∥ϕ∗
i ∥2

2η
+

ln(2)

ηc
+

η

2
G2T +

ηcT

2
(E.23)

which proves the personalized regret upper bound of Fed-POE in (5.12). Furthermore,

plunging in p = 1 and q =∞ into (E.20), we get

T∑
t=1

L(fi,t(xi,t), yi,t)−
T∑
t=1

L(f(xi,t;θt), yi,t) ≤
ln(2)

ηc
+

ηcT

2
. (E.24)

Summing (E.24) over all clients, we obtain

T∑
t=1

N∑
i=1

L(fi,t(xi,t), yi,t)−
T∑
t=1

N∑
i=1

L(f(xi,t;θt), yi,t) ≤
N ln(2)

ηc
+

ηcNT

2
. (E.25)

Combining (E.25) with (E.8), we arrive at

T∑
t=1

N∑
i=1

L(fi,t(xi,t), yi,t)−
T∑
t=1

N∑
i=1

L(f(xi,t;θ
∗), yi,t)

≤N∥θ∗∥2

2η
+

N ln(2)

ηc
+

ηN

2
G2T +

ηcNT

2
(E.26)

which proves the Theorem.
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E.3 Proof of Theorem 5.3

According to assumption (A3) that 0 ≤ L(f(x;θ), y) ≤ 1, it can be written that

1

N

U∑
t=1

N∑
i=1

L(fi,t(xi,t), yi,t)−
1

N

U∑
t=1

N∑
i=1

L(h∗(xi,t), yi,t) ≤ U. (E.27)

Let ℓij,t denote the importance sampling loss estimate, which is expressed as

ℓij,t =
L(f(xi,t;ρj), yi,t)

qij,t
1j∈Mi,t

. (E.28)

Let the total number of model parameters stored by the server after time step U is D and

Wi,t =
∑D

j=1wij,t. For any t > U , considering (5.17), we can write

Wi,t+1

Wi,t

=
D∑
j=1

wij,t

Wi,t

exp(−ηcℓij,t) =
D∑
j=1

pij,t exp(−ηcℓij,t). (E.29)

Employing the inequality e−x ≤ 1− x+ 1
2
x2,∀x ≥ 0, from (E.29) we obtain

Wi,t+1

Wi,t

≤
D∑
j=1

pij,t(1− ηcℓij,t +
η2c
2
ℓ2ij,t). (E.30)

Taking the logarithm from both sides of (E.30) and using the inequality 1+ x ≤ ex, we arrive

at

ln
Wi,t+1

Wi,t

≤
D∑
j=1

pij,t(−ηcℓij,t +
η2c
2
ℓ2ij,t). (E.31)

Summing (E.31) over time, we get

ln
Wi,T+1

Wi,U

≤
T∑

t=U

D∑
j=1

pij,t(−ηcℓij,t +
η2c
2
ℓ2ij,t). (E.32)
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Considering the fact that the weights {wij,t}Dj=1 are initialized as wij,1 = 1, ∀j ∈ [D], it can

concluded that Wi,U ≤ D. Theefore, for any j ∈ [D], the left hand side of (E.32) is bounded

from below as

ln
Wi,T+1

Wi,U

≥ ln
wij,T+1

Wi,U

≥ ln
wij,T+1

D
= −

T∑
t=U

ηcℓij,t − lnD. (E.33)

Combining (E.33) with (E.32) yields

T∑
t=U

D∑
j=1

pij,tℓij,t −
T∑

t=U

ℓij,t ≤
lnD

ηc
+

ηc
2

T∑
t=U

D∑
j=1

pij,tℓ
2
ij,t. (E.34)

The expected values of ℓij,t and ℓ2ij,t given observed losses up until time step t can be obtained

as

Et[ℓij,t] =
L(f(xi,t;ρj), yi,t)

qij,t
Et[1j∈Mi,t

] = L(f(xi,t;ρj), yi,t) (E.35a)

Et[ℓ
2
ij,t] =

L(f(xi,t;ρj), yi,t)
2

q2ij,t
Et[1j∈Mi,t

] =
L(f(xi,t;ρj), yi,t)

2

qij,t
≤ 1

qij,t
. (E.35b)

Taking the expectation from (E.34), we arrive at

T∑
t=U

D∑
j=1

pij,tL(f(xi,t;ρj), yi,t)−
T∑

t=U

L(f(xi,t;ρj), yi,t) ≤
lnD

ηc
+

ηc
2

T∑
t=U

D∑
j=1

pij,t
qij,t

. (E.36)

Since qij,t = 1− (1− pij,t)
M = pij,t(1 + (1− pij,t) + (1− pij,t)

2 + . . .+ (1− pij,t)
M−1), it can

be concluded that qij,t ≥ pij,t. Therefore, (E.36) can be relaxed to

T∑
t=U

D∑
j=1

pij,tL(f(xi,t;ρj), yi,t)−
T∑

t=U

L(f(xi,t;ρj), yi,t) ≤
lnD

ηc
+

ηc
2
D(T − U). (E.37)

According to model selection procedure adopted by Fed-POE presented in Algorithm 13,

client i chooses a subset of models by sampling them in M rounds with replacement. Let

aij,t ≥ 0 denote the number of times that the model j in Dt is chosen by client i at time
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step t. The number of different situations for selected subset of models Mi,t is equal to the

number of solutions for the linear equation

ai1,t + . . .+ aiD,t = M,aij,t ≥ 0,∀j ∈ [D]. (E.38)

Let A denote the set of all possible solutions for (E.38) such that if a ∈ A where a =

[a1, . . . , aD], a1, . . . , aD satisfies (E.38). Therefore, for the expected loss of the ensemble

f̃i,t(xi,t) in (5.14), we can write

Et[L(f̃i,t(xi,t), yi,t)] =

|A|∑
k=1

D∏
j=1

p
aj,k
ij,t L(f̃

(k)
i,t (xi,t), yi,t) (E.39)

where f̃
(k)
i,t (xi,t) denote the k-th possible ensemble model generated by client i using Fed-POE.

Using the Jensen inequality and convexity of the loss function, we can relax (E.39) to

Et[L(f̃i,t(xi,t), yi,t)] =

|A|∑
k=1

(
D∏
j=1

p
aj,k
ij,t

)
L(f̃ (k)

i,t (xi,t), yi,t)

≤
|A|∑
k=1

(
D∏
j=1

p
aj,k
ij,t

) ∑
m∈M(k)

i,t

wim,t

W
(k)
i,t

L(f(xi,t;ρj), yi,t) (E.40)

where M(k)
i,t and W

(k)
i,t are the k-th possible model subset and weight summations, respectively.

Rearranging the right hand side of (E.40), we can write

Et[L(f̃i,t(xi,t), yi,t)] ≤
D∑
j=1

pij,t

|Bj |∑
k=1

(
D∏

m=1

p
bm,k

im,t

)
wij,t

W
(k)
i,t

L(f(xi,t;ρj), yi,t) (E.41)

where Bj is the set of all possible solutions for the linear equation in (E.38) condition on

aij,t ≥ 1. Since for any k, we have wij,t ≤ W
(k)
i,t , (E.41) can be relaxed to

Et[L(f̃i,t(xi,t), yi,t)] ≤
D∑
j=1

pij,t

|Bj |∑
k=1

(
D∏

m=1

p
bm,k

im,t

)
L(f(xi,t;ρj), yi,t). (E.42)
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Since
∑|Bj |

k=1

(∏D
m=1 p

bm,k

im,t

)
includes all possibilities in Bj , we can conclude that

∑|Bj |
k=1

(∏D
m=1 p

bm,k

im,t

)
=

1. Combining this with (E.42), we obtain

Et[L(f̃i,t(xi,t), yi,t)] ≤
D∑
j=1

pij,tL(f(xi,t;ρj), yi,t). (E.43)

Combining (E.43) with (E.37), we arrive at

T∑
t=U

Et[L(f̃i,t(xi,t), yi,t)]−
T∑

t=U

L(f(xi,t;ρj), yi,t) ≤
lnD

ηc
+

ηc
2
D(T − U). (E.44)

Since 0 ≤ L(f(x;θ), y) ≤ 1, it can be written that

U∑
t=1

Et[L(f̃i,t(xi,t), yi,t)]−
U∑
t=1

L(f(xi,t;ρj), yi,t) ≤ U. (E.45)

Combining (E.45) with (E.44), we get

T∑
t=1

Et[L(f̃i,t(xi,t), yi,t)]−
T∑
t=1

L(f(xi,t;ρj), yi,t) ≤
lnD

ηc
+

ηc
2
D(T − U) + U. (E.46)

Since f̄i,t(·) similar to fi,t(·) is the ensemble of two models, following the same derivation steps

from (E.9) to (E.21) by substituting f̄i,t(xi,t), fi,t(xi,t) and f̃i,t(xi,t) with fi,t(xi,t), f(xi,t;θt)

and f(xi,t;ϕi,t), respectively, we can conclude that

T∑
t=1

L(f̄i,t(xi,t), yi,t)−
T∑
t=1

L(fi,t(xi,t), yi,t) ≤
ln(2)

ηc
+

ηcT

2
, (E.47a)

T∑
t=1

L(f̄i,t(xi,t), yi,t)−
T∑
t=1

L(f̃i,t(xi,t), yi,t) ≤
ln(2)

ηc
+

ηcT

2
. (E.47b)
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Taking the expectation from both sides of (E.47b) with respect to randomization in model

selection along with combining (E.47b) with (E.46) yields

T∑
t=1

Et[L(f̄i,t(xi,t), yi,t)]−
T∑
t=1

L(f(xi,t;ρj), yi,t)

≤ ln 2D

ηc
+

ηc
2
(D + 1)T + (1− ηc

2
D)U. (E.48)

Furthermore, combining (E.47a) with (E.21) and (E.24) and taking the expectation with

respect to model selection randomization, we obtain

T∑
t=1

Et[L(f̄i,t(xi,t), yi,t)]−
T∑
t=1

L(f(xi,t;ϕi,t), yi,t) ≤
ln(4)

ηc
+ ηcT, (E.49a)

T∑
t=1

Et[L(f̄i,t(xi,t), yi,t)]−
T∑
t=1

L(f(xi,t;θt), yi,t) ≤
ln(4)

ηc
+ ηcT. (E.49b)

Recall that hj(·) associated with the j-th model parameter in Dt be defined as hj(xi,t) =

f(xi,t;ρj) while hloc(·) and hfed(·) correspond to the local and federated models, respectively,

defined as hloc(xi,t) = f(xi,t;ϕi,t) and hfed(xi,t) = f(xi,t;θt). Also recall that H := {hj | ∀j :

1 ≤ j ≤ |DT |} ∪ {hloc, hfed}. Comparing the right hand sides of (E.49a) and (E.49b) with

that of (E.48) and considering the fact that D ≥ 2, for any h ∈ H we can write

T∑
t=1

Et[L(f̄i,t(xi,t), yi,t)]−
T∑
t=1

L(h(xi,t), yi,t)

≤ ln 2D

ηc
+

ηc
2
(D + 1)T + (1− ηc

2
D)U. (E.50)

By substituting h(·) with h∗
i (·) as defined in (5.18b) and considering the fact that D ≤ U/n,

we obtain the personalized regret upper bound for client i as shown in (5.20). Moreover,
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taking the average of (E.50) across clients and substituting h(·) with h∗(·), we arrive at

1

N

T∑
t=1

N∑
i=1

Et[L(f̄i,t(xi,t), yi,t)]−
1

N

T∑
t=1

N∑
i=1

L(h∗(xi,t), yi,t)

≤ ln 2D

ηc
+

ηc
2
(D + 1)T + (1− ηc

2
D)U (E.51)

which proves the theorem.

E.4 Supplementary Experimental Details

This section presents supplementary experimental results and details about experimental

setup. All experiments were carried out using Intel(R) Core(TM) i7-10510U CPU @ 1.80

GHz 2.30 GHz processor with a 64-bit Windows operating system.

E.4.1 Regression Data Distribution

As it is pointed out in section 5.5, the present chapter tests the performance of algorithms

for online regression task on Air and WEC datasets. These datasets are downloaded from

UCI Machine Learning Repository [84]. Each data sample in Air dataset includes air quality

information such as concentration of some chemicals in the air. Data samples in Air dataset

collected from four different geographical locations. Moreover, data samples in WEC, collected

from wave energy converters in four different geographical locations. In order to distribute

data, clients are partitioned into 4 groups. For each group, 70% of data samples observed by

each client in the group belongs to a specific geographical location while 10% of observed

data samples belong to each of the rest 3 locations.
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E.4.2 Random Feature Kernel-based Models

As it is pointed in section 5.5, the proposed Fed-POE and all baselines utilize a random

feature kernel-based model to perform online regression task. In what follows we explain

random feature-based kernel models. Let κ(·, ·) be a positive-definite function called kernel

such that κ(x,x′) measures the similarity between x and x′. In online kernel learning context,

at time step t+ 1, the following prediction is made for x (see e.g. [148, 77, 131]):

fκ(x;αt) =
t∑

τ=1

N∑
i=1

αi,τκ(x,xi,τ ) (E.52)

where αt = [α1,1, . . . , αN,1, . . . , α1,t, . . . , αN,t] denotes the learnable parameters. Therefore,

the number of parameters that should be learned grows with time. In order to alleviate the

computational complexity of online kernel learning, random feature approximation [123] can

be employed. In fact, using random feature approximation, the number of parameters that

needs be learned is time-invariant and is selected by the algorithm. Assume that κ(·) is a

shift-invariant kernel function such that κ(x,x′) = κ(x−x′). Also, suppose that κ(·) is scaled

such that κ(0) = 1. Let ξ(·) denotes the Fourier transform of κ(·). According to definition of

inverse Fourier transform κ(0) =
∫∞
−∞ ξ(ω)dω = 1. Therefore, it can be concluded that ξ(·)

is a probability density function (PDF). Let ω1, . . . ,ωD be drawn randomly from ξ(·) and

called random features. Using the random features ω1, . . . ,ωD, the representation z(x) is

defined as

z(x) =
1√
D
[sin(ω⊤

1 x), . . . , sin(ω
⊤
Dx), cos(ω

⊤
1 x), . . . , cos(ω

⊤
Dx)]. (E.53)

Given random features ω1, . . . ,ωD and using the proposed Fed-POE, at time step t, client

i makes prediction f(xi,t;θt) = θ⊤t z(xi,t). Clients and the server employ the proposed

Fed-POE to learn the parameter θt. As it can be inferred since the model f(·; ·) is linear

with respect to model parameter θt, using convex loss functions, the loss L(f(xi,t;θt), yi,t) is
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convex as well.

Furthermore, in section 5.5, the proposed Fed-POE utilizes three Gaussian kernels for online

regression on Air and WEC datasets. In order to implement multi-kernel learning for Fed-POE,

the prediction of kernels are linearly combined and the weights for linear combination is learned

locally by each client. Let f0.1(xi,t), f1(xi,t) and f10(xi,t) represent predictions of Gaussian

kernels with variances of 0.1, 1 and 10, respectively. Then at time step t, client i makes

prediction w0.1,itf0.1(xi,t) + w1,itf1(xi,t) + w10,itf10(xi,t). In order to update weights w0.1,it,

w1,it and w10,it, client i employs multiplicative update rule. As an example after observing the

loss L(f1(xi,t), yi,t), client i updates w1,it as w1,i(t+1) = w1,it exp(−γiL(f1(xi,t), yi,t)) where γi

is a learning rate specified by client i.

E.4.3 Image Classification Experimental Setup

The pre-trained CNN used by Fed-POE and other baselines is biased toward class label 0.

For CIFAR-10, the pre-trained CNN is trained on a subset of the CIFAR-10 training data,

consisting of 5, 000 samples with label 0 and 500 samples from each of the other 9 class labels.

For FMNIST, the model is trained on a subset of the FMNIST training data, consisting of

6, 000 samples with label 0 and 500 samples from each of the other 9 class labels. The CNN

models are trained using Tensorflow 2.16.1. We used the SGD optimizer with a learning rate

of 10−3 and momentum of 0.9. The models for CIFAR-10 and FMNIST were trained for 100

epochs and 10 epochs, respectively.

Clients receive test data samples sequentially and make prediction for the newly received

sample. To distribute test data samples of CIFAR-10 among clients, we split clients into

10 groups. For CIFAR-10, 55% of samples observed by a client belongs to a specific class

label while only 5% of received samples belong to each of other 9 class labels. For FMNIST,

client data distribution is time-variant. Since the number of test samples is 10, 000 and the
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number of clients is 20, it can be concluded that time horizon T is 500. In the first half of

time steps (i.e. t ≤ 250), each client observes 200 samples from the first 5 class labels and 50

samples from other 5 class labels. In the second half, this is reversed: clients observe 200

samples from the last 5 class labels and 50 samples from the other class labels. In each half,

each client is biased toward one of the five majority classes. For example, if a client is biased

toward class 0 in the first half, it observes 100 samples from class label 0, 25 samples from

each of class labels 1 to 4, and 10 samples from each of class labels 5 to 9. Therefore, in each

half, each client observes 100 samples from one class, 25 samples from each of four other

classes, and 10 samples from each of the remaining five classes.

To implement Fed-OMD for both regression and image classification, we used the ℓ2-norm as

a regularizer function for mirror descent. For implementing Ditto for both regression and

image classification, we set the regularization factor λ to 1. In the case of image classification

using Fed-Rep, clients locally fine-tune the last two layers of the CNN model, while the rest

of the network is used as the global backbone to generate representations. Furthermore,

Fed-POE is compatible with any federated learning method and can utilize any federated

algorithm. For CIFAR-10, Fed-POE uses Fed-OMD, while for FMNIST, Fed-POE uses

Fed-Rep. To fine-tune the CNN model, Fed-POE and all baselines use the SGD optimizer

and the cross-entropy loss function.

E.4.4 Supplementary Results

Table E.1 presents the accuracy of clients for image classification using Fed-POE with varying

values of M . As can be seen for both CIFAR-10 and FMNIST, when M > 0, the accuracy is

higher than in the case where M = 0. The case where M = 0 corresponds to clients not using

models stored by the server in their ensemble. Therefore, these results show that constructing

the ensemble using previous federated model parameters stored by the server improves the
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Table E.1: Average accuracy and standard deviation across clients employing Fed-POE for
image classification with varying values of M

Datasets M = 0 M = 4 M = 8 M = 16
CIFAR-10 65.55%± 8.77% 66.50%± 8.00% 66.54%± 8.08% 66.46%± 7.98%
FMNIST 79.03%± 1.76% 79.12%± 1.87% 79.23%± 1.88% 79.18%± 1.85%

(a) CIFAR-10 (b) WEC

Figure E.1: Cumulative regret over time on CIFAR-10 and WEC datasets.

accuracy of Fed-POE. This indicates the effectiveness of the model selection procedure of

Fed-POE presented in Algorithm 13. Additionally, these results show that increasing M

does not necessarily lead to further accuracy improvement. This implies the effectiveness

of Fed-POE’s model selection in pruning model parameters from the ensemble that have

relatively lower accuracy. Figure E.1 illustrates the average cumulative global regret of clients

over time using Fed-POE and all other baselines. As depicted, Fed-POE achieves sublinear

regret for both CIFAR-10 and WEC datasets. This corroborates the theoretical results in

Theorems 5.2 and 5.3.
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