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The basal ganglia (BG) network has been divided into interacting
actor and critic components, modulating the probabilities of differ-
ent state-action combinations through learning. Most models of
learning and decision making in the BG focus on the roles of the
striatum and its dopaminergic inputs, commonly overlooking the
complexities and interactions of BG downstream nuclei. In this study,
we aimed to reveal the learning-related activity of the external seg-
ment of the globus pallidus (GPe), a downstream structure whose
computational role has remained relatively unexplored. Recording
from monkeys engaged in a deterministic three-choice reversal
learning task, we found that changes in GPe discharge rates pre-
dicted subsequent behavioral shifts on a trial-by-trial basis. Further-
more, the activity following the shift encoded whether it resulted in
reward or not. The frequent changes in stimulus-outcome contin-
gencies (i.e., reversals) allowed us to examine the learning-related
neural activity and show that GPe discharge rates closely matched
across-trial learning dynamics. Additionally, firing rates exhibited a
linear decrease in sequences of correct responses, possibly reflecting
a gradual shift from goal-directed execution to automaticity. Thus,
modulations in GPe spiking activity are highest for attention-
demanding aspects of behavior (i.e., switching choices) and decrease
as attentional demands decline (i.e., as performance becomes auto-
matic). These findings are contrasted with results from striatal
tonically active neurons, which show none of these task-related
modulations. Our results demonstrate that GPe, commonly studied
in motor contexts, takes part in cognitive functions, in which move-
ment plays a marginal role.

basal ganglia | learning | attention | globus pallidus | actor—critic model

he basal ganglia have long been implicated in learning new

skills and associations (1). One of the most influential models
of these structures distinguishes between two domains: the main
axis, whose function is to execute and choose between different
actions based on their expected outcome, and the neuro-
modulators, which act to shape the connectivity within said axis
by incorporating information regarding the results of actions on
the internal and external state. These components are aptly
named the actor and critic, respectively (2).

The roles of the striatum, the largest structure in the main axis,
and dopamine, the key neuromodulator serving as a critic in the
basal ganglia framework, have been thoroughly studied. Dopamine
modifies the efficacy of the corticostriatal synapses, as well as the
striatal excitability directly, using signals that incorporate both ex-
pectation and external gains and losses (3-5). Decades of research
have revealed the manner in which signals relaying information
concerning expected and actual gains and costs are incorporated in
the striatal dynamic system (6-9). However, these dopamine- and
striato-centric views often fail to take into account our current
understanding of the basal ganglia, which acknowledges that the
actor (main axis) network has more than one input/output hub and
employs multiple reciprocally and feed-forward connected com-
putational components (10).

Considering downstream structures of the basal ganglia might
enable us to expand these classic models and shed further light on
the manner in which their function is implemented in the neural
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network. In this study, we focused on the role in learning of the
external segment of the globus pallidus (GPe), a key player in the
ganglia’s computational physiology (10, 11). This nucleus receives
inputs from both the striatum and subthalamic nucleus (STN) and
is presumably the only to project strongly on all of the input and
output structures of the basal ganglia main axis.

As is the case for the striatum, pallidal activity corresponds not
only to movement planning and execution but also to high-level
aspects of behavioral tasks such as predicted reward and con-
text (10, 12-17). However, the role of the GPe in basic cognitive
functions, in which the motor aspect plays a minor, marginal part
and is not inherent to the task, has rarely been addressed directly
(18), nor has its contribution in the context of actor—critic models.
One of the few studies to focus on pallidal activity in a cognitive
context in humans found that blood-oxygen-level-dependent
(BOLD) activity correlated with working memory capacity and
with the ability to disregard distractors (19). However, the BOLD
signal does not fully reflect neural activity, and the fMRI resolu-
tion is not good enough to make the distinction between the two
segments of the pallidum.

To reveal the extent of the GPe’s involvement in the shaping of
cognitive behavior, we recorded the extracellular spiking activity
of high-frequency discharge GPe neurons [HFD, probably the
prototypical cells (14, 20, 21)] from two monkeys (Fig. 1 A and B)
while they were performing a deterministic three-choice reversal
learning task (22, 23) (Fig. 1C). For each block, one of the three
optional targets was randomly selected and associated with re-
ward. In each trial (T,) the monkeys had to choose a single target.
Only one of the targets resulted in reward, and in next trial (T,,4),
the monkeys could either maintain their previous choice or switch
to another target (Fig. 1D). The task required the monkeys to
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Fig. 1. Experimental paradigm and behavior. (A) Coronal MRI scans show-

ing the locations of the recording chambers. (Left) Monkey C. (Right)
Monkey V. (B) The 300- to 6,000-Hz filtered traces from a single electrode
showing spontaneous GPe spiking. Note the “pause” in high frequency fir-
ing of the recorded unit, implicating it as one belonging to GPe (14, 54).
(Scale bar, 100 ms.) (C) Behavioral paradigm. Trials were preceded by a
presentation of an initiation cue (black rectangle). Two seconds after the
monkeys touched the cue, three square fractal stimuli appeared, one of
which was deterministically associated with reward. Two seconds after
choosing a stimulus, an outcome cue (red rectangle) appeared. When the
cue was pressed, the monkeys received either liquid reward or no reward,
depending on the selected stimulus. Once a predefined learning criterion
was reached, a different stimulus was associated with reward (reversal).
There was no explicit cue for the reversal, and the monkeys had to learn by
trial and error. IC, initiation cue; OC, outcome cue; OR, outcome revealed;
SA, stimuli appear; SC, stimulus chosen; TS, trial start. (D) Behavioral patterns
in sets of two trials. If the first trial (T,) was rewarded (Left), it can be fol-
lowed by either another rewarded trial (R#»R; solid blue) or a different un-
rewarded one (R=U, solid red). If T,, was unrewarded (Right), it could be
followed in T,,1 by an identical choice (U»U; dotted red), a different un-
rewarded choice (U=U; dashed red), or a different rewarded choice (R=R,
dashed blue). (E) Success rates and response times per trial before and after
reversal. (Upper) The blue (red) line signifies the probability of choosing the
currently (previously) rewarded stimulus. (Lower) Response times. Values
represent the mean of 314-1,411 repetitions per trial position. Shaded
areas indicate SEM. (F) Mean performance metrics after reversals for both
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reacquire new stimulus—outcome (S-O) associations once a pre-
defined learning criterion was reached (Fig. 1 E and F; correct
choice for 12-15 trials out of the last 25, details in Materials and
Methods). Our results revealed that switches in the chosen stim-
ulus involved predictive changes in an index of GPe discharge rate
modulation. Considering the neural activity involved in the mon-
keys’ reaction to changes in S-O contingencies, we show that the
temporal dynamics of neuronal discharge rates across trials
matches the slope of the learning curves and that spiking rates
linearly decline as rewarded responses are repeated.

Results

A total of 306 GPe HFD units met our inclusion criteria (118
and 188 units for monkeys C and V, respectively). The average
(= SEM) isolation quality for these units was 0.91 + 0.003 (24)
and their average firing rate (FR) was 66.3 + 1.61 spikes per s.
The mean time period for which units were stably held was 32.2 +
1.77 min (97.09 + 5.57 trials and 4.27 + 0.28 changes in S-O as-
sociations per unit).

GPe Spiking Activity Predicts Subsequent Performance. Following
reversals of the rewarded stimulus (i.e., changes in S-O associa-
tions), the monkeys rapidly adapted their behavior toward the
newly rewarded choice, influencing both their response times and
error rates (Fig. 1 E and F). However, as shown in Fig. 1E, Upper,
erroneous choices were not uncommon, not only immediately
following the reversal but also later. GPe discharge rates were
modulated not only throughout the course of each trial but also
across trials. We focused our analysis on pairs of consecutive trials
(T, and T,,,; Fig. 1D) and considered the dynamic spiking activity
in four different 1-s epochs: directly after the outcome was revealed
(OR) toward the end of T,,, during the last second of the intertrial
interval (ITT) between T, and T, just before the initiation cue
(IC) of T,,41, just before the monkeys made their choices (stimulus
choice; SC) for T,4, and directly after the OR of T, (Fig. 24).

GPe neurons encode information using both decreases and
increases in their discharge rates (e.g., refs. 18, 25, and 26).
Moreover, the range of the spontaneous discharge rate of differ-
ent pallidal neurons is very broad (in this study 20.2-148.7 spikes
per s; see, e.g., refs. 27 and 28). Therefore, we calculated the
absolute Z-scores (baseline mean and SD calculated over last
second of the ITI preceding T,) of the FRs during these four
periods. We then considered whether the means of these scores
differed according to the behavioral pattern the monkeys dis-
played (Fig. 2 B and C). The stimulus chosen in T,, could either
have been rewarded or not, and the choice was either maintained
or switched in T,,; (Fig. 1D). Switching from an unrewarded
choice may have resulted in either a different unrewarded choice
or a rewarded one (Fig. 1D, Right, dashed red and blue arrows,
respectively); switching from a rewarded choice always results in
an unrewarded choice (Materials and Methods and Fig. 1D, Left,
red arrows). Distinguishing between the average absolute Z-scores
obtained for these five behavioral patterns enabled us to examine
the manner in which GPe spiking data encoded the recently re-
ceived outcome (i.e., whether a liquid reward was administered or
not) and the subsequent switch of the chosen stimulus (i.e.,
whether a switch would be made or not). Switching related
changes can be observed in all fours panel of Fig. 2C. In both the
right set of bars (representing previously rewarded trials) and the

monkeys. From left to right, number of trials until first choosing a stimulus
other than the previously rewarded one, first choosing the newly rewarded
stimulus, first choosing the newly rewarded stimulus for at least three se-
quential trials, and reaching the criterion for reversal. Values represent the
mean results of 662/750 blocks for monkeys V/C, respectively. Error bars in-
dicate SEMs.
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Fig. 2. Subsequent switching of the chosen stimuli is encoded by absolute modulation of GPe FRs. (A) To examine the predictive nature of modulations in
GPe discharge rates, we considered different epochs throughout the course of pairs of consecutive trials (i.e., T, and T,4). Top to bottom: the first second
after the outcome of T, was revealed (OR); the last second of the ITI, before the initiation cue (IC); the last second before a stimulus was chosen in T4 (SC);
and the first second after the OR of T,,, 1. (B) Per epoch, we examined the mean absolute Z-scores of the FR for different response patterns: no reward in T,
switch to rewarded choice in T,,,1 (U=R; dashed blue; n = 3,161-3,384 trials); no reward in Ty, switch to different unrewarded choice in T, 1 (U=U; dashed red;
n = 3,090-3,227 trials); no reward in T,, identical unrewarded choice in T4 (U»U; dotted red; n = 3,231-3,349 trials); reward in T,,, switch to unrewarded
choice in T,,.1 (R>U; solid red; n = 2,261-2,367 trials); and reward in T, identical rewarded choice in T, 1 (R&R; solid blue; n = 13,979-14,666 trials). Gray areas
signify the examined epoch for C and D. (C) Mean values for each epoch and condition. Bar widths reflect the portion of trials that corresponded to each
response pattern (e.g., most trials belonged to the R=#R group). (D) g coefficient estimates for a generalized linear model predicting the absolute Z-scores
based on the previous outcome and on whether the choice in T, differed from that in T,. n.s, P > 0.05, ***P < 0.001. Shaded areas/error bars in all panels

represent SEMs across trials. Data for this figure were extracted from all 306 GPe units that passed the inclusion criteria.

left ones (representing previously unrewarded trials) a clear in-
crease in absolute Z-score is associated with subsequent switching.
We used a generalized linear model (Materials and Methods) to
examine the contribution of T, outcome and T,~T,; switching to
the obtained values (i.e., the g coefficients of each effect). Our
results revealed unique temporal dynamics throughout the different
epochs (Fig. 2D). In the epoch following the outcome or lack
thereof (OR) for T,, both previous outcome and subsequent
switching significantly contribute to the observed values (P < 0.001).
The effect of the previous outcome is somewhat obvious, because
this epoch directly follows reward delivery or withholding, yet the
predictive nature of this time period regarding the choice in the
next trial, which is seconds away, is less trivial. As T,, ends and T},
starts, the previous outcome is no longer encoded in the GPe dis-
charge rates, yet the encoding of the subsequent switch remains
intact throughout the course of the trial (P < 0.001). Higher ab-
solute Z-score values consistently predicted that the monkeys would
choose a stimulus different from the one chosen in the last trial.
The lower panels of Fig. 2, which display the absolute Z-scores
following OR in T, 1, reveal another interesting feature of GPe
neural activity. Following a switch from an unrewarded choice in
T, to a rewarded one in T,,, discharge rates were strongly
modulated (dashed blue line). This activity is probably not asso-
ciated with the received reward itself, because its temporal profile
differs greatly from that observed for trials in which the reward
was repeatedly delivered (solid blue line). The pattern of activity
therefore resembles a reinforcement cue that could serve as a
learning signal shaping subsequent performance. Taken together
with the elevated scores during the first outcome-related epoch for

Schechtman et al.

rewarded but unrepeated choices (solid red line in the top panels
of Fig. 2 B and C), it seems that GPe spiking activity is highly
modulated following rewarded outcome that is either a result of,
or will be followed by, a behavioral shift.

It should be noted that some of the inspected epochs directly
follow external stimuli such as the presentation of visual (SC,
stimulus choice following the stimulus appearance, SA, Fig. 1C) or
visual and auditory cues (OR). However, these stimuli are main-
tained constant irrespective of the monkeys’ behavior and any
experimental condition. Therefore, the external stimuli should not
have had any major effect on our results, which focus on differ-
ences between conditions and consider any constant effect of ex-
ternal stimuli as noise. It should, however, be acknowledged that
the epoch preceding choice (SC) comprises both decision making
and execution (i.e., hand movement toward the chosen stimulus),
which were not teased apart in our experimental design. Never-
theless, because our results were collapsed across stimulus posi-
tions, the reported results do not merely manifest motion-related
neural activity.

GPe Spiking Activity Correlates to Learning Slopes. In the previous
paragraph, we emphasized the correlation between the modula-
tion of GPe spiking activity and subsequent behavior; however, we
neglected the temporal structure of our behavioral task that in-
cluded repeated learning of new stimulus—action association. To
further explore the role of GPe in learning, we considered the
relation between the changes in the task-related behavior of the
monkeys and the corresponding discharge rates. For this analysis,
we did not use absolute Z-score, because we were interested in the

PNAS | Published online September 26, 2016 | E6283
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slow temporal dynamics of the baseline GPe discharge rates across
long time spans, including many trials, and not the phasic modu-
lation within a trial. Using Z-scores requires the definition of an
appropriate baseline timeframe that is not available for the kind of
analysis we conducted here. We concentrated on the discharge
rate dynamics during the epoch just before the choice of the
monkeys (SC, stimulus chosen, Fig. 3).

Across sets of rewarded choices, discharge rate dynamics
depended on the number of trials that have occurred since the last
reversal (Fig. 34). To explore this effect, we first calculated the
change in probability to choose the newly rewarded stimulus fol-
lowing reversal (i.e., the learning curve) and its derivative [i.e., the
learning slope (29)]. We then correlated these two measures to the
discharge rates of the GPe units just before the monkeys made a
choice in each of the first 10 trials following reversal. We found
that both measures correlated strongly to the discharge rates
("pearson to the curve, slope: —0.938 and 0.934, respectively, P <
0.001 for both; Fig. 3B). A similar pattern emerged when we re-
stricted our analysis to the first five trials after reversal, before a
learning plateau was reached (rpcarson to the curve, slope: —0.9 and
0.91, respectively, P < 0.05 for both).

Due to the highly anticorrelated nature of the learning curve and
slope (Fpearson = —0.99, P < 0.001 for all data points and for the first
five trials), it is not surprising that a strong (positive) correlation to
one would bring about a strong (negative) correlation to the other
as well. This correlation between learning curve and slope arises
from the relatively fast exponential rise in the learning curve over
the first few trials. Therefore, we analyzed a subset of postreversal
trials that were characterized by slower learning, nonexponential
learning curves, and lower correlation between the curve and
slope. Only blocks in which the first sequence of three (or more)
correct choices started relatively late (i.e., at least four trials) after
reversal were considered. Consequently, the initial segments of the
learning curve and slope (i.e., the first five trials after reversal)
were no longer significantly correlated (rpearson = —0.68, P > 0.05,
Fig. 3C). The relation between the discharge rates in this reduced
dataset and the learning curve and slope allowed us to show that
neural activity during the initial learning segment correlates to the
learning slope and not to the learning curve (Fig. 3C, rpearson to the
curve, slope: —0.73 and 0.99, P > 0.05 and P < 0.001, respectively).
The correlation coefficient between the slope and the discharge
rate was significantly stronger than that between the curve and the
discharge rate (P < 0.05, one-way correlation comparison using
Fisher r-to-z transformation).

The basal ganglia play an important role in habit formation and
automaticity (30). Following reversal and learning of the new S-O
contingencies, the monkeys commonly engaged in long sequences
of repeatedly correct trials. These can hardly be deemed “habits”
in their strict sense, but the repetitive nature of these series of
trials may serve to expose the GPe activity underlying the devel-
opment of automaticity. We revealed that GPe FRs decreased
over sequences of at least 10 correct trials ("pearson = —0.93, P <
0.001, Fig. 4 A and B). We ruled out the possibility that this was
due to adaptation to the repeated motion toward a specific
stimulus by examining the change in activity for incorrect se-
quences (Fig. 4C). Indeed, the decrease in activity was specific
only to repeatedly rewarded sequences (for sequences of four,
five, and six unrewarded choices, rpearson = —0.81, —0.15, and 0.28;
P =0.19, 0.81, and 0.58, respectively).

The interpretation of these results as evidence for a decrease in
GPe activity as behavior becomes automated can be challenged by
another explanation. It could be that the decline manifests the in-
crease in predictability (and decrease in surprise) of the subsequent
outcome. Although we cannot rule this possibility out, there is some
evidence against it. In Pavlovian conditioning paradigms in which
the presented cue deterministically predicts the outcome, learning
involves a gradual increase in outcome predictability around the
cue epoch. The dopamine response, for example, first follows the

E6284 | www.pnas.org/cgi/doi/10.1073/pnas.1612392113

rewarded outcome but gradually shifts to the cue epoch after
learning the contingency (3, 31). Similar results have also been
shown for striatal tonically active neurons (TANS; refs. 32 and 33),

FR(sp/s)

B
1F
B Normalized FR
Normalized learning:
== CcUrve = =slope
Ot
1 2 3 4 5 6 7 8 9
C

1 2 3 4 5 6 7 8 9
Ts after reversal

Fig. 3. GPe FR correlates with learning curve slope. (4) Population mean of
unit discharge rates for the time segment around stimulus choice (SC) for
rewarded trials following reversal. Color codes from yellow to blue indicate
the indices of the trial positions following reversal (e.g., yellow signifies the
first trial after reversal). The number of trials averaged ranged between 475
and 1,019. The gray area signifies the examined epoch for B and C. (B) Purple
squares denote the normalized mean GPe discharge rates during the last
second before SC for all rewarded trials that follow reversal (e.g., the leftmost
value signifies the normalized mean FR of all rewarded trials around the first
SC following reversal). The solid green line depicts the normalized probability
of success following reversal (i.e., the learning curve). The dashed green line
depicts the normalized derivative of the learning curve (i.e., the learning
slope). For clarity, all three plots were normalized, so the y axis ranges from
0 to 1. (C) Same as B, except only blocks in which the first sequence of at least
three correct trials began more than three trials after reversal were considered
(i.e., blocks with nonoptimal reversal). This selection dissociates between the
hypotheses that FR is correlated to the learning curve and that it is correlated
to the learning rate. The number of trials for which the FR was averaged
ranged between 159 and 749. Error bars in B and C represent SEMs across
trials. Although some bars are truncated, they are all symmetric around the
means so no data are obscured. Data for this figure were extracted from all
306 GPe units that passed the inclusion criteria.

Schechtman et al.


www.pnas.org/cgi/doi/10.1073/pnas.1612392113

B

1
©
o)
N
© XX
S
o
pd

1 2 3 4 5 6 7 8 9
Rwrded Ts in consec run

&

1-
©
o)
N
®
c
o
=

0_

1 2 3 4 5 6
Unrwrded Tg in consec run

Fig. 4. GPe FR decreased linearly during consecutive correct sequences of
trials. (A) Population mean of unit discharge rates for the time segment
around stimulus choice (SC) for the first sequence of 10 consecutive correct
choices of each block. Color codes from yellow to blue indicate the indices of
the trial positions along the consecutive run (e.g., yellow signifies the first
trial in the sequence). The number of trials averaged ranged between 862
and 883. The gray area signifies the examined epoch for B and C. (B) Nor-
malized mean GPe discharge rates during the last second before SC for all
trials in sequences of at least 10 rewarded trials(rpearson= —0.93; P < 0.001).
Error bars represent SEMs across trials. (C) Normalized mean GPe FR dur-
ing the last second before SC for all trials in sequences of four, five, or six
(yellow, red, and blue lines, respectively) unrewarded trials in which the
same stimulus was repeatedly chosen (rpearson = —0.81, —0.15, and 0.28; P =
0.19, 0.81, and 0.58, n = 240-242, 87-89, and 36-40, respectively). Unlike in
B, no decrease was observed throughout the sequence. Although some bars
are truncated, they are all symmetric around the means so no data are ob-
scured. Data for this figure were extracted from all 306 GPe units that passed
the inclusion criteria.

a group of presumably cholinergic interneurons (34, 35) that are
considered part of the BG critic system (36). Basically, this implies
that signals reflecting the predictive nature of a cue (or outcome-
related choice) should show learning dynamics that are in the
opposite direction relative to the postoutcome dynamics. In the
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context of our task, we would expect the gradual decrease in GPe
activity around the SC epoch to be mirrored by an increase in the
outcome-related activity across trials as the association is learned.
However, our data show the opposite pattern. Just like the pre-
choice discharge rates, the postoutcome activity decreases in a
linear fashion across consecutively correct trials (rpearson = —0.89;
P <0.001, Fig. S1), thus lending support to the alternative hypothesis
that GPe activity encodes automaticity and not predictability.

Neither the correlation between the postreversal learning curve
and discharge rates nor the linear decrease in spiking in con-
junction with sequences of consecutively correct choices is limited
to the population level. Analysis of correlation on a single-unit
level revealed that the R* distributions for both effects are skewed
to the right relative to shuffled data (Fig. S2). We therefore
conclude that the observed results on the population level do not
arise from a small group of units with high correlation coefficients,
but rather from a small yet consistent effect across the population.
We found no evidence for any region-specific clustering of highly
correlated units in either monkey (Fig. S3).

Striatal TAN Activity Neither Predicts Subsequent Behavior nor
Correlates to Learning Slopes. To consider the striatal learning-
related activity we recorded TANs from monkey V, 79 of which
met our inclusion criteria. The average (+ SEM) isolation quality
(24) for these units was 0.88 + 0.006 and their average FR was
5.23 + 0.17 spikes per s. The mean time period for which units
were stably held was 37.5 + 3.87 min.

We conducted the exact same analysis for the TANs. To assess
the effects of switching behavior and of the previous outcome (i.e.,
as depicted for GPe units in Fig. 2), we used unaltered Z-scores
and not absolute ones (but results were similar for absolute
Z-scores). Throughout most of the considered epochs (with the
exception of the ITI-related epoch) TANs did not significantly
encode subsequent switches (Fig. S44). Comparing the effect sizes
of switching and of the previous outcome (i.e., the portion of
variance explained by changes in discharge rates; #%) between
TANSs and GPe units reveals a contrast between the two: Whereas
TAN activity accounts mostly for the variance explained by the
outcome of T,, GPe activity mostly accounts for the variance
explained by the T,,.1—T,, switch (Fig. 54).

Next, we examined whether TAN discharge rates corresponded
to learning curves in a manner similar to that of GPe cells. The
TAN FR did not correlate to the learning curve or slope (Fig. 5B
and Fig. S4B, Left; rpcarson to the curve, slope: —0.46 and 0.51,
respectively, P > 0.05 for both). The same pattern of nonsignifi-
cant correlations was also observed for the first five trial segment
following reversal (Fpearson to the curve, slope: —0.57 and 0.61,
respectively, P > 0.05 for both). Similarly, the gradual decrease
observed for sequences of correct choices explained only a rela-
tively small part of the variance of TAN FR (Fig. 5C and Fig. S4B,
Right, rpcarson = 0.56, P > 0.05).

The response pattern of TANs is often shorter than that for
GPe cells (e.g., see Fig. S4B). To confirm that our results are not
affected by these differences, we ran all TAN-related analyses
using shorter, 500-ms-long time windows. The results were iden-
tical to those received for the 1-s-wide time epochs considered for
the previous analyses.

Discussion

We examined the correspondence between GPe neural activity
and the cognitive aspects of behavior in monkeys performing a
deterministic reversal task. Our results show that GPe spiking
activity predicted whether the monkeys would switch or maintain
their previous stimulus choice. This foreshadowing activity was
observed throughout the time period between the consecutive
trials, starting immediately after the outcome of the first trial and
lasting up until the foretold choice was made. Additionally, GPe
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Fig. 5. Unlike GPe units, TANs do not predict switching throughout most of
the trial, do not correlate to learning, and do not linearly decrease in re-
peatedly correct sequences. (A) We conducted an ANOVA to compare the
effect size between both cell types. We considered the portions of variance
(7% log scale) explained by changes in TAN FRs (n = 10,506-10,561 trials) and
absolute changes in GPe FRs (n = 25,722-26,993 trials) for encoding of
previous outcome (white) and future switching (gray). Dashed/dotted lines
represent significance threshold for P = 0.05 and P = 0.01, respectively.
(B) Comparison between the variance explained using linear regression (R?)
between observed learning slopes and either TAN or GPe discharge rates
(FRs) for rewarded trials during the last second before the screen was
touched (SC, stimulus chosen). (C) Comparison between the variance
explained (R?) by fitting a linear function to either TAN or GPe FR during the
last second before SC in sequences of 10 repeatedly correct trials. n.s, P >
0.05, ***P < 0.001. Data for this figure were extracted from all 306 GPe units
and all 79 TANs that passed the inclusion criteria.

spiking activity following outcome delivery encoded whether such
switches were successful.

As performance became more automated and less demanding—
either following reversal or in consecutively correct trial runs—GPe
discharge rates in the context of choice selection decreased. These
patterns of correlation were evident at the population level but also
at the level of single units. They do not seem to be limited to a
specific topographical region of GPe. Such correlations could be
interpreted in two ways: It could either be that changes in GPe
discharge rates reflect an increase in reward predictability, which is
not action-dependent, or that they reflect a shift from goal directed
behavior to automaticity. Although we cannot rule either out, we
believe the latter explanation to be more plausible. An increase in
reward predictability is mirrored by a decrease in the surprise
following outcome delivery. We should therefore expect opposite
patterns of activity to emerge around stimulus choice and reward
administration. However, our data show that both decline linearly,
in a manner that befits gradual habituation.
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The function of GPe in behavior has been studied for decades
(12-14), but historically the focus has been on its role in motor or
motor-related contexts. The shift toward models exploring the
cognitive role of the basal ganglia (i.e., its role in learning and
decision making) has focused much of the attention on the stria-
tum and dopamine, often overlooking underlying downstream
structures (3, 37, 38). The fact that GPe activity encodes more
than just motor execution has been well established (15, 17), but
this study explores the GPe function in a purely cognitive context
(18). Although we acknowledge the motor role of GPe, we in-
tentionally neglected it in our analyses. This was done, for ex-
ample, by focusing on the information carried by GPe during time
epochs that were seconds ahead of motor execution. Additionally,
we averaged upon different motor actions with identical cognitive
characteristics in all our analyses.

In this paper, we show the neural activity of GPe units during
learning. Our monkeys were overtrained in the task but still had to
continuously acquire which stimulus was rewarded on a block-by-
block basis. Our results are somewhat surprising, because they
differ from results obtained for striatal spiking activity in similar
tasks. Along with the STN, the striatum is the main input structure
to the GPe. Studies examining striatal activity in cognitively de-
manding tasks did not show any modulation in the activity during
the time epoch preceding the choice of the animal as choices
became more and more habitual and automated (7, 29, 39).
However, there is consensus that the value associated with an
outcome, its cost, and their interaction are all represented in
striatal neuronal activity (7). This pattern is reflected in our own
data, obtained from striatal TANs. Although these neurons are
not considered part of the basal ganglia main axis (36), their re-
sponse is still indicative of the basal ganglia critic system (40) and
striatal information processing. We show that TAN spiking activity
does not encode subsequent behavioral shifts but does encode the
outcome itself throughout most of the trial. Additionally, TAN
discharge rates neither correlate to learning curves nor decrease
across trials that are sequentially rewarded.

Unlike the striatum, STN activity was shown to convey in-
formation on executive function and attentional constraints (41—
43). The only study to date examining the dynamics of activity
during learning in the STN of healthy humans showed a decrease
in prechoice activity similar to the one we have shown in GPe
spiking activity (44) and is in line with our results and with the
robust reciprocal connections between the GPe and the STN (45).

The established connection between the STN and executive
function and the resemblance between its activity and that of GPe
units suggests that perhaps our results in the pallidum reflect some
aspects of higher cognitive function. Specifically, the observed
decline in discharge rates as new associations are acquired sug-
gests that GPe activity is negatively associated with the level of
attention dedicated to the task (or to concentration in general).
This could also explain the higher discharge modulation observed
in the context of choice switching. To shift from one choice to the
other, more attention needs to be dedicated to the task. We ac-
knowledge that attention is a multilayered, highly complex, and
barely definable construct. To better understand the involvement
of GPe in task-related attention, a more nuanced experimental
paradigm should be designed. The GPe’s integration of attention-
related STN inputs with valence-related striatal activity, along with
our findings that hint toward attention-related representations,
raise exciting new avenues of research regarding the possible
cognitive role of the GPe in the basal ganglia framework.

In conclusion, unlike STN and the internal segment of the
globus pallidus, relatively little attention has been dedicated to
GPe activity in dysfunctional brains. In recent years, there has
been a growing focus on the role of GPe in the cognitive aspects of
behavior, including its putative involvement in cognitive deficits
identified in psychiatric disorders. Several studies have shown that
negative and cognitive symptoms of schizophrenia are correlated
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with altered GPe activity. A recent study also identified lower in-
terhemispheric GPe functional connectivity in schizophrenia, asso-
ciated with the cognitive symptoms of the disorder (46—48). Other
psychiatric disorders, such as depression and attention deficit hy-
peractivity disorder, have been associated with smaller GPe volumes
(49-51). Our results reveal yet another facet of the role of the GPe
in cognition and behavioral control. We believe that future studies
should focus on the causal role of the normal and dysfunctional
GPe in cognitive behavior, hopefully paving the way for medical
interventions (such as deep brain stimulation) that could improve
the prognosis for the cognitive aspects of psychiatric disorders.

Materials and Methods

Animal Training and Behavioral Tasks. Data were obtained from two female
vervet monkeys (Cercopithecus aethiops aethiops, monkeys C and V), weighing
3.5-4 kg. All data were pooled for both monkeys for all analyses. Results
obtained for individual monkeys are shown in Fig. S5. Care and surgical pro-
cedures were in accordance with the National Research Council Guide for the
Care and Use of Laboratory Animals (52) and the Hebrew University guidelines
for the use and care of laboratory animals in research, supervised by the in-
stitutional animal care and use committee of the Hebrew University and
Hadassah Medical Center. The Hebrew University is an Association for Assess-
ment and Accreditation of Laboratory Animal Care internationally accredited
institute.

The behavioral paradigm used was a multiblock three-choice reversal
learning task (Fig. 1 C and D). The monkeys used their right (contralateral to
the recording side, discussed below) hands to touch stimuli presented on a
screen that was located ~16 cm from their heads (Elo 1939L 19-inch open-
frame touchmonitor; Elo Touch Solutions Limited). In each daily session, three
square fractal images were randomly selected as stimuli out of a set of 10
possible stimuli. The stimuli were presented in fixed positions throughout the
session, either on the left or right or in the center of the white screen. Each
trial began with a presentation of a black horizontal box on the bottom of the
screen. After the monkeys touched the box, it disappeared. Two seconds later,
the three fractal stimuli appeared. After touching (choosing) one of the three,
all three stimuli disappeared. Two seconds later, a red horizontal box
appeared on the bottom of the screen. Touching this box was followed by
three simultaneous results: The box would disappear, a banana-flavored liquid
reward was either delivered or not (according to the monkey's choice, dis-
cussed in the next paragraph), and an ~80-ms auditory stimulus was played,
obscuring any acoustic artifacts of the food pump. The sound was indepen-
dent of the trial’s outcome. Trials were aborted if no choice was made within
30 s or if the red box was not touched within 30 s. All trials (correct, incorrect,
and aborted) were followed by a variable intertrial interval (ITl) lasting 5-8 s.

For each block, only one of the three stimuli was deterministically rewarded.
No reward was delivered for the choice of other stimuli. The monkeys had no
guiding information pointing them toward the correct stimulus, but eventually
learning was established and the probability of choosing the correct stimulus
reached a plateau (Fig. 1E). The criterion for learning was reached once the
monkey chose the rewarded stimulus for 12-15 trials out of the last 25 (the
criterion was randomly selected per block). Once this happened, an uncued
switch in the identity of the rewarded stimulus occurred (i.e., reversal) and a
new block started. Each daily session ended once the monkeys no longer ini-
tiated trials. After long periods in which the monkeys did not work, the ex-
perimenter occasionally delivered a free reward to remotivate them. The
behavioral paradigm was designed and run using the Psychophysics toolbox
(53) for MATLAB 2012a (The MathWorks, Inc.).

Monkeys were trained for 5-6 d per week and were allowed free access to
water in their home cages. Supplementary food was delivered when the
monkeys did not reach the predefined daily calorie minimum. Monkeys were
given free access to food on the weekends.

Surgery and MRI. The monkeys were fully trained on the task (4-9 mo) before
the recording chamber was implanted (Fig. 1A). After the training period, they
were operated on under full anesthesia and in sterile conditions. In the sur-
gery, an MRI-compatible Cilux head holder (Crist Instrument) and a square
Cilux recording chamber (AlphaOmega) with a 27-mm (inner) side, located
above a burr hole in the skull, were attached to the heads of the monkeys. The
recording chamber was attached to the skull tilted ~45° laterally in the coronal
plane with its center targeted at the stereotaxic coordinates of the left GPe. All
surgical procedures were performed under aseptic conditions and general
isoflurane and N,O deep anesthesia. Analgesia and antibiotics were adminis-
tered during surgery and continued postoperatively. Recording began after a
postoperative recovery period of several days. We estimated the stereotaxic
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coordinates of the recording target using MRI scans. The MRI scan (General
Electric 3 tesla system, T2 sequence) was performed under i.m. Domitor and
ketamine light anesthesia.

Recording and Data Acquisition. During recording sessions, the heads of the
monkeys were immobilized, and up to eight glass-coated tungsten micro-
electrodes (impedance 0.15-1 MQ at 1,000 Hz), confined within a cylindrical
guide (1.65-mm inner diameter), were advanced separately (EPS; Alpha-
Omega Engineering) into the GPe and the striatum. The electrical activity was
amplified with a gain of 20 then filtered using hardware Butterworth filters
(high-passed at 0.075 Hz, two poles; low-passed at 10,000 Hz, three poles) and
finally sampled at 44.6 kHz (SnR; Alpha-Omega Engineering). TANs and GPe
units were identified by the stereotaxic and MRI coordinates, by the electro-
physiological hallmarks of the encountered structures along the penetration,
and by their own unique characteristics such as GPe neurons’ high FRs and
pausing behavior (14). Neuronal activity was sorted and classified online using
a template-matching algorithm (SnR; Alpha-Omega Engineering).

Analysis of Behavior. To evaluate animal behavior in the task, we measured
response times and examined their cognitive performance. Performance was
assessed both on a trial-by-trial basis (Fig. 1D) and on a block-by-block basis
(Fig. 1E). Trials in which the monkey made no choice and trials in which the
experimenter delivered free rewards were omitted from analysis. Per trial, we
measured the probability of making a correct choice before and after reversal.
Additionally, we assessed the probability of choosing the stimulus that was
rewarded during the previous block. Per block, we used several measures of
behavior: (i) the number of trials until first choosing a stimulus other than the
one rewarded in the previous block (perseverative errors), (ii) the number of
trials until first choosing the newly rewarded stimulus, (iii) the number of trials
until first choosing the newly rewarded stimulus for at least three consecutive
trials, and (iv) and the number of trials until the criterion for reversal is
reached. Response times were defined as the length of time it took for the
monkeys to make a choice upon presentation of the three stimuli (i.e., reaction
plus movement time). By the time the recordings started, the monkeys were
overtrained and no across-session differences in the monitored measures of
performance were observed (Fig. S6). All data analysis was performed using
MATLAB 2014b (The MathWorks, Inc.).

Analysis of Single Unit Firing Activity. Data analysis was conducted only for
units that were stably held, well-isolated [isolation score (24) >0.8], and un-
questionably identified as either TANs or GPe units. Only GPe unit that fired
>20 spikes per s on average were included. Continuous traces showing GPe
spiking activity (Fig. 1B) were obtained using a two-pole Butterworth filter
(1,000-3,000 Hz).

For the plots included in Fig. 2B, showing the dynamic temporal patterns of
GPe activity (i.e., post stimulus time histograms, PSTH), we defined a baseline
period of one second for calculating Z-scores. We divided that second to 10
nonoverlapping bins and calculated the spike count per bin. This data, per
trial, were used as a baseline for the PSTHs. For each time point of the PSTH,
the baseline discharge rate for that trial was subtracted from the average
count per bin and the difference was divided by the baseline SD. Finally, the
absolute value of the obtained Z-score was calculated per time point. We used
the last second of the ITI before T, as the baseline for all epochs. Trial pairs in
which a reversal occurred between T,, and T,,,1 were not considered in this
analysis. In all cases, the obtained values were filtered using a 50-ms-wide
Gaussian Kernel (MATLAB's filtfilt function).

The values for each time epoch shown in Fig. 2B (gray bars) were averaged
over time per trial. The resultant values were grouped according to the con-
ditions detailed in the text and averaged (Fig. 2C). For Fig. 2D, these values
were fitted using a generalized linear model (GLM), using the following
equation:

12|=Po +10(Tn) +525(Tns Tos1),

where O(T,) is the outcome of trial T, (0/1: un/rewarded) and S(T,,, T,.4) in-
dicates whether a switch took place (0/1: un/switched). Estimates for the g
coefficients for both effects were obtained and statistically compared with the
null hypothesis that g = 0. To assess the effect size (i.e., the portion of variance
explained by switching and the outcome of T,)), we used an ANOVA (which is
equivalent to the GLM) to calculate the #? of each effect (Fig. 5).

The exact same approach was used for TANs (Fig. 5A and Fig. S4A), with one
exception: The sign of the obtained Z-scores was not altered. Unlike GPe, there
is no empirical reason to assume that TANs encode information identically by
increases and decreases in discharge rates. The same analysis was also run
using absolute Z-scores with similar results.

PNAS | Published online September 26, 2016 | E6287

wv
=2
=
a
w
<
=
[

NEUROSCIENCE


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612392113/-/DCSupplemental/pnas.201612392SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612392113/-/DCSupplemental/pnas.201612392SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612392113/-/DCSupplemental/pnas.201612392SI.pdf?targetid=nameddest=SF4

To consider the relationship between performance and prechoice discharge
rates, we calculated the learning curve (the probability of choosing the correct
stimulus as a function of trials after reversal) and learning slope (the change in
probability of choosing the correct stimulus between trials) for the first 10 trials
after reversal. We focused on prechoice activity for these 10 trials and therefore
omitted all data from the first postrewarded trial, because the choice leading to
it was made before any information regarding the change in stimulus-reward
contingencies was delivered to the monkeys. We therefore considered the first
nine prechoice periods following the disclosure for most analyses and also
focused on the first five trials in cases where we aimed to limit our analyses to
the primary acquisition phase. In all these analyses, we calculated the linear
correlation between learning curves, learning slopes, and the mean discharge
rates directly preceding rewarded choices, calculated for the last second be-
fore the monkeys touched the preferred stimulus. This calculation was con-
ducted for the population average.

To tease apart the correlation of discharge rates to the learning curve and
slope, we conducted a new population-wide correlation analysis, introducing a
new omission criterion. For this analysis, we excluded all blocks in which the first
sequence of at least three correct trials was initiated in one of the first three
trials after reversal (thus considering only blocks characterized by a slow
learning rate).

We also conducted analysis examining the change in discharge rate over
repeated correct trials. For this, we fitted a linear function to the prechoice
discharge rates of sequences of at least 10 repeatedly correct trials and con-
sidered the P value for the beta coefficient and the explained variance (R?).
The same analysis was conducted for repeatedly incorrect sequences of four,
five, and six trials. The exact same approaches were used for the analysis
of TANSs.

In addition to analyzing the correlations detailed in the last three paragraphs
on the population level, we considered the same correlations for single GPe
units (Fig. S2). We only considered units for which sufficient data were avail-
able (i.e., data for at least a single trial were recorded for each of the 10 trial
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positions following reversal or following the initiation of a rewarded se-
quence). The discharge rate for each trial position was averaged over repeti-
tions per neuron and the results were correlated to the relevant measure
(either the learning curve or a linear slope). A histogram was created for the
resultant R? values. These results were compared with results obtained by
random shuffling of the data. For each unit, the labels for all associated trials,
indicating the trial position, were randomly shuffled and the correlation co-
efficient for the newly arranged data was calculated. The labels for each unit
were shuffled 100 times and the results were averaged.

Next, we considered the spatial distribution of correlation coefficient (Fig. S3).
Our methods do not provide us with exact localization of the units, yet we do
know the 2D stereotactic position in which our electrodes were injected.
Roughly speaking, this translates to an anterior-posterior, medial-lateral map
of the GPe. However, it should be noted that the flexibility of our electrodes, as
well as possible shifts in the brain of the animals over recording sessions, make
this estimation highly prone to error.

All data analyses were performed using MATLAB 2014b (The MathWorks,
Inc.). The highest/lowest 1% of all data for all tests was omitted to avoid the
effects of outliers.

Data Availability. All relevant data are available from the authors upon
request.
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