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How HIV Nef Proteins Hijack Membrane Traffic To Promote
Infection

Cosmo Z. Buffalo,a Yuichiro Iwamoto,a James H. Hurley,a,b Xuefeng Rena

aDepartment of Molecular and Cell Biology and California Institute of Quantitative Biosciences, University of California, Berkeley, Berkeley, California, USA
bMolecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA

ABSTRACT The accessory protein Nef of human immunodeficiency virus (HIV) is a
primary determinant of viral pathogenesis. Nef is abundantly expressed during infec-
tion and reroutes a variety of cell surface proteins to disrupt host immunity and pro-
mote the viral replication cycle. Nef counteracts host defenses by sequestering
and/or degrading its targets via the endocytic and secretory pathways. Nef does this
by physically engaging a number of host trafficking proteins. Substantial progress
has been achieved in identifying the targets of Nef, and a structural and mechanistic
understanding of Nef’s ability to command the protein trafficking machinery has re-
cently started to coalesce. Comparative analysis of HIV and simian immunodeficiency
virus (SIV) Nef proteins in the context of recent structural advances sheds further
light on both viral evolution and the mechanisms whereby trafficking is hijacked.
This review describes how advances in cell and structural biology are uncovering in
growing detail how Nef subverts the host immune system, facilitates virus release,
and enhances viral infectivity.

KEYWORDS antiviral restriction factors, host-pathogen, immune receptors,
lentiviruses, Nef, human immunodeficiency virus, protein structure, simian
immunodeficiency virus, trafficking

Human immunodeficiency virus (HIV) efficiently manipulates host protein trafficking
machinery to promote viral replication, evade immune killing, and circumvent

antiviral restriction factors (1, 2). These mechanisms of viral pathogenesis are primarily
orchestrated by the abundantly expressed HIV protein Nef within the endocytic and
late secretory pathways. Nef is a nonenzymatic accessory protein encoded by the
HIV type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV) genomes (3). Nef
associates with the cytosolic leaflet of various cell membranes via N-myristoylation at
G2 of the Nef anchor domain (PDB identifier [ID] 1QA5) (4, 5). Though a significant
portion of Nef remains cytosolic during infection (6–10), membrane association is
essential for Nef’s engagement with the host cell trafficking machinery, in particular, the
clathrin-coated vesicle (CCV) machinery. Nef hijacks the CCV pathway to redirect
specific transmembrane proteins away from the cell surface via either sequestration or
lysosomal degradation mechanisms (Fig. 1). The end product is the effective down-
regulation of specific restriction factors, the cell surface proteins that signal infection to
the adaptive immune system, and proteins interfering with nascent virion release.

The three-dimensional structure of the 27- to 35-kDa Nef protein has been deter-
mined by both X-ray crystallography (11, 12) and nuclear magnetic resonance (5,
13–15) (Table 1). Nef consists of a folded core (residues 79 to 203, HIV-1 NL4-3
numbering), flexible N-terminal (residues 1 to 78) and C-terminal (residues 204 to 206)
loops, and a central dileucine motif-bearing loop (residues 149 to 179) extending from
the core. Depending on the structure determination, the dileucine loop can be either
ordered or disordered (Table 1). Nef’s flexible regions are both easily accessible and
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capable of undergoing conformational changes, making them ideal for binding an array
of host cell proteins (3, 16). To date, more than 70 Nef-interacting proteins in the
human proteome have been identified (17, 18). The remarkable conformational plas-
ticity of Nef has been explored in detail through X-ray crystallography (19, 20) and
cryo-electron microscopy (cryo-EM) (21, 22) structural determinations of Nef in com-
plexes with various cellular binding partners (Table 1).

The Nef protein is not essential for virus replication in vitro but is critical for viral
replication and infectivity in vivo. Patients infected with a strain of HIV-1 lacking nef do
not progress to AIDS, or they do so very slowly (23–25). To combat increasing drug
resistance, new antiretroviral targets are being sought against HIV-1-interacting host
proteins essential for immune evasion and proliferation. Thus, Nef’s host interactors are
attractive pharmacological targets, as they are not subject to viral evolution and drug
resistance, so long as sites can be found that are nonessential for normal host functions.
In our experience working at the interface of HIV and SIV virology, membrane traffic,
and structural biology, we have found that the information transfer between these
three fields can be rate limiting for progress. This review is intended to synthesize
information across these disciplines for the benefit of those working in all three areas.

TARGETS OF Nef COOPTATION
Clathrin-coated vesicle machinery. Clathrin-mediated endocytosis (CME) is the

primary mechanism by which transmembrane proteins, integral membrane proteins,
and lipids are routed from the plasma membrane to the endosomal system in CCVs.
CME thus plays a pivotal role in regulating plasma membrane proteostasis. In CME, the

FIG 1 Nef downregulates host factors. Schematic representation of the clathrin machinery hijacked for CD4 (red), tetherin (green), MHC-I (blue), and SERINC3/5
(teal) downregulation by HIV-1 Nef. These host factors are synthesized in the ER and transported to the Golgi apparatus and then the TGN. From the TGN, these
proteins are shuttled to the plasma membrane (PM) via the constitutive secretory pathway where they engage in viral restriction and immune signaling. For
both SIV and HIV, Nef-induced downregulation of CD4 and SERINCs occurs at the PM by linking these host factors to AP-2. For the case of CD4, it is believed
that a tripartite assembly of Nef-CD4-AP-2 is formed. For SERINCs, this is not known. The Nef-AP-2 assembly triggers clathrin recruitment and budding of CD4
and SERINC3/5 into clathrin-coated pits (CCPs) and eventual budding into clathrin-coated vesicles (CCVs). These CCVs are then routed into a lysosomal
degradation pathway. SIVs utilize the same pathway to downregulate simian tetherin. Both SIV and HIV Nefs downregulate newly synthesized MHC-I molecules
by rerouting them into the endolysosomal system. This involves the formation of a tripartite assembly of Nef-MHC-I-AP-1 at the TGN membrane, which
sequesters MHC-I molecules into CCVs. These CCVs are targeted to MVBs that will eventually fuse with the lysosomes, leading to MHC-I degradation. O-type
HIV-1 Nef also targets human tetherin at the TGN similarly to targeting MHC-1, but the result is a Golgi accumulation mechanism of downregulation where Nef
traps tetherin at the TGN in an AP-1-dependent manner. Nef-induced downregulation at the TGN is dependent on the formation of Arf1-mediated open and
closed trimer of AP-1 for engagement with MHC-I and tetherin, respectively.
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heterotetrameric clathrin adaptor protein complex (AP-2) connects clathrin on the one
hand to membrane protein substrates and to lipids on the other. AP-2 is a heterote-
tramer composed of �, �2, �2, and �2 subunits. The N-terminal solenoidal “trunk”
domains of � and �2, together with the whole �2 and �2 subunits, constitute the core
of the complex, whereas the C-terminal “hinge” and “ear” domains of � and �2 subunits
form long projections extending from the core (26).

AP-2 coordinates clathrin-coated pit (CCP) formation in CME and binds cargoes,
which are normally integral membrane proteins, containing acidic dileucine (D/
E)xxxL[L/I] (27) and Yxx� (where � is a bulky hydrophobic residue) (28) endocytic
motifs. The dileucine binding site is located on the �-�2 hemicomplex and the tyrosine
motif binding site is on the C-terminal domain (CTD) of the �2 subunit. While Nef is not
a transmembrane protein, its dileucine-based motif is a major determinant of its ability
to interact with AP-2 (29). AP-2 cargo binding is initiated by a conformational change
from the locked (inactive) cytosolic state to an unlocked (active) state. Unlocking is
initiated through binding membranes containing phosphoinositide phosphatidylinosi-
tol 4,5-bisphosphate [PtdIns(4,5)P2] (30) (Fig. 2A). PtdIns(4,5)P2 is enriched at the plasma
membrane relative to other cellular compartments and is enriched further during CME.
In the locked state (PDB ID 2VGL) (30), the �2 CTD is nestled between the trunk
domains of the � and �2 subunits. In the unlocked state (PDB ID 2XA7) (31), the �2 CTD
undergoes a very large motion in the course of which it is dislodged from the center
of the complex and becomes poised to bind to membranes. The remainder of the
complex relaxes and opens up to a lesser degree. Only when unlocked are the
(D/E)xxxL[L/I] and Yxx� endocytic cargo binding sites and the canonical clathrin box
motif (LLNLD) exposed, resulting in the recruitment of clathrin and the initiation of CME
(32). All Nefs interact with the unlocked state of AP-2 to downregulate host cell factors,
including cluster of differentiation 4 (CD4), CD8, CD28, CD3, serine incorporator 3
(SERINC3), and SERINC5, while SIV, but not HIV, Nefs also downregulate tetherin in this
way (33–41) (Fig. 1, 2A, and 3). Most lentiviral Nef proteins reduce the cell surface

TABLE 1 PDBs containing Nef

Structure composition PDB ID(s) Reference or source

Nef PDBs without dileucine motif resolved
HIV-1 Nef alone 1AVV 11

2Xl1 183
6B72 154
2NEF 14
3TB8 Unpublished dataa

HIV-1 Nef anchor domain 5
Unmyristoylated 1QA4
Myristoylated 1QA5

HIV-1 Nef in complex with FYN SH3 1AVZ 11
1EFN 12
4D8D Unpublished datab

HIV-1 Nef in complex with Hck SH3 3REA, 3REB 184
4U5W 185

HIV-1 Nef in complex with MHC-1 cytoplasmic
domain and AP-1 �1 CTD

4EMZ, 4EN2 19

SIVmac239 Nef in complex with TCR � peptide 3IK5 125
HIV-1 Nef protein in complex with antibody sdAb19

and an Hck SH3 domain
4ORZ 186

Nef PDBs with dileucine motif resolved
HIV-1 Nef in complex with Hck SH3 3RBB 187
SIVmac239 Nef in complex with Hck SH3 5NUH 83
SIVmac239 Nef in complex with CD4-like peptide 5NUI 83
SIVsmm Nef in complex with AP-2 6OWT 113
HIV-1 Nef bound AP-2 �-�2 complex 4NEE 20
HIV-1 Nef bound to AP-1-Arf1-tetherin complex 6CM9 21

aC. A. Dennis, M. Harris, and J. Jaeger, unpublished data.
bA. Lugani, C. C. Lin, X. Shi, F. Hoh, L. Ponchon, C. Ktori, C. Dumas, J. E. Ladbury, Y. Collette, X. Morelli, and
S. T. Arold, unpublished data.
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expression of various chemokine receptors, such as CXCR4 and CCR5. A conserved DRY
motif in the second intracellular loop of these receptors is critical for Nef-dependent
downregulation, but the mechanism is not understood at the structural level (42, 43).

AP-1 is the heterotetrameric clathrin adaptor complex devoted to the biogenesis of
CCVs at the trans-Golgi network (TGN) (44, 45) (Fig. 1). AP-1 consists of the large
subunits �1 and �, the medium subunit �1, and the small subunit �1 (26, 46). Both �1
and � bind to the Golgi-residing small G protein Arf1 (47). Like AP-2, AP-1 binds to
cargo bearing either tyrosine or dileucine-based motifs (Fig. 2B). Like AP-2, AP-1 is in a
locked conformation in the absence of activation (PDB ID 1W63) (48). Unlike AP-2, AP-1
is not responsive to PtdIns(4,5)P2. Instead, Arf1-GTP triggers the recruitment of AP-1 to
the TGN membrane, in the course of which it unlocks AP-1 and promotes its assembly
into dimers and trimers (PDB IDs 4HMY and 6CM9) (Fig. 2B) (21, 22, 47). Unlocked AP-1
can enter the same open conformation seen for unlocked AP-2, but unlike AP-2, it has
also been observed in an even more open conformation known as the hyperunlocked
state (PDB ID 4P6Z) (49). In the hyperunlocked state, Arf1-linked dimers and trimers of
AP-1 can assemble into an extended hexagonal coat whose symmetry and dimensions
match those of clathrin (Fig. 2B) (22). While a similar type of Arf1-dependent coat
assembly can be seen in coat protein I (COPI) (PDB ID 5A1V) (50), no evidence has
emerged that Arf1 interacts with AP-2 in CME. Thus, Arf1-stabilized coat formation is an
additional complication pertaining to AP-1- but not AP-2-dependent sorting. All Nefs
hijack AP-1 to downregulate major histocompatibility complex class I (MHC-I), while
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HIV-1 group O Nefs appear to be unique in their use of AP-1 to target tetherin in
humans (51) (Fig. 3).

The AP-3 clathrin adaptor is required for cargo-selective transport to late endo-
somes. Its �-�3 hemicomplex has the conserved binding site for the dileucine motif,
which was mapped by a yeast two-hybrid assay in vitro (52, 53). AP-3 is not known to
function in Nef-dependent host factor downmodulation. However, Nef proteins colo-
calize with AP-3 in HeLa cells and mediate AP-3 membrane recruitment in an Arf1-
independent manner (54), suggesting that an as-yet-unidentified role for Nef-recruited
AP-3 is still possible.

Coatomer. Nef has many other host partners involved in intracellular trafficking in

addition to the AP complexes. These range from the endolysosomal system to au-
tophagy (55–57). Nef binds to �-COP, a component of the COPI protein coat. COPI-
coated vesicles mediate the retrograde trafficking of Golgi-derived vesicles to the
endoplasmic reticulum (ER) and have also been proposed to participate in the matu-
ration of multivesicular bodies (MVBs) and late endosomes (58, 59). A subset of COPI,
also referred as endosomal COPs, containing �-, �=-, and 	-COP, are found on endo-
somes (60). The Nef-�-COP interaction was first identified in a yeast two-hybrid screen
for cellular proteins that interacted with Nef. The study revealed binding between the
C termini of �-COP and Nef, which was later validated through in vitro and in vivo
pulldowns with rhesus SIV Nef (61). Further studies have shown that the 154EE155

(diacidic) and 17RxR19 motifs of Nef are important for maintaining this binding interface
(Fig. 3) (62, 63). However, in seemingly contradictory experimentation, mutations in the
diacidic motif did not disrupt Nef and �-COP binding or CD4 downregulation (64). One
possible explanation is that Nef can still bind via the 17RxR19 motif. This model is
supported by the functional separation of MHC-I and CD4 degradation between the

17RxR19 and diacidic motifs of Nef, respectively (63). The specificity of these interfaces
may help explain the destinations of cargo regulated by Nef as well. The Nef-�-COP
interaction is a promising area for the further study of Nef-mediated hijacking of the
host trafficking system and the multifaceted functions of the COPI in the endogenous
context.

ESCRTs. Nef is thought to affect endolysosomal trafficking by binding to compo-

nents of the endosomal sorting complex required for transport (ESCRT) machinery. The
ESCRT proteins play an essential role in the maturation and budding of intraluminal
vesicles (ILVs) into endosomes, exosome biogenesis and release, and the release of
many enveloped viruses, including HIV (65, 66). Endosomes possessing ILVs are referred
to as multivesicular bodies (MVBs). The ILVs and their contents are degraded when the
MVBs fuse with lysosomes. ESCRT proteins direct physiological cargo sorting into these
MVBs, so it is natural to suppose that interactions between Nef and ESCRTs could be the
mechanism for directing Nef cargoes to degradation in lysosomes. The main reported
interaction between Nef and the ESCRT machinery occurs through the protein ALIX
(67). ALIX functions in both ubiquitin-dependent and -independent cargo sorting and
recruits the ESCRT-III protein CHMP4, which is directly responsible for ILV release from
the endosome-limiting membrane (68). The V domain of ALIX binds tyrosine-based
motifs (YPXnL) in late domains from HIVGag and SIVGag (69–74). Nef is reported to
interact with ALIX using a 135YPL138 sequence that is conserved among HIV-1 and SIV
strains (Fig. 3) (67). Though this motif is partially buried within the Nef core (75),
functional studies have shown that eliminating this motif from Nef decreases viral yield
from HIV-1-infected macrophages and that knockdown of ALIX reduces CD4 degrada-
tion without perturbing the degradation of epidermal growth factor (EGF), an estab-
lished MVB cargo (67, 76). In the case of SIVs, it is an N-terminal flexible loop
tyrosine-based motif (Y28GRL) in SIV Nef that ALIX binds (75). Immunofluorescence
studies have also shown that the Nef-ALIX interaction occurs at late endosomes and
lysosomes, providing microscopic evidence for the suspected role of ALIX in trafficking
Nef-bound cargo for lysosomal degradation (76).
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Exosomes. Exosomes, an extracellular vesicle (EV) of endosomal origin, are heter-
ogeneous membrane-enclosed structures released by cells into the cellular milieu
which can transfer material from one cell to another (77). Nefs from both HIV and SIV
are secreted from HIV-1-infected cells into EVs, providing a potential mechanism for
cellular nonautonomous host-virus interactions and unconventional transmission of
infection (78–80). Nef-positive EVs are capable of membrane fusion and depositing
their contents, including Nef, into recipient cells (80). Further, evidence suggests that
Nef facilitates its own secretion by increasing the production of components of the
endosomal/exosomal pathway, particularly multivesicular bodies (81, 82). This could
represent a novel mechanism whereby lentiviruses can influence CD4� T cells as well
as naive and noninfectible (CD4-negative) cells (80). Cell-to-cell transfer of Nef would
consequently manipulate the cellular environment of cells surrounding infection. A Nef
Arg cluster (R17, R19, R21, and R22) on helix 0 (H0; denoted helix 1 in reference 83),
which overlaps the 17RxR19 motif, and the sequence 62EEEEVGFPV70 (secretion modi-
fication region [SMR] motif), which overlaps the 62EEEE65 acid patch, are required for
Nef secretion in EVs (Fig. 3) (78, 84). Mortalin (mitochondrial Hsp70) interacts with the
Nef SMR motif and is involved in Nef secretion into EVs (85, 86). Mortalin is a
multipotent chaperone found in multiple subcellular locations and has been implicated
in cellular processes ranging from neurodegeneration to exocytosis (86–88). The Nef
myristoylation site and C-terminal core (residues 71 to 206) are reported to be dispens-
able for EV packaging (84). In addition to Nef, exosomes package viral RNA, microRNAs,
and other proteins, which contributes to the HIV pathogenesis and apoptosis in
bystander CD4� T cells (80, 89–91). What aspect of the EV biogenesis machinery is
hijacked or influenced by Nef remains to be determined. ALIX and other ESCRTs would
be the most obvious candidates, as exosome biogenesis is in many cases ESCRT
mediated (77).

Autophagy. Autophagy is a cytoplasmic degradative pathway by which a double-
membrane vesicle called the autophagosome engulfs cytosol, damaged organelles, or
intracellular pathogens for lysosomal degradation (92, 93). Autophagy has many con-
nections to innate and adaptive immunity (94). Autophagy can be controlled by
immune receptor and cytokine signaling and is stimulated upon microbial recognition
by innate immunity pattern recognition receptors (95). HIV-1 Nef functions in prevent-
ing the destruction of HIV components in autolysosomes and thus shields HIV from
autophagy and its role as a cell-autonomous antimicrobial defense (96). Nef colocalizes
with beclin-1 (BECN1), a key regulatory protein for controlling the activity of the
autophagic lipid kinase complex phosphatidylinositol 3-kinase catalytic subunit type 3
(PI3KC3) and thus the phosphatidylinositol 3-phosphate (PI3P) content of autophago-
somes. This interaction results in a Nef-dependent increase in viral yields from au-
tophagic cells (96). Nef is capable of binding a peptide fragment of beclin-1 (residues
257 to 337 [57]). Administering this peptide in vivo was shown to activate phosphati-
dylinositol 3-kinase (PI3K) and induce autophagy, suggesting a mechanistic connection
of the peptide to Nef-mediated inhibition of autophagy (57). Further, Nef binding with
PI3KC3-C2, the form of PI3KC3 involved in autophagosome maturation, inhibits PI3KC2
activity in vitro (55). Residues 35 to 65 in the Nef protein share sequence homology with
Rubicon, and Nef thus inhibits PI3KC3-C2 membrane binding by a similar mechanism
(55). In addition to being in a highly disordered region of the protein (Fig. 3), the more
N-terminal part of this sequence (35–54) is poorly conserved beyond the HIV-1 M-Nefs.

TARGETS OF Nef SUPPRESSION
CD4. Cluster of differentiation 4 (CD4) is a type 1 transmembrane glycoprotein

found on the surface of immune cells, such as T helper cells, monocytes, and macro-
phages, and is the major cellular receptor for HIV. Downregulation of CD4 is a
conserved function of SIV and HIV Nefs (33, 97, 98), which accelerate the AP-2- and
clathrin-dependent endocytosis of cell surface CD4 and direct CD4 to lysosomal
degradation (99–101). Consistent with this, the depletion of AP-2 (102–104) or clathrin
(102) impedes Nef-induced CD4 downregulation. Nef and AP-2 recruit CD4 to CCPs
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(105–107), resulting in CD4 internalization and delivery to the lysosome for degradation
via endosomes and MVBs (99, 100, 108).

Nef binds directly to AP-2 at the plasma membrane via its �-�2 hemicomplex
(20, 53, 102, 103, 109, 110). This leads to the cooperative assembly of a tripartite
CD4-Nef-AP-2 complex (103). CD4 contains a noncanonical dileucine-based sorting
motif (408SQIKRLL414) in its C-terminal cytoplasmic tail. In the normal nondegradative
endocytosis of CD4 in uninfected cells, the S408 residue upstream of the LL motif is
phosphorylated such that it effectively mimics the glutamate or aspartate residues of
the classical (D/E)xxxL(L/I) dileucine motif, which allows CD4 to interact with AP-2
directly (111). In infection, Nef uses its canonical dileucine motif to adapt CD4 to
clathrin-mediated endocytosis in the absence of serine phosphorylation (33).

The crystal structure of Nef bound to the �-�2 hemicomplex provided a model for AP-2
hijacking by Nef to downregulate CD4 via binding the full AP-2 tetramer in the unlocked
conformation (PDB ID 4NEE) (20). The myristoylated N-terminal anchor domain of Nef is
not involved in this complex formation, thus making it accessible for putative mem-
brane interactions. The structure confirmed that the key leucine pair of the dileucine
loop of Nef binds to AP-2 in the same way as physiological cargo (PDB ID 2JKR) (27). Two
other motifs within the dileucine loop of Nef have been implicated as crucial in mediating
interaction with AP-2. The NA7 Nef hydrophobic motif M168/L170 (112), corresponding to
V168/L170 in NL4-3 Nef, had been proposed to bind to the �2 subunit, while an acidic motif,

174DD175, had been suggested to bind to a basic patch on the � subunit (103, 110). The
structure confirmed the importance of these regions, while revealing that the diacidic motif

174DD175 was actually involved in scaffolding the appropriate AP-2-binding conformation of
the dileucine loop rather than direct contact with AP-2. In SIVs, Nef W203 just outside the
dileucine loop is important for Nef binding to the �-�2 hemicomplex. When mutated
(W203S), Nef was deficient in downregulating not only simian CD4 but also CD28, CD8,
SERINC5, and simian tetherin (113, 114). A conserved His (196 in SIV sooty mangabey
[SIVsmm]) on the back side of the dileucine motif is important for downmodulation of CD4,
CD8, CD28, SERINC5, and simian tetherin (114).

Nef directly binds to the C terminus (CT) of CD4 (15, 115, 116), albeit with low affinity in
the context of the soluble binary complex. The membrane-proximal cluster of hydrophobic
amino acids (M407 and/or I410) and the dileucine motif (413LL414) are known to affect
CD4-Nef association and endocytosis (99, 115, 117). The N-terminal motif 57WL58 of Nef was
proposed to mediate the low-affinity binding to the CT of CD4 (13, 118). Recently, a
structure of an asymmetric SIV macaque (SIVmac) Nef dimer showed how the dileucine
motif on one copy of Nef could bind in a hydrophobic pocket between strand �1 and helix
H2 of a second copy (PDB ID 5NUI) (Fig. 4) (83), suggesting how the CD4 dileucine motif
might bind. These predictions were borne out through mutational experiments, lending good
confidence to the mapping of the CD4 site.

CD3. Though the function was largely lost in HIV-1 and its direct precursor from
chimpanzees (SIVcpz), the Nef proteins of HIV-2 and most SIVs efficiently internalize
CD3, an essential cofactor in T-cell receptor (TCR) signaling (36). Nef-mediated inter-
nalization of CD3 allows HIV-2 and most SIVs to disrupt the formation of the immune
synapse between infected CD4� T cells and primary antigen-presenting cells (APCs)
(119). By downregulating CD3, SIV and HIV-2 are thought to disrupt TCR-dependent
T-cell activation (119), explaining why these infections do not lead to the hyperactiva-
tion of the immune system seen in HIV-1-infected individuals (120).

CD3 downmodulation depends on interactions between its 	 chain and the core of
SIV and HIV-2 Nefs (121, 122). The 	 chain of the CD3 complex contains three copies
of an immunoreceptor tyrosine-based activation motif (ITAM) with the consensus
Yxx(L/I)x6 –9Yxx(L/I). The tyrosines of the ITAMs are phosphorylated upon TCR ligation
by Src family kinases and mediate downstream signal transduction and T-cell activation
(123). Lentiviral Nefs downmodulating CD3 directly interact with the cytoplasmic tail of
the 	 chain. The interaction sites overlap the ITAM regions and were mapped to the
tyrosine-containing sequence motifs 72YNELNL77 and 123YSEIGM128, termed SIV Nef
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interaction domains 1 and 2 (SNID1 and SNID2), respectively (124). A crystal structure
of SIVmac Nef bound to SNID1 has been determined (PDB ID 3IK5), which shows
binding to the same hydrophobic pocket between strand �1 and helix H2 of Nef, as
seen for CD4 (PDB ID 5NUI) (Fig. 4) (125). Functional studies showed that SIVmac Nef
interacts with the 	 subunit of the CD3 complex, and both cooperate to bind AP-2 and
consequently to suppress T-cell activation by downmodulating the TCR-CD3 complex
(83, 126). Downregulation of CD3 is AP-2-dependent but does not require the Nef
dileucine motif (126). Supporting this observation, a gain-of-function mutation of an
HIV-1-based Nef allele capable of CD3 downregulation required the introduction of a
tyrosine-based sorting motif in the N-terminal anchor domain of Nef (83). Thus, Nef not
only uses distinct but overlapping domains to interact with the cytoplasmic portions of
cellular receptors but also targets different AP-2 interaction surfaces to accelerate their
endocytosis.

CD28. CD28-initiated costimulatory signaling is critical for normal antigen-specific
T-cell responses, and interference with the CD28 signaling pathway suppresses immune
responses and anergy (127). HIV-1 and SIV Nef proteins downregulate cell surface
expression of CD28 (38, 128, 129). CD28 downregulation by Nef involves direct inter-
actions between Nef and CD28. Furthermore, HIV and SIV Nefs use overlapping but
distinct target sites in the membrane-proximal region of the CD28 cytoplasmic domain
(38). CD28 downregulation requires H196 of SIVmac239 Nef (114, 128). Nef-dependent
downregulation of CD28 from the cell surface has been shown to involve both AP-1 and
AP-2 (38, 130, 131). Downregulation of cell surface CD28 depends on the diacidic motif
(174DD175), dileucine motif (164LL165), and CD4-interacting site (57WL58) of HIV-1 NL4-3
Nef (Fig. 3) (131). These interactions are consistent with the canonical mode of
engagement of Nef to the AP-2 �2-� hemicomplex, which would lead to a Nef-AP-2-
CD28 ternary complex. Given these dependencies, engagement with AP-2 at the cell
membrane to induce CME is probably the primary mode of Nef antagonism of CD28.
Further to this point, HIV-1 Nef uses a combination of distinct and overlapping surfaces
to interact with CD28 as it does with CD4, consistent with its AP-2 dependence (38).

CD8. Host cellular immune responses mediated by CD8� T lymphocytes (CTLs) play
a pivotal role in controlling HIV/SIV viral proliferation (132, 133). However, during viral
infection, a degradation of CTL function accompanies progression to symptomatic
disease (134, 135). Though the major cellular target of HIV/SIV is the CD4 lymphocyte,
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FIG 4 Structures of Nef bound to AP-2 or AP-1 and host factors targeted for downregulation. Central
composite structures of AP-2 and AP-1 were composed by aligning PDB IDs 6CM9, 4EMZ, 4NEE, and 6OWT.
In this composite structure, Nef is bound at both the tyrosine and dileucine binding sites. The sites where
Nef binds host factors CD4 (PDB ID 5NUI), CD3	 (PDB ID 3IK5), and simian tetherin (6OWT) are indicated for
the dileucine binding site of AP-2. The AP-2 �2 subunit is indicated to highlight the formation of the
N-terminal �-hairpin upon binding to simian tetherin. The sites where Nef binds host factors MHC-I (PDB
ID 4EMZ) and human tetherin (6CM9) are indicated for the tyrosine binding site of AP-1. All positions of the
host factors were determined by aligning the Nef core of the respective PDBs to the Nef cores of PDB ID
4NEE (AP-2 interacting partners) and PDB ID 4EMZ (AP-1-interacting partners).
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both in vivo (136–139) and in vivo (136, 140–143) evidence show that CTLs are also
susceptible to infection. Once CTLs are activated during HIV/SIV infection, they induce
the expression of CD4 (136, 137, 144, 145), thus allowing for the infection of the CD8�

T lymphocytes and the subsequent downregulation of CD8 by Nef. CD8 is a transmem-
brane glycoprotein and a coreceptor of the T-cell receptor (TCR). HIV-1, HIV-2, and most
SIV Nefs downregulate cell surface expression of the CD8�� receptor in T cells in an
AP-1-dependent manner (130, 146). The CD8�- and �-chain cytoplasmic tails contain
no canonical AP-binding sorting signals. Nef-mediated downmodulation depends on
the presence of the amino acid sequence FMK in the CD8 �-chain cytoplasmic tail (37).
Nefs interact specifically with the cytoplasmic tail of CD8�, and downmodulation is
dependent on the dileucine motif (164LL165) and its flanking diacidic motifs (154EE155

and 174DD175). The 57WL58 sequence, previously described as a binding site of the CD4
receptor (118), also has a role in CD8�� downregulation (Fig. 3) (37, 114). These
interactions are all consistent with a CD4-like downmodulation mechanism even
though CD8 does not contain a CD4-like dileucine motif.

SERINC3/5. It has long been known that Nef has a profound effect on enhancing
HIV-1 infectivity (147). However, only recently was the Nef target most important to
infectivity enhancement identified as SERINC5 (35, 39). The five human SERINC proteins
are polytopic integral membrane proteins which are distributed through various cell
compartments. Although there has been one early report that SERINCs are involved in
connecting serine and lipid synthesis in yeast (148), this has not been corroborated.
SERINC restriction of HIV infectivity does not seem to involve modulation of the lipid
content of the virions (149). Neither the normal physiological function of this ancient
and conserved family of proteins nor their mechanism of antagonizing HIV infectivity
is fully known. Although SERINC3 is a Nef target and has also been implicated in
suppressing viral infectivity (35, 39), SERINC5 has the strongest antiviral activity of the
five. SERINC5 is thought to interact with Env such that its fusogenicity with target cells
is impaired (150).

Clathrin and AP-2 are required for Nef to downregulate SERINC5 (35). The ability of
Nef to counteract SERINC3/5 depends on the Nef dileucine motif, consistent with a
dependence on AP-2 (Fig. 3) (35, 39). In SIV, SERINC5 downmodulation has been shown
to be dependent on H196 of the dileucine loop (113, 114). SERINC3/5, however, lack
canonical AP-2- or Nef-interacting motifs. Sensitivity of SERINC5 to Nef downregulation
maps to the largest intracellular loop (loop 4) of SERINC5 (151). Two hydrophobic
residues in loop 4 (L350 and I352) are crucial for susceptibility to Nef counteraction. Nef
association with SERINC5 can be detected in cells using bimolecular fluorescence
complementation (152). The most rigorous evidence for a direct physical linkage
between Nef, SERINC5, and AP-2 would be the reconstitution of the ternary complex,
something that has yet to be reported for either full-length SERINC3 or SERINC5 or a
peptide based on loop 4.

It has been suggested counteraction of SERINCs by Nef is also dependent on
dynamin-2 (Dyn2), based on a mutation at Nef D123 (35). Dyn2 coimmunoprecipitates
with Nef and is required for the enhancement of HIV-1 infectivity by Nef (153). To date,
a direct Dyn2-Nef interaction has not been corroborated structurally or biochemically
with purified proteins. The ability to counteract SERINC5 was impaired by the Nef D123
mutation, which might suggest involvement of Dyn2, based on the original 2007 study
(153). However, Nef D123 has been implicated structurally in AP-1 �1-associated
downregulation of MHC-I (19), as well as the dimerization of Nef (154), suggesting that
the dependence of SERINC5 antagonism on a direct interaction with Dyn2 cannot be
fully established without more evidence.

Following internalization, SERINC5 is localized in Rab5-positive early endosomes,
Rab7-positive late endosomes, and Rab11-positive recycling endosomes (35, 152). The
former two are consistent with shunting to lysosomal degradation and with the
observation that SERINC5 is ultimately targeted to lysosomes for destruction (152). As
with other Nef cargoes, the details of the hand-off from CCV into the degradative
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lysosomal sorting pathway are not well established, although it seems likely that ALIX
and other ESCRTs are involved.

Tetherin. Tetherin (BST2 or CD317) is an interferon-inducible cellular restriction
factor. Tetherin functions by physically trapping budding progeny virions at the cell
surface of infected cells, preventing their release (155–159) and promoting immune
detection of infected cells (160). SIVs use Nef to downregulate tetherin from the cell
surface (34, 41, 161, 162). SIV Nefs remove tetherin from the cell surface via AP-2 (163,
164). It has been reported that the total cellular tetherin levels remain unaffected
during SIV infection, suggesting that Nef sequesters it to intracellular compartments
rather than inducing its degradation (163, 164). However, the distribution of tetherin in
SIV-infected cells revealed colocalization with TGN46 (TGN marker) and lysosome-
associated membrane protein 1 (LAMP-1; lysosome marker) but not with CD63 (endo-
some marker), suggesting that tetherin accumulates in the TGN and in lysosomes while
in the presence of Nef (163). However, tetherin also localizes to the TGN in uninfected
cells; thus, SIV Nef’s contribution to this phenotype is hard to determine (165). Fur-
thermore, the Nef-induced trafficking of MHC-I and CD4 to lysosomes for subsequent
lysosomal degradation has been well established (63), and it also seems possible that
endocytosed simian tetherin could follow this pathway.

The Nef dileucine loop residues adjacent to the LL residues themselves are critical
for the antitetherin activity of SIV Nefs (163, 164, 166). Some of these mutations
specifically disrupted downmodulation of tetherin but not other Nef and AP-2 depen-
dent cargoes, such as CD4 (163, 166). Thus, residues surrounding the AP-2-binding site
may be involved in the direct binding of tetherin rather than AP-2 recruitment,
implying that the binding sites could be in close proximity and mutually influence one
another. A direct physical interaction between Nef and the N-terminal cytoplasmic tail
of tetherin has been proposed (163). The sensitivity of simian tetherin to SIV Nefs maps
to a (G/D)DIWKK motif that is missing in its human ortholog (34, 41, 161). Thus, human
tetherin is resistant to SIV Nef, and this is thought to have been one of the major
hurdles to cross-species transmission of SIV to humans (161, 167).

Recently, the cryo-EM structure of the simian tetherin from sooty mangabey
(SMM tetherin) and its SIV Nef (SIVsmm Nef) was determined in complex with AP-2
(PDB ID 6OWT) (113). Nef refolds the first �-helix of the �2 subunit of AP-2 to a
�-hairpin, creating a binding site for the DIWK sequence on the SIVsmm Nef dileucine
(190ExxxLV195) loop bound to the dileucine binding site of the AP-2 �-�2 hemicomplex
(Fig. 4). The DIWK binding site sits in a hydrophobic pocket centered around H192 and
H196 of the SIVsmm Nef dileucine loop (Fig. 3). At this site, the DIWK motif is
sandwiched between the newly formed AP-2 �2 �-hairpin and the SIVsmm Nef helix 0
(H0). H0 engages the same helix binding site implicated in CD4 and CD3	 binding to
HIV Nef (Fig. 4). Using in vivo mutational analysis, it was determined that the tetherin
binding site in Nef is distinct from those of most other Nef substrates, including MHC-I,
CD3, and CD4, but overlaps the site for SERINC5 restriction of viral infectivity (113). The
structure explains the dependence of SIVs on the host tetherin DIWK sequence and the
consequent barrier to human transmission.

During the 12 or more independent zoonotic transmissions of simian immunode-
ficiency viruses to humans, multiple adaptations occurred to overcome human teth-
erin’s insensitivity to SIV Nefs (161, 167, 168). While evidence suggests that some
M-type HIV-1 strains can downregulate tetherin (168), it is largely agreed upon that the
pandemic HIV-1 group M Vpu effectively counteracts human tetherin (157, 159).
However, HIV-1 group O uses Nef for this purpose (51). The mechanism whereby O-Nefs
downregulate tetherin is completely different than that utilized by SIV Nefs, as it must
be since human tetherin lacks the DIWK motif. HIV-1 NL4-3 Nef, when bacterially
expressed as a dephosphorylated protein such that it is an in vitro surrogate for an
O-Nef, forms closed trimers containing three copies of hyperunlocked AP-1 and six
copies of Arf1-GTP in the presence of the human tetherin tail (21). This assembly is
centered on a trimer of Arf1 in which each molecule of Arf1 is bound to the � subunit
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of AP-1 (PDB ID 6CM9). The edges of the trimer are bridged by Nef molecules (Fig. 2).
Nef interacts through its dileucine motif with the �-�1 hemicomplex of one AP-1
tetramer. Nef binds to the tyrosine binding site of the �1 domain of a second tetramer
in trans in a ternary complex with the tetherin tail (Fig. 4). These bridges hold this trimer
together and define it as a purely Nef-dependent assembly, which is nonexistent as far
as is known in normal physiology. In contrast to MHC-I-bound open trimers of AP-1
described below, these tetherin-bound closed trimers do not appear to be capable of
promoting CCV formation. The closed trimers appear to be a dead-end state, unique to
infection, whose purpose is to sequester tetherin in the TGN. In this context, the
function of AP-1 is not to package tetherin into CCVs, but to actually inhibit the
anterograde sorting of tetherin. It is not clear what the benefit is to the virus of
downmodulating activity via sequestration as opposed to the more permanent mech-
anisms of lysosomal degradation.

The ability of Nefs to form closed trimers with AP-1 appears to be regulated by
phosphorylation within the dileucine loop. Casein kinase 1� (CK1�) localizes at the TGN
(169). Phosphorylation of S169 in the dileucine loop of the NL4-3 M-Nef disrupts its
interaction with the AP-1 �-�1 hemicomplex, preventing closed trimer formation (21).
The mutation of Ser to Ala partially restores the ability of NL4-3 Nef to target tetherin,
while the reciprocal mutation of the corresponding amino acids, Cys to Ser, in O-Nef
impairs tetherin counteraction (21).

MHC-I. MHC-I molecules deliver short endogenous peptides to the surface of
antigen-presenting cells, allowing these epitopes to be recognized by CD8� (cytotoxic)
T lymphocytes (CTLs). In infected cells, viral peptides are processed and presented to
the cell surface, activating CTLs for viral clearance. Therefore, the antigen presentation
mediated by MHC-I is an essential pathway in adaptive immunity (170, 171). Nef
disrupts antigen presentation both by sequestering MHC-I molecules in intracellular
compartments and by sorting them for lysosomal degradation instead of plasma
membrane presentation. Antigenic peptides are 8 to 10 amino acids in length and are
mainly generated by proteasome in the cytosol (172). They are translocated into the ER
lumen by the transporter associated with antigen processing (TAP). Nascent MHC-I
molecules fold within ER lumen. ER resident chaperones facilitate MHC-I-TAP interac-
tions and transfer peptides to MHC-I (173). After peptide loading, the MHC-I-peptide
complex dissociates from TAP and then traffics through the ER and Golgi apparatus to
the plasma membrane. It is at the TGN that HIV Nef targets MHC-I for downregulation.

MHC-I does not contain either of the canonical tyrosine-based Yxx� or dileucine-
based D/ExxxLL signals for AP sorting. In normal physiology, MHC-I endocytosis is
mediated by a clathrin-independent pathway (174), and MHC-I does not interact with
clathrin adaptors in the absence of Nef. In HIV-infected primary T cells, Nef promotes
a physical interaction between the Golgi adaptor complex AP-1 and MHC-I (175). In
particular, the AP-1 �1 subunit is required to sequester the MHC-I-Nef complex at the
TGN and into sorting MHC-I lysosomes (118, 176). The crystal structures of HIV-I Nef,
MHC-I cytoplasmic tail (CD), and the �1-C-terminal domain (CTD) complex show that
Nef and MHC-I cooperatively assemble so as to mimic physiological Tyr motif binding
to the �1-CTD (19). In this structure, residues 314 to 332 of the MHC-I tail were
sandwiched by a �1-CTD � sheet and secured by Nef 62EEEE65 and 72PxxP75 (Fig. 3 and
4). The combined MHC-I and Nef interactions with �1 are thus equivalent to those of
a physiological cargo (TGN38) bound to the �2-CTD of AP-2 (PDB ID 1BW8) (28). The
AP-2 �2 subunit lacks the equivalent of the Tyr374 in �1 that stacks onto Nef Pro72
during binding, partially explaining why MHC-I does not bind to AP-2 even in the
presence of Nef. Moreover, two extensive electrostatic interactions were identified in
this structure. The Nef acidic sequence 62EEEE65 binds to the �1 basic patch (K274,
K298, K302, and R303) (Fig. 3) (19). This basic patch does not exist in AP-2 �2. MHC-I
D327 and Nef D123 together bind to a �1 basic patch (R211, R225, R246, R393, and
K396). Nef D123 is thus critical for binding to AP-1 �1 (Fig. 3). Other functions have also
been imputed to D123. This residue mediates lattice contacts in a crystallographic
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dimer of Nef and the SH3 domain of the tyrosine kinase Hck (PDB ID 5NUH) (83).
However, most crystal structures involving Nef are not dimers, and there are even other
structures of dimeric SH3 complexes of Nef that show D123 to be surface exposed and
uninvolved in dimerization (Table 1). Another role imputed to D123 is in the interaction
with dynamin-2 (153). Following the initial reports, there has been no structure or other
substantiation of this complex. Thus, the only well-established function of D123 is in �1
binding. It seems possible that some of the phenotypes attributed to dimerization or
dynamin-2 binding could actually be reinterpreted in terms of a role for �1.

AP-1 and the Golgi small GTPase Arf1 are capable of forming dimeric and open and
closed trimeric assemblies in the absence of cargo, and Nef more efficiently promotes
trimer formation (PDB IDs 4HMY and 6CM9) (Fig. 2B) (22). The dimeric and open trimeric
assemblies can in turn form a hexagonal lattice whose symmetry and dimensions are
a nearly perfect match for the clathrin lattice. It appears that even in normal physiology,
AP-1 and Arf1 can form an ordered inner coat beneath clathrin so as to promote CCV
formation and onward trafficking. The role of Nef here is to accelerate the process and
to steer targeted cargo into the CCVs thus formed (63, 130).

FUTURE PERSPECTIVES

There is still limited direct information about the conformational arrangement of
membrane-bound Nef in complex with clathrin adaptors and cargo receptors and how
they assemble in clathrin vesicles. Some information on the conformation of Nef on
membranes is available from time-resolved fluorescence kinetics on synthetic lipo-
somes, neutron reflectometry, and hydrogen deuterium exchange coupled to mass
spectrometry (HDX-MS) on a Langmuir monolayer (177–180). When Nef alone associ-
ates with a low-density lipid monolayer, its N-terminal region and the C-terminal
unstructured loop undergo conformational changes. Ideally, it will be possible to use
cryo-electron tomography (cryo-ET) to study their assembly in clathrin-coated vesicles.
The highly interconnected COPI coat structure (50, 181) has been determined by
cryo-ET from reconstituted COPI-coated vesicles in vitro and in cells (182). It should
similarly be feasible to determine structurally how Nef, clathrin adaptor and cargo
package inside the clathrin coats by using cryo-ET of these reconstituted systems.

Understanding Nef at the levels of structural biology and molecular virology has
moved faster than our understanding at the cellular level. With new methods, such as
lattice-light sheet microscopy and genome-edited cell lines, real-time visualization of
Nef and its substrates throughout the trafficking pathway should change this situation.
While an understanding of Nef’s role in endocytosis and at the TGN has advanced
considerably, its roles at other internal membranes, including endosomes and autopha-
gosomes, need to be further explored. Nef is a structurally plastic protein with extensive
disordered regions and no unique active site. Targeting the Nef protein itself for
antiretrovirals would seem to be challenging. On the other hand, structural analysis is
showing how Nef hijacks a combination of host-mimetic and Nef-unique sites on its
host partners, with the latter comprising an attractive set of targets for antiretroviral
therapeutics.
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