UCLA

UCLA Electronic Theses and Dissertations

Title

CryoSheds: a GIS Modeling Framework for Generating Hydrologic Watersheds for Cryo-
Hydrologic Systems using Digital Elevation Models and Remote Sensing Observations

Permalink
https://escholarship.org/uc/item/3998v7bN
Author

Pitcher, Lincoln H

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/3g98v7bh
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
Los Angeles

CryoSheds: a GIS Modeling Framework for Generating
Hydrologic Watersheds for Cryo-Hydrologic Systems using Digital Elevation Models

and Remote Sensing Observations

A thesis submitted in partial satisfaction of the requirements

for the degree Master of Arts in Geography

by

Lincoln H Pitcher

2015

© Copyright by
Lincoln H Pitcher

2015

ABSTRACT OF THE DISSERTATION

CryoSheds: a GIS Modeling Framework for Generating
Hydrologic Watersheds for cryo-hydrologic systems using Digital Elevation Models

and Remote Sensing Observations

By
Lincoln H Pitcher
Master of Arts in Geography
University of California, Los Angeles, 2015

Professor Laurence C. Smith, Chair

A semi-automated modeling framework for generating hydrographic watersheds for cryo-
hydrologic systems using Geographic Information Systems (GIS) tools is presented. The
framework derives two alternate types of watersheds i) hydraulic pressure potential (Shreve
1972; Cuffey & Paterson 2010; Banwell et al. 2013), which determines surface/subsurface flow
paths from the hydrostatic equation, using surface and basal topography DEMs; and ii) surface
(i.e. surface flow paths) as inferred from a surface topography DEM alone. The framework
utilizes standard hydrologic modeling tools available in the ArcGIS 10.2 and the ArcPy library.

Specifically, DEM depression filling, flow direction, flow accumulation, basin and watershed

tools are used in conjunction with custom ArcPy routines to aggregate sub basins, identify
hydrologic flow divides and delineate ice sheet hydraulic pressure potential and surface ice
watersheds. Both watershed types are delineated for seven nested watersheds in southwest
Greenland, derived from remotely sensed pour points along the Aussivigssuit River and its
tributaries. The two alternate methods produce watersheds with dissimilar outcomes, particularly
at higher elevations (670 m and above) on the ice sheet. For the Aussivigssuit River hydrologic
network, surface DEM watersheds tend to be both larger in size and extend to higher elevations

when compared to the hydraulic potential watersheds.

The thesis of Lincoln H Pitcher is approved:

Gregory S. Okin

Yongwei Sheng

Laurence C. Smith, Committee Chair

University of California, Los Angeles

2015

Table of Contents:

IO 11 0T [F o (oo RSP 1
2. Data Requirements and STUAY SITE:oiiiiriiieieie e 3
3. Watershed Modeling FramewWOrK: ..o s 5
3.1 Outlet SNapping t0 DEM grid:ccooiiiiiiiiieeeeee e e 5
3.2 Land Watershed DeliNBatiON:cuoiviieiieriee ettt nne e 6
3.3 1ce SUD-Dasin DEliNEALION:ccuiiiieieeiesi et nne e 7
3.4 Defining ice sub basin modeled meltwater pour POINES:ccoovviiriieriniiee e, 8
3.5 Watershed deliNEALION:cci ittt nae e 9
4. ReSUILS aNd CONCIUSIONS:oviiiiiiieiieie ettt a e nae e 9
4.1 Areal differences between hydraulic potential and surface watersheds:...........cc.cccoovenenne. 10
4.2 Elevation Extent differences between hydraulic potential and surface watersheds: 10
4.3 DiscusSions and CONCIUSIONS:cuiiiiiiiiiieie e 11
LI 1] LTRSS PSPPI 13
I UIS. ittt et e e et e et e et e et e et e te R e e be et e aRe et e et e ere e reenaeaneeareenteaneenreens 16
A o] 01010 3 SRS 23
Delineate Ice Sub Basins: SUrface DEM..........ccccoiiiiiiiiiieieesee e 23
Delineate Ice Sub Basins: Hydraulic Potentialcccccoiveiiiiiii i, 25
Define Modeled Pour Points for 1ce SUb Basins..........ccoviiiiiiiiiciciensseee e 28
Generate Land WaLErSNEUS.........cuiiiiiieie et 31
Merge Land Watersheds into one file and populate Pour Point Identifier Attribute Field....... 33
One Pixel 166 EAQe BUTTENccviiecice ettt 35
Define Modeled Pour Points for 1ce SUb BasinS..........cccviiiiiiiiic i 37
For Each Pour Point Merge Edge 18 SUD BaSINS..........cccuviriiiiiiiiiesicsesesee e 39

Iterative Check for Contributing Internal Ice Sub Basin and CryoSheds Growing Routine 43

Acknowledgements:

This thesis will be submitted as a journal article for publication in a peer reviewed journal
co-authored by Laurence C. Smith. I thank my committee members Laurence C. Smith, Gregory
Okin, and Yongwei Sheng for their assistance and support in the development of this thesis.

Funding for this research was provided by the NASA Cryospheric Science Program
Grants: NNX11AQ38G and NNX14AH93G, managed by Dr. Thomas P Wagner; the NASA
Earth and Space Science Fellowship Grant: NNX14AP57H, and the UCLA Graduate Division
Research Mentorship Fellowship.

I also thank:

Vena W. Chu

Colin J. Gleason
Kang Yang

Jida Wang

Asa K. Rennermalm

Kelly J. Easterday

Vi

1. Introduction:

Geographic Information Systems (GIS) based tools provide a practical platform for extracting
hydrologic parameters from topographic and/or remotely sensed information. The advent of
gridded digital elevation models (DEMs), in particular, enhances the utility of GIS based
extraction of hydrologic parameters at local, regional and global scales (Morse 1968; Peucker &
Douglas 1975; Mark 1984; Band 1986; Tarboton et al. 1991; Wilson et al. 2007). In terrestrial
surface water systems, basic hydraulics dictate that water flows through preferential flow routes
from areas of high to low elevation. GIS tools and DEMs are particularly useful for simulating
these topographically defined flow-routes and separating contributing hydrologic areas according
to bounding watershed ridgelines i.e. divides (Collins 1975; Marks et al. 1983; Moore et al.
1983; O’Callaghan & Mark 1984; Band 1986; Band et al. 2000).

More recently, terrestrial GIS and DEM based watershed approaches have been applied
to cryo-hydrologic systems to produce hydrologic flow paths and watershed divides for glaciated
systems (Rippin et al. 2003; Lewis & Smith 2009; Mernild & Liston 2012; Rennermalm et al.
2013; Bamber et al. 2013; Banwell et al. 2013; Smith et al. 2015). In such systems, principles of
physics and hydraulics dictate that meltwater drains along a pressure gradient from areas of high
to low pressure, the pattern of which is influenced by both bedrock and surface topography
(Shreve 1972; Paterson 1993; Cuffey & Paterson 2010). However, some cryo-hydrologic studies
generate watersheds using gridded surface topography alone, a direct analog for traditional
terrestrial watershed delineation (Mernild & Liston 2012; Hasholt et al. 2013).

Both the hydraulic potential and the surface DEM method seek to represent different
physical processes for cryo-hydrologic systems. Hydraulic potential watersheds control for

surface, en-, and subglacial runoff and routing while surface DEM generated watersheds account

1

for surface runoff and routing. While the hydraulic potential method is generally favored from a
theoretical standpoint, it is currently unknown which of these two methods is more accurate in
practice for geographically delimiting the extent and shape of cryo-hydrologic watershed
boundaries. Watershed delineation in cryo-hydrologic systems is further complicated by DEM
resolution and varied topography along the perimeter of the ice sheets and glaciers which results
in standard GIS toolboxes producing a number of small (with areas less than 10 pixels) sub
basins (primarily along the ice sheet/glacier perimeters) that do not appear to be hydrologically
accurate or relevant. In recognition of these uncertainties, Smith et al. 2015 propose adopting an
end-member approach using both hydraulic potential and surface DEM watershed delineation
methods with a range of DEM resolutions, to produce a spectrum of possible watersheds for a
single pour point.

To encourage generation this multi-watershed approach, a standardized, reproducible
procedure for estimating a variety of potential watersheds in cryo-hydrologic systems is needed.
To that end, this study incorporates hydraulic potential and surface DEM methods into a single
GIS modeling framework, here termed CryoSheds. This procedure combines assumed or
observed meltwater pour points along the perimeter of an ice-sheet or glacier with gridded
elevation data into a GIS-based model to produce watersheds constrained to a defined pour-point
for both hydraulic pressure potential and surface DEM approaches. A feasibility demonstration is
applied to seven remotely sensed pour points along the perimeter of the Greenland Ice Sheet
(GrlS) in western Greenland, yielding seven candidate cryo-hydrologic watersheds that route
water from the GrlS interior over and/or through the ice sheet to user-specified pour points in

proglacial (terrestrial) lakes/rivers/streams. The approach thus differs from previous methods by

effectively coupling the ice sheet and proglacial zones, and allowing flexible, user-defined pour

points to be located anywhere between the ice edge and coastline.

2. Data Requirements and Study Site:

The CyroSheds watershed modeling framework developed here requires inputs from three
different sources: (1) Surface and basal topography DEMs; (2) a land-ice-ocean mask; and (3)
user-selected pour points. For this first demonstration, these datasets consisted of: IceBridge
BedMachine Greenland surface DEM (Morlighem et al. 2015), which is derived from the
Greenland Mapping Project (GIMP) Greenland surface DEM (surface DEM) (Howat et al.
2014); BedMachine Greenland mass conservation bedrock topography (basal DEM) (Morlighem
et al. 2011; Morlighem et al. 2014; Morlighem et al. 2015); the IceBridge BedMachine land
cover mask, which is derived from the GIMP land cover product (land ice mask) (Morlighem et
al. 2015; Howat et al. 2014); and seven remotely sensed meltwater pour points observed in 30m
resolution Landsat satellite imagery.

The gridded topographic datasets are all parameters of the IceBridge BedMachine
Greenland data product, hosted by the National Snow and Ice Data Center (Morlighem et al.
2014; Morlighem et al. 2015), available in netcdf format at 150m x150m posting in the Polar
Stereographic North ESPG 3413 projection. The GrlIS surface DEM (Figure 1A) is a downscaled
version of the products released and hosted by Greenland Mapping Project (GIMP) (Howat et al.
2014). The BedMachine GrlS Bedrock topography DEM (Figure 1B) uses a mass conservation
approach that derives ice thickness from both ice velocity estimated using Synthetic Aperture
Radar interferometry and Airborne Radar estimates of ice thickness for outlet glaciers

(Morlighem et al. 2011; Morlighem et al. 2014), and spatial interpolation techniques (Figure 1C).

3

The land-ice-ocean mask (Figure 1D) is bundled with the BedMachine data (Morlighem et al.
2014) but is a downscaled version of the GIMP ice cover mask which classifies all of Greenland
as grounded ice, floating ice, or ice free land surface (Howat et al. 2014).

Seven pour points were manually identified using a Landsat-8 OLI image (Scene ID
LC80070132014218LGNOO) collected on August 6, 2014 (Figure 2). The pour points were
precisely mapped to encompass the Aussivigssuit River (AR) watershed and the nested
watersheds corresponding with its northern tributary Pinguarssup Alanguata Kugssua (PK) and
its southern tributary Manitsut Alanguisa Kugssuat (MK). Note that pour points PKN and PKS
comprise the northern and southern branches of the PK tributary, while pour points MKN and
MKS comprise the northern and southern branches of the KM tributary. Pour point PK maps the
northern branch of the AR while pour point MK maps the southern branch of the AR. Pour point
AR is located along the main channel of the AR river downstream of any additional GrIS
sourced meltwater inputs and is directly connected to the ocean. Viewed collectively, these seven
pour points provide an integrated view of seven nested land ice watersheds in southwest
Greenland.

The majority of the GrlS directly connects to the global ocean via marine terminating
glaciers and large calving fronts. However, the southwest coast of Greenland comprises an ice-
free swath of land separating the GrlS from the ocean. In this area, land-terminating outlet
glaciers terminate in proglacial rivers, streams and lakes that route GrIS meltwater to the global
ocean. Within this area, the AR was identified as an ideal demonstration site for CryoSheds
because it has multiple tributaries, and it exhibits varied surface and bedrock topography

(especially along the GrIS perimeter).

3. Watershed Modeling Framework:

The utility of CryoSheds is to generate varying GrlS watersheds upstream of user-defined
meltwater pour points, by integrating internally drained and/or edge basins based on modeled
outflow locations and directions (Figure 3). As such, it builds upon previous studies (e.g.: Lewis
and Smith 2009; Mernild and Liston 2012; Smith et al. 2015 and others) by routing watershed
extents from the GrlS interior through proglacial hydrologic outlets to the ocean.

The CryoSheds modeling framework operates in ArcGIS 10.2 and the ArcPY geoprocessing
environment. Many of the GIS routines are standard ArcGIS spatial analyst hydrology tools
(most require the spatial analyst extension), while additional routines and loops were scripted in
python using the ArcPy library (python scripts are included in appendix). Its major

geoprocessing steps are outlined in Figure 5 and are discussed in detail in the sections to follow.

3.1 Outlet Snapping to DEM grid:
CryoSheds defines a pour point as any user-specified proglacial location that is snapped to a
DEM-derived hydrologic stream network intersecting the ice edge. In DEM based feature
extraction, hydrologic features are reduced to a set of pixels and a vector line connecting the
centroid of each pixel is computed. To define contributing watersheds, each outlet location must
snap to the DEM hydrologic grid. To achieve this, streams are extracted from the input surface
DEM following Tarboton et al. (1991) and others and pour points are manually snapped to the
DEM extracted stream network (Figure 2).

To extract streams, first a depression-free DEM is created by filling all sinks. This step
ensures that every cell in the DEM is a part of at least one path of cells that routes to the edge of

the DEM (Jenson & Domingue 1988). Next, the 8-neighbor flow direction (i.e. the direction that

5

water is routed from each cell to its downstream neighbor) is calculated for each cell in the DEM
(Jenson & Domingue 1988). The flow direction grid is then used as the input to calculate a flow
accumulation grid which, for every cell, calculates the cumulative number of upstream cells that
flow to that cell. For example, a cell with a flow accumulation value of zero corresponds with a
ridgeline, while cells with high flow accumulation values correspond with hydrologic features
and/or flow paths (Jenson & Domingue 1988).

For the purposes of this CryoSheds demonstration, streams were defined as cells with
flow accumulation values of 100 or greater. This is a relatively low threshold but the DEM
extracted streams were solely used to validate the AR river network and to snap pour points to
the BedMachine grid. It is important to note that for many GIS applications an automated snap
outlet to grid procedure is sufficient. However, an automated approach is not recommended for
use in Greenland because anomalies in land surface DEM extracted streams may route meltwater

into ancillary watersheds where no ice-connected hydrologic features are observed.

3.2 Land Watershed Delineation:

For each assumed or observed pour point, the upstream watershed is delineated for the
contributing non-ice land surface area using the input depression free surface DEM, flow
direction grid and snapped meltwater pour points (Figure 2). Next, a one pixel mask is generated
for the interior of the GrlS boundary file, the mask is intersected with each land watershed and a
pour point numeric identifier is appended to the mask. This one-pixel mask with identifier is

used to join ice sub basins into watersheds (Figure 3).

3.3 Ice sub-basin Delineation:

Ice sub basins define regions of an ice sheet or glacier that drain to a common pour point. Ice sub
basins are generated entirely from an input DEM (ice surface DEM or hydraulic pressure grid)
and thus no a priori pour point is defined. It is important to emphasize that these are potential ice
sub basins and do not necessarily reflect active surface or subsurface hydrologic flow (which
require above-freezing meteorological conditions to also be present). Following Smith et al. 2015
ice sub basins are generated using both hydraulic potential and surface DEM approaches, the

first uses a hydraulic pressure grid and the second uses a surface DEM (Figure 4 and Figure 6).

To generate ice sub-basins from the surface DEM:

1. Clip the surface DEM to the ice mask

no

Iteratively fill the DEM by removing sinks

w

Calculate the eight-pixel flow direction for each grid cell

e

Use the flow direction grid to generate ice sub-basins.

To generate ice sub basins from a hydraulic potential grid:

1. Clip surface DEM and basal DEM to the ice mask

2. lterative fill the surface DEM and the basal DEM by removing sinks

3. Calculate the hydraulic potential grid as:

¢ = pig(hs +0.1y)

where ¢ is the calculated height of the pressure grid, p; is the density of ice (assumed to
be a constant 917 kg m™®), g is acceleration due to gravity (9.81 m s2), hy is elevation of
the ice sheet surface (m), and vy is the elevation of the underlying basal topography (m).

7

The hydraulic potential method assumes: (1) that water flows along the steepest
subglacial hydraulic potential gradient (Banwell et al. 2013; Shreve 1972), (2) that
meltwater generated at the surface of the GrIS reaches the bed and drains along an
impermeable ice-bed interface (Bjornsson 1986; Banwell et al. 2013), and (3) that water
pressure equals ice overburden pressure (Shreve 1972; Cuffey & Paterson 2010; Bamber
etal. 2013)

4. Calculate the eight-pixel flow direction for each grid cell

5. Use the flow direction grid to calculate ice sub-basins. It is important to note that flow
direction and drainage divides are dominated by surface topography except for in cases
where the bedrock slope is significantly steeper compared to the surface slope (Lewis &

Smith 2009; Mernild & Liston 2012)

3.4 Defining ice sub basin modeled meltwater pour points:

CryoSheds defines ice sub basin pour points as the maximum flow accumulation grid cell
contained within each ice sub basin. To extract ice sub basin outlets first the maximum flow
accumulation for any cell contained within each ice sub basin is universally defined as the value
for that entire sub basin. Next, the raster calculator tool is used to generate a difference raster,
which is the difference of the flow accumulation raster and the constant value maximum flow
accumulation ice sub basin mask. The result is a mask of each ice sub basin in which any grid
cell with a value of zero is the meltwater pour point for the given ice sub basin in which it is
contained. These modeled outlets are used, in combination with the flow direction at the outlet,

to merge ice sub-basins into watersheds.

3.5 Watershed delineation:

To generate watersheds, the one-pixel land watershed ice edge buffer is intersected with ice sub
basin modeled meltwater outlets. Then, the pour point identifier is joined to the modeled outlet
and the corresponding ice sub basin for each outlet is selected. These sub basins that flow from
the GrlIS and into one of the delineated land watersheds are merged together for each land
watershed and meltwater outlet, here termed “ice-land watershed”. Next, unmerged, internally
drained ice sub basins are fused with ice watershed. Finally, a custom ice watershed iterative
growing algorithm is applied in order to handle non-contained internally drained ice sub basins.
The iterative growing routine starts by searching for non-contained internally drained ice sub
basin pour points that are within a pixel buffer of the ice watershed edge. If pour point(s) are
found, the flow direction at that pixel is determined and the pour point is projected in the
direction of its DEM based flow direction until its intersection with the ice watershed of interest,
another ice watershed, an ice free land surface or the ocean. If it is determined that the non-
contained ice sub basin drains into the ice watershed then the sub basin is merged with the ice
watershed. This ice watershed growing routine process is repeated until all non-contained ice sub
basins that share a boundary with the ice watershed are checked. All ArcPy scripts of this

process are included in the appendix.

4. Results and Conclusions:

CryoSheds represents a self-contained, automated modeling framework that enables flexible
production of varying cryo-hydrologic watersheds that route water over ice and land towards
user-defined pour points. It yields two theoretically different types of cryo-hydrologic watershed

delineations, one using hydraulic pressure potential to determine hydrostatic surface/subsurface

flow paths, and the other using ice surface topography alone to infer supraglacial flow paths and
watershed divides. CryoSheds employs standard ArcGis tools supplemented by additional ArcPy
scripts (see appendix). A first demonstration of CryoSheds for seven meltwater pour points in
southwest Greenland is shown (Figure 7). Note that the two delineation approaches produce
watersheds with significantly different areal sizes and elevation extents, as will be described

next.

4.1 Areal differences between hydraulic potential and surface watersheds:

As compared to hydraulic potential watersheds, surface watersheds had areal differences ranging
from 4.5% to 169.2%, with a general tendency for surface watersheds to be larger than hydraulic
potential watersheds (Table 1). For example, for the MKS pour point the surface DEM watershed
is 395.9 km? and the hydraulic potential watershed is 378.5 km?, a 4.5% difference. In contrast,
for pour point AR the surface DEM ice watershed is 22628.8km? and the hydraulic potential ice
watershed is 3340.9 km?, a 148.5% difference (complete size differences summarized in Table
1). Areal differences in ice watersheds generated with the hydraulic potential and surface DEM
techniques given the same pour point underscores the potential for using both methods to

produce end-member estimates of watersheds for cryo-hydrologic systems.

4.2 Elevation Extent differences between hydraulic potential and surface watersheds:

In addition to areal differences, surface watersheds typically have different shapes than
corresponding hydraulic potential watersheds (Figure 7), with surface watershed tending to
extend to higher elevations (Table 3). For example, the maximum ice surface elevation in the

surface DEM ice watershed for pour point AR is 2560 m (WGS 1984 datum) whereas the

10

maximum elevation in the hydraulic potential watershed for pour point AR is 1884 m. Similarly,
for pour point PK, the maximum elevation in the surface DEM ice watershed is 1357 while the
maximum elevation in the hydraulic potential ice watershed is 999 (complete elevation
differences are summarized in Table 3).

The maximum agreement between watershed delineations is found for pour point MKS,
where 90.5% of the surface DEM ice watershed intersects the hydraulic potential ice watershed
and 94.6% of the hydraulic potential ice watershed intersects the surface DEM watershed. The
most dissimilar watersheds are those corresponding with outlet PKM. For the PKM ice
watershed 8.1% of the surface DEM ice watershed intersects the hydraulic potential watershed
and 97.8% of the hydraulic potential ice watershed intersects the surface DEM watershed
(complete percent intersect results are summarized in Table 2). Differences in ice watershed
elevation extent and ice watershed intersection percent are likely to due to variations in basal

topography that influence hydrologic flow divides.

4.3 Discussions and Conclusions:

The CryoSheds modeling framework offers new utility to the Greenland hydrology science
community that currently lacks a standardized procedure for effectively integrating ice sub
basins into watersheds draining to defined pour point at or downstream of the ice edge.
Furthermore, it offers seamless generation of two end-member watershed delineation practices
currently in use by the community, each yielding different outcomes as underscored by the
contrasting areal and shape differences presented here. There is no obvious explanation for these
observed differences; but they are unsurprising as the two approaches simulate different physical

processes. Two other possible explanations are (1) differences in root data sources between

11

surface and basal DEMSs, which may cause grid disagreements when the two datasets are merged
into a hydraulic pressure grid and results are compared with just the surface DEM; and (2) the
bedrock topography in the AK watershed may be sufficiently steep compared to the surface
topography such that the hydraulic potential watershed divides are dominated by bedrock rather
than surface topography.

In conclusion, the CryoSheds modeling framework offers a flexible, standardized toolkit
for generating a variety of ice watersheds for cryo-hydrologic systems. The non-trivial
differences between the surface DEM and hydraulic potential approaches observed in this
demonstration study suggest that future research should incorporate additional empirical
datasets, particular hydrologic outflow (Rennermalm et al. 2012a; Rennermalm et al. 2012b;
Rennermalm et al. 2014; Smith et al. 2015; Hasholt et al. 2013; Mernild & Liston 2012; Mernild
& Hasholt 2009) to determine if either approach excels for the purpose of delineating cryo-
hydrologic watersheds for the Greenland ice sheet. Until then, we suggest considering both
watershed types simultaneously as end member possibilities (as presented here using CryoSheds

modeling), rather than any single delineation alone.

12

Tables:

Watershed Size Differences
Outlet Stream Surface Potentiometric % area
Identifier Order Area km2 Area km2 difference

MKS Low 395.9 378.5 4.5
MKN Low 21702.5 2733.9 155.2

PKS Low 148.5 196.7 27.9
PKN Low 381.9 31.8 169.2
PK Medium 530.4 228.5 79.6
MK Medium 22098.4 3112.4 150.6
AR High 22628.8 3340.9 148.5

Summary Statistics

Minimum 148.5 31.8 4.5
Average 9698.1 1431.8 105.1
Median 530.4 378.5 148.5
Maximum 22628.8 3340.9 169.2

Table 1: Summary of areal differences for surface DEM and hydraulic potential ice watersheds.
Percent area difference for each outlet are calculated as the absolute value of the area difference
between surface and potentiometric watersheds divided by the average area of the surface and

hydraulic potential ice watersheds.

13

. . . surface Hydraulic
pour point mtersectlrzlg DEM % potential %
identifier area km . ;
intersect intersect

MKS 358.22 90.48 94.65
MKN 2715.59 1251 99.33
PKS 140.40 94.57 71.40
PKN 31.12 8.15 97.81
PK 172.13 32.45 75.34
MK 3092.24 13.99 99.35
AR 3320.69 14.67 99.40

Table 2: Summary of areal intersection for ice watersheds categorized by pour point. The
intersecting area km? category is the areal extent of intersection between the two ice watersheds
for a given pour point. The surface % intersect category defines the percent of a surface DEM ice
watershed that intersects a hydraulic potential ice watershed for a given pour point. The
hydraulic potential % intersect category defines the percent of a hydraulic potential ice
watershed that intersects a surface DEM ice watershed for a given pour point.

14

Hydraulic
Potential
elevation (m) elevation (m)
Min Max Min Max
MKS 486 1362 486 1331
MKN 233 2560 233 1884

Pour Surface DEM
Point
identifier

PKS 215 877 215 999
PKN 199 1357 199 670
PK 199 1357 199 999
MK 233 2560 233 1884
AR 199 2560 199 1884

Table 3: Summary table of minimum and maximum elevations (in meters above the World
Geographic System 1984 datum) contained within both surface DEM and hydraulic potential ice
watersheds.

15

Figures:

Elevation .. Elevation .=

P

5 Legend
-High: 3738 m

_— Legend
: - High: 3739 m

W Low : -1633 m

Low:0m

Surface A | Bedrock B | BedMachine
Source E

v Legend

Il GIMP DEM
Mass Cons.
I interpolation

Land Ice Ocean D

#’ Legend

oy W ce Free

[Grounded Ice
I Floating Ice

Figure 1: IceBridge BedMachine Greenland Layers. (A) The surface elevation DEM for both the

ice free land surface area and GrlS ice extent is derived from the Greenland Mapping Project
DEM (Howat et al. 2014). The surface elevation DEM product has a resolution of 30m but in

order to be included with the IceBridge BedMachine Greenland layers, it was resampled to 150m
resolution. (B) The IceBridge BedMachine Greenland bedrock elevation data (Morlighem et al.

2015; Morlighem et al. 2014). (C) The bedrock elevation data was derived using a mass
conservation approach for outlet glaciers (Morlighem et al. 2011; Morlighem et al. 2014). (D)

The land ice ocean mask is derived from the Greenland Mapping Project data product (Howat et

al. 2014).

16

suP Aanguatg

5
\§ U, ; Y -
RN vssua (PK) ~
PK :

67°0 N =
66°50 N =

66°20' N —

1,250
C—km

N

A

Figure 2: Seven meltwater pour points (triangles) all within the Aussivigssuit (AR) river
watershed, southwest Greenland, were manually identified using a Landsat OLI image collected
on August 6, 2014. The AR river is fed from the north by the Pinguarssup Alanguata Kugssua
(PK) river and from the south by the Manitsut Alanguisa Kugssuat river (MK). Pour points - any
point location along a terrestrial hydrologic feature that is sourced from cryo-hydrologic
meltwater runoff — are drawn along the main stem of the AR river downstream of any additional
inputs, along both the MK and PK tributaries and along the northern (PKN and MKN) and
southern (PKS and MKS) branches of the MK and PK tributaries. The DEM extracted rivers
(blue lines) and the nested land watersheds for each of the seven pour points are mapped to their
intersections with the GrlIS perimeter.

17

Figure 3: Hlustrative figure displaying required inputs and intermediate products produced within
CryoSheds modeling framework. The light grey shaded region maps non ice covered land
surface area. The blue line represents the DEM extracted stream network to its intersection with
the ice edge. The purple line represents the land watershed boundary to its intersection with the
ice edge. The white region maps part of the ice sheet not included in the example ice watershed.
The white ‘x” symbols map the location of modeled pour points for ice sub basins that touch the
edge of the ice sheet. CryoSheds merges ice sub basins with modeled pour points that fall within
one pixel of the ice perimeter. The contained internal ice sub basins and corresponding outlets
are marked by the * symbol. CryoSheds merges contained ice sub basins into the ice watershed.
The red arrow plots the modeled pour point locations and flow directions of non-contained
internally drained ice sub basins. CryoSheds merges such non-contained ice sub basins based on
the flow direction at the modeled pour point.

18

A. Surface DEM ice sub basin delineation method

EAgs nent Input Step | and Step 2 | Step 3 Step 4

Design
Remove i
Defi ; :
cfine Study Surface DEM Despressions and Cglcu_late flow Crcgte ice sub
Region direction basins

clip to ice mask

B. Hydraulic Potential ice sub basin delineation method

Experiment

Design Input Step | and Step 2 | Step 3 Step 4
Remove Calculate hydraulic
Qi Sy Surface DEM Despressions and | potential grid and fill Earaulats flow

Region direction

clip to ice mask depressions

@ = pig(h; +0.1y)

p; ice density (917 kg
m'3)

g gravitational
acceleration (9.81 m
5'2)

hy ice surface
elevation (m)

v bedrock elevation

(m)

Remove
Bedrock DEM Despressions and
clip to ice mask

.
— I

16 +

L« T

[
. s

Calculate ice sub

Step 5 basins

Figure 4: Conceptual diagram of ice sub basin generation steps used in the CryoSheds modeling
framework. Subsection A (top) outlines the considerations, inputs and steps required to generate
ice sub basins using the Surface DEM method. Subsection B (bottom) outlines the
considerations, inputs and steps required to generate ice sub basins using the hydraulic potential
method. Step numbers refer to those outlined in section 3.4.

19

Identify pour points (2.2) Delineate ice sub basins (3.4)

v

Snap pour points to DEM grid Define modeled pour points for
(3.2) ice sub basins (3.5)
Delineate land watershed for For each land pour point: (3.6)
each pour point (3.3) - Merge edge ice sub basins

according modeled pour
point intersection with

Clip ice boundary file to land pixel buffer o
watersheds and create one pixel - Merge contained internal
buffer on interior of ice ice sub basins

- lterative ice watershed
growing routine based on
flow direction at modeled
pour point for non
contained internal ice sub
basins

perimeter (3.3)

land-ice watersheds (3.6)

Figure 5 Conceptual diagram of the CryoSheds hydrographic watershed modeling framework.
Each box corresponds to step in CryoSheds and parentheses refer to specific subsection in which
the step is explained.

20

Ice Sub-basin
delineation

\

Potentiometric Method

W—‘—\l/

Surface Bedrock
DEM DEM
Clip to Clip to
GrlIS GrlIS
Mask Mask
Fill Fill

%

Calculate Hydrostatic
Pressure Grid

Flow Direction Grid

Hydrostatic Ice
Sub-Basins

Figure 6: Ice sub-basin generation steps for both the surface DEM and hydraulic potential
approaches. The hydraulic potential approach combines surface and bedrock topography into a
pressure grid. This method assumes that that water flows along a pressure gradient from areas of
high to low pressures (Cuffey & Paterson 2010; Shreve 1972). The surface method assumes that
cryo-hydrologic drainage is driven by surface topography alone. In both methods all DEM
depressions are assumed to be errors and are iteratively filled such that water is routed to the ice

edge.

21

V%

Surface Method

Surface
DEM

Clip to
GrIS
Mask

Fill

Flow Direction Grid

Surface Ice
Sub-Basins

MKS

8.5

km

MKN

30

km

PKS

Figure 7: Map of ice watersheds for the seven pour points in the AR watershed. Triangles mark
pour point locations. White lines note land watershed divides and blue lines note DEM extracted
stream network. The hydraulic potential ice watersheds are mapped in black and the surface
DEM ice watersheds are mapped in red. The light grey region demarcates the GrlS perimeter and
extent while the dark grey region demarcates the non-ice land surface ocean shoreline and extent.

22

Appendix:

Delineate Ice Sub Basins: Surface DEM

__
Name: GeneratelceSubBasins_ Surface.py
Purpose: Creates drainage basins for Greenland Ice Sheet based solely
on
surface topography DEM
#
Author: Lincoln H Pitcher
#
Updated: 26-February-2015
__
__
#define folder path
workSpace = "###INPUT FILE PATH###'

#"""insert file path here
__
__

#Environmental Set Up
#import modules

import arcpy,os,sys
from arcpy import env
from arcpy.sa import *

#check out spatial analyst extension
arcpy.-CheckOutExtension("Spatial™)

#Set Workspace

arcpy-env.workspace = workSpace

outputPath = workSpace

if os.path.exists(workSpace)==False:
os.mkdir(workSpace)

#Allow Overwriting Output Files

arcpy.env.overwriteOutput = True

#Declare input variables

#

#Ice Surface DEM Raster File

surfaceDEM = Raster('###INPUT NAME###')
#~~~insert file name here

surfaceDEMString = '###INPUT NAME###'
#~""insert file name here

#
#Ice Mask polygon .shp file
iceMask = "###INPUT NAME###'
#°""insert file name here
__
__

#Create basins based on Surface Topography only
#
print "Generating basins"

#clip surface DEM to ice mask extent

#
outExtractByMask = ExtractByMask(surfaceDEM, iceMask)
outExtractByMaskName = (surfaceDEMString.split("."))[0] + " clipIce.tif"
outExtractByMask.save(outExtractByMaskName)
print "extract by mask successful. . ."

#fill the DEM
#
outFill = Fill(outExtractByMask)
outFillName = (outExtractByMaskName.split("."))[0] + " fill.tif"
outFill.save(outFillName)
print "DEM fill successful. . ."

#fcalculate each pixels flow direction

#

outFlowDirection = FlowDirection(outFill, "NORMAL")
outFlowDirectionName = (outFillName.split("."))[0] + " fdr NoForce.tif"
outFlowDirection.save(outFlowDirectionName)

print "DEM flow direction successful. . ."

#calculate each pixels flow accumulation

#
outFlowAccumulation = FlowAccumulation(outFlowDirection)
outFlowAccumulationName = (outFlowDirectionName.split("."))[0] + " fac.tif"
outFlowAccumulation.save(outFlowAccumulationName)
print "DEM flow accumulation successful. "

#fgenerate basin raster
#
outBasin = Basin(outFlowDirection)
outBasinRasterName = (outFlowDirectionName.split("."))[0] + " basin.tif"
outBasin.save(outBasinRasterName)
print "basins (raster) successful. . ."

#generate basin vector

#
outBasinVectorName = (outFlowDirectionName.split("."))[0] + " basin.shp"
arcpy.RasterToPolygon conversion(outBasin, outBasinVectorName, "NO SIMPLIEY™")
print "basins (vector) successful. . ."

#delete variables, clear locks
#
del outExtractByMask, outExtractByMaskName
del outFill, outFillName
del outFlowDirection, outFlowDirectionName
del outBasin, outBasinRasterName, outBasinVectorName

print "Basins surface Complete"

24

Delineate Ice Sub Basins: Hydraulic Potential

__
Name: GenerateIceSubBasins HydraulicPotential.py
Purpose: Creates drainage basins for Greenland Ice Sheet based on
Hydraulic Potential method (Lewis & Smith 2009 and others)
#
Author: Lincoln H Pitcher
#
Updated: 26-February-2015
__
__
#define folder path
workSpace = "###INPUT FILE PATH###"
#~""insert file path here
__
__

#Environmental Set Up
#import modules

import arcpy,os,sys
from arcpy import env
from arcpy.sa import *

#check out spatial analyst extension
arcpy.-CheckOutExtension("Spatial™)

#Set Workspace

arcpy-env.workspace = workSpace

outputPath = workSpace

if os.path.exists(workSpace)==False:
os.mkdir(workSpace)

#Allow Overwriting Output Files

arcpy.env.overwriteOutput = True

__
__
#Declare Input Variables

#

#Surface DEMs

surfaceDEM = "###INPUT NAME###"

#~~~insert file name here

#

#Bed DEM
bedDEM = "###INPUT NAME##4#"

#~~~insert file name here

#

#Ice Mask

iceMask = "###INPUT NAME###"

#~~~insert file name here
NOTE: Hydraulic Potential Method

Pa = Pi * g * (h+ 0.1 * vy)
Pa - subglacial hydraulic potential

25

Pi - density of ice (assumed to be constant 917 kg m"-3)

g - acceleration due to gravity (9.81 m s*-2)
h - elevation ice surface, m
y — elevation of subglacial topography, m
#P1i - density of ice (assumed to be constant 917 kg m*-3)
Pi = 917
#
#g - acceleration due to gravity (9.81 m s"-2)
g = 9.81
#
#h - elevation ice surface (surfaceDEM) in m
h = Raster(surfaceDEM)
#

#y - elevation of subglacial topography (bedDEM) in m
y = Raster(bedDEM)

#Create hydraulic potential basins
#
print "Generating basins. . ."

#clip surface DEM to ice mask extent

#
outExtractByMaskSurface = ExtractByMask(h, iceMask)
outExtractByMaskSurfaceName = (surfaceDEM.split("."))[0] + " clipIce.tif"
outExtractByMaskSurface.save(outExtractByMaskSurfaceName)
print "surface DEM clip to ice mask done"

#fill the surface DEM

#

outFillSurfaceDEM = Fill(outExtractByMaskSurface)
outFillSurfaceDEMName = (outExtractByMaskSurfaceName.split("."))[0] +
"Ofill.tif"

outFillSurfaceDEM.save(outFillSurfaceDEMName)

print "surface DEM fill done"

#clip bed DEM to ice mask extent

#
outExtractByMaskBed = ExtractByMask(y, iceMask)
outExtractByMaskBedName = (bedDEM.split("."))[0] + " clipIce.tif"
outExtractByMaskBed.save(outExtractByMaskBedName)
print "bedrock DEM clip to ice mask done"

#fi1ll the bed DEM
#
outFillBedDEM = Fill(outExtractByMaskBed)
outFillBedDEMName = (outExtractByMaskBedName.split("."))[0] + " fill.tif"
outFillBedDEM.save(outFillBedDEMName)
print "basal DEM fill done"

#fgenerate hydrostatic pressure grid

#
pgrid = Pi * g * (outFillSurfaceDEM + 0.1 * outFillBedDEM)
pgrid.save("pgrid.tif™)

26

print "hydraulic potential grid complete"

#£i11
#
outFill = Fill("pgrid.tif")
outFill.save("pgrid fill.tif™)
print "hydraulic potential grid fill complete"

#flow direction (fdr)
#
outFlowDirection = FlowDirection("pgrid fill.tif", "NORMAL™)
outFlowDirection.save("pgrid fill fdr.tif")
print "hydraulic potential flow direction grid done"

#flow accumulation (fac)
#
outFlowAccumulation = FlowAccumulation("pgrid fill fdr.tif", '', '"INTEGER')
outFlowAccumulation.save("pgrid fill fdr fac.tif™)
print "hydraulic potential flow accumulation grid done"

#basin raster

#
outBasin = Basin("pgrid fill fdr.tif™)
outBasin.save("pgrid fill fdr basin.tif™)
print "basins raster done"

#basin vector
#

arcpy-RasterToPolygon conversion(outBasin, "pgrid fill fdr basin.shp",
"NO SIMPLIFY")
print "basins vector done"

#delete variables, clear locks

#
del outExtractByMaskSurface, outExtractByMaskBed, pgrid, outFill
del outFlowDirection, outFlowAccumulation, outBasin

27

Define Modeled Pour Points for Ice Sub Basins

__
Name: DefineModeledPourPointsForIceSubBasins.py
Purpose: Defines the modelled pour point, defined as the maximum
maximum flow accumulation grid cell contained within every
ice sub basin in the input file. This technique uses zonal
zonal statistics and a difference raster to define modelled
pour points.
#
Author: Lincoln H Pitcher
#
Updated: 26-February-2015
__
__
#define folder path
workSpace = "###INPUT FILE PATH###'
#”°""~insert file path here
__
__

#Environmental Set Up
#import modules

import arcpy,os,sys
from arcpy import env
from arcpy.sa import *
import timeit

#time of script
start = timeit.default timer()

#check out spatial analyst extension
arcpy-CheckOutExtension("Spatial™)

#Set Workspace

arcpy.env.workspace = workSpace

outputPath = workSpace

iT os.path.exists(workSpace)==False:
os.mkdir(workSpace)

#Allow Overwriting Output Files
arcpy.env.overwriteOutput = True
print "environmental set up complete"

__
__
#set file saving parameters
surfaceORpotentiometric = "###INSERT STRINGH##"
#~""insert: 'surface' or 'hydraulicPotential'

date = "03March2015"

#"""insert date: ddMonthYYYY e.g. 0lJanuary2015
__

#Declare Input Variables

#
#zone data raster. zones are ice sub basins.
zoneData = "###INPUT NAME###"
#~"""ice sub basins .tif file, value is each basin id
#can be surface or hydraulic potential ice sub basins
#
value raster. values are flow accumulation values
valueRaster = "###INPUT NAME###"
#°""flow accumulation grid .tif file
#can be derived from surface or hydraulic potential grid
__
__

#calculate zonal statistics,

#finds max flow accumulation value in each ice sub basin

#

zonalStatsOutput = surfaceORpotentiometric + " zonalStats " + date + ".tif"
outZonalStats = ZonalStatistics(zoneData,"FID",valueRaster, "MAXIMUM"," "DATA™)
outZonalStats.save(zonalStatsOutput)
print 'zonal stats done'

#calc difference zonal stats output and value raster;

#0 = MAX FAC point

#
differenceRasterOutput = surfaceORpotentiometric +
" zonalStats difference FAC " + date + ".tif"

#define variable as type rasters
zonalStatsOutputRaster = Raster(zonalStatsOutput)
valueRasterRaster = Raster(valueRaster)

#Execute Minus
outMinus = Minus(zonalStatsOutputRaster, valueRasterRaster)

#Save output
outMinus.save(differenceRasterOutput)
print 'difference raster done'

#reclassify difference raster

#set 0 = MAX FAC point --> 1 = MAX FAC point

#all else = NoData
reclassifyRasterOutput = surfaceORpotentiometric +

" zonalStats difference FAC reclass " + date + ".tif"

#define variable as type rasters
differenceRasterOutputRaster = Raster(differenceRasterOutput)
arcpy-gp-Reclassify sa(differenceRasterOutputRaster,"Value","0 1;1 999999999
NODATA",reclassifyRasterOQutput, "DATA™)

print 'reclassify done'

#conver reclassified MAX FAC to raster to MAX FAC points

outPoints = "iceSubBasin " + surfaceORpotentiometric + " maxFACpoints " +
date + ".shp"

arcpy-RasterToPoint conversion(in raster=reclassifyRasterOutput,out point fea
tures=outPoints,raster field="Value™)

print 'raster to point conversion done'

#clear variables and data

29

del surfaceORpotentiometric, date
del zoneData, valueRaster

del zonalStatsOutput

del differenceRasterQutput

del reclassifyRasterOutput

del outPoints

#fcalculate run time of script
#
stop = timeit.default timer()
print 'total run time is: ', stop - start

30

Generate Land Watersheds

__
Name: CryoSheds 1 GenerateLandWatersheds.py
Purpose: Creates watersheds for pour points in input point file
pour points should be pre-snapped to flow accumulation grid.
inputs required include: (1) point file with StrmID field
(2) flow direction grid from a depression free land DEM.
#
Author: Lincoln H Pitcher
#
Updated: 26-February-2015
__
__
#define folder path
workSpace = '"###INPUT FILE PATH##4#'
#"""insert file path here
__
__

#Environmental Set Up
#import modules

import arcpy,os,sys
from arcpy import env
from arcpy.sa import *

#check out spatial analyst extension
arcpy.CheckOutExtension("Spatial™)

#Set Workspace

arcpy.env.workspace = workSpace

outputPath = workSpace

iT os.path.exists(workSpace)==False:
os.mkdir(workSpace)

#Allow Overwriting Output Files
arcpy.env.overwriteOutput = True
print "environmental set up complete"

__
__
#Declare Input Variables

#
points = "###INPUT NAME###"

#"""pour points. Must have StrmID field.

#

fdr = "###INPUT NAME###"
#~""flow direction grid from depression free land surface DEM

__
__

initiate cursor to loop through each pour point in input point file
pointCursor = arcpy-SearchCursor(points)

loop through each pour point in points file

31

for pt In pointCursor:

select point by FID and copy to new shapefile
rowFID = pt.FID

rowID = pt.StrmID ###requires StrmID field in pour point file

where = ' FID = ' + "%s"%rowFID

ptName="del " + (points.split("."))[0] + " FID" + str(rowFID) + " " +
") Shp "

arcpy-Select analysis(points, ptName, where)

Execute Watershed
outWatershed = Watershed(fdr, ptName, "Id")

Save the output
watershedTifName = "Watershed ID" + str(rowID) + ".tif"
outWatershed.save(watershedTifName)

Convert raster to polygon

watershedPolyName = "Watershed ID" + str(rowID) + ".shp"

arcpy-RasterToPolygon conversion(watershedTifName, watershedPolyName,
"NO_ SIMPLIFY", "VALUE")

print "loop done"

32

Merge Land Watersheds into one file and populate Pour Point Identifier Attribute Field

__
Name: CryoSheds 2 mergelLandWatershedsWithRivID.py
Purpose: merges all land watersheds into one .shp file
and and appends RivID from the file name to the attribute
table
#
Author: Lincoln H Pitcher
#
Updated: 26-February-2015
__
__
#define folder path
workSpace = '"###INPUT FILE PATH###'

#”°""~insert file path here
__
__

#Environmental Set Up
#import modules

import arcpy,os,sys
from arcpy import env
from arcpy.sa import *

#check out spatial analyst extension
arcpy.-CheckOutExtension("Spatial™)

#Set Workspace

arcpy-env.workspace = workSpace

outputPath = workSpace

if os.path.exists(workSpace)==False:
os.mkdir(workSpace)

#Allow Overwriting Output Files
arcpy-.env.overwriteOutput = True
print "environmental set up complete"

#Generate list of all polygon .shp files in workSpace that begin with
Watershed
#
fclList = arcpy-ListFeatureClasses("Watershed*", "Polygon")
print "fc list includes: ", fcList

#loop through each shp file in list and add pour point id

#
for fc iIn fclist:
print "loop for fc : ", fc

#define Pout Point ID by string name in file

#
strID = long(fc[12:16])

33

#add empty Pour Point Field
#
arcpy-AddField management(fc, 'pourPoint','long',9)

#add Pour Point ID to Pour Point field in shp file
#
fields = ("pourPoint")
with arcpy.da.UpdateCursor(fc, fields) as cursor:
for row In cursor:
row[0] = striID
cursor.updateRow(row)

#clear lock file
#
del fc

merge all watersheds into single .shp file
arcpy-Merge management(fcList, "Watersheds merge.shp™)

#delete unused variables
del fclList

34

One Pixel Ice Edge Buffer

__
Name: CryoSheds 3 onePixelIceEdgePixelBuffer.py
Purpose: Clips one-pixel inside ice edge buffer to each watershed and
appends the Pour Point Attribute Identifier to the buffer
#
Author: Lincoln H Pitcher
#
Updated: 26-February-2015
__
__
#define folder path
workSpace = "###INPUT FILE PATH##i#'
#~""insert file path here
__
__

#Environmental Set Up
#import modules

import arcpy,os,sys
from arcpy import env
from arcpy.sa import *

#check out spatial analyst extension
arcpy.-CheckOutExtension("Spatial™)

#Set Workspace

arcpy-env.workspace = workSpace

outputPath = workSpace

if os.path.exists(workSpace)==False:
os.mkdir(workSpace)

#Allow Overwriting Output Files

arcpy.env.overwriteOutput = True
print "environmental set up complete"

__
__
#variables
#watershed file with pour point attribute identifier field
watersheds = "###INPUT NAME###"
#~""watersheds .shp file
#
#Ice Edge one pixel buffer
mask = "###INPUT NAME##+#"
#7""one pixel buffer .shp file
__
__

#watershed cursor
watershedsCursor = arcpy.SearchCursor(watersheds)

#loop through each basin
print "begin looping through each basin. . ."

35

for watershed in watershedsCursor:

#select basin by FID and copy to new shapefile

rowFID = watershed.FID

where = ' FID = ' + "2s5"%rowFID

watershedName="del " + (watersheds.split("."))[0] + " FID" + str(rowFID)
+ " " 4+ " _shp"

arcpy-Select analysis(watersheds, watershedName, where)

#get the pour point id from the attrib table
pourPoint = watershed.pourPoint

#clip mask to watershed id
arcpy.-Intersect analysis ([watershedName, mask],
"iceMaskl50mBuffer PourPointID" + str(pourPoint) + ".shp")

#delete unused fields

arcpy.DeleteField management("iceMaskl50mBuffer PourPointID" +
str(pourPoint) + ".shp", ["FID del Wa", "FID bedmac", "ID 1", "GRIDCODE 1",
"ORIG FID"])

#delete unused watersheds files
arcpy.-Delete management(watershedName)

print "loop for watershed with pour point id: ", pourPoint, " complete"

#delete unused variables and remove locks
del watersheds, mask

36

Define Modeled Pour Points for Ice Sub Basins

__
Name: CryoSheds 4 defineModeledPourPointsForIceSubBasins.py
Purpose: Select modeled outlets that intersect each watershed buffer
append pour point ID to modeled outlets.
#
Author: Lincoln H Pitcher
#
Updated: 26-February-2015
__
__
#define folder path
workSpace = "###INPUT FILE PATH##i#'
#~""insert file path here
__
__

#Environmental Set Up
#import modules

import arcpy,os,sys
from arcpy import env
from arcpy.sa import *

#check out spatial analyst extension
arcpy.-CheckOutExtension("Spatial™)

#Set Workspace

arcpy-env.workspace = workSpace

outputPath = workSpace

if os.path.exists(workSpace)==False:
os.mkdir(workSpace)

#Allow Overwriting Output Files

arcpy.env.overwriteOutput = True
print "environmental set up complete"

#Declare Input variables
#mask
maskList = arcpy.ListFeatureClasses("iceMaskl50mBuffer PourPointID*")

#surface points and a surface layer for select by location
surfacePoints = "###INPUT NAME###"
#~""surface points
arcpy-MakeFeaturelayer management(surfacePoints, "surfacePoints lyr™)

#fpotentiometric points and a potentiometric layer for select by location
potentiometricPoints = "###INPUT NAMEH##"
#”""hydraulic potential points
arcpy-MakeFeaturelLayer management(potentiometricPoints,
"potentiometricPoints lyr")

#loop through mask and select points
for mask In maskList:

#define pour point ID
PourPointID = str(mask[29:33])
PourPointID int = int(PourPointID)

#Make fc a layer
arcpy-MakeFeaturelayer management(mask, "mask lyr™)

#Surface ice basins
#fadd a selection to point the layer based on location to point mask
layer
arcpy.-SelectLayerByLocation management ("surfacePoints lyr",
"INTERSECT", mask, "", "NEW SELECTION")
#write selection to new fc
arcpy-CopyFeatures_management('surfacePointsilyr',
"surfacePoints PourPointID' + PourPointID + '.shp')
#add pourPoint field to new fc
arcpy-AddField management('surfacePoints PourPointID' + PourPointID +
.shp', 'pourPoint', 'LONG', 9)
#update row with Pour Point ID
fields = ('pourPoint")
with arcpy.da.UpdateCursor('surfacePoints PourPointID' + PourPointID
+ '".shp', fields) as cursor:
for row In cursor:
row[0] = PourPointID int
cursor.updateRow(row)

#Potentiometric ice basins
#add a selection to point the layer based on location to point mask
layer
arcpy-SelectLayerByLocation management ("potentiometricPoints lyr",
"INTERSECT", mask, "", "NEW SELECTION")
#write selection to new fc
arcpy-CopyFeatures management('potentiometricPoints lyr',
'potentiometricPoints PourPointID' + PourPointID + '.shp')
#add pourPoint field to new fc
arcpy-AddField management('potentiometricPoints PourPointID' +
PourPointID + '.shp', 'pourPoint', 'LONG', 9)
#update row with Pour Point ID
fields = ('pourPoint")
with arcpy.da.UpdateCursor('potentiometricPoints PourPointID' +
PourPointID + '.shp', fields) as cursor:
for row In cursor:
row[0] = PourPointID int
cursor.updateRow(row)

print "loop for pour point id: ", PourPointID, " complete"

#delete variables and clear locks
del PourPointID, PourPointID int, fields

#delete variables and clear locks
del maskList, mask, surfacePoints, potentiometricPoints

38

__
Name: CryoSheds 5 selectEdgelceBasinsDissovleEliminate.py
Purpose: Selects ice sub basins that intersect modelled outlets
dissolves basins and eliminated interior polygons
only edge basins that intersect one-pixel ice edge buffer
are selected.
#
Author: Lincoln H Pitcher
#
Updated: 26-February-2015
__
__
#define folder path
workSpace = '"###INPUT FILE PATH###'
#”""~insert file path here
__
__

#Environmental Set Up
#import modules

import arcpy,os,sys
from arcpy import env
from arcpy.sa import *

#check out spatial analyst extension
arcpy.CheckOutExtension("Spatial™)

#Set Workspace

arcpy-env.workspace = workSpace

outputPath = workSpace

iT os.path.exists(workSpace)==False:
os.mkdir(workSpace)

#Allow Overwriting Output Files
arcpy-.env.overwriteOutput = True
print "environmental set up complete"

#variables
#surface point list
#

surfacePointsList = arcpy.ListFeatureClasses("surfacePoints PourPointID*")

#hydraulic potential point list

#
potentiometricPointsList =
arcpy.ListFeatureClasses("potentiometricPoints PourPointID*")

#surface ice sub basins

#
surfaceBasins = "###INPUT NAME###"
#~""ice sub basins, surface

39

arcpy-MakeFeaturelayer management(surfaceBasins, "surfaceBasins lyr™)

#hydraulic potential ice sub basins
#
potentiometricBasins = "###INPUT NAMEH##"
#"""ice sub basins, hydraulic potential
arcpy-MakeFeaturelLayer management(potentiometricBasins,
"potentiometricBasins lyr")

#land mask

#

landMask = "###INPUT NAME###"
#7""land mask .shp file

#ice mask buffer

#
iceMaskBuffer = "###INPUT NAME###"
#~""one pixel ice mask buffer
__
__

#loop through SURFACE points list, dissolve, eliminate, buffer
for points In surfacePointsList:

#define pour point ID
PourPointID = str(points[25:29])
PourPointID int = int(PourPointID)

#Make fc a layer
arcpy-MakeFeatureLayer_management(points, "points lyr™)

#select by location
#fadd a selection to point the layer based on location to point mask
layer
arcpy.-SelectLayerByLocation management ("surfaceBasins lyr",
"INTERSECT", points, "", "NEW SELECTION")
#write selection to new fc
arcpy-CopyFeatures_management('surfaceBasinsilyr',
"surfaceIceSubBasins PourPointID' + PourPointID + '.shp')
#add pourPoint field to new fc
arcpy-AddField management('surfacelceSubBasins PourPointID' +
PourPointID + '.shp', 'pourPoint', 'LONG', 9)
#update row with Pour Point ID
fields = ('pourPoint")
with arcpy.da.UpdateCursor('surfacelceSubBasins PourPointID' +
PourPointID + '.shp', fields) as cursor:
for row In cursor:
row[0] = PourPointID int
cursor.updateRow(row)

#dissolve
arcpy-Dissolve management('surfacelceSubBasins PourPointID' +
PourPointID + '.shp', 'surfacelceSubBasins PourPointID' + PourPointID +

' dissolve.shp',"pourPoint™)

#eliminate

40

arcpy-EliminatePolygonPart management('surfacelceSubBasins PourPointID' +
PourPointID + ' dissolve.shp', 'surfaceIceSubBasins PourPointID' +
PourPointID + ' dissolve elim.shp', 'AREA', 999999000, ",'CONTAINEDioNLY')

#150m outside buffer

arcpy-Buffer analysis('surfacelceSubBasins PourPointID' + PourPointID
+ ' dissolve elim.shp', 'surfaceIceSubBasins PourPointID' + PourPointID +
' 150mBuf.shp', '150 Meters', 'OUTSIDEioNLY')

#erase land
arcpy-Erase analysis('surfacelceSubBasins PourPointID' + PourPointID
+ ' 150mBuf.shp', landMask, 'surfacelceSubBasins PourPointID' + PourPointID +
' 150mBuf eraseLand.shp')
#delete 150m outside buffer
arcpy-Delete management('surfacelceSubBasins PourPointID' +
PourPointID + ' 150mBuf.shp')

ferase ice perimeter buffer

arcpy-Erase analysis('surfacelceSubBasins PourPointID' + PourPointID
+
' 150mBuf eraselLand.shp',iceMaskBuffer, 'surfacelceSubBasins 150mBuf PourPoint
ID' + PourPointID + '.shp')

#delete erase land buffer

arcpy-Delete_management('surfaceIceSubBasinsiPourPointID' +

PourPointID + ' 150mBuf eraseLand.shp')

print "loop for SURFACE basins with pour point id: ", PourPointID, "
complete"

#delete variables and clear locks
del PourPointID, PourPointID int, fields

#loop through POTENTIOMETRIC points list, dissolve, eliminate, buffer
for points In potentiometricPointsList:

#define pour point ID
PourPointID = str(points[32:36])
PourPointID int = int(PourPointID)

#Make fc a layer
arcpy-MakeFeaturelayer management(points, "points lyr™)

#select by location
#add a selection to point the layer based on location to point mask
layer
arcpy-SelectLayerByLocation management ("potentiometricBasins lyr",
"INTERSECT", points, "", "NEW SELECTION")
#write selection to new fc
arcpy-CopyFeatures management('potentiometricBasins lyr',
'potentiometricIceSubBasins PourPointID' + PourPointID + '.shp')
#add pourPoint field to new fc
arcpy-AddField management('potentiometricIceSubBasins PourPointID' +
PourPointID + '.shp', 'pourPoint', 'LONG', 9)

41

#update row with Pour Point ID
fields = ('pourPoint")
with arcpy.da.UpdateCursor('potentiometricIceSubBasins PourPointID' +
PourPointID + '.shp', fields) as cursor:
for row In cursor:
row[0] = PourPointID int
cursor.updateRow(row)

#dissolve
arcpy-Dissolve management('potentiometricIceSubBasins PourPointID' +
PourPointID + '.shp', 'potentiometricIlceSubBasins PourPointID' + PourPointID

+ ' dissolve.shp',"pourPoint™)
feliminate

arcpy-EliminatePolygonPart management('potentiometricIceSubBasins PourPointID
' + PourPointID + ' dissolve.shp', 'potentiometricIceSubBasins PourPointID' +
PourPointID + ' dissolve elim.shp', 'AREA', 999999000, ",'CONTAINEDioNLY')

#150m outside buffer

arcpy-Buffer analysis('potentiometricIceSubBasins PourPointID' +
PourPointID + ' dissolve elim.shp', 'potentiometricIceSubBasins PourPointID'
+ PourPointID + ' 150mBuf.shp', '150 Meters', 'OUTSIDEioNLY')

#erase land

arcpy-Erase analysis('potentiometricIceSubBasins PourPointID' +
PourPointID + ' 150mBuf.shp', landMask,
'potentiometricIceSubBasins PourPointID' + PourPointID +
' 150mBuf eraseLand.shp')

#delete 150m outside buffer

arcpy-Delete management('potentiometricIceSubBasins PourPointID' +

PourPointID + ' 150mBuf.shp')

ferase ice perimeter buffer

arcpy-Erase analysis('potentiometricIceSubBasins PourPointID' +
PourPointID +
' 150mBuf eraselLand.shp',iceMaskBuffer, 'potentiometricIceSubBasins 150mBuf Po
urPointID' + PourPointID + '.shp')

#delete erase land buffer

arcpy-Delete management('potentiometricIceSubBasins PourPointID' +

PourPointID + ' 150mBuf eraselLand.shp')

print "loop for POTENTIOMETRIC basins with pour point id: ",
PourPointID, " complete"

#delete variables and clear locks
del PourPointID, PourPointID int, fields

#delete variables and clear locks
del surfacePointsList, potentiometricPointsList, surfaceBasins,
potentiometricBasins

42

Iterative Check for Contributing Internal Ice Sub Basin and CryoSheds Growing Routine

__
Name: CryoSheds 6 internalBasinCheckAndGrow.py
Purpose: check for internal drained basins, when found, merge if flow
into basin
#
Author: Lincoln H Pitcher
#
Updated: 26-February-2015
__
__
#define folder path
workSpace = "###INPUT FILE PATH##i#'
#~""insert file path here
__
__

#Environmental Set Up

#import modules

import arcpy, os, sys
from arcpy import env
from arcpy.sa import *

#

#check out spatial analyst extension
arcpy.-CheckOutExtension("Spatial™)

#

#Set Workspace

arcpy-env.workspace = workSpace
outputPath = workSpace

if os.path.exists(workSpace)==False:

os.mkdir(workSpace)

#

#Allow Overwriting Output Files
arcpy.env.overwriteOutput = True
print "environmental set up complete"

INPUTS
basin list
basinlList = arcpy-ListFeatureClasses("###String w/ Wild-card For File
List##4™)
#~""string and wild-card for file list

#

land mask

landMask = "###INPUT NAME###"
#7""land mask .shp file

#

ice mask

iceMask = "###INPUT NAME###"

#7""ice mask .shp file
modelled pour points
max fac points = "###INPUT NAME###"
#2""modelled pour points

43

arcpy-MakeFeaturelayer management(max fac points, "max fac points lyr™)
#
#ice sub basins
iceSubBasin = "###INPUT NAME###"
#7""ice sub basins .shp file
arcpy-MakeFeaturelayer management(iceSubBasin, "iceSubBasin lyr™)
#
#constant value raster
CVRaster = "CVRaster(O.tif"
#a constant value raster
#with pixel size = grid DEM
#all pixel values ==

#initiate loop through all basins in the basins list
for basin In basinList:
print 'loop for basin: ', basin

whileCondition = 1
basinCheck = basin

#define pour point ID

#If surface = 31:35

#If Hydraulic Potential = 38:42
PourPointID = str(basin[31:35])
PourPointID int = int(PourPointID)

__
__
#set while condition
while whileCondition == 1:
#CHECK IF THERE ARE ANY INTERNALLY DRAINED BASINS CONTRIBUTING TO
BASIN

#150m outside buffer
buffer 1 = (basin.split('.'))[0] + ' 150mBuf.shp'’
arcpy-Buffer analysis(basinCheck, buffer 1, '150

Meters','OUTSIDE ONLY')

#

#erase land
buffer 2 = (basin.split('.'))[0] + ' 150mBuf eraselLand.shp'
arcpy-Erase analysis(buffer 1, landMask, buffer 2)
#delete buffer 1 file b/c no longer needed
arcpy-Delete management(buffer 1)

#

#erase ice perimeter buffer
buffer 3 = (basin.split('.'))[0] + ' 150mBuf eraseland eraselce.shp'
arcpy-Erase analysis(buffer 2,iceMask,buffer 3)
#delete buffer 2 file b/c no longer needed
arcpy-Delete management(buffer 2)

#

#erase inside of basin
buffer 4 = (basin.split('.'))[0] +

' 150mBuf eraseland eraselce eraseBasin.shp'

arcpy-Erase analysis(buffer 3, basinCheck, buffer 4)
#delete buffer 3 file b/c no longer needed

44

arcpy-Delete management(buffer 3)
#
#select intersecting points by location
#fadd a selection to point the layer based on location to point mask
layer
arcpy.SelectLayerByLocation management
("max_fac points lyr","INTERSECT",buffer 4,"","NEW SELECTION")
#
#declare BUFFER COUNTER (count) by counting number of selected
features
result = arcpy.GetCount_management("max_fac_points_lyr")
count = int(result.getOutput(0))

if count>0:
#check if selected points flow into the basin

print 'count = ', count
#COPY SELECTED POINTS TO NEW FC
points selection = (max fac points.split('.'))[0] + ' RivID' +

str(PourPointID) + '.shp'
arcpy-CopyFeatures management('max fac points lyr',
points_selection)

#CREATE LAND COVER MASK
#convert basin shp file to tif
arcpy-PolygonToRaster conversion(basin, "pourPoint",
"temp basin.tif", "CELL CENTER", "", 150)
#convert buffer shp file to tif
arcpy-PolygonToRaster conversion(buffer 4, "pourPoint",
"temp buf.tif", "CELL CENTER", "", 150)
#reclassify buffer tif, make all values -9999
outReclassl = Reclassify("temp buf.tif", "Value",
RemapValue([[PourPointID int,-9999]1]))
outReclassl.save("temp buf reclass.tif™)
#delete original buffer tif file b/c no longer needed
arcpy-Delete management("temp buf.tif™)
#mosaic raster

arcpy-MosaicToNewRaster management("temp basin.tif;temp buf reclass.tif;CVRas
ter0.tif",workSpace,"temp mosaic.tif","WGS 1984 Stereographic North Pole.prj"

y "647BITH y nmn y "l" y "E‘IRSTH)
1Cover = "temp mosaic.tif"

#FIND LC VALUE

#copy points and make cursor

pointsCopy = (points selection.split("."))[0] + " LC.shp"
arcpy-CopyFeatures_management(points_selection, pointsCopy)

#add XY to points
arcpy-AddXY management(pointsCopy)

pointCursor = arcpy-UpdateCursor(pointsCopy)

#loop through each point in pointsCopy

for point In pointCursor:

', pointY, '
pointFID

#get point rastervValue,
pointX = point.POINT X
pointY¥ = point.POINT Y
pointFDR = point.FDR
pointFID = point.FID
point LCValue = point.LCValue
print '
', PointFDR,
print ' ', pointFID
#declare point variables

#if LC == 1 & FDR == 1
pointX new FDR1 = pointX + 90
pointY new FDR1 = pointY

#if LC == 1 & FDR ==
pointX new FDR2 = pointX + 90
pointY new FDR2 = pointY - 90

#if LC == 1 & FDR ==
pointX new FDR4 = pointX
pointY new FDR4 = pointY - 90

#if LC == 1 & FDR == 8
pointX new FDR8 = pointX - 90
pointY new FDR8 = pointY - 90

#if ILC == 1 & FDR == 16
pointX new FDR16 = pointX - 90
pointY new FDR16 = pointY

#if LC == 1 & FDR == 32
pointX new FDR32 = pointX - 90
pointY new FDR32 = pointY + 90

#if LC == 1 & FDR == 64

pointX new FDR64 = pointX
pointY new FDR64 = pointY + 90
#if LC == 1 & FDR == 128

pointX new FDR128 =

while(point LCValue < -1):

if pointFDR == 1:
print '

#create a temp point

looping through points with: X =
' LCValue = ', point LCValue, '

pointX + 90
pointY new FDR128 = pointY + 90

point FDR

X and Y coordinates

', pointX,
FID = '

', PointFDR

tempPoint = ("temp FDR" + str(pointFDR) +

str(pointFID) + ".shp")

tempPoint,
pointsCopy)

("SHAPERXY™))

"Point", pointsCopy,

arcpy-CreateFeatureclass_management(workSpace,

insertCursor =

newPoint = [(pointX new FDR1, pointY new FDR1)]

"SAME _AS TEMPLATE",

"SAME _AS TEMPLATE",

arcpy-da-InsertCursor(tempPoint,

insertCursor.insertRow(newPoint)

46

A\l

Y

#get land cover classification for new temp point
tempPoint 1lCover = (tempPoint.split("."))[0] +
" 1Cover.shp"
ExtractValuesToPoints(tempPoint, 1lCover,
tempPoint 1lCover, "NONE", "VALUE ONLY'™)
#access Land Cover Value in new temp point
searchCursor = arcpy.SearchCursor(tempPoint lCover)
for tempPoint In searchCursor:
1Value = tempPoint.RASTERVALU
print ' point 1Value = ', 1lValue
pointX new FDR1 = pointX new FDR1 + 90
pointY new FDR1 = pointY new FDRI

del tempPoint, insertCursor, newPoint,
tempPoint 1Cover, searchCursor

elif pointFDR == 2:
print ' point FDR = ', pointFDR
#create a temp point
tempPoint = ("temp FDR" + str(pointFDR) +
str(pointFID) + ".shp")
arcpy.CreateFeatureclass_management(workSpace,
tempPoint, "Point", pointsCopy, "SAME AS TEMPLATE'", "SAME AS TEMPLATE",
pointsCopy)
insertCursor = arcpy-da.InsertCursor(tempPoint,
("SHAPEEXY™))
newPoint = [(pointX new FDR2, pointY new FDR2)]
insertCursor.insertRow(newPoint)
#get land cover classification for new temp point
tempPoint 1lCover = (tempPoint.split("."))[0] +
" 1Cover.shp"
ExtractValuesToPoints(tempPoint, l1lCover,
tempPoint lCover, "NONE", "VALUE ONLY")
#access Land Cover Value in new temp point
searchCursor = arcpy.SearchCursor(tempPoint lCover)
for tempPoint in searchCursor:
1Value = tempPoint.RASTERVALU
print ' point 1Value = ', 1lValue
fcalculate X,Y for new point, projected to next cell
in direction of flow
pointX new FDR2 = pointX new FDR2 + 90
pointY new FDR2 = pointY new FDR2 - 90

del tempPoint, insertCursor, newPoint,
tempPoint 1Cover, searchCursor

elif pointFDR == 4:

print ' point FDR = ', pointFDR

#fcreate a temp point

tempPoint = ("temp FDR" + str(pointFDR) +
str(pointFID) + ".shp")

arcpy.CreateFeatureclass management(workSpace,
tempPoint, "Point", pointsCopy, "SAME AS TEMPLATE", "SAME AS TEMPLATE",
pointsCopy)

47

insertCursor = arcpy.da.InsertCursor(tempPoint,
("SHAPEEXY™))
newPoint = [(pointX new FDR4, pointY new FDR4)]
insertCursor.insertRow(newPoint)
#get land cover classification for new temp point
tempPoint 1lCover = (tempPoint.split("."))[0] +
" 1lCover.shp"
ExtractValuesToPoints(tempPoint, l1lCover,
tempPoint lCover, "NONE", "VALUE ONLY")
#access Land Cover Value in new temp point
searchCursor = arcpy.SearchCursor(tempPoint_lCover)
for tempPoint in searchCursor:
1lVvalue = tempPoint.RASTERVALU
print ' point 1Value = ', 1lValue
#calculate X,Y for new point, projected to next cell
in direction of flow

pointX new FDR4
pointY new FDR4

pointX new FDR4
pointY new FDR4 - 90

del tempPoint, insertCursor, newPoint,
tempPoint 1Cover, searchCursor

elif pointFDR == 8§:

print ' point FDR = ', pointFDR

#fcreate a temp point

tempPoint = ("temp FDR" + str(pointFDR) +
str(pointFID) + ".shp")

arcpy.CreateFeatureclass management(workSpace,
tempPoint, "Point", pointsCopy, "SAME AS TEMPLATE", "SAME AS TEMPLATE",
pointsCopy)

insertCursor = arcpy.da.InsertCursor(tempPoint,
("SHAPEEXY™))

newPoint = [(pointX new FDR8, pointY new FDR8)]

insertCursor.insertRow(newPoint)

#get land cover classification for new temp point

tempPoint 1lCover = (tempPoint.split("."))[0] +
" 1lCover.shp"

ExtractValuesToPoints(tempPoint, l1lCover,
tempPoint lCover, "NONE", "VALUE ONLY")

#access Land Cover Value in new temp point

searchCursor = arcpy.SearchCursor(tempPoint_lCover)

for tempPoint in searchCursor:

1Vvalue = tempPoint.RASTERVALU
print ' point 1Value = ', 1lValue

#calculate X,Y for new point, projected to next cell

in direction of flow

pointX new FDRS8
pointY new FDRS8

pointX new FDR8 - 90
pointY new FDR8 - 90

del tempPoint, insertCursor, newPoint,
tempPoint 1Cover, searchCursor

elif pointFDR == 16:

print ' point FDR = ', pointFDR
#fcreate a temp point

48

tempPoint = ("temp FDR" + str(pointFDR) +
str(pointFID) + ".shp")

arcpy.CreateFeatureclass management(workSpace,
tempPoint, "Point", pointsCopy, "SAME AS TEMPLATE", "SAME AS TEMPLATE",
pointsCopy)

insertCursor = arcpy.da.InsertCursor(tempPoint,
("SHAPEEXY™))

newPoint = [(pointX new FDR16, pointY new FDR16)]

insertCursor.insertRow(newPoint)

#get land cover classification for new temp point

tempPoint 1lCover = (tempPoint.split("."))[0] +
" 1lCover.shp"

ExtractValuesToPoints(tempPoint, 1lCover,
tempPoint lCover, "NONE", "VALUE ONLY")

#access Land Cover Value in new temp point

searchCursor = arcpy.SearchCursor(tempPoint_lCover)

for tempPoint in searchCursor:

1Vvalue = tempPoint.RASTERVALU
print ' point 1Value = ', 1lValue

#calculate X,Y for new point, projected to next cell
in direction of flow

pointX new FDR16 = pointX new FDR16 - 90

pointY new FDR16 = pointY new FDR16

del tempPoint, insertCursor, newPoint,
tempPoint 1Cover, searchCursor

elif pointFDR == 32:

print ' point FDR = ', pointFDR

#fcreate a temp point

tempPoint = ("temp FDR" + str(pointFDR) +
str(pointFID) + ".shp")

arcpy.CreateFeatureclass management(workSpace,
tempPoint, "Point", pointsCopy, "SAME AS TEMPLATE", "SAME AS TEMPLATE",
pointsCopy)

insertCursor = arcpy.da.InsertCursor(tempPoint,
("SHAPEEXY™))

newPoint = [(pointX new FDR32, pointY new FDR32)]

insertCursor.insertRow(newPoint)

#get land cover classification for new temp point

tempPoint 1lCover = (tempPoint.split("."))[0] +
" 1lCover.shp"

ExtractValuesToPoints(tempPoint, l1lCover,
tempPoint lCover, "NONE", "VALUE ONLY")

#access Land Cover Value in new temp point

searchCursor = arcpy.SearchCursor(tempPoint_lCover)

for tempPoint in searchCursor:

1Vvalue = tempPoint.RASTERVALU
print ' point 1Value = ', 1lValue

#calculate X,Y for new point, projected to next cell
in direction of flow

pointX new FDR32 = pointX new FDR32 - 90

pointY new FDR32 = pointY new FDR32 + 90

del tempPoint, insertCursor, newPoint,
tempPoint 1Cover, searchCursor

49

elif pointFDR == 64:
print ' point FDR = ', pointFDR
#create a temp point
tempPoint = ("temp FDR" + str(pointFDR) +
str(pointFID) + ".shp")
arcpy.CreateFeatureclass_management(workSpace,
tempPoint, "Point", pointsCopy, "SAME AS TEMPLATE", "SAME AS TEMPLATE",
pointsCopy)
insertCursor = arcpy-da.InsertCursor(tempPoint,
("SHAPEEXY™))
newPoint = [(pointX new FDR64, pointY new FDR64)]
insertCursor.insertRow(newPoint)
#get land cover classification for new temp point
tempPoint 1lCover = (tempPoint.split("."))[0] +
" 1Cover.shp"
ExtractValuesToPoints(tempPoint, l1lCover,
tempPoint lCover, "NONE", "VALUE ONLY")
#access Land Cover Value in new temp point
searchCursor = arcpy.SearchCursor(tempPoint lCover)
for tempPoint in searchCursor:
1lValue = tempPoint.RASTERVALU
print ' point 1Value = ', 1lValue
fcalculate X,Y for new point, projected to next cell
in direction of flow
pointX new FDR64 = pointX new FDR64
pointY new FDR64 = pointY new FDR64 + 90

del tempPoint, insertCursor, newPoint,
tempPoint 1Cover, searchCursor

elif pointFDR == 128:
print ' point FDR = ', pointFDR
#create a temp point
tempPoint = ("temp FDR" + str(pointFDR) +
str(pointFID) + ".shp")
arcpy.CreateFeatureclass_management(workSpace,
tempPoint, "Point", pointsCopy, "SAME AS TEMPLATE", "SAME AS TEMPLATE",
pointsCopy)
insertCursor = arcpy-da.InsertCursor(tempPoint,
("SHAPEEXY™))
newPoint = [(pointX new FDR128, pointY new FDR128)]
insertCursor.insertRow(newPoint)
#get land cover classification for new temp point
tempPoint 1lCover = (tempPoint.split("."))[0] +
" 1Cover.shp"
ExtractValuesToPoints(tempPoint, l1lCover,
tempPoint lCover, "NONE", "VALUE ONLY")
#access Land Cover Value in new temp point
searchCursor = arcpy.SearchCursor(tempPoint lCover)
for tempPoint in searchCursor:
1lValue = tempPoint.RASTERVALU
print ' point 1Value = ', 1lValue
#calculate X,Y for new point, projected to next cell
in direction of flow
pointX new FDR128 = pointX new FDR128 + 90

50

pointY new FDR128 = pointY new FDR128 + 90

del tempPoint, insertCursor, newPoint,
tempPoint 1Cover, searchCursor

point.setValue("LCValue", 1lValue)
pointCursor.updateRow(point)
point LCValue = lValue

__
__
if point LCValue == 0:
whileCondition = 0
__
__
else:
#select points by attrib with LCValue = Basin ID Value
where = ' LCValue = ' + "%s"WYPourPointID

pointsCopySelect=(points selection.split("."))[0] +
" LC Select.shp"
arcpy-Select analysis(pointsCopy, pointsCopySelect, where)

#spatial join with ice sub basins

arcpy.-SelectLayerByLocation management ("iceSubBasin lyr",
"INTERSECT", pointsCopySelect, "", "NEWisELECTION")

iceSubBasinSelect = (iceSubBasin.split('.'))[0] + ' SelectID’
+ PourPointID + '.shp'

arcpy.CopyFeatures management("iceSubBasin lyr",
iceSubBasinSelect)

#update row with Pour Point ID
arcpy.AddField management(pointsCopySelect, 'pourPoint',
"LONG', 9)
fields = ('pourPoint')
with arcpy.da.UpdateCursor(pointsCopySelect, fields) as
cursor:
for row In cursor:
row[0] = PourPointID int
cursor.updateRow(row)

#merge

basinsMerge = (basin.split('.'))[0]+ ' SelectID' +
PourPointID + ' merge.shp'

arcpy-Merge management([basin, iceSubBasinSelect],
basinsMerge)

#update row with Pour Point ID
fields = ('pourPoint")
with arcpy.da.UpdateCursor(basinsMerge, fields) as cursor:
for row In cursor:
row[0] = PourPointID int
cursor.updateRow(row)

#dissolve

o1

basinsDissolve = (basin.split('.'))[0]+ ' SelectID' +
PourPointID + ' merge dissolve.shp'

arcpy-Dissolve_management(basinsMerge,
basinsDissolve, "pourPoint™)

#elim

basinsElim = (basin.split('.'))[0]+ ' SelectID' + PourPointID
+ ' merge dissolve elim.shp'

arcpy-EliminatePolygonPart management(basinsDissolve,
basinsElim, 'AREA', 999999000, '','CONTAINED ONLY')

#reset basin check variable

basinCheck = basinsElim

else:

52

References:

Bamber, J.L. et al., 2013. Paleofluvial Mega-Canyon Beneath the Central Greenland Ice Sheet.
Science, 341(6149), pp.997-999.

Band, L.E. et al., 2000. Modelling Watersheds as Spatial Object Hierarchies: Structure and
Dynamics. Transactions in GIS, 4(3), pp.181-196. Available at:
http://dx.doi.org/10.1111/1467-9671.00048.

Band, L.E., 1986. Topographic Partition of Watersheds with Digital Elevation Models. Water
Resources Research, 22(1), pp.15-24. Available at:
http://dx.doi.org/10.1029/WR022i001p00015.

Banwell, A.F., Willis, I.C. & Arnold, N.S., 2013. Modeling subglacial water routing at
Paakitsoq, W Greenland. Journal of Geophysical Research, 118(3), pp.1282-1295.

Bjornsson, H., 1986. Delineation Of Glacier Drainage Basins On Western Vatnajokull. Annals of
Glaciology, 8, pp.19 - 21.

Collins, S.H., 1975. Terrain parameters directly from a digital terrain model. Canadian Surveyor,
91 pp-507_518.

Cuffey, K.M. & Paterson, W.S.B., 2010. The Physics of Glaciers 4th Editio.,

Hasholt, B. et al., 2013. Observations of Runoff and Sediment and Dissolved Loads from the
Greenland Ice Sheet at Kangerlussuag, West Greenland, 2007 to 2010. Zeitschrift fiir
Geomorphologie, Supplementary Issues, 57(2), pp.3-27.

Howat, .M., Negrete, A. & Smith, B.E., 2014. The Greenland Ice Mapping Project (GIMP) land
classification and surface elevation datasets. The Cryosphere.

Jenson, S.K. & Domingue, J.O., 1988. Extracting Topographic Structure from Digital Elevation
Data for Geographic Information System Analysis. Photogrammetric Engineering &
Remote Sensing, 54(11), pp.1593-1600.

Lewis, S.M. & Smith, L.C., 2009. Hydrologic drainage of the Greenland Ice Sheet. Hydrological
Processes, 23(14), pp.2004 — 2011.

Mark, D.M., 1984. Part 4: Mathematical, Algorithmic and Data Structure Issues: Automated
Detection Of Drainage Networks From Digital Elevation Models. Cartographica: The
International Journal for Geographic Information and Geovisualization, 21(2), pp.168-
178. Available at: http://dx.doi.org/10.3138/10LM-4435-6310-251R.

Marks, D., Dozier, J. & Frew, J., 1983. Automated Basin Delineation from Digital Terrain Data.
NASA Technical Memorandum.
53

Mernild, S.H. & Hasholt, B., 2009. Observed runoff, jokulhlaups and suspended sediment load
from the Greenland ice sheet at Kangerlussuaq, West Greenland, 2007 and 2008. Journal of
Glaciology, 55(193), pp.855-858.

Mernild, S.H. & Liston, G.E., 2012. Greenland freshwater runoff. part ii: distribution and trends,
1960-2010. Journal of Climate, 25(17), pp.6015-6035.

Moore, G.K. et al., 1983. Application of digital mapping technology to the display of hydrologic
information; a proof-of-concept test in the Fox-Wolf River Basin, Wisconsin,

Morlighem, M. et al., 2011. A mass conservation approach for mapping glacier ice thickness.
Geophysical Research Letters, 38(19). Available at:
http://dx.doi.org/10.1029/2011GL.048659.

Morlighem, M. et al., 2014. Deeply incised submarine glacial valleys beneath the Greenland ice
sheet. Nature Geoscience. Available at: http://dx.doi.org/10.1038/nge02167.

Morlighem, M. et al., 2015. IceBridge BedMachine Greenland, bed, surface, thickness, mask.
Boulder, Colorado USA: NASA DAAC at the National Snow and Ice Data Center. Available
at: http://nsidc.org/data/docs/daac/icebridge/idbmg4/index.html.

Morse, S.P., 1968. A Mathematical Model for the Analysis of Contour-Line Data. Journal of the
ACM, 15(2), pp.205-220. Available at: http://doi.acm.org/10.1145/321450.321454.

O’Callaghan, J.F. & Mark, D.M., 1984. The extraction of drainage networks from digital
elevation data. Computer Vision, Graphics, and Image Processing, 28(3), pp.323-344.
Available at: http://www.sciencedirect.com/science/article/pii/S0734189X84800110
[Accessed March 3, 2015].

Paterson, W.S.B., 1993. The Physics of of Glaciers 2nd Editio., Elsevier Science Ltd.

Peucker, T.K. & Douglas, D.H., 1975. Detection of Surface-Specific Points by Local Parallel
Processing of Discrete Terrain Elevation Data. Computer Graphics and Image Processing,
4(4), pp.375-387. Available at:
http://www.sciencedirect.com/science/article/pii/0146664X75900052.

Rennermalm, A.K. et al., 2012a. Proglacial river dataset from the Akuliarusiarsuup Kuua River
northern tributary, Southwest Greenland, 2008 - 2010, version 1.0. PANGEA.

Rennermalm, A.K. et al., 2012b. Proglacial river dataset from the Akuliarusiarsuup Kuua River
northern tributary, Southwest Greenland, 2008 - 2010. Earth System Science Data, 4(1),
pp.1-12.

Rennermalm, A.K. et al., 2014. Proglacial river dataset from the Akuliarusiarsuup Kuua River
northern tributary, Southwest Greenland, 2008 - 2013, version 2.0. PANGEA.

54

Rennermalm, A.K. et al., 2013. Understanding Greenland ice sheet hydrology using an
integrated multi-scale approach. Environmental Research Letters, 8, p.14pp.

Rippin, D. et al., 2003. Changes in geometry and subglacial drainage of Midre Lovénbreen,
Svalbard, determined from digital elevation models. Earth Surface Processes and
Landforms, 28(3), pp.273-298.

Shreve, R.L., 1972. Movement of water in glaciers. Journal of Glaciology, 11(62), pp.205-214.

Smith, L.C. et al., 2015. Efficient meltwater drainage through supraglacial streams and rivers on
the southwest Greenland Ice Sheet. Proceedings of the National Academy of Sciences.

Tarboton, D.G., Bras, R.L. & Rodriguez-Iturbe, 1., 1991. On the extraction of channel networks
from digital elevation data. Hydrological Processes, 5(1), pp.81-100. Available at:
http://dx.doi.org/10.1002/hyp.3360050107.

Wilson, J.P., Lam, C.S. & Deng, Y., 2007. Comparison of the performance of flow-routing
algorithms used in GIS-based hydrologic analysis. Hydrological Processes, 21(8).

55

