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Quantile correlations and quantile autoregressive

modeling

Guodong Li, Yang Li and Chih-Ling Tsai ∗

Abstract

In this paper, we propose two important measures, quantile correlation (QCOR)

and quantile partial correlation (QPCOR). We then apply them to quantile au-

toregressive (QAR) models, and introduce two valuable quantities, the quantile

autocorrelation function (QACF) and the quantile partial autocorrelation function

(QPACF). This allows us to extend the Box-Jenkins three-stage procedure (model

identification, model parameter estimation, and model diagnostic checking) from

classical autoregressive models to quantile autoregressive models. Specifically, the

QPACF of an observed time series can be employed to identify the autoregressive

order, while the QACF of residuals obtained from the fitted model can be used to

assess the model adequacy. We not only demonstrate the asymptotic properties of

QCOR and QPCOR, but also show the large sample results of QACF, QPACF and

the quantile version of the Box-Pierce test. Moreover, we obtain the bootstrap ap-

proximations to the distributions of parameter estimators and proposed measures.

Simulation studies indicate that the proposed methods perform well in finite samples,

and an empirical example is presented to illustrate usefulness.

Keywords and phrases: Autocorrelation function; Bootstrap method; Box-Jenkins method;

Quantile correlation; Quantile partial correlation; Quantile autoregressive model
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1 Introduction

In the last decade, quantile regression has attracted considerable attention. There are two

major reasons for such popularity. The first is that quantile regression estimation (Koenker

and Bassett, 1978) can be robust to non-Gaussian or heavy-tailed data, and it includes the

commonly used least absolute deviation (LAD) method as a special case. The second is

that the quantile regression model allows practitioners to provide more easily interpretable

regression estimates obtained via quantiles τ ∈ (0, 1). More references about quantile

regression estimation and interpretation can be found in the seminal book of Koenker

(2005). Further extensions of quantile regression to various model and data structures

can be found in the literature, e.g., Machado and Silva (2005) for count data, Mu and He

(2007) for power transformed data, Peng and Huang (2008) and Wang and Wang (2009)

for survival analysis, He and Liang (2000) and Wei and Carroll (2009) for regression with

measurement error, Ando and Tsay (2011) for regression with augmented factors, and Kai

et al. (2011) for semiparametric varying-coefficient partially linear models, among others.

In addition to the regression context, the quantile technique has been employed to the

field of time series; see, for example, Koul and Saleh (1995) and Cai et al. (2012) for au-

toregressive (AR) models, Ling and McAleer (2004) for unstable AR models, and Xiao and

Koenker (2009) for generalized autoregressive conditional heteroscedastic (GARCH) mod-

els. In particular, Koenker and Xiao (2006) established important statistical properties for

quantile autoregressive (QAR) models, which expanded the classical AR model into a new

era. In AR models, Box and Jenkins’ (2008) three-stage procedure (i.e., model identifica-

tion, model parameter estimation, and model diagnostic checking) has been commonly used

for the last forty years. This motivates us to extend the classical Box-Jenkins’ approach

from AR to QAR models. In the classical AR model, it is known that model identification

usually relies on the partial autocorrelation function (PACF) of the observed time series,

while model diagnosis commonly depends on the autocorrelation function (ACF) of model

residuals. Detailed illustrations of model identification and diagnosis can be found in Box

et al. (2008). The aim of this paper is to introduce two novel measures to examine the lin-

ear and partially linear relationships between any two random variables for a given quantile

τ ∈ (0, 1). We name them quantile correlation (QCOR) and quantile partial correlation
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(QPCOR). Based on these two measures, we propose the quantile partial autocorrelation

function (QPACF) and the quantile autocorrelation function (QACF) to identify the order

of the QAR model and to assess model adequacy, respectively. We also employ the boot-

strap approach to study the performance of QPACF and QACF. It is noteworthy that the

application of QCOR and QPCOR is not limited to QAR models. They can be used as

broadly as the classical correlation and partial correlation measures in various contexts.

The rest of this article is organized as follows. Section 2 introduces QCOR and QPCOR.

Furthermore, the asymptotic properties of their sample estimators are established. In

Section 3, QPACF and its large sample property for identifying the order of QAR models

are demonstrated. Subsequently, QACF and its resulting test statistics, together with

their asymptotic properties, are provided to examine the model adequacy. The properties

of QPACF and QACF, in conjunction with Koenker and Xiao’s (2006) estimation results,

lead us to propose a modified three-stage procedure for QAR models. Moreover, bootstrap

approximations to the distributions of parameter estimators, the QPACF measure, and the

QACF measure are studied. Section 4 conducts simulation experiments to assess the finite

sample performance of the proposed methods, and Section 5 presents an empirical example

to demonstrate their usefulness. Finally, we conclude the article with a brief discussion in

Section 6. All technical proofs of lemmas and theorems are relegated to the Appendix.

2 Correlations

2.1 Quantile correlation and quantile partial correlation

For random variables X and Y , let Qτ,Y be the τth unconditional quantile of Y and

Qτ,Y (X) be the τth quantile of Y conditional on X. One can show that Qτ,Y (X) is

independent of X, i.e., Qτ,Y (X) = Qτ,Y with probability one, if and only if the random

variables I(Y − Qτ,Y > 0) and X are independent, where I(·) is the indicator function.

This fact has been used by He and Zhu (2003) and Mu and He (2007), and it also motivates

us to define the quantile covariance given below. For 0 < τ < 1, define

qcovτ{Y,X} = cov{I(Y −Qτ,Y > 0), X} = E{ψτ (Y −Qτ,Y )(X − EX)},
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where the function ψτ (w) = τ−I(w < 0). Note that qcovτ{Y,X} = −cov{FY |X(Qτ,Y ), X},

where FY |X(·) is the cumulative distribution of Y conditional on X. Subsequently, the

quantile correlation can be defined as follows,

qcorτ{Y,X} =
qcovτ{Y,X}√

var{ψτ (Y −Qτ,Y )}var(X)
=
E{ψτ (Y −Qτ,Y )(X − EX)}√

(τ − τ 2)σ2
X

, (2.1)

where σ2
X = var(X). Accordingly, −1 ≤ qcorτ{Y,X} ≤ 1.

In the simple linear regression with the quadratic loss function, there is a nice rela-

tionship between the slope and correlation. Hence, it is of interest to find a connection

between the quantile slope and qcorτ{Y,X}. To this end, consider a simple quantile linear

regression,

(a0, b0) = argmin
a,b

E[ρτ (Y − a− bX)],

in which one attempts to approximate Qτ,Y (X) by a linear function a0+b0X (see Koenker,

2005), where ρτ (w) = w[τ − I(w < 0)], a0 = Qτ,Y−b0X and b0 is the quantile slope. Let

ε = Y − a0 − b0X, and we then obtain the relationship between b0 and qcovτ{Y,X} given

below.

Lemma 1. Suppose that random variables X and ε have a joint density and EX2 < ∞.

Then, qcovτ{Y,X} = qcovτ{b0X + ε,X} = ϱ(b0), where ϱ(b) = E[ψτ (ε−Qτ,ε+bX + bX)X]

is a continuous and increasing function. In addition, ϱ(b) = 0 if and only if b = 0.

From the above lemma, qcovτ{Y,X} is a rescaled version of the quantile slope b0 via

the function ϱ(·), and the slope b0 = 0 if and only if qcovτ{Y,X} = 0. In addition,

the relationship between qcorτ{Y,X} and quantile slope can be obtained from Lemma

1 straightforwardly. Moreover, it implies that the quantile correlation increases with the

quantile slope. As the classical correlation coefficient, qcorτ{Y,X} lies between −1 to 1

and it is a unit-free measure. However, the range of quantile slope is not bounded. Hence,

it is natural to employ the quantile correlation rather than the slope to rank the significance

of predictors on the quantile of Y .

It is noteworthy that the proposed quantile covariance here does not enjoy the symmetry

property of the classical covariance, i.e., qcovτ (Y,X) ̸= qcovτ (X, Y ). This is because

the first argument of the quantile covariance or the quantile correlation is related to the
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τth quantile, while the second argument is the same as that of the classical covariance.

Accordingly, qcorτ (Y,X) ̸= qcorτ (X, Y ). It is also of interest to find that Blomqvist

(1950) introduced a measure to study the dependence between two random variables,

which has the form of cov{I(Y > Q0.5,Y ), I(X > Q0.5,X)}. He further linked his measure

to the Kendall’s rank correlation (see also Cox and Hinkley, 1974, p.204). Under specific

conditions with τ = 0.5, we can find the relationship between Blomqvist’s measure and

our proposed measure. In other words, let random variables X and Y be standardized

so that Q0.5,X = Q0.5,Y = 0 and E|X| = 1. Moreover, assume that |X| is independent

of sgn(X) and sgn(Y ), where sgn(w) is the sign of w. We then have qcov0.5{Y,X} =

0.5cov{sgn(Y ), sgn(X)|X|} = 2cov{I(Y > 0), I(X > 0)}. It is of interest to note that, for

daily return series in financial markets, the independence of |X| and sgn(X) is a stylized

fact (Ryden et al., 1998).

Suppose that a quantile linear regression model has the response Y , a q × 1 vector of

covariates Z, and an additional covariate X. In the classical regression model, one can

construct the partial correlation to measure the linear relationship between variables Y and

X after adjusting for (or controlling for) vector Z (e.g., see Chatterjee and Hadi, 2006).

This motivates us to propose the quantile partial correlation function. To this end, let

(α1, β
′
1) = argmin

α,β
E(X − α− β′Z)2,

where (α, β′)′ is a vector of unknown parameters. Accordingly, α1+β
′
1Z is the linear effect

of Z on X. Next, consider

(α2, β
′
2) = argmin

α,β
E[ρτ (Y − α− β′Z)].

As a result, α2 + β′
2Z is the linear effect of Z on the τth quantile of Y (i.e., the linear

approximation of Qτ,Y (Z)). It can also be shown that E(X − α1 − β′
1Z) = 0, E[ψτ (Y −

α2 − β′
2Z)] = 0, E[Zψτ (Y −α2 − β′

2Z)] = 0, and the values of α1, β1, α2 and β2 are unique

if the random vector (Y,X,Z′)′ has a joint density with EX2 <∞ and E∥Z∥2 <∞, where

0 is a q × 1 vector with all elements being zero. Using these facts, we define the quantile
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partial correlation as follows,

qpcorτ{Y,X|Z} =
cov{ψτ (Y − α2 − β′

2Z), X − α1 − β′
1Z}√

var{ψτ (Y − α2 − β′
2Z)}var{X − α1 − β′

1Z}

=
E[ψτ (Y − α2 − β′

2Z)(X − α1 − β′
1Z)]√

(τ − τ 2)E(X − α1 − β′
1Z)

2

=
E[ψτ (Y − α2 − β′

2Z)X]√
(τ − τ 2)σ2

X|Z

, (2.2)

where σ2
X|Z = E(X − α1 − β′

1Z)
2. By treating Y − α2 − β′

2Z as a new response variable

and X as a covariate, we can then apply Lemma 1 to obtain the relationship between the

resulting quantile regression slope and qpcorτ{Y,X|Z}.

2.2 Sample quantile correlation and sample quantile partial cor-

relation

Suppose that the data {(Yi, Xi,Z
′
i)
′, i = 1, ..., n} are identically and independently gener-

ated from a distribution of (Y,X,Z′)′. Let Q̂τ,Y = inf{y : Fn(y) ≥ τ} be the sample τth

quantile of Y1, ..., Yn, where Fn(y) = n−1
∑n

i=1 I(Yi ≤ y) is the empirical distribution func-

tion. Based on equation (2.1), the sample estimate of the quantile correlation qcorτ{Y,X}

is defined as

q̂corτ{Y,X} =
1√

(τ − τ 2)σ̂2
X

· 1
n

n∑
i=1

ψτ (Yi − Q̂τ,Y )(Xi − X̄), (2.3)

where X̄ = n−1
∑n

i=1Xi and σ̂
2
X = n−1

∑n
i=1(Xi − X̄)2.

To study the asymptotic property of q̂corτ{Y,X}, denote fY (·) and fY |X(·) as the

density of Y and the conditional density of Y given X, respectively. In addition, let

µX = E(X), µX|Y = E[fY |X(Qτ,Y )X]/fY (Qτ,Y ), Σ11 = E(X − µX)
4 − σ4

X ,

Σ12 = E[ψτ (Y −Qτ,Y )(X − µX|Y )]
2 − [qcovτ{Y,X}]2,

Σ13 = E[ψτ (Y −Qτ,Y )(X − µX|Y )(X − µX)
2]− σ2

X · qcovτ{Y,X},

and

Ω1 =
1

τ − τ 2

[
Σ11(qcovτ{Y,X})2

4σ6
X

− Σ13 · qcovτ{Y,X}
σ4
X

+
Σ12

σ2
X

]
,

where σ2
X is defined as in the previous subsection. Then, we obtain the following result.
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Theorem 1. Suppose that E(X4) < ∞, there exists a π > 0 such that the conditional

density fY |X(·) is uniformly integrable on [Qτ,Y − π,Qτ,Y + π], and the density fY (·) is

continuous and positive. Then
√
n (q̂corτ{Y,X} − qcorτ{Y,X}) →d N(0,Ω1).

To apply the above theorem, one needs to estimate the asymptotic variance Ω1. To this

end, we employ a nonparametric approach, such as the Nadaraya-Watson regression, to

estimate the function m(y) = E(X|Y = y), and denote the estimator by m̂(y). We further

assume that the random vector (X, Y ) has a joint density, and then it can be shown that

µX|Y = E(X|Y = Qτ,Y ). Accordingly, we obtain the estimate, µ̂X|Y = m̂(Q̂τ,Y ), where Q̂τ,Y

is the τth sample quantile of {Y1, ..., Yn}. Finally, the rest of the quantities contained in Ω1,

including µX , σ
2
X , qcovτ{Y,X}, Σ11, Σ12, and Σ13, can be, respectively, estimated by µ̂X =

X̄ = n−1
∑n

i=1Xi, σ̂
2
X = n−1

∑n
i=1(Xi− µ̂X)

2, q̂covτ{Y,X} = n−1
∑n

i=1 ψτ (Yi− Q̂τ,Y )(Xi−

X̄), Σ̂11 = n−1
∑n

i=1(Xi − µ̂X)
4 − σ̂4

X , Σ̂12 = n−1
∑n

i=1[ψτ (Yi − Q̂τ,Y )(Xi − µ̂X|Y )]
2 −

[q̂covτ{Y,X}]2, and Σ̂13 = n−1
∑n

i=1 ψτ (Yi−Q̂τ,Y )(Xi− µ̂X|Y )(Xi− µ̂X)
2− σ̂2

X q̂covτ{Y,X}.

As a result, we obtain an estimate of Ω1, and denote it by Ω̂1.

We next estimate the quantile partial correlation qpcorτ{Y,X}. Let

(α̂1, β̂
′
1) = argmin

α,β

n∑
i=1

(Xi−α−β′Zi)
2 and (α̂2, β̂

′
2) = argmin

α,β

n∑
i=1

ρτ (Yi−α−β′Zi).

Based on equation (2.2), the sample quantile partial correlation is defined as

q̂pcorτ{Y,X|Z} =
1√

(τ − τ 2)σ̂2
X|Z

· 1
n

n∑
i=1

ψτ (Yi − α̂2 − β̂′
2Zi)Xi, (2.4)

where σ̂2
X|Z = n−1

∑n
i=1(Xi − α̂1 − β̂′

1Zi)
2.

To investigate the asymptotic property of q̂pcorτ{Y,X|Z}, denote the conditional

density of Y given Z and the conditional density of Y given Z and X by fY |Z(·) and

fY |Z,X(·), respectively. In addition, let θ1 = (α1, β
′
1)

′, θ2 = (α2, β
′
2)

′, Z∗ = (1,Z′)′, Σ21 =

E[fY |Z,X(θ
′
2Z

∗)XZ∗], Σ22 = E[fY |Z(θ
′
2Z

∗)Z∗Z∗′], Σ20 = Σ′
21Σ

−1
22 , Σ23 = E(X−θ′1Z∗)4−σ4

X|Z,

Σ24 = E[ψτ (Y − θ2Z
∗)(X − Σ20Z

∗)]2 − {E[ψτ (Y − θ′2Z
∗)X]}2,

Σ25 = E[ψτ (Y − θ2Z
∗)(X − Σ20Z

∗)(X − θ′1Z
∗)2]− σ2

X|Z · E[ψτ (Y − θ′2Z
∗)X],

and

Ω2 =
1

τ − τ 2

[
Σ23(E[ψτ (Y − θ′2Z

∗)X])2

4σ6
X|Z

− Σ25 · E[ψτ (Y − θ′2Z
∗)X]

σ4
X|Z

+
Σ24

σ2
X|Z

]
,
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where α1, β1, α2, β2 and σ2
X|Z are defined as in the previous subsection. Then, we have

the following result.

Theorem 2. Suppose that Σ21 and Σ22 are finite, EX4 < ∞, E∥Z∥4 < ∞, Σ22 and

E(Z∗Z∗′) are positive definite matrices, and there exists a π > 0 such that fY |Z(θ
′
2Z

∗ +

·) and fY |Z,X(θ
′
2Z

∗ + ·) are uniformly integrable on [−π, π]. Then
√
n[q̂pcorτ{Y,X|Z} −

qpcorτ{Y,X|Z}] →d N(0,Ω2).

Let e∗ = Y −θ′2Z∗, and assume that the random vector (e∗, X,Z′)′ has the joint density

fe∗,Z,X(·, ·, ·). Denote the marginal density of e∗ and the conditional density of e∗ given Z

and X by fe∗(·) and fe∗|Z,X(·), respectively. It can be verified that

Σ21 = E[fe∗|Z,X(0)XZ∗] =

∫ ∫
fe∗,Z,X(0, z, x)xz

∗dxdz

= fe∗(0)

∫ ∫
fe∗,Z,X(0, z, x)

fe∗(0)
xz∗dxdz = fe∗(0) · E[XZ∗|e∗ = 0],

Σ22 = fe∗(0) · E[Z∗Z∗′|e∗ = 0], and Σ20 = E[XZ∗′|e∗ = 0]{E[Z∗Z∗′|e∗ = 0]}−1, where z∗ =

(1, z′)′. Hence, the conditional densities fY |Z(·) and fY |Z,X(·) can be replaced by conditional

expectations on one random variable e∗ only. To obtain the estimate of Σ20, we first calcu-

late the quantile regression estimate, θ̂2 = (α̂2, β̂
′
2)

′, and then compute its resulting quantile

residuals, ê∗i = Yi−θ̂′2Z∗
i for i = 1, ..., n. Applying the same nonparametric technique as that

used for estimating µX|Y in Theorem 1, for any given e∗ = e∗g, we can estimate each of the

vector and matrix components in m1(e
∗
g) = E[XZ∗|e∗ = e∗g] and m2(e

∗
g) = E[Z∗Z∗′|e∗ =

e∗g], respectively, from the data {(ê∗i , Xi,Z
′
i) = (Yi − θ̂′2Z

∗
i , Xi,Z

′
i), i = 1, ..., n}. This yields

the estimate m̂′
1(e

∗
g)[m̂2(e

∗
g)]

−1. Accordingly, we have Σ̂20 = Σ̂′
21Σ̂

−1
22 = m̂′

1(0)[m̂2(0)]
−1.

Under some regularity conditions, we can show that Σ̂20 is a consistent estimator of Σ20.

Subsequently, the rest of the quantities involved in Ω2, namely σ2
X|Z, qcovτ{e∗, X},

Σ23, Σ24, and Σ25, can be, respectively, estimated by σ̂2
X|Z = n−1

∑n
i=1(Xi − α̂1 − β̂′

1Zi)
2,

q̂covτ{e∗, X} = n−1
∑n

i=1 ψτ (Yi − θ̂′2Z
∗
i )Xi, Σ̂23 = n−1

∑n
i=1(Xi − θ̂′1Z

∗
i )

4 − σ̂4
X|Z, Σ̂24 =

n−1
∑n

i=1[ψτ (Yi − θ̂2Z
∗
i )(Xi − Σ̂20Z

∗
i )]

2 − [q̂covτ{e∗, X}]2, and Σ̂25 = n−1
∑n

i=1 ψτ (Yi −

θ̂2Z
∗
i )(Xi− Σ̂20Z

∗
i )(Xi− θ̂′1Z∗

i )
2− σ̂2

X|Z · q̂covτ{e∗, X}. Consequently, we obtain the estimate

of Ω2, and denote it by Ω̂2. We next apply the quantile correlation and quantile partial

correlation to quantile autoregressive models.
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3 Quantile autoregressive analysis

Suppose that {yt} is a strictly stationary and ergodic time series, and Ft is the σ-field

generated by {yt, yt−1, ...}. We then follow the approach of Koenker and Xiao (2006) to

define QAR models; i.e., conditional on Ft−1, the τth quantile of yt has the form

Qτ (yt|Ft−1) = ϕ0(τ) + ϕ1(τ)yt−1 + · · ·+ ϕp(τ)yt−p for 0 < τ < 1, (3.1)

where the ϕi(·)s are unknown functions mapping from [0, 1] → R. Note that the right-

hand side of (3.1) is monotonically increasing in τ . Let {ut} be i.i.d. Uniform(0, 1) random

variables, and then model (3.1) can be rewritten as

yt = ϕ0(ut) + ϕ1(ut)yt−1 + · · ·+ ϕp(ut)yt−p.

For simplicity, the QAR model in this paper refers to equation (3.1) with a strictly sta-

tionary and ergodic time series {yt}.

For this QAR model, Koenker and Xiao (2006) derived the asymptotic distributions

of the estimators of the ϕi(·)s. Hence, this section mainly introduces the QPACF of a

time series to identify the order of a QAR model, and then uses the QACF of residuals to

assess the adequacy of the fitted model. To present the theoretical results of the proposed

correlation measures given in this section, let⇒ denote weak convergence onD, whereD =

D[0, 1] is the space of functions on [0, 1] endowed with the Skorohod topology (Billingsley,

1999).

3.1 The QPACF of time series

For the positive integer k, let zt,k−1 = (yt−1, ..., yt−k+1)
′, (α1, β

′
1) = argminα,β E(yt−k − α−

β′zt,k−1)
2, and (α2,τ , β

′
2,τ ) = argminα,β E[ρτ (yt − α− β′zt,k−1)], where the notation (α1, β

′
1)

is a slight abuse since they have been used to denote the regression parameters in Section

2, and the notation (α2,τ , β
′
2,τ ) is to emphasize its dependence on τ . From equation (2.2),

we obtain the quantile partial correlation between yt and yt−k after adjusting for the linear

effect of zt,k−1,

ϕkk,τ = qpcorτ{yt, yt−k|zt,k−1} =
E[ψτ (yt − α2,τ − β′

2,τzt,k−1)yt−k]√
(τ − τ 2)E(yt−k − α1 − β′

1zt,k−1)2
,

9



and it is independent of the time index t due to the strict stationarity of {yt}. Analogously

to the definition of the classical PACF (Fan and Yao, 2003, Chapter 2), we name ϕkk,τ the

QPACF of the time series {yt}. It is also noteworthy that ϕ11,τ = qcorτ{yt, yt−1}. We next

show the cut-off property of QPACF.

Lemma 2. Suppose that yt has a conditional density on the σ-field Ft−1 and Ey2t < ∞.

If ϕp(τ) ̸= 0 with p > 0, then ϕpp,τ ̸= 0 and ϕkk,τ = 0 for k > p.

The above lemma indicates that the proposed QPACF plays the same role as that of

the PACF in the classical AR model identification. Furthermore, define the conditional

quantile error,

et,τ = yt − ϕ0(τ)− ϕ1(τ)yt−1 − · · · − ϕp(τ)yt−p. (3.2)

By (3.1), the random variable I(et,τ > 0) is independent of yt−k for any k > 0, and

(α2,τ , β
′
2,τ ) = (ϕ0(τ), ϕ1(τ), ..., ϕp(τ), 0, ..., 0) for k > p.

In practice, one needs the sample estimate of QPACF. To this end, let

(α̃1, β̃
′
1) = argmin

α,β

n∑
t=k+1

(yt−k−α−β′zt,k−1)
2, (α̃2,τ , β̃

′
2,τ ) = argmin

α,β

n∑
t=k+1

ρτ (yt−α−β′zt,k−1),

and σ̃2
y|z = n−1

∑n
t=k+1(yt−k− α̃1− β̃′

1zt,k−1)
2. According to (2.4), we obtain the estimation

for ϕkk,τ ,

ϕ̃kk,τ =
1√

(τ − τ 2)σ̃2
y|z

· 1
n

n∑
t=k+1

ψτ (yt − α̃2,τ − β̃′
2,τzt,k−1)yt−k,

and we name it the sample QPACF of the time series.

To study the asymptotic property of ϕ̃kk,τ , we introduce the following assumption,

which is similar to Condition A.3 in Koenker and Xiao (2006).

Assumption 1. Ey2t <∞, E[yt−E(yt|Ft−1)]
2 > 0, and ft−1(·) is uniformly integrable on

U , where ft−1(·) is the conditional density of et,τ on the σ-field Ft−1, U = {u : 0 < F (u) <

1} and F (·) is the marginal distribution of et,τ .

Let z∗t,k−1 = (1, z′t,k−1)
′ = (1, yt−1, ..., yt−k+1)

′. Moreover, let A0 = E[yt−kz
∗
t,k−1],

A1(τ) = E[ft−1(0)yt−kz
∗
t,k−1], Σ30 = E[z∗t,k−1z

∗′
t,k−1], Σ31(τ) = E[ft−1(0)z

∗
t,k−1z

∗′
t,k−1],

Σ32(τ1, τ2) = E(y2t )−A′
1(τ1)Σ

−1
31 (τ1)A0−A′

1(τ2)Σ
−1
31 (τ2)A0+A

′
1(τ1)Σ

−1
31 (τ1)Σ30Σ

−1
31 (τ2)A1(τ2),

10



and

Ω3(τ1, τ2) =
E[ψτ1(et,τ1)ψτ2(et,τ2)]Σ32(τ1, τ2)√

(τ1 − τ 21 )(τ2 − τ 22 )E(yt−k − α1 − β′
1zt,k−1)2

.

Then, we obtain the asymptotic result given below.

Theorem 3. Suppose that, for each τ ∈ I, A1(τ) and Σ31(τ) are finite, and Σ31(τ) is a

positive definite matrix, where I ⊂ (0, 1) is a closed interval. If Assumption 1 is satisfied

and k > p, then
√
nϕ̃kk,τ ⇒ B1(τ) for all τ ∈ I, where B1(τ) is a Gaussian process with

mean zero and covariance kernel Ω3(τ1, τ2) = E[B1(τ1)B1(τ2)] for τ1, τ2 ∈ I.

When the conditional quantile errors {et,τ} are i.i.d., the random variable et,τ −E(et,τ )

can be shown to be independent of τ , so we define et = et,τ − E(et,τ ) for simplicity. Note

that et,τ = et − Qτ,et with E(et) = 0. Accordingly, ft−1(0) = f(Qτ,et) and Σ31(τ) =

E[ft−1(0)z
∗
t,k−1z

∗′
t,k−1] = f(Qτ,et)E[z

∗
t,k−1z

∗′
t,k−1], where f(·) is the density function of et. By

the condition that Σ31(τ) is a positive definite matrix, we have that f(Qτ,et) > 0 for all

τ ∈ I. In addition, the finite matrix assumption of Σ31(τ) leads to f(Qτ,et) < ∞ for all

τ ∈ I. As a result, 0 < ft−1(0) <∞.

For a given τ ∈ I,
√
nϕ̃kk,τ →d N{0,Ω3(τ, τ)}. To estimate the asymptotic variance, we

first apply the Hendricks and Koenker (1992) method to obtain the estimation of ft−1(0)

given below

f̃t−1(0) =
2h

Q̃τ+h(yt|Ft−1)− Q̃τ−h(yt|Ft−1)
,

where Q̃τ (yt|Ft−1) = ϕ̃0(τ) + ϕ̃1(τ)yt−1 + · · · + ϕ̃k(τ)yt−k is the estimated τth quantile of

yt and h is the bandwidth selected via appropriate methods (e.g., see Koenker and Xiao,

2006). Afterwards, we can use sample averaging to approximate A0, A1(τ), Σ30, Σ31(τ),

E(y2t ), and E(yt−k − α1 − β′
1zt,k−1)

2 by replacing ft−1(0), α1, and β1 in those quantities,

respectively, with f̃t−1(0), α̃1 and β̃1. Accordingly, we obtain an estimate of Ω3(τ, τ), and

denote it Ω̂3. In sum, we are able to use the threshold values ±1.96

√
Ω̂3/n to check the

significance of ϕ̃kk,τ . To demonstrate how to use the above theorem to identify the order of

a QAR model, we generate the observations y1, ..., y200 from yt = Φ−1(ut)+a(ut)yt−1, where

Φ is the standard normal cumulative distribution function, a(x) = max{0.8−1.6x, 0}, and

{ut} is an i.i.d sequence with uniform distribution on [0, 1]. We attempt to fit the QAR

11



model (3.1) with τ = 0.2, 0.4, 0.6, and 0.8, respectively, to the observed data {yt}. Figure

1 presents the sample QPACF ϕ̃kk,τ for each τ with the reference lines ±1.96

√
Ω̂3/n. We

may conclude that the order p is 1 when τ = 0.2 and 0.4, while p is 0 when τ = 0.6 and

0.8.

3.2 Parameter estimation and the QACF of residuals

From the results of QPACF in the previous subsection, the order p of model (3.1) can be

identified, and we then assume it is known a priori. We subsequently fit the data with the

QAR(p) model to obtain parameter estimates and their asymptotic properties. Let ϕ =

(ϕ0, ϕ1, ..., ϕp)
′ be the parameter vector in model (3.1) and ϕ(τ) = (ϕ0(τ), ϕ1(τ), ..., ϕp(τ))

′

be the true value of ϕ. It is noteworthy that (α2,τ , β
′
2,τ )

′ defined in Subsection 3.1 is ϕ(τ)

when k = p. Consider

ϕ̃(τ) = argmin
ϕ

n∑
t=p+1

ρτ (yt − ϕ′z∗t,p),

where z∗t,p = (1, z′t,p)
′ = (1, yt−1, ..., yt−p)

′. In addition, let Σ40 = E[z∗t,pz
∗′
t,p], Σ41(τ) =

E[ft−1(0)z
∗
t,pz

∗′
t,p], and Ω4(τ1, τ2) =

√
(τ1 − τ 21 )(τ2 − τ 22 )Σ

−1
41 (τ1)Σ40Σ

−1
41 (τ2). Suppose that,

for each τ ∈ I, Σ41(τ) is a finite and positive definite matrix, and Assumption 1 is satisfied.

By Theorem 2 in Koenker and Xiao (2006), we obtain that

√
n{ϕ̃(τ)− ϕ(τ)} ⇒ B2(τ) for all τ ∈ I, (3.3)

where B2(τ) is a Gaussian process with mean zero and covariance kernel Ω4(τ1, τ2) =

E[B2(τ1)B2(τ2)] for τ1, τ2 ∈ I.

Suppose that {et,τ} are i.i.d. random errors with et,τ = et − Qτ,et and E(et) = 0. We

can then apply the same techniques as those discussed earlier after Theorem 3 to show

that the positive definite matrix condition of Σ41(τ) implies ft−1(0) = f(Qτ,et) > 0 for all

τ ∈ I. In addition, the finite matrix assumption of Σ41(τ) leads to ft−1(0) = f(Qτ,et) <∞

for all τ ∈ I. We next construct diagnostic tests to assess the adequacy of the fitted model.

For the errors {et,τ} defined in (3.2), we employ equation (2.1) and the fact thatQτ,et,τ =

0, and obtain QACF of {et,τ} as follows,

ρk,τ =
E{ψτ (et,τ )[et−k,τ − E(et,τ )]}√

(τ − τ 2)σ2
e,τ

,

12



where σ2
e,τ = var(et,τ ). We can show that ρk,τ = 0 for k > 0. Hence, we are able to use

ρk,τ to assess the model fit. In the sample version, we consider the residuals of the QAR

model,

ẽt,τ = yt − ϕ̃0(τ)− ϕ̃1(τ)yt−1 − · · · − ϕ̃p(τ)yt−p,

for t = p + 1, ..., n, and ẽt,τ = 0 for t = 1, ..., p. It can be verified that the τth empirical

quantile of {ẽt,τ} is zero. Based on this fact and equation (2.3), we obtain the estimation

of ρk,τ ,

rk,τ =
1√

(τ − τ 2)σ̃2
e,τ

· 1
n

n∑
t=k+1

ψτ (ẽt,τ )(ẽt−k,τ − µ̃e,τ ),

where k is a positive integer, µ̃e,τ = n−1
∑n

t=k+1 ẽt,τ and σ̃2
e,τ = n−1

∑n
t=k+1(ẽt,τ − µ̃e,τ )

2.

We name rk,τ the sample QACF of residuals.

Adapting the classical linear time series approach (Li, 2004), we examine the signif-

icance of {rk,τ} individually and jointly. For the given positive integer K, let et−1,K =

(et−1,τ , ..., et−K,τ )
′, Σ50 = E[et−1,Kz

∗′
t,p], Σ51(τ) = E[ft−1(0)et−1,Kz

∗′
t,p],

Σ52(τ1, τ2) =E(et−1,Ke
′
t−1,K) + Σ51(τ1)Σ

−1
41 (τ1)Σ40Σ

−1
41 (τ2)Σ

′
51(τ2)

− Σ51(τ1)Σ
−1
41 (τ1)Σ

′
50 − Σ50Σ

−1
41 (τ2)Σ

′
51(τ2),

and

Ω5(τ1, τ2) =
E[ψτ1(et,τ1)ψτ2(et,τ2)]Σ52(τ1, τ2)√

(τ1 − τ 21 )(τ2 − τ 22 )σ
2
e,τ1
σ2
e,τ2

.

Then, we obtain the asymptotic property of Rτ = (r1,τ , ..., rK,τ )
′ given below.

Theorem 4. Suppose that, for each τ ∈ I, Σ41(τ) and Σ51(τ) are finite, and Σ41(τ) is

a positive definite matrix, where I is defined as in Theorem 3. If Assumption 1 holds

and the order p of model (3.1) is correctly identified, then
√
nRτ ⇒ B3(τ) for all τ ∈ I,

where B3(τ) is a K-dimensional Gaussian process with mean zero and covariance kernel

Ω5(τ1, τ2) = E[B3(τ1)B
′
3(τ2)] for τ1, τ2 ∈ I.

For a given τ ∈ I,
√
nRτ →d N{0,Ω5(τ, τ)}. Applying the same techniques as used

in the estimate of Ω3(τ, τ), we are able to estimate the asymptotic variance Ω5(τ, τ) and

13



denote it Ω̂5. In addition, let the k-th diagonal element of Ω̂5 be Ω̂5k. Then, one can

employ rk,τ/

√
Ω̂5k to examine the significance of the k-th lag in the residual series.

To check the significance of Rτ jointly, it is natural to consider the test statistic

R′
τ Ω̂

−1
5 Rτ . When {et,τ} is an i.i.d. sequence, the matrix Ω5(τ, τ) = IK −σ−2

e,τΣ50Σ
−1
40 Σ

′
50 has

a rank of K − p. This motivates us to consider a Box-Pierce type test statistic (Box and

Pierce, 1970),

QBP (K) = n

K∑
j=1

r2j,τ = nR′
τRτ →d B

′
3(τ)B3(τ),

where B′
3(τ)B3(τ) can be approximated by a χ2

K−p distribution when the errors {et,τ} are

i.i.d. random variables. In the case of non-i.i.d. random errors, the following procedure

can be used to calculate the critical value:

(i) Generate a random vector ζ1 = (ζ11, ..., ζ1K)
′ from a standard multivariate normal

distribution, and calculate the value of BP1 =
∑K

i=1 λiξ
2
1i, where the λis are the

eigenvalues of Ω̂5;

(ii) Repeat Step (i)M−1 times by generating independent standard multivariate normal

random vectors ζ2, ..., ζM , and then calculate the values of BP2, ..., BPM ;

(iii) Obtain the empirical 100(1 − α)th percentile of {BP1, ..., BPM}, and use it as the

critical value at the α level of significance.

Accordingly, one can employ QBP (K) to test the significance of (ρ1,τ , ..., ρK,τ ) jointly.

3.3 Modified three-stage procedure

To apply the above theoretical results, we adapt the Box-Jenkins three-stage procedure

and propose the following modified version for QAR models.

(1) Model identification: Choose K a priori to be the largest lag order in a set of

candidate models. Then, employ the QPACF of the observed series with Theorem

3 to select the tentative QAR model (namely QAR(p)). Accordingly, the sample

QPACF has a cutoff after lag p.

(2) Model estimation: Estimate the tentative model in the first stage as well as the

backward selection models in the third stage given below.
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(3) Model selection and diagnosis:

(3a) From the QAR(p) model, employ Koenker and Xiao’s (2006) Theorem 2 (see

also equation (3.3)) to conduct p tests of the null hypotheses H0 : ϕj(τ) = 0 for

1 ≤ j ≤ p. Then, remove the lag with the largest p-value that is greater than

the predetermined significance level, say 5%.

(3b) Repeat Step (3a) to remove non-significant lags sequentially, until all lags re-

maining in the model are significant.

(3c) Employ the Box-Pierce type test, QBP (K), to check the adequacy of the re-

sulting model, and apply the Wald test, Wn(τ), in Koenker and Xiao (2006)

to assess whether those removed lags are jointly insignificant. If either of these

two tests fails, then add the last lag removed in Step (3b) back into the model.

(3d) Repeat Step (3c) until there exists a model passing both QBP (K) and Wn(τ)

tests.

(3e) If no model can be found in Step (3d), then try a larger p (or K), or transform

the data, or consider alternative model structures.

Remark 1. In the first stage, one may use the Bayesian information criterion (BIC) of

Schwarz (1978) or the Akaike information criterion (AIC) of Akaike (1973) to identify the

order of the lag. Since the theoretical properties of AIC and BIC in the QAR model have

not been established yet, both AIC and BIC can be viewed as supplementary guidelines

to assist in the model selection process as suggested by Box et al. (2008, p.212). In Step

(3c) of the third stage, one can use the test computed from the sample QACF of residuals

to examine the significance of (ρ1,τ , ..., ρK,τ ) individually (see Theorem 4). In practice,

the rejection of the individual test may occur even in random series (see Box et al., 2008,

p.341). In addition, a few lags with marginal significance obtained from the individual test

are not likely to affect the conclusion of the Box-Pierce type test for assessing the joint

effect across all K lags. Hence, we recommend the QBP (K) test in Step (3c), and the

individual test can be used as an auxiliary tool. Moreover, we include the Wn(τ) test to

examine the impact of removed lags. In sum, Step (3c) mainly focuses on the joint effect

of model fitting, which provides clear guidance for finding a final model.
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Remark 2. It is noteworthy that our theoretical results are based on model (3.1), which

satisfies quantile monotonicity. Hence, one needs to check for possible crossings among

the fitted quantile functions in practical applications. To examine crossings, we suggest

plotting the fitted quantile functions over the entire quantile region. If they do not intersect

each other, then crossing is not a serious issue. We may also apply an informal test (such

as the Binomial test) of the null hypothesis H0 : p∗ = p∗0 via the observed proportion of

crossings from any two given quantile functions in n−1 segments, where p∗0 is a prespecified

proportion of crossings. Based on our limited experience, we suggest that 0.001 ≤ p∗0 ≤

0.01, while practitioners can choose a very small p∗0 for large sample sizes to examine

quantile crossing. For example, when testing p∗0 = 0.001 in 1,000 observations, more

than two crossing points would yield a warning message, since the resulting p-value of

the Binomial test is less than 0.05. If there exists strong evidence of crossing, one may

follow Koenker and Xiao’s (2006) suggestion to transform the vector of variables, z∗t,p =

(1, yt−1, ..., yt−p)
′. An alternative approach is to consider the dynamic additive quantile

models (see Gourieroux and Jasiak, 2008) or the constrained QAR models adapted from

Bondell et al. (2010), which can avoid quantile crossing.

3.4 Bootstrap approximations

To conduct model identification, parameter estimation, and model diagnostic checking, we

need to estimate the variances of Ω3(τ, τ), Ω4(τ, τ), and Ω5(τ, τ), respectively. Since this

quantity involves the nonparametric estimate of the density function ft−1(0), it is essential

to employ the bootstrap approach to investigate the performance of the proposed three-

stage procedure for QAR models. In the context of quantile regression models, several

bootstrap methods have been proposed; see, e.g., He and Hu (2002) and Kocherginsky

et al. (2005). It is noteworthy that ft−1(0) often depends on past observations, so the

above methods may not be directly applicable to QAR models. Hence, we consider a

bootstrap approach from Rao and Zhao (1992) by introducing a series of random weights

to the loss function, see also Jin et al. (2001), Feng et al. (2011) and Li et al. (2012).

Let {ωt} be i.i.d. non-negative random variables with mean one and variance one.

To approximate the distributions of ϕ̃kk,τ in Theorem 3, we first calculate the weighted

16



quantile estimator of (α2,τ , β
′
2,τ ) with weights {ωt},

(α̃∗
2,τ , β̃

∗′
2,τ ) = argmin

α,β

n∑
t=k+1

ωtρτ (yt − α− β′zt,k−1),

and then obtain the weighted QPACF

ϕ̃∗
kk,τ =

1√
(τ − τ 2)σ̃2

y|z

· 1
n

n∑
t=k+1

ωtψτ (yt − α̃∗
2,τ − β̃∗′

2,τzt,k−1)yt−k.

For the asymptotic distributions of ϕ̃(τ) at (3.3) and Rτ in Theorem 4, we consider the

weighted quantile estimator of ϕ(τ),

ϕ̃
∗
(τ) = argmin

α,β

n∑
t=p+1

ωtρτ (yt − α− β′zt,p),

and calculate a weighted sample QACF

r∗k,τ =
1√

(τ − τ 2)σ̃2
e,τ

· 1
n

n∑
t=max{k,p}+1

ωtψτ (yt − ϕ̃
∗′
(τ)z∗t,p)(yt−k − ϕ̃

∗′
(τ)z∗t−k,p),

where z∗t,p = (1, z′t,p)
′. Let R∗

τ = (r∗1,τ , ..., r
∗
K,τ )

′, and the theoretical properties of ϕ̃∗
kk,τ ,

ϕ̃
∗
(τ), and R∗

τ are given below.

Theorem 5. Under the assumptions of Theorems 3 and 4, it holds that, conditional on

y1, ..., yn,

(a)
√
n(ϕ̃∗

kk,τ − ϕ̃kk,τ ) ⇒ B∗
1(τ),

(b)
√
n{ϕ̃

∗
(τ)− ϕ̃(τ)} ⇒ B∗

2(τ),

(c)
√
n(R∗

τ −Rτ ) ⇒ B∗
3(τ),

for all τ ∈ I, where B∗
1(τ), B

∗
2(τ) and B∗

3(τ) are Gaussian processes with mean zero and

the same covariance kernels as in Theorem 3, (3.3) and Theorem 4, respectively.

The above theorem allows us to approximate the distributions of ϕ̃kk,τ , ϕ̃(τ), rk,τ , and

Rτ via their corresponding bootstrap analogues for the QAR analysis of model identifi-

cation, parameter estimation, and model diagnostic checking. Hence, this method can

avoid the numerical problems encountered in computing the estimated asymptotic vari-

ances in Theorem 3, equation (3.3), and Theorem 4. The detailed bootstrap algorithms

and theoretical proofs can be found in the supplementary material.
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4 Simulation studies

This section investigates the finite sample performance of the proposed measures and tests

in Section 3. In all experiments, we conduct 1,000 realizations for each combination of

sample sizes n = 100, 200, and 500 and quantiles, τ = 0.25, 0.50, and 0.75. In addition,

the number of bootstrapped samples is set to B = 1, 000, and the random weights {ωt}

follow the standard exponential distribution. Moreover, we present the bias (BIAS), sample

standard deviation (SSD), and empirical coverage probability of the proposed quantile

measure (or estimate) across 1,000 realizations.

In this simulation study, we generate the data from the following process,

yt = 0.3yt−1 + 0.3νtI(νt > χ2
0.35)yt−2 + νt, (4.1)

where {νt} are i.i.d. chi-squared random variables with one degree of freedom, and χ2
α

is the α-th quantile of νt such that P (νt < χ2
α) = α. It is noteworthy that {yt} is a

nonnegative time series, Qτ (yt|Ft−1) = χ2
τ + 0.3yt−1 for τ ≤ 0.35, and Qτ (yt|Ft−1) =

χ2
τ +0.3yt−1 +0.3χ2

τyt−2 for τ > 0.35. In other words, the resulting series is QAR(1) when

τ ≤ 0.35, while it is QAR(2) when τ > 0.35. Accordingly, the conditional quantile errors,

et,τ = yt −Qτ (yt|Ft−1), depend on yt−2, which are not i.i.d. random variables.

We employ the approach of Hendricks and Koenker (1992) to estimate the density

function, ft−1(0), with the two bandwidth selection methods proposed by Bofinger (1975)

and Hall and Sheather (1988), respectively, which are given below.

hB = n−1/5

{
4.5ϕ4(Φ−1(τ))

[2(Φ−1(τ))2 + 1]2

}1/5

and hHS = n−1/3z2/3α

{
1.5ϕ2(Φ−1(τ))

2(Φ−1(τ))2 + 1

}1/3

,

where ϕ(·) is the standard normal density function, zα = Φ−1(1−α/2) for the construction

of 1 − α confidence intervals, and α is set to 0.05. Furthermore, we consider two more

bandwidths, 0.6hB and 3hHS, suggested by Koenker and Xiao (2006). In sum, we have

four bandwidth choices. This allows us to construct the confidence limits of ϕ̃kk,τ , ϕ̃(τ)

and rk,τ by estimating the variance Ω3(τ, τ) in Theorem 3, the variance Ω4(τ, τ) in (3.3),

and the variance Ω5(τ, τ) in Theorem 4, respectively.

To understand the performance of QPACF in the first stage of model identification,

Table 1 reports the biases, sample standard deviations, and empirical coverage probabilities

at the 95% nominal level of ϕ̃kk,τ , at k = 2, 3 and 4 for τ = 0.25, and at k = 3 and 4
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for τ = 0.5 and 0.75, respectively. The simulation results indicate that biases and sample

standard deviations become smaller as the sample size gets larger, which is consistent with

theoretical findings. In addition, empirical coverage probabilities calculated from the direct

method via the asymptotic standard deviation are close to the nominal level, and all four

bandwidths produce similar results. However, when the sample size is as small as 100 or

200, the direct method occasionally encounters a problem in computing the asymptotic

variance (e.g., the inverse of a singular matrix or the square root of a negative value),

which appears around 5 (or less) out of 1000 replications. Hence, we employ the bootstrap

approach to calculate the empirical coverage probability. Table 1 shows that this approach

performs well, although it is slightly inferior to the direct method.

We next examine the performance of parameter estimates ϕ̃(τ) in the second stage.

Table 2 indicates that the biases and sample standard deviations decrease as the sample

size increases. It is of interest to note that τ = 0.25 often yields the best empirical coverage

probability. This may be due to the fact that the model fitting with τ = 0.25 contains more

observations than that with τ = 0.5 and 0.75 in our simulation setting. In addition, the

bandwidth 3hHS performs worst, since it has the largest empirical coverage probabilities at

τ = 0.25 and 0.5 and the smallest empirical coverage probabilities at τ = 0.75. This may

result from having the largest bandwidth values over the whole range of the time period.

Moreover, the other three bandwidths yield similar results.

We subsequently study the third stage of model diagnostics. According to model (4.1),

we fit QAR(1) for τ = 0.25 and QAR(2) for τ = 0.5 and 0.75. Furthermore, the sample

QACF of residuals are calculated at K = 6. Table 3 reports the biases, sample standard

deviations, and empirical coverage probabilities at the 95% nominal level of rk,τ at k = 2,

4 and 6. Table 3 shows that biases and sample standard deviations become smaller as

the sample size gets larger, which supports theoretical findings. In addition, the empirical

coverage probabilities are close to the nominal level, except that r2,τ (under τ = 0.5 and

0.75) is near to the nominal level only for the sample size n = 500. This may be due to the

fact that conditional quantile errors depend on yt−2 in our simulation setting. Moreover,

all four bandwidths yield similar results.

Finally, we examine the finite sample performance of the test statistic QBP (K). To
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this end, we generate data from the following process,

yt = 0.3yt−1 + 0.3νtI(νt > χ2
0.35)yt−2 + ϕyt−3 + νt,

where the νt are defined in (4.1). For simplicity, the QAR(2) model is employed for three

quantiles. Note that ϕ = 0 corresponds to the null hypothesis, while ϕ > 0 is associated

with the alternative hypothesis. The nominal level of the test is 5%, and the bandwidth

is set to 0.6hB. Table 4 reports sizes and powers of QBP (K) with K = 6. It shows that

QBP (K) controls the size well when n is large, and its power increases when the sample

size or ϕ becomes larger. The other three bandwidths lead to similar findings, which are

omitted.

In addition to the direct method (i.e., the non-bootstrap method) used in the second

and third stages, we also employ the bootstrap approach for studying the performance

of parameter estimates and diagnostic measures. Although the bootstrap approach has

theoretical justifications given in Section 3.4, its finite sample performance is usually not

comparable to the direct method when the sample size is not large enough. Hence, we do

not present the bootstrap results in Tables 2 and 3. Based on the above two simulation

experiments, we suggest using the direct method in the modified three-stage procedure,

together with the bandwidth 0.6hB (also recommended by Koenker and Xiao, 2006), for

practical application. When the estimate of asymptotic variance of ϕ̃kk,τ in Theorem 3 used

at the first stage is not computable, one can consider the bootstrap approach. However,

this does not exclude the possibility of using the bootstrap procedure when one encounters

numerical problems in computing the estimated asymptotic variances in equation (3.3) and

Theorem 4.

We also conduct experiments to study the finite sample performance of the sample

QCOR and the sample QPCOR in Section 2 as well as the proposed measures and tests in

Section 3 under the assumption of i.i.d. conditional quantile errors. The simulation results

are given in the online supplemental material.
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5 Nasdaq Composite

This example considers the log return as a percentage of the daily closing price on the

Nasdaq Composite from January 1, 2004 to December 31, 2007. There are 1,006 observa-

tions in total, and Figure 2 depicts the time series plot and the classical sample ACF. It

is not surprising that these returns (i.e., log returns) are uncorrelated and can be treated

as evidence in support of the fair market theory. However, Veronesi (1999) found that

stock markets under-react to good news in bad times and over-react to bad news in good

times. Hence, Baur et al. (2012) proposed aligning a good (bad) state with upper (lower)

quantiles by fitting their stock returns data with the QAR(1) type models. This motivates

us to employ the general QAR model along with our proposed techniques to explore the

dependence pattern of stock returns at a lower quantile (τ = 0.05), the median (τ = 0.5),

and an upper quantile (τ = 0.95).

In this example, we follow the proposed procedure in Section 3.3 to find appropriate

models. To this end, we choose K = 15 a priori to be the maximum lag in a family of

candidate models. We first fit the returns at the lower quantile (τ = 0.05). Panel A of

Figure 3 presents the sample QPACF of the observed series, which indicates that lags 8 and

11 stand out. According to Theorem 3, the QAR(11) model is suggested. Subsequently, we

refine the model via the backward variable selection procedure at the 5% significance level.

As a result, lags {1, 8, 6, 7, 3, 5, 9} are removed sequentially, which leads to the following

model,

Q̂0.05(yt|Ft−1) = −0.74700.0291 + 0.11760.0508yt−2 + 0.08090.0583yt−4 + 0.07390.0507yt−10

+ 0.12580.0546yt−11, (5.1)

where the subscripts of parameter estimates are their associated standard errors, and the

bandwidth 0.6hB is employed in this whole section. The p-value of the Wald test, Wn(τ),

is 0.254, which implies that the deleted coefficients are jointly insignificant. In addition,

although the sample QACF of residuals in Panel A shows that lags 2, 4, and 14 are

marginally significant, the p-value of QBP (15) is 0.320 and it is not significant. It is worth

noting that the coefficients at lags 4 and 10 in equation (5.1) are significant at the 10%

level, but not at the 5% level. We retain them, since the p-value of QBP (15) will be less
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than 0.06 if any one of them is deleted. Taking the above results as a whole, the model

(5.1) is adequate.

We next consider the scenario with τ = 0.5. The sample QPACF in Panel B indicates

that all lags are insignificant. Hence, we fit the following model,

Q̂0.5(yt|Ft−1) = 0.04670.0133. (5.2)

None of the lags in the sample QACF of residuals in Panel B of Figure 3 show significance,

and the p-value of QBP (15) is 0.750. Consequently, the above model is appropriate.

Finally, we study the upper quantile scenario with τ = 0.95. The sample QPACF in

Panel C exhibits that lags 2, 4, 11, 12 and 14 are significant. By Theorem 3, the QAR(14)

model is suggested. We then employ the backward variable selection procedure to refine

the model by removing lags {7, 10, 9, 5, 13, 12, 3, 1} sequentially. The resulting model is

Q̂0.95(yt|Ft−1) = 0.68090.0233 − 0.24970.0398yt−2 − 0.13550.0354yt−4 − 0.07120.0434yt−6

− 0.12960.0468yt−8 − 0.15060.0442yt−11 − 0.12460.0414yt−14,

(5.3)

where all coefficients are significant at the 5% significance level, except that lag 6 is

marginal. In addition, the p-value of Wn(τ) is 0.128, which demonstrates that the deleted

coefficients are jointly insignificant. Although the QACF of residuals at lags 2 and 4 in

Panel C of Figure 3 show marginal significance, the p-value of QBP (15) is 0.443 and it is

not significant. In sum, the model (5.3) fits the data reasonably well. It is worth noting

that the bootstrap results of the sample QACF of residuals in Figure 4 also indicate the

model (5.3) as well as models (5.1) and (5.2) fitting the data adequately.

In addition to QPACF, we employ the Bayesian information criterion (BIC) considered

by Koenker and Xiao (2006) to select the order of QAR models. Accordingly, the orders of

2, 0, and 7 are chosen at quantiles τ = 0.05, 0.5, and 0.95, respectively. Furthermore, the

Akaike information criterion (AIC) is applied, and the orders 2, 0, and 13 are correspond-

ingly selected for quantiles τ = 0.05, 0.5 and 0.95. At τ = 0.05, both AIC and BIC choose

lag 2, which stands out in the QPACF plot of Panel A and it is also included in model

(5.1). However, the p-value of Wn(τ) test for the QAR(2) model is 0.003. This may be due

to missing lag 11, whose QPACF is significant and this lag is contained in model (5.1). It is
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of interest to note that AIC, BIC, and our proposed procedure yield the same model when

τ = 0. At the upper quantile with τ = 0.95, AIC does not identify lag 14 and BIC does

not choose lags 11 and 14. These two lags are significant via their QPACF measures and

both are included in model (5.3). This may explain why the p-values of the QBP (15) test

for the final models obtained via the backward selection procedure from QAR(7), chosen

by BIC, and QAR(13), chosen by AIC, respectively, are less than 0.07. As mentioned in

Box et al. (2008, p.212), both AIC and BIC can be viewed as supplementary guidelines

to assist in the model selection process. In addition, our purpose in this example is model

fitting; hence, we conclude that models (5.1) to (5.3) are adequate. However, this does not

exclude other possible models selected via different purposes or approaches.

Based on the three fitted QAR models, (5.1), (5.2), and (5.3), we obtain the following

conclusions. (i.) The lag coefficients at the lower quantile (τ = 0.05) are all positive. This

indicates that if the returns in past days have been positive (negative), then, when today’s

return is in the same direction, it is alleviated (even lower). It also implies that stock

markets under-react to good news in bad times (i.e., τ = 0.05). (ii.) The lag coefficients at

the upper quantile (τ = 0.95) are all negative. This shows that if the returns in past days

have been negative (positive), then, when today’s return is in the different direction, it is

even higher (dampened). As a result, stock markets over-react to bad news in good times

(i.e., τ = 0.95). (iii.) As we expected, the intercept only at τ = 0.5 shows no dependence

for the conditional median of returns. Accordingly, equation (5.2) indicates that today’s

return is not affected by the returns of recent past days. Although we only report the

results of the lower and higher quantiles at τ = 0.05 and τ = 0.95, our studies yield the

same conclusions across various lower and upper quantiles. In sum, our proposed methods

support Veronesi’s (1999) equilibrium explanation for stock market reactions.

6 Discussion

In quantile regression models, we propose the quantile correlation and quantile partial

correlation. Then, we apply them to the quantile autoregressive model, which yields the

quantile autocorrelation and quantile partial autocorrelation. In practice, the response

time series may depend on exogenous variables. Hence, it is of interest to extend those
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correlation measures to the quantile autoregressive model with the exogenous variables

given below:

Qτ (yt|Ft−1) = ϕ0(τ) +

p∑
i=1

ϕi(τ)yt−i + β′(τ)xt, for 0 < τ < 1,

where xt is a vector of time series, and ϕi(τ) and β(τ) are functions [0, 1] → R, see

Galvao et al. (2013). Following the definition of QPACF in Section 3.1, we can define

ϕkk,τ = qpcorτ{yt, yt−k|zt,k−1,xt}. Accordingly, this allows us to extend our results in

Section 3 to the above model.

In the context of growth charts, Wei and He (2006) considered a semiparametric quan-

tile regression model,

yj = g(tj) +

p∑
l=1

ϕl(tj − tj−l)yj−l + β′xj + ej, (6.1)

for n subjects, where each subject has measurements at random time t1, ..., tm, g(·) is a

smooth function, the ϕls are linear functions, and ej is the random error with the τ -th

quantile being zero; see Wei et al. (2006). This model can also be viewed as an extension

of the QAR model. Then, let

(g0, ϕ01, ..., ϕ0,k−1, β0) = argminE[ρτ{yj − g(tj)−
k−1∑
l=1

ϕl(tj − tj−l)yj−l − β′xj}].

As a result, y∗j = g0(tj)+
∑k−1

l=1 ϕ0l(tj − tj−l)yj−l + β′
0xj is the effect of zj,k−1 and xj on the

τ -th quantile of yj. Subsequently, we can define the QPACF as

ϕkk,τ = qpcorτ{yj, yj−k|zj,k−1,xj} =
cov{ψτ (yj − y∗j ), yj−k}√
var{ψτ (yj − y∗j )}var{yj−k}

. (6.2)

This, together with the estimation method in Wei and He (2006), allows us to generalize

our proposed procedure to this model.

The third possible generalization of the QAR model is the dynamic model with partially

varying coefficients in Cai and Xiao (2012), which has a similar form to (6.1). Accordingly,

we can obtain a measure analogous to that in (6.2). This enables us to extend our method

to their model’s identification and diagnostic checking. Clearly, the contribution of the

proposed measures is not limited to the above three models. For example, the diagnosis

of nonlinear quantile autoregression models (e.g., Chen et al., 2009) and quantile GARCH
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models (Xiao and Koenker, 2009) can be considered; variable screening and selection (e.g.,

Fan and Lv, 2008; Wang, 2009) in quantile regressions is another important topic for future

research. In sum, this paper introduces practical measures to broaden and facilitate the

use of quantile models.

Appendix: technical proofs

The appendix presents the technical proofs of Lemmas 1 and 2 and Theorems 1 and 3.

Since the proofs of Theorems 2 and 4 are similar to those of Theorems 1 and 3, respectively,

they are given in the online supplemental material.

Proof of Lemma 1. For a, b ∈ R, denote the function h(a, b) = E[ρτ (ε − a − bX)]. It is

known that h(a, b) is a convex function with lima2+b2→∞ h(a, b) = +∞. For u ̸= 0,

ρτ (u− v)− ρτ (u) = −vψτ (u) +

∫ v

0

[I(u ≤ s)− I(u < 0)]ds

= −vψτ (u) + (u− v)[I(0 > u > v)− I(0 < u < v)], (A.1)

see Knight (1998) and Koenker and Xiao (2006). Let Y ∗ = ε− a− bX. Then, the above

equation, together with Hölder’s inequality and the continuity of random variables X and

ε, leads to

|1
c
[h(a, b+ c)− h(a, b)] + E[ψτ (Y

∗)X]|

= |1
c
E[ρτ (Y

∗ − cX)− ρτ (Y
∗)] + E[ψτ (Y

∗)X]|

= |1
c
E{(Y ∗ − cX)[I(0 > Y ∗ > cX)− I(0 < Y ∗ < cX)]}|

≤ E[|X|I(|Y ∗| < |c| · |X|)] ≤ (EX2)1/2[P (|Y ∗|/|X| < |c|)]1/2,

which tends to zero as c→ 0. Accordingly,

∂h(a, b)

∂b
= −E[ψτ (ε− a− bX)X]. (A.2)

Analogously, we have that

∂h(a, b)

∂a
= −E[ψτ (ε− a− bX)], (A.3)

which is zero at a = Qτ,ε−bX . By Hölder’s inequality and the continuity of random variables

X and ε, we can further show that ∂h(a, b)/∂b and ∂h(a, b)/∂a are continuous functions.
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Let h1(b) = h(Qτ,ε−bX , b). For any b1, b2 ∈ R and 0 < w < 1, by the convexity of

h(a, b), we have that

wh1(b1) + (1− w)h1(b2) = wh(Qτ,ε−b1X , b1) + (1− w)h(Qτ,ε−b2X , b2)

≥ h(wQτ,ε−b1X + [1− w]Qτ,ε−b2X , wb1 + [1− w]b2)

≥ h1(wb1 + [1− w]b2).

Accordingly, h1(b) is a convex function. Note that, under the conditions in Lemma 1,

Qτ,ε−bX is differentiable with respect to b. This, together with (A.2) and (A.3), implies

∂h1(b)

∂b
= −E[ψτ (ε−Qτ,ε−bX − bX)X] = −ϱ(−b),

and it is a continuous and increasing function, by the convexity of h1(b). As a result, ϱ(b)

is a continuous and increasing function, which completes the first part of the proof.

Next, if b = 0, then ϱ(0) = E[ψτ (ε − Qτ,ε)X] = 0. Let ξ = Qτ,ε−bX + bX. Then, for

any b such that ϱ(b) = 0, we have that

0 = h1(b)− h1(0) = E[ρτ (ε− ξ)− ρτ (ε)]

= −E[ξψτ (ε)] + E[(ε− ξ)I(0 > ε > ξ)] + E[(ξ − ε)I(0 < ε < ξ)]

= E[(ε− ξ)I(0 > ε > ξ)] + E[(ξ − ε)I(0 < ε < ξ)].

Note that both (ε − ξ)I(0 > ε > ξ) and (ξ − ε)I(0 < ε < ξ) are nonnegative random

variables, and ε − ξ is a continuous random variable. Thus, with probability one, I(0 >

ε > ξ) = I(0 < ε < ξ) = 0, which yields ξ = 0. This implies that b = 0, and the proof is

complete.

Proof of Lemma 2. For k = p, let

(α2,τ , β
′
2,τ ) = argmin

α,β
E[ρτ (yt − α− β′zt,p−1)]

and y∗t = yt − α2,τ − β′
2,τzt,p−1. If ϕpp,τ = 0, then qcov{y∗t , yt−p} = 0. Subsequently, ap-

plying the same techniques used in the proof of Lemma 1, we obtain that (α2,τ , β
′
2,τ , 0) =

(α3,τ , β
′
3,τ , γ3,τ ), where (α3,τ , β

′
3,τ , γ3,τ ) = argminα,β,γ E[ρτ (yt−α−β′zt,p−1−γyt−p)]. Accord-

ing to the definition of the QAR model (3.1), (α3,τ , β
′
3,τ , γ3,τ ) = (ϕ0(τ), ϕ1(τ), ..., ϕp(τ)),

which implies that ϕp(τ) = 0. Since ϕp(τ) ̸= 0, we have that ϕpp,τ ̸= 0.
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Let et,τ = yt − ϕ0(τ)− ϕ1(τ)yt−1 − · · · − ϕp(τ)yt−p. By (3.2), I(et,τ > 0) is independent

of yt−k for any k > 0. In addition, (α2,τ , β
′
2,τ ) = (ϕ0(τ), ϕ1(τ), ..., ϕp(τ),0

′) for k > p, where

0 is a (k − p)× 1 vector with all elements being zero. Hence, ϕkk,τ = 0 for k > p.

Proof of Theorem 1. For u ̸= 0, we have that I(u − v < 0) − I(u < 0) = I(v > u >

0)− I(v < u < 0). Using this result, we then obtain

1

n

n∑
i=1

ψτ (Yi−Q̂τ,Y )(Xi−X̄) =
1

n

n∑
i=1

ψτ (Yi−Qτ,Y )Xi+
1

n
An−X̄ · 1

n

n∑
i=1

ψτ (Yi−Q̂τ,Y ), (A.4)

where An =
∑n

i=1 gτ (Yi, Qτ,Y , Q̂τ,Y )Xi and

gτ (Yi, Qτ,Y , Q̂τ,Y )

= ψτ (Yi − Q̂τ,Y )− ψτ (Yi −Qτ,Y ) = −[I(Yi < Q̂τ,Y )− I(Yi < Qτ,Y )]

= I(Q̂τ,Y −Qτ,Y < Yi −Qτ,Y < 0)− I(Q̂τ,Y −Qτ,Y > Yi −Qτ,Y > 0).

It can be shown that

| 1
n

n∑
i=1

ψτ (Yi − Q̂τ,Y )| = |τ − 1

n

n∑
i=1

I(Yi − Q̂τ,Y )| = |τ − [nτ ]

n
| ≤ 1

n
.

This, together with the law of large numbers, implies the last term of (A.4) satisfying

X̄ · 1
n

n∑
i=1

ψτ (Yi − Q̂τ,Y ) = Op(n
−1). (A.5)

We next consider the second term on the right-hand side of (A.4). For any v ∈ R,

denote

ξn(v) =
1√
n

n∑
i=1

{gτ (Yi, Qτ,Y , Qτ,Y + n−1/2v)− E[gτ (Yi, Qτ,Y , Qτ,Y + n−1/2v)|Xi]}Xi,

where E[gτ (Yi, Qτ,Y , Qτ,Y + n−1/2v)|Xi] = −
∫ Qτ,Y +n−1/2v

Qτ,Y
fYi|Xi

(y)dy and fYi|Xi
(·) is the

conditional density of Yi given Xi. Then, by Hölder’s inequality, we have that

E[ξn(v)]
2 = E[gτ (Yi, Qτ,Y , Qτ,Y + n−1/2v)Xi]

2

≤ [P (|Yi −Qτ,Y | < n−1/2v)]1/2[EX4
i ]

1/2 = o(1). (A.6)

After algebraic simplification, we further obtain

sup
|v1−v|<δ

|ξn(v1)− ξn(v)|

≤ sup
|v1−v|<δ

1√
n

n∑
i=1

|{gτ (v1)− gτ (v)}Xi|+ E[|{gτ (v1)− gτ (v)}Xi||Xi]

=
1√
n

n∑
i=1

|{gτ (v∗1)− gτ (v)}Xi|+ E[|{gτ (v∗1)− gτ (v)}Xi||Xi],
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where v∗1 takes the value of v + δ or v − δ. Hence,

E sup
|v1−v|<δ

|ξn(v1)− ξn(v)|

≤ 2
√
nE|{gτ (v∗1)− gτ (v)}Xi|

= 2
√
nE

∣∣∣∣∣
∫ Qτ,Y +n−1/2v∗1

Qτ,Y +n−1/2v

fYi|Xi
(y)dyXi

∣∣∣∣∣
≤ δ · 2E[ sup

|y|≤π

fYi|Xi
(Qτ,Y + y)|Xi|], (A.7)

where |n−1/2v| < π and |n−1/2v∗1| < π when n is large. Both (A.6) and (A.7), in con-

junction with the theorem’s assumptions and the finite converging theorem, imply that

E sup|v|≤M |ξn(v)| = o(1) for any M > 0. In addition, applying the theorem in Section

2.5.1 of Serfling (1980), we have

√
n(Q̂τ,Y −Qτ,Y ) = f−1

Y (Qτ,Y ) ·
1√
n

n∑
i=1

ψτ (Yi −Qτ,Y ) + op(1) = Op(1).

Accordingly,

1√
n
An = − 1√

n

n∑
i=1

∫ Qτ,Y +(Q̂τ,Y −Qτ,Y )

Qτ,Y

fYi|Xi
(y)dyXi + op(1)

= −(Q̂τ,Y −Qτ,Y )
1√
n

n∑
i=1

fYi|Xi
(Qτ,Y )Xi + op(1)

= −
E[fYi|Xi

(Qτ,Y )Xi]

fY (Qτ,Y )
· 1√

n

n∑
i=1

ψτ (Yi −Qτ,Y ) + op(1). (A.8)

Subsequently, using (A.4), (A.5), and (A.8), we obtain that

√
n

[
1

n

n∑
i=1

ψτ (Yi − Q̂τ,Y )(Xi − X̄)− qcovτ{Y,X}

]

=
1√
n

n∑
i=1

[ψτ (Yi − Q̂τ,Y )(Xi − X̄)− qcovτ{Y,X}]

=
1√
n

n∑
i=1

[ψτ (Yi −Qτ,Y )(Xi − µX|Y )− qcovτ{Y,X}] + op(1), (A.9)

where µX|Y is defined in Section 2.2. Since

√
n(X̄ − µX)

2 =
1√
n

[
1√
n

n∑
i=1

(Xi − µX)

]2

= Op(n
−1/2),

we further have that

√
n(σ̂2

X − σ2
X) =

1√
n

n∑
i=1

[(Xi − µX)
2 − σ2

X ] + op(1). (A.10)
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Moreover, (A.9), (A.10), the central limit theorem, and the Cramer-Wold device, lead to

√
n

 σ̂2
X − σ2

X

n−1
∑n

i=1 ψτ (Yi − Q̂τ,Y )(Xi − X̄)− qcovτ{Y,X}

 →d N(0,Σ),

where

Σ =

 Σ11 Σ13

Σ13 Σ12

 ,

and Σ11, Σ12, and Σ13 are defined in Section 2.2. Finally, following the Delta method

(van der Vaart, 1998, Chapter 3), we complete the proof.

Proof of Theorem 3. We first consider the term σ̃2
y|z in ϕ̃kk,τ . Let z

∗
t,k−1 = (1, z′t,k−1)

′. Since

Ey2t < ∞ and E[yt − E(yt|Ft−1)]
2 > 0, the matrix E(z∗t,k−1z

∗′
t,k−1) is finite and positive

definite. We then can show that

σ̃2
y|z =

1

n

n∑
t=k+1

(yt−k − α1 − β′
1zt,k−1)

2 + op(n
−1/2)

= E(yt−k − α1 − β′
1zt,k−1)

2 + op(1). (A.11)

We next study the numerator of ϕ̃kk,τ . Let θ2,τ = (ϕ0(τ), ϕ1(τ), ..., ϕp(τ),0
′)′, and

θ̃2,τ = (α̃2,τ , β̃
′
2,τ )

′, where 0 is the (k − p) × 1 vector defined in the proof of Lemma 2,

and α̃2,τ and β̃2,τ are defined in Section 3.1. It is noteworthy that the series {yt} is

fitted by model (3.1) with order k − 1 and the true parameter vector θ2,τ . Accordingly,

et,τ = yt − θ′2,τz
∗
t,k−1 and the parameter estimate of θ2,τ is θ̃2,τ . Then, from the proof of

Theorem 4, we obtain that

√
n(θ̃2,τ − θ2,τ ) = {E[ft−1(0)z

∗
t,k−1z

∗′
t,k−1]}−1 · 1

n

n∑
t=k+1

ψτ (et,τ )z
∗
t,k−1 + op(n

−1/2).

Applying a similar approach to that used in obtaining (A.8), and then using the above
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result, we further have that

1

n

n∑
t=k+1

[ψτ (yt − θ̃′2,τz
∗
t−k)− ψτ (et,τ )]yt−k

= − 1

n

n∑
t=k+1

∫ (θ̃2,τ−θ2,τ )′z∗t,k−1

0

ft−1(s)dsyt−k + op(n
−1/2)

= −(θ̃2,τ − θ2,τ )
′ · 1
n

n∑
t=k+1

ft−1(0)yt−kz
∗
t,k−1 + op(n

−1/2)

= −A′
1(τ)Σ

−1
31 (τ) ·

1

n

n∑
t=k+1

ψτ (et,τ )z
∗
t,k−1 + op(n

−1/2), (A.12)

where A1(τ) and Σ31(τ) are defined as in Section 3.1. Subsequently, using similar tech-

niques to those for obtaining (A.4) and the result from equation (A.12), we obtain that

1

n

n∑
t=k+1

ψτ (yt − α̃2,τ − β̃′
2,τzt,k−1)yt−k

=
1

n

n∑
t=k+1

ψτ (et,τ )yt−k +
1

n

n∑
t=k+1

[ψτ (yt − θ̃′2,τz
∗
t,k−1)− ψτ (et,τ )]yt−k

=
1

n

n∑
t=k+1

ψτ (et,τ )[yt−k − A′
1(τ)Σ

−1
31 (τ)z

∗
t,k−1] + op(n

−1/2). (A.13)

Subsequently, applying a method similar to the proof of Theorem 2.1 in Li and Li (2008)

and Gutenbrunner and Jureckova (1992), we can show that the left-hand-side of (A.13)

is tight. This, in conjunction with equation (A.11), the central limit theorem for the

martingale difference sequence, the Cramer-Wold device, and Theorem 7.1 in Billingsley

(1999), completes the proof of theorem. From Lemma 2, we also have that ϕkk,τ = 0.
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Table 1: Bias (BIAS), sample standard deviation (SSD), and empirical coverage probability

at the 95% nominal level of ϕ̃kk,τ , computed from the time series data with non-i.i.d.

conditional quantile errors, at lags k = 2, 3 and 4 for τ = 0.25, and k = 3 and 4 for τ = 0.5

and 0.75.

n k BIAS SSD Empirical Coverage Probability

hHS hB 3hHS 0.6hB Boot

τ = 0.25

100 2 -0.0226 0.1014 93.4 93.4 93.4 93.5 93.0

3 -0.0160 0.1014 96.0 95.8 95.3 95.9 93.1

4 -0.0144 0.1034 94.7 94.5 93.6 94.8 91.2

200 2 -0.0142 0.0727 93.9 94.1 94.0 94.3 93.1

3 -0.0086 0.0713 94.5 94.5 94.5 94.4 92.2

4 -0.0174 0.0755 93.8 93.2 93.1 93.8 92.3

500 2 -0.0087 0.0444 95.5 95.4 95.4 95.4 94.2

3 -0.0013 0.0438 95.7 95.6 95.5 95.8 94.2

4 -0.0037 0.0428 96.0 96.0 95.8 96.1 94.4

τ = 0.5

100 3 -0.0109 0.1034 93.7 93.8 93.8 94.1 93.7

4 -0.0267 0.1021 94.3 94.3 94.3 94.3 93.6

200 3 -0.0031 0.0729 95.2 94.9 95.4 94.9 94.1

4 -0.0096 0.0710 94.5 94.3 94.4 94.5 94.5

500 3 -0.0029 0.0463 94.7 94.6 94.5 94.8 93.6

4 -0.0050 0.0462 94.0 93.9 93.9 94.0 93.5

τ = 0.75

100 3 -0.0068 0.1046 93.7 93.9 93.6 94.0 93.9

4 -0.0185 0.0993 94.9 94.9 94.8 95.0 93.3

200 3 -0.0005 0.0736 94.6 94.7 94.8 94.9 94.0

4 -0.0074 0.0723 94.0 94.2 94.1 94.1 93.6

500 3 0.0009 0.0443 95.4 95.4 95.4 95.5 95.1

4 -0.0059 0.0453 94.6 94.7 94.7 94.6 93.9
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Table 2: Bias (BIAS), sample standard deviation (SSD), and empirical coverage probability

at the 95% nominal level of ϕ̃k(τ), computed from the time series data with non-i.i.d.

conditional quantile errors, at lags k = 0, 1 for τ = 0.25 and k = 0, 1 and 2 for τ = 0.5

and 0.75.

n k BIAS SSD Empirical Coverage Probability

hHS hB 3hHS 0.6hB

τ = 0.25

100 0 0.0042 0.0621 95.2 97.1 100.0 94.5

1 0.0062 0.0254 95.3 95.3 99.3 94.5

200 0 -0.0007 0.0364 95.1 97.0 100.0 94.7

1 0.0028 0.0140 95.1 95.5 99.3 94.6

500 0 -0.0015 0.0218 95.4 96.4 100.0 94.9

1 0.0013 0.0071 95.4 95.0 99.2 95.2

τ = 0.5

100 0 0.0782 0.2514 96.3 97.5 97.7 94.4

1 0.0087 0.0814 89.1 90.0 90.3 90.8

2 -0.0326 0.1236 88.5 91.3 90.5 91.8

200 0 0.0357 0.1777 94.7 96.1 100.0 94.9

1 0.0043 0.0507 90.1 90.6 98.7 91.5

2 -0.0134 0.0920 93.7 94.0 99.7 94.1

500 0 0.0095 0.1103 96.2 97.3 99.8 94.8

1 0.0019 0.0314 90.3 92.1 96.6 92.3

2 -0.0032 0.0610 95.2 96.2 99.3 94.9

τ = 0.75

100 0 0.2244 0.5614 97.1 97.6 83.0 94.3

1 -0.0001 0.1661 89.6 90.0 79.0 90.2

2 -0.0855 0.2563 90.0 92.2 76.9 92.6

200 0 0.1071 0.3700 95.4 97.3 88.0 94.8

1 0.0050 0.1122 90.7 91.3 84.2 91.5

2 -0.0508 0.1900 92.2 93.1 85.7 93.3

500 0 0.0605 0.2344 95.4 96.5 92.7 95.2

1 -0.0013 0.0722 91.1 91.4 88.5 92.8

2 -0.0237 0.1257 92.1 95.8 90.5 94.3
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Table 3: Bias (BIAS), sample standard deviation (SSD), and empirical coverage probabil-

ity at the 95% nominal level of rk,τ , computed from the time series data with non-i.i.d.

conditional quantile errors, at lags k = 2, 4, and 6.

n QACF BIAS SSD Empirical Coverage Probability

hHS hB 3hHS 0.6hB

τ = 0.25

100 r2,τ -0.0137 0.0971 93.6 93.7 93.5 93.9

r4,τ 0.0012 0.0981 95.8 95.8 95.7 95.8

r6,τ 0.0044 0.0987 95.3 95.3 95.2 95.3

200 r2,τ -0.0062 0.0680 95.5 95.6 95.5 95.5

r4,τ 0.0008 0.0733 93.2 93.3 93.1 93.2

r6,τ 0.0000 0.0702 95.3 95.1 95.1 95.3

500 r2,τ -0.0022 0.0424 95.3 95.5 95.3 95.3

r4,τ 0.0003 0.0455 94.6 94.6 94.6 94.6

r6,τ 0.0002 0.0444 95.9 95.9 95.9 95.9

τ = 0.5

100 r2,τ 0.0164 0.0545 78.9 78.8 78.9 78.9

r4,τ 0.0014 0.0956 94.6 94.7 94.7 94.6

r6,τ -0.0019 0.0972 95.7 95.7 95.7 95.7

200 r2,τ 0.0084 0.0339 85.6 85.8 85.8 85.7

r4,τ 0.0006 0.0677 94.9 94.8 95.0 94.8

r6,τ -0.0014 0.0697 95.1 95.1 95.2 95.1

500 r2,τ 0.0028 0.0186 94.8 94.8 94.9 94.7

r4,τ 0.0000 0.0422 94.6 94.6 94.6 94.6

r6,τ 0.0022 0.0450 95.1 95.1 95.1 95.1

τ = 0.75

100 r2,τ 0.0100 0.0673 86.5 86.7 86.2 86.7

r4,τ -0.0068 0.0943 95.6 95.7 95.5 95.6

r6,τ -0.0067 0.0951 95.8 95.8 95.8 95.8

200 r2,τ 0.0057 0.0444 91.3 91.3 91.4 91.4

r4,τ -0.0042 0.0676 95.9 95.9 95.9 95.9

r6,τ -0.0030 0.0691 95.3 95.3 95.3 95.2

500 r2,τ 0.0037 0.0263 94.3 94.3 94.3 94.3

r4,τ 0.0004 0.0429 94.8 94.7 94.7 94.7

r6,τ -0.0035 0.0440 95.1 95.0 95.0 95.0
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Figure 1: The sample QPACF of the observed time series, ϕ̃kk,τ , with τ = 0.2, 0.4, 0.6,

and 0.8. The dashed lines correspond to ±1.96
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Figure 2: The time series plot and the sample ACF of the log return (as a percentage) of

the daily closing price on the Nasdaq Composite from January 1, 2004 to December 31,

2007.
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Figure 3: The sample QPACF of daily closing prices on the Nasdaq Composite and the

sample QACF of residuals from the fitted models for τ = 0.05, 0.5, and 0.95. The dashed

lines in the left and right panels correspond to ±1.96

√
Ω̂3/n and ±1.96

√
Ω̂5/n, respec-

tively.
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Table 4: Rejection rate of the test statistic QBP (K) with K = 6, τ = 0.25, 0.5 and 0.75,

and the 5% nominal significance level.

n = 100 n = 200 n = 500

ϕ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0.0 5.8 5.3 6.1 5.1 5.3 4.8 5.3 5.3 4.7

0.1 49.3 16.7 11.9 86.2 30.6 11.4 99.6 54.3 13.9

0.2 78.5 54.1 19.5 97.3 78.0 28.6 99.9 99.0 44.5
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Figure 4: The sample QACF of residuals from the fitted models for τ = 0.05, 0.5, and

0.95. The dashed lines correspond to 2.5th and 97.5th percentiles of the bootstrapped

distributions, respectively.
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