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Rates of β-amyloid deposition indicate widespread simultaneous 
accumulation throughout the brain

Molly R. LaPointa,*, Suzanne L. Bakerb, Susan M. Landaua,b, Theresa M. Harrisona, William 
J. Jagusta,b

aHelen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA

bMolecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, CA 
94720, USA

Abstract

Amyloid plaque aggregation is a pathologic hallmark of Alzheimer’s disease (AD) that occurs 

early in the disease. However, little is known about its progression throughout the brain. 

Using Pittsburgh Compound B (PIB)-PET imaging, we investigated the progression of regional 

amyloid accumulation in cognitively normal older adults. We found that all examined regions 

reached their peak accumulation rates 24–28 years after an estimated initiation corresponding 

to the mean baseline PIB-PET signal in amyloid-negative older adults. We also investigated the 

effect of increased genetic risk conferred by the apolipoprotein-E ɛ4 allele on rates of amyloid 

accumulation, as well as the relationship between regional amyloid accumulation and regional 

tau pathology, another hallmark of AD, measured with Flortaucipir-PET. Carriers of the ɛ4 allele 

had faster amyloid accumulation in all brain regions. Furthermore, in all regions excluding the 

temporal lobe, faster amyloid accumulation was associated with greater tau burden. These results 

indicate that amyloid accumulates near-simultaneously throughout the brain and is associated with 

higher AD pathology, and that genetic risk of AD is associated with faster amyloid accumulation.
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1. Introduction

Amyloid-beta (Aβ) plaques are a hallmark of Alzheimer’s disease and are also present 

in cognitively normal older adults. By their 70s, almost a third of older adults without 

cognitive impairment have extensive amyloid accumulation (Jack et al., 2008). Cognitively 

unimpaired individuals with abnormal levels of Aβ may have subtle brain and cognitive 

changes consistent with the presence of a “preclinical” phase of Alzheimer’s disease (AD) 

(Sperling et al., 2011), and may be on an “Alzheimer’s continuum” or have Alzheimer’s 

disease based on biomarker categorization (Jack et al., 2018). Thus, identifying the earliest 

stages of Aβ accumulation may be key to detecting who is at the highest risk for developing 
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AD so that they can be followed closely, identified for clinical trials, and, if treatments 

become available, receive them in a timely manner.

Aβ can be measured in vivo using cerebrospinal fluid (CSF) and positron emission 

tomography (PET) with Aβ-sensitive radioligands. Often, studies assign participants to 

a “normal” or “abnormal” Aβ group based on cut points using CSF or a global PET 

measure which encompasses frontal, temporal, parietal, and cingulate cortices. This may 

be missing early stages of Aβ deposition when plaques may be present in only a subset 

of regions. Some studies have investigated the temporal progression of Aβ pathology, but 

the results have been inconsistent. Neuropathological studies typically show that association 

cortex deposition precedes medial temporal lobe (MTL), primary sensorimotor cortex, and 

subcortical areas (Braak and Braak, 1991; Thal et al., 2002), but the cortical regions shown 

to incur the earliest Aβ pathologic burden with neuroimaging vary in both cross-sectional 

(Cho et al., 2016; Grothe et al., 2017; Villeneuve et al., 2015; Yotter et al., 2013) and 

existing longitudinal studies (Guo et al., 2017; Jelistratova et al., 2020; Mattsson et al., 2019; 

Palmqvist et al., 2017).

The goal of this study was to use cross-sectional and longitudinal Aβ-PET data to examine 

the regional changes in amyloid deposition when individuals are still cognitively normal. 

First, we replicated a method used previously (Cho et al., 2016) to show regions where 

elevated amyloid was seen cross-sectionally. For these cross-sectional analyses, we predicted 

that frontal, parietal, and lateral temporal regions would show evidence of earlier Aβ 
accumulation than occipital, MTL, and sensorimotor regions. Identifying the earliest regions 

to display elevated Aβ might allow us to detect cognitively normal individuals who are at 

high risk for AD when measures of whole-brain Aβ burden are still below the threshold 

for positivity. This approach, combined with longitudinal measurements, could also reveal 

potential mechanisms underlying the spread of Aβ. For example, if amyloid deposits 

appear in 1 region years before depositing in functionally-connected regions, this may 

indicate spread occurs through functional networks. On the other hand, if Aβ appears 

in multiple regions at once, these regions may share certain tissue properties that affect 

their vulnerability to Aβ pathology (Whittington et al., 2018). After regional amyloid 

accumulation is staged, the relationship between regional amyloid accumulation and risk 

factors for AD and other pathologic markers of AD can be investigated.

One way to study longitudinal amyloid change is to examine the relationship between 

baseline Aβ burden and rate of change in Aβ burden, which is a quadratic function when 

measured globally (Blautzik et al., 2017; Jack et al., 2013; Jagust and Landau, 2021; 

Villemagne et al., 2013). Using the quadratic equation representing this association, we 

can calculate a sigmoidal relationship between Aβ accumulation and time. The present 

study used this approach to investigate associations between regional slope and baseline 

global PET values to find the time course over which different regions reach their peak 

accumulation rates. The results from these longitudinal analyses were compared to a 

previous cross-sectional staging method (Cho et al., 2016). In addition, 2 previous studies 

have created a sigmoidal relationship between regional amyloid accumulation and time, one 

with modeled cross-sectional data (Whittington et al., 2018) and one with longitudinal data 

(Insel et al., 2020) and both show results that appear to be inconsistent with long-term 
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spread of Aβ from one region to another. We, however, predicted that frontal, parietal, 

and lateral temporal regions would reach their peak accumulation rate before occipital and 

MTL regions, but that most association cortex regions would show similar timing in Aβ 
accumulation.

In the process of examining rates of regional Aβ accumulation, we also investigated the 

most important genetic factor involved in late onset AD, the Apolipoprotein E (APOE) 

genotype. Individuals with the ε4 allele are more likely to develop sporadic AD. In 

cognitively normal cohorts, ε4 carriers have been shown to have higher levels of Aβ 
pathology than noncarriers (Fouquet et al., 2014; Resnick et al., 2015). However, studies 

of longitudinal Aβ accumulation rates in ε4 carriers and noncarriers are inconsistent, with 

some finding no significant difference in accumulation rates and others showing higher 

accumulation rates in ε4 carriers than noncarriers. (Burnham et al., 2020; Lim and Mormino, 

2017; Mishra et al., 2018; Resnick et al., 2015). It is unclear if ε4 carriers simply develop 

Aβ earlier than noncarriers, but accumulate at the same rate, or if accumulation rate itself 

is faster in carriers versus noncarriers. Here we investigate the relationship between regional 

accumulation rates of Aβ in ε4 carriers and noncarriers, controlling for baseline levels of 

pathology in each region. We predicted that ε4 carriers would have faster accumulation rates 

in regions found to accumulate Aβ earlier (frontal, parietal, and lateral temporal regions) 

versus ε4 noncarriers.

Finally, we were interested in the association of Aβ accumulation with another pathologic 

hallmark of AD, tau pathology. In contrast with Aβ, tau pathology accumulates following 

a stereotyped pattern beginning in the MTL (where high tau is common in older age), 

progressing to the surrounding inferolateral temporal lobes, and then spreading throughout 

the remaining cortex (Schöll et al., 2016; Vogel et al., 2020). Tau and Aβ burden are 

positively correlated in animal (He et al., 2018) and human studies (Lockhart et al., 2017; 

Vemuri et al., 2017) and individuals who have high levels of both are more likely to develop 

dementia (Pascoal et al., 2017).

The mechanisms by which high levels of tau and Aβ interact to create or contribute to 

cognitive decline are still unclear, especially since the regions susceptible to early tau, and 

Aβ deposition do not overlap. While relationships between cross-sectional PET measures of 

Aβ and tau have been explored (Lockhart et al., 2017), there are no data examining how 

the regional rates of Aβ deposition may lead to regional tau deposition. Thus, we sought 

to investigate the relationship between Aβ accumulation rates and cross-sectional tau-PET 

proximate to the final Aβ measurement, within, and between regions. By creating a map of 

early Aβ-depositing regions, we were able to investigate the relationships between regional 

accumulation rates and increased tau, both local, and distant. We predicted that MTL tau 

would be associated with rates of Aβ accumulation in all regions, but that tau pathology 

outside the MTL would only be associated with accumulation in early Aβ regions.

Therefore, our study seeks to increase understanding of how the time course of Aβ 
accumulation varies by region, whether these accumulation rates differ in those with genetic 

risk for sporadic AD, and how accumulation rates in regions with different time courses 

associate with tau pathology in AD.
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2. Materials and methods

2.1. Participants

We recruited 195 participants from the Berkeley Aging Cohort Study (Mormino et al., 

2009). All participants were cognitively normal, over 60 years of age, and had at least 

1 [11C] Pittsburgh compound B (PIB) Positron emission tomography (PET) scan for 

measurement of Aβ. A subset of 106 participants had more than 1 PIB-PET scan and 

were used for longitudinal analyses. Eighty-eight of these 106 participants had at least 

1 [18F] Flortaucipir (FTP) PET scan to measure tau pathology proximal to their final 

PIB-PET scan. All but 10 participants had FTP and PIB-PET scans on the same day and 

the median date difference was 0 days. Across all scans, the median difference between the 

PIB-PET and MRI scan was 8 days. Participant characteristics can be found in Table 1. 

Amyloid positive individuals were selectively recruited for longitudinal studies, producing 

an uncharacteristically high rate of amyloid positivity.

2.2. Image acquisition

[11C] PIB was synthesized at Lawrence Berkeley National Lab (LBNL) Biomedical Isotope 

Facility as previously described (Mathis et al., 2003). PIB-PET imaging was carried out on 

1 of 2 scanners, the ECAT EXACT HR or the BIOGRAPH PET/CT Truepoint 6. Previous 

studies have shown that there is no significant difference in distribution volume ratios 

(DVRs) between the 2 scanners (Elman et al., 2014).

Details of PIB-PET scan acquisition have been previously outlined (Lockhart et al., 2017). 

Subjects received an intravenous injection of PIB (~15 mCi), at the beginning of 90 minutes 

of dynamic acquisition frames. The data were binned into 35 frames (4 × 15 seconds, 8 × 

30 seconds, 9 × 60 seconds, 2 × 180 seconds, 10 × 300 seconds, and 2 × 600 seconds). A 

transmission or CT scan was acquired immediately before the emission scan for attenuation 

correction.

[18F]FTP-PET was synthesized at LBNL based on a protocol provided by Avid 

Radiopharmaceuticals as previously described (Schöll et al., 2016). FTP scans were done 

on the BIOGRAPH scanner. Data acquired from 80 to 100 minutes post-injection were 

binned into 4 × 5-minute frames during reconstruction and used in subsequent analyses.

All PET images were reconstructed using an ordered subset expectation maximization 

algorithm with weighted attenuation, scatter correction, and smoothed with a 4mm Gaussian 

kernel. Participants also underwent MRI on a 1.5 Tesla Siemens Magnetom Avanto 

MRI scanner at LBNL. A FreeSurfer (FS; http://surfer.nmr.mgh.harvard.edu/) version 5.3 

segmentation of a T1-weighted magnetization prepared rapid gradient echo (MPRAGE) scan 

(TR/TE = 2110/3.58 ms, FA = 15°, 1 × 1 × 1 mm resolution) was to used parcellate PET 

scans into regions of interest (ROIs) for analysis of PET images.

2.3. Image processing

2.3.1. PIB-PET—PIB-PET data were realigned, resliced, and coregistered to correspond 

to their closest structural scan from the 1.5 T MRI. There was a median of 7 days between 
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the scans (range 0–767 days). Logan graphical analysis was used to calculate the DVR 

values as the slope of frames 35–90 minutes post-injection with a cerebellar reference 

region (Logan et al., 1996; Price et al., 2005). The structural MRI corresponding to each 

PET scan was processed with FS to derive ROIs in native space for each subject using 

the Desikan-Killiany atlas. The PET image was coregistered to the MRI, allowing us to 

calculate mean regional DVR values for each FS ROI. The global cortical PIB measure 

was calculated in native space for each participant (Mormino et al., 2011). In addition, 

the following FS regions were averaged to form larger composite cortical regions: lateral 

parietal (superior parietal, supramarginal, inferior parietal), medial parietal (precuneus, 

isthmus cingulate, posterior cingulate, paracentral), lateral frontal (rostral middle frontal, 

caudal middle frontal, pars orbitalis, pars triangularis, pars opercularis), medial frontal 

(superior frontal, caudal anterior cingulate, rostral anterior cingulate), orbitofrontal (OFC; 

frontal pole, medial and lateral orbitofrontal) sensorimotor (precentral and postcentral), 

inferior lateral temporal (fusiform, inferior and middle temporal), superior lateral temporal 

(superior temporal, transverse temporal, banks of the superior temporal sulcus), insula 

(insula), MTL (entorhinal and parahippocampal) and occipital (lateral occipital, lingual, 

cuneus, pericalcarine).

2.3.2. FTP-PET—FTP Standardized Uptake Value Ratio (SUVR) images were generated 

based on mean tracer uptake 80–100 minutes post-injection using an inferior cerebellar 

gray matter reference region (Baker et al., 2017a). Like the PIB-PET data, the images were 

coregistered, and resliced to each subject’s 1.5 Tesla MR scan closest to the FTP scan. The 

scans occurred, on average, 30 days apart. SUVR images were partial volume corrected 

using the Geometric Transfer Matrix approach on FreeSurfer-derived values (Baker et al., 

2017b; Rousset et al., 1998). The same composite ROIs were calculated for FTP as for PIB.

2.4. Statistical analysis

Statistical Analyses were conducted using MATLAB version 9.4 (R2018a; MathWorks, 

Inc, Natick, Massachusetts) and R version 3.4 (https://www.R-project.org/), including the 

packages nlme for analyses and ggplot2 and ggseg3d for data visualization.

2.4.1. Cross-sectional PIB staging analyses—We used cross-sectional data to infer 

a pattern of temporal progression of Aβ deposition, similar to methods used by others in 

staging Aβ pathology (Cho et al., 2016) in order to determine the ordering of positivity 

between regions, and to allow for comparison with the longitudinal methods. Mean and 

standard deviation values for each region were calculated in the subset of participants below 

the cutoff for PIB positivity (N = 122; DVR <1.065; Villeneuve et al., 2015). These values 

were used to Z-score each region’s data for the entire sample. For each region, the number 

of participants with a Z-score >2.5 was counted, and regions were ranked from those with 

the highest proportion of individuals with Z-scores >2.5 to those with the lowest. Ties were 

broken by calculating the mean value of the Z-scores, with higher Z-score means leading to 

a higher ranking.

2.4.2. Longitudinal PIB staging analyses—A linear function of DVR versus time 

was used to characterize the annual rate of change for subsequent analyses that minimized 
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distance from the regression line (Leal et al., 2018). Next, linear and quadratic models were 

fit in R using annual accumulation rate for each region (along with global PIB slope) and 

baseline global PIB values. In the linear model (slope ~ BL global PIB), regional slope was 

the dependent variable, and global PIB was the independent variable. The quadratic model 

included the same parameters, but also included a baseline global PIB squared term (slope 

~ BL global PIB + BL global PIB2). For regions where both baseline global PIB terms were 

significantly associated with slope, Aikake Information Criterion (AIC), and residual sum of 

squares were used to compare the fit.

For regions where the quadratic model was a better fit, the maximum of the quadratic 

equation (created using the estimates from the model) could be found algebraically: for the 

function f(x) = ax2 + bx + c, the maximum point is (−b/(2a), f(−b/(2a)). The x coordinate 

represents the global PIB DVR at which this region’s PIB accumulation rate is fastest. 

Because all equations used baseline global PIB DVR as the independent variable, the global 

DVRs at which each region reaches its peak accumulation can be directly compared.

We next calculated the annual change in global DVR starting from the mean baseline global 

PIB DVR for PIB negative participants (DVR = 1.02). Annual change was calculated using 

the quadratic function through a time course of 50 years (Jagust and Landau, 2021). We also 

converted DVR values to Centiloids (CLs), a standardized scale allowing for comparison of 

results using different Aβ-PET radiotracers (Klunk et al., 2015). This approach enabled us to 

determine when accumulation in a region starts to decelerate.

2.4.3. PIB-APOE associations—Participants were categorized as carriers or 

noncarriers of the APOE ε4 allele. Because noncarrier longitudinal accumulation data did 

not fit quadratic models, linear mixed effects models (LME models) carried out using the 

R package nlme were used for these analyses to compare the linear trajectories of the 

carriers and noncarriers. In these models, PIB-PET was the dependent variable, with fixed 

effects APOE status, age, and sex, all interacting with time. The random effects were 

(1+time|subject) which modeled a subject-specific intercept and allowed the results to vary 

by subject over time.

2.4.4. Amyloid-tau associations—Relationships between PIB-PET accumulation 

rates and FTP-PET within and across ROIs were examined using LMEMs. In these models 

FTP-PET was the dependent variable, with fixed effects PIB-PET, age, and sex as well as 

their interactions with time. The random effects were (1+time|subject). Local and distant 

analyses were run for all regions, as well as analyses examining the association between 

global PIB accumulation rate, and regional tau. All statistics are reported at a liberal 

threshold of p < 0.05, uncorrected.

3. Results

3.1. Cross-sectional results

The results of the cross-sectional analysis can be found in Table 2. There were small 

differences in the proportions of participants with abnormal values in frontal and parietal 
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cortex. Regions with the lowest proportion of abnormal subjects were sensorimotor, MTL, 

and occipital.

Fig. 1 shows these results graphically for each participant. Global PIB-PET captured the 

greatest number of people with elevated Aβ pathology. Furthermore, most participants were 

either above the cut points in all or nearly all regions or were not above the cut point 

in any region. Taken together with the finding that global PIB had the most participants 

above a Z-score of 2.5, this indicates that although some individuals show regionally specific 

PIB-PET signal, levels of PIB do not considerably differ by region.

3.2. Longitudinal results

Quadratic Model Fit—Quadratic models better fit the data in 8 of 11 regions and global 

PIB. The global PIB value at which each region reaches its fastest rate of accumulation, as 

well as the average rate of accumulation for each region, can be seen in Table 3. Neither 

the fastest accumulating (OFC; 0.014 DVR/year) or the slowest accumulating (MTL; 0.003 

DVR/year) fit a quadratic. The first region to reach its peak accumulation rate was lateral 

parietal. Insula was the final one, with a difference in DVR of 0.13, CL value of 17, and an 

estimated time difference of 2–4 years. The quadratic fits for a subset of regions are plotted 

in Fig. 2.

3.2.1. Regional PIB time course—Given a starting point of the mean global PIB value 

for PIB negative participants (DVR = 1.02; CL = 4), it would require 8–9 years to reach 

the threshold for PIB positivity (DVR = 1.065; CL = 10). The time course of global PIB 

accumulation can be seen in Fig. 3, with the points at which select regions reach their peaks 

superimposed on the global PIB graph.

3.3. PIB-APOE relationships

In all models, APOE status was significantly associated with PIB-PET, both in its own 

term, and interacting with time. Visualization showed that ε4 carriers had higher PIB-PET at 

baseline, and it increased at a slightly faster rate. Results of these models are listed in Table 

4 and a subset of associations between ε4 carrier status and regional slope are shown in Fig. 

4.

3.4. Tau-amyloid relationships

Relationships between longitudinal PIB accumulation and FTP looked similar, regardless 

of the PIB region in LMEs (Fig. 5). Local relationships were only seen between PIB 

accumulation rates and FTP in the lateral parietal (t [157] = 2.28, p = 0.024), superior lateral 

temporal (t [157] = 2.19, p = 0.029) and occipital regions (t [157] = 2.70, p = 0.0078). 

For most PIB regions, accumulation rate was most strongly associated with temporal 

FTP, especially lateral temporal regions, and lateral parietal FTP. PIB accumulation rates 

measured globally, and in medial parietal and OFC, were most strongly associated with FTP 

in temporoparietal brain regions, and also were associated with a wider distribution of FTP. 

Notably, these PIB regions, along with global PIB, were the 4 PIB measures with the highest 

percent involvement of PIB in cross-sectional methods, and among the fastest accumulation 

rates.
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Furthermore, PIB accumulation in the medial, and inferior lateral temporal lobe was not 

associated with FTP in any region. Both regions had lower percent involvement of PIB in 

cross-sectional methods; inferior lateral temporal was one of the last regions to reach its 

peak accumulation rate in the quadratic analyses.

4. Discussion

In this study, we investigated global rates of regional Aβ accumulation, and examined 

whether dynamics of Aβ accumulation in different brain regions differed from one another. 

This focus on both global and regional rates of Aβ accumulation allowed us to determine 

another measure of regional vulnerability to Aβ and permitted us to see how regional 

rates of Aβ accumulation related to APOE genotype and tau deposition. As anticipated, 

cross-sectional results showed that global PIB-PET signal captured the most individuals with 

elevated Aβ. Those with high levels of PIB-PET in one region were likely to have high 

PIB-PET in most regions, but small differences between regions indicated that high levels 

of Aβ were most common in frontal and parietal regions, and least common in temporal 

cortex (particularly the MTL), the occipital lobe, and sensorimotor cortex. In longitudinal 

analyses, all investigated regions reach their peak accumulation rate within a span of 4 years 

(24–28 years after accumulation began), indicating that spread from one region to another 

is unlikely, although, as discussed below, this inference is subject to some limitations. 

Compared to noncarriers, APOE ε4 carriers had higher baseline Aβ, and faster accumulation 

in all regions even after controlling for regional baseline Aβ. Lastly, faster Aβ accumulation 

was associated with elevated tau in temporal and parietal regions. These relationships were 

stronger and more widespread in the brain regions that deposited Aβ more rapidly, and 

no relationships were seen between Aβ accumulation in MTL or inferior lateral temporal 

regions and tau pathology in any region. Together, these results further our understanding of 

the regional dynamics of Aβ accumulation in unimpaired older adults and show how the rate 

of accumulation relates to genetics and tau pathology.

4.1. Regional amyloid deposition

In the present study, there were regions that were more likely to harbor amyloid deposition 

than others, but most regions seemed to accumulate amyloid at a similar rate. Cross-

sectionally, frontal and parietal regions were more likely to harbor elevated Aβ, and MTL 

sensorimotor, and occipital regions were less likely. Elevated Aβ in one region, however, 

was typically indicative of elevated Aβ throughout much of the cortex. These results are 

consistent with autopsy studies, in which frontal, parietal, and lateral temporal regions 

consistently show Aβ plaques before MTL and primary sensorimotor cortex (Braak and 

Braak, 1991; Thal et al., 2002). Cross-sectional Aβ-PET data show that deposition of Aβ in 

the sensorimotor cortex, occipital lobe, and medial temporal regions is less at early stages 

of AD (Cho et al., 2016; Grothe et al., 2017; Yotter et al., 2013). Our findings using the 

methods from Cho et al. (2016) largely replicate their results and add to a body of literature 

showing elevated Aβ in neocortical association areas with fewer individuals harboring high 

Aβ in MTL, sensorimotor, and occipital regions.
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Cross-sectional results, however, do not address whether brain regions accumulate Aβ at 

different rates. In our longitudinal analyses, we found that all regions reached their peak 

accumulation rates 24–28 years after accumulation begins. A benefit of the present study 

is that, since accumulation in all regions was fitted to a quadratic with baseline global 

Aβ, we could directly compare the timing of accumulation. We found that, although some 

regions might accumulate Aβ slightly earlier or more quickly, the temporal differences 

between regional rates of Aβ accumulation are small. Many studies of regional Aβ have 

created staging schema using various methods. Some studies use cutoffs to identify regions 

that are elevated more often. One such study identified basal portions of the temporal 

lobe, the anterior cingulate, and parietal operculum as the earliest regions of deposition, 

with large portions of the frontal, parietal, and temporal lobes following in the second 

stage (Grothe et al., 2018). Although this staging method was created with cross-sectional 

data, it has been verified longitudinally (Jelistratova et al., 2020; Teipel et al., 2020). 

Others identify participants as Aβ accumulators or non-accumulators with the help of CSF 

measurements of Aβ, and compare where Aβ is highest, or where it is increasing fastest 

in accumulators versus non-accumulators. In these studies, earliest-stage Aβ appeared in 

the medial parietal lobe, medial frontal, and orbitofrontal cortex, with one additionally 

identifying lateral temporal regions (Mattsson et al., 2019; Palmqvist et al., 2017). Studies 

have also investigated either regions where participants have a high Aβ burden compared 

to their global Aβ value, or simply regions where either baseline Aβ burden is highest 

or where Aβ burden is increasing the fastest. Highest baseline values and fastest rates of 

change are often seen in the precuneus, anterior and posterior cingulate, and lateral frontal 

regions (Guo et al., 2018, 2017; Insel et al., 2020). What is typically consistent, however, 

is that medial temporal, occipital, and sensorimotor regions are among the final regions 

to become involved (Grothe et al., 2017; Guo et al., 2018, 2017; Mattsson et al., 2019; 

Palmqvist et al., 2017). Previous studies have often used clinically diverse cohorts including 

cognitively impaired participants. The wide array of regions that may define early stages 

of Aβ deposition may be due to demographic differences and/or PET radiotracer properties 

magnifying small differences in different cohorts.

This study is largely consistent with previous studies modeling the time course of Aβ over 

a sigmoidal trajectory. Important time points found in this paper and 3 others can be found 

in Table 5. Besides the present study, all other papers included cognitively impaired patients 

in their analyses (Jack et al., 2013; Jagust and Landau, 2021; Villemagne et al., 2013), and 

Villemagne et al. used mean PIB rather than baseline PIB. Despite these differences, the 

temporal patterns are surprisingly similar. From a starting point of the mean Aβ burden of 

CNs, in the present study it would take 28–29 years to reach a typical Aβ burden for AD 

patients (equivalent to a CL value of 100), versus 28 years in ADNI (Jagust and Landau, 

2021) and 31 years in AIBL (Villemagne et al., 2013). The time course in AIBL is very 

similar to the present study, with only the time to the Aβ positivity threshold more than 

approximately 2 years longer (12 years vs. 8–9 years). In ADNI the starting point for the 

sigmoid is the same as the present study (4 CL) and the overall time course is very similar, 

but the amount of time it takes to reach the peak accumulation rate from the Aβ positivity 

threshold is much shorter (3 years vs. 17–18 years) and the time to reach an average AD 

patient value from that peak is much longer (18 years vs. 3–4 years). This may be due 
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to the high number of cognitively impaired participants in the ADNI study (>60%) along 

with the requirement that only controls with positive amyloid-PET slopes were included. 

Data from the Mayo Clinic Study of Aging (MCSA) are somewhat difficult to compare 

because the starting SUVR for inclusion was higher. Perhaps for this reason, timing from a 

positive scan (an SUVR of 1.5) to a value typical of an AD patient required only about 14 

years. Across all studies the most variable period of accumulation seems to be from the Aβ 
positivity threshold to the peak, which included values of 3, 6.6, and 18 years. Differences 

may be related in part to Aβ tracer used, or methodological differences in PET processing 

(such as the chosen reference region). This is a dynamic phase of Aβ accumulation and 

the inverted-U relationship is variable across studies, and any time course is relative to a 

study-defined starting point, so differences likely also reflect cohort composition.

Two papers have modeled sigmoidal trajectories for regional Aβ (Insel et al., 2020; 

Whittington et al., 2018). As in this report, which modeled trajectories of regional 

accumulation relative to global Aβ so regional time courses can be compared on the same 

time scale, these results found limited differences in accumulation between regions. Insel 

and colleagues modeled accumulation of Aβ in different brain regions as a function of 

estimated disease time, and found that some regions, such as the precuneus and posterior 

cingulate, begin with high uptake and continue to increase in Aβ-PET uptake over time; 

other regions (lateral OFC, isthmus cingulate, inferior parietal) start high but increase more 

slowly; in this report, all regions appear to reach their inflection point around the same time. 

This is similar to the findings of an earlier paper modeling accumulation with cross-sectional 

data, which concluded that amyloid accumulation begins simultaneously throughout the 

brain and that all regions reach their peak accumulation rates around the same time, with 

differences in the rate of accumulation based on carrying capacity (Whittington et al., 2018). 

This may help explain the somewhat surprising finding that sensorimotor cortex was one of 

the regions to reach its peak accumulation rate earlier despite relatively low levels of Aβ. 

This contrast between rapid accumulation rates and low values of Aβ may reflect 2 distinct 

processes, such that vulnerability may reflect either the rate of accumulation or the resulting 

amount of pathology.

The overall similarities of our results with these previous studies, despite using only 

cognitively normal older adults, is notable. The time course appears to be elongated in 

the present study, which is not surprising given the entirely cognitively normal sample. 

The trajectory may be longer than in a sample of individuals who either have probable 

AD dementia or are likely to develop it (those with MCI, cognitive deficits, high Aβ, 

accelerating Aβ accumulation, etc.). However, it is useful to investigate the time course of 

Aβ in a cognitively normal sample as well. Many of these individuals are amyloid positive 

and so are considered to be on the Alzheimer’s continuum; while we did not dichotomize 

tau outcomes, some would also be classified as having biomarker evidence of Alzheimer’s 

disease according to the current research framework (Jack et al., 2018). Understanding the 

earliest stages of Aβ, before cognitive impairment, may be crucial to early treatment of the 

disease, and this time course would be harder to parse if patients were included in the model.

Overall, these results indicate that significant inter-region spread of Aβ, through functional 

connections or otherwise, is not likely, given the short time differences between each 
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region’s peak accumulation rate. This seems especially unlikely when taking into account 

the variability in early-stage regions seen post mortem (Braak and Braak, 1991; Thal et al., 

2002) and PET studies of regional Aβ (Guo et al., 2018; Mattsson et al., 2019; Sakr et al., 

2019). This is also consistent with the frequent finding that in large samples, Aβ positive 

and Aβ negative participants dominate, with few intermediate individuals, consistent with 

widespread and rapid increases in Aβ in vulnerable individuals and regions. This stands 

in contrast with tau pathology, which is mainly restricted to MTL regions in older adults 

without cognitive impairments, seeming to spread to nearby temporal lobe locations and 

functionally-connected regions in the presence of higher Aβ over longer time periods and 

through documented networks of connectivity (Adams et al., 2019; Franzmeier et al., 2020; 

Schöll et al., 2016; Vogel et al., 2020). However, we recognize that our models depend 

on Aβ that can be visualized with PET. It is possible that soluble forms of Aβ, or even 

fibrillar forms at very low and undetectable levels, may spread through connectivity many 

years before signal can be detected with a PET scan. Furthermore, it is possible that 

network-based spread could happen extremely quickly.

It seems most likely that regions which accumulate Aβ earlier share factors that make them 

vulnerable to aggregated Aβ peptide accumulation. They may, for example, have similar 

properties. In a study of regional gene expression, higher expression of the Aβ precursor 

protein (APP) gene, and reduced expression of genes involved in protein synthesis and 

mitochondrial respiration are associated with higher levels of Aβ-PET (Grothe et al., 2018). 

Patterns of regional metabolism are also implicated based on data showing that amyloid 

accumulating regions are involved in aerobic glycolysis (Vlassenko et al., 2010) and that 

they have lifelong elevated levels of glucose metabolism (Oh et al., 2016). These genetic 

and metabolic factors are likely to drive shared vulnerability resulting in Aβ aggregation 

appearing almost simultaneously in susceptible regions.

4.2. APOE E4-regional Aβ accumulation relationships

In this study, we also found that carriers of the APOE ε4 allele had faster accumulation 

of Aβ than noncarriers in all brain regions, adjusting for the difference in baseline Aβ. 

Our results are consistent with studies that report faster rates of accumulation in carriers 

(Burnham et al., 2020; Lim and Mormino, 2017; Mishra et al., 2018), although there are 

discrepancies (Lopresti et al., 2020; Resnick et al., 2015) Burnham et al (2020). and Lim 

and Mormino (2017) both noted effects of APOE ε4 genotype early in the stage of Aβ 
deposition, prior to reaching an amyloid positivity threshold. Thus, it is possible that the 

ε4 allele shifts the onset of Aβ deposition by subtly increasing rates prior to reaching an 

amyloid positive stage.

4.3. Regional amyloid-tau relationships

Longitudinal associations between Aβ accumulation and tau mirrored the relationships 

found in our previous report with cross-sectional data (Lockhart et al., 2017) and were also 

similar to the pattern of elevated tau seen in studies investigating longitudinal global Aβ and 

tau (Tosun et al., 2017). Faster PIB accumulation in most regions was associated with cross-

sectional FTP-PET in a relatively limited group of brain regions, with strongest relationships 

seen between PIB in multiple regions and FTP in the temporal lobe, where pathologic 
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tau is known to accumulate early in AD (Braak and Braak, 1991; Johnson et al., 2016; 

Schöll et al., 2016). Nevertheless, there were some regional associations between rates of Aβ 
accumulation and tau deposition, with no association between Aβ accumulation in inferior 

lateral and media = l temporal lobes and tau pathology, and stronger associations between 

Aβ accumulation in faster accumulating regions (OFC and medial parietal cortex) and tau 

pathology. The fact that regional Aβ accumulation was associated with a similar pattern of 

tau—especially temporal tau—is consistent with interpretations of prior cross-sectional data 

indicating that tau and Aβ pathology start in different regions, and that the location of Aβ 
accumulation bears non-specific relationship to the location of tau pathology both within and 

outside the temporal lobe. The similar findings for both cross-sectional and longitudinal Aβ 
accumulation raise crucial unanswered questions about how the widespread pattern of Aβ 
accumulation drives a relatively more focal deposition of tau pathology.

4.4. Limitations

There are some limitations to the present study. The sample size is relatively small, 

compared to some studies. About half of the participants have only 2 PIB-PET time 

points, whereas it is optimal for longitudinal analyses to have 3 or more time points. In 

addition, all participants in the cohort are cognitively unimpaired. This is partially a strength 

and is helpful for characterizing early pathologic changes and as previously mentioned, 

verifying that Aβ accumulation in CN older adults follows a quadratic shape. However, 

it has drawbacks, such as limiting the number of high-Aβ ε4 noncarriers. Our ability to 

extrapolate to the full spectrum across the natural history of AD is thus limited.

Aggregating the smaller, FreeSurfer-defined regions into larger regions is another potential 

limitation to the study. The data for small regions were noisy and did not typically follow 

a sigmoidal trajectory. Perhaps in a larger or more cognitively diverse cohort, sigmoidal 

functions could be fit for smaller regions. Similarly, the ideal way to compare ε4 carriers and 

noncarriers would be to fit separate quadratics. The noncarriers in this sample, however, did 

not fit a quadratic probably because of lower levels of Aβ in the noncarriers in particular. 

In a larger sample, or one with impaired individuals, there may be enough noncarriers with 

high accumulation rates, which would allow for the fitting of 2 separate quadratics.

In the Aβ-tau analyses, we chose to use a liberal threshold of p < 0.05, not correcting 

for multiple comparisons, to visualize our results. This analysis was meant primarily to 

show the patterns of elevated tau regions in relation to regional accumulation of Aβ, rather 

than to directly compare the extent of tau deposition associated with accumulation of Aβ 
in each region. Because of this liberal threshold, we cannot claim from these analyses 

that accumulation of Aβ in one region leads to higher tau than any other region. In fact, 

though, the results again indicate to us greater regional similarities than differences in the 

relationships between where Aβ increases over time, and where tau deposits.

Finally, it is well known that Aβ-PET imaging is limited by the fact that it can only show 

us the location of Aβ plaques, which follow an earlier, oligomeric form of Aβ that is 

considered more toxic (Sakono and Zako, 2010; Salahuddin et al., 2016). It is possible that 

the reason for inconsistencies in “early regions” or findings such as those in the present 

study that amyloid appears to arise near-simultaneously in many brain regions, is due to 
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PETs inability to image the very early phases of Aβ accumulation. However, there is 

currently no method to image oligomeric Aβ.

5. Conclusions

This study indicates that Aβ accumulates nearly simultaneously throughout the brain in 

cognitively normal older adults. Global Aβ accumulation follows a sigmoidal trajectory 

over time, and the time of peak accumulation of Aβ of different brain regions can be 

placed on that trajectory within a 4-year span, peaking approximately 24–28 years after 

participants reach the mean baseline Aβ burden of cognitively normal, Aβ-negative older 

adults. Furthermore, faster rates of regional Aβ accumulation throughout the brain are 

associated with APOE ε4 allele carriage. Finally, faster accumulation of Aβ in nearly all 

regions was associated with elevated tau pathology, particularly in the temporal and parietal 

lobes, with little difference based on where Aβ accumulates. These results indicate that Aβ 
is unlikely to spread from one region to another, at least early in the disease process, but 

rather arises quickly across the brain perhaps based on shared molecular vulnerability. In 

addition, this study shows that those who have faster rates of Aβ accumulation not only 

have elevated genetic risk for sporadic, late-onset AD, but also exhibit elevated burden of a 

second hallmark of AD, tau pathology.
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Fig. 1. 
Regional PIB by subject using cross-sectional Z-score method. In this figure, each 

participant is represented on the x-axis, in descending order by their global PIB DVR, and 

the regions are listed with on the y-axis. For each participant, the regions with a Z-score 

above 2.5 standard deviations are filled in black. Most participants who have elevated 

PIB-PET in one region have it in most or all other regions.
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Fig. 2. 
Quadratic Fit for a subset of regions. These figures show the relationships between global 

PIB at baseline and regional accumulation of amyloid for a subset of the analyzed regions. 

Global PIB is on the x-axis and regional change (DVR/year) is on the y-axis. Study 

participants are color coded according to how many PIB scans they have received. The 

black “X” on each graph is the point at which the regional slope is at its maximum. After 

this time point, regional PIB begins to decelerate.
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Fig. 3. 
Sigmoidal time-global PIB relationship, showing different points of interest. This figure 

shows how global PIB DVR changes (y-axis) over 50 years, starting with the mean PIB 

DVR of amyloid-negative participants in the current study (DVR = 1.02). It takes 8–9 

years to reach a DVR of 1.065, the cutoff for PIB positivity in this sample, and the 8 

different regions reach their peak accumulation rates between 24 and 28 years from the 

mean baseline.
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Fig. 4. 
PIB accumulation rates in ε4 carriers versus noncarriers. These plots show the accumulation 

over time in ε4 carriers versus noncarriers. ε4 carriers have significantly faster accumulation 

in all regions (see Table 4), controlling for baseline age and sex, and both terms interacting 

with time, in the linear mixed effects models. These figures are showing linear model fits in 

each group, not including any covariates.
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Fig. 5. 
PIB-Tau relationships. Colors reflect the association between regional Aβ accumulation 

rates in the indicated brain region and regional FTP-PET at a liberal threshold of p < 

0.05, without correction for multiple comparisons. The pattern of associations between Aβ 
accumulation rates and tau deposition is similar across regions, with the strongest PIB-FTP 

relationships in temporal and lateral parietal regions and more moderate associations in 

global, OFC, and medial parietal PIB regions.
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Table 2

Z-score method results. Cross-sectional analyses ranked regions based on the number of participants with 

elevated Aβ in each region. Elevated Aβ was defined as having a Z-score value above 2.5 standard deviations, 

based on the Aβ-negative participants.

Region Percent Involvement Z-score mean

Global PIB 26.7% 2.87

OFC 25.6% 2.16

Medial Parietal 25.1% 2.12

Medial Frontal 24.1% 2.16

Lateral Parietal 23.1% 1.85

Lateral Frontal 23.1% 2.43

Insula 23.1% 1.60

Inferior Lateral Temporal 22.1% 2.21

Superior Lateral Temporal 17.4% 1.59

Occipital 17.4% 1.01

MTL 16.9% 0.98

Sensorimotor 15.4% 1.08
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