
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Efficient Resource Management for Machine Learning

Permalink
https://escholarship.org/uc/item/3gd8d85s

Author
Bhardwaj, Romil

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3gd8d85s
https://escholarship.org
http://www.cdlib.org/

Efficient Resource Management for Machine Learning

by

Romil Bhardwaj

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ion Stoica, Chair
Dr. Ganesh Ananthanarayanan
Professor Joseph E. Gonzalez

Professor Scott Shenker

Fall 2023

Efficient Resource Management for Machine Learning

Copyright 2023
by

Romil Bhardwaj

1

Abstract

Efficient Resource Management for Machine Learning

by

Romil Bhardwaj

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Ion Stoica, Chair

The increasing computational demands of Machine Learning (ML) models, coupled with a slow-
down in hardware advancements, have led to a significant compute supply-demand gap. This gap
is evident in the rising costs and limited availability of resources needed for training complex ML
models like GPT-4. These challenges hinder the progress and accessibility of ML.

This thesis aims to bridge the compute supply-demand gap by improving resource efficiency of
ML. We introduce Ekya, Cilantro, and ESCHER, three new systems and methods for improving re-
source efficiency at different layer in the ML stack. Ekya, at the ML application layer, implements
a Thief Scheduling algorithm and a Microprofiler to intelligently redistribute resources between
inference and retraining tasks, thereby making continuous learning four times more resource-
efficient. Cilantro, in the cluster management layer, utilizes online learning to develop dynamic
resource-performance models, enabling performance-aware resource allocation in multi-tenant en-
vironments. At the orchestration layer, ESCHER introduces ephemeral resources, allowing ML
applications to specify custom scheduling requirements without overhauling the underlying clus-
ter manager. This unique approach provides applications with the flexibility to adapt to evolving
needs while maintaining simplicity in system design. Together, these systems represent a com-
prehensive approach to mitigating the compute supply-demand gap, contributing sustainable and
efficient resource management techniques.

i

To my parents.

ii

Contents

Contents ii

List of Figures iv

List of Tables ix

1 Introduction 1

2 Ekya: Efficient Continuous Learning on the Edge 5
2.1 Introduction . 5
2.2 Continuous training on edge compute . 8

2.2.1 Edge computing for video analytics . 8
2.2.2 Compressed DNN models and data drift 9
2.2.3 Accuracy benefits of continuous learning 10

2.3 Scheduling retraining and inference jointly . 11
2.3.1 Configuration diversity of retraining and inference 11
2.3.2 Illustrative scheduling example . 14

2.4 Ekya: Solution Description . 15
2.4.1 Formulation of joint inference and retraining 16
2.4.2 Thief Scheduler . 16
2.4.3 Complexity analysis . 19
2.4.4 Performance estimation with micro-profiling 20

2.5 Implementation and Experimental Setup . 21
2.6 Evaluation . 23

2.6.1 Overall improvements . 23
2.6.2 Understanding Ekya’s improvements . 27
2.6.3 Effectiveness of micro-profiling . 28
2.6.4 Comparison with alternative designs . 30

2.7 Limitations and Discussion . 32
2.8 Related Work . 32
2.9 Conclusion . 33

iii

3 Performance-aware Scheduling with Cilantro 34
3.1 Introduction . 34
3.2 Background & Related Work . 38
3.3 Cilantro Architecture . 39
3.4 Policies . 42

3.4.1 Resource allocation in shared clusters . 43
3.4.2 Microservice resource allocation . 48

3.5 Discussion . 48
3.6 Implementation . 49
3.7 Evaluation . 51

3.7.1 Multi-tenant cluster sharing . 52
3.7.2 Resource allocation for Microservices . 59
3.7.3 Microbenchmarks . 61

3.8 Conclusion . 61

4 ESCHER 63
4.1 Introduction . 63
4.2 Motivation . 66

4.2.1 Existing systems are hard to evolve . 68
4.2.2 Static labels are insufficient . 69

4.3 ESCHER Design and Workflow . 69
4.3.1 ESCHER workflow . 70
4.3.2 Ephemeral Resource API . 71
4.3.3 ESLs - ESCHER Scheduling Libraries . 71
4.3.4 Fault tolerance . 72
4.3.5 Evolvability and complexity in ESCHER 73

4.4 Scheduling with ESCHER . 74
4.4.1 Scheduling primitives in ESCHER . 75
4.4.2 Scheduling policies with ESCHER . 76

4.5 Implementation . 78
4.6 Evaluation . 79

4.6.1 End-to-end Evaluation . 80
4.6.2 Microbenchmarks . 83

4.7 Discussion . 85
4.8 Related Work . 86
4.9 Conclusion . 88

5 Conclusion 89
5.1 Lessons Learnt . 89
5.2 Future Work . 90

Bibliography 93

iv

List of Figures

1.1 The machine learning stack spanning across the orchestration, cluster management,
and ML application layers. This dissertation introduces techniques and systems (listed
on the right) to improve resource efficiency across all three layers. 2

2.1 Cameras connect to the edge server, with consumer-grade GPUs for DNN inference
and retraining containers. 8

2.2 Continuous learning in the Cityscapes dataset. Shift in class distributions (a) across
windows necessitates continuous learning (b). Model accuracy is not only affected by
class distribution shifts (c), but also by changes in object appearances (d). 10

2.3 Measuring retraining configurations. GPU seconds refers to the duration taken for re-
training with 100% GPU allocation. (a) varies two example hyperparameters, keeping
others constant. Note the Pareto boundary of configurations in (b); for every non-
Pareto configuration, there is at least one Pareto configuration that is better than it in
both accuracy and GPU cost. 12

2.4 Resource allocations (top) and inference accuracies (bottom) over time for two retrain-
ing windows (each of 120s). The left figures show a uniform scheduler which evenly
splits the 3 GPUs, and picks configurations resulting in the most accurate models. The
right figures show the accuracy-optimized scheduler that prioritizes resources and op-
timizes for inference accuracy averaged over the retraining window (73% compared
to the uniform scheduler’s 56%). The accuracy-optimized scheduler also ensures that
inference accuracy never drops below a minimum (set to 40% in this example, denoted
as aMIN). 13

2.5 Ekya’s components and their interactions. 17
2.6 Effect of adding video streams on accuracy with different schedulers. When more

video streams share resources, Ekya’s accuracy gracefully degrades while the base-
lines’ accuracy drops faster. (“Uniform (Cfg 1, 90%)” means the uniform scheduler
allocates 90% GPU to inference, 10% to retraining) 24

2.7 Improvement of Ekya extends to two more compressed DNN classifiers and two pop-
ular object detectors. 26

2.8 Inference accuracy of different schedulers when processing 10 video streams under
varying GPU provisionings. 27

2.9 Ekya’s resource allocation to two video streams over time. Ekya adapts when to retrain
each stream’s model and allocates resource based on the retraining benefit to each stream. 28

v

2.10 (a) Component-wise impact of removing dynamic resource allocation (50% allocation)
or removing retraining configuration adaptation (fixed Cfg 2). (b) Robustness of Ekya
to a wide range of retraining window values. 29

2.11 Evaluation of microprofiling performance. (a) shows the distribution of microprofil-
ing’s actual estimation errors, and (b) shows the robustness of Ekya’s performance
against microprofiling’s estimation errors. 30

2.12 Ekya vs. re-using cached models. Compared to cached-model selection techniques,
models retrained with Ekya maintain a consistently high accuracy, since it fully lever-
ages the latest training data and is thus more robust to data-drift. 31

3.1 Two users, U1 and U2, serving TPC-DS benchmark queries with different resource-
throughput mappings and performance goals (SLO). A user’s demand is the amount of
CPUs needed for her SLO. 35

3.2 Cilantro overview. Cilantro uses continuous feedback to dynamically learn each job’s
resource-to-performance mappings. An uncertainty-aware resource allocation policy,
instantiated for the user’s objective, uses these mappings to determine allocations. . . 37

3.3 The Cilantro scheduler and client architecture. The scheduler generates resource allo-
cations for jobs and the clients collect performance feedback to report to the scheduler.

. 41
3.4 Three candidates for SLO-based utility functions. The left-most figure shows a job’s

performance pj as a function of the resources (for fixed load). In (a), the utility scales
linearly with performance until the SLO, i.e u′

j(p) ∝ min(p,SLO), whereas in (b) it
scales quadratically u′

j(p) ∝ min(p,SLO)2, and in (c) it scales with the square-root
u′
j(p) ∝ min(p,SLO)1/2. Here, (b) captures settings where even small SLO viola-

tions are critical while (c) captures settings where small SLO violations are not very
significant. 42

3.5 Comparison of the three (oracular) fair allocation criteria described in §3.4.1 in a syn-
thetic example with 60 CPUs. Left: Utility curves for three jobs. The y axis is the
utility and the x-axis is the number of resources. For simplicity, we have ignored the
loads and assumed that utilities increase linearly up to the demand. The total demand
is 150, whereas only 60 resources are available. Right: The allocations and utilities
for each job under the three criteria. We have also shown the WS (3.1), WE (3.2), and
FNJC (3.3) metrics for each policy. 44

vi

3.6 Illustration of Cilantro’s uncertainty-aware demand-based policies. We first obtain a
UCB ℓ̂j from the load forecaster, which ensures that we have a conservative estimate
on the job’s load. In the figure, the x axis is the amount of resources aj that could be
allocated to job j. We show the SLO (pink), the slice of the unknown performance
curve (blue) when the load is ℓ̂j , and the confidence region obtained from past data
(green). The LCB p̂j and UCB p̂j on pj(a, ℓ̂j) are given by the lower and upper bound-
aries of the confidence region (solid green lines). A confidence interval for the demand
(orange) can be obtained by the region where p̂j, p̂j intersect the SLO line. To obtain a
recommendation, we compute a UCB demhatjr on the demand (where SLO intersects
p̂j) and d

(r)

j via equation (3.5). 47
3.7 Performance vs resource-allocation-per-unit-load obtained after profiling the database

querying, predicition serving and ML training workloads. The blue curve is the av-
erage performance value and the shaded region is the 2σ confidence interval. For the
latency-based workloads (DB-0, DB-1, and prediction serving), we show the number
of resources per unit load (arrival QPS) on the x-axis and the fraction of queries com-
pleted under 2s on the y-axis. For the ML training workload, we show the number
of resources on the x axis the amount of data processed per second on the y-axis. To
obtain accurate estimates, we sampled low resources allocations more densely. 51

3.8 Sampled query arrival rate from the twitter trace collected over the duration of a day. . 54
3.9 NJC fairness vs the social and egalitarian welfare (see §3.4.1) for all policies. We

report the average value over the 6 hour period. Higher is better for all metrics, so
closer to the top right corner is desirable. The Oracle-SW, Oracle-EW policies opti-
mize for the social and egalitarian welfare when the performance mappings are known
and Oracle-NJC achieves maximum fairness while improving cluster usage. The cor-
responding Cilantro policies are designed to do the same without a priori knowledge
of the performance mappings. 56

3.10 Convergence over time of social, egalitarian welfares and NJC fairness for the three
Cilantro policies. 57

3.11 The average utility achieved by the 20 jobs for the three online learning methods in
Cilantro and Resource-Fair. Here, db0x, mltx, db1x, and prsx refers to jobs using the
DB-0, ML training, DB-1, and prediction serving workloads from § 3.7.1. 57

3.12 The utility of db16 under the three online learning policies, when they report truthfully,
when they under-report, and when they over-report. The plot normalizes with respect
to truthful reporting, but the bars are annotated with the absolute value. 58

3.13 Left: Microservices architecture of the hotel reservation benchmark[60]. Blue boxes
are business logic, red boxes are caching services, yellow boxes are databases and pur-
ple boxes are networking services. Center: Results for the microservices experiment
comparing four methods on P99 latency over 6 hours, plotting the instantaneous P99
latency vs time. Right: The time-averaged P99 latency vs time. 59

vii

3.14 Cilantro microbenchmarks. Left: Mean time taken (in seconds) by Cilantro to up-
date the performance model and for computing a new allocation for each of the three
fixed cluster sharing policies. Center: Evaluation of Cilantro’s fallback option, where
users provide a demand value if they cannot report performance metrics. We evaluate
Cilantro-NJC when 5 out of 20 users use this option. Since the true demand cannot
be known, we use either half or twice the true demand under the median load from
our profiled data. Right: The three performance metrics for Cilantro-NJC when we
artificially introduce error to the confidence intervals of the performance and load. . . 60

4.1 (a) A monolithic scheduler implements both scheduling and resource constraint matching [62,
82, 71, 26]. Some schedulers allow applications to express and compose certain policies [110,
188, 26], but custom application policies may require modifying the scheduler itself. (b) To
maximize flexibility, some frameworks expose physical resources [76, 165], but require appli-
cations to write custom schedulers that manage both policy and resource coordination [202,
148, 45]. (c) ESCHER. With ephemeral resources, applications can express custom policies
through ephemeral resources, while the cluster scheduler provides just one service - satisfying
per-task resource constraints. 64

4.2 Example using ephemeral resources for task placement. Applications create ephemeral
resources (my-resource) on the nodes where they wish to place a task and then launch
a task requesting my-resource. The resource-matching scheduler ensures the task is
placed on the desired node. 70

4.3 ESCHER task submission workflow with an ESL mediating the implementation. A
task requests a supported scheduling policy from the ESL, which invokes the ESCHER
API if necessary and returns the resource specification which would satisfy the policy.
The task is launched with the returned resource specification. 72

4.4 Scheduling with ESCHER. (a) Soft constraints with ESCHER. (b) Composition of
load-balancing and co-location policies with ephemeral resources in ESCHER. 76

4.5 Data locality and hierarchical max-min fair sharing for WordCount. (a) Makespan of
WordCount running on a 100-node Kubernetes cluster, comparing a random placement
policy, ESCHER on Kubernetes with data locality, and Kubernetes’ native data local-
ity. (b) Makespan of WordCount MapReduce jobs in seconds across varying cluster
sizes. (c) Hierarchical max-min fair sharing with ESCHER. A and B are in Sub-Org1
with weights 2:3; C is in Sub-Org2. A, B, and C begin submitting tasks at t =0, 60,
and 120, respectively. 80

4.6 AlphaZero and distributed training performance on ESCHER. (a) A CDF of Alp-
haZero board exploration latency, and (b) Throughput comparison of a distributed
training workload with a mix of short-running and long-running jobs. EscherTune
is an augmentation of the hyperparameter search framework Tune [109], using ES-
CHER to dynamically re-schedule jobs as others complete. The red X indicates the
completion of a short job. 82

4.7 Implementing AlphaZero policy with ESCHER, composing co-location with load-
balancing. 83

viii

4.8 Request latency for gang scheduling implemented in the application space, with (Lib-
Space) and without (AppSpace) coordination, versus the framework space (FrameS-
pace). FrameSpace is 1624 lines of code (LoC), LibSpace with 261 LoC and AppSpace
with 78 LoC. 83

4.9 ESCHER microbenchmarks. (a) Mean per-resource creation latency in Ray. Creat-
ing ephemeral resources in ESCHER is a low-cost operation that scales linearly with
the number of resources created. (b) Scheduling latency overheads from presence of
ephemeral resources. Makespan of a 10000 task workload remains unaffected by the
count of ephemeral resources in the cluster. (c) Effect of task resource requirements
on scheduling latency in an environment with 10000 resources. 85

ix

List of Tables

2.1 Hyperparameter configurations for retraining jobs in Figure 2.4’s example. At the
start of retraining window 1, camera A’s inference model has an accuracy of 65%
and camera B’s inference model has an accuracy of 50%. Asterisk (*) denotes the
configurations picked in Figures 2.4b and 2.4d. 12

2.2 Notations used in Ekya’s description. 15
2.3 Capacity (number of video streams that can be concurrently supported subject to accu-

racy target 0.75) vs. number of provisioned GPUs. Ekya scales better than the uniform
baselines with more available compute resource. 25

2.4 Retraining in the cloud under different networks [56, 141, 168] versus using Ekya at
the edge. Ekya achieves better accuracy without using expensive satellite and cellular
links. 29

3.1 Cilantro and related work. Cilantro uses real-world metrics (e.g., latency) to build
performance models online, which can be used to derive custom policies for different
objectives. 38

3.2 Details of the bins created from TPC-DS queries. Each user’s workload is generated
using these bins. Execution time is profiled on a SQLite3 database running on AWS
m5.2xlarge instance with one allocated CPU core. 52

3.3 SLO and utility functions used for jobs in experiments in §3.7.1. For Latency based
SLOs, the SLO implies the fraction of queries that completed under 2 seconds. For
Throughput based SLOs, the SLO is the desired query rate, measured in queries per
second. 53

3.4 The social welfare (3.1), egalitarian welfare (3.2), NJC fairness metric (3.3), and the
effective resource usage (3.8) for all 13 methods. Higher is better for all four metrics,
and the maximum and minimum possible values for all metrics are 1 and 0. The
values shown in bold have achieve the highest value for the specific metric, besides the
oracular policies. Resource-Fair has NJC fairness FNJC = 1 by definition. 58

4.1 Common scheduling policies and off-the-shelf support from existing schedulers. Ku-
bernetes comparision includes both modes of operation, using just the core scheduling
functionality and using labels. In addition to these policies, ephemeral resources allow
applications to specify and compose custom policies. 67

4.2 Expressing scheduling constraints with ephemeral resources 74

x

Acknowledgments

It would be inaccurate to call this my dissertation. This dissertation is the product of many
people’s efforts, and I am grateful to all of them for their contributions.

First and foremost, I would like to thank my advisor, Ion Stoica, for his guidance and support
throughout this PhD. Ion showed me beauty in simplicity, and the power of simple ideas. His
relentless emphasis on driving impact by finding the right problems and solving them with the
most effortless yet powerful solutions continues to inspire me. When times got challenging, he has
always been a source of encouragement and support. I learn something new every time I meet him,
and I am immensely grateful for his mentorship.

My dissertation committee members, Ganesh Ananthanarayanan, Joseph Gonzalez, and Scott
Shenker, have been instrumental in shaping my research. Ganesh taught me how to formulate
problems and succinctly present them, Joey’s endless enthusiasm and leadership by example has
been a constant source of inspiration, and Scott’s sharp (and witty) insights have always been a
delight. I have also had the pleasure of interacting with many other faculty members at Berkeley,
including Prabal Dutta, Raluca Ada Popa and Michael Jordan, whose feedback and guidance has
been invaluable.

I have had the privilege of working with two amazing postdocs during my PhD - Alexey Tu-
manov and Kirthevasan Kandasamy. Their mentorship significantly shaped my research and writ-
ing, and their friendship made this journey memorable. Without them this PhD would have been
much harder.

I have been fortunate to collaborated with many brilliant friends during my PhD. I extend my
sincere thanks to my ESCHER project collaborators - Alexey Tumanov, Robert Nishihara, Philipp
Moritz, Richard Liaw, Stephanie Wang, and Eric Liang, who showed me how to build impactful
open-source systems like Ray. In 2019 I interned at Microsoft Research, where I had the pleasure
of working on Ekya with Ganesh Ananthanarayanan, Junchen Jiang, Zhengxu Xia, Kevin Hsieh
and Nikolaos Karianakis. I would also like to thank my collaborators on the Cilantro project -
Kirthevasan Kandasamy, Wenshuo Guo, Benjamin Hindman, and Asim Biswal.

More recently, I have been working on SkyPilot with Zongheng Yang, Zhanghao Wu, Wei-Lin
Chiang, Michael Luo, Woosuk Kwon, Siyuan Zhuang, Doyoung Kim, Tian Xia, Tyler Griggs and
Ziming Mao. Building SkyPilot has been a very rewarding experience, and I am thankful to my
collaborators without whom it would not have been possible.

I am also thankful to Anant Sahai and the CS182 Spring 2023 staff for encouraging me to
challenge myself when I was a TA. It was an incredible learning experience and I enjoyed the
freedom I was granted to experiment with pedagogy and styles for teaching ML Systems.

The lab would not be functional without the staff of RISELab - Boban, Dave, Ivan, Jon, Kailee
and Kattt - who keep it up and running. Thank you for making our lives so much easier.

I will always cherish the wonderful time spent with friends in Berkeley - Yeshwanth Chera-
panamjeri, Melih Elibol, Silvery Fu, Anand Iyer, Paras Jain, Tarun Kathuria, Shishir Patil, Daniel
Rothchild, Peter Schafhalter, Eyal Sela, Jean-Luc Watson, Justin Wong, Samyukta Yagati, Wen

xi

Zhang, Hong Zhang, Tianjun Zhang and many others. A special mention to Sukrit Kalra, a re-
markable cook, roommate, colleague, and friend, whose companionship and conversations I have
greatly enjoyed.

Prior to coming to Berkeley, I was fortunate to be mentored by wonderful people at IIIT-Delhi
and Microsoft Research. I would like to thank Mayank Vatsa, Richa Singh, and Amarjeet Singh for
introducing me to research during my undergraduate studies at IIIT-Delhi. At Microsoft Research, I
was lucky to have worked with Ramachandran Ramjee, Krishna Chintalapudi, Muthian Sivathanu
and the systems group on the Gandiva, AutoCalib and Skip-Correlation projects. Ram was an
incredible mentor - he gave me the space to pursue my interests while providing direction when I
needed it. I aspire to have his zen-like approach to problems one day.

Whenever I needed a break from research, I could always count on my friends to cheer me
up. Apoorva Mittal and Yash Vijay have always been there for me and have never let me feel
away from home. There’s never a dull moment with Sanchit Saini and Ayushi Aggarwal around.
Apoorv Narang and Garen Checkley are the best kept secret of San Francisco - their cooking is par
excellence and being in their company is always a joy. More importantly, they introduced me to
Kaia, the most adorable dog whom I’ve had the honor of being friends with. I would also like to
thank Shivani Sinha for encouraging me to pursue this PhD.

I wouldn’t be writing this if it weren’t for my family. I am indebted to my parents, Anshu
Bhardwaj and Rattan Bhardwaj, for their unconditional love and making countless sacrifices to
provide me the right environment to thrive. My brother, Rijul Bhardwaj, is not only my closest
friend, but also one of my earliest mentors. From toying with bootable linux distros, to setting up
a DHCP server for an Age of Empires game, to overclocking our Nvidia 6200 GPU to run Crysis
- much of my interest in computer science stems from early experiences shared with him. In a
similar vein, my sister-in-law, Ritu Shrivastava, has been a wonderful friend and counsel - I am
grateful for her love and support. I would also like to thank my niece, Ritvi, for bringing so much
joy to our lives. Finally, I have nothing but love and gratitude for Jayasi, who has been my partner,
best friend, and confidant. Thank you for your unwavering love and support - I am lucky to share
my life with you.

1

Chapter 1

Introduction

Machine Learning (ML) is a major driver of economic value today. Estimates suggest that ML
could potentially contribute up to $4.4 trillion annually [32] to the global economy in the coming
years, impacting sectors ranging from healthcare to finance. This large value is rooted in ML’s
ability to extract insights from large amounts of data and automate decision-making processes,
revolutionizing traditional practices and enabling novel applications.

Machine learning workloads are characterized by their intensive resource requirements. They
require multiple iterations over large datasets to generate progressively accurate models, a process
which demands significant computational power. As a result, the compute demand of ML models
has escalated over time. For instance, training GPT-4[140] in 2023 is estimated to have required 21
billion petaFLOPs[54] of compute, representing an increase of more than 107× over AlexNet, the
largest model in 2012. This trend is indicative of the rising computational needs for ML, placing
increasing pressure on existing resources.

On the other hand, the supply of compute is struggling to keep up with the demand. Moore’s
law, which postulates that the number of transistors on a chip doubles every two years, is hitting
a wall. As transistors become smaller, reaching the size of a few nanometers, physical limitations
such as quantum effects and heat dissipation become significant challenges [186]. This makes
it increasingly difficult to continue shrinking components at the pace predicted by Moore’s Law.
Worse yet, Dennard scaling, which refers to the shrinking of transistors while maintaining con-
stant power density, has ended because of increased leakage currents and heat dissipation issues
at smaller transistor sizes [55]. Combined, these factors have led to a plateau in the growth of
compute performance [41].

The growing compute needs of ML and the plateauing supply of compute for training and
deploying these models has created a supply-demand gap. This gap manifests in two forms - lack
of resource availability and high costs of training ML models. The lack of availability [167, 78,
43] has resulted in organizations hoarding compute resources. As a corollary, the cost of training
ML models has seen explosive growth, with GPT-4 costing over $100 million to train in 2023 [98],
compared to AlexNet which costs $8.86 (inflation adjusted) to train in 2023[36]. As a result, this
supply-demand gap hurts the democratization of ML and hinders innovation.

CHAPTER 1. INTRODUCTION 2

Job Orchestrator ESCHER
Scheduling primitives to maximize performance by

providing scheduling flexibility

Cilantro
Use ML to efficiently allocate cluster

resources to meet SLAs

Ekya
Efficient continuous learning on

resource-constrained nodes

Cluster Manager

GPUs

ML Applications

GPUs GPUs

Figure 1.1: The machine learning stack spanning across the orchestration, cluster management,
and ML application layers. This dissertation introduces techniques and systems (listed on the right)
to improve resource efficiency across all three layers.

In this dissertation, we bridge the compute supply-demand gap by developing techniques to
make machine learning more resource efficient. By optimizing resource utilization, we aim to
reduce the overall demand for computational power, thereby easing the pressure on the strained
resource supply. By doing more with less, we can reduce the demand for compute resources.

How do we improve resource efficiency for ML? Examining the ML stack reveals opportunities
across its three layers (Figure 1.1):

1. Orchestration Layer: This layer consists of ML orchestration tooling and applications to
coordinate the execution high-level business logic and low-level complex distributed training
and inference tasks. Examples of such tools include Airflow[9], Kubeflow[11] and Pytorch
Distributed [143]. The resource efficiency of this layer is heavily dependent on its ability to
leverage application-level hints for performance optimization.

2. Cluster Management Layer: This layer is responsible for managing and allocating re-
sources in a cluster to run tasks submitted by the orchestration layer. It oversees scheduling
jobs, book-keeping of physical resources and handling failures, if any. Examples of clus-
ter managers include Kubernetes[26], Mesos[76] and YARN[192]. This layer is inherently
multi-tenant, where resources must be shared among different users belonging to the same
organization. As a result, maximizing resource efficiency at this layer requires careful allo-
cation of resources across jobs belonging to different to maximize overall cluster utility.

CHAPTER 1. INTRODUCTION 3

3. ML Application Layer: This layer comprises ML models and their training algorithms run-
ning on specialized accelerators such as GPUs. Tools like PyTorch[143], TensorFlow[123]
and JAX[23] are commonly used for model definition and job specification. Improving
resource efficiency at this layer requires optimizing the underlying ML models and the
scheduling algorithms used to allocate resources to them.

This dissertation builds techniques to improve ML efficiency by rethinking how our resource
allocation systems work. These techniques span all three layers of the machine learning stack.

At the ML application layer, we develop Ekya (Chapter 2) to make continuous learning,
a compute-intensive but necessary technique to run high-accuracy inference, 4x more efficient.
These eficiency improvements are enabled by the Thief Scheduling algorithm in Ekya, which in-
verts the work-stealing idea [21] to allow individual jobs to "steal" resources from one another. In
doing so, the scheduler reallocates resources from less critical inference jobs to more impactful re-
training jobs, prioritizing configurations that maximize accuracy improvements relative to resource
costs. Complementing this, the Microprofiler in Ekya accurately assesses the resource demands
and potential accuracy gains of various retraining configurations. This profiling enables the Thief
Scheduler to make informed and efficient decisions about resource distribution. Together, the Thief
Scheduler and the Microprofiler allow Ekya to effectively manage resource constraints and address
data drift in edge environments, achieving the same accuracy while using 4x fewer resources.

At the cluster manager layer, we find that the current resource allocation model used today
is inefficient. Most cluster managers are unaware of a job’s performance for a given resource
allocation, and instead expect users to state their resource requests when submitting jobs. How-
ever, because these requests are often best-effort estimates made by humans, they are inaccurate
and lead to inefficient resource allocation. To address this, we build Cilantro (Chapter 3), which
uses an online learning mechanism to form feedback loops with jobs, thereby estimating resource-
to-performance mappings and adapting to load shifts. This approach alleviates the need for job
profiling and allows for a variety of user- defined scheduling objectives. Cilantro’s policies are
uncertainty-aware, adapting to the learned models’ confidence bounds. It demonstrates effective-
ness in two scenarios: a multi-tenant 1000 CPU cluster, where it outperforms baselines and im-
proves user utilities up to 1.2−3.7×, and a microservices setting, where it reduces end-to-end P99
latency by 0.57× compared to baselines. In doing so, Cilantro marks a significant departure from
traditional performance-oblivious policies, offering a more flexible, accurate, and efficient method
of resource allocation.

Finally at the orchestration layer, we discover that modern machine learning applications have
very diverse scheduling requirements and their performance is highly sensitive to the underlying
cluster manager’s scheduling decisions. As these applications evolve, they require scheduling flexi-
bility which allows them to exercise control over how their tasks are placed and executed. However,
in today’s systems, this scheduling flexibility comes at the cost of simplicity. Expressing a custom
scheduling need requires an application to modify the underlying monolithic scheduler in the clus-
ter manager, a task which is inherently complex and challenging to maintain. In this dissertation,
we introduce ESCHER (Chapter 4), a cluster scheduler design that allows machine learning ap-

CHAPTER 1. INTRODUCTION 4

plications to express their scheduling requirements without the complexity of reimplementing a
cluster scheduler. ESCHER introduces ephemeral resources, an abstraction which allows appli-
cations to express scheduling constraints as resource requirements. These requirements are then
matched to available resources through a simple mechanism. Implemented on Kubernetes and
Ray, ESCHER demonstrates the ability to express common policies found in monolithic sched-
ulers, while also providing the flexibility for applications to easily create custom policies that were
previously unsupported.

In Chapter 5, we conclude by discussing future directions for research in this space. Specif-
ically, we discuss the lessons learnt and explore alternative approaches to closing the compute
supply-demand gap. Combined, this dissertation presents an approach to addressing the compute
supply-demand gap in ML through intelligent application-aware scheduling. By innovating across
the ML stack, it drives efficiency in resource utilization, paving the way for sustainable and cost-
effective ML in the face of its ever-growing computational demands.

5

Chapter 2

Ekya: Efficient Continuous Learning on the
Edge

We start by examining the bottom layer of the ML stack - the ML application layer. An emerging
class of ML applications are continuous learning applications, which continuously retrain their
models on new data to adapt to changes in the data distribution.

Continuous learning is particularly important for video analytics applications which use edge
compute servers for processing videos. Compressed models that are deployed on the edge servers
for inference suffer from data drift where the live video data diverges from the training data.
Continuous learning handles data drift by periodically retraining the models on new data. However,
since edge servers are resource-constrained, retraining models on the edge servers can impact the
inference accuracy and requires careful resource management.

In this Chapter, we introduce Ekya, which addresses the challenge of jointly supporting in-
ference and retraining tasks on edge servers, which requires navigating the fundamental tradeoff
between the retrained model’s accuracy and the inference accuracy. Ekya balances this tradeoff
across multiple models and uses a micro-profiler to identify the models most in need of retraining.
Ekya’s accuracy gain compared to a baseline scheduler is 29% higher, and the baseline requires
4× more GPU resources to achieve the same accuracy as Ekya.

2.1 Introduction
Video analytics applications, such as for urban mobility [158, 66] and smart cars [61], are being
powered by deep neural network (DNN) models for object detection and classification, e.g., Yolo
[85], ResNet [89] and EfficientNet [126]. Video analytics deployments stream the videos to edge
servers [16, 14] placed on-premise [7, 87, 172, 168]. Edge computation is preferred for video
analytics as it does not require expensive network links to stream videos to the cloud [168], while
also ensuring privacy of the videos (e.g., many European cities mandate against streaming their
videos to the cloud [180, 4]).

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 6

Edge compute is provisioned with limited resources (e.g., with weak GPUs [14, 16]). This
limitation is worsened by the mismatch between the growth rate of the compute demands of models
and the compute cycles of processors [185, 5]. As a result, edge deployments rely on model
compression [177, 200, 145]. The compressed DNNs are initially trained on representative data
from each video stream, but while in the field, they are affected by data drift, i.e., the live video
data diverges significantly from the data that was used for training [114, 160, 162, 39]. Cameras
in streets and smart cars encounter varying scenes over time, e.g., lighting, crowd densities, and
changing object mixes. It is difficult to exhaustively cover all these variations in the training,
especially since even subtle variations affect the accuracy. As a result, there is a sizable drop in
the accuracy of edge DNNs due to data drift (by 22%; §2.2.3). In fact, the fewer weights and
shallower architectures of compressed DNNs often make them unsuited to provide high accuracy
when trained with large variations in the data.
Continuous model retraining. A promising approach to address data drift is continuous learning.
The edge DNNs are incrementally retrained on new video samples even as some earlier knowledge
is retained [170, 64]. Continuous learning techniques retrain the DNNs periodically [199, 153];
we refer to the period between two retrainings as the “retraining window” and use a sample of the
data that is accumulated during each window for retraining. Such ongoing learning [206, 182, 99]
helps the compressed models maintain high accuracy.

Edge servers use their GPUs [16] for DNN inference on many live video streams (e.g., traffic
cameras in a city). Adding continuous training to edge servers presents a tradeoff between the
live inference accuracy and drop in accuracy due to data drift. Allocating more resources to the
retraining job allows it to finish faster and provide a more accurate model sooner. At the same time,
during the retraining, taking away resources from the inference job lowers its accuracy (because it
may have to sample the frames of the video to be analyzed).

Central to the resource demand and accuracy of the jobs are their configurations. For retraining
jobs, configurations refer to the hyperparameters, e.g., number of training epochs, that substantially
impact the resource demand and accuracies (§2.3.1). The improvement in accuracy due to retrain-
ing also depends on how much the characteristics of the live videos have changed. For inference
jobs, configurations like frame sampling and resolution impact the accuracy and resources needed
to keep up with analyzing the live video [86, 40].
Problem statement. We make the following decisions for retraining. (1) in each retraining win-
dow, decide which of the edge models to retrain; (2) allocate the edge server’s GPU resources
among the retraining and inference jobs, and (3) select the configurations of the retraining and in-
ference jobs. We also constraint our decisions such that the inference accuracy at any point in time
does not drop below a minimum value (so that the outputs continue to remain useful to the appli-
cation). Our objective in making the above three decisions is to maximize the inference accuracy
averaged over the retraining window (aggregating the accuracies during and after the retrainings).
Maximizing inference accuracy over the retraining window creates new challenges as it is different
from (i) video inference systems that optimize only the instantaneous accuracy [75, 40, 86], (ii)
model training systems that optimize only the eventual accuracy [1, 20, 175, 181, 201, 147].

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 7

Addressing the fundamental tradeoff between the retrained model’s accuracy and the inference
accuracy is computationally complex. First, the decision space is multi-dimensional consisting of a
diverse set of retraining and inference configurations, and choices of resource allocations over time.
Second, it is difficult to know the performance of different configurations (in resource usage and
accuracy) as it requires actually retraining using different configurations. Data drift exacerbates
these challenges because a decision that works well in a retraining window may not do so in the
future.
Solution components. Our solution Ekya has two main components: a resource scheduler and a
performance estimator.

In each retraining window, the resource scheduler makes the three decisions listed above in
our problem statement. In its decisions, Ekya’s scheduler prioritizes retraining the models of those
video streams whose characteristics have changed the most because these models have been most
affected by data drift. The scheduler decides against retraining the models which do not improve
our target metric. To prune the large decision space, the scheduler uses the following techniques.
First, it simplifies the spatial complexity by considering GPU allocations only in coarse fractions
(e.g., 10%) that are accurate enough for the scheduling decisions, while also being mindful of the
granularity achievable in modern GPUs [138]. Second, it does not change allocations to jobs dur-
ing the retraining, thus largely sidestepping the temporal complexity. Finally, our micro-profiler
(described below) prunes the list of configurations to only the promising options.

To make efficient choices of configurations, the resource scheduler relies on estimates of ac-
curacy after the retraining and the resource demands. We have designed a micro-profiler that
observes the accuracy of the retraining configurations on a small subset of the training data in the
retraining window with just a few epochs. It uses these observations to extrapolate the accuracies
when retrained on a larger dataset for many more epochs. Further, we restrict the micro-profiling
to only a small set of promising retraining configurations. These techniques result in Ekya’s micro-
profiler being 100× more efficient than exhaustive profiling while still estimating accuracies with
an error of 5.8%. To estimate the resource demands, the micro-profiler measures the retraining du-
ration per epoch when 100% of the GPU is allocated, and scales for different allocations, epochs,
and training data sizes.
Implementation and Evaluation. We have evaluated Ekya using a system implementation and
trace-driven simulation. We used video workloads from dashboard cameras of smart cars (Waymo
[146] and Cityscapes [122]) as well as from traffic and building cameras over 24 hours. Ekya’s
accuracy compared to competing baselines is 29% higher. As a measure of Ekya’s efficiency,
attaining the same accuracy as Ekya will require 4× more GPU resources on the edge for the
baseline.
Contributions: Our work makes the following contributions.
1) We introduce the metric of inference accuracy averaged over the retraining window for contin-
uous training systems.
2) We design an efficient micro-profiler to estimate the benefits and costs of retraining edge DNN
models.

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 8

Edge Server
Cameras

Local
network

Retraining & Inference
Containers

(GPUs)

Figure 2.1: Cameras connect to the edge server, with consumer-grade GPUs for DNN inference
and retraining containers.

3) We design a scalable resource scheduler for joint retraining and inference on edge servers.

2.2 Continuous training on edge compute

2.2.1 Edge computing for video analytics
Video analytics deployments commonly analyze videos on edge servers placed on-premise (e.g.,
from AWS [14] or Azure [16]). A typical edge server supports tens of video streams [30], e.g., on
the cameras in a building, with customized models for each stream [124] (see Figure 2.1).Video
analytics applications adopt edge computing for the following reasons [168, 87, 7].

1) Edge deployments are often in locations where the uplink network to the cloud is expensive
for shipping continuous video streams, e.g., in oil rigs with expensive satellite network or smart
cars with data-limited cellular network. *

2) Network links out of the edge locations experience outages [139, 168]. Edge compute
provides robustness against disconnection to the cloud [52] and prevents disruptions [33].

3) Videos often contain sensitive and private data that users do not want sent to the cloud (e.g.,
many EU cities legally mandate that traffic videos be processed on-premise [180, 4]).

Thus, due to reasons of network cost and video privacy, it is preferred to run both inference
and retraining on the edge compute device itself without relying on the cloud. In fact, with band-
widths typical in edge deployments, cloud-based solutions are slower and result in lower accuracies
(§2.6.4).

*The uplinks of LTE cellular or satellite links is 3− 10Mb/s [56, 141], which can only support a couple of 1080p
30 fps HD video streams whereas a typical deployment has many more cameras [168].

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 9

2.2.2 Compressed DNN models and data drift
Advances in computer vision research have led to high-accuracy DNN models that achieve high ac-
curacy with a large number of weights, deep architectures, and copious training data. While highly
accurate, using these heavy and general DNNs for video analytics is both expensive and slow [40,
79], which make them unfit for resource-constrained edge computing. The most common approach
to addressing the resource constraints on the edge is to train and deploy specialized and com-
pressed DNNs [177, 200, 145, 115, 137, 125], which consist of far fewer weights and shallower
architectures. For instance, Microsoft’s edge video analytics platform [158] uses a compressed
DNN (TinyYOLO [157]) for efficiency. Similarly, Google released Learn2Compress[66] for edge
devices to automate the generation of compressed models from proprietary models. These com-
pressed DNNs are trained to only recognize the limited objects and scenes specific to each video
stream. In other words, to maintain high accuracy, they forego generality for improved compute
efficiency [40, 79, 153].
Data drift. As specialized edge DNNs have shallower architectures than general DNNs, they
can only memorize limited amount of object appearances, object classes, and scenes. As a result,
specialized edge DNNs are particularly vulnerable to data drift [114, 160, 162, 39], where live
video data diverges significantly from the initial training data. For example, variations in the object
pose, scene density (e.g. rush hours), and lighting (e.g., sunny vs. rainy days) over time make it
difficult for traffic cameras to accurately identify the objects of interest (cars, bicycles, road signs).
Cameras in modern cars observe vastly varying scenes (e.g., building types, crowd sizes) as they
move through different neighborhoods and cities. Further, the distribution of the objects change
over time, which reduces the edge model’s accuracy [199, 215]. Due to their ability to memorize
limited amount of object variations, edge DNNs have to be continuously updated with recent data
and changing object distributions to maintain a high accuracy.
Continuous training. The preferred approach, that has gained significant attention, is for edge
DNNs to continuously learn as they incrementally observe new samples over time [206, 182, 99].
The high temporal locality of videos allows the edge DNNs to focus their learning on the most
recent object appearances and object classes [169, 153]. In Ekya, we use a modified version of
iCaRL[182] learning algorithm to on-board new classes, as well as adapt to the changing char-
acteristics of the existing classes. Since manual labeling is not feasible for continuous training
systems on the edge, the labels for the retraining are obtained from a “golden model” - a highly
accurate (87% and 84% accuracy on Cityscapes and Waymo datasets, respectively) but expensive
model (deeper architecture with large number of weights). The golden model cannot keep up with
inference on the live videos and we use it to label only a small fraction of the videos in the re-
training window. Our approach is essentially that of supervising a low-cost “student” model with
a high-cost “teacher” model (or knowledge distillation [77]), and this has been broadly applied in
computer vision literature [206, 153, 99, 199].

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 10

(a) Class Distribution (b) Accuracy

(c) Accuracy vs data drift (d) Person class variations

Figure 2.2: Continuous learning in the Cityscapes dataset. Shift in class distributions (a) across
windows necessitates continuous learning (b). Model accuracy is not only affected by class distri-
bution shifts (c), but also by changes in object appearances (d).

2.2.3 Accuracy benefits of continuous learning
To show the benefits of continuous learning, we use the video stream from one example city in
the Cityscapes dataset [122] that consists of videos from dashboard cameras in many cities. In our
evaluation in §2.6, we use both moving dashboard cameras as well as static cameras over long time
periods. We divide the video data in our example city into ten fixed retraining windows (200s in
this example).
Understanding sources of data drift. Figure 2.2a shows the change of object class distributions
across windows. The initial five windows see a fair amount of persons and bicycles, but bicycles
rarely show up in windows 6 and 7, while the share of persons varies considerably across windows
6− 10. Figure 2.2c summarizes the effect of this data drift on model accuracy in five independent
video streams, C1-C5. For each stream, we train a baseline model on the first five windows, and
test it against five windows in the future and use cosine similarity to measure the class distribution
shift for each window. Though accuracy generally improves when the model is used on windows
with similar class distributions (high cosine similarity), the relationship is not guaranteed (C2, C3).

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 11

This is because class distribution shift is not the only form of data drift. Illumination, pose and
appearance differences also affect model performance (e.g. clothing and angles for objects in the
person class vary significantly; Figure 2.2d).
Improving accuracy with continuous learning. Figure 2.2b plots inference accuracy of an edge
DNN (a compressed ResNet18 classifier) in the last five windows using different training options.
(1) Training a compressed ResNet18 with video data on all other cities of the Cityscapes dataset
does not result in good performance. (2) Unsurprisingly, we observe that training the edge DNN
once using data from the first five windows of this example city improves the accuracy. (3) Contin-
uous retraining using the most recent data for training achieves the highest accuracy consistently.
Its accuracy is higher than the other options by up to 22%.

Interestingly, using the data from the first five windows to train the larger ResNet101 DNN
(not graphed) achieves better accuracy than the continuously retrained ResNet18. The substantially
better accuracy of ResNet101 compared to ResNet18 when trained on the same data of the first five
windows also shows that this training data was indeed fairly representative. But the lightweight
ResNet18’s weights and architecture limits its ability to learn and is a key contributor to its lower
accuracy. Nonetheless, ResNet101 is 13× slower than the compressed ResNet18 [34]. This makes
the efficient ResNet18 more suited for edge deployments and continuous learning enables it to
maintain high accuracy even with data drift. Therefore, the need for continuous training of edge
DNNs is ongoing and not just during a “ramp-up” phase.

2.3 Scheduling retraining and inference jointly
We propose joint retraining and inference on edge servers. The joint approach utilizes resources
better than statically provisioning compute for retraining. Since retraining is periodic [199, 153]
with far higher compute demands than inference, static provisioning causes idling. Compared to
uploading videos to the cloud for retraining, our approach has advantages in privacy (§2.2.1), and
network costs and accuracy (§2.6.4).

2.3.1 Configuration diversity of retraining and inference
Tradeoffs in retraining configurations. The hyperparameters for retraining, or “retraining con-
figurations”, influence the resource demands and accuracy. Retraining fewer layers of the DNN (or,
“freezing” more layers) consumes lesser GPU resources, as does training on fewer data samples,
but they also produce a model with lower accuracy; Figure 2.3a.

Figure 2.3b illustrates the resource-accuracy trade-offs for an edge DNN (ResNet18) with var-
ious hyperparameters: number of training epochs, batch sizes, number of neurons in the last layer,
number of frozen layers, and fraction of training data. We make two observations. First, there is a
wide spread in the resource usage (measured in GPU seconds), by upto a factor of 200×. Second,
higher resource usage does not always yield higher accuracy. For the two configurations circled in
Figure 2.3b, their GPU demands vary by 6× even though their accuracies are the same (∼ 76%).

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 12

(a) Effect of Hyperparameters (b) Resource-accuracy

Figure 2.3: Measuring retraining configurations. GPU seconds refers to the duration taken for
retraining with 100% GPU allocation. (a) varies two example hyperparameters, keeping others
constant. Note the Pareto boundary of configurations in (b); for every non-Pareto configuration,
there is at least one Pareto configuration that is better than it in both accuracy and GPU cost.

Configuration Retraining Window 1 Retraining Window 2

End
Accuracy

GPU
seconds

End
Accuracy

GPU
seconds

Video A Cfg1A 75 85 95 90

Video A Cfg2A (*) 70 65 90 40

Video B Cfg1B 90 80 98 80

Video B Cfg2B (*) 85 50 90 70

Table 2.1: Hyperparameter configurations for retraining jobs in Figure 2.4’s example. At the
start of retraining window 1, camera A’s inference model has an accuracy of 65% and camera B’s
inference model has an accuracy of 50%. Asterisk (*) denotes the configurations picked in Figures
2.4b and 2.4d.

Thus, careful selection of the configurations considerably impacts the resource efficiency. More-
over, the accuracy spread across configurations is dependent on the extent of data-drift. Retraining
on visually similar data with little drift results in a narrower spread. With the changing character-
istics of videos, it is challenging to efficiently obtain the resource-accuracy profiles for retraining.
Tradeoffs in inference configurations. Inference pipelines also allow for flexibility in their re-
source demands at the cost of accuracy through configurations to downsize and sample frames

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 13

(a) Uniform scheduler (b) Accuracy-optimal scheduler

(c) Uniform scheduler (d) Accuracy-optimal scheduler

Figure 2.4: Resource allocations (top) and inference accuracies (bottom) over time for two re-
training windows (each of 120s). The left figures show a uniform scheduler which evenly splits
the 3 GPUs, and picks configurations resulting in the most accurate models. The right figures
show the accuracy-optimized scheduler that prioritizes resources and optimizes for inference ac-
curacy averaged over the retraining window (73% compared to the uniform scheduler’s 56%). The
accuracy-optimized scheduler also ensures that inference accuracy never drops below a minimum
(set to 40% in this example, denoted as aMIN).

[124]. Reducing the resource allocation to inference pipelines increases the processing latency per
frame, which then calls for sub-sampling the incoming frames to match the processing rate, that
in turn reduces inference accuracy [75]. Prior work has made dramatic advancements in profilers

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 14

that efficiently obtain the resource-accuracy relationship for inference configurations [86]. We use
these efficient inference profilers in our solution, and also to ensure that the inference pipelines
keep up with analyzing the live video streams.

2.3.2 Illustrative scheduling example
We use an example with 3 GPUs and two video streams, A and B, to show the considerations in
scheduling inference and retraining tasks jointly. Each retraining uses data samples accumulated
since the beginning of the last retraining (referred to as the “retraining window”).† To simplify the
example, we assume the scheduler has knowledge of the resource-accuracy profiles, but these are
expensive to get in practice (we describe our efficient solution for profiling in §2.4.4). Table 2.1
shows the retraining configurations (Cfg1A, Cfg2A, Cgf1B, and Cgf2B), their respective accura-
cies after the retraining, and GPU cost. The scheduler is responsible for selecting configurations
and allocating resources for inference and retraining jobs.
Uniform scheduling: Building upon prior work in cluster schedulers [164, 2] and video analytics
systems [75], a baseline solution for resource allocation evenly splits the GPUs between video
streams, and each stream evenly partitions its allocated GPUs for retraining and inference tasks;
see Figure 2.4a. Just like model training systems [65, 106, 105], the baseline always picks the
configuration for retraining that results in the highest accuracy (Cfg1A, Cfg1B for both windows).

Figure 2.4c shows the inference accuracies of the two live streams. We see that when the
retraining tasks take resources away from the inference tasks, the inference accuracy drops signifi-
cantly (65%→ 49% for video A and 50%→ 37.5% for video B in Window 1). While the inference
accuracy increases after retraining, it leaves too little time in the window to reap the benefit of re-
training. Averaged across both retraining windows, the inference accuracy across the two video
streams is only 56% because the gains due to the improved accuracy of the retrained model are
undercut by the time taken for retraining (during which inference accuracy suffered).
Accuracy-optimized scheduling: Figures 2.4b and 2.4d illustrate an accuracy-optimized sched-
uler, which by taking a holistic view on the multi-dimensional tradeoffs, provides an an average
inference accuracy of 73%. In fact, to match the accuracies, the above uniform scheduler would
require nearly twice the GPUs (i.e., 6 GPUs instead of 3 GPUs).

This scheduler makes three key improvements. First, the scheduler selects the hyperparam-
eter configurations based on their accuracy improvements relative to their GPU cost. It selects
lower accuracy options (Cfg2A/Cfg2B) instead of the higher accuracy ones (Cfg1A/Cfg1B) be-
cause these configurations are substantially cheaper (Table 2.1). Second, the scheduler prioritizes
retraining tasks that yield higher accuracy, so there is more time to reap the benefit from retraining.
For example, the scheduler prioritizes B’s retraining in Window 1 as its inference accuracy after
retraining increases by 35% (compared to 5% for video A). Third, the scheduler controls the ac-
curacy drops during retraining by balancing the retraining time and the resources taken away from

†Continuous learning targets retraining windows of tens of seconds to few minutes [199, 153]. We use 120 seconds
in this example. Our solution is robust to and works with any given window duration for its decisions (See §2.6.2).

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 15

Notation Description
V Set of video streams
v A video stream (v ∈ V)
T A retraining window with duration ∥T∥
Γ Set of all retraining configurations
γ A retraining configuration (γ ∈ Γ)
Λ Set of all inference configurations
λ An inference configuration (λ ∈ Λ)
G Total number of GPUs
δ The unit for GPU resource allocation

AT (v, γ, λ,R, I) Inference accuracy for video v for
given configurations and allocations

CT (v, γ, λ) Compute cost in GPU-time for video v for
given configurations and allocations

ϕvγλRI A set of binary variables (ϕvγλRI ∈ {0, 1}).
ϕvγλRI = 1 iff we use retraining config γ,
inference config λ,Rδ GPUs for retraining,
Iδ GPUs for inference for video v

Table 2.2: Notations used in Ekya’s description.

inference.

2.4 Ekya: Solution Description
Continuous training on limited edge resources requires smartly deciding when to retrain each video
stream’s model, how much resources to allocate, and what configurations to use. Making these
decisions presents two challenges.

First, the decision space of multi-dimensional configurations and resource allocations is com-
putationally more complex than two fundamentally challenging problems of multi-dimensional
knapsack and multi-armed bandits (§2.4.1). Hence, we design a thief scheduler (§2.4.2), a heuris-
tic that makes the joint retraining-inference scheduling tractable in practice.

Second, the scheduler requires the model’s exact performance (in resource usage and inference
accuracy), but this requires retraining using all the configurations. We address this challenge with
our micro-profiler (§2.4.4), which retrains only a few select configurations on a fraction of the
data. Figure 2.5 presents an overview of Ekya’s components.

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 16

2.4.1 Formulation of joint inference and retraining
The problem of joint inference and retraining aims to maximize overall inference accuracy for all
video streams V in a retraining window T with duration ∥T∥. All work must be done in G GPUs.
Thus, the total compute capability is G∥T∥ GPU-time. Without loss of generality, let δ be the
smallest granularity of GPU allocation. Each video v ∈ V has a set of retraining configurations Γ
and a set of inference configurations Λ (§2.3.1). Table 2.2 lists the notations.
Decisions. For each video v ∈ V in a window T , we decide: (1) the retraining configuration
γ ∈ Γ (γ = ∅ means no retraining); (2) the inference configuration λ ∈ Λ; and (3) how many
GPUs (in multiples of δ) to allocate for retraining (R) and inference (I). We use binary variables
ϕvγλRI ∈ {0, 1} to denote these decisions (see Table 2.2 for the definition). These decisions re-
quire CT (v, γ, λ) GPU-time and yields overall accuracy of AT (v, γ, λ,R, I). AT (v, γ, λ,R, I) is
averaged across the window T (§2.3.2), and the above decisions determine the inference accuracy
at each point in time.
Optimization. Maximize the inference accuracy averaged across all videos in a retraining window
within the GPU limit.

argmax
ϕvγλRI

1

∥V∥
∑

∀v∈V,∀γ∈Γ,∀λ∈Λ,
∀R,∀I∈{0,1,...,G

δ
}

ϕvγλRI ·AT (v, γ, λ,R, I)

subject to

1.
∑

∀v∈V,∀γ∈Γ,∀λ∈Λ,
∀R,∀I

ϕvγλRI · CT (v, γ, λ) ≤ G∥T∥

2.
∑

∀v∈V,∀γ∈Γ,∀λ∈Λ,
∀R,∀I

ϕvγλRI · (R+ I) ≤ G
δ

3.
∑

∀γ∈Γ,∀λ∈Λ,
∀R,∀I

ϕvγλRI ≤ 1, ∀v ∈ V

(2.1)

The first constraint ensures that the GPU allocation does not exceed the available GPU-time
G∥T∥ in the retraining window. The second constraint limits the instantaneous allocation (in
multiples of δ) to never exceed the available GPUs. The third constraint ensures that at most one
configuration is picked for retraining and inference each for a video v.

Our analysis in §2.4.3 shows that the above optimization problem is harder than the multi-
dimensional binary knapsack problem and modeling the uncertainty of AT (v, γ, λ,R, I) is more
challenging than the multi-armed bandit problem.

2.4.2 Thief Scheduler
Our scheduling heuristic makes the scheduling problem tractable by decoupling resource allocation
(i.e., R and I) and configuration selection (i.e., γ and λ) (Algorithm 1). We refer to Ekya’s

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 17

Retraining
profiles

Execution
(retraining)

Error
Correction

(§5) Allocate
resources

 Choose
configurations

 Retraining &
inference

Thief Scheduler
(§4.2)

Execution
(inference)

Checkpointed
models (§5)

Observed
accuracy

Corrected
profiles

Performance
profiles

(retraining &
inference)

Retraining job
Inference job

Retraining job
Inference job

.

.

.

Video
jobs

Video stream 1

Video stream n

Edge Server

Configuration
Profiles
(§3.1)

Micro-profiling
(§4.3)

 Accuracy of
configs.

 Resource
demands

Figure 2.5: Ekya’s components and their interactions.

scheduler as the “thief” scheduler and it iterates among all inference and retraining jobs as follows.
(1) It starts with a fair allocation for all video streams v ∈ V (line 2 in Algorithm 1). In each

step, it iterates over all the inference and retraining jobs of each video stream (lines 5-6), and steals
a tiny quantum ∆ of resources (in multiples of δ; see Table 2.2) from each of the other jobs (lines
10-11).

(2) With the new resource allocations (temp_alloc[]), it then selects configurations for the jobs
using the PickConfigs method (line 14 and Algorithm 2) that iterates over all the configurations for
inference and retraining for each video stream. For inference jobs, among all the configurations
whose accuracy is ≥ aMIN, PickConfigs picks the configuration with the highest accuracy that can
keep up with the inference of the live video stream given current allocation (line 3-4, Algorithm
2).

For retraining jobs, PickConfigs picks the hyperparameter configuration that maximizes the ac-
curacy AT (v, γ, λ,R, I) over the retraining window for each video v (lines 6-12, Algorithm 2).
EstimateAccuracy (line 7, Algorithm 2) aggregates the instantaneous accuracies over the retraining
window for a given pair of inference configuration (chosen above) and retraining configuration.
Ekya’s micro-profiler (§2.4.4) provides the estimate of the accuracy and the time to retrain for
a retraining configuration when 100% of GPU is allocated, and EstimateAccuracy proportionately
scales the GPU-time for the current allocation (in temp_alloc[]) and training data size. In doing
so, it avoids configurations whose retraining durations exceed ∥T∥ with the current allocation (first
constraint in Eq. 2.1).

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 18

Algorithm 1: Thief Scheduler.
Data: Training (Γ) and inference (Λ) configurations
Result: GPU allocationsR and I, chosen configurations (γ ∈ Γ, λ ∈ Λ) ∀v ∈ V

1 all_jobs[] = Union of inference and training jobs of videos V ;
/* Initialize with fair allocation */

2 best_alloc[] = fair_allocation(all_jobs);
3 best_configs[], best_accuracy_avg = PickConfigs(best_alloc);
/* Thief resource stealing */

4 for thief_job in all_jobs[] do
5 for victim_job in all_jobs[] do
6 if thief_job == victim_job then continue;
7 temp_alloc[]← best_alloc[];
8 while true do

/* ∆ is the increment of stealing */
9 temp_alloc[victim_job] −= ∆;

10 temp_alloc[thief_job] += ∆;
11 if temp_alloc[victim_job] < 0 then break ;

/* Calculate accuracy over retraining window and pick
configurations. */

12 temp_configs[], accuracy_avg = PickConfigs(temp_alloc[]);
13 if accuracy_avg > best_accuracy_avg then
14 best_alloc[] = temp_alloc[];
15 best_accuracy_avg = accuracy_avg;
16 best_configs[] = temp_configs[];

17 else
18 break;

19 return best_alloc[], best_configs[];

(3) After reassigning the configurations, Ekya uses the estimated average inference accuracy
(accuracy_avg) over the retraining window (line 14 in Algorithm 1) and keeps the new allocations
only if it improves up on the accuracy from prior to stealing the resources (line 15 in Algorithm 1).

The thief scheduler repeats the process till the accuracy stops increasing (lines 15-20 in Algo-
rithm 1) and until all the jobs have played the “thief”. Algorithm 1 is invoked at the beginning of
each retraining window, as well as on the completion of every training job during the window.

Design rationale: We call out the key aspects that makes the scheduler’s decision efficient by
pruning the search space.

• Coarse allocations: The thief scheduler allocates GPU resources in quantums of ∆. Intu-
itively, ∆ is the step size for allocation used by the scheduler. Thus, the final resource allo-
cation from the thief scheduler is within ∆ of the optimal allocation. We empirically pick a

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 19

Algorithm 2: PickConfigs
Data: Resource allocations in temp_alloc[], configurations (Γ and Λ), retraining window T , videos

V
Result: Chosen configs ∀v ∈ V , average accuracy over T

1 chosen_accuracies[]←{}; chosen_configs[]←{};
2 for v in V [] do
3 infer_config_pool[] = Λ.where(resource_cost < temp_alloc[v.inference_job] && accuracy

≥ aMIN);
4 infer_config = max(infer_config_pool, key=accuracy);
5 best_accuracy = 0;
6 for train_config in Γ do

/* Estimate accuracy of inference/training config pair over
retraining window */

7 accuracy = EstimateAccuracy(train_config, infer_config, temp_alloc[v.training_job], T);
8 if accuracy > best_accuracy then
9 best_accuracy = accuracy;

10 best_train_config = train_config;

11 chosen_accuracies[v] = best_accuracy;
12 chosen_configs[v] = {infer_config, best_train_config};

13 return chosen_configs[], mean(chosen_accuracies[]);

∆ that is coarse yet accurate enough in practice, while being mindful of modern GPUs[138];
see §2.6.2. Algorithm 1 ensures that the total allocation is within the limit (second constraint
in Eq 2.1).

• Reallocating resources only when a retraining job completes: Although one can reallo-
cate GPU resource among jobs at finer temporal granularity (e.g., whenever a retraining job
has reached a high accuracy), we empirically find that the gains from such complexity is
marginal.

• Pruned configuration list: Our micro-profiler (described next) speeds up the thief scheduler
by giving it only the more promising configurations. Thus, the list Γ used in Algorithm 1 is
significantly smaller than the exhaustive set.

2.4.3 Complexity analysis
Assuming all the AT (v, γ, λ,R, I) values are known, the above optimization problem can be re-
duced to a multi-dimensional binary knapsack problem, a NP-hard problem [118]. Specifically, the
optimization problem is to pick binary options (ϕvγλRI) to maximize overall accuracy while sat-
isfying two capacity constraints (the first and second constraints in Eq 2.1). In practice, however,
getting all the AT (v, γ, λ,R, I) is infeasible because this requires training the edge DNN using

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 20

all retraining configurations and running inference using all the retrained DNNs with all possible
GPU allocations and inference configurations.

The uncertainty of AT (v, γ, λ,R, I) resembles the multi-armed bandits (MAB) problem [161]
to maximize the expected rewards given a limited number of trials for a set of options. Our opti-
mization problem is more challenging than MAB for two reasons. First, unlike the MAB problem,
the cost of trials (CT (v, γ, λ)) varies significantly, and the optimal solution may need to choose
cheaper yet less rewarding options to maximize the overall accuracy. Second, getting the reward
AT (v, γ, λ,R, I) after each trial requires "ground truth" labels that are obtained using the large
golden model, which can only be used judiciously on resource-scarce edges (§2.2.2).

In summary, our optimization problem is computationally more complex than two fundamen-
tally challenging problems (multi-dimensional knapsack and multi-armed bandits).

2.4.4 Performance estimation with micro-profiling
Ekya’s scheduling decisions in §2.4.2 rely on estimations of post-retraining accuracy and resource
demand of the retraining configurations. Specifically, at the beginning of each retraining window
T , we need to profile for each video v and each configuration γ ∈ Γ, the accuracy after retraining
using γ and the corresponding time taken to retrain.

Profiling in Ekya vs. hyperparameter tuning: While Ekya’s profiling may look similar to
hyperparameter tuning (e.g., [175, 106, 108, 127]) at first blush, there are two key differences.
First, Ekya needs the performance estimates of a broad set of candidate configurations for the thief
scheduler, not just of the single best configuration, because the best configuration is jointly decided
across the many retraining and inference jobs. Second, in contrast to hyperparameter tuning which
runs separately of the eventual inference/training, Ekya’s profiling must share compute resource
with all retraining and inference.

Opportunities: Ekya leverages three empirical observations for efficient profiling of the retraining
configurations. (i) Resource demands of the configurations are deterministic. Hence, we measure
the GPU-time taken to retrain for each epoch in the current retraining window when 100% of the
GPU is allocated to the retraining. This GPU-time must then be re-scaled for varying number of
epochs, GPU allocations, and training data sizes in Algorithm 1. For re-scaling number of epochs
and training data sizes, we linearly scale the GPU-time. For re-scaling GPU allocations, we use an
offline computed profile of the model throughput for different resource allocations to account for
sub-linear scaling. Our real testbed-based evaluation shows that these rescaling functions works
well in practice. (ii) Post-retraining accuracy can be roughly estimated by training on a small sub-
set of training data for a handful of epochs. (iii) The thief scheduler’s decisions are not impacted
by small errors in the estimations.

Micro-profiling design: The above insights inspired our approach, called micro-profiling, where
for each video, we test the retraining configurations on a small subset of the retraining data and
only for a small number of epochs (well before models converge). Our micro-profiler is 100×
more efficient than exhaustive profiling (of all configurations on the entire training data), while

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 21

predicting accuracies with an error of 5.8%, which is low enough in practice to mostly ensure that
the thief scheduler makes the same decisions as it would with a fully accurate prediction. We use
these insights to now explain the techniques that make Ekya’s micro-profiling efficient.
1) Training data sampling: Ekya’s micro-profiling works on only a small fraction (say, 5% −
10%) of the training data in the retraining window (which is already a subset of all the videos
accumulated in the retraining window). While we considered weighted sampling techniques for the
micro-profiling, we find that uniform random sampling is the most indicative of the configuration’s
performance on the full training data, since it preserves all the data distributions and variations.
2) Early termination: Similar to data sampling, Ekya’s micro-profiling only tests each configu-
ration for a small number (say, 5) of training epochs. Compared to a full fledged profiling that
needs few tens of epochs to converge, such early termination greatly speeds up the micro-profiling
process.

After early termination on the sampled training data, we obtain the (validation) accuracy of
each configuration at each epoch it was trained. We then fit the accuracy-epoch points to the a non-
linear curve model from [147] using a non-negative least squares solver [166]. This model is then
used to extrapolate the accuracy that would be obtained by retraining with all the data for larger
number of epochs. The use of this extrapolation is consistent with similar work in this space [119,
147].
3) Pruning bad configurations: Finally, Ekya’s micro-profiling also prunes out those configurations
for micro-profiling (and hence, for retraining) that have historically not been useful. These are
configurations that are significantly distant from the configurations on the Pareto curve of the
resource-accuracy profile (see Figure 2.3b), and thus unlikely to be picked by the thief scheduler.
To bootstrap pruning, all configurations are evaluated in the first window. After every 2 windows,
a fixed fraction of the worst performing configurations are dropped. While first few retraining
windows must explore a big space of configurations, the search space size drops exponentially
over time. Avoiding these configurations improves the efficiency of the micro-profiling.

Annotating training data: For both the micro-profiling as well as the retraining, Ekya acquires
labels using a “golden model” (§2.2.2). This is a high-cost but high-accuracy model trained on
a large dataset. As explained in §2.2, the golden model cannot keep up with inference on the
live videos and we use it to label only a small subset of the videos for retraining. The delay
of annotating training data with the golden model is accounted by the scheduler as follows: we
subtract the data annotation delay from the retraining window and only pass the remaining time of
the window to Algorithm 2.

2.5 Implementation and Experimental Setup

Implementation: Ekya uses PyTorch [143] for running and training ML models, and each com-
ponent is implemented as a collection of long-running processes with the Ray[129] actor model.
The micro-profiler and training/inference jobs run as independent actors which are controlled by

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 22

the thief scheduler actor. Ekya achieves fine-grained and dynamic reallocation of GPU between
training and inference processes using Nvidia MPS [138], which provides resource isolation within
a GPU by intercepting CUDA calls and rescheduling them. Our implementation also adapts to er-
rors in profiling by reactively adjusting its allocations if the actual model performance diverges
from the predictions of the micro-profiler. Ekya’s code and datasets are available at the project
page: aka.ms/ekya

Datasets: We use both on-road videos captured by dashboard cameras as well as urban videos
captured by mounted cameras. The dashboard camera videos are from cars driving through cities
in the US and Europe, Waymo Open [146] (1000 video segments with in total 200K frames) and
Cityscapes [122] (5K frames captured by 27 cameras) videos. The urban videos are from stationary
cameras mounted in a building (“Urban Building”) as well as from five traffic intersections (“Urban
Traffic”), both collected over 24-hour durations. We use a retraining window of 200 seconds
in our experiments, and split each of the videos into 200 second segments. Since the Waymo
and Cityscapes dataset do not contain continuous timestamps, we create retraining windows by
concatenating images from the same camera in chronological order to form a long video stream
and split it into 200 second segments.

DNNs: We demonstrate Ekya’s effectiveness on two machine learning tasks – object classifi-
cation and object detection – using multiple compressed edge DNNs for each task: (i) object
classification using ResNet18[89], MobileNetV2[115] and ShuffleNet[211], and (ii) object detec-
tion using TinyYOLOv3[157] and SSD[111]. As explained in §2.2.2, we use an expensive golden
model (ResNeXt 101 [195] for object classification and YOLOv3 [157] for object detection) to get
ground truth labels for training and testing.

Testbed and trace-driven simulator: We run Ekya’s implementation on AWS EC2 p3.2xlarge
instances for 1 GPU experiments and p3.8xlarge for 2 GPU experiments. Each instance has Nvidia
V100 GPUs with NVLink interconnects.

We also built a simulator to test Ekya under a wide range of resource constraints, workloads,
and longer durations. The simulator takes as input the accuracy and resource usage (in GPU time)
of training/inference configurations logged from our testbed. For each training job, we log the
accuracy over GPU-time. We also log the inference accuracy on the real videos. This exhaustive
trace allows us to mimic the jobs with high fidelity under different scheduling policies.

Retraining configurations: Our retraining configurations combine the number of epochs to train,
batch size, number of neurons in the last layer, number of layers to retrain, and the fraction of
data between retraining windows to use for retraining (§2.3.1). For the object detection models
(TinyYOLO and SSDLite), we set the batch size to 8 and the fraction of layers frozen between 0.7
and 0.9. The resource requirements of the configurations for the detection models vary by 153×.

Baselines: Our baseline, called uniform scheduler, uses (a) a fixed retraining configuration, and
(b) a static retraining/inference resource allocation (these are adopted by prior schedulers [164, 2,
75]). For each dataset, we test all retraining configurations on a hold-out dataset ‡ (i.e., two video

‡The same hold-out dataset is used to customize the off-the-shelf DNN inference model. This is a common

https://aka.ms/ekya

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 23

streams that were never used in later tests) to produce the Pareto frontier of the accuracy-resource
tradeoffs (e.g., Figure 2.3). The uniform scheduler then picks two points on the Pareto frontier as
the fixed retraining configurations to represent “high” (Config 1) and “low” (Config 2) resource
usage, and uses one of them for all retraining windows in a test.

We also consider two alternatives in §2.6.4. (1) offloading retraining to the cloud, and (2)
caching and re-using a retrained model from history based on various similarity metrics.

2.6 Evaluation
We evaluate Ekya’s performance, and the key findings are:
1) Compared to static retraining baselines, Ekya achieves upto 29% higher accuracy for com-
pressed vision models in both classification and detection. For the baseline to match Ekya’s accu-
racy, it would need 4× additional GPU resources. (§2.6.1)
2) Both micro-profiling and thief scheduler contribute sizably to Ekya’s gains. (§2.6.2) In particu-
lar, the micro-profiler estimates accuracy with low median errors of 5.8%. (§2.6.3)
3) The thief scheduler efficiently makes its decisions in 9.4s when deciding for 10 video streams
across 8 GPUs with 18 configurations per model for a 200s retraining window. (§2.6.2)
4) Compared to alternate designs, including reusing cached history models trained on similar
data/scenarios as well as retraining the models in the cloud, Ekya achieves significantly higher
accuracy without the network costs (§2.6.4).

2.6.1 Overall improvements
We evaluate Ekya and the baselines along three dimensions— inference accuracy (% of im-
ages correctly classified for object classification, F1 score (measured at a 0.3 threshold for the
Intersection-over-Union of the bounding box) for detection), resource consumption (in GPU time),
and capacity (the number of concurrently processed video streams). Note that the evaluation al-
ways keeps up with the video frame rate (i.e., no indefinite frame queueing). By default we evaluate
the performance of Ekya on ResNet18 models, but we also show that it generalizes to other model
types and vision tasks.

Accuracy vs. Number of concurrent video streams: Figure 2.6 shows the ResNet18 model’s ac-
curacy with Ekya and the baselines when analyzing a growing number of concurrent video streams
under a fixed number of provisioned GPUs for Waymo and Cityscapes datasets. The uniform
baselines use different combinations of pre-determined retraining configurations and resource par-
titionings. For consistency, the video streams are shuffled and assigned an id (0-10), and are then
introduced in the same increasing order of id in all experiments. This ensures that different sched-
ulers tested for k parallel streams use the same k streams, and these k streams are always a part of
any k′ streams (k′ > k) used for testing.

strategy in prior work (e.g., [40]).

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 24

(a) Cityscapes

(b) Waymo

Figure 2.6: Effect of adding video streams on accuracy with different schedulers. When more
video streams share resources, Ekya’s accuracy gracefully degrades while the baselines’ accuracy
drops faster. (“Uniform (Cfg 1, 90%)” means the uniform scheduler allocates 90% GPU to infer-
ence, 10% to retraining)

As the number of video streams increases, Ekya enjoys a growing advantage (upto 29% under
1 GPU and 23% under 2 GPU) in accuracy over the uniform baselines. This is because Ekya grad-
ually shifts more resource from retraining to inference and uses cheaper retraining configurations.
In contrast, increasing the number of streams forces the uniform baseline to allocate less GPU
cycles to each inference job, while retraining jobs, which use fixed configurations, slow down and
take the bulk of each window.

Generalizing to other ML models: Ekya’s thief scheduler can be readily applied to any ML
model and task (e.g., classification or detection) that needs to be fine-tuned continuously on newer
data. To demonstrate this, we evaluate Ekya with:

• Other object classifiers: Figure 2.7a shows the performance of Ekya when running Mo-

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 25

Scheduler
Capacity

Scaling factor
1 GPU 2 GPUs

Ekya 2 8 4x
Uniform (Config 1, 50%) 2 2 1x
Uniform (Config 2, 90%) 2 4 2x
Uniform (Config 2, 50%) 2 4 2x
Uniform (Config 2, 30%) 0 2 -

Table 2.3: Capacity (number of video streams that can be concurrently supported subject to accu-
racy target 0.75) vs. number of provisioned GPUs. Ekya scales better than the uniform baselines
with more available compute resource.

bileNetV2 and ShuffleNet as the edge models in two independent setups for object classi-
fication at the edge. Continuing the trend that we observed for ResNet18 (in Figure 2.6),
Figure 2.7a shows that Ekya leads to up to 22% better accuracy than uniform baselines.

• Object detection models: In addition to object classification, we also evaluate using object
detection tasks which detect the bounding boxes of objects in the video stream. Figure 2.7b
shows Ekya outperforms the uniform baseline’s F1 score by 19% when processing same
number of concurrent video streams. Importantly, Ekya’s design broadly applies to new
tasks without any systemic changes.

These gains stem from Ekya’s ability to navigate the rich resource-accuracy space of models
by carefully selecting training and inference hyperparameters (e.g., the width multiplier in Mo-
bileNetV2, convolution sparsity in ShuffleNet). For the rest of our evaluation, we only present
results with ResNet18 though the observations hold for other models.

Number of video streams vs. provisioned resource: We compare Ekya’s capacity (defined
by the maximum number of concurrent video streams subject to an accuracy threshold) with that
of uniform baseline, as more GPUs are available. Setting an accuracy threshold is common in
practice, since applications usually require accuracy to be above a threshold for the inference to be
usable. Table 2.3 uses the Cityscapes results (Figure 2.6) to derive the scaling factor of capacity
vs. the number of provisioned GPUs and shows that with more provisioned GPUs, Ekya scales
faster than uniform baselines.

Accuracy vs. provisioned resource: Finally, Figure 2.8 stress-tests Ekya and the uniform base-
lines to process 10 concurrent video streams and shows their average inference accuracy under
different number of GPUs. To scale to more GPUs, we use the simulator (§2.5), which uses pro-
files recorded from real tests and we verified that it produced similar results as the implementation
at small-scale. As we increase the number of provisioned GPUs, we see that Ekya consistently
outperforms the best of the two baselines by a considerable margin and more importantly, with 4

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 26

(a) Generalize across object classification models

(b) Object Detection Models

Figure 2.7: Improvement of Ekya extends to two more compressed DNN classifiers and two
popular object detectors.

GPUs Ekya achieves higher accuracy (marked with the dotted horizontal line) than the baselines
at 16 GPUs (i.e., 4× resource saving).

The above results show that Ekya is more beneficial when there is high contention for the GPU
on the edge. Under low contention, the room for improvement shrinks. Contention is, however,
common in the edge since the resources are tightly provisioned to minimize their idling.

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 27

(a) Cityscapes (b) Waymo

(c) Urban Building (d) Urban Traffic

Figure 2.8: Inference accuracy of different schedulers when processing 10 video streams under
varying GPU provisionings.

2.6.2 Understanding Ekya’s improvements

Resource allocation across streams: Figure 2.9 shows Ekya’s resource allocation across two ex-
ample video streams over several retraining windows. In contrast to the uniform baselines that use
the same retraining configuration and allocate equal resource to retraining and inference (when re-
training takes place), Ekya retrains the model only when it benefits and allocates different amounts
of GPUs to the retraining jobs of video streams, depending on how much accuracy gain is expected
from retraining on each stream. In this case, more resource is diverted to video stream #1 (#1 can
benefit more from retraining than #2) and both video streams achieve much higher accuracies (0.82
and 0.83) than the uniform baseline.

Component-wise contribution: Figure 2.10a understands the contributions of resource allocation

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 28

(a) Video stream #1
(Inference accuracy = 0.82)

(b) Video stream #2
(Inference accuracy = 0.83)

Figure 2.9: Ekya’s resource allocation to two video streams over time. Ekya adapts when to retrain
each stream’s model and allocates resource based on the retraining benefit to each stream.

and configuration selection (on 10 video streams with 4 GPUs provisioned). We construct two vari-
ants from Ekya: Ekya-FixedRes, which removes the smart resource allocation in Ekya (i.e., using
the inference/training resource partition of the uniform baseline), and Ekya-FixedConfig removes
the microprofiling-based configuration selection in Ekya (i.e., using the fixed configuration of the
uniform baseline). Figure 2.10a shows that both adaptive resource allocation and configuration
selection has a substantial contribution to Ekya’s gains in accuracy, especially when constrained
(i.e., fewer resources are provisioned).

Retraining window sensitivity analysis: Figure 2.10b evaluates the sensitivity of Ekya to the
retraining window size. Ekya is robust to different retraining window sizes. When the retraining
window size is too small (10 seconds), the accuracy of Ekya is equivalent to no retraining accuracy
due to insufficient time and resources for retraining. As the window increases, Ekya’s performance
quickly ramps up because the thief scheduler is able to allocate resources to retraining. As the
retraining window size further increases Ekya’s performance slowly starts moderately degrading
because of the inherent limitation in capacity of compressed models (§2.2.3).

Impact of scheduling granularity: A key parameter in Ekya’s scheduling algorithm (§2.4.2) is
the allocation quantum ∆: it controls the runtime of the scheduling algorithm and the granularity
of resource allocation. In our sensitivity analysis with 10 video streams, we see that increasing
∆ from 1.0 (coarse-grained; one full GPU) to 0.1 (fine-grained; fraction of a GPU), increases the
accuracy substantially by ∼ 8%. Though the runtime also increases to 9.5 seconds, it is still a tiny
fraction (4.7%) of the retraining window (200s).

2.6.3 Effectiveness of micro-profiling
The absolute cost of micro-profiling is small; for our experiments, micro-profiling takes 4.4 sec-
onds for a 200s window.

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 29

(a) Factor analysis (b) Sensitivity to retraining window size.

Figure 2.10: (a) Component-wise impact of removing dynamic resource allocation (50% alloca-
tion) or removing retraining configuration adaptation (fixed Cfg 2). (b) Robustness of Ekya to a
wide range of retraining window values.

Bandwidth (Mbps)
Acc.

Bandwidth Gap
Uplink Downlink Uplink Downlink

Cellular 5.1 17.5 68.5% 10.2× 3.8×
Satellite 8.5 15 69.2% 5.9× 4.4×

Cellular (2×) 10.2 35 71.2% 5.1× 1.9×
Ekya - - 77.8% - -

Table 2.4: Retraining in the cloud under different networks [56, 141, 168] versus using Ekya at
the edge. Ekya achieves better accuracy without using expensive satellite and cellular links.

Errors of microprofiled accuracy estimates: Ekya’s micro-profiler estimates the accuracy of
each configuration (§2.4.4) by training it on a subset of the data for a small number of epochs.
To evaluate the micro-profiler’s estimates, we run it on all configurations for 5 epochs and on
10% of the retraining data from all streams of the Cityscapes dataset, and calculate the estimation
error against the retrained accuracies when trained on 100% of the data for 5, 15 and 30 epochs.
Figure 2.11a plots the distribution of the errors in accuracy estimation and and show that the micro-
profiled estimates are largely unbiased with an median absolute error of 5.8%.

Sensitivity to microprofiling estimation errors: Finally, we test the impact of accuracy estima-
tion errors (§2.4.4) on Ekya. We add gaussian noise on top of the predicted retraining accuracy
when the microprofiler is queried. Figure 2.11b shows that Ekya is robust to accuracy estimate
errors: with upto 20% error (which covers all errors in Figure 2.11a) in the profiler prediction, the
maximum accuracy drop is 3%.

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 30

(a) Distribution of accuracy estimation errors. (b) Impact of an controlled error ϵ to accuracy
estimates.

Figure 2.11: Evaluation of microprofiling performance. (a) shows the distribution of microprofil-
ing’s actual estimation errors, and (b) shows the robustness of Ekya’s performance against micro-
profiling’s estimation errors.

2.6.4 Comparison with alternative designs

Ekya vs. Cloud-based retraining: One may upload a sub-sampled video stream to the cloud,
retrain the model, and download the model back to the edge [96]. While this solution is not an
option for many deployments due to legal and privacy stipulations [180, 4], we still evaluate this
option as it lets the edge servers focus on inference. Cloud-based solutions, however, results in
lower accuracy due to significant network delays on the constrained networks typical of edges
[168].

For example, consider 8 video streams running ResNet18 and a retraining window of 400 sec-
onds. A HD (720p) video stream at 4Mbps and 10% data sub-sampling (typical in our experiments)
amounts to 160Mb of training data per camera per window. Uploading 160Mb for each of the 8
cameras over a 4G uplink (5.1 Mbps [141]) and downloading the trained ResNet18 models (398
Mb each [187]) over the 17.5 Mbps downlink [141] takes 432 seconds (even excluding the model
retraining time), which already exceeds the retraining window.

To test on the Cityscapes dataset, we extend our simulator (§2.5) to account for network delays
during retraining, and test with 8 videos and 4 GPUs. We use the conservative assumption that
retraining in the cloud is “instantaneous” (cloud GPUs are powerful than edge GPUs). Table
2.4 lists the accuracies with cellular 4G links (both one and two subscriptions to meet the 400s
retraining window) and a satellite link, which are both indicative of edge deployments [168].

For the cloud alternatives to match Ekya’s accuracy, we will need to provision additional uplink
capacity of 5×-10× and downlink capacity of 2×-4× (of the already expensive links). In summary,
Ekya’s edge-based solution is better than a cloud alternate for retraining in both accuracy and

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 31

(a) Ekya vs. re-using cached models over time (b) Average gains in accuracy across video streams

Figure 2.12: Ekya vs. re-using cached models. Compared to cached-model selection techniques,
models retrained with Ekya maintain a consistently high accuracy, since it fully leverages the latest
training data and is thus more robust to data-drift.

network usage (Ekya sends no data out of the edge), all while providing privacy for the videos.
However, when the edge-cloud network has sufficient bandwidth, e.g., in an enterprise that is
provisioned with a private leased connection, then using the cloud to retrain the models can be a
viable design choice.

Ekya vs. Re-using pretrained models: An alternative to continuous retraining is to cache pre-
trained models and reuse them. We pre-train and cache a few tens of DNNs from earlier windows
of the Waymo dataset and test four heuristics for selecting cached models. Class-distribution-
based selection picks the cached DNN whose training data class distribution has the closest Eu-
clidean distance with the current window’s data. Time-of-day-based selection picks the cached
DNN whose training data time matches the current window. Object-count-based selection picks
the cached DNN based on similar count of objects. Location-based selection picks the cached
DNNs trained on the same city as the current window.

Figure 2.12a highlights the advantages of Ekya over different model selection schemes. We
find that since time-of-day-based, object-count-based, and location-based model selection tech-
niques are agnostic to the class distributions of training data of cached models, the selected cached
models sometimes do not cover all classes in the current window. Even if we take class distribution
into account when picking cached models, there are still substantial discrepancies in the appear-
ances of objects between the current window and the history training data. For instance, object
appearance can vary due to pose variations, occlusion or different lighting conditions. In Window
3 (Figure 2.12a), not only are certain classes underrepresented in the training data, but the lighting
conditions are also adverse. Figure 2.12b presents a box plot of the accuracy difference between

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 32

Ekya and model selection schemes, where the edges of the box represent the first and third quar-
tiles, the waist is the median, the whiskers represent the maximum and minimum values and the
circles represent any outliers. Ekya’s continuous retraining of models is robust to scene specific
data-drifts and achieves upto 26% higher mean accuracy.

2.7 Limitations and Discussion
Edge hierarchy with heterogeneous hardware. While Ekya’s allocates GPU resources on a
single edge, in practice, deployments typically consist of a hierarchy of edge devices [30]. For
instance, 5G settings include an on-premise edge cluster, followed by edge compute at cellular
towers, and then in the core network of the operator. The compute resources, hardware (e.g.,
GPUs, Intel VPUs [15], and CPUs) and network bandwidths change along the hierarchy. Thus,
Ekya will have to be extended along two aspects: (a) multi-resource allocation to include both
compute and the network in the edge hierarchy; and (b) heterogeneity in edge hardware.

Privacy of video data. As explained in §2.2.1, privacy of videos is important in real-world
deployments, and Ekya’s decision to retrain only on the edge device is well-suited to achieving
privacy. However, when we extend Ekya to a hierarchy of edge clusters, care has to be taken to
decide the portions of the retraining that can happen on edge devices that are not owned by the
enterprise. Balancing the need for privacy with resource efficiency is a subject for future work.

Generality beyond vision workloads. Ekya’s thief scheduler is generally applicable to DNN
models since it only requires that the resource-accuracy function be strictly increasing wherein
allocation of more resources to training results in increasing accuracy. This property holds true for
most workloads (vision and language DNNs). However, when this property does not hold, further
work is needed to prevent Ekya’s microprofiler from making erroneous estimations and its thief
scheduler from making sub-optimal allocations.

2.8 Related Work
1) ML training systems. For large scale scheduling of training in the cloud, model and data
parallel frameworks [46, 112, 3, 131] and various resource schedulers [119, 201, 72, 147, 69,
210] have been developed. These systems, however, target different objectives than Ekya, like
maximizing parallelism, fairness, or minimizing average job completion. Collaborative training
systems [22, 113] work on decentralized data on mobile phones. They focus on coordinating the
training between edge and the cloud, and not on training alongside inference.
2) Video processing systems. Prior work has built low-cost, high-accuracy and scalable video
processing systems for the edge and cloud [75, 86, 40]. VideoStorm investigates quality-lag re-
quirements in video queries [75]. NoScope exploits difference detectors and cascaded models to
speedup queries [40]. Focus uses low-cost models to index videos [79]. Chameleon exploits cor-
relations in camera content to amortize profiling costs [86]. Reducto [107] and DDS [51] seek
to reduce edge-to-cloud traffic by intelligent frame sampling and video encoding. All of these

CHAPTER 2. EKYA: EFFICIENT CONTINUOUS LEARNING ON THE EDGE 33

works optimize only the inference accuracy or the system/network costs of DNN inference, unlike
Ekya’s focus on retraining. More recently, LiveNAS[97] deploys continuous retraining to update
video upscaling models, but focuses on efficiently allocating client-server bandwidth to different
subsamples of a single video stream. Instead, Ekya focuses on GPU allocation for maximizing
retrained accuracy across multiple video streams.
3) Hyper-parameter optimization. Efficient exploration of hyper-parameters is crucial in train-
ing systems to find the model with the best accuracy. Techniques range from simple grid or
random search [20], to more sophisticated approaches using random forests [81], Bayesian opti-
mization [175, 181], probabilistic modelling [152], or non-stochastic infinite-armed bandits [106].
Unlike the focus of these techniques on finding the hyper-parameters with the highest accuracy,
our focus is on resource allocation. Further, we are focused on the inference accuracy over the
retrained window, where producing the best retrained model often turns out to be sub-optimal.
4) Continuous learning. Machine learning literature on continuous learning adapts models as
new data comes in. A common approach used is transfer learning [156, 113, 153, 77]. Research
has also been conducted on handling catastrophic forgetting [104, 162], using limited amount of
training data [182, 154], and dealing with class imbalance [17, 198]. Ekya builds atop continuous
learning techniques for its scheduling and implementation, to enable them in edge deployments.

2.9 Conclusion
Continuous learning enables edge DNNs to maintain high accuracy even with data drift, but it
also poses a complex and fundamental tradeoff between retraining and inference. We introduce
Ekya, an efficient system that maximizes inference accuracy by balancing multiple retraining and
inference tasks. Ekya’s resource scheduler makes the problem practical and tractable by pruning
the large decision space and prioritizing promising retraining tasks. Ekya’s performance estimator
provides essential accuracy estimation with very little overheads. Our evaluation with a diverse
set of of video streams shows that Ekya achieves 29% higher accuracy than a baseline scheduler,
and the baseline needs 4× more GPU resources to achieve Ekya’s accuracy. We conclude Ekya is
a practical system for continuous learning for video analytics on the edge, and we hope that our
findings will spur further research into the tradeoff between retraining and inference.

34

Chapter 3

Performance-aware Scheduling with
Cilantro

Going a layer above in the ML stack, we now look at the cluster management layer where re-
sources are shared between multiple ML applications. Here, we observe that traditional systems
for allocating finite cluster resources among competing jobs have either aimed at providing fair-
ness, relied on users to specify their resource requirements, or have estimated these requirements
via surrogate metrics (e.g., CPU utilization). These approaches do not account for a job’s real
world performance (e.g. P95 latency), and as a result produce inefficient resource allocations.

In this chapter, we argue that resource allocation systems should directly account for real-world
performance and the varied allocation objectives of users. In this pursuit, we build Cilantro.

At the core of Cilantro is an online learning mechanism which forms feedback loops with the
jobs to estimate the resource to performance mappings and load shifts. This relieves users from the
onerous task of job profiling and collects reliable real-time feedback. This is then used to achieve
a variety of user-specified scheduling objectives. Cilantro handles the uncertainty in the learned
models by adapting the underlying policy to work with confidence bounds. We demonstrate this
in two settings. First, in a multi-tenant 1000 CPU cluster with 20 independent jobs, three of
Cilantro’s policies outperform 9 other baselines on three different performance-aware scheduling
objectives, improving user utilities by up to 1.2 − 3.7× and performs comparably to oracular
policies. Second, in a microservices setting, where 160 CPUs must be distributed between 19
inter-dependent microservices, Cilantro outperforms 3 other baselines, reducing the end-to-end
P99 latency to ×0.57 the next best baseline.

3.1 Introduction
The goal of cluster resource managers is to allocate a finite amount of scarce resources to compet-
ing jobs. When doing so, we should ensure that the allocations fulfill the users’ and the organiza-
tion’s overall goals. Traditionally, resource allocation policies have aimed to provide fairness [62,

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 35

0 20 40 60 80 10050
CPUs Allocated

0

50

100

150

200
Qu

er
ie

s p
er

 S
ec

on
d

(Q
PS

)

U1 SLO:
120 QPS

U1 Demand:
 40 CPUs

U2 SLO:
62 QPS

U2 Demand:
60 CPUs

Resource-fair allocation:
50 CPUs

U1 Throughput U2 Throughput

Figure 3.1: Two users, U1 and U2, serving TPC-DS benchmark queries with different resource-
throughput mappings and performance goals (SLO). A user’s demand is the amount of CPUs
needed for her SLO.

49], maximize resource utilization [202], maximize the amount of work done [62], or minimize
queue lengths [214, 142]. However, these policies miss, or at best are imperfect proxies for what
matters most to the users: the performance of their jobs in terms of real-world metrics that impact
business (e.g. P99 latency or throughput for a serving job). Barring some recent exceptions [29,
212, 57, 92], resource allocation systems have traditionally focused on the resources requested by
a job rather than the job’s real-world performance from using those resources (henceforth, simply
performance).

To illustrate the pitfalls of performance-oblivious scheduling, consider an example where two
users, U1 and U2, are sharing a cluster of 100 CPUs. They are each serving different sets of
TPC-DS[133] queries and care about their throughput: U1’s service level objective (SLO) is 120
queries per second (QPS), while the U2’s SLO is 62 QPS. If the goal is to satisfy all user’s SLOs,
how should CPUs be allocated? If it were known that the resource-to-throughput curves of the two
users’ jobs were as shown in Figure 3.1, a scheduler can allocate 40 CPUs to the first job and 60 to
the second. However, in practice, this mapping is usually not available and performance-oblivious
scheduler will likely be suboptimal. For instance, a CPU-based fair allocation algorithm would
allocate 50 CPUs to each user, which would result in U2 getting just 59 QPS, thus missing its
SLO.

Despite extensive theoretical work [49, 62, 94, 95, 73], performance-aware scheduling has re-
mained challenging since the resource-to-performance mappings are usually unavailable in prac-
tice. To obtain these mappings, past work [193, 48, 212] profile their workloads before execution.
Such profiling has three limitations. First, offline profiled resource-to-performance mappings may
not reliably reflect a job’s performance in a production environment, as it may not capture the
interference from other jobs [47] and the server’s performance variability [44]. Second, jobs’ re-

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 36

source requirements change with time due to varying load (e.g., arrival rate of external queries)
and profiling typically cannot account for these changes. Third, such profiling is burdensome for
users and expensive for organizations as it requires a large pool of resources to exhaustively profile
a wide range of resource allocations. This informs the first requirement for this work: obtain the
resource-to-performance mappings in the production environment where the job will be run.

Even if the resource-to-performance mappings are known, the choice of scheduling policy
depends on the objective of the end-users (e.g. organization, developers). For instance, suppose in
Figure 3.1, we wished to maximize the total throughput of the cluster, instead of trying to satisfy
each user’s SLOs. In this case, we would allocate ∼64 CPUs to U1 and ∼36 to U2 for a total
throughput of ∼212 QPS. As more realistic examples, in multi-tenant clusters, we may wish to
use policies which balance between performance and fairness [95, 49, 62]. In contrast, when we
provision resources to different microservices of the same application, we are more interested in
some end-to-end performance objective, such as application latency, and may wish to allocate
more resources to critical microservices which bottleneck performance. These objectives can vary
from organization to organization and optimizing for such different objectives requires different
allocation policies. However, while end users may find it relatively easy to state their objective
(e.g., satisfy all SLOs, maximize throughput), it is harder to design a policy to achieve it. This
informs our second requirement: support a diverse set of user-defined scheduling objectives.

To address these requirements, we introduce Cilantro, a framework for performance-aware
allocation of a single fungible resource type (e.g. CPUs, containers) among competing jobs (Fig-
ure 3.2). In Cilantro, end users first declare their desired scheduling objective. To satisfy the first
requirement, a pool of performance learners and load forecasters analyzes live feedback from jobs
and learns models to estimate resource-performance curves and load shifts for each job. To satisfy
the second requirement, Cilantro’s scheduling policies, which are automatically derived based on
the users’ objectives, leverage these estimated models to compute allocations for each job. As the
learned models become accurate over time, Cilantro is able to eventually achieve the users’ objec-
tives. This obviates the need for an offline model to estimate the required resource allocation for
a given performance target, and allows Cilantro to optimize for custom objectives, such as various
fairness or performance criteria. This is a marked departure from performance-oblivious policies,
those based on unreliable proxy metrics such as CPU utilization and queue lengths, and other
heuristic-based policies (using either surrogates [163] or performance metrics [29, 57]) which are
designed for very specific scheduling objectives. Cilantro seamlessly enables the implementation
of performance-aware policies in two settings: (i) multi-tenant resource allocation for independent
jobs, and (ii) resource allocation for inter-dependent jobs (microservices) within an application.

Our proposed solution solves two key challenges. First, estimating resource-to-performance
mappings online can be notoriously difficult due to highly stochastic nature of real-time produc-
tion environments, unexpected load shifts, especially in the early stages when there is insufficient
data. To operate without accurate estimates, Cilantro informs scheduling policies with confidence
intervals of its estimates. Policies are designed to account for this uncertainty when making allo-
cation decisions until the estimates become more accurate. Accounting for this uncertainty helps
Cilantro conservatively explore the space of allocations making it robust to environment stochas-

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 37

Cilantro Scheduler

Job
1

Job
2

Shared Cluster

Online Learners

Policy

User-defined ObjectiveJob 1 40

Job 2 60

Per-Job Feedback

Resource
Allocations

Performance Model
(Job 1)

Performance Model
(Job 2)

 P95_SLO: 100ms
P95_actual: 125ms

2

 P95_SLO: 100ms
P95_actual: 125ms

1

Figure 3.2: Cilantro overview. Cilantro uses continuous feedback to dynamically learn each job’s
resource-to-performance mappings. An uncertainty-aware resource allocation policy, instantiated
for the user’s objective, uses these mappings to determine allocations.

ticity and also to the idiosyncrasies specific to the performance models used.
Second, supporting a diversity of objectives in the same framework is challenging. The mono-

lithic design of end-to-end feedback-driven approaches[212, 91, 149] restricts them only the objec-
tive they were originally designed for. Instead, Cilantro achieves generality in supporting custom
objectives by decoupling the learning mechanisms from the allocation policy. This decoupling is
necessary as it allows us to account for the effect of each job’s performance and load shifts on
the objective individually. Moreover, this decoupling has other intangible benefits: it leads to a
more transparent design which is easy to debug than monolithic systems which directly optimize
for end-to-end performance, and if online job feedback cannot be obtained for a particular job, it
is easy to swap the learners with profiled information or other sensible defaults.

We have implemented Cilantro as an open-source extension to the Kubernetes core scheduler,
available at https://github.com/romilbhardwaj/cilantro. To evaluate Cilantro,
first we deploy it on a 1000-CPU multi-tenant cluster which includes a diversity of real-world,
latency and throughput-sensitive jobs. On three different allocation objectives, Cilantro’s policies
are able to outperform 9 other baselines, and is able to compete with oracular policies which
know the resource-to-performance mappings a priori on resource efficiency and fairness. When
compared to resource-fair allocation, it is able to increase the performance of 1/3 of users in the
clusters by 1.2 − 3.7×. Second, we evaluate Cilantro on a 160 CPU cluster where we wish to
allocate CPUs to constituent microservices of an application. Here, Cilantro is able to minimize
the end-to-end P99 latency of the application to ×0.18 the latency of a resource-fair scheduler and
to ×0.57 of the next-best performance-aware baseline.

https://github.com/romilbhardwaj/cilantro

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 38

Cilantro
PARTIES[29]

Henge[92]

Autopilot[163]

Jockey[57]

Paragon[47]

Morpheus[88]

DS2[91]
Quasar[48]

FIRM[149]

Sinan[212]

YARN[192]

Mesos[76]

Performance awareness RW RW RW RW RW RW RW RW PM PM PM PO PO
Works without apriori
performance model? Y Y Y Y N N N N Y Y N NA NA

Supports multiple
allocation objectives? Y N N N N N N N N N N Y1 Y1

Cluster size Fix Var Fix Var Fix Fix Fix Var Fix Var Var Fix Fix

abbr. RW = Real-world metrics, e.g., latency, PM = Proxy metrics e.g., CPU util., PO = Performance oblivious, Fix = Fixed size, Var = Variable
size
1 Supports multiple objectives, but only performance oblivious ones

Table 3.1: Cilantro and related work. Cilantro uses real-world metrics (e.g., latency) to build
performance models online, which can be used to derive custom policies for different objectives.

3.2 Background & Related Work
In this section, we compare Cilantro with prior work. Table 3.1 summarizes the key differences of
Cilantro against other resource allocation systems and methods.

Performance oblivious methods: The simplest, yet popular approach to allocating finite re-
sources among competing jobs, is to adopt a resource fair policy, which simply divides the re-
source equally (or proportional to weights) [84, 82, 74, 128]. As this does not account for jobs’
resource requirements, it is inadequate in all but the most trivial settings.

Several scheduling frameworks, such as Kubernetes [26], Mesos [76] and YARN [192], relies
on users to submit their own resource demand. To execute resource allocations from policies,
Kubernetes and YARN use resource reservations while Mesos negotiates through resource offers.
This requires users to estimate their jobs’ resource needs, which can be difficult. They focus on
one-way resource allocations and do not provide any mechanisms for the policy to get feedback
on application performance. However, recognizing that end users may have varied scheduling
objectives, these frameworks support and implement multiple policies.

Methods based on proxy metrics: The most common approach to account for resource re-
quirements relies on proxy metrics (e.g. CPU utilization, work-queue lengths). Quasar [48] offline
profiles jobs’ proxy metrics, and has a fixed operator-centric policy to maximize cluster utilization.
Paragon [47] accounts for resource heterogeneity and inter-job interference to achieve performance
guarantees. AGILE[136] models the resource pressure, and uses demand prediction to minimize
SLO violations. The above works do not directly account for users’ performance goals and opti-
mize for singular objectives.

Methods which use offline profiling: Some work has explored directly incorporating job per-
formance via profiled historical data. Morpheus [88] aims to mitigate performance unpredictability
by defining SLOs and satisfying their resource demands by using models based on historical data.
Ernest [193] provides methods for estimating performance curves using limited amount of data,
but does not study using these estimates for resource allocation under scarcity. Sinan [212] partly
uses profiled information for auto-scaling in a cloud environment. Quincy’s [82] min-cost flow

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 39

formulation aims at providing fairness, but relies on offline estimates of data movement costs.
For reasons explained in §3.1, offline profiling can be problematic and it is desirable to rely on
real-time feedback to determine resource allocations.

Methods which use online feedback: Among related work, some feedback-driven systems
account for performance metrics and SLOs in resource allocation. Jockey [57] focuses on meeting
latency SLOs for a single job by modeling internal job dependencies to dynamically re-provision
resources. Henge [92] defines new utility functions for stream processing workloads and aims to
maximize a singular objective – the sum of utility of all jobs. [144] uses application hints in for
prefetching disk blocks in the OS kernel. Gavel [134] is a scheduler for ML training workloads
in heterogeneous environments with varying objectives. Since Gavel is focused on ML training,
it’s policies are designed for throughput and a greedy optimizer computes the optimal allocation
for each round. On the other hand, Cilantro supports any metric specified by the user and employs
online learning to eventually converge on the optimal allocation. Finally, in a video streaming
application, Minerva [135] studies methods for resource allocation so that all end users have the
same quality of service. The highly customized policies used in the above works, while adequate
to the allocation objectives set out by the authors, are not applicable for diverse cluster objectives
which is our goal here.

Variable resource amounts: In other related work, PARTIES [29] allocates resources to jobs
within the same server while always satisfying SLOs. If the SLOs of all jobs cannot be met, it
evicts one of them to a different server; thus, it does not apply to our setting where there is a
fixed amount of resources and eviction is not possible. Indeed, in §3.7 we show that a straightfor-
ward adaptation of PARTIES does not work as well. Sinan [212], DS2 [91], Autopilot [163] and
FIRM [149] consider performance-aware resource allocation using online feedback when there is
elasticity in resource availability, e.g. the cloud. Because these works can scale up to more re-
sources than originally provisioned, they are not directly comparable to Cilantro which operates
in a fixed cluster setting. While the cloud is an emerging use case, traditional fixed resource clus-
ter management remains pertinent for privacy and cost reasons. Moreover, the above work focus
on specific goals and are not designed to handle general allocation objectives. As an example,
FIRM [149] focuses on autoscaling resources for single applications deployed as microservices to
minimize end-to-end SLO violations, Cilantro operates differently, reallocating a fixed number of
resources according to user-specified objectives, which can include fairness considerations. Addi-
tionally, FIRM uses Reinforcement Learning with anomaly injection, in contrast to Cilantro, which
focuses on resource-allocation under uncertainty and is agnostic to the learning method used.

3.3 Cilantro Architecture
Cilantro is a performance-aware scheduling framework that can optimize for various scheduling
objectives without requiring any a priori knowledge of the resource-performance mapping of the
workloads. The design of Cilantro is informed by the following two key insights.
[I1] Offline profiling of resource-performance is insufficient. Performance-aware policies rely

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 40

on accurate estimates of resource-to-performance mappings and load shifts. Offline profiling of
these resource-performance mappings can be inaccurate due to unpredictability in server and ap-
plication performance [44] and changing traffic patterns [159]. Adapting to these changes neces-
sitates continuously learning and predicting these unknowns in an online manner.
[I2] Decoupling learning mechanisms and policies enables diverse scheduling objectives. As
different scheduling policies optimize different criteria, it may be challenging for a scheduling
framework to generally support different policy types. Prior work on feedback-driven resource
allocation [212, 91, 149] uses an end-to-end model for allocating resources for a fixed objective,
such as total utility or cost. Optimizing for a different objective in these systems may require a
complete redesign of the system and policy, or at the very least an expensive retraining of their
models. Decoupling learning mechanisms from policies allows the model to be learned once and
applied to multiple allocation objectives. This decoupling also increases transparency in the allo-
cation decisions made by the scheduler and facilitates debugging.

We leverage these learnings to build Cilantro (Figure 3.3). Cilantro is composed of two key
components: the centralized Cilantro scheduler, which is responsible for generating resource al-
locations, and the Cilantro clients—lightweight sidecars co-located with each job—which fetch a
job’s performance metrics and send them to the Cilantro scheduler. Informed by [I1], the Cilantro
scheduler employs online learning to create increasingly accurate models of job performance and
load. Guided by [I2], the policy optimizes a user-defined objective by polling these models for a
resource-performance estimates to produce a resource allocation.

Assumptions & terminology. In this work, we will focus on jobs which can scale elasti-
cally with the number of resources with corresponding gains in performance. Examples of such
workloads include stateless or stateful distributed services (e.g., prediction serving [37], mem-
cached [59], Cassandra [103]), distributed computation (ML training, MPI jobs) and distributed
frameworks (e.g. Hadoop [171], Spark [208]). Some of these can be viewed as a collection of
several tasks whose job size may vary with time, such as in serving jobs. Each task may refer to
a query whose arrival rate may change with time. For jobs with such varying query rates, we will
refer to the instantaneous rate of external query arrival as the load (measured in queries per second
(QPS)). Finally, we assume there is a fixed amount of a single, fungible resource type that must be
allocated.

Cilantro scheduler: The Cilantro scheduler is designed as a centralized asynchronous event
driven system. Event sources include timers, performance updates received from the Cilantro
clients, and cluster state updates from the underlying resource manager. Below, we describe the
scheduler’s modules. Specific implementation details are available in §3.6.

1. Data loggers. Application metrics pushed from Cilantro clients are stored in memory-
backed tables. They relay these metrics to the performance learners and load forecasters.

2. Performance learner. The performance learner learns a job’s performance as a function of
the resource allocation and the load using an associated model. It periodically polls the data logger
for new data and updates the model. The learner’s update frequency is constrained only by the
velocity at which the model can be updated. One instance of a performance learner is maintained

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 41

Cilantro Scheduler

Performance Learners Load Forecasters

Data
Loggers

Learning Modules

Resource Allocator

Res-Perf
Confidence

Bounds

Load
Confidence

Bounds

Res-Perf
Data

Physical
Resources

Job 1

Job
Server

Cilantro Client

Job
Server

More Jobs

Load Data

Resource Manager (Kubernetes)

Resource Allocations

Perf
Data

Uncertainty-aware Policy

User-defined Objective

Figure 3.3: The Cilantro scheduler and client architecture. The scheduler generates resource
allocations for jobs and the clients collect performance feedback to report to the scheduler.

per application. A performance learner provides get-perf-ucb and get-perf-lcb interfaces for
a policy, which return upper and lower confidence bounds for the performance as a function of the
resources and load.

3. Load forecasters. In many real-world deployments, the job size could vary with time
depending on the real-time traffic, which should be accounted for when allocating resources. The
goal of the load forecaster is to estimate this load for the duration of a future allocation based
on past observed loads via an associated time series model. It offers get-load-ucb interface
for a policy which returns an upper confidence bound for the future load. Load forecasters are
periodically updated by polling from the data loggers.

4. Uncertainty-aware Policy. Policies compute allocations in order to optimize for a user-
specified scheduling objective. In an online setting, using direct estimates of the performance
may fail as it does not reflect the uncertainty in the model. Therefore, Cilantro’s policies leverage
confidence intervals of these estimates to account for this uncertainty in a principled manner when

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 42

Resources
0.0

0.5

1.0

Pe
rfo

rm
an

ce SLO

dj
Resources

0.0

0.5

1.0

Ut
ilit

y

SLO

dj

(a)
Resources

0.0

0.5

1.0

Ut
ilit

y

(b)

SLO

dj
Resources

0.0

0.5

1.0

Ut
ilit

y

SLO

dj

(c)

Performance Utility

Figure 3.4: Three candidates for SLO-based utility functions. The left-most figure shows a job’s
performance pj as a function of the resources (for fixed load). In (a), the utility scales linearly
with performance until the SLO, i.e u′

j(p) ∝ min(p,SLO), whereas in (b) it scales quadratically
u′
j(p) ∝ min(p,SLO)2, and in (c) it scales with the square-root u′

j(p) ∝ min(p,SLO)1/2. Here,
(b) captures settings where even small SLO violations are critical while (c) captures settings where
small SLO violations are not very significant.

making allocation decisions (§3.4).
5. Resource allocator. The resource allocator is responsible for executing the resource allo-

cations by interfacing with the underlying cluster manager. This module is driven via an alloca-
tion expiry event, upon which it invokes the policy’s compute-alloc method and allocates the
resources. Allocation expiry events are raised based on a timeout, resulting in a new round of
allocations. In practice, the duration of an allocation round is limited by the agility of the environ-
ment. Since scaling jobs requires time, changing resource allocations too frequently can result in
job thrashing (having to scale down before it has a chance to utilize new resources).

Cilantro client: The Cilantro client is a lightweight side-car container whose purpose is to
to poll the job to get its current performance, process it, and publish it to the scheduler’s data
loggers. The primary task for the client is to extract metrics from their assigned job. Many systems
expose REST endpoints to query system performance [100, 155], but often the applications also
use monitoring tools such as Prometheus or Grafana. Depending on the job, the performance
metric extraction logic is specified by the users. In §3.5, we describe built-in fallback options if
job metrics are not available.

3.4 Policies
We now describe our policies for performance-aware resource allocation in two settings: multi-
tenant resource allocation in a fixed cluster (§3.4.1), and allocating finite resources to constituent
microservices of an application (§3.4.2).

Set up & notation: We will denote the number of jobs (or microservices) by n, the amount
of resources by R, and an allocation by a = (a1, . . . , an), where aj is the amount of resources
allocated to job (or microservice) j. A scheduler should allocate these resources so that

∑n
j=1 aj ≤

R.

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 43

3.4.1 Resource allocation in shared clusters
Cilantro supports two classes of performance-aware allocation objectives in the multi-tenant set-
ting: welfare-based, and demand-based. Our primary contributions are in §3.4.1 where we derive
uncertainty-aware online variants of these policy classes. But first, we will review some common
examples of such objectives in §3.4.1. For what follows, we will need to define the performance,
demand, and utility of a job.

Performance: The resource/load-to-performance mapping (henceforth simply performance or
performance mapping) pj of a user’s job j refers to some raw metric of interest, which, say, can be
obtained from a monitoring tool. We write the performance pj(aj, ℓj) as a function of the resources
received aj and the load ℓj . As we are allocating a single resource type, aj is a single number, as
is ℓj . For example, in a serving job with a P95, 100 ms latency SLO, the performance may be the
fraction of queries completed in under 100 ms, and the load may refer to the external arrival rate
of queries.

Demand: If a job has a well-defined SLO, we define the demand dj to be the minimum amount
of resources needed to achieve this SLO. The demand depends on the job’s performance curve pj ,
SLO, and load ℓj .

Utility: The utility uj of a job is the practical value derived due to its performance. Generally,
uj is a non-decreasing function of the performance and we can write uj(aj, ℓj) = u′

i(pj(aj, ℓj)) for
some non-decreasing function u′

j .

Examples of utilities. The simplest option is to set the utility to be equal to the performance uj =
pj , i.e., u′

j is the identity. However, we may also choose a utility which is more applicable when
there are well-defined SLOs. Fig. 3.4 illustrates three candidates for u′

j: the maximum utility for
any job is set to 1, which is achieved for any performance greater than the SLO; for performances
below the SLO, we may set the utility to (a) decrease proportionally with SLO violation, (b)
decrease sharply in settings where small SLO violations are critical (e.g., with external customers
where SLO violations can lead to penalties [6] and a loss of credibility), (c) decrease gradually
when small SLO violations are not critical (e.g., soft SLOs internal to an organization). Such utility
forms which are ‘clipped’ at the SLO provide a simple way to compare jobs with heterogeneous
performance metrics and SLOs, such as latency and throughput. Prior work have also used similar
forms of utility [92, 63, 197]. For these reasons, our experiments also use these forms, although
we emphasize that Cilantro can handle any utility form which increases with performance.

Review of multi-tenant allocation when performance mappings are known

We will first review two classes of multi-tenant allocation objectives supported in Cilantro—
welfare-based and demand-based—and three examples of such objectives. In §3.4.1, we will
develop online learning policies that achieve the same objectives when performance mappings
are unknown.

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 44

job 1 job 2

job 3

allocation (utility) metrics
Policy job 1 job 2 job 3 WS WE FNJC

Social welfare 10 (1.0) 50 (1.0) 0 (0.0) 0.67 0.0 0.0
Egalitarian welfare 4 (0.4) 20 (0.4) 36 (0.4) 0.4 0.4 0.4
NJC fair 10 (1.0) 25 (0.5) 25 (0.28) 0.59 0.28 1.0
Resource fair 20 (1.0) 20 (0.4) 20 (0.22) 0.54 0.22 1.0

Figure 3.5: Comparison of the three (oracular) fair allocation criteria described in §3.4.1 in a
synthetic example with 60 CPUs. Left: Utility curves for three jobs. The y axis is the utility and
the x-axis is the number of resources. For simplicity, we have ignored the loads and assumed that
utilities increase linearly up to the demand. The total demand is 150, whereas only 60 resources
are available. Right: The allocations and utilities for each job under the three criteria. We have
also shown the WS (3.1), WE (3.2), and FNJC (3.3) metrics for each policy.

Welfare-based objectives: These policies aim to maximize a given cluster-wide welfare func-
tion W , which is a function of the utility of each job, i.e., W = W (u1, . . . , un). Below, we describe
two common welfare-based objectives.

(i) Social welfare (a.k.a. Kelly mechanism [95]): We choose the allocation a which maximizes
the social welfare (the average utility), i.e. a = argmaxWS, where,

WS =
1

n

∑n

j=1
uj(aj, ℓj) =

1

n

∑n

j=1
u′
j(pj(aj, ℓj)). (3.1)

As we show in Figure 3.5, this notion of fairness allocates more resources to “high-performing”
users, i.e those who can generate large utility with a small amount of resources.

(ii) Egalitarian welfare: Here, we choose the allocation a which maximizes the egalitarian
welfare (minimum of all utilities), i.e. a = argmaxWE, where

WE = min
j∈{1,...,n}

uj(aj, ℓj) = min
j∈{1,...,n}

u′
j(pj(aj, ℓj)). (3.2)

This allocates more resources to “struggling” jobs which need more resources to achieve large
utility (Figure 3.5).

Demand-based policies: These policies apply when jobs have a well-defined SLO and it is
possible to define its demand dj . Such policies will compute allocations based on the demands
of all jobs. This requires knowledge of the demand, which in turn depends on the performance
mapping.

(iii) No justified complaints (NJC) fairness [49, 50, 73]: One class of demand-based policies
which adopt the NJC fairness paradigm guarantee an equal share of R/n for each job. If the job’s
demand is larger than R/n, it is allocated at least (but possibly more than) this share. But, if the
job’s demand is smaller, the excess resources may be allocated to other jobs to improve overall
resource usage. A user can have no justified complaints since they are either guaranteed to satisfy
their SLOs or their utility will be larger than if they were to have R/n resources. To quantify this,
we define the following metric. The term inside the minimum measures the utility achieved by job

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 45

j with allocation aj relative to the utility when using its fair share of R/n resources.

FNJC = min
j∈{1,...,n}

uj(aj, ℓj)

uj(R/n, ℓj)
= min

j

u′
j(pj(aj, ℓj))

u′
j(pj(R/n, ℓj))

(3.3)

In contrast to metrics such as the Jain’s index[83], FNJC accounts for users’ performance when
evaluating fairness. This metric has a maximum value of 1. Below, we describe a demand-based
policy [49] which achieves FNJC = 1 while also using the resources efficiently as also shown in
Figure 3.5.

An NJC policy: This policy proceeds iteratively. In the first round, it sets each user’s “share”
to be R/n. It allocates dj to each user j for whom dj is smaller than the share. If n′ users
were allocated R′ resources in the first round, in the second round it sets each user’s share to be
(R−R′)/(n−n′). It repeats this until all the remaining users’ demands are larger than their share.
It then divides up the remaining resources equally among the remaining users. While this policy
may not maximize any welfare, it achieves Pareto-efficient user utilities. Another advantage of this
policy is that it is strategy-proof, i.e a user does not gain additional utility by falsely stating their
demand [62, 73, 93].

This concludes our review of multi-tenant resource allocation objectives when performance
mappings are known. We mention that prior work have used these objectives in various contexts
with custom utilities. For instance, social welfare has been used in stream processing [92] and
wireless networks [189], egalitarian welfare in video streaming [135], and several NJC policies are
implemented in Mesos [76].

Online learning policies in Cilantro

We will now develop our online policies. Our policies will operate on lower and upper confi-
dence bounds obtained from the load forecasters and performance learners instead of the direct
estimates; doing so accounts for the uncertainty in the learned models and encourages a policy
to conservatively explore the space of allocations until the estimates become accurate. Cilantro’s
policies will proceed sequentially in allocation rounds. On round r, Cilantro chooses an allocation
a(r) = (a

(r)
1 , . . . , a

(r)
n) based on the feedback from all jobs up to now and the specific scheduling

objective.
Welfare-based online policies: For welfare-based policies, Cilantro adopts the optimism in

the face of uncertainty (OFU) principle [24]. OFU stipulates that, to maximize an uncertain func-
tion, we should choose actions which maximize an upper confidence bound (UCB) on the function.
Both theoretically and empirically, OFU is known to outperform other strategies which use direct
estimates or those which are pessimistic (i.e. maximize lower confidence bound). An in-depth ex-
ploration of OFU is beyond the scope of this work, but we refer the reader to relevant literature (e.g.
[10, 25, 175, 67]).

While OFU is a well established design paradigm, most OFU policies are designed for end-to-
end systems which output a single reward signal. Adapting OFU for general welfare-based policies
requires studying how the uncertainty in the performance and load translate to a UCB Ŵ on the

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 46

welfare W which we wish to maximize. Since W is non-decreasing in the utilities uj , we can
obtain a UCB for W by plugging in UCBs ûj for the utility uj , i.e Ŵ = W (û1, . . . , ûn). Similarly,
since uj is non-decreasing in the performance we can obtain a UCB by plugging in a UCB p̂j for
pj , i.e ûj = u′

j(p̂j). This leads to the following choice of allocation on round r.

a(r) = argmax
a∈A(r)

W
(
u′
1

(
p1
(
a1, ℓ̂1

))
, . . . , u′

1

(
p1
(
an, ℓ̂n

)))
(3.4)

Above, since the exact load cannot be known, we conservatively over-estimate it via a UCB ℓ̂j on
the load. Here, A(r) is the allocation space on round r which is defined by two constraints: first,
the total allocation cannot be larger than R, i.e.

∑
j aj ≤ R; second, the current allocation cannot

deviate too much from the previous allocation, i.e. a(r−1)
j −B ≤ aj ≤ a

(r−1)
j +B for all j, where B

is a parameter to be specified. We impose the second constraint since large changes to allocations
can have unpredictable effects on a job’s performance; moreover, they take a long time to actuate,
resulting in unreliable feedback while resources are being scaled up/down.

To optimize (3.4), one can use any off-the-shelf optimizer such as evolutionary algorithms, hill
climbing, or integer programming which can handle the linear constraints for A(r). In our imple-
mentation, we used an evolutionary algorithm (details in §3.6). Finally, we describe instantiations
of this principle for the two welfare-based policies we saw in §3.4.1.

(i) Cilantro-SW: To emulate the social welfare policy in §3.4.1, on round r, we use the UCB
for l̂ for load and p̂ for performance. Thus, we choose an allocation

a(r) = argmax
(a1,...,an)∈A(r)

∑n

j=1
u′
j

(
p̂j(aj, ℓ̂j)

)
.

(ii) Cilantro-EW: To emulate the egalitarian welfare policy in §3.4.1, on round r, we choose an
allocation

a(r) = argmax
(a1,...,an)∈A(r)

min
j∈{1,...,n}

u′
j

(
p̂j(aj, ℓ̂i)

)
,

Demand-based online policies: For demand-based policies, on round r, we will use the con-
fidence intervals from the performance learners and load forecasters to obtain conservative rec-
ommendations d

(r)
j for job j’s demand. Then, we compute the allocations a(r) for this round by

invoking the same demand-based policy with the recommended demands {d(r)1 , . . . , d
(r)
n } instead

of the true demands.
Our method for obtaining demand recommendations is based on [93]. To describe this in more

detail, observe that for demand-based policies it is sufficient to accurately estimate the demand
well, i.e. it is not necessary to learn the entire performance mapping well. We have illustrated our
strategy for obtaining the demand recommendation in Figure 3.6. First, we will denote by d̂

(r)
i , the

UCB for the demand obtained as shown in Figure 3.6. As a conservative choice for this demand,
we may wish to choose d̂

(r)
i as the recommendation. However, we found that in practice this was

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 47

SLO

Figure 3.6: Illustration of Cilantro’s uncertainty-aware demand-based policies. We first obtain a
UCB ℓ̂j from the load forecaster, which ensures that we have a conservative estimate on the job’s
load. In the figure, the x axis is the amount of resources aj that could be allocated to job j. We
show the SLO (pink), the slice of the unknown performance curve (blue) when the load is ℓ̂j , and
the confidence region obtained from past data (green). The LCB p̂j and UCB p̂j on pj(a, ℓ̂j) are
given by the lower and upper boundaries of the confidence region (solid green lines). A confidence
interval for the demand (orange) can be obtained by the region where p̂j, p̂j intersect the SLO line.
To obtain a recommendation, we compute a UCB demhatjr on the demand (where SLO intersects
p̂j) and d

(r)

j via equation (3.5).

overly conservative and the resulting allocations were very slow to adapt to feedback. Therefore,
we also wish to use a more aggressive exploration strategy to reduce the uncertainty in our demand.
We use:

d
(r)

j = argmax
aj

min
(
p̂j(aj, ℓ̂j)− SLO, SLO− p̂j(aj, ℓ̂j)

)
(3.5)

To illustrate this rule, consider Figure 3.6 where min(p̂j − SLO, SLO − p̂j) is negative for large
allocations when the performance LCB p̂j is larger than the SLO and for small allocations where
the performance UCB p̂j is smaller than the SLO. By maximizing (3.5), we are choosing points
inside the confidence interval for the demand where both p̂j, p̂j are further away from the SLO; so

if job j were to receive d
(r)

j resources, then we are most likely to reduce the demand uncertainty.

However, choosing d
(r)

j as the recommendation can lead to overly aggressive exploration so our
final recommendation d

(r)
j is then obtained via,

d
(r)
j = clip

(
βd̂

(r)
j + (1− β)d

(r)

j , d
(r−1)
j −B, d

(r−1)
j +B

)
(3.6)

Here, β ∈ (0, 1) is a parameter to trade-off between d̂
(r)
i and d

(r)

i . We clip this value between
d
(r−1)
j − B and d

(r−1)
j + B to control wide deviations in resource allocations (similar to before).

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 48

Next, we formally state Cilantro’s instantiation of the demand-based NJC procedure described
in §3.4.1.

(iii) Cilantro-NJC: Here, we simply compute the recommended demand via (3.5), and then
invoke the NJC procedure described in §3.4.1, In §3.7.1 we show that Cilantro-NJC retains some
of the strategy-proofness properties of NJC.

3.4.2 Microservice resource allocation
Now, we will look another use-case for Cilantro, where we wish to optimize an end-to-end per-
formance metric p of an application composed of several interdependent microservices (jobs).
Examples for p include the total throughput of the application, the negative P99 latency, or even
any combination of the two. Here, the entire fixed set of resources is available to the application
and must be allocated between microservices for to maximize p. There are two main differences
in this setting when compared to the multi-tenant setting which introduces new challenges. First,
while assuming jobs run by different users are independent is reasonable when we aim to optimize
for fairness, this is no longer true now since microservices within an application may have complex
dependency graphs (see Figure 3.13-Left). Second, while an application’s performance is clearly
tied to the performance of individual microservices, it is not possible to write it explicitly, as we
did for the social or egalitarian welfare.

We overcome these challenges by modeling the end-to-end performance p as a direct function
of the allocation to each microservice and the external load faced by the application. That is, we
write p(a, ℓ), where, a = (a1, . . . , an) is a vector of allocations for each microservice and ℓ is the
external load on the application. On allocation round r, our online learning policy, which adopts
the OFU principle, chooses an allocation vector which maximizes an upper confidence bound p̂ on
the performance obtained from the performance learners:

a(r) = argmax
a∈A(r)

p̂(a, ℓ). (3.7)

While this circumvents accounting for individual microservice performance and dependency graphs,
we now face the challenge of optimizing for an n–dimensional allocation with just one feedback
signal. In contrast, in the multi-tenant setting we had more feedback (one for each job).

3.5 Discussion
We now present a discussion on Cilantro’s operation under various adversarial conditions that may
occur in deployment.

When online job feedback is unavailable. Cilantro provides three fallback options when on-
line feedback is not available. First, Cilantro allows a user to use a profiled model (using historical
data) instead of online feedback. Second, it allows using proxy metrics from the Kubernetes API
instead of real-world performance. In such cases, a user should specify how these proxies are tied

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 49

to their utility and/or demand. Third, if neither of these is possible, we allow the user to directly
submit an estimate for their resource demand which will then be fed to the policy when determin-
ing allocations. In such cases, we assume that utility increases linearly up to the demand when
computing allocations. We evaluate this fallback option in §3.7.3. Due to Cilantro’s decoupled
design, these fallback options can be effected with simple modifications to a job’s performance
learner.

Learning in unpredictable environments. Some situations, such as unexpected load spikes
for web services or interference between jobs, are fundamentally hard to predict. Cilantro’s
uncertainty-aware design provides a degree of resilience against these unpredictable changes, as
we show in it’s robustness to noise in load and resource demand estimates in Section 3.7.3. How-
ever, continued extreme fluctuations in the loads can negatively impact Cilantro’s performance.
To avoid hysteresis when reallocating resources, future work can explore averaging loads over
dynamically sized windows or including rules to temporarily override Cilantro’s policy.

Limitations and Future Work. Cilantro currently supports allocating only a single resource
type. In our current implementation, multiple resource types can be bundled into grouping units,
such as VM SKUs with a fixed ratio of CPU, Memory and GPUs, which can then be scheduled
by Cilantro. However, such bundling is not always possible, especially when different jobs have
different resource requirements. Extending Cilantro to handle multiple resource types is possible
for welfare-based policies. However, learning and optimization can be challenging since the search
space is now very large. Another related limitation is that Cilantro cannot handle non-fungible
resource types. Cilantro also does not support online learning versions of market-based resource
allocation policies in the multi-tenant setting [209, 102, 191]. These are avenues for future work
to improve Cilantro. Cilantro also assumes utilities increase with increasing resources, however
some workloads may demonstrate inverse scaling, especially when allocated resources become
fragmented across physical nodes. Future work can relax this assumption by applying learning
techniques robust to non-convex utility shapes. We also note that Cilantro can support multiple
SLO parameters (e.g., for an inference job, ensuring a minimum latency and accuracy) by wrapping
them in a single utility function, and the design of such utility functions can be explored by future
work.

3.6 Implementation
The Cilantro scheduler is implemented in 7600 lines of Python code, as a standalone scheduler
for Kubernetes. Resource reallocation events are triggered by a timer-based event, which is raised
every 2 minutes in our experiments. This window was chosen based on the fact that Kubernetes
pods could be created and destroyed in 5-15 seconds. A 2 minute allocation round is long enough
for the pod to reach its steady state that performance metrics from the job would be reliable, while
at the same time frequent enough to adapt to changes in the load and learned performances.

To execute updated resource allocations received from policies, we horizontally scale the work-
loads by adding more replicas to their Kubernetes deployment. Newly created pods rely on the Ku-

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 50

bernetes service discovery mechanism to connect to the workload’s other servers. The workload
is responsible for load balancing queries onto the new servers. Workloads write logs to a volume
shared with the sidecar cilantro client. The client parses performance metrics and then publishes
them to the scheduler over gRPC. These messages also act as heartbeats to inform liveness to the
scheduler.

The frequency of performance feedback depends on the application and the environment. For
instance, database serving jobs may report feedback multiple times in a minute, while ML training
jobs may do so once every few minutes. To avoid bottlenecks, we use an asynchronous design
for Cilantro where each component operates in a push or pull based framework. This allows high
frequency components to operate at their maximum rate while allowing slower components, such
as learners for low-frequency jobs or cluster managers, to be polled when required.

Specifying utilities and objectives. Utilities of jobs are calculated based on the performance
metrics collected by the Cilantro clients in the last resource allocation round. To compute the
utilities, application developers specify utility as a python method which operates on a list of
floating point numbers representing the performance metrics observed in the previous resource
allocation round. Similarly, the scheduling objective (e.g., social welfare from §3.4.1) is also
defined by the cluster operator as a python method operating on the list of utilities from all jobs.

Learning models and load forecasters. For the multi-tenant setting, we used a tree-based
binning estimator [93, 25, 70] with Lipschitz constant 10 for each job’s resource-to-performance
estimation. This is a simple and computationally efficient estimator, but does not work well in high
dimensions. Therefore, for the microservices setting where we have a high dimensional estima-
tion challenge, we use kernel ridge regression [213, 196] with a Matern kernel with smoothness
parameter set to 2.5. In both settings, for the load forecasters, we use an autoregressive moving
average (ARMA) model [120] with autoregressive order 1 and moving average order 1. Finally,
all confidence bounds were computed at the 90% level, meaning that the probability that the true
parameter lies between the upper and lower confidence bounds is 90%. We used the above learning
models since they are simple and have few tunable hyperparameters. With Cilantro’s modular de-
sign, these can be easily swapped with any other model as long as they provide reliable uncertainty
estimates.

Other policy parameters: For all our policies, we set the parameter B which controls the
deviation from the previous allocation to 10. For demand-based policies, we set the parameter β
which trades off between conservative and aggressive exploration to 3/4. For the welfare-based
policies in §3.4.1 and the microservices use case in §3.4.2, we use evolutionary algorithms to
optimize the UCBs. The exact implementation is described in the appendix.

Evolutionary algorithm. We describe the evolutionary algorithm used in all of our experi-
ments, i.e to optimize the profiled information for the oracular welfare polices, to optimize the
upper confidence bounds for the learning policies in §3.4.1 and§3.4.2, and the evolutionary algo-
rithm baselines in §3.7.1 and§3.7.2. The input to the algorithm is a data source which the algorithm
can query using an allocation and obtain a feedback signal. This data source can either be a cheap
analytically computable function available in memory, as is the case for the oracles and learning

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 51

Figure 3.7: Performance vs resource-allocation-per-unit-load obtained after profiling the database
querying, predicition serving and ML training workloads. The blue curve is the average perfor-
mance value and the shaded region is the 2σ confidence interval. For the latency-based workloads
(DB-0, DB-1, and prediction serving), we show the number of resources per unit load (arrival QPS)
on the x-axis and the fraction of queries completed under 2s on the y-axis. For the ML training
workload, we show the number of resources on the x axis the amount of data processed per second
on the y-axis. To obtain accurate estimates, we sampled low resources allocations more densely.

polices, or an expensive experiment, as is the case when used as a baseline to directly optimize for
performance. The algorithm maintains a hash table mapping allocations to mean observed signal
values. When it receives feedback for an allocation, it updates the mean value if the allocation has
already been tried, or it creates a new entry and stores the feedback.

Our evolutionary algorithm proceeds as follows. In has an initialization phase of 10 rounds.
In the first 2 rounds, it always queries a resource-fair allocation. In the remaining 8 rounds, it
queries a random allocation a such that

∑n
j=1 aj = R. On each subsequent round, it chooses a

random allocation in the above manner with probability 0.1. With probability 0.9, it samples one
of the existing allocations in the hash table based on the mean feedback value, performs a mutation
operation, and queries the new allocation obtained via the mutation. We now to describe these two
steps.

• Sampling: Let {(ai, yi}i be the (allocation, mean feedback) pairs in the hash table. Let m, s
denote the man and standard deviation of the {yi} values. We sample ai with probability
proportional to exp

(
(yi −m)/s

)
.

• Mutation: The mutation operation is composed of a sequence of steps to modify a given
allocation a. At each step, we randomly sample one job j which has an allocation of at least
2 CPUs; we then sample any other job k ̸= j; we then decrease j’s allocation by 1 and
increase k’s allocation by 1. The number of steps is chosen uniformly at random between 1
and 20.

3.7 Evaluation
We evaluate Cilantro in two settings described in §3.4.

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 52

Query Bin TPC-DS Query Ids Mean Execution Time (s)

db0 93, 91, 92, 45, 85, 15, 32 0.28
db1 90, 84, 8, 55, 96, 81, 79 0.67

Table 3.2: Details of the bins created from TPC-DS queries. Each user’s workload is generated
using these bins. Execution time is profiled on a SQLite3 database running on AWS m5.2xlarge
instance with one allocated CPU core.

1. In the multi-tenant setting, Cilantro’s online learning policies, which do not start with any
prior data, are competitive with oracular policies which have access to jobs’ resource to
performance mappings obtained after several hours of profiling. Moreover, they outperform
9 other baselines on the metrics outlined in §3.4.1.

2. In the microservices setting, Cilantro is able to support the completely different objective
of minimizing end-to-end latency. It outperforms three other baselines and reduces the P99
latency to ×0.57 that achieved by the next best performance-aware baseline.

3. In our microbenchmarks, we show that Cilantro’s allocation policies are inexpensive, eval-
uate its fallback options when performance metrics are unavailable, and demonstrate its ro-
bustness to errors in feedback and choices for performance learner and forecaster models.

3.7.1 Multi-tenant cluster sharing
We first evaluate Cilantro’s multi-tenant policies (§ 3.4.1) on a 1000 CPU cluster shared by 20
users.

Workloads. We use three classes of workloads—database querying, prediction serving and
machine learning training—which are used to create multiple jobs.

The database querying workload runs TPC-DS [133] queries on replicated instances of sqlite3
database and uses the query latency as the performance metric. The TPC-DS suite consists of 99
query templates out of which 27 were not compatible with the sqlite dialect and were discarded.
The remainder were binned according to their mean latency when measured on a AWS m5.2xlarge
instance. The chosen query types and their ids are listed in Table 3.2. From the TPC-DS query set,
we created two workloads (setting scale factor to 100): DB-0, which had queries that completed
in under 100 ms and DB-1 which had queries that had a completion time between 100 and 300
ms. When a query is requested, we randomly pick a relevant query and dispatch it according to the
trace. The performance metric of interest is query latency.

In prediction serving, a job processes arriving queries to output a prediction, usually obtained
via a machine learning model. In our set up, we use a random forest regressor as the model and the
the news popularity dataset [58] for training and test queries in a 50:50 split. Queries are picked
randomly from the test set and issued in batches of 4. The metric of interest is the serving latency.

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 53

Job and SLO Type Job Name SLO Utility Function

Database Serving (Latency)

db01 0.9 linear
db02 0.9 linear
db03 0.95 sqrt
db11 0.9 linear
db12 0.9 quadratic
db13 0.95 quadratic
db14 0.95 linear
db15 0.95 quadratic
db16 0.99 quadratic
db17 0.99 sqrt

Prediction Serving (Latency)
prs1 0.9 linear
prs2 0.9 sqrt
prs3 0.95 sqrt

ML Training (Throughput)

mlt1 400 sqrt
mlt2 400 sqrt
mlt3 450 linear
mlt4 450 linear
mlt5 500 quadratic
mlt6 500 quadratic
mlt7 500 quadratic

Table 3.3: SLO and utility functions used for jobs in experiments in §3.7.1. For Latency based
SLOs, the SLO implies the fraction of queries that completed under 2 seconds. For Throughput
based SLOs, the SLO is the desired query rate, measured in queries per second.

The ML training workload trains a neural network on the naval propulsion [35] dataset us-
ing stochastic gradient descent. The database querying and prediction serving workloads use the
query latency as the performance metric while ML training uses batch throughput to measure
performance. Resource-performance mappings for informing the oracle baselines were obtained
through offline profiling of all workloads. These profiles are visualized in Figure 3.7.

Multi-tenant cluster jobs setup. For the multi-tenant cluster resource sharing evaluation, we
setup 20 jobs with different workloads and SLOs. Table 3.3 details the exact SLO and utility
function for each job. The utility function for each job is either of linear, which directly maps
performance to utility (Figure 3.4(a)), sqrt, which performs a sublinear mapping of performance
to utility (Figure 3.4(b)), or quadratic, which performs a superlinear mapping of performance to
utility (Figure 3.4(c)).

Traces. Queries to the database and prediction serving workloads are dispatched by a trace-

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 54

Figure 3.8: Sampled query arrival rate from the twitter trace collected over the duration of a day.

driven workload generator. We use the Twitter API [190] to collect a trace of tweet arrival rates
at Twitter’s Asia datacenters; to bring to parity with our cluster, we subsample the arrival rate by
a factor of 10. The query arrival rate of this trace is visualized in Figure 3.8. For the ML training
workload, we draw queries from an essentially infinite pool to create a constant stream of work.

Experimental set up. We use a cluster of 250 AWS m5.xlarge instances (4 vCPUs each). The
Cilantro scheduler runs on its own dedicated m5.xlarge instance. We use the above 4 workloads
to create 20 jobs as follows: 10 database jobs with P90, P90, P90, P90, P95, P95, P95, P95, P99,
P99 latency SLOs of 2s; 3 prediction serving jobs with P90, P90, and P95 latency SLOs of 2s; 7
ML training jobs with throughput SLOs of 400, 400, 450, 450, 500, 500, and 500 QPS. To reflect
settings where small SLO violations may be either critical or inconsequential, we discount the
utility via one of the three options in Fig. 3.4 for each job. The estimated total amount of resources
based on the median demand was 1637 CPUs; hence, even at full capacity, not all users can satisfy
their SLOs. We evaluate all baselines for 6 hours.

Baselines
Oracular policies. We implement the three policies in §3.4.1 with oracular access to the true
performance mappings (obtained by exhaustively profiling workloads for at least 4 hours). They
are Oracle-SW, Oracle-EW, for maximizing social/egalitarian welfare and the Oracle-NJC fairness
policy.

Cilantro policies. We evaluate Cilantro-SW, Cilantro-EW, and Cilantro-NJC, as described in
Sec. 3.4.1.

Other heuristics. We implement four methods for fairness and maximizing welfare. While not
based directly off specific prior work, such methods are common in the scheduling literature [37,
68]. Resource-Fair simply allocates an equal amount of resources to each job. EvoAlg-SW and
EvoAlg-EW are evolutionary algorithms for social and egalitarian welfare; the same procedure used
for Cilantro’s welfare policies, but now operating directly on the performance metrics. Greedy-
EW starts by allocating resources equally; on each round, it evaluates job utilities in the previous
round and takes away one CPU each from the top half of the users who had high utility and

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 55

allocates it to the bottom half.
Baselines from prior work. We adapt five feedback-driven methods from prior work to

compare against Cilantro - Ernest [193], Quasar [48], Minerva [135], Parties [29] and MIAD
(Multiplicative-Increase/Additive-Decrease) [31].

1) Ernest [193]: Ernest uses a featurized linear model to estimate the time taken to run a job.
We use this estimate to approximate the resource demand to meet the job’s SLO. On each
round, we use the estimated demand as inputs to NJC to compute the allocations.

2) Quasar [48]: Quasar uses collaborative filtering to estimate a job’s resource demand, which
we use as inputs to NJC to compute the allocations. We do not incorporate mechanisms
for vertical scaling and workload co-location described in [48] to be consistent across all
methods.

3) Minerva [135]: Minerva sets the allocation for job j at each step to be proportional to aj/uj

where aj and uj are the allocation and utility at the previous round.

4) Parties [29]: Parties upsizes the allocation for a job if it violates or is close to violating the
SLO, downsizes the allocation if the job comfortably satisfies the SLO, and otherwise does
nothing. If the SLOs of all jobs cannot be met, it evicts the job from the server. As eviction
is not an option in our setting we use the Parties logic to compute the demands which are
then fed to NJC to obtain the allocations. For upsizing, we increase the demand by 20 CPUs
and for downsizing, we decrease it by 5. These parameters were tuned so that the policy did
reasonably well on all three metrics. In particular, we note that applying the Parties notion
of migration in our setting would imply moving the job to a different cluster or increasing
the size of the cluster, both of which are beyond scope for this fixed cluster setting.

5) MIAD (Multiplicative-Increase/Additive-Decrease) [31]: This is inspired by TCP congestion
control. If a user’s job violates the SLO, we increase its demand by 1.5× the current allo-
cation, and if it satisfies the SLO, we set the demand to be one minus the current allocation.
We then invoke NJC to compute the allocation for the next round. These parameters were
tuned so that the policy did reasonably well on all three metrics.

Results & Discussion

Evaluation on performance-aware fairness metrics. We first compare all 15 baselines on the
social welfare (3.1), egalitarian welfare (3.2), and the NJC fairness criteria (3.3). Fig. 3.9 illus-
trates the results by plotting the time-averaged NJC fairness vs the two welfare criteria. Table 3.4
tabulates these values explicitly with error bars. While the oracular methods perform best on their
respective metrics, we find that the online learning policies in Cilantro come close to matching
them. Resource-Fair achieves a perfect NJC score by definition, but performs poorly on social and
egalitarian welfare as it is performance oblivious.

We found that Greedy-EW, Parties, and MIAD were sensitive to the amount by which we
changed the allocations based on feedback; when tuning them, we found that they were either

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 56

Figure 3.9: NJC fairness vs the social and egalitarian welfare (see §3.4.1) for all policies. We
report the average value over the 6 hour period. Higher is better for all metrics, so closer to the
top right corner is desirable. The Oracle-SW, Oracle-EW policies optimize for the social and egal-
itarian welfare when the performance mappings are known and Oracle-NJC achieves maximum
fairness while improving cluster usage. The corresponding Cilantro policies are designed to do the
same without a priori knowledge of the performance mappings.

too slow or too aggressive when responding to load shifts. Next, the learning models used by
Quasar and Ernest were not able to accurately estimate the demands in our experiment. Finally,
the evolutionary baselines were inefficient, taking a long time to discover the optimal solution.
They, however, were effective within Cilantro’s welfare policies when you need to optimize a
cheap analytically computable function as they can be run for several iterations.

Despite our general approach, Cilantro’s policies are able to outperform Minerva and Greedy-
EW which are designed specifically to maximize egalitarian welfare. It also outperforms generi-
cally designed evolutionary algorithms for the social and egalitarian welfare. While it may indeed
be possible to design more efficient fine-tuned policies for a given objective, the flexibility pro-
vided by Cilantro’s approach is beneficial to end users. It should not be surprising that Cilantro
outperforms other systems such as Ernest, Quasar, Parties, and MIAD as our policies are designed
to explicitly optimize for these objectives. But this is precisely the goal of Cilantro. End-users can
declare their desired objective, and Cilantro will automatically derive policies to achieve them.

To illustrate how Cilantro improves with feedback, in Fig. 3.10, we have shown how the three
objectives evolve over time for Cilantro’s policies. Resource-Fair trivially achieves FNJC = 1 at
start since our initial allocation is always 50 CPUs to each job (i.e Resource-Fair). However, it
does poorly on welfare due to poor cluster usage. The goal behind Cilantro-NJC is to achieve
FNJC = 1 while also achieving good cluster usage. This causes the initial drop in performance for
Cilantro-NJC as it explores better allocations that still maximize FNJC.

Table 3.4 presents the detailed results of our multi-tenant cluster resource sharing evaluation.

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 57

Figure 3.10: Convergence over time of social, egalitarian welfares and NJC fairness for the three
Cilantro policies.

Figure 3.11: The average utility achieved by the 20 jobs for the three online learning methods in
Cilantro and Resource-Fair. Here, db0x, mltx, db1x, and prsx refers to jobs using the DB-0, ML
training, DB-1, and prediction serving workloads from § 3.7.1.

This table adds a metric which measures the useful resource usage.

Useful resource usage =
∑m

j=1
min(aj, dj) (3.8)

Here, the dj is user j’s resource demand. This demand-based metric, measures how much useful
work is being done by the cluster as allocations beyond the demand do not increase a user’s utility

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 58

Policy Social Welfare, (WS) Egalitarian Welfare (WE) NJC Fairness (FNJC) Useful resource usage

Oracle-SW 0.892± 0.004 0.324± 0.008 0.336± 0.004 0.964± 0.002
Oracle-EW 0.752± 0.003 0.412± 0.007 0.272± 0.002 0.997± 0.000
Oracle-NJC 0.828± 0.002 0.373± 0.008 0.999± 0.000 0.991± 0.000

Cilantro-SW 0.864 ± 0.006 0.337± 0.013 0.513± 0.020 0.818± 0.012
Cilantro-EW 0.760± 0.007 0.390 ± 0.020 0.426± 0.037 0.954 ± 0.012
Cilantro-NJC 0.823± 0.002 0.355± 0.005 0.964 ± 0.006 0.931± 0.003
EvoAlg-SW 0.649± 0.017 0.131± 0.016 0.182± 0.048 0.671± 0.021
EvoAlg-EW 0.687± 0.011 0.158± 0.012 0.387± 0.040 0.700± 0.009

Resource-Fair 0.611± 0.002 0.151± 0.006 1.000 ± 0.000 0.766± 0.001
Greedy-EW 0.724± 0.005 0.306± 0.006 0.518± 0.009 0.882± 0.004

Ernest 0.675± 0.002 0.214± 0.005 0.891± 0.013 0.774± 0.002
Quasar 0.756± 0.002 0.095± 0.003 0.060± 0.003 0.706± 0.002
Minerva 0.555± 0.017 0.082± 0.006 0.034± 0.005 0.407± 0.023
Parties 0.661± 0.002 0.285± 0.006 0.645± 0.000 0.766± 0.001
MIAD 0.761± 0.002 0.285± 0.005 0.745± 0.000 0.766± 0.001

Table 3.4: The social welfare (3.1), egalitarian welfare (3.2), NJC fairness metric (3.3), and the
effective resource usage (3.8) for all 13 methods. Higher is better for all four metrics, and the
maximum and minimum possible values for all metrics are 1 and 0. The values shown in bold have
achieve the highest value for the specific metric, besides the oracular policies. Resource-Fair has
NJC fairness FNJC = 1 by definition.

Figure 3.12: The utility of db16 under the three online learning policies, when they report truth-
fully, when they under-report, and when they over-report. The plot normalizes with respect to
truthful reporting, but the bars are annotated with the absolute value.

(see Fig. 3.4). We find that Cilantro’s policies achieve the maximum useful resource usage in
their respective classes. This is because learning resource demands allows Cilantro to reallocate
resources from jobs which have already achieved maximum utility to jobs which can benefit from
increased resources.

Individual user utilities. To delve deeper into the trade-offs of the three paradigms discussed
in §3.4.1, we have shown the individual user utilities achieved by these three policies in Fig. 3.11.
We see that both the social and egalitarian welfare policies result in some users being worse off than

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 59

Frontend

Search

Recommend

Profile

Geo

Rating

Reserve

User

Geo
MongoDB

User
MongoDB

Profile
MongoDB

Rate
MongoDB

Reserve
MongoDB

Recommend
MongoDB

Profile
memcached

Rate
memcached

Reserve
memcached

`

Queries

Consul
Mesh

Jaeger

Figure 3.13: Left: Microservices architecture of the hotel reservation benchmark[60]. Blue boxes
are business logic, red boxes are caching services, yellow boxes are databases and purple boxes are
networking services. Center: Results for the microservices experiment comparing four methods on
P99 latency over 6 hours, plotting the instantaneous P99 latency vs time. Right: The time-averaged
P99 latency vs time.

receiving their fair allocation of 1000/20 = 50 CPUs. This results in an NJC fairness violation.
In contrast, in Cilantro-NJC, users are at most marginally worse off than their fair share. However,
a third of the users achieve a noticeably higher utility than their fair share utility, with more than
3× for a few of them. We also see that Cilantro-EW has maximized egalitarian welfare by taking
resources away from those who achieve high utility and giving it to those who do not, while
Cilantro-SW has maximized social welfare by allocating more resources to jobs that can quickly
achieve high utility.

Evaluating Strategy-proofness. We next evaluate Cilantro policies for strategy-proofness.
A policy is said to be strategy-proof if an unscrupulous user cannot increase the utility of their
job by misreporting their performance metrics to the scheduling policy. For this, we repeat the
same experiment set up; all jobs behave exactly as before except the db16 job which lies about
its performance by either under-reporting by a factor ×1/2, or over-reporting by a factor ×2. By
under-reporting, the user gives the impression that more resources are required to reach its SLO;
in contrast, by over-reporting, a user is deceiving the scheduler to prioritize their job as they can
achieve high utility with few resources. In Fig. 3.12, we report the utilities achieved by db16
under these untruthful behaviors. We see that for Cilantro-NJC, the job’s utility does not increase
when over-reporting and decreases when underreporting, leaving no incentive for the user to be
untruthful. In contrast, for Cilantro-EW, a user stands to gain by under-reporting while for Cilantro-
SW, they gain by over-reporting. While a theoretical study of such strategy-proofness properties
is beyond the scope of this work, it is interesting to empirically observe that the strategy-proofness
properties of NJC fairness policies are retained in Cilantro.

3.7.2 Resource allocation for Microservices
We now demonstrate the use of Cilantro to allocate resources for inter-dependent microservices
serving an application. A query to the application triggers multiple queries to different microser-
vices and the final result is returned to the user. Cilantro must observe a single end-to-end metric,

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 60

Operation Call time (s)

Model Update 0.0413± 0.0048

get-alloc call
Cilantro-SW 2.8823± 0.3155
Cilantro-EW 2.1239± 0.0212
Cilantro-NJC 0.0081± 0.0016

Figure 3.14: Cilantro microbenchmarks. Left: Mean time taken (in seconds) by Cilantro to update
the performance model and for computing a new allocation for each of the three fixed cluster
sharing policies. Center: Evaluation of Cilantro’s fallback option, where users provide a demand
value if they cannot report performance metrics. We evaluate Cilantro-NJC when 5 out of 20 users
use this option. Since the true demand cannot be known, we use either half or twice the true
demand under the median load from our profiled data. Right: The three performance metrics for
Cilantro-NJC when we artificially introduce error to the confidence intervals of the performance
and load.

the end-to-end query latency, and then allocate fixed cluster resources to different microservices to
minimize the P99 latency of the application. We note that Cilantro does not require meta informa-
tion about the microservices, such as their dependency and control flow graphs; Cilantro directly
optimizes the end-to-end metric as described in §3.7.2.

Workload. We use the Hotel Reservation application from DeathStarBench[60]. It has 19
microservices, including 6 MongoDB databases, 3 memcached kv-stores and a nginx webserver
running on a consul service mesh. The architecture is shown in Fig. 3.13-Left. Collectively,
these microservices serve search, recommendation, rating, account management and geolocation
queries from users. We use wrk2[184] to process and submit the query workload provided in
[60]. We measure the end-to-end latency of queries submitted to the frontend microservice. All
microservices experiments are run on a 160 CPU cluster with 20 AWS m5.2xlarge instances.

Baselines. We compare Cilantro’s end-to-end policy (§3.4.2) against three baselines. Resource-
Fair always equally allocates the resources among microservices. EvoAlg is an evolutionary algo-
rithm which optimizes for the P99 latency. ϵ-greedy randomly picks a new allocation with proba-
bility 1/3, or uses the allocation with the smallest observed P99 latency with probability 2/3.

Results and Discussion. Fig. 3.13 shows how the instantaneous and time-averaged P99 la-
tency (computed in 30s intervals) evolves with time during the course of the experiment. Both
Cilantro and EvoAlg explore early on (Fig. 3.13-Center), but as they find better values, exploration
shrinks as they focus on testing more promising allocations. However, Cilantro’s OFU-based on-
line learning policy is able to do this more effectively than EvoAlg. ϵ-greedy explores aggressively
even in later stages and is unable to adequately exploit good candidates it may have discovered in
the early stages. Overall, Cilantro achieves a mean P99 of 525ms, compared to 930ms for EvoAlg,
the next best baseline.

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 61

3.7.3 Microbenchmarks
Cilantro Overhead. Fig. 3.14-Left evaluates the time taken for Cilantro to process the feedback
and compute the allocations for the three policies described in Sec. 3.4.1. This shows that Cilantro
is fairly light-weight. For comparison, the average time it took to de-allocate a Kubernetes pod and
assign it to a different job was on the order of 5-15s.

Unavailable performance metrics. In real-world situations, performance metrics of all users
may not be available. We evaluate Cilantro’s fallback defaults for such instances. We re-run the
same experiment in §3.7.1, but for users db01, mlt1, mlt2, db11, and prs1, we manually set the
demand as described in §3.5. Since the true demands are not known a priori, users might under- or
overstate them. To reflect this, we first compute the true demand for each user under the median
load from our profiled data. We evaluate Cilantro-NJC when these five users report either half this
value as their demand or twice this value, when compared to providing feedback. Fig. 3.14-Center
presents results on the three criteria given in §3.4.1. While the fallback options are worse than
when reporting feedback, the failures are graceful. Cilantro is still able to learn from the remaining
15 users and achieve efficient allocations with only relatively small drops in social and egalitarian
welfare. The NJC fairness criterion is significantly small when under-reporting since these 5 users
will have been allocated at most half of their true demand and FNJC (3.3) depends on the single
worst fairness violation.

Robustness to choice of learners and feedback errors. While Cilantro’s decoupled design
aids with generality, it may be susceptible to the idiosyncrasies of the specific models used for the
performance learners and load forecasters. Moreover, in many real environments, the feedback
can be very noisy. To show that Cilantro is robust to both these effects, we perform the following
microbenchmark in a synthetic 5 user environment with the Cilantro-NJC policy.

We use 5 users whose load is obtained by the same twitter trace from the experiments, and
whose synthetic performance function is given by pj(a, ℓ) = 1/(1 + e−(a/ℓ−bj)), where a is the
allocation and ℓ is the load. For the 5 users, we set bj ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. We set the SLO to
be 0.95 for all users (note that 0 ≤ pj ≤ 1. As the stochastic observation, we sample a Gaussian
with standard deviation 0.2. As both feedback noise and model idiosyncrasies can be modeled with
inaccurate confidence intervals, we introduce increasing levels of noise (5%, 10%, 20%, 50%) to
the upper and lower confidence bounds returned by the learners and forecasters. The results, given
in Fig. 3.14-Right, show that the social and egalitarian welfare decrease gracefully with noise.
Moreover, due to Cilantro-NJC’s conservative approach for demand recommendations, the NJC
fairness metric remains relatively high despite the noise.

3.8 Conclusion
We described Cilantro, a performance-aware framework for the allocation of a finite amount of
resources among competing jobs. Our motivations were: (i) resource allocation policies should
be performance-aware and based on real-time feedback in production environments, (ii) sched-
ulers should accommodate diverse allocation objectives. We designed Cilantro to address these

CHAPTER 3. PERFORMANCE-AWARE SCHEDULING WITH CILANTRO 62

challenges by decoupling the performance learning from the policies and informing the policies of
uncertainties in performance estimates, thus enabling the realization of several performance-aware
policies in multi-tenant and microservices settings.

63

Chapter 4

ESCHER: Expressive Scheduling with
Ephemeral Resources

In this chapter, we take a close look at the top layer of the ML stack - the orchestration layer.
As distributed applications become increasingly complex, maintaining high resource efficiency
requires strict scheduling requirements. This development calls for cluster schedulers that are not
only general, but also evolvable. Unfortunately, most existing cluster schedulers are not evolvable:
when confronted with new requirements, they need major rewrites to support these requirements.
Examples include gang-scheduling support in Kubernetes [203, 26] or task-affinity in Spark [203].
Some cluster schedulers [165, 76] expose physical resources to applications to address this. While
these approaches are evolvable, they push the burden of implementing scheduling mechanisms in
addition to the policies entirely to the application.

ESCHER is a cluster scheduler design that achieves both evolvability and application-level
simplicity. ESCHER uses an abstraction exposed by several recent frameworks (which we call
ephemeral resources) that lets the application express scheduling constraints as resource require-
ments. These requirements are then satisfied by a simple mechanism matching resource demands
to available resources. We implement ESCHER on Kubernetes and Ray, and show that this ab-
straction can be used to express common policies offered by monolithic schedulers while allowing
applications to easily create new custom policies hitherto unsupported.

4.1 Introduction
With the end of Moore’s law and Dennard scaling, developers are forced to distribute their ap-
plications to process an ever growing amount of data. As a result, the past decade has seen a
proliferation of new distributed frameworks [26, 129, 76] to handle a variety of workloads from
big data (e.g., batch jobs, interactive query processing) to AI applications (e.g., model training and
serving).

As the number of data and AI applications grows, so do their scheduling requirements. Some

CHAPTER 4. ESCHER 64

ESCHER

Ephemeral Resources

(a)

Scheduling Constraints
Resource

Requirements

Custom PolicyPolicy A Policy B

Physical Resources
Framework Scheduler

Resource
Requirements

Policy CPolicy A Policy B

A
pp

lic
at

io
n

Fr
am

ew
or

k

(b) (c)

Task-to-resource matching

Resource
Requirements

Scheduling Constraints

Custom Policy
ESCHER Scheduling Libraries

Policy A Policy B

Custom Application Scheduler

Figure 4.1: (a) A monolithic scheduler implements both scheduling and resource constraint matching [62,
82, 71, 26]. Some schedulers allow applications to express and compose certain policies [110, 188, 26], but
custom application policies may require modifying the scheduler itself. (b) To maximize flexibility, some
frameworks expose physical resources [76, 165], but require applications to write custom schedulers that
manage both policy and resource coordination [202, 148, 45]. (c) ESCHER. With ephemeral resources,
applications can express custom policies through ephemeral resources, while the cluster scheduler provides
just one service - satisfying per-task resource constraints.

examples of scheduling policies are affinity (i.e., co-locate computation with data to avoid costly
data transfers), anti-affinity (i.e., schedule tasks on different machines to avoid interference), and
gang scheduling (i.e., schedule a group of interdependent tasks simultaneously). For example, a
hyperparameter search application [108, 202] consists of multiple distributed training jobs, each
consisting of multiple parallel tasks. This requires anti-affinity between jobs for high throughput,
affinity within a job to avoid unnecessary data transfers, and gang scheduling to ensure multi-node
jobs are not starved.

This diversity of policy requirements makes designing schedulers for distributed frameworks
challenging. There is an inherent trade-off between simplicity and flexibility in exposing different
policies to applications. Different cluster managers occupy different points in this trade-off space.

At one end of the spectrum (Figure 4.1a), monolithic cluster managers like YARN [192] and
Kubernetes [26] provide several out-of-the-box policies for the application to choose from. This
simplifies the application’s task, but it compromises the flexibility, as adding a new policy requires
changes to the scheduler and the cluster manager itself. Implementing a new policy requires the
developer to understand and modify the source code of the cluster manager, not always an easy
task given their inherent complexity. And, once the new policy is implemented, the developer is
on the horns of a dilemma: either fork the project and pay the cost of maintaining it up-to-date as
the project evolves, or wait many months for the change to be merged in the main branch. Worse
yet, if the cluster manager is closed source, the application developer has no choice but to wait and
hope that the company behind the cluster manager will implement the desired policy.

At the other end of the spectrum (Figure 4.1b), are schedulers like Omega [165] and Mesos [76]
that enable an application to directly allocate resources and implement its own scheduling logic.
This makes these cluster managers very flexible, but dramatically increases the complexity of the
application. Implementing a scheduling policy in a distributed system can be a daunting task, as
it requires not only allocating resources, but tracking the resource availability in the presence of
various failures and new nodes joining the system.

CHAPTER 4. ESCHER 65

In this work, we present another point in the design space that allows application developers to
easily implement a range of new scheduling policies. This design point is enabled by a mechanism
recently introduced by cluster managers like Kubernetes and Ray which provides an interface for
applications to dynamically create, modify, and destroy logical resources. We call these resources
ephemeral resources. Like regular resources, ephemeral resources are pairs of labels and count
values which can be allocated to tasks. The scheduler treats ephemeral resources in the same way
as physical resources, subjecting them to admission control to ensure they are not oversubscribed.
This frees the applications from performing admission control and tracking availability.

We find that a surprisingly large number of scheduling policies can be expressed by dynami-
cally creating, updating and destroying ephemeral resources. Consider a simple scheduling con-
straint to colocate two tasks T1 and T2. To express this constraint, an application would submit
T1, which creates an ephemeral resource R1 during execution, and then submit T2 with R1 as a
resource requirement. The scheduler is then forced to place T2 on the same node as T1, since no
other node has resource R1. While this is a very simple example, it illustrates the underutilized
power of ephemeral resources for satisfying application-level scheduling constraints. In contrast,
a monolithic cluster manager would have to expose a primitive designed specifically for task-task
affinity, and a two-level scheduler application would have to implement the entire policy them-
selves, choosing where both T1 and T2 execute.

The key promise of ephemeral resources is that they enable an application to implement new
scheduling policies not supported by the underlying cluster manager. This increases the velocity of
deploying and iterating on new application functionality. However, there are two natural questions
that follow. First, how general are the scheduling policies enabled by ephemeral resources? Sec-
ond, what are the costs in terms of implementation complexity and overhead compared to natively
implementing the same policy in the cluster manager? After all, if these overheads dominate, then
an application developer is better off building their own scheduler.

To answer these questions, we propose a scheduling architecture for distributed applications
called ESCHER *. In ESCHER, the application uses ephemeral resources to implement its schedul-
ing policy instead of relying on the cluster manager’s baked-in policies. The key insight of ES-
CHER is that a broad class of heterogeneous scheduling constraints can be cast as ephemeral
resource requirements. The underlying scheduler simply enforces these requirements. ESCHER
enables applications to implement a large number of scheduling policies by (1) dynamically cre-
ating new ephemeral resources, and (2) specifying task resource requirements on these ephemeral
resources. We find that by using these two simple primitives, we are able to satisfy a large set
of scheduling constraints, without requiring any changes to the core scheduler or significantly af-
fecting application performance. For instance, gang-scheduling in ESCHER can be written in 10x
fewer lines of code with less than 2x overhead in scheduling latency compared to implementing
the policy natively in the core scheduler (section 4.6.2).

However, the flexibility of ephemeral resources does not come for free. First, it increases
the application complexity compared to monolithic schedulers in which applications just need

*ESCHER stands for Expressive SCHeduling with Ephemeral Resources.

CHAPTER 4. ESCHER 66

to select one of the available policies. Implementing certain policies, such as gang scheduling,
requires the application to implement additional mechanisms using ephemeral resources such as
ghost tasks, i.e., tasks whose sole purpose is to signal when all required resources have been
allocated. Second, because ephemeral resources are created dynamically, an application must
handle infeasible requests explicitly. For example, if a task’s resource request cannot be satisfied,
the task will hang and it must be explicitly terminated.

To alleviate the challenge of application complexity and provide protection against invalid
resource specifications, ESCHER supports simple libraries to support common policies. We call
these libraries ESCHER Scheduling Libraries (ESLs). ESLs aim to provide the best of both worlds:
the simplicity of monolithic schedulers, and the flexibility of adding new scheduling policies at
the application level by either extending an existing ESL or creating a new one. ESLs decouple
application logic and policy by abstracting ephemeral resource management for common high-
level scheduling policies, thus dramatically reducing development cost via code reuse and enabling
composition of simple policies into more complex ones.

To evaluate ESCHER’s performance, we implement it on both Kubernetes [26] and Ray [129]
by leveraging their existing implementations for label-based scheduling, which were originally
intended to represent custom physical resources rather than logical scheduling constraints. We run
ESCHER on a range of applications and policies, including WordCount MapReduce with max-min
fair sharing on Kubernetes as well as AlphaZero [173] and distributed model training on Ray [129].
We show that ESCHER does not impact the end-to-end performance of most applications when
compared to a system that implements the same policies in the core scheduler. Meanwhile, the
application can use ESCHER to express additional policies not supported by the underlying core
scheduler, e.g., composing gang scheduling with affinity (Section 4.6.1).

Thus, ESCHER shows that one can take advantage of the ephemeral resource abstraction,
whose implementation is already partially provided by some cluster managers, to express a sur-
prisingly diverse set of scheduling policies at the application level without having to touch the core
scheduler. This allows users to quickly implement new policies, as needed, to improve support for
their applications.

In summary, we make the following contributions:
• ESCHER, a scheduling architecture that uses ephemeral resources to express scheduling

policies without modification to the core scheduler.
• Design and implementation of a wide class of scheduling policies (§4.4) using the ephemeral

resources API.
• ESLs: application-level scheduling libraries that enable applications to easily compose and

re-use policies.

4.2 Motivation
Table 4.1 lists some common scheduling policies required by modern distributed applications and
their off-the-shelf support across different frameworks and specialized schedulers. None of the

CHAPTER 4. ESCHER 67

Framework Scheduler

Policy

YA
R

N
C

S
[1

92
]

K
ub

er
ne

te
s[

26
]

C
or

e
/L

ab
el

s
Sp

ar
k

[2
08

]

Sp
ar

ro
w

[1
42

]

G
an

di
va

[2
02

]

G
or

ila
[1

32
]

Task co-location
Place n tasks on the same physical machine.

✓ ✓/✓ ✗ ✓ ✓ ✓

Data locality
Place tasks with operands.

✓ ✓/✓ ✓ ✓ ✗ ✗

Elastic Load Balancing
Given an unknown number of tasks, evenly
spread them out across m workers.

✓ ✓/✗ ✗ ✓ ✓ ✓

Bin-packing
Given an unknown number of incoming tasks,
minimize the number of workers used to com-
plete the tasks.

✓ ✓/✗ ✗ ✗ ✓ ✗

Anti-affinity
Given two tasks, place them on distinct nodes.

✓ ✓/✓ ✗ ✗ ✓ ✗

Gang scheduling
Given a set of tasks, enforce all-or-none run se-
mantics.

✗ ✗/✗ ✓ ✗ ✗ ✓

Weighted Fair Queuing[19]
Given a set of tasks, enforce priority ordering.

✓ ✓/✗ ✓ ✓ ✗ ✗

Soft-constraints
For a priority ordering of resource constraints,
schedule a task with the highest possible re-
source satisfiability.

✗ ✓/✗ ✗ ✗ ✗ ✗

Table 4.1: Common scheduling policies and off-the-shelf support from existing schedulers. Ku-
bernetes comparision includes both modes of operation, using just the core scheduling functional-
ity and using labels. In addition to these policies, ephemeral resources allow applications to specify
and compose custom policies.

schedulers support all policies, and many were built as a one-off solution to achieve a composition
of these policies. New applications which require a new policy must find alternate methods of
executing it - either by using some mechanism provided by the scheduler, such as labels, or writing
their own scheduler from scratch. We now give a motivating example that is insufficiently served
by existing schedulers and describe how ESCHER fills this gap.

CHAPTER 4. ESCHER 68

4.2.1 Existing systems are hard to evolve
As applications become increasingly diverse, cluster schedulers must evolve to support novel
scheduling policies required by these applications. Consider distributed training, a dominant ML
workload today. Multiple training jobs are often scheduled simultaneously due to multi-tenancy
and individual users submitting multiple training runs in parallel to evaluate different model archi-
tectures. This requires several distinct scheduling policies:

• Anti-affinity: Evenly spread training jobs across the cluster to ensure high throughput.
• Affinity: Co-locate all tasks of the same training job on the same machine to avoid unneces-

sary data transfers.
• Gang scheduling: For multi-node jobs, schedule all tasks of the job simultaneously to avoid

starvation.
• Bin packing (dynamic): Monitor job utilization and consolidate jobs to reduce resource frag-

mentation.
Many popular schedulers implement at least one of these policies, but it is rare for them to

support all four (Table 4.1), never mind a composition of the policies. There are two fundamental
challenges that make it difficult or infeasible to extend monolithic schedulers (Figure 4.1a) in this
way. We use Kubernetes [26] to illustrate these challenges.

First, the application must express its policy using the API chosen by the framework scheduler.
While some schedulers support composition, it is difficult in general to design a scheduler API that
can capture all possible use cases. For example, in Kubernetes, applications specify scheduling
policies with static weights to resolve conflicts. This can be used to express a composition of
two policies that, for instance, weights affinity over anti-affinity. However, the complexity of
composition is not linear in the number of policies. E.g., to add bin packing and prioritize it, the
application would have to ensure that the weight of bin packing is always greater than the sum of
weights for affinity and anti-affinity.

Second, the scheduler implementation must extend to new policies. This is difficult because
the scheduler must ensure that each new policy interfaces correctly with all other existing policies.
Adding another policy requires modifying Kubernetes itself, which takes significant time and ef-
fort. Dynamic policies are even more difficult to support if the scheduler was not initially designed
for it. For instance, adding gang scheduling support in Kubernetes took months of discussions
and the eventual feature was not mainlined and instead implemented in an add-on scheduler [121,
116, 117]. Similarly, Machine Learning pipelines involve multiple interdependent tasks (e.g., data
pre-processing, training, serving) defined in a DAG. Scheduling DAGs is not natively supported in
Kubernetes, leading to the emergence of specialized plugins such as Kubeflow [11].

Due to these limitations, applications must write custom schedulers to maximize performance,
as Gandiva [202] did for distributed training. Unfortunately, this design requires the application to
implement both the policy and the scheduler mechanism, maintaining resource state and handlers
for task and resource management, coordination, node addition and deletion, etc. (Figure 4.1b).
This is both difficult to build and extend. E.g., Gandiva (built on Kubernetes) supports affinity,
anti-affinity, and dynamic bin-packing, but the addition of gang scheduling would greatly increase

CHAPTER 4. ESCHER 69

the complexity of the scheduler code. Thus, Gandiva remains limited to distributed training jobs
that fit on a single multi-GPU node.

4.2.2 Static labels are insufficient
Some frameworks [76, 165, 192, 26] already support static label creation as string key-value pairs
(e.g., "v100 GPU": 1) associated with cluster nodes. This allows cluster operators to tag nodes
with physical resource attributes (e.g., CPU/GPU architecture, rack affinity) at cluster launch time,
which can be requested by applications at execution time.

In ESCHER, we propose repurposing this API to express custom application scheduling poli-
cies, in addition to physical resource requirements. Unlike physical resources, which can be stat-
ically determined at a node’s launch time, logical scheduling constraints may depend on run-time
information. Therefore, it is natural to extend existing static label creation APIs to ephemeral
resources that are dynamically created.

For example, to express task-task affinity between tasks T1 and T2, we must first learn where
T1 was placed before deciding the placement constraint for T2. This can be easily done through
ephemeral resources: T1 dynamically creates a logical resource that is required by T2. With static
labels, the only option is for the application to pin T1 and T2 to a predetermined node.

For the same reason, there are some inter-task constraints that are fundamentally impossible to
implement with static labels, such as scheduling policies that depend on time. One example is a
DAG scheduling policy. At its core, this requires a primitive that guarantees that some task T2 will
not run until another task T1 finishes. This is impossible to express using static labels alone, which
cannot reason about the temporal ordering between two tasks.

4.3 ESCHER Design and Workflow
A scheduling policy is defined by a set of temporal and spatial dependencies between tasks and
nodes. We call these dependencies scheduling constraints. The key idea in ESCHER is to map
these scheduling constraints to resource requirements by introducing a new kind of resource,
ephemeral resources.

An ephemeral resource is a logical (i.e., non-physical) resource attribute that the application
can dynamically associate with a node. Like physical resources, ephemeral resources have an
associated capacity and can be acquired and released by tasks. We call these resources ephemeral
because the application can create, modify, and destroy them at runtime.

ESCHER uses ephemeral resources for implementing scheduling constraints by leveraging a
common functionality provided by cluster schedulers: matching the application-specified resource
requirements with the cluster’s resource availability. For instance, if an application task requires
two GPUs, the scheduler should schedule that task on a node that has at least two available GPUs.
With this resource-matching capability, the scheduler treats an ephemeral resource like a physical
resource and aims to satisfy its capacity constraints.

CHAPTER 4. ESCHER 70

Node 1

Resources: {CPU: 8, my-resource: 1}

Node 3

Resources: {CPU: 8, GPU: 1}

Node 2

Resources: {CPU: 8}

ESCHER

Task 1

ResReq: {GPU: 1}

Task 2

ResReq: {my-resource: 1}

Figure 4.2: Example using ephemeral resources for task placement. Applications create ephemeral
resources (my-resource) on the nodes where they wish to place a task and then launch a task
requesting my-resource. The resource-matching scheduler ensures the task is placed on the desired
node.

The implementation of scheduling policies in ESCHER follows a two-step pattern. First, the
application creates ephemeral resources or updates capacities of existing ephemeral resources. This
is done programmatically at runtime through the ephemeral resource API. Second, the application
associates ephemeral resource requirements with tasks. Note that these steps can happen in any
order. This allows the application to make targeted placement decisions (Figure 4.2) to satisfy the
policy’s scheduling constraints.

4.3.1 ESCHER workflow
Figure 4.3 describes the workings of an ESCHER scheduler. ESCHER functionality, by design,
is split between the application and the resource management framework. The application can
specify scheduling policies through the ephemeral resource API (Section 4.3.2), while the frame-
work performs resource matching and accounting over a set of underlying physical resources. We
envision that most applications would specify and compose policies through the higher-level ES-
CHER Scheduling Library (ESL) interface, which uses the ephemeral resource API to encapsulate
common policies.

When using ESLs, an interaction with the system typically starts with an application requesting
a scheduling policy from the ESL (fig. 4.3). The ESL may interact with the resource manager,
e.g., by reading cluster state, and implements the policy by creating the appropriate ephemeral
resources. The application then receives a resource specification R from the ESL. The application
attaches R to a task and submits it to the resource manager for placement.

CHAPTER 4. ESCHER 71

4.3.2 Ephemeral Resource API
In ESCHER, the resource management framework exposes two simple API calls to manage
ephemeral resources: set_resource and get_cluster_status (Listing 1). Once created,
an ephemeral resource behaves as any regular physical resource and can be acquired and released
by tasks.

In addition to the required parameters resource label and capacity, the set_resource call
also allows the specification of constraints node_spec where the resource must be created. If
node_spec is a resource vector, the resource is updated on all nodes where the constraint resource
vector is a subset of the node’s available resource vector. Optionally, a num_nodes field in the
node_spec can specify how many nodes to execute set_resource on if multiple nodes satisfy
the node_spec constraints. To make targeted set_resource calls, the node_spec can contain
a unique node identifier (e.g., IP address).

The get_cluster_status call returns a mapping of node to local resource capacity and
availability. These are not required for all policies, but can be useful to handle node additions and
removals (Section 4.3.4).

The ESCHER scheduler’s responsibility is to provide the minimal guarantees provided by any
resource-matching scheduler: (1) A task whose resource requirements can be met by a node in the
cluster will eventually be scheduled, and (2) A node is never allocated past its capacity. Together,
these imply that the scheduler implements: (1) task queuing and dispatch, (2) node selection for
each task, and (3) resource allocation for each task. Note that the scheduler does not need to satisfy
any other constraints, such as a promise regarding the node where a task is actually scheduled.

4.3.3 ESLs - ESCHER Scheduling Libraries
Controlling task placement through direct manipulation of ephemeral resources can be burdensome
for applications with conventional scheduling requirements. To reduce the application complexity
and delineate scheduling policies from the mechanisms to implement them, we propose ESCHER
Scheduling Libraries (ESLs).

The role of an ESL is simple - given a set of tasks, generate and apply a set of ephemeral
resource requirements on the tasks which satisfy the desired scheduling policy. ESLs achieve this
by encapsulating the state management for ephemeral resources and providing a unified API for
implementing domain-specific scheduling policies. An application requests a scheduling policy
supported by an ESL, which then makes the appropriate ESCHER API calls and returns the re-
source specification the application must use to realize its desired policy. In our implementations,
ESLs are designed as a daemon that can service scheduling requests made from a single or multiple
applications.

ESLs are similar in spirit to Library Operating Systems (LibOS [90]) in the Exokernel [53]
design. In the same way that a LibOS encapsulates the complexity of direct resource management
exposed by an Exokernel, an ESL abstracts the policy implementation and enables sharing across
different applications. Moreover, this design makes applications portable across different cluster

CHAPTER 4. ESCHER 72

Resource Management Framework

ESCHER Scheduling Library
(ESL)

Application

Request
Scheduling Policy

1

ESCHER
API Calls

2

3 4

Cluster
State

Resource
Specification (R)

Launch
Task with R

set_resource() get_cluster_state()

Physical Infrastructure

{CPU = 8,
co-loc = 1}

{CPU = 4}
{CPU = 8,
GPU = 4}

{CPU = 2,
data-loc=1}

{CPU = 0,
load-bal=1}

Node 1 Node n

E
S

C
H

E
R

 S
tac

k
F

ra
m

ew
o

rk
Cl

us
te

r
A

p
p

li
c

at
io

n
 S

p
ac

e

Figure 4.3: ESCHER task submission workflow with an ESL mediating the implementation. A
task requests a supported scheduling policy from the ESL, which invokes the ESCHER API if nec-
essary and returns the resource specification which would satisfy the policy. The task is launched
with the returned resource specification.

frameworks, e.g., Ray vs. Kubernetes (Section 4.5), since ESLs separate the application policy
from the application code. Finally, ESLs can protect applications from invalid specification of
ephemeral resources by validating resource requests before launching tasks.

Since distributed applications can have widely varying scheduling requirements, we anticipate
the development of domain-specific ESLs which can strike a balance between generality and pre-
serving domain-specific optimizations. As an example, we describe and implement an ESL for
hierarchical max-min fair sharing in Section 4.4.2 and Section 4.6.1.

4.3.4 Fault tolerance
In the event of a node failure, ESCHER works in tandem with the fault-tolerance scheme of the
underlying framework. Most frameworks [129, 26] simply re-execute the tasks with the same
resource requirement. However, since these resource requests include ephemeral resources which
no longer exist, these re-executed tasks cannot be scheduled.

At the bare minimum, an ESL must ensure that ephemeral resources are restored at some
other eligible node. To do this, ESCHER relies on the cluster framework to report failed nodes

CHAPTER 4. ESCHER 73

Create resource with name and capacity on a node
where the 'node_spec' constraints are satisfied.
node_spec can be a resource vector or node id.
If node_spec = None, resource is set locally
def set_resource(name, capacity, node_spec)

Returns cluster resource state as a list of
node-wise map of local resource availability.
def get_cluster_status()

Listing 1: Ephemeral resource API

through the get_cluster_status API. Once failed nodes are detected, an ESL can recreate
the ephemeral resources on suitable nodes by replaying the set_resource calls for the failed
resources. If a candidate node is found, the resource is recreated, else the tasks must wait for the
failed node to recover before they can be rescheduled. When a node is restored, its resources are
also reinitialized, allowing any waiting tasks to get rescheduled.

4.3.5 Evolvability and complexity in ESCHER
The ability to create ephemeral resources on targeted nodes makes scheduling with ESCHER as
flexible as letting the application directly control task placement on cluster nodes. Indeed, schedul-
ing a task T on node N is equivalent to assigning a uniquely-named ephemeral resource RN with
capacity 1 to node N , and having T request one unit of resource RN .

While this targeted placement makes ESCHER highly evolvable, what are its benefits over
simply yielding placement control over resources to the application directly? After all, if the goal
is to schedule a task on a particular node, ESCHER makes this operation arguably more complex
as it requires creating an ephemeral resource on the node.

The primary benefit of ESCHER is that policy and ESL implementations do not need to reason
about tasks. In a framework with fully application-level scheduling, such as Mesos or Omega [76,
165], the application scheduler has to maintain possibly distributed state about the current set of
tasks. When a task is submitted and can’t yet be scheduled, the scheduler queues the task. When
a task starts, the scheduler must update the current resource availability to ensure that resources
do not become oversubscribed. On task completion, the scheduler must again update the current
resource availability and select a new task to run from the queue.

Of course, none of these functionalities are unique to ESCHER. Task to resource matching is a
necessity to every scheduler system, which is why it is the core responsibility that we assign to the
ESCHER scheduler. Thus, in ESCHER, an application that has no specific policy requirements can
use an ESCHER scheduler directly without implementing any scheduling code. This is not possible
in systems that expose resources directly to the application, such as Mesos [76] or Omega [165],
as it is expected that the application will also implement all mechanisms related to task scheduling.

CHAPTER 4. ESCHER 74

Policy Example Primitive used Implementation with ESCHER
Sequential: Run T2 af-
ter T1.

Signaling T2 requests ephemeral resource E created by T1 on com-
pletion.

Gang Scheduling: Run
T1 and T2 simultane-
ously.

Locking, Sig-
naling

Two ghost tasks T g
1 and T g

2 request 1 CPU each, and
each creates an ephemeral resource ECPU of capacity
one. When both T g

1 and T g
2 run, schedule T1 and T2,

each requesting one unit of ECPU .
Affinity: Run T1 and T2

on the same node.
Locality A ghost task T g requests 2 CPUs, and creates an

ephemeral resource E with capacity 2. T1 and T2 request
one unit of E each.

Anti-affinity: Run T1

and T2 on different
nodes.

Queues Every node in the cluster creates anti-affinity resource E
with capacity 1. T1 and T2 request one unit of E each.1

Load-balancing:
Evenly spread tasks
across nodes.

Queues Create load-balancing resource L with capacity 1 on each
node. Each task requests one unit of L each. When all L
resources are exhausted, increase capacity by 1.

Data-locality: Run T
where its input D is
stored.

Locality When storing D, create ephemeral resource ED on the
same node. T requests ED.

1 If T1 and T2 are long-running, the application cannot use the nodes they are running on for other anti-affinity
placements. To avoid this, we have two short-lived ghost tasks T g

1 and T g
2 request 1 unit of E each, create

ephemeral resources E1 and E2, and then terminate. T1 requests E1 and T2 requests E2.

Table 4.2: Expressing scheduling constraints with ephemeral resources

For applications that do require a custom policy or an ESL, this division of responsibilities still
reduces the effort required from the application developer, compared to implementing a complete
scheduler. For example, most of the policies that we present in Table 4.2 do not require examining
the current cluster state; it is enough for a task to create a resource on its local node or create
resources on all nodes that match a given resource spec. The exceptions are gang scheduling,
which requires reading the cluster state to roll back a group of tasks in case of a failure, and load-
balancing, which computes the current load from the cluster state. In contrast, a fully application-
level scheduler must continually update and reason about the current cluster state in order to find a
suitable node for each task. In the ESCHER design, this responsibility is given to the system rather
than the application.

4.4 Scheduling with ESCHER
A scheduling policy is a mapping of tasks to resources which satisfies any spatial ("where") and
temporal ("when") constraints. We now describe how these constraints can be cast as resource
requirements with ESCHER.

CHAPTER 4. ESCHER 75

4.4.1 Scheduling primitives in ESCHER
We present four scheduling primitives implemented using ephemeral resources which can be used
to express both spatial and temporal constraints. We note that this is not an exhaustive set of
primitives possible with ephemeral resources. Applications have the flexibility to define their own
primitives through ephemeral resource manipulation.

[P1] Locality. Tasks must often be co-scheduled on the same physical node as another task or
must be co-located with data. These spatial constraints can be easily expressed in ESCHER. The
target task for co-location creates a local ephemeral resource Er with unbounded capacity when
the task starts or the data to be co-located with is created. The constrained task then requests 1 unit
of Er and, thus, automatically gets scheduled on the same node.

[P2] Task Signaling. Distributed applications rely on expensive RPCs to coordinate the exe-
cution of interdependent tasks. This is prevalent in directed acyclic graph (DAG) task schedulers,
where the ordering of tasks is critical for correctness. These temporal constraints can be expressed
with ESCHER by creating ephemeral resources dynamically, effectively using them as signals.
E.g., if task T2 has any “happens-before” dependency on task T1, T1 can create a resource ET2

when it completes. T2 a priori requests ET2 as a part of its resource requirements when launched,
and thus is scheduled as soon as ET2 is created by T1. Note that signals in ESCHER are single-
shot—all task requests are declaratively placed at the start, and tasks begin execution only when
their ephemeral resource demands are met by newly created resources. More generally, barrier
synchronization is naturally supported. Given

{
T i−1
j

}
→ T i for j > 1, T i could simply request a

single unit of resource created by each of T i−1
j upon their respective completion. Thus, semaphores

(and therefore, mutual exclusion) can also be implemented.
[P3] Queues. Many policies [19, 28] use one or more task queues as a fundamental construct in

their implementation. The core ESCHER scheduler queues tasks until their resource requirements
(ephemeral and physical) can be satisfied. ESCHER allows the application to decide when to
dequeue tasks by increasing the capacity of an ephemeral resource. Creating a queue is simply
creating a unique ephemeral resource Eq with initial capacity 0 on any node. A task is enqueued
by launching it in a wrapper task requesting 1 unit of Eq resource. The queue drain rate can be
set by changing the capacity of Eq. On acquiring the Eq resource, the wrapper task submits the
contained task to the scheduler with its physical resource requirement (e.g., 2 CPUs) and exits.
Note that it’s possible to implement batched scheduling by incrementing the capacity of Eq by the
desired batch size.

[P4] Resource Locking. ESCHER enables a new scheduling construct where an ephemeral
resource can be used to acquire and lock one or more physical resources ("bundle"). This reserva-
tion of resources is achieved with ghost tasks - long-running tasks which acquire the bundle like a
regular task and create a local ephemeral resource to accommodate new tasks. Ghost tasks create a
pattern of indirection where tasks request ephemeral resources instead of physical resources to get
scheduled. We note that ghost tasks achieve the same outcome as incremental locking presented in
Omega [165]. This is useful when applications require atomic transactions on a group of resources,
such as in gang scheduling.

CHAPTER 4. ESCHER 76

def soft_constraint_scheduler(task,
ordinal_resource_preferences):↪→

for res_pref in
ordinal_resource_preferences:↪→

if recv_heartbeat(task.task_id):
break

task.resources = res_pref
task.launch()
sleep(timeout)

def main():
res_prefs = [{gpu: 1}, {cpu: 1}]
soft_constraint_scheduler(task, res_prefs)

(a)

def task1(id):
set_resource(label=id, capacity=1)
...

def composite_scheduling():
Create load-balancing resources
for node in cluster:
set_resource("load_balancing", 1, node)

for i in range(0, task_count):
Load balance task 1
task1.launch(id=i, resources =

{'load_balancing': 1})↪→
Co-locate task 1 & 2
task2.launch(resources = {i: 1})

(b)

Figure 4.4: Scheduling with ESCHER. (a) Soft constraints with ESCHER. (b) Composition of
load-balancing and co-location policies with ephemeral resources in ESCHER.

4.4.2 Scheduling policies with ESCHER
To illustrate the use of these scheduling primitive constructs, we now describe the implementation
of an example application-level policy and a cluster-level policy with ESCHER. Table 4.2 lists
more policies and their implementation with ESCHER.

Application Policy: Gang Scheduling

Distributed training [202] and reinforcement learning workloads [132] require gang scheduling,
where all tasks should start and run concurrently. This implies all-or-none scheduling semantics,
where either all resources requested by all tasks are granted simultaneously, or no resources are
granted.

In implementing all-or-none constraints, a common requirement is to check whether sufficient
resources are available to satisfy the policy and reserving them, if necessary. To achieve this,
ESCHER uses ghost tasks from the resource locking primitive. For instance, gang-scheduling a
pool of 8 tasks (each of which requires 1 CPU) can be done by launching a ghost task which
requires 8 CPUs and creates 8 units of gang-sched resource. If all ghost tasks are successful,
each task in the pool can then request 1 gang-sched resource and 0 CPUs to get scheduled. If any
ghost task is unsuccessful, a timeout in other ghost tasks executes a rollback and removes the gang
-sched resource. To avoid live-locks, either the applications can execute an exponential back-off
[183] before retrying, or an ESL can serialize all gang scheduling requests through a common
shared library. We discuss this design space in Section 4.6.2.

Cluster Policy: Hierarchical Fair Sharing

From a cluster operator’s perspective, using ESCHER allows enforcement of cluster-level schedul-
ing goals, such as multi-tenancy, while still supporting application-level scheduling policies de-
scribed above. For example, consider large organizations, which typically have a cluster of re-

CHAPTER 4. ESCHER 77

sources shared among teams. This sharing has three requirements. First, the scheduler must allow
assigning resource sharing weights to users. Second, to maximize resource utilization, the sched-
uler must implement max-min fairness [62], i.e., temporarily re-allocate idle resources to oversub-
scribed users. Finally, teams need to further partition their share of resources among sub-teams.

Hierarchical max-min fair sharing (HFS) can be implemented as an ESL using a variant of
the Queue primitive. The HFS ESL is instantiated to operate on a specified domain of nodes and
provides a single call - create_user(id, weight) - which returns a resource name unique to
the user id. On invoking this routine, the ESL executes a set_resource call to create a unique
resource (e.g., res_user1) with infinite capacity for the user on each allocated node. When a
user submits a task, they must request a capacity of 1 their unique resource label (e.g., res_user1
) which ensures their task is run only on the resources provisioned for them. Since ephemeral
resources can be updated at runtime, the ESL dynamically resizes user allocations by adding and
removing their ephemeral resources. Hierarchies in this setup can be created by launching multiple
instances of the ESL and restricting their operating domain to the nodes granted by the parent ESL.

Soft constraints with ESCHER

The core scheduler enforces task resource requirements as a hard constraint, keeping the core
scheduling logic simple. However, some applications may demand relaxed scheduling semantics,
where some resource requirements can be specified as soft constraints. Ephemeral resources can
be used to implement soft constraints even when the scheduler only supports strict matching of
resource requirements. First, the application specifies the soft constraints as an ordinal set of
resource set preferences R = [r1, r2, ..., rn], where ri is the ith preferred resource requirement
set. For instance, an application which prefers a GPU but will work without one would specify its
resource requirements as R = [{gpu : 1}, {}].

The soft-constraints ESL then instruments the application’s tasks with a lightweight heartbeat
sent to the ESL to notify it of successful scheduling when the task launches (Listing 4.4a). The ESL
then sequentially attempts to launch a task, starting with resource requirement r1. If the ESL does
not receive the callback from the task within a certain timeout t, it implies the resource requirement
was not matched. The ESL then cancels and resubmits the task, now with a resource requirement
r2. This best-effort scheduling is attempted for all resource preferences r ∈ R until the scheduling
succeeds or all preferences have been evaluated.

Objective functions. Soft constraints can be used to approximate policies that optimize a
combined objective function. For instance, consider a policy which aims to balance both CPU and
memory utilization in a cluster. Formally, given weights for memory and CPU utilization α and β,
the objective is to maximize the minimum of γn = αMn + βCn across all nodes, where Mn and
Cn are the memory and CPU utilization on node n (ranging between 0 and 1).

To express this policy in ESCHER, the scheduler first creates the resource obj on each node
with a capacity of α + β. A task with memory and CPU requirements m and n then specifies the
soft constraint R = [{obj : γ}, {obj : γ

2
}, {obj : γ

4
}, ...{obj : γ

2k
}], where γ = αm+ βn. The task

also includes the hard constraints {MEM : m,CPU : n}. This preference places each task on

CHAPTER 4. ESCHER 78

the least utilized node, correct up to a factor of 2, while guaranteeing that no node is overallocated.

Policy Composition

Applications like hyperparameter search require a hierarchical composition of other policies (Sec-
tion 4.2.1). Scheduling policy compositions can be logically expressed either as an AND conjunc-
tion or an OR conjunction. AND constraints are expressed by concatenating the ephemeral re-
source vectors for two policies. OR constraints are supported using soft constraints. For instance,
if an application wants to co-locate task1 and task2 while load balancing their groups across the
cluster, it can simply apply co-location on task1 and task2 and load balancing only on task1 as
shown in fig. 4.4b. Similarly, cluster-level policies can be composed with application-level policies
(Section 4.6.1).

Conflicting compositions of policies may render a task impossible to schedule. E.g., composing
a cluster-level fair sharing policy and an anti-affinity policy may result in a infeasible task if the fair
share of resources is insufficient. In such situations, one can specify conflict resolutions by using
soft-constraints to relax scheduling policies. For instance, a soft constraint vector [{fair_a: 1,
anti_aff: 1}, {fair_a: 1}] would try scheduling a task with fairness and anti-affinity, and relax the
anti-affinity constraint if a conflict arises.

4.5 Implementation
ESCHER is a design that can be applied to both centralized and decentralized schedulers. We
built two prototypes of ESCHER, on Kubernetes [26], a container orchestration framework with
a centralized scheduler, and Ray [129], a distributed execution framework with a decentralized
scheduler.

ESCHER inherits the scheduling properties of the parent cluster framework. For instance, it can
utilize fractional and heterogeneous resources on Ray and Kubernetes. Since Ray and Kubernetes
have a task-by-task scheduler, our current implementation also schedules in a greedy, task-by-task
manner. However, ESCHER’s queuing primitive can be used to extend a task-by-task scheduler to
do batch scheduling.

Each framework handles isolation differently, which affects how ghost tasks are implemented.
Ray does not enforce CPU affinity, so a ghost task can block the logical resource for the actual task
without blocking the physical CPU. Kubernetes enforces isolation through cgroups. In this case,
the ghost task reserves the CPU for its cgroup and when the actual task is scheduled, it is added
to the same cgroup by running cgclassify in the task’s preamble. The source code is available at
https://github.com/romilbhardwaj/escher.
Kubernetes Implementation. A Kubernetes task (pod) specifies its constraints in the form of two
sets: a set of filtering policies, such as resource demands, to enforce hard constraints and a set of
weights for these built-in policies to add soft constraints. The scheduler first finds a set of candidate
nodes, then computes a policy-weighted score for each node to find the best fit.

https://github.com/romilbhardwaj/escher

CHAPTER 4. ESCHER 79

Kubernetes also allows the definition of arbitrary string and integer pairs associated with nodes
known as extended resources. Extended resources are identical to regular resources in that they
can be acquired and released by Pods, except they can be defined as arbitrary key value pairs. The
extended resources API has conventionally been used by cluster operators for marking specialized
hardware as a one-time operation when the cluster is initialized. In fact, application pods are not
granted access to this API by default.

To implement the ESCHER set_resource API, we change the Kubernetes role-based access
control to allow applications to directly invoke the extended resources API in Kubernetes. This
grants applications the ability to create and update extended resources using the patch_node_status
call. From a security perspective, ESCHER applications require access only to create and remove
extended resources. The Kubernetes API should deny write access to physical resources. Addition-
ally, we employ namespacing of resources to enforce isolation and prevent malicious applications
from overriding other applications.

To force the Kubernetes scheduler to act as a simple resource-matching scheduler, the scheduler
is invoked with only hard resource constraints set in the filtering policy. Weights for all other
policies are set to zero. Thus, the combination of extended resources API with hard resource
constraints makes it possible to implement ESCHER policies on Kubernetes without making any
changes to the core Kubernetes scheduler.
Ray Implementation. Ray runs a scheduler per node, which collectively implement a bottom-up
decentralized resource matching mechanism [129]. Each node in the cluster has a set of key-value
pairs signifying resource labels and their quantity, e.g., {"cpu": 8, "gpu": 1}. Each
task specifies its hard resource requirements with the same data structure.

Ray nodes share a centralized log of the total resource capacity at each node, where each
entry represents the capacity at a node. The Ray scheduler matches a task to resources by storing
resource availabilities from other nodes in a map and allocating the first node which can satisfy the
task’s resource request. Since a scheduler’s view of the global state is only eventually consistent, it
can correct previous decisions by running the same logic to find another eligible node. To support
ESCHER, we extend the Ray core to permit updates to each node’s resource capacity at runtime.
We restructure Ray’s centralized log so that each entry stores only a delta, instead of the absolute
capacity at that node. This guarantees no race conditions occur between resource updates, while
avoiding expensive coordination, e.g., via a distributed lock.

4.6 Evaluation
In this section, we evaluate the following questions:

• Can existing distributed applications be ported to use ESCHER and what are its implica-
tions?

• What are the tradeoffs with implementing scheduling policies in the application space vs in
the framework?

• What are the overheads of scheduling with ephemeral resources?

CHAPTER 4. ESCHER 80

50 GB 100 GB 250 GB 500 GB
Data size

0

50

100

150

200

Ti
m

e
(s

ec
on

ds
)

No Data Locality
Locality with ESCHER
Locality with Kubernetes

(a)

Scheduler
Nodes Generic Kubernetes ESCHER

10 183.32± 0.51 54.69± 0.46 55.24± 0.39
50 113.71± 0.49 44.02± 0.27 44.71± 0.44

100 51.90± 0.31 35.08± 0.31 35.76± 0.49

(b)

0 50 100 150
Time (seconds)

0

250

500

750

Th
ro

ug
hp

ut
 (M

B/
s)

User A User B User C

(c)

Figure 4.5: Data locality and hierarchical max-min fair sharing for WordCount. (a) Makespan
of WordCount running on a 100-node Kubernetes cluster, comparing a random placement policy,
ESCHER on Kubernetes with data locality, and Kubernetes’ native data locality. (b) Makespan
of WordCount MapReduce jobs in seconds across varying cluster sizes. (c) Hierarchical max-min
fair sharing with ESCHER. A and B are in Sub-Org1 with weights 2:3; C is in Sub-Org2. A, B,
and C begin submitting tasks at t =0, 60, and 120, respectively.

All evaluations use Amazon EC2 m5.12xlarge, m5.4xlarge or p3.8xlarge instances. Kubernetes
clusters are provisioned using Amazon EKS running version 1.19.

4.6.1 End-to-end Evaluation
WordCount with MapReduce

WordCount counts the number of words in large text datasets and is often implemented with
MapReduce [45]. To avoid expensive data transfers, data locality is essential. We implement
the map and reduce tasks as independent operators running in containers. The input files are
chunks of a file with random words, each hosted by one of 100 nodes. The total input size is
varied from 50 GB to 500 GB. We implement ESCHER on Kubernetes, using an ESL for data
locality (Section 4.4), and compare against Kubernetes’s built-in data-locality policy [12] and a
locality-unaware random policy.

Unsurprisingly, Figure 4.5a shows that as the input size increases, the overhead of transferring
chunks over the network dominates the mapper computation time for the no-locality policy, tak-
ing up to 58.3% of the total job time when the input size is 500 GB. Meanwhile, ESCHER on
Kubernetes provides the same performance as Kubernetes itself, but without modifying the core
scheduler framework. Furthermore, Figure 4.5b shows that ESCHER can also scale with the clus-
ter size. Throughout different scales, ESCHER performs comparably with the core Kubernetes
scheduler, with its makespan staying within 1.9% of the baseline Kubernetes scheduler.. Imple-
menting data locality with ESCHER required adding only two lines: a set_resource call during
data generation to create a local data-<id> resource and a line to specify a data-<id> resource
requirement for the mapper tasks.

CHAPTER 4. ESCHER 81

Hierarchical max-min fair sharing

Hierarchical Max-Min Fair Sharing (Section 4.4) allocates resources proportionate to a user’s
weight in a hierarchical organization. Users submit jobs at different times, so their ideal abso-
lute resource share is dynamic, making it impossible to maximize overall resource utilization with
static labels. For example, consider a two-team organization: Sub-Org1 with users A and B of
weights 2:3, and Sub-Org2 with user C. To ensure fairness with static labels, the only option is to
allocate each user a fixed proportionate share, leading to under-utilization when only one user is
submitting work.

Because ephemeral resources can be dynamically created and destroyed, an HFS policy ensures
fairness while also maximizing overall utilization as users enter and leave the system (Figure 4.5c).
We deploy a HFS policy on a 100 node cluster running WordCount. We use a parent ESL for the
teams and two children ESLs for Sub-Orgs 1 and 2 to create a hierarchy of ESLs. An HFS ESL
tracks idle resources and reallocates resources between teams or users. The workload in Figure 4.5c
starts with only user A submitting tasks to the scheduler. Since other users’ resources are idle, the
HFS ESLs re-allocate all idle resources to A to achieve max-min fairness. At time t=60, user B
starts submitting tasks. This causes the Sub-Org 1 ESL to reclaim resources from A to re-allocate
to B, in proportion to their weights. B’s warmup time causes a small dip in net throughput at t=60.
Finally at time t=120, user C starts submitting tasks and the parent ESL reallocates resources to
Sub-Org2. Since Sub-Org 2 and Sub-Org 1 have equal weights, C’s resource allocation is equal
to the sum of A and B’s allocation. Ephemeral resources also enable composition: the application
composes its custom policy (in this case, data locality for WordCount) with the two HFS ESLs by
concatenating all the resource requirements.

AlphaZero

AlphaZero [174] is a reinforcement learning application for the board game Go. We demonstrate
ESCHER’s flexibility by porting an implementation [8] onto Ray without compromising perfor-
mance relative to the optimal hard-coded (but inflexible) placement.

AlphaZero executes a Monte Carlo Tree Search on the game state space in a CPU-intensive
BoardAggregator process. The search is guided by a PredictorAgent running a neural network on
a GPU which evaluates a board and predicts the associated reward. Co-locating BoardAggregators
and their corresponding PredictorAgents on the same physical node is thus desirable to avoid
network overheads from transferring board states. These pairings also require anti-affinity for
load balancing and to avoid interference [202]. With ephemeral resources, this composed policy
can be specified in 5 lines of code (fig. 4.7): we apply a load-balancing policy (Table 4.2) to the
PredictorAgent and a co-location policy to the BoardAggregator and PredictorAgent.

We ran 10k iterations of AlphaZero on a 32-node cluster (128 GPUs total). We compare three
setups: (a) co-location with hard-coded placement, (b) co-location with ephemeral resources, and
(c) a baseline policy with no co-location. Figure 4.6a plots the CDF for board exploration time. Co-
location is important for performance, outperforming no-colocation by 15.4% in median latency
and 20% in P95 latency. Additionally, co-location with ephemeral resources adds insignificant

CHAPTER 4. ESCHER 82

0.00 0.01 0.02 0.03 0.04 0.05
Board exploration latency (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 b

oa
rd

s

ESCHER Static Policy No Co-location

(a)

50 100 150 200
Time total (s)

0

50

100

150

200

250

300

350

400

450

Sa
m

pl
e

Th
ro

ug
hp

ut
 (I

m
ag

es
)

EscherTune
Tune
Short Job

(b)

Figure 4.6: AlphaZero and distributed training performance on ESCHER. (a) A CDF of Alp-
haZero board exploration latency, and (b) Throughput comparison of a distributed training work-
load with a mix of short-running and long-running jobs. EscherTune is an augmentation of the
hyperparameter search framework Tune [109], using ESCHER to dynamically re-schedule jobs as
others complete. The red X indicates the completion of a short job.

overheads of <1%, while requiring less developer effort: the application code (Figure 4.7) does not
need to match PredictorAgent-BoardAggregator pairs to specific nodes.

Distributed Training

For a distributed training job, worker placement is critical to performance, as co-locating workers
reduces the cost of model synchronization at each step. Gandiva [202] is a scheduler for deep
learning jobs that aims to optimize training job performance. It composes a higher level load-
balancing policy and a lower-level co-location policy to evenly spread jobs across machines while
reducing intra-job communication overhead. To demonstrate ESCHER’s flexibility, we augment
Gandiva’s [202] worker co-location and migration policy with Gang Scheduling to support dis-
tributed training jobs, and integrate the policy into Tune [109], an open source distributed training
library built on Ray [129], which we will refer to as EscherTune. We modified the Trial abstraction
in Tune to be wrapped in a ghost task that ensures gang scheduling and applied co-location on
tasks belonging to the same Trial. EscherTune triggers a migration whenever it detects sufficient
available resources to place all workers of a job on the same node. To execute a worker migration,
EscherTune checkpoints the current job using application-specific checkpoint functionality and de-
stroys all current workers. Then, EscherTune assigns ephemeral resources to the new target node,
and relaunches all worker tasks of the training job without modifying their ephemeral resource
requests.

We compare EscherTune with Tune’s open-source policy on a cluster of 12 GPUs. We launch 5
short-running training jobs (short-jobs), each requiring 1 GPU, followed by 1 long-running training

CHAPTER 4. ESCHER 83

class PredictorAgent():
def __init__(id):
Create co-location

resource.
set_resource(name=id,

capacity=1)
...

def main():
Create load-balancing resources
for node in cluster: set_resource("load_bal", 1, node)
for i in range(0, num_agents):

p = PredictorAgent(resources = {"GPU": 1, "load_bal":
1}).launch(id=i)

The predictor creates a resource with label i
This resource is used by the BoardAgg to co-locate.
b = BoardAggregator(resources = {i: 1}).launch(p)

Figure 4.7: Implementing AlphaZero policy with ESCHER, composing co-location with load-
balancing.

0 200 400 600 800 1000 1200 1400
Scheduling Latency (ms)

0.0

0.5

1.0

Fr
ac

tio
n

of
 jo

bs

AppSpace
LibSpace
FrameSpace

Figure 4.8: Request latency for gang scheduling implemented in the application space, with (Lib-
Space) and without (AppSpace) coordination, versus the framework space (FrameSpace). FrameS-
pace is 1624 lines of code (LoC), LibSpace with 261 LoC and AppSpace with 78 LoC.

job requiring 4 GPUs (long-job). Each training job is training a ResNet-101 model on CIFAR-10
with a batch-size of 64 images per device.

Initially, the short-jobs are load-balanced across the cluster, while the 4 workers of the long-
job are spread across the cluster depending on GPU availability. This is a sub-optimal placement,
so EscherTune migrates the long-job to colocate its tasks as soon as resources become available
from a short-job completion, resulting in 36.3% higher throughput (Figure 4.6b). Meanwhile, Tune
uses a static placement, so the long-job’s throughput remains the same. Furthermore, EscherTune’s
implementation consists of only 50 lines of Python, with no changes to Tune or the Ray scheduler.

4.6.2 Microbenchmarks
Overhead of application-level policies

ESCHER scheduling policies can be implemented either in the application space for evolvability or
in the framework for performance. We evaluate the trade-offs involved in this choice by comparing
three distinct designs of gang scheduling, all with ephemeral resources on Ray.

CHAPTER 4. ESCHER 84

AppSpace uses ghost tasks to atomically reserve resources (Section 4.4.2). While this policy
is simple to integrate, the lack of coordination between applications can lead to deadlock, which
must be resolved through timeouts. LibSpace avoids this by using a shared library: a shared
service in the cluster that serializes gang scheduling requests across applications. LibSpace thus
avoids live lock entirely but requires deploying a separate shared service. Finally, FrameSpace
modifies the Ray scheduler to expose a gang scheduling API. Internally, a centralized service
within Ray directly reserves and creates ephemeral resources. Since it has direct access to the
resource table, FrameSpace avoids using ghost tasks, reducing overheads from worker allocation
and task dispatch.

Figure 4.8 compares the request latency of these designs on a 32-node cluster with 256 CPUs.
While the mean latency of AppSpace and LibSpace is similar, AppSpace has higher variance and a
longer tail because it uses timeouts to break deadlocks. LibSpace incurs overhead from serializing
requests at a separate service, resulting in a higher minimum latency. On average, FrameSpace
is nearly 2× faster than AppSpace and LibSpace because it directly reserves resources instead of
using ghost tasks. However, we note that for long-running tasks such as model training and batch
processing workloads, the absolute scheduling latency is still a tiny fraction (<1s) compared to the
runtime of the workloads (multiple hours). Moreover, implementing FrameSpace is a significant
effort, requiring a deep understanding of the Ray scheduler and modifying 1624 lines of Ray code.
To compare, LibSpace and AppSpace are implemented in 261 and 78 lines of application-level
code, respectively.

Overheads of Ephemeral Resources

We evaluate the time to create resources and propagate their availability throughout the cluster.
Since the set_resource call is asynchronous, we verify that the resources have been created and
are available for use by launching no-op tasks that request these newly created resources. Figure
4.9a compares the mean latency of creating an equal number of resources on each node in a 50-
node Ray cluster. We show that even when creating 1000 ephemeral resources, we can maintain
1ms latency per request. As more resources are created, the cost of resource creation is amortized
and the per-resource creation cost decreases to 0.72ms. In general, the overhead of creating or
deleting an ephemeral resource should be roughly equivalent to that of a key-value store request.
Ephemeral resources and scheduling latency. The creation of ephemeral resources may add bur-
den to the scheduler, as it must consider a greater number of attributes during resource matching.
Therefore, we analyze the effect of resource creation on task scheduling latency. We create an
equal number of resources across 50 Ray nodes in a cluster using the set_resource API. We
then evaluate two cases based on the resource requirements of the tasks involved.

First, in Figure 4.9b, we launch 10,000 tasks, none of which require any ephemeral resources to
be scheduled. As the tasks do not have any specific resource requirements, the scheduler execution
time and workload makespan are not affected by the number of ephemeral resources present.

Second, when tasks do request ephemeral resources, the core scheduler must match the task’s
requirements to a set of candidate nodes. To evaluate the overheads introduced by this matching,

CHAPTER 4. ESCHER 85

10 50 100 500 1000
Number of resources created

0.0

0.5

1.0

1.5

2.0

La
te

nc
y

(m
s)

Resource Creation Latency

(a)

10 50 100 500 1000
Number of resources in the cluster

0

2

4

6

8

Ti
m

e
(s

ec
on

ds
) Makespan, 10K Tasks

(b)

10 50 100 500 1000
Resources requested by task

0

1

2

3

4

La
te

nc
y

(m
s)

Task Scheduling Latency

(c)

Figure 4.9: ESCHER microbenchmarks. (a) Mean per-resource creation latency in Ray. Creat-
ing ephemeral resources in ESCHER is a low-cost operation that scales linearly with the number
of resources created. (b) Scheduling latency overheads from presence of ephemeral resources.
Makespan of a 10000 task workload remains unaffected by the count of ephemeral resources in
the cluster. (c) Effect of task resource requirements on scheduling latency in an environment with
10000 resources.

we setup a 50 node Ray cluster and create 1000 unique ephemeral resources evenly spread across
nodes. Figure 8c highlights the scalability of the scheduler as the number of ephemeral resources
requested by a task grows. The the task scheduling latency grows only from 1.1ms to 1.2ms when
requesting 1 vs. 100 ephemeral resources, respectively. We note that all policies described in this
work require only a few ephemeral resources to express.

4.7 Discussion
Why use ESCHER? For common scheduling policies, ESCHER’s primary benefit compared to
a monolithic cluster manager is not performance. Rather, it’s the ease to specify and implement
new policies without requiring any changes to the cluster scheduler. This unlocks developing new
applications with sophisticated scheduling constraints that are not yet supported by the underlying
scheduler. One example is the composition of affinity and gang scheduling policies used in the
distributed training example in Section 4.6.1, which is not supported by Ray’s native scheduling
primitives. Another example is DAG-based scheduling, which is offered natively by Ray but not
Kubernetes. DAG-based scheduling can be implemented by leveraging the task signaling primi-
tive (Section 4.4.1). Effectively, ESCHER expands the set of policies a monolithic cluster manager
can support.

Two-level schedulers [165, 76] achieve the same goal by exporting scheduling control directly
to applications, but in doing so they also require applications to implement the entire scheduler
themselves (Section 4.3.5). ESCHER on the other hand requires minimal changes to application
code: it required adding only two lines of code to MapReduce, five lines to AlphaZero and fifty
lines to EscherTune, each of which had widely varying policy requirements. For policy composi-
tion especially, this ease of development is due in part to the use of ESLs.
Limitations. A key goal of ephemeral resources is to provide a simple and narrow API that is
easy to implement by most cluster managers. As a result, ESCHER eschews abstractions that
would require complex implementations such as transaction support [165] (which would allow to

CHAPTER 4. ESCHER 86

trivially implement gang scheduling) or utilization-based scheduling, such as load balancing (Sec-
tion 4.4.2). While the application can still implement these policies using ghost tasks, these imple-
mentations have inherently a higher overhead. Of course, if applications require higher scheduling
performance, we can eventually implement these policies in the cluster manager. Even in this case,
ESCHER remains valuable as it can bridge the gap by enabling the applications to implement these
policies before the cluster manager does.

Another limitation of ESCHER is that it doesn’t expose the resource availability to the applica-
tion, which means that the only way for an application to learn that there are not enough resources
available is by submitting a task which hangs. As a result, the application might have to explicitly
kill the tasks that hang, adding to the complexity. We do not expose resource availability is because
it would not fully solve the problem: there is still a race condition when two tasks on different ma-
chines simultaneously request more than the available resources (e.g., a single GPU is available
and two tasks simultaneously request one GPU each). This problem is exacerbated by the fact
that ephemeral resources can be dynamically created, modified, or destroyed. One solution to this
problem is providing transaction semantics, which, as mentioned above, ESCHER eschews due to
its complex implementation. An avenue for future work would be to alleviate the challenges of
handling such a dynamic environment, e.g., by using lazy execution or extending the API to allow
constraints on ephemeral resources.

4.8 Related Work
Monolithic schedulers. Monolithic cluster schedulers aim to implement both the scheduling pol-
icy and mechanism for a distributed application. Some provide a single generic scheduling disci-
pline, such as fair sharing [82, 62], gang scheduling [71], or delay scheduling [207]. These sched-
ulers provide little control to the application beyond the ability to set some configuration knobs,
such as the time to wait before scheduling a task on a node that doesn’t store its inputs [207].

Other monolithic schedulers aim for generality and provide APIs to allow applications to ex-
press scheduling constraints. Examples are YARN [192], Condor’s ClassAds [110], and Kuber-
netes [26]. Their monolithic design makes it hard to add support for new policies and their com-
positions. For instance, adding support for gang scheduling to Kubernetes requires deep structural
and API changes, and was eventually implemented as a standalone system [121]. Often the API
they provide is complex as well, since it must be expressive enough to capture complex con-
straints such as composition. For instance, the specification of ClassAds [151] is 35 pages [176].
ESCHER achieves both simplicity and evolvability by decoupling policy specification and the
resource-matching mechanism.

Like ESCHER, DCM [179] also aims to maximize extensibility of framework schedulers by
using a declarative model for applications to specify their desired policy behavior as SQL queries.
In doing so, DCM deploys a custom scheduler and optimizer running with Kubernetes. While
this is well suited for policies which optimize for global objectives, expressing application-level
constraints requires users to create and maintain a table in cluster state database, which can be

CHAPTER 4. ESCHER 87

challenging in a distributed environment. ESCHER’s emphasis lies on supporting application-
level scheduling goals, allowing it to easily handle task-task dependencies (Primitive P2 in sec-
tion 4.4.1). Moreover, ESCHER reuses existing virtual resource implementations, thus requiring
no additional services or schedulers to be deployed in the cluster framework.

Rayon [38] is a space-time reservation admission system, allowing applications to reserve a
skyline of resource capacity, c(t), as a function of time. ESCHER can implement a discrete version
of this by having a ghost task evaluate c(t) and update ephemeral resources to match c(t) at any
instant.
Two-level schedulers. Rather than trying to implement application level policies, some cluster
management frameworks are designed explicitly to give all resource management and scheduling
control to the application. Many of these frameworks employ a two-level hierarchy [192, 76],
where the first level manages only resource isolation between applications, while the second level
exposes physical resources to applications. These applications are then responsible for building
their own scheduler. Omega [165] follows a similar separation by providing transaction semantics
on a shared cluster state for distributed schedulers. While this approach grants maximum flexibility
to applications, it adds significant complexity to application code since the application must now
handle both scheduling policy and the mechanisms to ensure resource coordination between tasks.
Some popular frameworks, such as Spark [208] and Flink [27] obviate the need for distributed
coordination by designating a special node (e.g., master) to spawn all tasks. However, they too
have monolithic designs that are not evolvable. In contrast, ESCHER focuses on providing a
generic scheduling framework where the application only focuses on the scheduling policy. Indeed,
ESCHER can be used in tandem with two-level schedulers by launching an ESCHER scheduler to
manage resources allocated by the top-level scheduler.
Label-based and declarative scheduling. [26, 192, 165, 151, 194] provide mechanisms to an-
notate nodes with resource types and use these labels (e.g., "GPU:Nvidia:V100") for placement
constraints. In some cases, these labels do not have an associated capacity (e.g., string key-value
pairs), rendering infeasible implementation of policies with quantitative conditions. In other cases,
quantitative labels are static. TetriSched [188] operates on labelled resources by allowing declar-
ative resource constraint specification and composition. Wrasse [150] uses the bins and balls ab-
straction along with user-defined utilization functions to come up with a specification language.
However, neither of these provide support for dynamic scheduling policies, e.g., making inter-
task constraints hard to implement in a single shot. The expressivity of declarative schedulers
is restricted to information known a priori (i.e., static label information). Circular inter-task de-
pendencies ([130]) are fundamentally impossible to implement without a dynamic mechanism to
unroll the dependency (Section 4.2.2). We note, however, that declarative schedulers ([188, 179])
are synergistic with ESCHER. Ephemeral resources can be used as an intermediate representation
(IR) for their frontend API (e.g., SQL [179] and STRL [188]).

Some existing schedulers provide the ability to configure non-physical resources, e.g., the
extended resources API in Kubernetes [13]. The original purpose of this mechanism is for the
cluster operator to add accounting for custom resources (e.g., accelerators). Meanwhile, generic
application-level scheduling policies like affinity and load balancing are still implemented in the

CHAPTER 4. ESCHER 88

Kubernetes core. In contrast, ESCHER obviates the need to implement these policies in the core
scheduler, deferring it to the application level via the mechanism of ephemeral resources. In
fact, the ESCHER implementation on Kubernetes repurposes extended resources to implement
all scheduling policies and simplifies the Kubernetes scheduler to only resource matching. Finally,
the ability to dynamically update ephemeral resources at runtime enables expressing previously
inexpressible, e.g., inter-task “happens-before” relationships and iterative task graphs.

4.9 Conclusion
Designing cluster scheduling frameworks that can evolve with changing requirements of applica-
tions presents a three way trade-off between evolvability, application simplicity and performance.
With ephemeral resources, ESCHER marks a new point in this design space which makes cluster
frameworks evolvable by allowing applications to implement a wide range of scheduling poli-
cies without taking on the complexities of scheduler design and implementation. This gain in
evolvability is valuable for many applications, for whom functionality in the short-term (while the
policy is integrated into the scheduler) may be more important than performance. Further, ES-
CHER Scheduling Libraries (ESLs) reduce application level complexity by encapsulating policy
implementations in a portable layer. Finally, we implement ESCHER on Kubernetes and Ray to il-
lustrate the generality of ESCHER and achieve performance comparable to hard-coded schedulers
on a variety of machine learning and data processing workloads.

89

Chapter 5

Conclusion

In this dissertation, we explored the use of scheduling techniques to improve resource efficiency
of machine learning workloads and bridge the compute supply-demand gap.

At the ML application layer, we targeted a specific machine learning workload - continuous
learning in resource constrained settings - and developed Ekya to balance resource allocation be-
tween inference and re-training. In doing so, we discovered that selecting optimal configurations
for retraining and identifying most promising tasks for allocating GPU cycles can yield upto 4×
improvements in GPU efficiency.

At the cluster management layer, we found that the traditional resource-demand based schedul-
ing model where users specify exact amount of resources needed for their jobs results in inefficient
use of resources. Instead, we built Cilantro to automatically produce resource allocations based on
a job’s performance and the user’s objective. A key component of Cilantro is the use online learn-
ing, which generates progressively accurate models for a job’s performance for a given resource
allocation. As a result, Cilantro improves efficiency when sharing resources in two important
settings - multi-tenant clusters and microservices serving a common application.

Finally, at the cluster orchestration layer, we discovered that ML applications are highly sen-
sitive to the exact placement and scheduling of their tasks. ESCHER grants flexibility to these
applications to exercise precise scheduling control over their tasks, without requiring tedious and
brittle changes to the underlying cluster manager.

In building these systems, we observed some common trends that we highlight as lessons learnt
below. We also discuss some future directions for bridging the compute supply-demand gap.

5.1 Lessons Learnt
Application-awareness drives efficiency

The growing gap in compute supply and demand necessitates improving efficiency the entire stack
from hardware to software. A recurring theme in our findings is that significant efficiency gains

CHAPTER 5. CONCLUSION 90

are dependent upon vertical integration of this stack, where application-specific knowledge and
signals can help optimize the usage of lower layers of the stack.

For instance, we started work on Ekya with the objective of building an application-agnostic
scheduler that balances GPU cycles between training and inference, but the interdependence be-
tween jobs (i.e., the training job improves the accuracy of the inference job) required the use of
signals from the thief scheduler to identify the most promising tasks for allocating GPU cycles.
Similarly, Cilantro uses user-defined utility signals instead of simpler utilization based metrics to
find the optimal resource allocation for a job. Finally, ESCHER is centered around the fact that
applications are highly sensitive to the exact placement and scheduling of their tasks. Achieving
efficiency in these settings required us to utilize information from the application to make better
scheduling decisions.

Good abstractions balance flexibility and complexity

Resource management systems must strike a balance between flexibility and complexity. On one
hand, flexibility is critical to support a wide range of applications and use cases. On the other hand,
increasing flexibility can often increase complexity, which can make the system difficult to use and
maintain. In such situations, we found it critical to design new abstractions that not only enable
flexibility for applications, but do so without increasing complexity.

ESCHER is an example of increasing flexibility while minimizing complexity through the
use of a novel primitive - ephemeral resources. Ephemeral resources are a simple abstraction
that allows applications to express their scheduling requirements without requiring changes to the
underlying cluster manager, effectively reducing the complexity of adding new policies to existing
cluster managers. Similarly, the utility specification interface in Cilantro allows applications to
signal their performance to the scheduler without the use of complex APIs.

5.2 Future Work
Improving resource availability

To bridge the compute supply-demand gap, this dissertation has primarily focused on easing re-
source demand by improving the efficiency of machine learning workloads. However, there is
extensive work to be done on the supply side, particularly in the context of resource availability.

Compute resources today are fragmented across silos such as clouds and on-prem clusters,
making them challenging to access and utilize efficiently. For instance, consider a user with an
on-premise cluster and access to multiple clouds. Getting access to a Nvidia A100 GPU for this
user entails first checking availability on their on-premise cluster. If a GPU is not available on-
premise, they must check availability across different clouds and regions in each cloud. Exploiting
availability becomes even more important when using spot instances because these resources may
be reclaimed at any time and must be replaced with available spot instances from other clouds and
regions.

CHAPTER 5. CONCLUSION 91

We have been working towards this goal of enhancing resource availability by pursuing the
Sky[178] vision. We have built SkyPilot[204], an intercloud broker that allows users to access
compute resources across clouds and on-premise clusters through a single interface. SkyPilot au-
tomatically discovers available resources across clouds and on-premise clusters and automatically
replaces resources that are reclaimed with available resources that meet the user’s requirements. In
effect, this allows users to access compute resources as if they were accessing a single large pool
resources instead of multiple fragmented silos.

There is still much work to be done in this space. For instance, having a global map of resource
availability across clouds will allow tools like SkyPilot to make better decisions about where to
place jobs. However, constructing such a map is challenging because clouds do not expose their
availability information. Crowdsourcing this information by collecting availability information
from users can be a potential solution, but requires addressing errors in the data and privacy con-
cerns.

Another approach to improving supply is by sharing idle resources across users. Building sys-
tems and primitives for sharing resources across users would require not only providing isolation
and performance guarantees (which have been extensively studied), but also designing incentive
mechanisms to encourage users to share their resources with others who are not in their trust net-
work.

Supporting and leveraging Large Language Models (LLMs)

Large language models (LLMs) are a new class of machine learning models that have emerged as
a powerful tool for natural language processing (NLP) tasks. These models are trained on large
amounts of text data and can be fine-tuned to perform a variety of NLP tasks such as question
answering, summarization, and translation. For systems researchers, LLMs present a unique op-
portunity to explore new research directions and challenges.

Making LLMs resource efficient. At the core of LLMs are transformer models, which are a
class of neural networks that are highly compute intensive. For instance, training GPT-4[140] in
2023 is estimated to have required 21 billion petaFLOPs[54] of compute and is expected to have
cost more than $100 million to train. Naturally, making LLMs more resource efficient is critical to
their success.

There are many approaches to improving the efficiency of LLMs, each operating at a differ-
ent layer. At the model layer, most of the compute is spent on the attention mechanism, which
computes the relationship between each pair of tokens in the input sequence. Techniques such as
flash attention[42] add I/O awareness to reduce computation cost, while other approaches such as
longformer[18] build local and global caches to make query lookup more efficient. At the request
batching layer, Orca[205] uses iteration-level scheduling and vLLM [101] allows large batch sizes
by proposing virtual paging for managing the QKV cache. For fine-tuning, LoRA[80] reduces the
number of trainable parameters by fine-tuning only a subset of specialized parameters. However,
these works have focused on optimizing the performance of a single LLM in isolation. Improving
efficiency in multi-tenant environments, where multiple LLMs are trained and served simultane-

CHAPTER 5. CONCLUSION 92

ously on the pool of resources, presents interesting avenues for future work.
Using LLMs to interface with resource management systems. As shown in Chapter 4,

resource management systems can benefit from application-awareness. However, expressing ap-
plication specific knowledge to the resource management system can be challenging for users since
they must understand and interface with a cluster manager.

LLMs present a unique opportunity here - they can allow users to express their scheduling
requirements and performance considerations in natural language. The LLM can translate these
requirements into a policy that is expressed through ESCHER’s ephemeral resources, effectively
"compiling" the user’s requirements into a intermediate representation (IR) of ephemeral resources.
When the task is submitted, the ESCHER scheduler ensures the policy is executed by matching the
ephemeral resources to available resources. This approach allows users to express their scheduling
requirements in a natural language, while retaining the clean separation of concerns between the
application and the resource management system provided by ESCHER.

To conclude, we believe that bridging the compute supply-demand gap is critical to the suc-
cess of machine learning. It will require a combination of easing resource demand by improving
efficiency and increasing resource supply through hardware advancements and availability im-
provements. We hope that the work in this dissertation will serve as a stepping stone towards this
goal.

93

Bibliography

[1] A Comprehensive List of Hyperparameter Optimization & Tuning Solutions. https://m
edium.com/@mikkokotila/a-comprehensive-list-of-hyperparamet
er-optimization-tuning-solutions-88e067f19d9. 2018.

[2] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica. “Fair Allo-
cation of Multiple Resource Types”. In: USENIX NSDI. 2011.

[3] Martin Abadi et al. “TensorFlow: A System for Large-Scale Machine Learning”. In:
USENIX OSDI. 2016.

[4] Achieving Compliant Data Residency and Security with Azure. In.

[5] AI and Compute. https://openai.com/blog/ai-and-compute/. 2018.

[6] Amazon Compute Service Level Agreement. 2022. URL: %7Bhttps://aws.amazon
.com/compute/sla/%7D (visited on 09/21/2021).

[7] Ganesh Ananthanarayanan et al. “Real-time Video Analytics – the killer app for edge com-
puting”. In: IEEE Computer (2017).

[8] Thomas Anthony et al. Policy Gradient Search: Online Planning and Expert Iteration with-
out Search Trees. 2019. eprint: arXiv:1904.03646.

[9] Apache Airflow. https://airflow.apache.org/. (Accessed on 11/24/2023).

[10] Peter Auer. “Using confidence bounds for exploitation-exploration trade-offs”. In: Journal
of Machine Learning Research 3.Nov (2002), pp. 397–422.

[11] Kubeflow authors. Kubeflow Homepage. 2022. URL: https://www.kubeflow.org/
(visited on 10/07/2022).

[12] Kubernetes Authors. Concepts: Kubernetes Scheduler. 2022. URL: https://kuberne
tes.io/docs/concepts/scheduling/ (visited on 10/07/2022).

[13] Kubernetes authors. Managing Compute Resources for Containers - Kubernetes. 2022.
URL: https://kubernetes.io/docs/concepts/configuration/manage
-compute-resources-container/ (visited on 10/07/2022).

[14] AWS Outposts. https://aws.amazon.com/outposts/.

[15] Azure Percept. https://azure.microsoft.com/en-us/services/azure-
percept/.

https://medium.com/@mikkokotila/a-comprehensive-list-of-hyperparameter-optimization-tuning-solutions-88e067f19d9
https://medium.com/@mikkokotila/a-comprehensive-list-of-hyperparameter-optimization-tuning-solutions-88e067f19d9
https://medium.com/@mikkokotila/a-comprehensive-list-of-hyperparameter-optimization-tuning-solutions-88e067f19d9
%7Bhttps://aws.amazon.com/compute/sla/%7D
%7Bhttps://aws.amazon.com/compute/sla/%7D
arXiv:1904.03646
https://airflow.apache.org/
https://www.kubeflow.org/
https://kubernetes.io/docs/concepts/scheduling/
https://kubernetes.io/docs/concepts/scheduling/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://azure.microsoft.com/en-us/services/azure-percept/
https://azure.microsoft.com/en-us/services/azure-percept/

BIBLIOGRAPHY 94

[16] Azure Stack Edge. https://azure.microsoft.com/en-us/services/databox/edge/.

[17] Eden Belouadah and Adrian Popescu. “IL2M: Class Incremental Learning With Dual
Memory”. In: IEEE ICCV. 2019.

[18] Iz Beltagy, Matthew E. Peters, and Arman Cohan. “Longformer: The Long-Document
Transformer”. In: arXiv:2004.05150 (2020).

[19] Jon CR Bennett and Hui Zhang. “WF/sup 2/Q: worst-case fair weighted fair queueing”. In:
Proceedings of IEEE INFOCOM’96. Conference on Computer Communications. Vol. 1.
IEEE. 1996, pp. 120–128.

[20] James Bergstra and Yoshua Bengio. “Random Search for Hyper-Parameter Optimization”.
In: J. Mach. Learn. Res. 13 (2012), pp. 281–305.

[21] Robert D. Blumofe and Charles E. Leiserson. “Scheduling Multithreaded Computations
by Work Stealing”. In: J. ACM 46.5 (1999), pp. 720–748. ISSN: 0004-5411. DOI: 10.11
45/324133.324234. URL: https://doi.org/10.1145/324133.324234.

[22] Keith Bonawitz et al. “Towards Federated Learning at Scale: System Design”. In: SysML.
2019.

[23] James Bradbury et al. JAX: composable transformations of Python+NumPy programs. Ver-
sion 0.3.13. 2018. URL: http://github.com/google/jax.

[24] Sébastien Bubeck and Nicolo Cesa-Bianchi. “Regret analysis of stochastic and nonstochas-
tic multi-armed bandit problems”. In: arXiv preprint arXiv:1204.5721 (2012).

[25] Sébastien Bubeck et al. “X-armed Bandits”. In: arXiv preprint arXiv:1001.4475 (2010).

[26] Brendan Burns et al. “Borg, Omega, and Kubernetes”. In: ACM Queue 14 (2016), pp. 70–
93. URL: http://queue.acm.org/detail.cfm?id=2898444.

[27] Paris Carbone et al. “Apache flink: Stream and batch processing in a single engine”. In:
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering 36.4
(2015).

[28] Abhishek Chandra et al. “Surplus Fair Scheduling: A Proportional-Share CPU Schedul-
ing Algorithm for Symmetric Multiprocessors”. In: Proceedings of the 4th Conference on
Symposium on Operating System Design and Implementation - Volume 4. OSDI’00. San
Diego, California: USENIX Association, 2000.

[29] Shuang Chen, Christina Delimitrou, and José F Martínez. “Parties: Qos-aware resource
partitioning for multiple interactive services”. In: Proceedings of the Twenty-Fourth Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems. 2019, pp. 107–120.

[30] Chien-Chun Hung, Ganesh Ananthanarayanan, Peter Bodik, Leana Golubchik, Minlan Yu,
Paramvir Bahl, Matthai Philipose. “VideoEdge: Processing Camera Streams using Hierar-
chical Clusters”. In: ACM/IEEE SEC. 2018.

https://doi.org/10.1145/324133.324234
https://doi.org/10.1145/324133.324234
https://doi.org/10.1145/324133.324234
http://github.com/google/jax
http://queue.acm.org/detail.cfm?id=2898444

BIBLIOGRAPHY 95

[31] Dah-Ming Chiu and Raj Jain. “Analysis of the increase and decrease algorithms for con-
gestion avoidance in computer networks”. In: Computer Networks and ISDN systems 17.1
(1989), pp. 1–14.

[32] Michael Chui et al. “The economic potential of generative AI”. In: (2023).

[33] CLIFFORD, M. J., PERRONS, R. K., ALI, S. H.,ANDGRICE, T. A. “Extracting Inno-
vations: Mining, Energy, and Technological Changein the Digital Age”. In: CRC Press.
2018.

[34] cnn-benchmarks. https://github.com/jcjohnson/cnn-benchmarks#resnet-101.

[35] Andrea Coraddu et al. “Machine learning approaches for improving condition-based main-
tenance of naval propulsion plants”. In: Proceedings of the Institution of Mechanical En-
gineers, Part M: Journal of Engineering for the Maritime Environment 230.1 (2016),
pp. 136–153.

[36] Ben Cottier. Trends in the Dollar Training Cost of Machine Learning Systems. Accessed:
2023-11-24. 2023. URL: https://epochai.org/blog/trends-in-the-doll
ar-training-cost-of-machine-learning-systems.

[37] Daniel Crankshaw et al. “Clipper: A low-latency online prediction serving system”. In:
14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17).
2017, pp. 613–627.

[38] Carlo Curino et al. “Reservation-Based Scheduling: If You’re Late Don’t Blame Us!” In:
SOCC ’14. Seattle, WA, USA: Association for Computing Machinery, 2014, pp. 1–14.
ISBN: 9781450332521. DOI: 10.1145/2670979.2670981. URL: https://doi.o
rg/10.1145/2670979.2670981.

[39] D Maltoni, V Lomonaco. “Continuous learning in single-incremental-task scenarios”. In:
Neural Networks. 2019.

[40] D. Kang, J. Emmons, F. Abuzaid, P. Bailis and M. Zaharia. “NoScope: Optimizing Neural
Network Queries over Video at Scale”. In: VLDB. 2017.

[41] Andrew Danowitz et al. “CPU DB: Recording Microprocessor History: With This Open
Database, You Can Mine Microprocessor Trends over the Past 40 Years.” In: Queue 10.4
(2012), pp. 10–27. ISSN: 1542-7730. DOI: 10.1145/2181796.2181798. URL: http
s://doi.org/10.1145/2181796.2181798.

[42] Tri Dao et al. “FlashAttention: Fast and Memory-Efficient Exact Attention with
IO-Awareness”. In: Advances in Neural Information Processing Systems. 2022.

[43] Paresh Dave. Nvidia Chip Shortages Leave AI Startups Scrambling for Computing Power
| WIRED. https://www.wired.com/story/nvidia-chip-shortages-l
eave-ai-startups-scrambling-for-computing-power/. (Accessed on
11/24/2023).

https://epochai.org/blog/trends-in-the-dollar-training-cost-of-machine-learning-systems
https://epochai.org/blog/trends-in-the-dollar-training-cost-of-machine-learning-systems
https://doi.org/10.1145/2670979.2670981
https://doi.org/10.1145/2670979.2670981
https://doi.org/10.1145/2670979.2670981
https://doi.org/10.1145/2181796.2181798
https://doi.org/10.1145/2181796.2181798
https://doi.org/10.1145/2181796.2181798
https://www.wired.com/story/nvidia-chip-shortages-leave-ai-startups-scrambling-for-computing-power/
https://www.wired.com/story/nvidia-chip-shortages-leave-ai-startups-scrambling-for-computing-power/

BIBLIOGRAPHY 96

[44] Jeffrey Dean and Luiz André Barroso. “The Tail at Scale”. In: Communications of the ACM
56 (2013), pp. 74–80. URL: http://cacm.acm.org/magazines/2013/2/1601
73-the-tail-at-scale/fulltext.

[45] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing on Large
Clusters”. In: Commun. ACM 51.1 (Jan. 2008), pp. 107–113. ISSN: 0001-0782. DOI: 10
.1145/1327452.1327492. URL: http://doi.acm.org/10.1145/1327452
.1327492.

[46] Jeffrey Dean et al. “Large Scale Distributed Deep Networks”. In: NeurIPS. 2012.

[47] Christina Delimitrou and Christos Kozyrakis. “Paragon: QoS-aware scheduling for hetero-
geneous datacenters”. In: ACM SIGPLAN Notices 48.4 (2013), pp. 77–88.

[48] Christina Delimitrou and Christos Kozyrakis. “Quasar: resource-efficient and QoS-aware
cluster management”. In: ACM SIGPLAN Notices 49.4 (2014), pp. 127–144.

[49] Alan Demers, Srinivasan Keshav, and Scott Shenker. “Analysis and simulation of a fair
queueing algorithm”. In: ACM SIGCOMM Computer Communication Review 19.4 (1989),
pp. 1–12.

[50] Danny Dolev et al. “No justified complaints: On fair sharing of multiple resources”. In:
proceedings of the 3rd Innovations in Theoretical Computer Science Conference. 2012,
pp. 68–75.

[51] Kuntai Du et al. “Server-Driven Video Streaming for Deep Learning Inference”. In: Pro-
ceedings of the Annual conference of the ACM Special Interest Group on Data Communi-
cation on the applications, technologies, architectures, and protocols for computer com-
munication. 2020, pp. 557–570.

[52] Edge Computing at Chick-fil-A. “https://medium.com/@cfatechblog/edge-computing-at-
chick-fil-a-7d67242675e2”. In: 2019.

[53] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr. “Exokernel: An Operating System Ar-
chitecture for Application-level Resource Management”. In: Proceedings of the Fifteenth
ACM Symposium on Operating Systems Principles. SOSP ’95. Copper Mountain, Col-
orado, USA: ACM, 1995, pp. 251–266. ISBN: 0-89791-715-4. DOI: 10.1145/224056
.224076.

[54] Epoch. Parameter, Compute and Data Trends in Machine Learning. Accessed: 2023-11-
24. 2022. URL: https://epochai.org/mlinputs/visualization.

[55] Hadi Esmaeilzadeh et al. “Dark Silicon and the End of Multicore Scaling”. In: Proceedings
of the 38th Annual International Symposium on Computer Architecture. ISCA ’11. San
Jose, California, USA: Association for Computing Machinery, 2011, pp. 365–376. ISBN:
9781450304726. DOI: 10.1145/2000064.2000108. URL: https://doi.org/1
0.1145/2000064.2000108.

http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
https://doi.org/10.1145/224056.224076
https://doi.org/10.1145/224056.224076
https://epochai.org/mlinputs/visualization
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1145/2000064.2000108

BIBLIOGRAPHY 97

[56] Federal Communications Commission Office Of Engineering And Technology. “Measur-
ing Fixed Broadband - Eighth Report”. In: 2018. URL: https://www.fcc.gov/rep
orts-research/reports/measuring-broadband-america/measuring
-fixed-broadband-eighth-report.

[57] Andrew D. Ferguson et al. “Jockey: Guaranteed Job Latency in Data Parallel Clusters”.
In: Proceedings of the 7th ACM European Conference on Computer Systems. EuroSys
’12. Bern, Switzerland: Association for Computing Machinery, 2012, pp. 99–112. ISBN:
9781450312233. DOI: 10.1145/2168836.2168847. URL: https://doi.org/1
0.1145/2168836.2168847.

[58] Kelwin Fernandes, Pedro Vinagre, and Paulo Cortez. “A proactive intelligent decision sup-
port system for predicting the popularity of online news”. In: Portuguese Conference on
Artificial Intelligence. 2015.

[59] Brad Fitzpatrick. “Distributed caching with memcached”. In: Linux journal 124 (2004).

[60] Yu Gan et al. “An Open-Source Benchmark Suite for Microservices and Their Hardware-
Software Implications for Cloud and Edge Systems”. In: Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and Op-
erating Systems. ASPLOS ’19. Providence, RI, USA: Association for Computing Machin-
ery, 2019, pp. 3–18. ISBN: 9781450362405. DOI: 10.1145/3297858.3304013. URL:
https://doi.org/10.1145/3297858.3304013.

[61] Ganesh Ananthanarayanan, Victor Bahl, Yuanchao Shu, Franz Loewenherz, Daniel Lai,
Darcy Akers, Peiwei Cao, Fan Xia, Jiangbo Zhang, Ashley Song. “Traffic Video Analytics
– Case Study Report”. In: 2019.

[62] Ali Ghodsi et al. “Dominant Resource Fairness: Fair Allocation of Multiple Resource
Types.” In: Nsdi. Vol. 11. 2011. 2011, pp. 24–24.

[63] Ali Ghodsi et al. “Multi-resource Fair Queueing for Packet Processing”. In: Proceedings
of the ACM SIGCOMM 2012 conference on Applications, technologies, architectures, and
protocols for computer communication. 2012, pp. 1–12.

[64] GI Parisi, R Kemker, JL Part, C Kanan, S Wermter. “Continual lifelong learning with
neural networks: A review”. In: Neural Networks. 2019.

[65] Daniel Golovin et al. “Google Vizier: A Service for Black-Box Optimization”. In: Pro-
ceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. KDD ’17. Halifax, NS, Canada: Association for Computing Machinery,
2017, pp. 1487–1495. ISBN: 9781450348874. DOI: 10.1145/3097983.3098043.
URL: https://doi.org/10.1145/3097983.3098043.

[66] Google AI Blog: Custom On-Device ML Models with Learn2Compress. https://ai
.googleblog.com/2018/05/custom-on-device-ml-models.html.
(Accessed on 03/09/2021).

[67] Alkis Gotovos. “Active learning for level set estimation”. MA thesis. Eidgenössische Tech-
nische Hochschule Zürich, Department of Computer Science, 2013.

https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fixed-broadband-eighth-report
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fixed-broadband-eighth-report
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fixed-broadband-eighth-report
https://doi.org/10.1145/2168836.2168847
https://doi.org/10.1145/2168836.2168847
https://doi.org/10.1145/2168836.2168847
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/3097983.3098043
https://doi.org/10.1145/3097983.3098043
https://ai.googleblog.com/2018/05/custom-on-device-ml-models.html
https://ai.googleblog.com/2018/05/custom-on-device-ml-models.html

BIBLIOGRAPHY 98

[68] Robert Grandl et al. “Altruistic scheduling in multi-resource clusters”. In: 12th USENIX
symposium on operating systems design and implementation (OSDI 16). 2016, pp. 65–80.

[69] Robert Grandl et al. “Multi-resource packing for cluster schedulers”. In: ACM SIGCOMM.
2014.

[70] Jean-Bastien Grill, Michal Valko, and Rémi Munos. “Black-box optimization of noisy
functions with unknown smoothness”. In: Advances in Neural Information Processing Sys-
tems. 2015, pp. 667–675.

[71] William D Gropp et al. Using MPI: portable parallel programming with the message-
passing interface. Vol. 1. MIT press, 1999.

[72] Juncheng Gu et al. “Tiresias: A GPU Cluster Manager for Distributed Deep Learning”. In:
USENIX NSDI. 2019.

[73] Avital Gutman and Noam Nisan. “Fair allocation without trade”. In: arXiv preprint
arXiv:1204.4286 (2012).

[74] Hadoop Fair Scheduler. 2022. URL: https://hadoop.apache.org/.

[75] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodík, Matthai Philipose, Victor
Bahl, Michael Freedman. “Live Video Analytics at Scale with Approximation and
Delay-Tolerance”. In: USENIX NSDI. 2017.

[76] Benjamin Hindman et al. “Mesos: A platform for fine-grained resource sharing in the data
center.” In: NSDI. Vol. 11. 2011. 2011, pp. 22–22.

[77] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. “Distilling the Knowledge in a Neural
Network”. In: NeurIPS Deep Learning and Representation Learning Workshop. 2015.

[78] Aaron Holmes and Anissa Gardizy. AI Developers Stymied by Server Shortage at AWS,
Microsoft, Google — The Information. https://www.theinformation.com/ar
ticles/ai-developers-stymied-by-server-shortage-at-aws-micr
osoft-google. (Accessed on 11/24/2023).

[79] Kevin Hsieh et al. “Focus: Querying Large Video Datasets with Low Latency and Low
Cost”. In: USENIX OSDI. 2018.

[80] Edward J Hu et al. “LoRA: Low-Rank Adaptation of Large Language Models”. In: Inter-
national Conference on Learning Representations. 2022. URL: https://openreview
.net/forum?id=nZeVKeeFYf9.

[81] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. “Sequential Model-Based Opti-
mization for General Algorithm Configuration”. In: Learning and Intelligent Optimization.
2011.

[82] Michael Isard et al. “Quincy: fair scheduling for distributed computing clusters”. In: Pro-
ceedings of the ACM SIGOPS 22nd symposium on Operating systems principles. 2009,
pp. 261–276.

https://hadoop.apache.org/
https://www.theinformation.com/articles/ai-developers-stymied-by-server-shortage-at-aws-microsoft-google
https://www.theinformation.com/articles/ai-developers-stymied-by-server-shortage-at-aws-microsoft-google
https://www.theinformation.com/articles/ai-developers-stymied-by-server-shortage-at-aws-microsoft-google
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

BIBLIOGRAPHY 99

[83] Raj Jain, Dah-Ming Chiu, and W. Hawe. “A Quantitative Measure Of Fairness And
Discrimination For Resource Allocation In Shared Computer Systems”. In: CoRR
cs.NI/9809099 (1998). URL: https://arxiv.org/abs/cs/9809099.

[84] Junchen Jiang, Vyas Sekar, and Hui Zhang. “Improving fairness, efficiency, and stability in
http-based adaptive video streaming with festive”. In: Proceedings of the 8th international
conference on Emerging networking experiments and technologies. 2012, pp. 97–108.

[85] Joseph Redmon, Ali Farhadi. “YOLO9000: Better, Faster, Stronger”. In: CVPR. 2017.

[86] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodík, Siddhartha Sen, Ion Stoica.
“Chameleon: Scalable Adaptation of Video Analytics”. In: ACM SIGCOMM. 2018.

[87] Junjue Wang, Ziqiang Feng, Shilpa George, Roger Iyengar, Pillai Padmanabhan, Mahadev
Satyanarayanan. “Towards Scalable Edge-Native Applications”. In: ACM/IEEE Sympo-
sium on Edge Computing. 2019.

[88] Sangeetha Abdu Jyothi et al. “Morpheus: Towards Automated SLOs for Enterprise Clus-
ters”. In: 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). Savannah, GA: USENIX Association, Nov. 2016, pp. 117–134. ISBN: 978-
1-931971-33-1.

[89] K He, X Zhang, S Ren, J Sun. “Deep Residual Learning for Image Recognition”. In: CVPR.
2016.

[90] M. Frans Kaashoek et al. “Application Performance and Flexibility on Exokernel Sys-
tems”. In: Proceedings of the Sixteenth ACM Symposium on Operating Systems Principles.
SOSP ’97. Saint Malo, France: ACM, 1997, pp. 52–65. ISBN: 0-89791-916-5. DOI: 10.1
145/268998.266644. URL: http://doi.acm.org/10.1145/268998.2666
44.

[91] Vasiliki Kalavri et al. “Three steps is all you need: fast, accurate, automatic scaling de-
cisions for distributed streaming dataflows”. In: 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). 2018, pp. 783–798.

[92] Faria Kalim et al. “Henge: Intent-Driven Multi-Tenant Stream Processing”. In: Proceed-
ings of the ACM Symposium on Cloud Computing. SoCC ’18. Carlsbad, CA, USA: Asso-
ciation for Computing Machinery, 2018, pp. 249–262. ISBN: 9781450360111. DOI: 10.1
145/3267809.3267832. URL: https://doi.org/10.1145/3267809.3267
832.

[93] Kirthevasan Kandasamy et al. “Online Learning Demands in Max-min Fairness”. In: arXiv
preprint arXiv:2012.08648 (2020).

[94] Mamoru Kaneko and Kenjiro Nakamura. “The Nash social welfare function”. In: Econo-
metrica: Journal of the Econometric Society (1979), pp. 423–435.

[95] Frank P Kelly, Aman K Maulloo, and David KH Tan. “Rate control for communication net-
works: shadow prices, proportional fairness and stability”. In: Journal of the Operational
Research society 49.3 (1998), pp. 237–252.

https://arxiv.org/abs/cs/9809099
https://doi.org/10.1145/268998.266644
https://doi.org/10.1145/268998.266644
http://doi.acm.org/10.1145/268998.266644
http://doi.acm.org/10.1145/268998.266644
https://doi.org/10.1145/3267809.3267832
https://doi.org/10.1145/3267809.3267832
https://doi.org/10.1145/3267809.3267832
https://doi.org/10.1145/3267809.3267832

BIBLIOGRAPHY 100

[96] Mehrdad Khani et al. “Real-Time Video Inference on Edge Devices via Adaptive Model
Streaming”. In: arXiv preprint arXiv:2006.06628 (2020).

[97] Jaehong Kim et al. “Neural-Enhanced Live Streaming: Improving Live Video Ingest via
Online Learning”. In: Proceedings of the Annual Conference of the ACM Special Interest
Group on Data Communication on the Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication. SIGCOMM ’20. Virtual Event, USA: Association
for Computing Machinery, 2020, pp. 107–125. ISBN: 9781450379557. DOI: 10.1145/3
387514.3405856. URL: https://doi.org/10.1145/3387514.3405856.

[98] Will Knight. OpenAI’s CEO Says the Age of Giant AI Models Is Already Over | WIRED.
https://www.wired.com/story/openai-ceo-sam-altman-the-age-o
f-giant-ai-models-is-already-over/. (Accessed on 11/24/2023).

[99] Konstantin Shmelkov, Cordelia Schmid, Karteek Alahari. “Incremental Learning of Object
Detectors Without Catastrophic Forgetting”. In: ICCV. 2017.

[100] Kubernetes API health endpoints | Kubernetes. https://kubernetes.io/docs/r
eference/using-api/health-checks/. 2022.

[101] Woosuk Kwon et al. “Efficient Memory Management for Large Language Model Serving
with PagedAttention”. In: Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles. 2023.

[102] Kevin Lai et al. “Tycoon: An implementation of a distributed, market-based resource allo-
cation system”. In: Multiagent and Grid Systems 1.3 (2005), pp. 169–182.

[103] Avinash Lakshman and Prashant Malik. “Cassandra: a decentralized structured storage
system”. In: ACM SIGOPS Operating Systems Review 44.2 (2010), pp. 35–40.

[104] Jeongtae Lee et al. “Lifelong Learning with Dynamically Expandable Networks”. In:
ICLR. 2018.

[105] Ang Li et al. “A Generalized Framework for Population Based Training”. In: Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. KDD ’19. Anchorage, AK, USA: Association for Computing Machinery, 2019,
pp. 1791–1799. ISBN: 9781450362016. DOI: 10.1145/3292500.3330649. URL:
https://doi.org/10.1145/3292500.3330649.

[106] Lisha Li et al. “Hyperband: A Novel Bandit-Based Approach to Hyperparameter Opti-
mization”. In: J. Mach. Learn. Res. 18.1 (Jan. 2017), pp. 6765–6816. ISSN: 1532-4435.

[107] Yuanqi Li et al. “Reducto: On-Camera Filtering for Resource-Efficient Real-Time Video
Analytics”. In: Proceedings of the Annual conference of the ACM Special Interest Group
on Data Communication on the applications, technologies, architectures, and protocols for
computer communication. 2020, pp. 359–376.

https://doi.org/10.1145/3387514.3405856
https://doi.org/10.1145/3387514.3405856
https://doi.org/10.1145/3387514.3405856
https://www.wired.com/story/openai-ceo-sam-altman-the-age-of-giant-ai-models-is-already-over/
https://www.wired.com/story/openai-ceo-sam-altman-the-age-of-giant-ai-models-is-already-over/
https://kubernetes.io/docs/reference/using-api/health-checks/
https://kubernetes.io/docs/reference/using-api/health-checks/
https://doi.org/10.1145/3292500.3330649
https://doi.org/10.1145/3292500.3330649

BIBLIOGRAPHY 101

[108] Richard Liaw et al. “HyperSched: Dynamic Resource Reallocation for Model Develop-
ment on a Deadline”. In: Proceedings of the ACM Symposium on Cloud Computing. SoCC
’19. Santa Cruz, CA, USA: Association for Computing Machinery, 2019, pp. 61–73. ISBN:
9781450369732. DOI: 10.1145/3357223.3362719. URL: https://doi.org/1
0.1145/3357223.3362719.

[109] Richard Liaw et al. “Tune: A research platform for distributed model selection and train-
ing”. In: arXiv preprint arXiv:1807.05118 (2018).

[110] Michel J Litzkow, Miron Livny, and Matt W Mutka. Condor-a hunter of idle workstations.
Tech. rep. University of Wisconsin-Madison Department of Computer Sciences, 1987.

[111] Wei Liu et al. “SSD: Single shot multibox detector”. In: European Conference on Com-
puter Vision. Springer. 2016, pp. 21–37.

[112] Yucheng Low et al. “Distributed GraphLab: A Framework for Machine Learning in the
Cloud”. In: PVLDB 5.8 (2012), pp. 716–727.

[113] Yan Lu et al. “Collaborative learning between cloud and end devices: an empirical study
on location prediction”. In: ACM/IEEE SEC. 2019.

[114] M McCloskey, NJ Cohen. “Catastrophic interference in connectionist networks: The se-
quential learning problem”. In: Psychology of learning and motivation. 1989.

[115] M Sandler, A Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen. “Mo-
bilenetv2: Inverted residuals and linear bottlenecks”. In: CVPR. 2018.

[116] Klaus Ma. Coscheduling in Kubernetes · Issue #61012 · kubernetes/kubernetes. 2018. URL:
https://github.com/kubernetes/kubernetes/issues/61012 (visited
on 10/07/2022).

[117] Klaus Ma. Coscheduling. by k82cn · Pull Request #639 · kubernetes/enhancements. 2018.
URL: https://github.com/kubernetes/enhancements/pull/639 (vis-
ited on 10/07/2022).

[118] Michael J. Magazine and Maw-Sheng Chern. “A Note on Approximation Schemes for
Multidimensional Knapsack Problems”. In: Math. Oper. Res. 9.2 (1984).

[119] Kshiteej Mahajan et al. “Themis: Fair and Efficient GPU Cluster Scheduling”. In: 17th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 20). Santa
Clara, CA: USENIX Association, Feb. 2020, pp. 289–304. ISBN: 978-1-939133-13-7. URL:
https://www.usenix.org/conference/nsdi20/presentation/mahaja
n.

[120] Spyros Makridakis and Michele Hibon. “ARMA models and the Box–Jenkins methodol-
ogy”. In: Journal of forecasting 16.3 (1997), pp. 147–163.

[121] mali11. Schedule a group of pods all at once (aka coscheduling, sometimes known as gang
scheduling). 2015. URL: https://github.com/kubernetes/kubernetes/is
sues/16845 (visited on 10/07/2022).

https://doi.org/10.1145/3357223.3362719
https://doi.org/10.1145/3357223.3362719
https://doi.org/10.1145/3357223.3362719
https://github.com/kubernetes/kubernetes/issues/61012
https://github.com/kubernetes/enhancements/pull/639
https://www.usenix.org/conference/nsdi20/presentation/mahajan
https://www.usenix.org/conference/nsdi20/presentation/mahajan
https://github.com/kubernetes/kubernetes/issues/16845
https://github.com/kubernetes/kubernetes/issues/16845

BIBLIOGRAPHY 102

[122] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,
Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. “The Cityscapes Dataset
for Semantic Urban Scene Understanding”. In: CVPR. 2016.

[123] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Sys-
tems. Software available from tensorflow.org. 2015. URL: https://www.tensorflo
w.org/.

[124] Microsoft-Rocket-Video-Analytics-Platform. https://github.com/microsoft/Microsoft-
Rocket-Video-Analytics-Platform.

[125] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew
Howard, Quoc V. Le. “MnasNet: Platform-Aware Neural Architecture Search for Mobile”.
In: CVPR. 2019.

[126] Mingxing Tan, Quoc V. Le. “EfficientNet: Rethinking Model Scaling for Convolutional
Neural Networks”. In: ICML. 2019.

[127] Ujval Misra et al. “RubberBand: Cloud-Based Hyperparameter Tuning”. In: Proceedings
of the Sixteenth European Conference on Computer Systems. New York, NY, USA: Asso-
ciation for Computing Machinery, 2021, pp. 327–342. ISBN: 9781450383349. URL: http
s://doi.org/10.1145/3447786.3456245.

[128] Jeonghoon Mo and Jean Walrand. “Fair end-to-end window-based congestion control”. In:
IEEE/ACM Transactions on networking 8.5 (2000), pp. 556–567.

[129] Philipp Moritz et al. “Ray: A Distributed Framework for Emerging AI Applications”. In:
Proceedings of the 13th USENIX Conference on Operating Systems Design and Implemen-
tation. OSDI’18. Carlsbad, CA, USA: USENIX Association, 2018, pp. 561–577. ISBN:
9781931971478.

[130] Derek G. Murray et al. “Naiad: A Timely Dataflow System”. In: Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. SOSP ’13. Farminton, Pennsyl-
vania: Association for Computing Machinery, 2013, pp. 439–455. ISBN: 9781450323888.
DOI: 10.1145/2517349.2522738. URL: https://doi.org/10.1145/2517
349.2522738.

[131] MxNet: a flexible and efficient library for deep learning. https://mxnet.apache.o
rg/.

[132] Arun Nair et al. “Massively parallel methods for deep reinforcement learning”. In: arXiv
preprint arXiv:1507.04296 (2015).

[133] Raghunath Othayoth Nambiar and Meikel Poess. “The Making of TPC-DS”. In: Proceed-
ings of the 32nd International Conference on Very Large Data Bases. VLDB ’06. Seoul,
Korea: VLDB Endowment, 2006, pp. 1049–1058.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1145/3447786.3456245
https://doi.org/10.1145/3447786.3456245
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/2517349.2522738
https://mxnet.apache.org/
https://mxnet.apache.org/

BIBLIOGRAPHY 103

[134] Deepak Narayanan et al. “Heterogeneity-Aware Cluster Scheduling Policies for Deep
Learning Workloads”. In: 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20). USENIX Association, Nov. 2020, pp. 481–498. ISBN:
978-1-939133-19-9. URL: https://www.usenix.org/conference/osdi20/p
resentation/narayanan-deepak.

[135] Vikram Nathan et al. “End-to-end transport for video QoE fairness”. In: Proceedings of the
ACM Special Interest Group on Data Communication. 2019, pp. 408–423.

[136] Hiep Chi Nguyen et al. “AGILE: Elastic Distributed Resource Scaling for Infrastructure-
as-a-Service”. In: International Conference on Automation and Computing. 2013.

[137] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. “ShuffleNet V2: Practical
Guidelines for Efficient CNN Architecture Design”. In: ECCV. 2018.

[138] Nvidia Multi-Process Service. https://docs.nvidia.com/deploy/pdf/CUDA
_Multi_Process_Service_Overview.pdf. (Accessed on 09/16/2020).

[139] Ofcom. “Residential landline and fixed broadband services.” In: 2019. URL: https://w
ww.ofcom.org.uk/%5C_%5C_data/assets/pdf%5C_file/0015/113640
/landline-broadband.pdf.

[140] OpenAI. GPT-4 Technical Report. 2023. arXiv: 2303.08774 [cs.CL].

[141] OpenSignal. “Mobile Network Experience Report”. In: 2019. URL: https://www.ope
nsignal.com/reports/2019/01/usa/mobile-network-experience.

[142] Kay Ousterhout et al. “Sparrow: Distributed, Low Latency Scheduling”. In:
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles.
SOSP ’13. Farminton, Pennsylvania: Association for Computing Machinery, 2013,
pp. 69–84. ISBN: 9781450323888. DOI: 10 . 1145 / 2517349 . 2522716. URL:
https://doi.org/10.1145/2517349.2522716.

[143] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Li-
brary”. In: Advances in Neural Information Processing Systems 32. Ed. by H. Wallach et
al. Curran Associates, Inc., 2019, pp. 8024–8035. URL: http://papers.neurips.c
c/paper/9015-pytorch-an-imperative-style-high-performance-d
eep-learning-library.pdf.

[144] R. H. Patterson et al. “Informed Prefetching and Caching”. In: SIGOPS Oper. Syst. Rev.
29.5 (1995), pp. 79–95. ISSN: 0163-5980. DOI: 10.1145/224057.224064. URL:
https://doi.org/10.1145/224057.224064.

[145] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, Jan Kautz. “Pruning Convolu-
tional Neural Networks for Resource Efficient Inference”. In: ICLR. 2017.

https://www.usenix.org/conference/osdi20/presentation/narayanan-deepak
https://www.usenix.org/conference/osdi20/presentation/narayanan-deepak
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://www.ofcom.org.uk/%5C_%5C_data/assets/pdf%5C_file/0015/113640/landline-broadband.pdf
https://www.ofcom.org.uk/%5C_%5C_data/assets/pdf%5C_file/0015/113640/landline-broadband.pdf
https://www.ofcom.org.uk/%5C_%5C_data/assets/pdf%5C_file/0015/113640/landline-broadband.pdf
https://arxiv.org/abs/2303.08774
https://www.opensignal.com/reports/2019/01/usa/mobile-network-experience
https://www.opensignal.com/reports/2019/01/usa/mobile-network-experience
https://doi.org/10.1145/2517349.2522716
https://doi.org/10.1145/2517349.2522716
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/224057.224064
https://doi.org/10.1145/224057.224064

BIBLIOGRAPHY 104

[146] Pei Sun and Henrik Kretzschmar and Xerxes Dotiwalla and Aurelien Chouard and Vijay-
sai Patnaik and Paul Tsui and James Guo and Yin Zhou and Yuning Chai and Benjamin
Caine and Vijay Vasudevan and Wei Han and Jiquan Ngiam and Hang Zhao and Aleksei
Timofeev and Scott Ettinger and Maxim Krivokon and Amy Gao and Aditya Joshi and
Yu Zhang and Jonathon Shlens and Zhifeng Chen and Dragomir Anguelov. Scalability in
Perception for Autonomous Driving: Waymo Open Dataset. 2019.

[147] Yanghua Peng et al. “Optimus: An Efficient Dynamic Resource Scheduler for Deep Learn-
ing Clusters”. In: Proceedings of the Thirteenth EuroSys Conference. EuroSys ’18. Porto,
Portugal: Association for Computing Machinery, 2018. ISBN: 9781450355841. DOI: 10
.1145/3190508.3190517. URL: https://doi.org/10.1145/3190508.31
90517.

[148] Devin Petersohn. “Scaling Interactive Data Science Transparently with Modin”. MA thesis.
Berkeley, CA: UC Berkeley, 2018.

[149] Haoran Qiu et al. “FIRM: An Intelligent Fine-grained Resource Management Framework
for SLO-Oriented Microservices”. In: 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). USENIX Association, Nov. 2020, pp. 805–825.
ISBN: 978-1-939133-19-9. URL: https://www.usenix.org/conference/osdi
20/presentation/qiu.

[150] Anshul Rai, Ranjita Bhagwan, and Saikat Guha. “Generalized Resource Allocation for the
Cloud”. In: Proceedings of the Third ACM Symposium on Cloud Computing. SoCC ’12.
San Jose, California: Association for Computing Machinery, 2012. ISBN: 9781450317610.
DOI: 10.1145/2391229.2391244. URL: https://doi.org/10.1145/2391
229.2391244.

[151] R. Raman, M. Livny, and M. Solomon. “Matchmaking: distributed resource management
for high throughput computing”. In: Proceedings. The Seventh International Symposium
on High Performance Distributed Computing (Cat. No.98TB100244). 1998, pp. 140–146.
DOI: 10.1109/HPDC.1998.709966.

[152] Jeff Rasley et al. “HyperDrive: exploring hyperparameters with POP scheduling”. In:
ACM/IFIP/USENIX Middleware. 2017.

[153] Ravi Teja Mullapudi, Steven Chen, Keyi Zhang, Deva Ramanan, Kayvon Fatahalian. “On-
line Model Distillation for Efficient Video Inference”. In: ICCV. 2019.

[154] Suman V. Ravuri and Oriol Vinyals. “Classification Accuracy Score for Conditional Gen-
erative Models”. In: 2019.

[155] Ray Dashboard — Ray v1.7.0. https://docs.ray.io/en/latest/ray-dashb
oard.html. 2022.

[156] Ali Sharif Razavian et al. “CNN Features off-the-shelf: an Astounding Baseline for Recog-
nition”. In: IEEE CVPR Workshop. 2014.

[157] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement. 2018. arXiv:
1804.02767 [cs.CV].

https://doi.org/10.1145/3190508.3190517
https://doi.org/10.1145/3190508.3190517
https://doi.org/10.1145/3190508.3190517
https://doi.org/10.1145/3190508.3190517
https://www.usenix.org/conference/osdi20/presentation/qiu
https://www.usenix.org/conference/osdi20/presentation/qiu
https://doi.org/10.1145/2391229.2391244
https://doi.org/10.1145/2391229.2391244
https://doi.org/10.1145/2391229.2391244
https://doi.org/10.1109/HPDC.1998.709966
https://docs.ray.io/en/latest/ray-dashboard.html
https://docs.ray.io/en/latest/ray-dashboard.html
https://arxiv.org/abs/1804.02767

BIBLIOGRAPHY 105

[158] Reducing Edge Compute Cost for Live Video Analytics. https://techcommunity.m
icrosoft.com/t5/internet-of-things/live-video-analytics-wit
h-microsoft-rocket-for-reducing-edge/ba-p/1522305. (Accessed on
03/09/2021).

[159] Charles Reiss et al. “Heterogeneity and Dynamicity of Clouds at Scale: Google Trace
Analysis”. In: Proceedings of the Third ACM Symposium on Cloud Computing. SoCC ’12.
San Jose, California: Association for Computing Machinery, 2012. ISBN: 9781450317610.
DOI: 10.1145/2391229.2391236. URL: https://doi.org/10.1145/2391
229.2391236.

[160] RM French. “Catastrophic forgetting in connectionist networks”. In: Trends in cognitive
sciences. 1999.

[161] Herbert Robbins. “Some aspects of the sequential design of experiments”. In: Bulletin of
the American Mathematical Society 58.5 (1952).

[162] Ronald Kemker, Marc McClure, Angelina Abitino, Tyler L. Hayes, and Christopher Kanan.
“Measuring Catastrophic Forgetting in Neural Networks”. In: AAAI. 2018.

[163] Krzysztof Rzadca et al. “Autopilot: workload autoscaling at Google”. In: Proceedings of
the Fifteenth European Conference on Computer Systems. 2020, pp. 1–16.

[164] Hadoop Fair Scheduler. “https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-
yarn-site/FairScheduler.html”. In.

[165] Malte Schwarzkopf et al. “Omega: Flexible, Scalable Schedulers for Large Compute Clus-
ters”. In: Proceedings of the 8th ACM European Conference on Computer Systems. Eu-
roSys ’13. Prague, Czech Republic: ACM, 2013, pp. 351–364. ISBN: 978-1-4503-1994-2.
DOI: 10.1145/2465351.2465386. URL: http://doi.acm.org/10.1145/2
465351.2465386.

[166] scipy.optimize.nnls — SciPy v1.5.2 Reference Guide. https://docs.scipy.org/do
c/scipy/reference/generated/scipy.optimize.nnls.html. (Accessed
on 09/17/2020).

[167] Deepa Seetharaman and Tom Dotan. The AI Boom Runs on Chips, but It Can’t Get Enough
- WSJ. https://www.wsj.com/articles/the-ai-boom-runs-on-chips
-but-it-cant-get-enough-9f76f554. (Accessed on 11/24/2023).

[168] Shadi Noghabi, Landon Cox, Sharad Agarwal, Ganesh Ananthanarayanan. “The Emerging
Landscape of Edge-Computing”. In: ACM SIGMOBILE GetMobile. 2020.

[169] Haichen Shen et al. “Fast Video Classification via Adaptive Cascading of Deep Models”.
In: CVPR. 2017.

[170] Shivangi Srivastava, Maxim Berman, Matthew B. Blaschko, Devis Tuia. “Adaptive
Compression-based Lifelong Learning”. In: BMVC. 2019.

[171] Konstantin Shvachko et al. “The hadoop distributed file system”. In: 2010 IEEE 26th sym-
posium on mass storage systems and technologies (MSST). Ieee. 2010, pp. 1–10.

https://techcommunity.microsoft.com/t5/internet-of-things/live-video-analytics-with-microsoft-rocket-for-reducing-edge/ba-p/1522305
https://techcommunity.microsoft.com/t5/internet-of-things/live-video-analytics-with-microsoft-rocket-for-reducing-edge/ba-p/1522305
https://techcommunity.microsoft.com/t5/internet-of-things/live-video-analytics-with-microsoft-rocket-for-reducing-edge/ba-p/1522305
https://doi.org/10.1145/2391229.2391236
https://doi.org/10.1145/2391229.2391236
https://doi.org/10.1145/2391229.2391236
https://doi.org/10.1145/2465351.2465386
http://doi.acm.org/10.1145/2465351.2465386
http://doi.acm.org/10.1145/2465351.2465386
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.nnls.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.nnls.html
https://www.wsj.com/articles/the-ai-boom-runs-on-chips-but-it-cant-get-enough-9f76f554
https://www.wsj.com/articles/the-ai-boom-runs-on-chips-but-it-cant-get-enough-9f76f554

BIBLIOGRAPHY 106

[172] Si Young Jang, Yoonhyung Lee, Byoungheon Shin, Dongman Lee, Dionisio Vendrell Jac-
into. “Application-aware IoT Camera Virtualization for Video Analytics Edge Comput-
ing”. In: ACM/IEEE SEC. 2018.

[173] David Silver et al. “Mastering the game of Go with deep neural networks and tree search”.
In: Nature 529 (2016), pp. 484–503. URL: http://www.nature.com/nature/jo
urnal/v529/n7587/full/nature16961.html.

[174] David Silver et al. “Mastering the game of go without human knowledge”. In: Nature
550.7676 (2017), p. 354.

[175] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. “Practical bayesian optimization of
machine learning algorithms”. In: Advances in neural information processing systems 25
(2012).

[176] Marvin Solomon. The ClassAd Language Reference Manual Version 2.4. https://res
earch.cs.wisc.edu/htcondor/classad/refman.pdf. 2004.

[177] Song Han, Huizi Mao, William J. Dally. “Accelerating Very Deep Convolutional Networks
for Classification and Detection”. In: ICLR. 2017.

[178] Ion Stoica and Scott Shenker. “From Cloud Computing to Sky Computing”. In: Proceed-
ings of the Workshop on Hot Topics in Operating Systems. HotOS ’21. Ann Arbor, Michi-
gan: Association for Computing Machinery, 2021, pp. 26–32. ISBN: 9781450384384. DOI:
10.1145/3458336.3465301. URL: https://doi.org/10.1145/3458336
.3465301.

[179] Lalith Suresh et al. “Building Scalable and Flexible Cluster Managers Using Declarative
Programming”. In: 14th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 20). USENIX Association, Nov. 2020, pp. 827–844. ISBN: 978-1-939133-19-
9. URL: https://www.usenix.org/conference/osdi20/presentation
/suresh.

[180] Sweden Data Collection & Processing. In.

[181] Kevin Swersky et al. “Scalable Bayesian Optimization Using Deep Neural Networks”. In:
ICML. 2015.

[182] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, Christoph H. Lampert.
“iCaRL: Incremental Classifier and Representation Learning”. In: CVPR. 2017.

[183] Andrew S. Tanenbaum and David J. Wetherall. Computer Networks. 5th. USA: Prentice
Hall Press, 2010. ISBN: 0132126958.

[184] Gil Tene. giltene/wrk2: A constant throughput, correct latency recording variant of wrk.
https://github.com/giltene/wrk2. (Accessed on 04/19/2022).

[185] The Future of Computing is Distributed. https://www.datanami.com/2020/02/26/the-
future-of-computing-is-distributed/. 2020.

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
https://research.cs.wisc.edu/htcondor/classad/refman.pdf
https://research.cs.wisc.edu/htcondor/classad/refman.pdf
https://doi.org/10.1145/3458336.3465301
https://doi.org/10.1145/3458336.3465301
https://doi.org/10.1145/3458336.3465301
https://www.usenix.org/conference/osdi20/presentation/suresh
https://www.usenix.org/conference/osdi20/presentation/suresh
https://github.com/giltene/wrk2

BIBLIOGRAPHY 107

[186] Thomas N. Theis and H.-S. Philip Wong. “The End of Moore’s Law: A New Beginning for
Information Technology”. In: Computing in Science & Engineering 19.2 (2017), pp. 41–
50. DOI: 10.1109/MCSE.2017.29.

[187] torchvision.models — PyTorch 1.6.0 documentation. https://pytorch.org/docs
/stable/torchvision/models.html. (Accessed on 09/16/2020).

[188] Alexey Tumanov et al. “TetriSched: global rescheduling with adaptive plan-ahead in dy-
namic heterogeneous clusters”. In: Proc. of the 11th European Conference on Computer
Systems. EuroSys ’16. London, UK: ACM, 2016.

[189] Yan Kyaw Tun et al. “Wireless network slicing: Generalized kelly mechanism-based re-
source allocation”. In: IEEE Journal on Selected Areas in Communications 37.8 (2019),
pp. 1794–1807.

[190] Twitter Streaming API. 2022. URL: https://developer.twitter.com (visited on
05/31/2020).

[191] Hal R Varian. “Equity, envy, and efficiency”. In: (1973).

[192] Vinod Kumar Vavilapalli et al. “Apache hadoop yarn: Yet another resource negotiator”. In:
Proceedings of the 4th annual Symposium on Cloud Computing. ACM. 2013, p. 5.

[193] Shivaram Venkataraman et al. “Ernest: Efficient performance prediction for large-scale
advanced analytics”. In: 13th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 16). 2016, pp. 363–378.

[194] Abhishek Verma et al. “Large-scale cluster management at Google with Borg”. In: Pro-
ceedings of the European Conference on Computer Systems (EuroSys). Bordeaux, France,
2015.

[195] Huiyu Wang et al. “Elastic: Improving cnns with dynamic scaling policies”. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019, pp. 2258–
2267.

[196] Max Welling. “Kernel ridge regression”. In: Max Welling’s classnotes in machine learning
(2013), pp. 1–3.

[197] John Wilkes. “Utility Functions, Prices, and Negotiation”. In: Market-Oriented Grid
and Utility Computing. John Wiley and Sons, Ltd, 2009. Chap. 4, pp. 67–88. ISBN:
9780470455432.

[198] Yue Wu et al. “Large Scale Incremental Learning”. In: IEEE CVPR. 2019.

[199] Xi Yin, Xiang Yu, Kihyuk Sohn, Xiaoming Liu and Manmohan Chandraker. “Feature
Transfer Learning for Face Recognition with Under-Represented Data”. In: IEEE CVPR.
2019.

[200] Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. “Deep Compression: Compress-
ing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding”. In:
IEEE PAMI. 2016.

https://doi.org/10.1109/MCSE.2017.29
https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
https://developer.twitter.com

BIBLIOGRAPHY 108

[201] Wencong Xiao et al. “Gandiva: Introspective Cluster Scheduling for Deep Learning”. In:
USENIX OSDI. 2018.

[202] Wencong Xiao et al. “Gandiva: Introspective cluster scheduling for deep learning”. In: 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18). 2018,
pp. 595–610.

[203] Reynold Xin. Project Hydrogen: Unifying State-of-the-art AI and Big Data in Apache
Spark. San Francisco, CA, 2018. URL: https://databricks.com/session/dat
abricks-keynote-2.

[204] Zongheng Yang et al. “SkyPilot: An Intercloud Broker for Sky Computing”. In: 20th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 23).
Boston, MA: USENIX Association, Apr. 2023, pp. 437–455. ISBN: 978-1-939133-33-5.
URL: https://www.usenix.org/conference/nsdi23/presentation/ya
ng-zongheng.

[205] Gyeong-In Yu et al. “Orca: A Distributed Serving System for Transformer-Based Gen-
erative Models”. In: 16th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 22). Carlsbad, CA: USENIX Association, July 2022, pp. 521–538. ISBN:
978-1-939133-28-1. URL: https://www.usenix.org/conference/osdi22/p
resentation/yu.

[206] Z. Li and D. Hoiem. “Learning without forgetting”. In: ECCV. 2016.

[207] Matei Zaharia et al. “Delay scheduling: a simple technique for achieving locality and fair-
ness in cluster scheduling”. In: Proceedings of the 5th European conference on Computer
systems. ACM. 2010, pp. 265–278.

[208] Matei Zaharia et al. “Spark: Cluster Computing with Working Sets”. In: Proceedings of the
2nd USENIX Conference on Hot Topics in Cloud Computing. HotCloud’10. Boston, MA:
USENIX Association, 2010, p. 10.

[209] Seyed Majid Zahedi, Qiuyun Llull, and Benjamin C Lee. “Amdahl’s law in the datacenter
era: A market for fair processor allocation”. In: 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE. 2018, pp. 1–14.

[210] Haoyu Zhang et al. “SLAQ: quality-driven scheduling for distributed machine learning”.
In: SoCC. 2017.

[211] Xiangyu Zhang et al. “Shufflenet: An extremely efficient convolutional neural network for
mobile devices”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2018, pp. 6848–6856.

[212] Yanqi Zhang et al. “Sinan: ML-based and QoS-aware resource management for cloud mi-
croservices”. In: Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. 2021, pp. 167–181.

[213] Yuchen Zhang, John Duchi, and Martin Wainwright. “Divide and conquer kernel ridge
regression”. In: Conference on learning theory. PMLR. 2013, pp. 592–617.

https://databricks.com/session/databricks-keynote-2
https://databricks.com/session/databricks-keynote-2
https://www.usenix.org/conference/nsdi23/presentation/yang-zongheng
https://www.usenix.org/conference/nsdi23/presentation/yang-zongheng
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu

BIBLIOGRAPHY 109

[214] Hang Zhu et al. “RackSched: A Microsecond-Scale Scheduler for Rack-Scale Computers”.
In: 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI
20). USENIX Association, Nov. 2020, pp. 1225–1240. ISBN: 978-1-939133-19-9. URL:
https://www.usenix.org/conference/osdi20/presentation/zhu.

[215] Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, Stella X. Yu.
“Large-Scale Long-Tailed Recognition in an Open World”. In: CVPR. 2019.

https://www.usenix.org/conference/osdi20/presentation/zhu

	Contents
	List of Figures
	List of Tables
	Introduction
	Ekya: Efficient Continuous Learning on the Edge
	Introduction
	Continuous training on edge compute
	Edge computing for video analytics
	Compressed DNN models and data drift
	Accuracy benefits of continuous learning

	Scheduling retraining and inference jointly
	Configuration diversity of retraining and inference
	Illustrative scheduling example

	Ekya: Solution Description
	Formulation of joint inference and retraining
	Thief Scheduler
	Complexity analysis
	Performance estimation with micro-profiling

	Implementation and Experimental Setup
	Evaluation
	Overall improvements
	Understanding Ekya's improvements
	Effectiveness of micro-profiling
	Comparison with alternative designs

	Limitations and Discussion
	Related Work
	Conclusion

	Performance-aware Scheduling with Cilantro
	Introduction
	Background & Related Work
	Cilantro Architecture
	Policies
	Resource allocation in shared clusters
	Microservice resource allocation

	Discussion
	Implementation
	Evaluation
	Multi-tenant cluster sharing
	Resource allocation for Microservices
	Microbenchmarks

	Conclusion

	ESCHER
	Introduction
	Motivation
	Existing systems are hard to evolve
	Static labels are insufficient

	ESCHER Design and Workflow
	ESCHER workflow
	Ephemeral Resource API
	ESLs - ESCHER Scheduling Libraries
	Fault tolerance
	Evolvability and complexity in ESCHER

	Scheduling with ESCHER
	Scheduling primitives in ESCHER
	Scheduling policies with ESCHER

	Implementation
	Evaluation
	End-to-end Evaluation
	Microbenchmarks

	Discussion
	Related Work
	Conclusion

	Conclusion
	Lessons Learnt
	Future Work

	Bibliography

