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A regular perturbation" solution of the Navier-Stokes equations is pre-

sented and applied to the circular cylinder 'in transverse flow. 
''r.:-. ,//;:, 

At a Reynolds number of 300, results for the first perturbation show 

a secondary vortex near the rear stagnation point and a wake stagnation 

point located at r = 5.14. The experimental data of Grove3 and existing 

numerical solutions for Re < 40 indicate that more terms of the series are 

needed to describe the flow accurately. 
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,1. Introduction 

Problems in fluid mechanics are governed by nonlinear partial differen-

tial equationso Exact solutions -of these equations are rare, and many times 

one must resort to approximations such as singular perturbation expansions 

or numerical solutions 0 For flow past bluff bodies, separa~ion occurs at 
:? 

high Reynolds numbers, Singular perturbation techniques have not been very 

successful for these separated flows because the correct limiting solu-

tion for Re - ~ is not known 0 

A different approach9 recognizes that the potential flow past an object 

is an exact solution of the Navier-Stokes equations at any Reynolds number 

if a slip velocity which conforms to the potential flow is prescribed on 

the object I s surface 0 A perturbation of this surface boundary condition 

generates'a regular perturbation solution - ioe" one that is uniformly 

valid 0 The perturbation procedure is not a perturbation in the Reynolds 

number it is an expansion with the Reynolds number fixed, 

The linearized problem is still sufficiently complex for numerical 

techniques to be usedo The first correction to the potential flow of a 

Newtonian fluid past a circular cylinder has been computed for a Reynolds 

number of 3000 S. The flow is assumed to be laminar and steady, and the den-

sity and viscosity are constant 0 Actually the flow past a circular cylin­

der becomes unsteady at a Reynolds number of about 40.; but, the steady flow 

can be found by requiring a plane of symmetryo 

Many other investigators have done theoretical work on flow past 

cylinders in this range of the Reynolds number where both viscous and in-

2 
ertial forces are important. Some of these are Apelt , Allen and South-

weIll and SihlO 
0 
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2. Problem Statement 

a. Mathematical Formulation 

The problem may be formulated in terms of the vorticity transport 

equation 

where v is the constant kinematic viscosity of the fluid. The stream 

function 1)r* e,nd vorticity m* are related by Poisson's equation 

(2.2) 

The velocity components may be obtaine9.from the definition of the· 

stream function 
, 

it ) 
(1)r* 

v~ = oy* and 

and the vorticity is related to the velocity by 

ov* ov* 
m* = dX~ - d);' . (2.4 ) 

The circular cylinder and coordinate systems are shown in Figure 1. 

The boundary conditions are 

m* -+ 0 as r* -+ 00 , 

(1)r* _ oe - 0 at r·* - R , 

(1)r* 
or* =.2U(1-€) sin e at r* = R; 

1)r* = 0 at r* = R , 

1)r* 0 for Ix*1 > R, y* = 0, and 

m* = 0 for 'x*' > R, y* = 0 . 

(2.6) 

(2.8) 

(2·9) 

(2.10) 



y* 
u 
----~ 

r* 

V1 

M U B -11488 

Figure 1. Coordinate systems for the circular cylinder. 
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Conditions '(2.5) state that the uniform flow is approached far from the 

cylinder. The vanishing of the tangential gradient of the stream function 

at the surface of the cylinderJ condition (2.6), is necessary to specify 

zero fluid velocity in the direction normal to the surface. Condition .' 
(2.7) describes the slip velOCity on the cylinder surface in terms of the 

parameter E. This parameter is inserted in order to obtain an exact solu-

tion to the problem when E = O. This solution is the potential flow perti,. 

nent to the system. Of phYSical significance is the case E = 1 which gives 

a zero tangential velocity at the cylinder surface. This work is restricted 

to flows which are symmetric to the x*-axis, which necessitates conditions 

It is convenient to work with dimensionless variables. Let 

& y = /'/R J X = x* /R J r r*/R, 0 = v/TJR = 2/Re J 

(J) :: Ft.JJ* /UJ 1jr :: \jr* /UR.? P :: (p-poo)/~ pif, m = D/pifR • 
} (2.11) 

Equations (2.1) and (2.2) become 

(2.12 ) 

and 

After a conformal transformation to new independent variab1es J a. and 

~, these equations are 

" (2.14 ) 

and 

The new coordinates a. and ~ are, respectively, the dimensionless 
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velocity potential and stream function which are the solutions to the prob-

lem when € = O. These coordinates are related to x and y by 

0:, = x(l + 1/r2 ) 

and '13 = Y(l - 1/r2 ) • 

(2.16) 

(2.17) 

It is advantageous that in the o:,~ f3 plane .. the cylinder is a straight line 

on the OFe,xis. The front and rear stagnation points correspond to 0:, = -2 

and 0:, = +2, respectively. 

The square of the magnitude of the potential flow velocity is h2, and 

it can be readily shown that 

It is desirable to express h2 explicitly in terms of 0:, and 13, and the neces-

sary relationship is 

1 {J ' 2 2 r = 4: " ( 0:,-2 ;,+ !3 + 

A,2J
t} . + (0:,..2) (0:,+2) + f-' 

The behavior of h
2 

on the cylinder surfe,ce and near the stagnation points 

is given by 

2 0:, , 

'2 :/ ' 2 2 
h (0:,.1 (3) -+ 4\j (2-0:,) +13 , as 0:, -+ +2, 13 -+ 0 , 

2 J 2 2 h (0:,) (3) -+ 4 (2+0:,) +13 as 0:, -+ -2, 13 -+ 0 0 

b. Perturbation Approach 

All dependent variables are expanded in power series in €, 

t = f3+ € t(l) + e2 t(2) + 

ro ~ e ro(l) + €2 ro(2) + . 
• 0 , 

(2.20) 

(2.21) 

(2.22) 

(2.24) 

I. 



- 8 - UCRL-17374 

etc. The zero order perturbation terms are. w(O) = ~ and m(O)' =. 0, 

differential equations for the higher perturbations are 

-. 

(2.26) 

where 

(2.28) 

etc. The boundary conditions are 

1j/n) o at 13 = 0, n = 1,92, . . . , 
dW(l) 

-I,? 
cw(n) 

0) 2,,3,9 at ~ 0,9 lex./ ~2 df' - d]3 n _. .- .. 
" 

(2.30) 

(2.31) 

'. 

cw(n) 
;, - 0 .? ocr, . 

c", ( n ) ( ) 2 2 
'i' ... 0 , ,,, n _ 0 as ex. + p. _ 00 
~ - ,~ ~.? (2.32 ) 

The primary advantage of" the .ex., ~r coordinate system is that equation (2.25) 

has the same form as the Oseen equation in rectangular coordinates. 

c. Solution of the Equations 

In the later sections, the first perturbation only is considered. 

In view of this .. the solution is given for n = 1 only. Southwell and Squirell 

have obtained the solution to the first perturbation also. They calculated 

results for a Reynolds .number of 2. The solution can be extended to higher 

perturbations, but the analysis becomes more complicated. 

The solution to equation (2.25) for the first perturbation is 
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o(ll(TlenIS. (f<i=i/':(~)2) aT 
, 

fc:~}i:-~2 -
where. 0'(1)( T) is, the unknown surface ,vorticity for the first perturbation and 

KJ..(r) is the modified Bessel function of the second kind or order 1. 

The solution to equation (2.26)-for n =1 is 

The remaining boundary condition~ 

an integral equation. for (,,(l~T)~ 

+2 

-27r= JO'(l)('r)K(a.~'r)\P'r' 
-2 

where the kernel is given by 

+00 

K(a.;T) = ~ if 
_00 

with 

F(A,B) 

, . :' 

. '. ' ~ 

da db, 

T'ne drag coefficient and pressure correction at the rear stagnation point 

for the first perturbation can also be obtained. These are 

+2 

m(l) = -25JO'(1.)(T) d't" , 

-2 

and 
( 
, . 

p 1;(2,0) 

-2 
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3. Outline of Numerical Solution 

The numerical solution centers around the calculation of 0'(1) (a.) from 

equation (2.35). This is not an easy matter because the kernel of the 

integral equation is difficult to evaluate. 

11) (1' (1) 
After 0\ (cr.) has been obtained:> m I and P (2,90) are easily obtained 

from. equations (2.38) and (2.39) .. Next a/ l \cr.,f3) follows by quadrature from 

equation (2.33). Finally, \j,(l)(a.p f3) could be obtained from equation (2.34), 
,:\\.,. 

but it is ;{;chsimpler to solve equation (2.26) by finite difference methods. 

In essence,9 one avoids the munerical solution of a fourth order partial 

differential equation for 1jr (1) by using instead the integral equation to ob-

tain the surface vorticity. 

4. Kernrl 
'"< .. 

The solution of equation (2.35) as shown in section 5 requires the evalu-

ation of K(a.;>'t) a large number of times. Thus,? an efficient procedure is 

desired for this evaluation. .First a discussion is given on the behavior of 

the kernel,? and then we turn to its e~aluation. 

a. Properties of the Kernel 

Figure 2 is a plot of K(0.0775,'t} versus 't for a Reynolds number of 

300. From this figure some of the general features may be deduced. These 

properties can also be inferred from equation (2.36). It is seen that 

K(a.,?'t) is infinite for a.~T and the fUnction is greater for a. > T tp~n for a. < T. 

The way in which K(a.,?T) becomes infinite may be obtained from the flat plate 

kernel. 

2 
For a flat plate, h (a,9 b) == 1 and the kernel for this case is 

+00 (a--r: b) 
1 If F\2 0 ,? 20 1 = TI .. 2 2 da db = e T1 [Ko (lfJl) + sgn(T)) K1 (ITlI)] --

[(a.-a) +b J T) 
(4.1 ) 
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0.24 

I---
- 0.16 

to 
['-
['-

0 0.12 . 
0 -
~ 0.08 

0.04 

0 
-2 -I 0 2 

T 

MUB11489 

Figure 2. Kernel for ~ = 0.0775 and a Reynolds number of 300. 
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where .~ = ~~ and sgn(l1) is the sign (+1 or -1) of 11. For further reference, 

denote 

(4.2) 

The flat plate kernel is important because it shows the form of the 

singularity of K(~,~) .. As ~ ~ ~J the major contribution to the integral in 

equation (2,36) comes from a small region surrounding a = d, b = O. Thus, 

K(~,~) - X(~,~) as ~ -~, ,I~I "I- 2 , (4,3) 

where the stagnation points have been excluded because h2(a:~0) is zero 

. at these points, Recalling that Ko (!l1l) --l'ft I~I and.IS.(ll1l) -I~I as 

11 - OJ equation (4,·3) becomes 

I~I "I- 2. (4.4) 

It is evident upon further examination that X(~~ ~) behaves very similarly 

to K(~,T) for all ~ so long as '~l "I- 2, . This proves useful in the solution 

of the in~egral equation for the cylinder. 

b. Numerical Eva.luation of the Kernel 

The kernel is to be calcu.lated for various values of ~ and ~ ranging 

from -2 to +2 at a Reynolds number of 300 (0 = 2/300). Equation (2,36) can 

be rewritten as twice the integral over the upper half plane. 

+00 +00 

K(~,~) = *JJ G(A"B) dA dB , 
o '_'00 

where, B2eAK1(JA2+B2) 
G (A,B) - --------=~-~-:...-...:...---

h2(2W< ,2BB J[ (A- ~~)2 +B2 ] JA2+B2 

(4.6 ) 

. ' . a-~ b 
The variables of integration have been changed to A = 2 0 and B = 20 . 
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It is advantageous to use these new variables when the Reynolds number is large,. 

In any numerical integrationJ the behavior of the integrand must be 

accounted foro Here J the problem is difficult because G(A~B) has several 

peculiarities to contend with. Whe1'l;,OF't, G(AJB) is infinite at the point 

A==O, B=O, and the integral diverges.&t this point. The kernel is finite for 

all other values of 0:. and 't'J but some singular behavior is present in G(A,B) 

for all values of 0:. and 1'. 

When 't' i- cr., G(AJB) is zero on the B axis except for A=O, !-r I i- 2 and 

CV-''r I ,I ...I-A =: 2 6' 10:. I 2 where it is finite. 

B -- 0.1 and when 10:.1 =: 2.1 G(A.?B) - ()() as A -- ~"'~.9 B _ 0. Thus, regions sur­

rounding these points require special consideration. Actually, owing to the 

method of solving the integral eq~ation} the pOints i-aT == 2 and· /-r 1 =: 2 do not 

have to be considered. Of course the integrand approaches this singular beha-

vior when ex, or 't- is near a stag~ation point. 

To evaluate the kernel, the upper half plane is divided into a number 

of regions. The way in which it is divided is dependent upon the location of 

ex, and T relative to each other and relative to the stagnation points. The 

method used in this work divides the upper half plane in twenty different 

ways depending on the location of ex, and 't'. To illustrate the method the prdce-

dure for calculating K(L98,-LO) will be given. Figure 3 shows how the 

total integration region is divided. Regions 1, 2, ,3, 6, 7, 8 and 10 extend 

to infinity in the B direction, and regions 1 and 10 extend to infinity in 

the +A and -A directions, respectively. The constants which define the regions, 

• 

for these particular values of 0:. and 't', are Al =-2, A2=2, A
3

==22i.5, A4 =224·5, y 

A5=227, A6==300, and Bl ~ 0·5. The front stagnation point corresponds to 

-2-'t' 2-'t' 
A == ~ == -75, and the rear stagnation point A =: 2 5 == 225· The rear 
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• 
B 

I I I I I 
I I . I I I 
I I I I I 
I . I I I I 
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I I I I I 
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I I I I I 
I 12 10 

. ., I 81 6 I 
I I I I 
I I I I I 
I I I I I 
I I I I 
I I I I 

. I I I . I I 

-2-1" At 0 Az As 
28 

A 

MU B 11490 

Figure 3. Division of the upper half plane (not to scale). 
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stagnation point is in region 9. Region 4 includes the point A == ~~ == 223.5. 

To perform the necessary quadratures, Gauss-Laguerre and Gauss-Legendre 

quadrature formulas are applied. When the integration interval is finite, 

the 5-point Gauss-Legendre formula is used with subinte.r:<rals. When the upper 

limit of integrai:;ion extends to infinity, the Gauss-Laguerre quadrature 

formula (up to 32 points) is usually used. Quadrature formulas of the 

Gaussian type are discussed in most texts on numerical analysis, including 

6 Krylov . '.' ,II 

Regions 2, 3, 6, 7 and 8 cause no special problems. The Gaus~~~aguerre 

formula is applied in the B direction and the Gauss-Legendre formula'; :Ln: the 

A direction • 

. . In region 1, .the behavior of G(A,B) does not permit the application of 

the Gauss=Laguerre formula in either direction. Variable transformations 

C = 1'J.1 A and D = 2 rectify the situation. The Gauss-Laguerre formula can 
~ '. 

then be applied in the C direction. The integrand is very small for D > 5, 

and all significant contribution is contained within D==5. Thus, between 

D=O and D==5,9 the Gauss-Legendre formula is appropriate. 

Region 4 surrounds the poj,nt A ::;; ~~', B==O, and region 5 surrounds the 

point A=O, B==O. The integrand behaves similarly in these two regions, and 

the integration is conducted in very nearly the same manner for the two. 

Hence; the procedure is illustrated for region 5 only. When A ~ ° and B -If ° 
the integrand is badly behaved. When the argument of the Bessel function 

is small 

The worst of the behavior can be subtracted from the integrand to obtain, 
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for region 5 ~ 

dA dB 

(4.8 ) 

The second double integral in equation (4.8) is evaluated analytically, and 

the first is computed numerically by use of the Gauss-L~gendre formula in 

each direction. 

T;.'1.e contribution from region 9 is obtained by applying the Gauss-Legendre 

formula in each direction. This region contains the rear stagnation point. 

In region lO~ G(A,B) decreases very fast as A ~ 00. The region is further 

subdivided in the A direction, and the contribution is successively obtained. 

until the contribution is neglI~ible. In the A direction, the Gauss- Legendre 

formula is used~ and in the B direction the Gauss-Laguerre formula is used. 

The contribution from each region was calculated to an accuracy of about 

0.001 %0 

5. Surface Vorticity for the First Perturbation 

ao Solution of the Integral Equation 

In this section, equation (2.35) is replaced by a system of linear 

algebraic equations which can then be solved for a(l)(ct)o The procedure is 

to approximate the integral equation by a quadrature formula. The formula 

chosen is the 40-point Gauss-Legendre formula 0 Some care must be used in 

doing this because the integral equation is sjlngularo A procedure similar 

to that proposed by, Kantorovich and Krylov 
4 

is adopte9.. The surfac'e vorticity 
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'-271' = J o-(l)(t) K(o,,1") d1" • 
- ..:2 
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The kernel of this equation has a logarithmic singularity at a.=1" as shown 

by equation (4.4). Hence, a quadrature formula cannot be applied to the equa-

tion in its present form. 

To the ·integrand, we add and subtract 0-(1)(0,) X(o,,'T) where X(o,;'T) is 

undefined for the moment. This yields· 

._, +2 

~271' = ,J (o-(l)('T):X(o:.,'T) - 0-(1)(0,) X(o:.,'T)]d'T + 0-(1)(0:.) g(o:.) , 

-2 

where +2 

g(ct,) =JX(CL,'T) d'T • 

-2 

Kantorovich and Krylov recommend using X (0:.,1") = K( 0:.,.1"). The integrand of 

equation (5.1) is then zero at a.='T; but, the evaluation of equation (5.2) 

would not be easy. Instead, we set X(o:. .. 'T) as in equation (.4.2). This would 

not be satisfactory for 10,1= 2, because X(o:.,'T) is infinite at these points. 

However, the points 10:.1 = 2 will not be employed in obtaining the solution 

of this equation. The integrand in equation (5.1) is then finite at a.=1" 

and equal to 0-(1)(0:.) lim (K(o,,'T) - X(o:.,'T)J. -
'T-KX. 

The term in brackets at o:.='T is given by 

D(o,) 2 
=.-! ----~~--~~ dA dB, 

7T 

which was computed by the same methods as was K(o:.,'T). 

The prima.ry advantage in adopting this proce-dure is thatg(o:.) can be 



• 

I 

- 18 - UCRL-17374 

determined analytically. The result is forJa,J < 2, 

g(a.~ ~ 25 f~le~l(KO(~l) + S(~l)l - e~lKo(h) 
-~ 

+" 2~2'~ 2[Ko (~2) - KJ.. (~2)] 

o + 111 ~i~1}/h2(a.,O) " 

where ~1 = ~+~ ,and ~2 = ~-~ .' 

Approximation of the integral in equation (5.1) by the40-point Gauss-

Legendre formula gives 

40 

-21r =I2H
1
Ja(1? (a,~ )K(a"a,i )-a(l)(a,)X(a"o,i) J+a(l) (a,)g(a,) 

1=1 , 
. u :1 J 

Choosing a,=cx,l' a,2' ••• .9 cx,40 gives 40 simultaneous equations for the determina-
(1) .'. .. 

tion of a' (a,,), which are) 
1. .' 

40 40 

-27T ,= \' 2H.K(cx,.,a,. )o(l)(a,. )+a(l)(a,j) {g(a,.)- \' 2H .X.(cx,.,a,.) 
~ 1. J 1.. 1. J ~ 1. J 1. . 

i~l i=l 
i~j i~j 

+ 2H .. D(a,.)} . .9' j = 1, 2, ••• 40 
J ,J.' 

In e.qtlation (~.6), D(cx,.) is given by equation (5.3). 
J 

This system of equations was solved by the Crout elimination method, as 

given by LaPidu/7• Figure' 4 shows 0(1) plotted versus 2e/7T, where e is the 

angle measured from the rear stagnation point in the x,y plane. 

It was felt important to obtain an estimate on the adequacy of repre- ,. 

senting the integral equation by the 40-point quadrature formula. This check 

was obtained by resolving equation (5.1) using the 32-point Gauss-Legendre 

* The equations given by Lapidus for using the Crout elimination method are 
incorrect. 
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~ 
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-J 
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Figure 4. Surface vorticity for the first perturbation. 
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formula. The differe!lces in the values of the surface vorticity for n :::: 32 

and n = 40 were less than 1% in most cases. The only exceptions were near 

the points where 0(1)(0:.) - 0 where the percentage deviation was higher. It 

is felt 

b. 

that this higher deviation is not important. 

(1 ' Interpolation of a' 1(0:.) 

The 40 points at which a(l)(o:.) 
j 

is known» from the solution of the 
. ( ) 

integral equation~ are not sufficient for the calculation of m\l and 

(1).12 0) P \ J • Thus,? interpolation must be used. Use of Lagrange's interpola-

tion formula with the 42 unevenly spaced points at which a(l) (0:.) is known 

(40 points from the solution of the integral equation plus the two stagna­

tion points where a(l) (0:.) O)Jresults ip 

41~ 
0(1) (0:.) .= I " i 

i==2 j:;:l 
j~i 

The points i = 1 and i = 42 (the stagnation points) have been exluded from 

the sU!l1 .. m.a,tion because the vorticity is zero at these points •. 

Equation (5. '7) was used to calculate a(l) (0:.) at 801 equally spaced 

points in the interval -2 $ 0:.$ 2, corresponding to a spacing of 0.005. 

These.values were stored on magnetic tape so they could be used in conjunc-

tion with 

necessary 

Newton's interpolation formulas 
. I ) 

for the determination of (J,)\l , 

to calculate a(1)(0:.) at the points 

p(l)(2J>0) and m(l). 

6. Drag Coefficient and Pressure Correction 

.The drag coefficient was calculated by employing the 40-point Gauss-

Legendre formula to subintervals. Equation (2.38) becomes 
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(6.1) 

In equation (6.1) J! is the subinterval length, n is the number of subintervals, 

H, and z, are the Gaussian weights and nodes for the 40-point Gauss-Legendre 
J. J. 

formula. The res'Lllt is,with two ~ub;intervalsJ m (1)_. 0.7070. One subinterval 

gave -the same resul.t to four significant figures. 

A completely analogous procedure for the pressure' correction gives 

7. Vorticity for the First Perturbation 

The expression for ro(l)(~:~), equation (2.33): maybe rearranged to 

. +2 

h), ) 
ro'~ (~, j3 = tm·J cr(l)(T) F (~~ , ·go) drr , 

-2 

where 1" (a-.. -r L)]." ~ d·ef].o~e· d h··- e>q··,"'t-{·o·'" t·::; 3'7)' .... \2 0 '20 i:> ~~. ";.::J ~ ....... ,.... "" \'-. • T2is change was made be-

cause a computer program had previously been written to caiculate F. The 

points at which the surface vorticity is known are not sufficient for the cal­

culation of a./~l) (~, /3). Hence, interpolation as described in section 5 was 
i' ) 

used to calculate crq· (-r). 
I 

Except when the point ~,/3 is near the cylinder surface, the calculation 

of the 'Vorticity presents no diffic'ulty. For the region of the ~,j3 plane 
11) . 

where ill" . is easily computed, the40-point' Gauss-Legendre formula .with sub-

intervals is applied. When /3 :5 0.05 and I~i.$about 2.02 the behavior of the 

function F must be more c;Losely investigated, and the evaluation of the 
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vorticity is more complex -although some variable transformations make the 

integration easier than it would otherwise be. 

a/l)(o:.iP) was computed at the points of a rectangular mesh in the o:.}~ 
plane. Next the values of 0:. and ~ corresponding to constant values of m(l) 

were computed by using Newton t s forward interpolation fonnula. Figure 5 

shows the resulting contours in the x,y plane. To transform the values of 
'- \ 

ill~.l.j to the x,y plane, equations (2.16), (2017) and (2.19) are used. 

8. Stream Function for the First Perturbation 

Since m(l)(a,b) is odd in b a~d h2 (a,b) is even in b, equation (2.34; 

may be changed to 

00 +00 (1). , 

J J. ill r .(a 2b)7,X· '.(o:.-a)2 + (~_b)2 da db. 
2 (\ 'J ' ,2 ( )2 

. 00 h aib) (,cr.a, + r:>+b o m. 

(8.1) 

This equation cO'..Lld be used for calculating Ij,(l), but it would not be an easy 

~3tter because the region of integration is the entire upper half plane and 

the integrand has a logarithmic singularity at a :::: 0:., b == 13. Instead, we 

m.un.erlcally solve equation (2.26) for n ::: 1. The equation is 

(802) 

with boundary conditions 

1/r (1) _. 0 at 13 == 0 

d1/r (1) d1/r (1 ) 2 2 
00:. - 0, . d's- 0 as 0:. + 13 _00. 

Equation (8.2) is not coupled with equation (2.25)becauseill(1) is now known. 

The equation pertains to the upper half of the 0:.,13 plane. 

In the x, y plane e quat ion (8.2) ha s the fonn 
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Figure 5. Vorticity for the first perturbation at a Reynolds nwnber of 300. 
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where the boundary conditions are 

1jr (1) . = 0 on the cylinder surface 

1jr(1) = 0 for Ixl > 1, y = 0 

UCRL-17374 

d1jr (1 ). d1jr (1 ) x2 + 
dX -I- 0, dy -I- 0 as y2 -I- 00 • 

Let us now transform to t~e ~ plane, where 

~ = l~ z = l~ r + ie 
ie 

z = x + iy = r e 

~ - ~ + i¢, and 

i =4 
(1 ' Now 1jr' I satisfies the equation and boundary conditions~ 

~2,;r (1) d2,ir (1) ~'f'~_ + 'f' = _e2~ w(l) , 
. d~2 ce2 

(1 ) 
1jr - 0 at ~ = 0, 

1jr(1) 0 at e c 0, 

1jr(1) = 0 at e =7T, 

1 d1jr (1) 
~ 2J~ . -I- 0 as ~ -I- 00 

e 

From (804), it is evident that ~ = 
, 

l~ rand ¢ = e. 

(8.4) 

Thus in. these coor-

dinates, the cylinder surface in the upper half of the x,y plane is a straight 

line at ~ = 0 with the front ste,gnation point at e := 7r and the rear stagna-

tion point at e := O. Apelt has used a similar transformation for his work 

at a Reynolds number of 400 

The primary advantage of the new coordinate system is that a uniform 

mesh size in the ~ direction corresponds to an increasingly larger mesh 
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size in the r direction as r gets large. 

In numerical computation? one must work with a domain of finite size so 

the boundary condition at infinity must be set at a finite value of~. Thus ~ 

d1jr(l) 
d~ = 0, at ~ = ~max (8.6j 

The problem was then solved several times for increasing values of ~ 
max 

until the values of 1jr(1) showed no appreciable change near the cylinder and 

in the wake. 

In the e direction? 41 mesh points were used. The mesh size?,he ' 
1 

, 
for 

o ~ e s H was 1/3 the mesh size, he J for H ~ e S TI. This smaller mesh 
, 2 

size 

was Clsed downstream of the cylinder so that more detail could be obtained 

in the wake region. The mesh length chosen for the ~ direction was h~ := 0.05. 

T.he number of mesh points in the ~ direction then varies with the value of 

~ . niax 

The successive·-overrelaxation method was used in solving the equations 

that result from approximating the derivatives in equation (8.5) by finite 

diffe:rences to O(h2 ). The equation used at the mesh points is 

2hg 2(j-l)h~ (1) 
+ 2 e ill .. } (8.7) l+p ~JJ , 

where 1jr~l~n+l) is the value of 1jr(1) after the (n+l)st iteration at the point 
1.,J 

e := (i-l)he (or H + (i-21)he for i > 21) and ~ = (j-l)h~ , 
l' 2 s 

Q)~l~ is the value of the vorticity for the first perturbation at 
J..,J 

the point i, j, 
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n is the overrelaxation fact~r.9 

p _. ,.., /h .. ' .... ~. --e
l 

for 2 S i =::; 20 7 

p == h~/he2 for 21 .$ i .$40 7 

k ,- 3 for i - 21, 

k - 1. for all other values of i7 

r (l,n) ~ 
,- lVi;>j+l for s < ~max' and 

r ~ ",~i'on+l·l) for ~ = ~ (Tho t f h b - ~. s - s . \ ~s accoun s Or t e oundary conditions 
~,J- maX' 

at ~ "-, ~ • ) 
max. 

The value of n used ranged from· 1.84 to 1.96 depending on the value 

of ~ • max 

Initiall.y)) the boundary conditions at g == 0, e :::: ° and e =- 7T are set. 
(~ ) 

Then'" ,.l. is set equal to zero at the remaining mesh points. Next the points 

along the line j-=2 are swept by setting successively i==40.9 i=39... 1=2 

in equa:tion (8.7). This process is repeated for j=:J j etc., until the whole 

domain has been swept. The process is then repeated until ",(1) is computed 

to the desired accuracy. Tne error criterion used is 

for all mesn points. This procedure was then repeated for larger values of 

~ until the values of ",(1) showed no significant change in the region of 
max 

interest. The final value of ~ used was 6 which corresponds to r ::." 403. max 

Perhaps one should obtain an estimate of the error involved, in re-

placing equation (8.5) by finite differences .. by decreasing the mesh size. 

This was not done because it leads to a prohibitively large number of equa-

tions and it was felt that the increased computer time was not warranted. 

(1) (1) 
Now that IV ..... is known, the sum 13 + ",' is found at each mesh pOint. 
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This sum is then the approximation to the stream function for E '= 1 using 

the zero and first perturbations. Using Newton's forwe,rd formula for inverse 

7 (1 ,- -
interpolation, as described by Lapidus -) contours of ,8 + 1lr / were computed 

in the ~) e plane. These curves were then transformed to the x,y plane to 

obtain Figure 6. 

9. Discussion of Results 

It should be mentioned tr~t the computation time for this solution was 

lengtr~~ This is primarily because the kernel, equation (2.36), is difficult 

to evaluate. In the solution of equation (20)5) for 0'(1) (a,), the evaluation 

of K(cx,,?l,) at the required points took about 7 hours on the IBM 7094 and 

CDC 6600 computers. The rest of the computation took about 1 hour on the 

CDC 66000 

Newman9 has used ~pproximate forms of the kernel which are more easily 

calculated. His results for the drag coefficient and pressure correction 

at Re :=: 300 are m(l) =008105 and p(1)(2,0) =-3.18.1.0 Using the exact 

kernel, we obtain m(l) =:: 0.7070 and p(1\2,0) :=: 2.192. 

Grove3 has studied flows which- are stabili'zed by the placement of a 

splitter plate on the rear stagnation streamline. Refound the dimensionless 

pressure at the rear stagnation point is about constant at -005 for 25 < 

Re < 3000 Using the zero and firr;lt perturbations we obtain P(2,0) = -1.192,. 

for E ,=1. 

For the case of no slip on the cylinder surface it is interesting to 

approximate Q) -a,nd 1lr by the zero and first perturbations. Then ro = ro (1) and 
I 

The surface vorticity, Figure 4, has a region of negative vortiCity 

near the rear stagnation pOint. This results in a secondary vortex which 
. -
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Figure 6. 13+ 1V (1), stream function as ' given by the first two terms 
in the perturbation series, for a Reynolds number of 300. 
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is visible in Figures 5 and 6. 

From Figure 6~ the wake stagnation point occurs at r = 5.14, and the 

point of separation is e = 66°. Grove has obtained the location of the wake 

stagnatio!l. pOint as r = 10.2 at Re = 270. The corresponding separation 

point is at e = 72°. 1 Using relaxation methods Allen and Southwell have ob-

tained much smaller.values for the wake stagnation pOint. They obtain 

r ::: 1.9 at Re = 100 and a smaller value for Re = 1000. The results of Allen 

2 . 5 
and Southwell have been questioned by Apelt and Kawaguti • 

From the experimental results of Grove and the nll.ffierical solutions for 

Re < 40, it appears that ·-the thickness of the wake" as shown in Figure 6J 

is too thin. 

EvidentlYJ more terms of the perturbation series are needed to describe 

the flow accurately. 
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,Nomenclature 

a,A,b,B,C,D - integration variables 

D 

D 

f 

F 

G 

g 

h 

H 

k 

K 

m 

n 

p 

p 

* r 

r 

R. 

Re 

drag per unit length 

- fu...'1ction arising in solution of integral equation 

- terms in vorticity equation 

~. i\mction in integrand of the kernel 

- integrand of kernel in section 4 

- function arising·in solution of integral equation 

- mesh length 

- square of magnitude of potential flow velocity 

- weight coeff:1.cients for 40.w point Gauss-Legendre quadrature 
formula 

- ,parameter in equation (8.7) 

kernel of integral equation 

-modified Bessel f'~ction of second kind 

- subinterval length 

- drag coefficient 

- number of subintervals 

-parameter in equation (8.7) 

- pressure 

pressure far from the cylinder 

- dimensionless pressure 

- distance from the cylinder center 

- dimensionless distance from the cylinder center 

- radius of the cylinder 

- Reynolds number 
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sgn(~) ~ sign (+1 or -1) of ~ 

u 

* v 
x 
.)t. 

V 

- uniform velocity far from the 

vel.ocity in the 
...,. 

direction x 

in the * direction 

UCRL-17374 

cylinder 

velocity y 
Y ~ 

* * x ~y - rectangular coordinates 

xJy - dimensionless rectangular coordinates 

z - complex variable = x + i Y 

z - nodes of 40-pointGauss-Legendre quadrature formula 

~ - velocity potential for the ideal flow 

i3 - stream function for .the ideal flow 

r - pare,meter in equation (8.'7) 

5 ~. 2/Re "" V!UR 

E -, perturbation parameter 

I;; .- complex variable := ~ + i ¢ 

e .- ar..gle measured in the counterclockwise direction from the rear 
stagnation point of the cylinder 

v - kinematic viscosity of the fluid 

~ ~ 2+~ 2~~ ( 4) 
sl~s2 2 5 J 2 5 used in equation 5· 

~ - coordinate = LX r 

P - fluid density 

a - surface vorticity 

integre,tion variable .... 

¢ - same as e 

x - fun~tion arising in solution of integral equation 

* ~ - stream function 

~ - dimensionless stream function 
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- vorticity 

- dimensionless vorticity 

- overrelaxation factor 

(O)J(lJ.? •• ,(n)- superscripts denoting ,order of the perturbation 

- superscripts on W denoting (order of perturbation, iteration 
number) 
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