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The Steady Laminar Flow‘past g Circular Cylinder

Marvin E. McDonald and John Newman

Inorganic Materials Research Division,
Lawrence Radiation Laboratory, and
Department of Chemical Engineering
University of California, Berkeley

February, 1967

. Abstract
A regular perturbation solution of the;Navier—Stokes equations is pre-
sented and.épplied to the circular Cx%inder‘iﬁ'transverse flow.
At & Réynolds number of 300,‘feégits for the firstvperturbation show
a secondary vortex near the reaf stagnation point and a wake stagnation
3

point located at r = 5.14. The experimental data of Grove~ and existing

numerical solutions for Re < L0 indicate that more terms of the series are

needed to describe the flow accurately.
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io Introduction

Problems in fluid mechanics are governed by nonlinear partial differen-
tial equations. Exact solutions .of these equations are rare, and many times
one must resort to approximations such as singular perturbation expansions
or numerical solutions. Fér flow past bluff bodies; separa?ion occurs at
high Reynolds numbers. Singular perturbation téchniques héve not been very
successful for these separated flows because the correct liﬁiting solu-
tion for Re — < is not known.

A different approach9

recogniées that the potential flow past an object
is an exact solution of the Navier-Stokes equations.at ény Reynolds numﬁer
if a slip velocity which conforms to the potential_fldw is prescribed on
the object's surface. A perturbation of this surféce boundary condition
generates’'a regular perturbation solution - i.e., one that is uniformly
valid. The perturbation procedure is not a perturbation in the Reynolds
number - it is an ekpansion with the Reynolds_number fixed.

The linearized problem is still sufficiéntly complex for numerical
techniques to be useao The first correction to the potential flow of a
Newtonian fluid past a circular cylinder has been compufed for a Reynolds
number of 300.8, The flow is assumed to be laminar and steady, and the deﬁ—
sity and viscosity are constant. Actuallybthe flow past a circular cylin-
der becomes unsteady at a Reynolds number of about 40; but; the sfeady flow
can be found by requiring a plane of symmetry.

‘Many other investigators have done theoietical work on flow past
cylinders in this range of the Reynolds number where both viscous and in-
ertisl forces are imfortanta Some of these are Apelte, Allen and Southf‘

welll and Sihlo,
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2. Problem Statement
a. Mathematical Formulation
The problem may be formulated in terms of the vorticity transport

equation ’

b\f“ o) A 2t P |
Y o T Sy T <§**2 * 5y*2 ’ (2.1)

where v is the constant kinematic viscosity of the fluid. The stream

function V¥ and vortiéity'aﬁ'are relsted by Foisson's equation

-

2 2.
QT OE | (2.2)
Bx*g By*g

The velocity cbmponents may be obﬁained_from the definition of thé‘

stream function

t . . : *
;‘r‘ ‘ % - aﬂf* ¥ I a\lj
g Ve '—“—ay,* and ‘Vy F (2.3)
and the vorticity is related to the velocity by
5v¢ Bv;
7 = - ° °
¢SRS (2.4)

The circular cylinder and coordinate systems are shown in Figure l.

The boundary conditions are

F = 05 gg-:—:——*U, W' =0 as r*-+°°,. (2.5)
%%f =0at r* = R’, : | ‘ | - (2.6)
—g—;ﬁ =.2U(1-€) sin 6 at r* = R, ’ (2.7)
V¥ =0at ¥ =R, | ~ (2.8)
¥* =0 for |x*| >R, y* = 0, and | (279)
a® =Ao for |x*| >R, ¥ =0 . (2.10)
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Figure 1. Coordinate systems for the circular cylinder,

PLELT-TEDN
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Conditions (205)‘state'that the uniform fléw is approached far ffom-the
ecylinder. The vanishing of the tangential gradient of:the stream‘function
at the surface of the cylinder, condition (2.6), is necessary to specify
zero fluid velocity in the direction normal to the surface. Céndition
(2.7) describes the slip velocity on the cylinder surface in termé of the
parameter €. This parametef is inserted in order_tb obtain an exact solu-
tion to the problem when € = 0. This solution is the potential flow perti-
nent to the system. ~ Of physical significanée is the'case_€‘= 1 which gives
a zero tangentizl velocity at the cylinder surface. This work is restricted
to flows which are symmetric to the x*-axis, which necessitates conditions
(2.8), (2.9), and (2.10).
It is convenient to work with dimensionless variables. iLet
y*/Rj x =x/R, r = r*/R, 8 = v/UR = 2/Re , o
}(2 11)

R¥/U, ¥ = W/UR, P = (p-p,)/A oUF, m = D/oU°R .

il

by

]

w

Equations (2.1) and (2.2) become

5% 6%% BW dw Bw - |
° <§;§ * ay 3y Ox ~ dx Oy ' ' ' (2f12)
and v N~ 2 ' o
_ - §—g + ng = -w. - ' (2.13)
ox Sy '

After a conformal transformstion to new independent veriables, @ and

B, these equations are

. Yo , P _éﬁab_ﬂ&b (2.14)
o -<5a2. S/ o8 do OB
o © and - : : | | |
| ,_he.@__é Buf )= -w. o (2.15)
_ ‘ , e BB -

The new coordinates a and B are, respectively, the dimensionless 4
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velocity potential and stream function which are the solutions to the prbb-
lem when € = 0. These coordinates are related to x and y by

a = x(1 + l/re) (2.16) -

and B

y(1 - 1/r2) . - _ (2.17)
I+ is advantageous that in the o, B planéi the cylinder is a straight line |
on the a~zxis. The front and rear stagnation points correspdnd to o = -2
and o = +2, respectively.

The square of the magnitude of the potential flow veiocity is h2, and
it can be readily shown that

=1 £ 1/r2)° - heR/(x2 + 1)% . . (2.18)

It is desirable to_express'he expiiciﬁly in terms of a and B, and the neces-

sary relafionship is

r = §~{N/<a_éxg+52 +\/(dﬁ2)2+;é‘+§/;i[\/(®-2)2+52 \/(a+2)2+52

1

+ (oo-2)(cc+23 + 52]—2} . (2.19)

L2 .
The behavior of h on the cylinder surface and near the stagnation points
is given by/

B (a,0) =4 -, la| <2, | ~ (2.20)

"he(%ﬁ) —:*Lh}’/ (2-ca)2+132 as o = +2, ;3-; 0, (2.21)
hg(a;B) -l /(2+.-a,)2+62-as a—=-2, B=0. (2.22)

b. Perturbstion Approach ’

All dependent variables are expanded in power series in €,

2) v ... (2.23)

v=peeylt) @yl

W (2.24)

i
M
54
+
m
e
+

A}
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etc. The zero order perturbation terms are,w<o) = B and w<o)‘= 0. Ther

differential equations for the higher perturbations are

° G:i;n) ' a:iém a%gin) e o) '.<2.25’>
<52 W) ‘;;?) IRCI o e
where f(l)(a,g); 0 E . e

etc. The boundary conditions are

\V(n) =Qat B = O’ n = _]_32, o o o o o (2.29)
(1) (n) | | |

e, ¥ o0, 23, - - c,at B=0, [al <2 (2.30)

~2 (n) . IRy . ’

é_ggg_‘= 0 y<D\n) =0at B=0, |a|] >2,n =1,2, « .« ., (2.31)
(n) (n) o,

%#O,%’—KB———FO,&(H)»O%J+5'2’->°°,n=l,2,o-= (2.32)

The primary advantage of* the .a, B! coofdinate system is that equation (2.25)
has the same form as the Oseen.equation in rectangular coordinates.
c. Solution of the Equations
In the later sectioné) the first perturbétion onlj is considered.

In Qiew of this, the solution is given for n = 1 only. Southwell and Squirell
have obtained the solution to the first perturbation also. They calculated
résults for a Re&nolds‘number of 2. The sdlution cén be extended to higher
perturbations, but the analysis becomes more complicated.

The solution to equation (2.25) for the first perturbation is
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(l) (28) = 75 f \F( ”26)“ s (2.33)
. _ : (o= )"+8° ' '

where U\ )(T) is the unknown surface vortlclty for the first’ perturbation and:
Kl(r) is the modlfled Bessel function of the second klnd or‘order 1.
The solution to eqdation (2,26).for n=1is |
(o, B) = ~_— ——Li—l) n cc-a) +(B b) da db o (2.34)
: (a,b - C

The remaining boundary condition,V~§Ef—~ = =1 at B = O ,al‘<v2 yields .

an integral'equationxfor q(l%f)z N
e - f RIOFICE )d,rr N =0

‘where the kernel is given by

K(m» jf i 25> dz.a,. db, = ‘.:':(12?3'6)

h (a,@a(aﬂa) +b ]

l.' : - F(A,B) - <\/§m+ B> | (2.37)
: \[; I .

The'drag coefficient and pressuré correction &t the rear stagnation point

for the first perturbation can also be cbtained. These are

2L _ _gaf oMy ar, (23

P(l)(é.,o) z% feoki>(v)e§;g [K( < >} . -» | i ‘, (&39). ‘. )
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3. Outline of Numerical Solution

a) from

(l-)(

~ The numerical solution centers around the:calculatién-of Y
equatioﬁ (2.35). This.is not an easy‘matter because the kernel of the
integral equation is difficult to evaluate.

After.c(l)(a) has been obtained, m(l’ and P(l)(E,O) ére.easily obtained

(l)(

from equations (2.38) and (2.39). Next @ a,B) follows by quadrature from

equation (2.33). TFinally, W(l)(ayﬁ) could be obtained from eguation (2.34),

ey

_but it is much simpler to solve equation (2.26) by finite difference methods.
In essence, one avoids the numerical solution of a fourth order partial

(1)

differential equation for V'’ by using instead the integral'equation to ob-

tain the surface vorticityﬂ

L. Kérngi

The solution of equation (2.35) éérshown ih secﬁion 5 requires the evalu-
gtion of K(aﬂr) a large number of times. Thus, an efficient procedure is
desired for this evaluation. First a diécussion is given on -the behavior of
the kernel, and then we turn to its evaluation.

a. Properties of the Kernel

Figufe 2 is a plot of.K(O°OT75,T) veréuslf for a Reynolds number of

300. From this figure some of thé genéral features may be deduced. These
properties can also be inferred from equétion (2,36), It ié séen that
K(a,T) is infinite for a=t and thé function is greater for a > 1 than for o < T.
The way in which K(a,T) becomes infinite may be obtained from the flat plate -
kernel.

'

For a flat plate, h2 = 1 and the kernel for this case is

K(a,) = ——5——29 = "y (nl) + sea(n) kg (InN)1 - & (h1)

[(a-a )%+

v
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0.24

0.20

0.04 |-

Figure 2.

MUB11489

Kernel for @ = 0.0775 and a Reynolds number of 300.
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where 1 = gC% and sgn(n) is the sigﬂ'(+l or -1) of_n} Fbr'further‘feference,'

denote _
ek (Inl) + sen( (n) X lnl)] _ L

x(a, ) = —————— 5 . (k.2)
| : h” (e, 0) : ‘

The flat plate kernel is important because it shows the form of the
singularity of K(a,T). - As T = o, the major contribution to the integral in
equation (2.36) comes from & small region surrounding & = , b = O. Thus,

Ko, ) = x(a,7) as T'.—’a') Ial # 2 s ' : B ()4“3)
where the stagnation points have been excluded because he(d,o) is zero
&t these points. Recalling that X _([n]) e A ana (In]) = =% as
points. Recs ot N1 = bt T and o LIn1) =Ty

n = 0, equation (ﬁw3) becomes

- I l o _ .
K{o,T) — ——-—-—-——-as T-a, la| #2. (4.4)
h (oc,o) : ‘
it isvevidenﬁwupon further éxamination th;t X(a;T) behaves very similarly
to K(m;f) for all T so long as [ai # 2. .This proves useful in the solution
of the integral equation for the‘éylinder.
b. Numerical/Evaluation of the Kernel
The kerpel is.to be calculated for vaiious values of o and T ranging
from -2 to +2 at a Reynolds numbér of 300 (& = 2/300). Equétion (2.36) can
ﬁe rewritten as twice the integral over the upper half plane.

400 o0

ff G(A,B) @A @B , . : ', (L.5)
where, | 2A <\/_A—2_+?32> | , (
' - o O (kB)

G(A,B) = 5

h (26A+r' 28}3)(('~ sy 2} JA2+p2

®
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It is advantageous to use these new variables'when the Reynolds number is large.
In any numerical integrétion, the behavior of the ihtegrand must be

accounted for. Here, the problem is difficult because G(A,B) has several

peculisrities to contend with. When a=7, G(A,B) is infinite at the point

A=0, B=0, and the integral diverges;ét this point. The kernel is finite for

21l other values of & and T; but some singular behavior is present in G(4,B)

- for all values of a and 7.

When T # «, G(A,B) is zero on the B axis except for A=0, |t| # 2 and

A = %% la| # 2 where it is finite. When |t]| = 2, G(A,;B) = @ as A =0,
B = 0, and when ]ml = 2, G(A;B) - ® g5 A,"%cgy B w— 0. Thus, regions sur~

rbunding these points requife special consideration. Actually, owing to the
methéd of solving the integral eqﬁation, the points_%dI =2 and-]Tf = 2 do not
have to be considered. Of course the integrand approaches this singular beha-
vior when & or T is near a stagéation point.

To evaluate the kernei, the ﬁpper half plane is divided into a number
of regions° The way in which it is divided is dependent upon the location of
o and T relative to each other and relative to the stagnation points. The
method used in this work di&idés the upper half plane in.twenty.different
ways depending on the location of a and T. To illustrate the method the proce~
dure for calculating K(lo98,~lao) will be given. Figure 3 shows how the
total integration region is divided. Regions 1, 2, .3, 6, 7, 8 and 10 extend
to infinity in the B direction, and regions 1 and 10 extend to infinity in
the +A and -A direétiéns; respectively. The constanté which define the regions,
for these particular values of @ and T, are Aj=-2, A, =2, A3=221,5, Ah=22h.5,

& 0.5. The front stagnation point corresponds to

A =227, A653oo, and By
“2-T , . 2-1
A = = ~75, and the rear stagnation point A = 5% = 225. The rear

20
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Division of the upper half plane (ri_ot.to scale).

Figure 3.
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stagnation point is in region 9e Region 4 includes the point A = %:% = 223.5.

To performlthe necessary quédraturesj_Gauss-Laguerre and Gauss~-Legendre
quadrature formglés are applied. .Wheﬁ the integration interval is finite,
the 5-pdint Gauss-Legendre_fofmula is used with éubinterValso When the upper
limit of integration extends to infinity, the Gauss~Laguerre quadrature
formula (up to 32 pbints) is usually used. Quadrature formulas of the
Gaussian type are discussed in most texts on numefical analysis, including
‘ Krylov6- _} " | : il

Regions 2, 3, 6, T and 8 cause no épecial problems. The GauséLLaguerre

formula is applied in the B direétion and‘the Gauss-Legendre formila®in: the
A direction. . |

" In region 1, the behavior.of G(A;B) does not permit the application of
the Gauss~Laguerre formula in either direction. Variable transformationé'
C= 1A and D=—= rectify the situation. The Gauss-Laguerre formula can
then be applied in the C direction. The integrand is very small for D > 5,
and all significant contribution'is contained within D=5. Thus, between
D=0 and D=5; the Gauss-Legeﬁdre fbfmula is appropriate. |

Region 4 surrounds the point A ='g:%;‘B=O, and region'Slsurrounds the

point A=05.B=Oe The integraﬁd behaves(similarly in these two-regions,.ahd
‘the integration is conducted in very nearly the same manner for the two.
Hence, the procedure is illustrated for region 5 only. Whén A =0 and B—=%0

the integrand is badly behaved. When the argument of the Bessel function

is small

G(A;B) — c o (La7)

1 B2
2.2 2
2 -T A™+B
h (T’O)<§"5>

The worst of the behavior can be subtracted from the integrand to obtain,

\’V
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for region 5,

1

2 2 5| dh 4dB

I = _7% (A,B) - -
AT+B

(f 0)

o= ff A+BdAdBo" o (5.8)

ﬂhg(r 0) d’T>

The second double integfal inlequation (4.8) ié»eValuaﬁed analytically, and
'thé first is computed numericglly by'use of~the Gauss-Legendre formula in
each directiona

The contributlon from region 9 is obtalﬁed by applylng the Gauss- Legendre
-formula in each direction. - ThlS region contalns the rear stagnatlon point.

In region 10, G(A,B) decreases_verj fast as A = ©, The region is further
subdivided in the A direction, and the contribution ié successively obtaiﬁed,
until the contributioﬁ is negiik}gible° In the A direction, the Gauss- Legendre
formula 1is uséd9 and in the B direction the Gauss~Laguerre formula is used.

The contribution from each region was calculated to an accuracy of about

0.001 %.

5. Surface Vorticity for the First Perturbation
a. Solution of the Iﬁtegrai Equatibh' |
In this section, equation (2.35) is replaced by évsystem of linear
algebraic equations which can then be solved for O(l)(m)o The procédure is
to approximate the integral‘eéuation by a gquadrature formul_a° The formula
cﬁqsen is the h0~point-Gauss¥Legendfe formula. Some cére.must Ee used in
doing this because ﬁhe integréi equation is Eﬁngulafa A procedure similar

L . v
to that proposed by- Kantorovich and Krylov 1is adopted. The surface vorticity
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o(l)(a);is to be solved from
2 |
'-éw =k/Nc(;)(T) K(a,T) ar .

%

The kernel of this equation has a légarithmic éingularity at a=T as shown

By equation (4.4).  Hence, a quadrature formula cannot be applied to the equa-
tion in its present form.

(1)

To the integrand, we add and subtract o'~ /(a) x(a,7) where x(a,t) is

undefined for the moment. This yields -

s re | | _
-2m =:u/\ [U<l)<T):K(&,T) - q(l)(a) x(a,7)lar + c<l)(a) g(a) , - (5.1)
-0 , _ ‘ ' - .
where . » f2 . " o o
e@ =[x ar s
. _D o _ _ S _

Kantorovich and Krylov recommend using x(o,T) = K(aﬁt)o' The integrand of
equation (5.1) is then zero'at o=T; but, the evaluvation of equatien (5.2)
would not be easy. Instead, we set x(a,T) as in equation (4.2). This would

not be satisfactory for |al‘= 2, because X(a,T) is infinite at these points.

J

'Howevér, the points lal =2 will not be employed in obtaining the solution
of this equation. The integrand in equation (5.1) is then finite at a=t

"and equal to 0<l)(a) 1im [K(e,7) - x(e,7)]e -
T =
The term in brackets at a=T is given by

\

2.
D(a) =2 , ;

which was computed by the same methods as was K(a,T).

The primery advantage in adopting this procedure is that g(a) can be
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determined analy'tlcally The :result is for ',o_b, <2,

6, &
gla) - 2 {ee e MK (8,) + x1<e - e Tk (£)

-¢ S
v atye Pl (8) - K (E)] + e 2K (€))

« '+me/e /hw, . (5
where g §+g and 6 ,r : |

Approximation of the integral in equation (5.1) by‘the-ho—point Gauss-

Legendre formula gives

- 40 o h ' .
| N7 (1) < 1) (1) : |
_omr = Z on, Lo (o >K<m - (@)tloya) 1o (Wel@) o (5-5)
Lo v i J
Ch0051ng aﬁal, 2, saog hO glves hO 31multaneous equatlons for the determing-

tion of G‘

1)

o )s whlch are /

Lo ‘ ' .)' ) .{ ho
-2 = 2H K( 5% )o (1 (a, )+c l a ) 2H x(a o )
EJ v 1=l ¥
1753 i3 |
+ _2}5. -D(Iocj")};, 3 =' 1,‘ 2, o o o hp o ' ' - (5.6)

In equation (5.6), D(aj) is given by equation (5.3).

This system of equations was solved by the Crout elimination method, as
given by lapidus '. Figure 4 shows ¢ plotted versus QG/W, where 6 is the
angle measured from the rear stagnation point in the x,y plane.

Tt was felt important to obtain an estimate on the adequacy of repre-~-‘
senting the integral equation by the L4O-point quadrature formula. This check

wes obtained by resolving equation (5.1) using the 32-point Gauss-Legendre

%
The equations given by Lapidus for using the Crout elimination method are

incorrect.
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Figure L. "Surface vorticity for the firsf perturba_tion.
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formula. The differences in the values of the surface vorticity for_n = 32

and n = 40 were less than l% in most cases. The only exceptions were near

(1)

the points where O (a) = O where the percentage deviation was higher. It

is felt that this higher deviation is not important.

) (a)

b, Interpolation of ¢
The 40 points at which c(l)(m) is’known,‘from'the solution of't£e

integral equation, are not sufficient for the célculation of aﬂl) and |
p(l)(e,o)o Thus, interpolation mué%»be'usedn Use of Lagrange's interpola-

(1)(

tion formula with the L2 unevenly spaced points at which o a) is known
(40 points from the solution of the integral equation plus the two stagna-

tion points where G(%)(q) = O),'results in

¢ k1 LL o 200 A% K
My - ) T =L oWy (5.7)

R7s |
The points i = 1 and 1 = 42 (the stagnation points) have been exluded from
the summation becsuse the vorticity is zero at these points. -
Equation (5.7) was used to calculate G(l)(a) at 801 equally spsced
points in the interval -2 < a < 2, corresponding to a spacing of 0,005;
' 4
These .values were stored on magnetic tape so they could be used in conjunc-

tion with Newton's interpolation formulas to calculate c(l)(a) at the points

{ 1
necessary for the determination of a§l), p(*)(E,O)-and m(l),

6. Drag Coefficient and Pressure Correction
.The drag coefficient was calculated by employing the LO-point Gauss-

Legendre formuls to subintervals. Equation (2.38) becomes
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n . =2+kf . . n  +1

) -2t };L(k_l)zo(l)(fjd“'m };fl ‘%*‘»(” [ raa)e] o
= -yZ ; H of [ (z, +2k-—l) -2] | (6.1)

In: equatlon (60 )2 is +he subinterval ieng+h n.is t e nﬁmbér of sublntervals,
Hﬁ and zg are the Gaussian welghts and nodes for the h0~p01nt Gauss-Legendre
formula. The result is; with two subintérvals, ( ) 7070. One subinterval
gave “he same result to four significant :f‘igu_res°

A completely'analogogs procedure for‘the'preséuré‘porrecﬁion gives

(1} :
P f'\,‘E,O)‘ = 2,192,

7. Vorticity for the First Perturbation
The.éxpression forcbgl)(m,ﬁ),‘equation (2.33); may.be rearranged to
S | 2 | | S
Dy b [ Wy e (BL, e, (1.1)

im'

w

where F <§1% ,Vgg 15 defined by eéuatibn (2.37). This change was made be-
cause a computer program had previously beenvwriﬁten tolcalculatevF.. The .
polints at whichthe surface'vorticity is known are not sﬁfficient for the cal-
culationvof(b<l)(a,ﬁ) Hence, interpolafidn..as descfibed in section 5 was
used tc calculate o 1)(7) |

Except when the point a, B is hear tﬂe cylinder surface, the calculation
of the vorticity presents no difficﬁlty. For the region of the‘a,B plane
where,ale,is easily computed, the.ho-pointjGaués-Legendré formula,ﬁith sub-

intervals is applied. When B < 0.05 and ]ai:;about 2,02 the behavior of the

function F must be more closely investigated, and the evaluation of the

t]
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vorticity is more complex -_although some vhriable transformations make the

integration easier than it would otherwise be.

l)(ayﬁ) was combuted_at the points of a rectanguiar mesh in the o, B
plane. Next the values of o and 8 corresponding té constant values of u‘l)
ﬁere computed by using Newton's forward interpolation formula. Figure 5

shows the resulting contours in the X,y plane. To transform the values of

oy - o
o'’ to the X,y plane, equations (2.16), (2.17) and (2.19) are used.

8. Stream Function for the First Perturbstion
Since aﬁl)(a,b) is odd in b and h2(a,b) is even in b, equation (2.3%)

may be changed to

\ PSRN
(1), s (a,b) - (afna + (B-b) o
v (e, B L ff . e " \/ &b; da ab. (8.1)

{ama )" +
(1)

This equation could be used for calculating V¥ s but it would not be an easy
matter because the region of integration is the entire upper halfvplane and
the integrand has a logarithmic singularity at a = a, b= B. Instead, we
numerically solve equation (2.26) for n = 1. The equation is
2 (1) 2,
p2(ST "t Y (1) | (8.2)
2 2 ’
o OB .

with boundary conditions

(1)

=0at B =

v
ad‘ "*O aB =0 gs oo + B hd o

()

Equation (802) is not coupled with eQuation (2°25)4because'a) is now known.
The equation pertains to the upper half of the d,B plane.

In the X,y plane equation (8,2) has the form
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Figure 5. Vorticity for the first perturbation at'a‘Reynolds number of 300.
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2.(1) s201) . .y o
aaie + S gyg = - dﬁl), : | . (8.3)

where thé boundary conditions are

R .
(l). = 0 on the cylinder surface

v

- | | w(l) =0 for |x]| >1, y=0

3y (L)
oV -+ 0, Sy eOasx2+y2->°°,

ox

tet us now trénsform to the & plane, where
g
‘z
£ =&+ 18, and

i=-\/:_]-.o

satisfies the equation and boundary conditions, -

Mz =1wWmr+ ib

40
x+iy=r e” »

(8.4)

1\
Now w<L’

0 ggg + aagg = ~e2€ aﬁl) 5  (8.5)

| w(l) = 0at £
q,(l)
+)

]
o
DN

0 at 6

]
(@]
™

]

0 at @

]
J

(1)
1 v’
EoE 0

From (8.L4), it is evident that £ = In r and # = 6. Thus in these coor-

dinates, the cylinder surface in the upper half of the x,y plane is a straight

. line at € = O with the front stagnation point at 6 = 7 and the rear stagna-

tion point at € = 0. Apelt has used a similar transformation for his work
at a Reynolds number of 40.
The primary advantage of the new coordinate system is that a uniform

mesh size in the € direction corresponds to an increasingly larger mesh
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the r direction as r gets large.

In numerical computation, one must work with a domain of finite size so

the houndary condition at infinity must be set at a finite value of €. Thus

')
ai

The problem was then solved several times for increasing values of gma

-

L

(1)

until the values of V¥

in the wake.

In the 6 direction, 41 mesh

0<6< g was 1/3 the mesh size,

=0,_at€=€

o

max

(8.6)

X

showed no appreciable change near the cylinder.and

5
. ’ R . ]
points were used. ‘The mesh size,,he s for
- 1

h, , for g <8 <7 This smaller mesh size
5 .

was used downstream of the cylinder so that more detail could be obtained

in the wake region. The mesh length chosen for the £ direction was hg = 0.05.

The number of mesh points in the

€

o
max

£ direction then varies with the value of

The successive~overrelaxation method was used in solving the equations

that result from approximating the derivatives in equation (8.5) by finite

differences to O(hg)o The equation used at the mesh points is

! .

- 8 27 : \
e % S [wfi’nfl) " w?lyn)J,.
154 o L4 7 Qap 1141, 1-k, ]
L2 {P . W-(l,.n+l_)J - uy(Lm)
1+p° i,3-1 159
'Qhé e(jml)hg (15
+ 5 e i w, . (8 )
l+p 1,4 b4 °7
o {1nt1) L L (1) A ¢ - '
where W{ 3 is the value of V¥ after the {n+l)st iteration at the point
2 - ’ :
o = (1-1)n, (or ¥ + (i-21)n, for i >21) and € = (3-1)n, ,
6, \°T 1 65 ¢
aélg is the value of the vorticity for the first perturbation at
-9

the point i, J,
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- is the overrelaxation factor,
‘p‘r..'. he.hel fOI'ESiSeO 5
= he/h, for 21 <1 <140
p g/ 92 _ =+ = 2
k = 3 for i = 21,

k = 1 for all other values of i,

- (lyn) <

r Wi,j+l for € : gmax’ and

| (1,n+1) S ' | .

D=y for £ = £ . (This accounts for the boundary conditions
: i,3-1 ma.x 4 . _

at £ = Emaxf)
The value of 0 used ranged from 1.8k to 1.96 depending on the value
of gmax°

Initially, the boundary conditions at £ =0, 9‘= O and € = 7 are set;
Then.w<l) is set equal to zero at the remaining mesh points. _Next the poin@é
along the line j=2 are swept by setting successively i=40, i=39, . . . {=2
in equation (8.7). This process is repeated for j=3, etc., until the whole
(1)

domain has been swept. The process is then repeated until V¥ is computed

to the desired accuracy. The error criterion used is

A Tl 1m
g Lol gy o7ty (Lsmel)
i,3 A

(lyn+l) -
1,57

v
for all mesﬂ'pointso Thié procedure was then repeated for larger values of
emax until the values of w(l) éhowed no significant change in the region of
interest. The final value of gmax used was 6 which corresponds to r = 403,

Perbhaps one should obtain an estimate of the error involved, in re-
placing equation (8.5) by finite differénces, by decreasing the mesh size.
This was not done because itbleads to a prohibitively.large number of equa-~
tions and it was felt that the increased computer time was not warranted.

(1) 1)

4 .
Now that ¥ is known, the sum B + y¥° is found at each mesh point.
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This sum 1s then the approximation to the stream function for € = 1 using

the zero and first perturbations. Using Newton's forward formulas for inverse

interpolation, as described by LapidusT, contours of B + W(l’ were computed

in the €, 6 plane. These curves were then transformed to the x,y plane to

obtain Figure 6.

9. Discussion of Results
It should be mentioned that the computation time for this solution was

lehgthm This is primarily because the kernel, equation (2.36), is difficult

to evaluate. In the solution of equation (2.35} for cﬁl>(a), the evaluation

of K{w,7) at the required points took about 7 hours on the IBM T709%4 and
CDC 6600 computers. The rest of the computation took about 1 hour on the

CDC 6600.
9

Newman” has used agpproximate forms of the kernel which are more easily
calcuiated. His results for the drag coefficient and pressure correction
6% Re = 300 sre m1) = 0.8105 ana P(1)(2,0) = -3.181. Using the exact

(13

kernel, we obtain m'~’ = 0.T0TO and P(l>(_2,0) = 2,192.

Grove3 has studied flows which are stabilized by the placement of a
splitter pléte on the rear stagnation streamline. Hé.found the'dimensionless
pressure at the rear stagnstion poiht is about constant at ~0.5 for 25 <
Re < 300.  Using the zero and firat perturbations we obtain P(2,0) = «1.192 -
for € = 1. ' | |

For the case of no slip on the cylinder surface it is interesting to

approximate w-snd ¥ by the zero and first perturbations. Then w = aﬁl) and

v=B+ w(;)o'

The surface vorticity, Figure L4, has a region of negative vorticity

near the rear stagnation point. This results in a secondary vortex which
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4.0*L B o Baryng
3.2
3.0
2.8
2.6
2.4
2.2
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i.8
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1.4
1.2
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0.8
0.6
0.4
0.2

uuB 1494

Figure 6. B + \1/(1), stream function as given by the first two terms
in the perturbation series, for a Reynolds number of 300.
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is visible in Figures 5 and 6.

From Figure 6, the wake stagnation point occurs at r - 5.14, and the
point of separation is 6 = 66°. Grove has obtained the location of the wake
stagnation point as r = 10.2 at Re = 270, The correspdnding separation
point is at 6 =‘72°° Using relaxation methods Allen and Southwelll have ob-
tained much smsller .values for the wake stagnation point. They obtain
r = 1.9 at Re = 100 and a smaller value for Re =.1000. The results of Allen
and Soﬁthweli have been questioned by'Apelt2 énd Kawagutiso |

From the experimental results Qf Grove and the numerical soiutions for
Re < L0, it appears that the thickness of the wake, as shown in Figure 6,:
is too thin.

Evidently, more terms of the perturbation series are needed to describe

the flow accurately.
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Nomenclature
integration ﬁariables
drag per unit length
function arising in solution of integral equation
terms in vorticity equation
function in integrand of the.kernel
integrand of kernel in section L
function arising -in solution of.intégfal equation
mesh length |
gquare 6f magnitude 6f potentiél flow Veiocity

weight coefficients for 4O-point déuss-Legendre quadreture
formule, ' '

parameter ip equation (8.7)

kernel of integral equation

modified Bessel function of second kind
subinterval length

drag coefficient.

number of subintervals

parsmeter in equétion.(B,T)

pressure

pressure far from the cylinder

dimensionless pressure
distance from the cylinder center

‘dimensionless distance from the cylinder center

radius of the cylinder

Reynolds numbér
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sign (+1 or ml) of 1

vuniform velocity far from the cylinder

velocit§ in the x direction

velocity in the y direction
rectangular coordinates

dimensionless rectangular coordinstes
complex variable = x + i y

nodes of hOupointhaussuLegendfe qQuadrature formula
velocity potentiai for the ideal flow
stream function for the ideal flow
parsmeter in equation (8.7)

2/Re = vjuR |

perturbation p@rameter

complex variable = £ + 1 ¢

(a~1)/28

angle measured in the counterclockwise direction from the rear
stagnation point of the cylinder

kinematic viscosity of the fluid

2+a 2o
252 3 p 18

d in equation (S,h)'

cocordinate = N r |

flgid density

surface vorticity

integration varisble

same as 6

function arising in solution of integral equation

stream function

dimensioenless stream function
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- vorticity

dimensionless vorticity
overrelaxation factor
superscripts denoting order of the perturbation

sﬁperscripts on ¥ denoting (order of perturbstion, iteration
number )
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