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ABSTRACT 

We present a simulation model designed to determine the impact on congestion of policies for 

dealing with travel time uncertainty. The model combines a supply side model of congestion 

delay with a discrete choice econometric demand model that predicts scheduling choices for 

morning commute trips. The supply model describes congestion technology and exogenously 

specifies the probability, severity, and duration of non-recurrent events. From these, given 

traffic volumes, a distribution of travel times is generated, from which a mean, a standard 

deviation, and a probability of arriving late are calculated. The demand model uses these outputs 

from the supply model as independent variables and choices are forecast using sample 

enumeration and a synthetic sample of work start times and free flow travel times. The process 

is iterated until a stable congestion pattern is achieved. We report on the components of 

expected cost and the average travel delay for selected simulations. 

The corresponding author is Robert B. Noland, U.S. Environmental Protection Agency, Office of 
Policy, Planning and Evaluation, 401 M St. SW (2126), Washington, DC 20460. email: 
noland.bob@epamail.epa.gov, fax: 202-260-0512 



1. INTRODUCTION 

One of the great rediscoveries of transportation analysis is the importance of reliability in 

travel times. Based on instinct and direct statements of travelers (Prashker 1979), travel demand 

analysts have long suspected that reliability should be an important component of travel demand 

models and that unreliability is one of the primary costs of road congestion. Yet only very 

recently have such models succeeded in finding measurable effects (Small, 1992, pp. 35-36). 

Stated-preference techniques have opened the way to some solid empirical estimates of 

travel time reliability. Most of these measure how much people are deterred by a higher standard 

deviation of travel times, relative to a higher mean travel time (Bates, 1990; Black and Towriss, 

1993; Abdel-Aty et al., 1994). 

These measurements, however, do not necessarily distinguish among different reasons for 

aversion to unreliability. There are at least two such reasons. The first, which we call expected 

scheduling cost, is the desire to lower the likelihood of arriving at the destination at an 

inconvenient time; many authors have focused specifically on the probability that one will be 

late for an activity with a definite starting time. The second, which we call planning cost, is the 

pure nuisance of not being able to plan one's activities precisely because of uncertainty about 

when a trip will be completed. These two reasons have quite different implications for how 

people respond to various policies. For example, measures that change the degree ofreliability, 

such as quick-response teams to clear up accidents, might simply make people happier by 

reducing planning costs, or they might induce complex changes in the timing of people's trips by 

changing the scheduling calculus. The same is true of measures, such as advanced traveler 

information systems, that improve information about travel conditions. 

The possibility of people changing the timing of their trips leads to a further question of 

just how a highway corridor or network will re-equilibrate when reliability or information 

changes. A sophisticated literature has developed to analyze equilibria when people choose their 

trip schedules endogenously, but it seldom addresses reliability. Furthermore, most of this 

literature assumes greatly simplified models on both the supply and demand sides; usually the 

supply side is one or a few bottlenecks and the demand side is deterministic cost minimization 

with one or a few types of travelers. Exceptions on the supply side are Ben-Akiva et al. (1986) 



and Vythoulkas (1990), who consider networks of some complexity. Exceptions on the demand 

side are De Palma et al. (1983) and Chu (1993). Chu applies a discrete choice model of travel 

choice that is rich in specification and that allows for unlimited heterogeneity of preferences. 

Noland (1997) simulates the impact of information provision on expected costs using theoretical 

relationships but lacking the heterogeneity of the approach followed here. 

In this paper, we propose and empirically estimate a demand model whose components 

include both scheduling costs and planning costs. The estimation is carried out using stated 

preference data collected by Koskenoja (1994). We then develop an equilibration model in 

which travel schedules, congestion at each point in time, and the degree of reliability in travel 

times are all derived endogenously, given exogenous parameters fixing the probability, severity, 

and duration of an incident that reduces capacity. This equilibration model is an extension of 

Chu's, and therefore retains the advantage of a rich demand-side specification. 

The analysis of the stated preference questions leads to a behavioral model of schedule 

choice in the face of uncertainty. Implicit in this model are estimates of the costs of various 

characteristics of the travel schedule: mean travel time, average "schedule delay early" (defined 

as number of minutes spent at work prior to the preferred work start time), average "schedule 

delay late" ( defined as number of minutes that an arrival is later than that preferred work start 

time), probability of being late, and standard deviation of travel time. The results show that, 

consistent with prior research, people are moderately averse to arriving early at work and more 

averse to arriving late, with a substantial discrete penalty to being late at all. The results show 

that once these scheduling costs are taken into account, there is little additional residual cost to 

uncertainty per se, i.e., the planning cost is negligible. 

In order to assess the practical importance of these findings, we perform simulations in 

which travel-time uncertainty results from "non-recurrent congestion" caused by incidents of 

capacity reduction. Both recurrent and non-recurrent congestion is generated by a set of 

hypothetical commuters making their scheduling choices according to the demand model just 

described. In these simulations, congestion results from insufficient capacity and uncertainty 

results from random "incidents" that reduce capacity in a specified manner. We find that slightly 

less than half of the increase in travel costs caused by incidents is due to increased travel time; 
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the rest is due to scheduling costs, primarily increased probability of arriving late. The latter 

occurs despite a small tendency for people to adjust to increasing uncertainty by leaving for work 

earlier, which of course imposes its own cost according to our model. These results have policy 

implications for decisions on the cost effectiveness of options for responding to recurrent and 

non-recurrent congestion; such as whether an incident management system is more effective than 

adding additional capacity. 

Following a systematic review of the literature, we describe in tum our theoretical model 

of traveler choice, a stated-preference survey we conducted to obtain empirical measurements of 

its parameters, the full simulation model, and simulation results. 

2. PRIOR LITERATURE 

There are three strands of literature which we combine here: empirical scheduling choice, 

reliability, and equilibrium models of congestion with endogenous scheduling. We briefly 

review each, indicating how the present paper draws from the literature. 

2.1 Scheduling Choice 

Many authors have postulated traveler cost functions that include costs of arriving either 

earlier or later than a preferred arrival time such as a work start time. Only a few have been 

estimated empirically. Small (1982) estimates how commuters who have an official work start 

time choose their usual travel schedules from among twelve possible five-minute intervals. The 

logit specification postulates a fixed penalty ( disutility) for arriving later than 2.5 minutes prior 

to the work start time. It also assumes additional per-minute penalties for arriving at work either 

early (schedule delay early, SDE) or late (schedule delay late, SDL). Small finds these penalties 

to vary systematically with personal and occupational characteristics; on average, the per-minute 

disutility of SDL is greater than that of SDE, and the fixed lateness penalty is equivalent to about 

5 minutes of travel time (Small, 1982, model 1). Our demand model uses Small's specification 

applied to expected rather than known values of the variables. 

Cosslett ( 1977), Hendrickson and Plank ( 1984) and Mannering and Hamed ( 1990) 

provide additional empirical measurements, the latter using time periods that are larger than five 
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minutes. Mannering and Hamed's study is unique in focusing on the trip from work to home 

rather than the opposite. 

2.2 Reliability 

A number of authors have focused on the fact that unreliable travel times create the 

possibility of being late for work (Gaver, 1968; Abkowitz, 1981; Polak, 1987; Bates, 1990). 

Typically they specify scheduling costs similarly to Small (1982), as described above, although 

usually including only a schedule-delay or a lateness penalty rather than both. They then derive 

conditions for how travelers adjust their scheduling choices to differing amounts ofreliability. 

For example, Gaver (1968) postulates utility to be a linear function of travel time, schedule delay 

early, and schedule delay late; he then derives the scheduling choice that maximizes the 

expected value of this utility given a particular distribution of uncertain travel time. Polak 

(1987) also takes this approach, but adds a concave transformation to utility in order to represent 

risk aversion. 1 

The theoretical model used in this paper is based on that in Noland and Small (1995). 

Noland and Small's model is an extension of the models of Gaver (1968) and Polak (1987). Its 

key innovations are ( 1) the addition of a discrete lateness penalty; (2) accounting for the time­

varying pattern of congestion over the course of the morning commute; and (3) deriving the form 

of the resulting expected costs of a morning commute trip, when the commuter chooses a 

schedule according to the model. To this expected cost function, we postulate in the present 

paper an additional term which we call the planning cost, a function of the standard deviation of 

travel times. 

Empirical measurements have typically not distinguished between expected scheduling 

costs and planning costs. Black and Towriss (1993) assume that expected travel cost is simply a 

linear function of mean travel time and its standard deviation, and estimate the parameters. A 

similar approach is taken by Abdel-Aty et al. (1994). Both sets of authors estimate this cost 

function from stated-preference data. Here we estimate a model that separates these components 

1 Polak (1987) developed some very detailed equations attempting to deal with risk aversion. Our approach is much 
simpler and results in the derivation of a "lateness probability" variable that could be interpreted as representing risk 
aversion and which also separates this measure from the value of time. 

4 



by estimating the underlying cost function prior to taking its expectation over the distribution of 

uncertain travel times and prior to the commuter's optimization over schedules. Our stated 

preference survey questions specify departure time from home as well as a distribution of travel 

times. We are therefore able to estimate separate coefficients on schedule delay, probability of 

being late, and standard deviation of travel times (which we have hypothesized is related to 

planning costs). 

2.3 Equilibrium Modeling with Endogenous Scheduling 

There is an extensive literature on modeling equilibria or dynamic adjustment paths using 

a simple deterministic demand structure. On the supply side, most such papers use a bottleneck 

model that is basically that of Vickrey (1969), except usually simplified by making everyone's 

desired arrival times identical. An example is Amott et al. (1990). These models are reviewed 

by Small (1992). 

One author, Henderson (1981; 1985), uses instead a supply model which applies a 

conventional static speed-flow curve to each cohort of travelers. Chu (1995) demonstrates that it 

is essential to define that cohort by their arrival time at the end of the bottleneck rather than by 

their departure times from home; otherwise, anomalous possibilities occur and equilibria do not 

exist. Chu also shows that the Vickrey bottleneck model appears as a limiting case of the 

Henderson model in which the speed-flow curve becomes kinked, so that the elasticity of travel 

time with respect to traffic volume is zero for volumes less than capacity and becomes infinite at 

volumes equal to capacity. 

Chu (1993) investigates equilibrium behavior in a model with a Henderson-type supply 

side, and in which the simple deterministic demand-side specifications just discussed are 

replaced by a discrete-choice model of scheduling very similar to that of Small ( 1982). Here, we 

extend Chu's model to incorporate reliability. This is done by making two changes. First, we 

substitute the demand model estimated from Koskenoja's data for that used by Chu. Second, we 

make capacity depend on the occurence, severity and duration of random incidents. In this way 

travel times become stochastic; equilibration then occurs with people responding to the entire 

distribution of travel times. 
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3. THEORETICAL DEMAND MODEL 

We begin with a theory of scheduling costs under uncertain travel times. As in Noland 

and Small (1995), we build upon prior work by Gaver (1968), Polak (1987), and Bates (1990) by 

postulating a cost function for a commuter with a particular preferred arrival time at work, which 

empirically is taken to be the official work start time. This scheduling cost function, Cs, is that 

of Small (1982): 

Cs = aT + ~(SDE)+y(SDL)+0DL (1) 

where Tis travel time, SDE and SDL are schedule delay early and late, respectively, according 

to the definition in Small (1982), and D1 is equal to 1 when SDL > 0 and O otherwise. a is the 

cost of travel time, p and I are the costs per minute of arriving early and late, respectively, and 0 

is an additional discrete lateness penalty. 2 

We define three elements of total commute time, T. The first is the free-flow travel time, 

Tr, which occurs if the highway has no congestion. Next is the minimum extra travel time due to 

congestion, T x, also known as recurrent congestion and which we assume the commuter expects 

will occur daily. Finally, the added time due to non-recurrent ( or unpredictable) congestion, due 

for example to incident-related delays (Lindley, 1987; Schrank et. al, 1993), is defined as Tr, a 

random variable.3 We specify a probability distribution for Tr. 

For simplicity we assume the underlying events causing non-recurrent congestion are 

independent of the amount of recurrent congestion and of the time of day of travel. This 

simplification is more realistic than many people think. There is a general assumption that as 

congestion increases, non-recurrent events will also increase. If one considers accidents as a 

proxy for non-recurrent events then the limited research available indicates that the relationship 

between increasing traffic levels and accidents is not so simple. Zhou and Sisiopiku (1997) 

2 Small (1982) found that the parameters of (I) vary with measurable socioeconomic characteristics, but we prefer 
the simplicfication of constant parameters in order to keep the supply-demand simulations manageable. It might 
also seem that a and 0 would be correlated across the population, but this is not necessarily the case. The value of 
travel time, a, and SDL are probably related to an individual's wage rate while the lateness penalty is probably 
related to the rigidity of working conditions (i.e., habitual lateness may in some cases lead to the loss of a job or 
reduced opportunities for career advancement). In fact one could reasonably argue that those with low wage rates, 
and hence low values of a might have higher values of 0. 
3 We simplify the real world somewhat by identifying all unpredictable congestion as due to incidents and giving it 
a positive value. There can also be pleasant surprises, due for example to unexpectedly low demand on a particular 
day, but we do not model these. Rather, our recurrent congestion is fully predictable while non-recurrent congestion 
is a positive random variable whose distribution is known but whose specific value on a given day is not. 
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suggest that when volume/ capacity ratios are low, accident rates are actually higher than under 

more congested conditions. Shefer and Rietveld (1997) also discuss these effects. Major 

incidents, while perhaps less frequent when traffic volumes are low, could tend to result in 

longer delays than more frequent minor incidents. Satterthwaite (1981) reviewed the literature 

and found no compelling reason to conclude that there is any relationship between accidents and 

traffic volumes. Our model does produce a correlation between incident delays and congestion 

because a given reduction in capacity results in a non-linear increase in travel time. 

The official work start time, 1w, is assumed to be exogenous. In contrast, the home 

departure time, th, will be chosen by the commuter. Let us define the maximum early arrival 

time, Te, as, 

(2) 

This is the "head start" time of Gaver (1968). These definitions enable us to rewrite the cost 

function as follows: 

Cs(Tr,T 0 )=a[Tr+Tx +T,]+~(l-DL)(/0 -Tr)+yDL[Tr -Tc)+0DL. (3) 

Note that this cost depends on Te, which is subject to the commuter's choice through choice ofth 

in equation (2); however we postpone describing that choice until section 6.1. 

Work start times are explicitly assumed to be exogenous. This simplifying assumption 

may not be true in all cases as employers and employees may select working arrangements that 

account for the probability of arriving late. These arrangements, such as flexible working hours, 

would presumably increase the utility of both employees and employers given existing uncertain 

travel times. However, they may still be sub-optimal for the employer who would prefer 

coordinated work schedules for all employees and thus different work schedules would still 

impose a cost as modeled by Henderson (1985) and measured empirically by Wilson (1989). 

Our model does not attempt to consider employer costs and how this may affect work start times. 

Given a probability distribution for Tr, we can generate expected values for each of the 

terms in equation (3), thereby determining the expected cost as a function of scheduling choice, 

Te: 

(4) 
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where PL = EDL is the probability of arriving late. For example, if T, has a uniform distribution 

over [O, T mJ, then equation ( 4) takes the form, 

An underlying assumption is that people minimize the expected cost of travel. This 

amounts to assuming no risk aversion, or alternatively assuming that any risk aversion is already 

incorporated into the coefficients of the schedule-delay variables. Either interpretation is 

consistent with our empirical methodology for measuring the coefficients. 

In this paper, the distribution of Tr is determined by the possibilities presented in the 

stated preference survey questions for purposes of estimating the model's parameters; in the 

simulations of section 6, it is determined as part of the simulations. Here, equation ( 4) suffices 

for our purposes. 

In addition to producing mis-matched schedules, travel time uncertainty may also impose 

an inconvenience due to the inability to plan one's activities exactly. We call this "planning 

cost", Cp, and assume it is a function of the standard deviation S of uncertain travel time Tr, with 

coefficient cr. Total expected cost is therefore 

= aE(T) + ~E(SDE) +yE(SDL) +0PL + crf (S). 

(7) 

(8) 

This is the basic model that we estimate in section 5. Our expectation is that~< a< 1 and that 

all coefficients are positive. 

Previous work, such as by Black and Towriss (1993), has considered a reduced form of 

(8) in which the traveler is allowed to optimize departure time. Noland and Small (1995) show 

that the parameters ~' y, and 0 on the right-hand side then obtain an optimized value that may be 

approximated as proportional to the standard deviation, S, of travel time. Their effect may 

4 See Noland and Small (1995) for the full derivation and for the case Te< 0 or Te> Tm, as well as a derivation using 
an exponential distribution ofT,. 
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therefore be subsumed in the last term, and the model specified purely as a tradeoff between 

mean travel time and its standard deviation. The advantage of our model is that we can estimate 

the parameters p, y, and 0, which are key to the shifts that form the heart of our simulation 

exercises. The disadvantage is that two of the three corresponding variables, namely SDL and 

PL, are unavoidably correlated with each other and with travel-time variability, S, in any realistic 

set of scenarios, making estimation more difficult. 

In Noland and Small (1995), we permit head-start Te to be chosen to minimize expected 

scheduling cost, EC8• However, here we assume instead that head-start is chosen from a random 

utility model in which disutility is proportional to EC. We find that this leads to similar 

qualitative behavior, such as a shift toward earlier schedules in response to increased standard 

deviation of travel time. 

4. STATED PREFERENCE SURVEY AND DATA 

COLLECTION 

In order to empirically estimate the trade-offs among reliability, mean travel time, and 

scheduling decisions a stated-preference (SP) survey was administered to a sample of more than 

700 commuters in the Los Angeles region who had already taken part in a recent panel study (see 

Koskenoja (1994) and Small et al. (1995) for more details on the survey methodology). This 

strategy enabled us to take advantage of information already compiled about employer, work 

start time, and travel conditions, thereby providing information for calculating schedule delay 

and also allowing us to customize the survey to provide respondents with realistic situations 

corresponding to their particular commute. Through extensive follow-up we achieved an 80 

percent response rate, ultimately resulting in 543 usable questionnaires. Nine stated preference 

choices were asked of each respondent; from this we obtained 4340 usable observations on 

binary choice. Koskenoja (1996) and Small et al. (1995) use the same data to investigate the 

impact of various socio-economic variables on scheduling choices. Transit ridership is 

extremely low in the area surveyed, so our results are not confounded by modal choice. 

Each SP choice is between two alternative commutes to work, each with a specified 

distribution of travel times and a specified departure time from home. Departure time is 
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presented in minutes prior to the "usual arrival time," which was ascertained from a previous 

question about the commuter's actual situation. A sample question is shown in the Appendix; it 

is preceded by a number of questions that orient the respondent to the idea of travel-time 

variability, departure-time decisions, and scheduling constraints. A number of consistency 

checks suggested to us that respondents understood the SP question.5 Black and Towriss (1993) 

also tested different formulations and decided that this type of SP question was understood by 

respondents. The empirical demand model reported in the next section is estimated from the 

answers to the SP questions. 

The question format is a compromise between the need to describe a travel time 

distribution that would be realistic to the respondent, and the need to keep the question simple 

enough to be understood. Based on the experience of Black and Towriss (1993), who studied 

different question formats with this tradeoff in mind, the travel time distribution in the current 

study is described as a five point discrete distribution, where each possible travel time has an 

equal probability. The possible travel times were determined by choosing a log-normal 

distribution with a given mean and standard deviation, then picking the 1st, 3rd, 5th, 7th, and 9th 

decile points, each rounded to the nearest minute. The mean and standard deviation were chosen 

to be larger for those commuters whose current actual travel time was longer. 

To represent a travel time distribution as a discrete distribution is clearly a simplification. 

Two aspects could be problematic. First, it restricts the domain of the probability distribution, 

creating an artificial certainty as to the maximum possible delay that could occur. Second, one 

may mis-represent the skewness of the underlying distribution by showing only five points. To 

counteract any hidden skewness effects, all the sets of travel times we presented to respondents 

are derived from distributions with the same skewness, which means we cannot study the effects 

of third or higher moments of the travel time distribution. 

Since the respondent was shown only the five rounded travel times, all our subsequent 

computations of means, standard deviation, and expectations of derived quantities are based only 

on the discrete distribution. 

5 For example, in our pilot survey we gave some people a choice in which one alternative dominated the other on all 
criteria, and respondents always chose the former. 



Many potential sources of bias or inaccuracy have been identified in stated preference 

questions (Bonsall, 1985; Bradley and Kroes, 1990). In order to reduce some of these problems 

the questions were designed to be realistic and relevant to the respondents. For example, the 

distributions presented were customized so as not to deviate too far from the respondent's current 

mean travel time. In order to avoid "political bias," the questions were designed as abstract 

alternatives with no obvious way to promote any particular political philosophy through the 

answer. Finally, following a pilot study in which questions about tolls elicited responses that 

were clearly political statements, the price attribute was dropped from the design; this means that 

we can measure ratios of cost coefficients but not the actual costs. 

Our design strategy for the independent variables was to define three levels (low, 

medium, high) for each of the three quantities subject to independent control: mean travel time 

and the standard deviation of the underlying log-normal distribution of travel times, and expected 

arrival time. This design results in 27 possible combinations of independent variables for each 

alternative. SP surveys allow one to minimize the correlations among the independent variables 

by design, although as previously noted we cannot prevent correlation among SDL, PL, and S. 

Hensher and Barnard (1990) note that a factorial design drawn from all combinations of attribute 

levels will contain many pairs for which one alternative dominates another on each attribute. 

The dominated choice will not be informative and could possibly bore the respondent. 

Therefore, in forming our choice sets, we selected from the 27 possible combinations the largest 

possible subset within which no alternative dominates another. These seven attribute 

combinations are shown in Table 1. Randomly drawn pairs of these seven combinations were 

assigned to each individual to create nine repeated questions (but respondents were not presented 

the same pair twice). 

The actual values corresponding to low, medium, or high in forming these choice sets 

were different for each of five different groups of respondents, based on usual commute time 

from home to work. The three departure times were chosen to set expected arrival time at work 

equal to the usual arrival time minus zero, one, or two standard deviations of the log-normal 

distribution governing the travel-time distribution. For a complete listing of all possible 

combinations used in the survey see Table 4-3 of Small et al. (1995). 
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5. EMPIRICAL DEMAND MODEL 

5.1 Analysis Methodology 

In order to estimate equation (8) empirically, we assume that our survey respondents 

choose among the two alternatives A and B that are presented to them by combining their 

attributes as in (8), adding a random error term, and choosing the alternative with the lower cost. 

Thus (8) serves as the "systematic utility" in a discrete choice model (Ben-Akiva and Lerman, 

1985). With an appropriate distribution for the random errors, the resulting choice model is 

binary logit, which can be estimated by maximum likelihood using standard software. 

Stated preference designs are well suited to discrete choice binary logit models; the 

design provides the survey respondent with an actual choice of two hypothetical situations. One 

drawback in analyzing SP surveys is that we use a repeated measures approach (nine pairs of 

choices were presented to each individual) to obtain a large number of usable observations. This 

can result in a downward bias in estimated standard errors (Ouwersloot and Rietveld, 1996). 

Such bias results from the existence of unobserved preferences for one alternative over another 

that would characterize all the repeated observations from a given survey respondent. However, 

in our case the alternatives presented are abstract, literally choice "A" versus choice "B". The 

specified characteristics are varied so that there is no reason to think a given respondent would 

systematically prefer alternative "A" over alternative "B". Alternative estimation methods, such 

as that in Ouwersloot and Rietveld ( 1996), or ad-hoc adjustments to the standard error as 

proposed by Louviere and Woodworth (1983), are inapplicable and unnecessary here, since any 

bias should be minor.6 

To correspond with our analytical model ( equation 8) we need to determine the expected 

schedule delay (both early and late) and the lateness probability from these questions. Schedule 

delay, early and late, as used in our model were based on the definition in Small (1982). We 

modified that framework slightly in order to match the format of the question shown in the 

Appendix, in which we used the words "usual arrival time" instead of "official work start time" 

6 This was further confirmed by estimating a random-coefficients version of the model (see Revelt and Train, 1996) 
both with and without accounting for these repeated measures. We did this for the "basic model" of Table 3, 
column (2). Accounting for repeated measures increases the standard error estimates by only O - 10 percent. For 
this work we adapted a Gauss program kindly provided by Kenneth Train. 
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as the basis for representing people's most preferred arrival time. We did this to avoid having to 

make elaborate descriptions of how to count time in the elevator, walking through the office, and 

so forth. The two times coincide for 56 percent of the respondents who answered both questions 

(Small et al., 1995). 

The stated-preference question format specifies "departure [Ta] minutes before your usual 

arrival time", where a specific number is inserted for Ta; that number is therefore taken to be a 

measure of 1w - 41 in our notation above. (The notation Ta indicates minutes ahead of desired 

arrival time.) The definition of early and late schedule delay can be formally defined as: 

{
Ta - ½, if > 0, 

SDL.= 
' 0 otherwise; 

{
½ -Ta, if > 0, 

SDE. = 
' 0 otherwise. 

(9) 

(10) 

Ta and the five values of Ti are stated directly in the question. The expectations ofT, SDE and 

SDL are derived by averaging, over the five possible values. For example, using the sample 

question in Figure 1, for choice A we have three possibilities of arriving early since the departure 

time is 15 minutes before usual arrival time, (i.e. Ta is 15 minutes) and travel times (Ti) are 12, 

13, 14, 16, and 20. In three cases one can arrive early, by 3, 2, and 1 minute. Therefore to 

calculate E(SDE) we sum the early arrivals (3 + 2 + 1 + 0 + 0) and divide by 5 to get a value of 

E(SDE) equal to 6/5 = 1.2 minutes. In choice B, E(SDE) is 1.8 minutes. E(SDL) is calculated in 

a similar manner and would be 1.2 minutes in choice A and 2 minutes in choice B. E(T) is 15 

minutes for choice A and 10.2 minutes for choice B. 

The lateness probability is determined discretely by counting the number of possible 

travel times that will result in a late arrival and dividing by 5. Using the sample question in 

Figure 1, choice A has 2 possibilities of arriving late (16 and 20 minute travel times) which result 

in a 40% lateness probability (PL= 0.40). Choice B also PL= 0.40. The design of the SP 

questions provided only three discrete levels of lateness probability: 0%, 20%, and 40%. 

The standard deviation of the travel time is defined in the usual way as the square root of 

the variance, which in turn is the sum of five terms [Ti - E(T)] 2 divided by 5. In the sample 

question in the Appendix the standard deviation is 2.83 for choice A and 4.53 for choice B. 
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5.2 Estimation Results 

Our first step in analyzing the results is to estimate a simple model that contains only the 

trade-off between mean travel time and the standard deviation of travel time. That is, we 

estimate equation (8) omitting the middle three terms on the right-hand side. This model could 

be regarded as a reduced-form of model (8) after the traveler is allowed to optimize over 

departure time; it would be appropriate if one believed that our respondents ignored the departure 

time specified in our question and instead chose their own preferred departure time. The result is 

shown in Table 2, column 1. Both attributes are highly significant in explaining choice and both 

estimated coefficients have the expected negative sign (i.e., the larger the travel time and/or the 

standard deviation, the less desirable the alternative). For comparison, column 2 shows the 

results of Black and Towriss (1993) for this same specification. They also include money in 

their estimations. 

A useful comparison is the ratio of the coefficient of standard deviation to that of E(T). 

We find the ratio to be 1.27 while Black and Towriss have a ratio of 0.55. Thus our estimation 

indicates that each minute of standard deviation is 27% more costly than each minute of mean 

travel time. One of the key differences between our study and Black and Towriss is that they did 

not specify the head start time as we do; therefore it is natural that they found people less averse 

to travel time variation because in their survey people can anticipate its effects by adjusting their 

schedules. We can also take that into account, but to do so we need to estimate the full model of 

equation (8). 

Table 3, column 1, shows the result of estimating the full model of equation (8) with 

planning cost assumed proportional to the standard deviation of travel time. Planning cost has a 

positive and significant coefficient, which is contrary to the theory. The coefficient for the mean 

travel time is also less than that for E(SDE), which implies that people prefer to be in traffic than 

to arrive early; this also seems implausible. As an alternative we specify planning cost as 

proportional to the coefficient of variation (standard deviation divided by mean travel time) and 

find that while this is statistically insignificant, it does have the appropriate sign. This is shown 

in Table 3, column 2, and henceforth will be referred to as our "Basic Model". 
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All coefficients in the basic model have the expected negative signs and acceptable 

relative magnitudes: E(SDE) is less onerous than E(T) which is less so than E(SDL). However, 

it is surprising that the coefficient of E(SDL) was not much greater than that ofE(T). All four of 

the coefficients just mentioned are statistically significant. 

It is possible that E(SDL), PL, and the coefficient of variation are too highly correlated to 

distinguish their effects separately. Column 3 (Table 3) shows that when PL is removed the 

coefficients of the other two increase, and the coefficient of variation becomes significant. 

When the coefficient of variation is removed from the model (Table 3, column 4) the 

other coefficients do not noticeably change. The coefficient on lateness probability does increase 

slightly, indicating that it is picking up some of the explanatory power of the coefficient of 

variation. This result seems to suggest that our hypothesized "planning cost" is not as important 

a variable in the commuters' choice as the other variables. Alternatively, we may not have 

specified an appropriate functional form for planning cost. In any case, it appears that much of 

the uncertainty inherent in unreliable commuting trips is better explained by the schedule delay 

and lateness probability variables. 

The relative importance of the schedule delay variables with respect to travel time was 

first detected by Small (1982). We present his most comparable model in column 5. This model 

contained no uncertainty in travel time, and therefore no planning cost. 

The bottom of Table 3 shows the ratios of the coefficients for E(SDE) and E(SDL) 

relative to that of travel time for each model. As can be seen, other than for the model in column 

1, we get results similar to Small's. Column 1 has very high ratios, but this probably reflects a 

mis-specification. These results are generally encouraging and seem to indicate that the 

respondents to the questionnaire interpreted the trade-offs in the SP questions appropriately. 

These models show that the components of the scheduling cost, C8, in equation (8) are 

important determinants of the travel choices individuals make. We believe these are the 

underlying factors behind the aversion to travel time uncertainty found by other researchers, such 

as Black and Towriss (1993). Whether planning cost is a significant factor when scheduling 

variables are taken into account remains unproven due to the statistical insignificance of the 
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coefficient of variation in our basic model. It may be that it is a lesser factor whose importance 

is too small for us to measure. 

The model with the highest p2 (and the largest likelihood function) which also matches 

our theoretical formulation is the "basic model" in column 2 of Table 3; for this reason we utilize 

this model in the simulations presented next.. The low value of p2 may indicate that we are not 

capturing all the variables that could explain an individual's choice, such as socioeconomic 

variables. 

6. SIMULATIONS WITH ENDOGENOUS CONGESTION 

We now combine the analysis of the basic demand model of Table 3, column 2, with a 

supply side model of a congested highway corridor. Our purpose is to simulate the effect of non­

recurrent events on actual congestion patterns, taking account of people's rescheduling decisions. 

This procedure will allow us to examine scheduling shifts due to exogenous changes such as a 

reduction in incident probabilities or an expansion of capacity. We also examine the resulting 

changes in the expected cost to commuters and its components. 

First we discuss the basic simulation procedure and methodology. We then briefly 

present the travel conditions generated by the simulations. This is followed by an analysis of the 

pattern of scheduling shifts and the relative components of total travel costs. 

6.1 Simulation Methodology 

Our simulation model, adapted from that of Chu (1993), is an iterative algorithm 

combining the discrete-choice demand model discussed above with a simple supply model based 

on a standard relationship between volume-capacity ratio and travel time. We represent 

incidents directly by postulating randomly occurring reduction in capacity of specified levels and 

duration. The probability of an incident occurring during a given time interval is a key 

exogenous parameter which, when varied, allows us to investigate how the behavior of the 

system changes as incidents become more or less frequent, for example due to changes in vehicle 

safety inspection regulations, driving habits, or methods of clearing incidents. We also treat 
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capacity as a variable parameter so we can compare the effects of policies to expand capacity 

with policies to reduce incidents. 

The demand model takes as given the entire distribution of travel times facing a 

commuter entering the hypothetical highway. It is applied to a synthetic sample of 5000 

individuals, predicting for each the probability of choosing any of eleven possible departure 

times. Each individual is asigned a "work start time", tw, which is really to be thought of as the 

time that individual would need to exit from the highway in order to arrive at work on time; it is 

drawn randomly from a normal distribution with mean equal to 8:00 a.m. and standard deviation 

equal to 60 minutes. 

Although our respondents faced only two choices in the SP questions, we assume that 

when faced with a larger choice set they would apply a multinomial logit choice rule to that 

larger set using the same estimated utility function. In our simulation there are eleven choices, 

with expected schedule delay (the difference between actual and desired exit time from the 

highway) ranging from -20 to +20 minutes with intermediate values ±15, ±10, ±5, ±3, and 0. 

For each member of the synthetic sample, the demand model determines the probabilities 

of each of the eleven possible values of expected schedule delay, £(SD). The probability that a 

given individual will travel during a specified time interval is then calculated by summing each 

schedule delay interval with that individual's unique "work start" time. This gives us for each 

individual the probability of travelling during a given time slot. For example, if one individual 

has a "work start" time of 8:35 a.m. the probability that £(SD) is -20 minutes is equivalent to the 

probability that this individual travels in the time interval between 8: 10 and 8:20 am. Sample 

enumeration (as described in Ben-Akiva and Lerman, 1985), which consists of summing the 

choice probabilities for each individual in the synthetic sample, allows us to determine the 

estimated traffic volume for each 10 minute time slot. 

Our supply model applies the following simple speed-flow relationship to each time slot: 

(11) 

where T is the travel time in minutes, V is the number of vehicles leaving the highway per hour, 

C is the capacity of the facility,£ is the elasticity parameter, l is the length of the facility 
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( assumed to be equal to 5 miles), and T0 and T 1 are constants. The supply model of equation 

( 11) has a long history in transportation engineering and economics, dating back at least to the 

U.S. Bureau of Public Roads (1964). It was incorporated into the Urban Transportation Planning 

Process computer software used widely in the U.S. (Branston, 1976, p. 230) and has also been 

used in many economic models of congestion including Vickrey (1963), Mohring (1979), and 

Kraus ( 1981 ), with values of£ ranging from 2.5 to 5. Small (1992, pp. 70-73) finds that equation 

(11) fits quite well the data from a dynamic simulation of city streets in Toronto (with£= 4.08) 

and the data from an aggregate analysis of Boston express roads (with£= 3.27). Since the 

precise function is less important for our purposes than its general ability to measure rapidly 

increasing congestion, we forego an extensive empirical estimation and simply used the 

parameters of U.S. Bureau of Public Roads (1964), namely:£= 4 and T1/T0 = 0.15. The value 

of TO is immaterial to our model; for convenience we set T0= 1.0 minutes/mile corresponding to a 

free-flow speed of 60 miles per hour.7 

This supply model was first used to model endogenous scheduling equilibria by 

Henderson (1981; 1985). Chu (1995) shows that in order to assure equilibria and avoid 

"overtaking" situations (where an individual can depart later than another yet arrive earlier), one 

must assume that volume, V, in equation (11) is calculated at the point where the flow leaves the 

highway. The capacity is assumed equal to 1200 vehicles/hour except for random reductions due 

to incidents. 8 It is these random capacity reductions that make T stochastic. 

We assume that the probability of an incident is the same for every 10 minute increment 

of clock time. We also assume that each incident is independent of other incidents, except that 

for simplicity, we assume that only one incident can occur within a given time interval, and that 

no additional incidents occur during the time when the capacity is reduced. The probability of a 

7 For purposes of computing the expected travel time that forms the denominator of the coefficient of variation in 
the demand model, we approximated by drawing a fixed component of travel time (assumed to occur either off the 
highway or on uncongested parts of the highway) from a normal distribution with mean 20 minutes and standard 
deviation of 5 minutes. This is done because we need to represent the entire trip, not just that part on the congested 
highway. 
8 A free-flow speed of 60 mph and capacity of 1200 vehicles per hour may not correspond to "realistic" conditions. 
During the course of this analysis other volume/capacity ratios were tested. These did not produce substantively 
different results. The traffic volume level presented did give reasonable congestion levels for the number of 
travelers simulated and was chosen for computational reasons (i.e., faster convergence times). 5000 commuters 
provided a good distribution of individual choices. Higher capacity levels would need a higher level of commuter 
traffic to generate realistic congested travel times but would lead to longer computational times. 
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capacity reduction is assumed independent of traffic volume; although, as we will show, the 

resulting standard deviation of travel times varies and is higher over the peak period. 

Three levels of incident severity were defined, given that an incident had occurred: 

namely capacity reductions of 50%, 30%, and 10%, occurring with conditional probabilities of 

10%, 20%, and 70%, respectively.9 

The duration of each reduction in capacity must also be specified. Incident durations 

have been determined to occur with a log-normal distribution (Giuliano, 1989; Golob et al., 

1987). For simplicity, we instead set three levels based on the clock time intervals. The 

probability that the incident lasted for only 10 minutes (1 interval) was set to 50%, for 20 

minutes (2 intervals), 30%, and for 30 minutes (3 intervals) 20%. These durations imply that for 

a given 10 minute interval the probability of there being some capacity reduction is equal to 1. 7 

times the specified incident probability. Therefore, variation in incident durations are essentially 

equivalent to variations in the incident probability for a given time interval. 

For the sake of exposition, we calculate the distribution of travel time values assuming 

10,000 trips. This allows us to calculate travel time values given a range of incident probabilities 

and the specified severity probabilities. For example, if we assume a 2% incident probability, 

then there would be 200 trips with some reduction in capacity and 200 x 1. 7 = 340 time intervals 

with a reduction in capacity. If for each incident there was a 50% chance of a 10% reduction in 

capacity, then 100 trips would have capacity reduced by this amount in the calculation of the 

travel time using the speed-flow equation ( 11) above. This was done for each 10 minute clock 

interval, resulting in a complete description of the the travel time distribution for that time 

interval, including the mean travel time and the standard deviation of travel time. 

This distribution was then fed back into the demand model (see Figure 1 for a flowchart 

of the simulation process). This allows us to calculate a new distribution of expected schedule 

delays for each individual. The demand model also uses the ratio of standard deviation to the 

mean travel time, the latter also includes the free flow travel time for each individual. From this 

the demand model allocates each individual stochastically to a clock time interval and we 

enumerate over the entire synthetic sample. This process continues until the number of 

9 Analysis of variations in severity level and probabilities found no substantive differences to variations in incident 
probabilities, so are not shown in our results. 
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individuals assigned to each time interval by the demand model remains essentially constant ( or 

changes by a very small amount) from one iteration to the next. After convergence is achieved 

we evaluate the congestion profile, the average travel delay, and the total cost. 

6.2 Travel Conditions Generated by Simulations 

The travel conditions generated by the simulations are a function of our assumptions 

about incident probability levels, the severity of those incidents, the probability of a given level 

of severity occurring, and the incident duration. The travel conditions represent the equilibrium 

level of the system. Here we review these values and briefly discuss their realism. 

Average travel times vary with the "work start" time. This results in a peak travel time 

between 11 and 15 minutes, depending on the probability of an incident occurring and an off­

peak travel time of 5 minutes. Off-peak times do not vary because the capacity reduction does 

not result in any congestion during the off-peak periods. The travel delay, which occurs only 

because of non-recurrent congestion, ranges from peaks of about 2.5 minutes up to 5.5 minutes 

in our simulations. 

The standard deviation of travel time and the coefficient of variation also vary over the 

peak. The maximum standard deviation and coefficient of variation occur at the most congested 

time. This is because any reduction in capacity at this time will have a much greater impact on 

travel times than a capacity reduction when traffic volumes are small. Incidents during off-peak 

hours will not have any impact on travel times since there is ample capacity, even after an 

incident causes a reduction in capacity. The increase in standard deviation (and the coefficient of 

variation) over the peak occurs despite modeling a constant incident probability for each clock 

interval. The coefficient of variation ranges up to about 0.14 which matches empirical 

measurements ranging from 0.08 to 0.2 as reported by Bates (1990). 

The probability of arriving at work late for any given choice of schedule shows an 

expected pattern. As the probability of a capacity reduction increases, lateness probability 

increases. The simulations generate a maximum lateness probability of slightly over 40% in the 

on-time case (with a 25% incident probability); this is a good match to the range of lateness 

probabilities in our stated preference questions which had three levels of 0%, 20%, and 40%. 
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6.3 Travel Delay and Scheduling Shifts from Incident Reduction and Capacity 
Expansion 

Reductions in non-recurrent delay ( expressed as incident probabilities) can decrease 

average travel times. Increases in capacity can have a similar effect. Both may also have an 

impact on scheduling choices which may reduce the benefits of reductions in peak travel time by 

allowing more commuters to travel during peak hours. There may be reductions in scheduling 

costs associated with any shift to the peak. 

Average travel delay is reduced as the incident probability decreases. Both total delay 

and delay due only to non-recurrent congestion increase with increasing incident probability. 

For a capacity level of 1200, average travel time increases from about 2.2 minutes to about 4.5 

minutes as the probability of an incident goes from 0% to 25%. Obviously, policies that reduce 

the probability of an incident blocking capacity will result in a decrease in average travel times. 

Figure 2 shows the effect on average travel delay of varying highway capacity. For an 

incident probability level of 20%, increasing the capacity from 1200 vehicles per hour to about 

1400 vehicles per hour reduces average delay by about 2.5 minutes per vehicle. This is 

comparable to the average travel time savings from eliminating incidents. While we don't know 

what the costs of reducing the incident probability would be, we do know that freeway capacity 

expansions are generally very costly. Therefore, if reducing travel delay is the only objective, 

this shows the relative trade-offs of two possible alternative strategies for reducing delay. 

Scheduling costs involved in commuting decisions may be as important as travel time 

costs. Figure 3 shows that reducing the probability of an incident results in significant shifts in 

schedules: many commuters who previously planned to arrive early or late now choose to instead 

arrive at their desired work start time. Out of 5000 commuters, about 400 more choose to arrive 

with schedule delay of zero when incident probabilities are zero, compared to an incident 

probability level of 25%. For comparison, a simulation using the values calculated by Small 

(1982) that does not account for variance in travel times resulted in a larger shift to earlier travel 

periods than the current model. This can probably be attributed to the relatively larger 

coefficient for schedule delay late in Small's model (see Table 3, column 5). Other than this 

difference the scheduling shifts of the current model show the same basic pattern. 
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Such shifts do not occur as a result of increasing capacity. Figure 4 shows the difference 

in schedule delay choices between capacity levels 1200 and 2400 for each incident probability 

level. The greatest shift occurs with an incident probability of 25%, with a very small increase 

of about 50 ( out of 5000) commuters choosing to arrive with no schedule delay. Increasing 

capacity does enable commuters to better fine-tune their schedules, but the effect is small even 

with a very large capacity increase. 

Despite the scheduling benefits of incident reductions, the overall congestion profile does 

not really change. There is a slight increase in peak travel when there are no incidents, but it is 

essentially negligible and will have only a minor impact on increasing average travel delays; 

therefore, the scheduling cost reductions do not seem to be off-set by significantly more 

congestion at the peak. 

6.4 Components of Total Travel Costs 

The expected travel costs can be calculated using the demand model (Table 3, column 2) 

and the equilibrium travel conditions generated by the simulations. These are calculated for 

different incident probability levels and different capacity levels. 

Table 4 shows the average total cost per trip which increases as the incident probability 

increases. The percent contribution from each component is also shown. These components are 

expected travel time, schedule delay early and late, lateness probability, and the "planning cost" 

(specified as proportional to the coefficient of variation of travel time). Schedule delay early 

costs are the largest cost component at small incident probabilities, but their proportion decreases 

with increasing incident probability. When incident probability is high, expected travel time 

costs become dominant because of the high level of non-recurrent congestion. The "planning 

cost" is relatively minor, showing an expected increase with increasing incident probability. The 

costs associated with the probability of arriving late also increase. The major reduction in total 

costs with decreasing probability of an incident can be attributed to decreases in costs of 

schedule delay early and lateness probability. 

Table 5 shows a similar breakdown for simulations with increasing levels of capacity. 

Total costs decrease by about the same amount when capacity is doubled from 1200 to 2400 as 
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in the case when incident probabilities are reduced from 25% to 0%. The source of the decrease 

in costs is, however, different. When capacity is increased the cost reduction comes 

overwhelmingly from reductions in the travel time costs associated with both recurrent and non­

recurrent congestion. Scheduling costs and lateness probability remain essentially the same. 

The "planning cost" is again negligible. 

These cost calculations are averages over all the clock intervals of the simulations. Those 

choosing to travel at "peak" periods near 8:00 a.m., due perhaps to job or other constraints, will 

face higher total costs than those traveling at other hours. The relative contribution of the 

various components will also differ. Table 6 shows the cost components for a particular 10 

minute period far from the peak, namely the clock interval 6:35 a.m. to 6:45 a.m .. Travel time 

costs due to non-recurrent capacity reductions are negligible. There is also very little variation in 

total costs as the incident probability increases. Most of the increase is due to the costs of the 

probability of arriving late increasing. 

During a peak period, such as 7:55 - 8:05 a.m., travel time costs are a much larger 

fraction of the total costs, which increase significantly as the incident probability increases (see 

Table 7). Lateness probability costs also show an increase while scheduling costs do not change 

much and their total percent contribution decreases. 

7. CONCLUSIONS 

Our model provides a way to simulate complex interactions among scheduling choices, 

reliability of travel times, and congestion. It allows for heterogeneity of travelers, considerable 

complexity in the determinants of scheduling choices, and a variety of underlying processes for 

generating randomness in travel times. At the same time, the actual choices made and the 

resulting travel conditions are fully endogenous, though we do not endogenize the response of 

employers to congestion and how work schedules may change. 

As expected, people shift their schedules earlier in response to increases in travel-time 

dispersion. The main motivation for doing this is to offset the increased probability of being late 

that would otherwise result from less predictability in travel time. This shift is not very large, 

and it does not seem to appreciably change the extent of peaking, so the amount of congestion on 

23 



those days when travel time is low (i.e., when recurring congestion is present) is barely affected. 

Our analysis did not consider how providing information to commuters may change their 

decision making but it does implicitly assume that commuters are responding to known 

information on average conditions. Noland (forthcoming) examines the ex-post costs of having 

or not having information. 

Scheduling accounts for an important part of the costs of congestion and of unreliability. 

As the probability of an incident is increased in our model, commuters' total travel costs increase. 

Nearly half the increase (44 percent) is due to the extra travel time due to incidents, and almost 

as much (37 percent) is due to the extra probability of late arrival at work; the remaining 15 

percent is due to other scheduling considerations such as spending more time at work before 

work begins. 

Once the costs of non-optimal schedules are taken into account, uncertainty in travel time 

has only a very small additional cost. "Planning cost" or residual pure cost of uncertainty 

accounts for only 4.5 percent of the rise in costs as incident probability is increased. Therefore 

we are able to explain most of people's aversion to uncertainty in terms of costs of early or late 

arrival. This is an important finding because earlier studies measuring people's aversion to 

uncertainty have not distinguished among the causes. 

The importance of lateness probability and schedule delay-late in our results suggests that 

one way to reduce the costs associated with unreliability is to encourage more flexible work 

schedules. Late arrival and adherence to strict schedules seem to be the greatest source of stress 

related to travel time unreliability (Small et al., 1995). Many occupations may require 

employees to have coordinated schedules; this is obviously dependent on the nature of the 

specific business or professional activity. It is therefore not advisable to mandate the loosening 

of strict work schedules, but it may be advantageous to encourage it. 

While our analysis focuses on commuter travel behavior, it has implications for the 

freight industry and for service industries that rely on transportation during peak times. 

Productivity impacts on these sectors due to unreliability are probably large and it is likely that 

investment decisions are made based upon existing travel conditions. Additional research in this 

area is certainly warranted. 
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We have shown how reducing the probability of incidents and non-recurrent congestion 

can affect the costs of schedule delay. Policies aimed at reducing incident probability may be 

more effective at reducing social costs than policies increasing capacity. One area where better 

research is needed is exactly how traffic volumes and capacities affect the probability of 

incidents, their severity, and their duration. Furthermore, methodologies for determining the 

costs of specific policies and how they reduce travel time variance are needed in order to perform 

analysis of the costs and benefits of alternative methods for decreasing non-recurrent congestion. 

For example, what would be the effects on travel time variance, travel costs, and traveler benefits 

of a capacity expansion relative to a freeway service patrol that detects and removes incidents 

rapidly? (See Skabardonis, et al., (1995), for a detailed evaluation of Freeway Service Patrols in 

the San Francisco Bay Area). 

We found that our hypothesized "planning cost" did not seem to account for a large 

fraction of the total costs of unreliable travel. However, if advanced traveler information 

systems become widely available, these costs could be affected because people will need to plan 

in order to use them. Future research could determine whether the benefits of these systems will 

exceed both the monetary costs and planning costs of using them. 
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APPENDIX 

SAMPLE STATED PREFERENCE QUESTION 

Below are nine pairs of scenarios for your usual morning commute. In these scenarios 

you do not know what the exact travel time will be, but you know it will be one of the five listed 

travel times (each has an equal chance). The departure time is expressed in minutes before your 

usual arrival time at the work place. You can refer to question 21 for your usual arrival time. 

Please consider how you feel about the time spent at home and in traffic, and how early 

or late you feel comfortable arriving at your work place. Then look at each pair and circle either 

A or Bas the alternative you would most likely choose. It is possible that neither one of the 

alternatives describes your commuting in real life. In such a case circle the alternative you 

would be most likely to choose if you had no other alternatives. 

1st pair of scenarios 

Time : minutes 

12 13 14 16 20 

Departure 15 minutes 
before your usual 
arrival time 

Please circle 
your choice: A 

27 

Time : minutes 

5 7 9 12 18 

Departure 10 minutes 
before your usual 
arrival time 

B 
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TABLE 1 

Design of Attribute Levels for SP Questions 

mean travel time 

high 
medium 
high 
medium 
low 
medium 
low 

TABLE 2 

Standard deviation of departure time 
travel time 
medium 
high 
low 
medium 
high 
low 
medium 

low 
low 
medium 
medium 
medium 
high 
high 

Simple Model Compared with Black and Towriss Model 

Simple Black and 
Model Towriss 

model (cars 
only) (1993) 

(1) (2) 
E(travel time) -0.0996 -0.0635 
T-Stat (-17.517) (-8.90) 

Standard deviation -0.1263 -0.0352 
T-Stat (-12.669) (-3.17) 

Money - -0.0082 
T-Stat - (-6.34) 

- -
N 4340 

L(~) -2826.5 -
p2 0.0598 -

-2 Note: The measure of fitness was computed asp = l-(L(/3)-K)/L(0), where 
K equals the number of estimated parameters, L(/3) is the log-likelihood value 
evaluated at the estimated parameters, and L(0) = -3008.3 is the log-likelihood 
value evaluated setting all coefficients equal to zero. Sample size is equal to N 
above .. 
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TABLE 3 

Results of Model Estimations 

with Basic without without 
standard Model lateness coefficient 
deviation probability of variation 

(1) (2) (3) (4) 

E(travel time) -0.0556 -0.1051 -0.1285 -0.0976 
T-Stat (-4.656) (-10.148) (-15.451) (-11.052) 

E(SDE) -0.1311 -0.0931 -0.0966 -0.0945 
T-Stat (-11.386) (-10.606) (-11.004) (-10.854) 

E(SDL) -0.3036 -0.1299 -0.2807 -0.1280 
T-Stat (-5.085) (-2.694) (-10.594) (-2.656) 

Lateness probability -2.564 -1.3466 - -1.529 
T-Stat (-6.426) (-3.704) - (-4.495) 

Coef. of variation -0.3463 -0.6674 -
T-Stat (-1.403) (-2.908) -

-
Standard deviation 0.1510 - - -
T-Stat (5.098) - - -
N =4340 

L(P) -2747.3 -2759.6 -2766.5 -2760.6 

p2 0.0851 0.0810 0.0790 0.0810 

Coefficient Ratio { egn. 8}s 

p1a 2.36 0.89 0.75 0.97 

y/a 5.46 1.24 2.18 1.31 

* Small's model also contains coefficients to adjust for rounding errors in reported measurements. The variable 
definitions are somewhat different also. The travel time, SDE and SDL variables are actual reported values as 
opposed to expected values; the lateness probability was a dummy variable for those choices involving actually 
arriving at work late, whose expectation would be the lateness probability in the context of the present paper. 
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Small 
(1982), 

model 1 * 
(5) 

-0.106 
(-2.79) 

-.065 
(-9.29) 

-0.254 
(-8.47) 

-0.58 
(-2.76) 

-
-

-
-

-

-

0.61 

2.40 



TABLE 4 

Components of Total Cost by Incident Probability (capacity= 1200) 

Incident Probability Average Expected E(SDE) E(SDL) Lateness Planning 
Cost Travel Time probability Cost 
($/trip) 

0 $1.51 27.92% 43.88% 10.91% 17.29% 0.00% 
0.1 $1.89 30.83% 36.86% 9.51% 21.67% 1.13% 
0.15 $2.07 32.00% 34.54% 9.08% 22.97% 1.41% 
0.2 $2.24 33.04% 32.68% 8.75% 23.96% 1.57% 
0.25 $2.39 33.99% 31.17% 8.50% 24.69% 1.65% 
Difference between $0.88 44.33% 9.52% 4.39% 37.30% 4.46% 
highest & lowest 
incident probabilities 

TABLE 5 

Components of Total Cost by Capacity (Incident Probability= 0.2) 

Capacity Average Expected E(SDE) E(SDL) Lateness Planning 
(vehicles/hr) Cost Travel probability Cost 

($/trip) Time 
1200 $2.24 33.04% 32.68% 8.75% 23.96% 1.57% 
1500 $1.76 18.08% 41.67% 10.75% 28.49% 1.02% 
1800 $1.56 10.10% 47.20% 11.90% 30.18% 0.61% 
2100 $1.46 5.90% 50.37% 12.55% 30.81% 0.37% 
2400 $1.41 3.60% 52.03% 12.91% 31.23% 0.23% 
Difference between ($0.83) 83.68% -0.61 % 1.61% 11.44% 3.88% 
highest & lowest 
capacitv 
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TABLE6 

Components of Total Cost During an "Off-peak" Interval (6:35-6:45 am), by Incident 
Probability (capacity= 1200) 

Incident Probability Average Expected E(SDE) E(SDL) Lateness 
Cost Travel probability 
($/trip) Time 

0 $1.11 2.86% 60.09% 14.19% 22.86% 
0.1 $1.27 3.65% 55.77% 12.85% 27.56% 
0.15 $1.34 4.03% 54.44% 12.39% 28.91% 
0.2 $1.40 4.42% 53.48% 12.01 % 29.82% 
0.25 $1.46 4.81% 52.79% 11.70% 30.38% 
Difference between $0.35 11.05% 29.42% 3.73% 54.49% 
highest & lowest 
incident probabilities 

TABLE7 

Components of Total Cost During a "Peak" Interval (7 :55-8:05 am), by Incident 
Probability ( capacity = 1200) 

Incident Probability Average Expected E(SDE) E(SDL) Lateness 
Cost Travel probability 
($/trip) Time 

0 $2.02 44.73% 32.82% 8.78% 13.67% 
0.1 $2.62 46.86% 26.40% 7.60% 17.54% 
0.15 $2.89 47.72% 24.34% 7.25% 18.74% 
0.2 $3.16 48.47% 22.72% 6.99% 19.69% 
0.25 $3.40 49.13% 21.37% 6.80% 20.50% 
Difference between $1.38 55.57% 4.61% 3.90% 30.50% 
highest & lowest 
incident probabilities 
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Planning 
Cost 

0.00% 
0.17% 
0.23% 
0.27% 
0.31% 
1.30% 

Planning 
Cost 

0.00% 
1.61% 
1.96% 
2.13% 
2.20% 
5.42% 



FIGURE 1 

Flowchart of Simulation Procedure 
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FIGURE 2 

Average Travel Delay, Incident Probability= 0.2 
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FIGURE 3 

Schedule Delay Distribution, by incident probability, capacity= 

1200 (5000 commuters) 
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FIGURE 4 

Change in Schedule Delay, by incident probability, capacity= 1200 

relative to capacity = 2400 (5000 commuters) 
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