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′|r), with the external potential r′ 2/8 (black
dashed), and (d) Hooke’s atom ñr(r
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′) (dashed), the

spin-CP-KS potential is ṽS,x(y
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Density functional theory (DFT) has been used extensively over the past several decades

and across many branches of science. The success of DFT lies in its relatively low-cost and

usefully high accuracy in many practical systems of interest. However, there are still many

instances, such as strongly correlated systems or systems at high temperatures, where con-

ventional DFT approaches are no longer reliable. In addition, reliable DFT approaches are

often computationally intractable for large system sizes, limiting their scope of application in

realistic system settings. This dissertation is a collection of my contributions to address these

fundamental challenges in the field. A common theme across all projects is the use of physical

prior knowledge to motivate or (in)directly constrain the methods and techniques developed.

In Chapter 1, I provide context for the research presented in the following self-contained chap-

ters. Chapter 2 introduces condition probability DFT (CP-DFT) as a new and alternative

density functional approach to obtain conditional probability densities and ground-state en-

ergies. Chapter 3 expands upon the previous chapter by establishing CP-DFT as a formally

exact theory and derives several key physical properties of CP densities and corresponding

potentials used in the theory. Chapter 4 analyzes and discusses the role of exact physical

conditions (constraints) in developing conventional Kohn-Sham DFT exchange-correlation

(XC) approximations. Chapter 5 introduces the Kohn-Sham regularizer method for training

neural network-based XC models for strongly correlated systems. Chapter 6 expands on the

xvi



previous chapter by developing a spin-adapted Kohn-Sham regularizer and demonstrating

impressive generalizability on weakly correlated systems. Finally, Chapter 7 explores the

repurposing of Tensor Processing Units – hardware designed for machine-learning tasks – for

large-scale DFT calculations by utilizing algorithms that exploit physical properties of the

density matrix.
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Chapter 1

Introduction

Computational methods for solving electronic structure problems are invaluable in advancing

modern scientific research and technological innovation. The applications of such methods

are vast, ranging from catalysis [296] and high-temperature superconductor prediction [104]

to accelerating drug discovery [69].

Among the various quantum-based computational methods, density functional theory (DFT)

particularly stands out due to its capacity to deliver accurate results for a wide range of sys-

tems at a relatively low computational cost. DFT provides entirely quantum solutions at

a fraction of the cost of directly solving the Schrödinger equation, by mapping the coupled

many-body problem to a single-particle problem. In the standard Kohn-Sham (KS) ap-

proach [214], the electronic energy is expressed as a functional of the electron density, and

only a small portion of the energy, the exchange-correlation (XC) energy, needs to be approx-

imated. KS-DFT is formally exact, that is, given the exact XC energy functional, we recover

the exact ground-state density and energy for any electronic system [214]. However, there

is no systematic way to approximate the exact XC energy functional and researchers have

worked on developing XC energy approximations for decades, culminating in hundreds of
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different approximations that are in current use [238]. The sheer number of approximations

reflects the immense difficulty of finding generally accurate approximations.

Despite a large research effort, several general failures have been identified in modern DFT

approximations. For instance, the self-interaction error [333], which associates errors stem-

ming from an electron interacting with itself nonphysically within approximations. Ap-

proximations also violate the flat-plane energy condition [284, 79, 306]. In the context of

fractional charges (systems with non-integer total charge) and fractional spins (systems with

non-integer spin magnetization), the exact energy is a linear interpolation of the energy of

the adjacent integer systems. Approximations notoriously miss this, producing embarrass-

ingly large systematic errors in systems as simple as stretched H2. Such grievous failures

cause approximations to be especially unreliable for strongly correlated electron systems of

interest, thus limiting the applicability of DFT calculations. Given an XC approximation, an

additional practical challenge in DFT is to perform the calculation as efficiently as possible,

and thus further expand the application space of DFT by enabling calculations on systems

of larger scale.

This dissertation is a collection of self-contained chapters based on research with my advisor

and collaborators to address these challenges in DFT. It is organized as follows. Chapter 1 in-

troduces conditional probability (CP) DFT as an alternative DFT approach that determines

the ground-state energy of a system by finding the CP density (the conditional probability

density of finding an electron at a position r given an electron at position r′) from a series

of independent KS DFT calculations. By directly calculating CP densities, we bypass the

need for an approximate XC energy functional. Chapter 3 establishes CP-DFT as a for-

mally exact theory, derives several key properties, and further explores a suitable CP-DFT

approximation that was introduced in Chapter 1. Chapter 4 analyzes and discusses the role

of exact conditions (proven mathematical properties of the exact functional) in developing

XC approximations. Chapter 5 introduces a machine-learning DFT approach, the KS reg-
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ularizer, for training neural network-based XC models. This physically-motivated scheme

performs well even with limited data and can be used to train sophisticated XC model ap-

proximations that generalize well for strongly correlated systems. Chapter 6 expands on this

methodology by developing a spin-adapted KS regularizer to treat spin-polarized systems.

We showcase the impressive generalizability of this method on weakly correlated molecular

systems. Finally, in Chapter 7, we explore the use of Google’s cloud-based Tensor Process-

ing Units (TPUs) to both accelerate and scale-up conventional DFT calculations by utilizing

algorithms that exploit physical properties of the one-body density matrix.
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Chapter 2

Bypassing the energy functional in

density functional theory: Direct

calculation of electronic energies from

conditional probability densities

This chapter is a reproduction of Ref. [270], which I co-authored with Ryan J. McCarty,

Dennis Perchak, Robert Evans, Yiheng Qiu, Steven R. White, and Kieron Burke.

2.1 Abstract

Density functional calculations can fail for want of an accurate exchange-correlation ap-

proximation. The energy can instead be extracted from a sequence of density functional

calculations of conditional probabilities (CP-DFT). Simple CP approximations yield use-

fully accurate results for two-electron ions, the hydrogen dimer, and the uniform gas at all
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temperatures. CP-DFT has no self-interaction error for one electron, and correctly dissoci-

ates H2, both major challenges. For warm dense matter, classical CP-DFT calculations can

overcome the convergence problems of Kohn-Sham DFT.

2.2 Introduction

Modern electronic structure calculations usually focus on finding accurate ground-state en-

ergies, as many predicted properties of a molecule or a material depend on this ability [60].

Wavefunction-based methods, such as coupled-cluster theory [32, 75] or quantum Monte

Carlo (QMC) [17, 26], directly yield energies. Kohn-Sham (KS) density functional theory

(DFT) [214] incorporates the many-electron problem into the exchange-correlation (XC)

energy, which must be approximated as a functional of spin densities. Hundreds of XC

functionals with distinct approximations are available in standard codes [238], reflecting the

tremendous difficulty in finding general, accurate approximations. Recently, KS-DFT at

finite temperatures [276] has been tremendously successful in simulations of warm dense

matter [150, 55]. However, it inherits all the limitations of ground-state approximations and

becomes impossible to converge for very high temperatures [436].

We propose an alternative to KS-DFT, in which we directly calculate conditional probability

densities, from which the energy can be calculated. This bypasses all the difficulties of

approximating the XC energy. The electronic pair density can always be written as

P (r, r′) = n(r) ñr(r
′), (2.1)

where n(r) is the single particle density, and ñr(r
′) is the conditional probability (CP) density

of finding an electron at r′, given an electron at r. The standard exact KS potential of DFT,

vS[n](r), is defined to yield n(r) in an effective fermionic non-interacting problem [103].
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A conditional probability KS potential (CPKS), vS[ñr](r
′) yields ñr(r

′) from such a KS

calculation with N − 1 electrons. Because standard KS-DFT calculations usually yield

accurate densities [208], an accurate CPKS potential should yield accurate XC energies.

Unlike XC approximations built on theories of the XC hole [313], here we calculate that

hole.

Just as in traditional DFT, we construct a simple, universal approximation for the CPKS

potential from exact conditions and the uniform gas. At large separations or high temper-

atures, the CP potential reduces to adding 1/|r − r′| to the external potential, as if the

missing electron were classical. We call this a blue electron (i.e. distinguishable from all

others), recalling the Percus test particle of classical statistical mechanics [310]. At small

separations, the electron-electron cusp condition [62] requires adding only 1/2 this potential

(due to the reduced mass). We locally interpolate between these two universal limits with

representative results shown in Fig 2.1.

For the uniform gas at zero temperature, our CP potential interpolation is extremely ac-

curate. We added a strong repulsion for rS < 1, to recover the exchange limit. Panel (b)

shows the H2 binding curve, where the inclusion of the electron-electron cusp is vital. Un-

like semi-local DFT, CP-DFT dissociates the molecule correctly, remaining spin-unpolarized

throughout. Panel (c) shows CPKS calculations for many temperatures, where the error

never exceeds 20%. We show later that orbital-free Thomas-Fermi, and even classical, CP

calculations agree reasonably with CPKS, are accurate for all T > TF , and have errors that

vanish in the high temperature limit, providing an inexpensive alternative when tempera-

tures are beyond the convergence limit of KS-DFT.
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Figure 2.1: CP (blue) and exact (black): (a) XC energy per particle in uniform gas at
increasing Wigner–Seitz radii (rs) and T = 0, (b) binding energy curve for H2 (red is KS-
DFT using PBE [313]), and (c) XC free energy per particle at rS = 1 as a function of reduced
temperature (TF is the Fermi temperature). Exact from Ref. [331] in (a), Ref. [155] in (c).
Hartree atomic units used throughout.

2.3 Theory

We consider non-relativistic purely electronic problems, and use Hartree atomic units through-

out. The pair density of the exact ground-state wavefunction Ψλ:

P λ(r1, r2) = N(N − 1)
∑
σ1σ2

∫
d3 . . . dN |Ψλ(1 . . . N)|2, (2.2)

where N is the number of electrons. Here 1 denotes both r1 and σ1, the spatial and spin

indices. The λ-dependence is the coupling constant in KS DFT, where the repulsion is

multiplied by λ but the one-body potential vλ(r) is adjusted to keep the ground-state density

n(r) fixed [228]. The XC energy is:

EXC =
1

2

∫ 1

0

dλ

∫
d3r

∫
d3r′

n(r) [ñλ
r (r

′)− n(r)]

|r− r′|
, (2.3)
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with ñλ
r (r

′)−n(r) being the λ-dependent XC hole, defined via the λ-dependent generalization

of Eq. 2.1. Setting λ = 1 in Eq. 2.3 yields UXC, the potential contribution to XC. The integral

over λ is called the adiabatic connection.

Denote vλ[n](r) as the one body potential that yields the unique ground-state density for

electron repulsion λ/|r− r′|. The conditional probability potential is

ṽλ(r′|r) = v[ñλ
r ](r

′) = vλ[n](r′) + ∆ ṽλr [n](r
′), (2.4)

being the unique potential whose ground-state density for Coulomb interacting electrons

yields the exact λ-dependent CP density. The CPKS potential is found self-consistently:

ṽλS (r
′|r) = vS[ñ

λ
r ](r

′) = ṽλ(r′|r) + vHXC[ñ
λ
r ](r

′), (2.5)

where vHXC is the Hartree-XC potential [60]. Knowledge of the CP correction potential,

∆ṽλr [n](r
′) in Eq. 2.4, allows a self-consistent KS calculation for the exact CP density.

Uniqueness of the CP potential is guaranteed by the HK theorem. As ñλ
r (r

′) is non-negative,

normalized to N −1, and found from a wavefunction, it is in the standard space of densities,

for which we routinely assume KS potentials exist [240, 255].

The above equations are for pure density functionals, and their analogs for spin-density

functionals are straightforward (but cumbersome). Decades of research in DFT can be

applied to the study of CP densities and potentials, yielding many exact conditions. For

example, at λ = 0 where the exchange hole is never positive,

ñλ=0
r (r′) ≤ n(r′). (2.6)
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The CP densities satisfy a complementarity principle:

ñλ
r (r

′) =
n(r′)

n(r)
ñλ
r′(r), (2.7)

which is Bayesian, and may be amenable to modern machine-learning methods. The electron

coalescence cusp condition requires

∂ñλ
r (r, u)

∂u

∣∣∣∣
u=0

= λ ñλ
r (r), (2.8)

where u = r′ − r and the left-hand side has been spherically averaged over r+u [63]. Using

Ref. [245], write

Ψλ(1 . . . N) =

√
n(r1)

N
Ψ̃λ

r (2 . . . N), (2.9)

where Ψ̃λ
r is not antisymmetric under interchange of the electrons, but is uniquely defined by

Eq. 2.9, and ñλ
r is its density. For large r, Ref. [245] shows that Ψ̃λ

r becomes a ground-state

of the N − 1 particle system and its gradients with respect to r vanish, yielding

∆̃ vλr→∞(r′) → λ

|r− r′|
, (2.10)

i.e., the blue electron approximation becomes exact in this limit.

For N = 1, ñλ
r (r

′) = 0, there is no self-interaction error [333]. If N = 2, the CP density has

just one electron:

ϕ̃λ
r (r

′) =
√

ñλ
r (r

′) =

√
2

n(r)
Ψλ(r, r′) , (2.11)
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yielding

ṽλS (r
′|r)− ϵλr =

1

2

∇′2Ψλ(r, r′)

Ψλ(r, r′)
, (2.12)

where ϵλr is the eigenvalue of the CPKS potential. Because the wavefunction satisfies the

Schrödinger equation, we find

∆ṽλS (r
′|r) + ∆ṽλS (r|r′) =

λ

|r− r′|
− Eλ, (2.13)

where ∆ṽλS (r
′|r) = ṽλS (r

′|r)− vλ[n](r′)− ϵλr .

2.4 Approximations

To perform a CP-DFT calculation, we need a general-purpose approximation to the CP

potential, ∆ṽλr (r
′). At large separations, the CP potential is simply λ/|r−r′| for all systems.

At small separations, it is λ/(2|r − r′|), to satisfy the electron-electron cusp condition, for

all systems. We interpolate between these two with a simple local density approximation

∆̃ vλr [n](r
′) ≈ λ

2|r− r′|
(1 + Erf

(
|r− r′|
rs(n(r))

)
), (2.14)

where rs = (3/(4πn))1/3 is the Wigner-Seitz radius at the reference point. We use this

approximation for all ground-state CP calculations in the paper. Fig. 2.1(a) and 2.1(b)

use Eq. 2.14 combined with standard DFT approximations for vXC. Fig. 2.1(c) uses simply

λ/|r− r′|, as the difference is negligible at significant temperatures.

The N -electron density is trivially a constant, and the one-body potential vanishes. The CP

10



calculation is for N − 1 electrons in a KS potential:

vS(r) = ∆̃ v(r) +

∫
d3r′

ñ(r′)− n0

|r− r′|
+ vLDA

XC [ñ](r), (2.15)

where n0 = N/V and

∆ṽ(r) = ∆ṽ
(λ=1)
0 (n0, r) + A(rs)e

−r2/2σ(rs)2 . (2.16)

The second term is added to recover the correct high-density limit, i.e., the simple n4/3

exchange energy. By calculating many rs values we can integrate over rs to perform the

adiabatic connection with only λ = 1. The XC potential is from [426]. The strength and

range parameters of the added Gaussian potential are fitted to [426] for rs = 0.02, where

exchange dominates. The density is found self-consistently in a sphere using Fermi-surface

smearing (T = 0.05TF ) and N = 512. Imposing zero density flux through the surface of the

sphere minimizes boundary effects. Further details will appear in a forthcoming paper.

Fig. 2.2(a) compares the hole density to the parameterization of the uniform gas XC hole [332].

The agreement is very good, with the lowest accuracy from the on-top region, which mini-

mally affects the XC energy.

We applied Eq. 2.14 to highly accurate calculations of 2-electron systems. These calculations

were done using a new type of basis function called gausslets [440, 441] which are tailored for

density matrix renormalization group calculations [439] and based on wavelets. Gausslets

resemble a variable-spaced real-space grid. The two-electron Hamiltonian terms have only

two indices, Vij, unlike the four indices needed in a standard basis. The grid-like structure

make CP calculations easy to implement. A blue electron sitting at a point in space sits on

a gausslet, i, located at its reference, ri. The repulsive one-electron potential at i is simply

row i of Vij, and integration likewise becomes point-wise sums. Recent innovations add a

Gaussian basis to better describe atomic core behavior, further described in a forthcoming
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Figure 2.2: Pure blue electron approximation (purple), half pure blue approximation (or-
ange), interpolation (Eq. 2.14, blue), and exact (black): (a) normalized XC hole densities
for the uniform gas at rs = 1 with exact parameterization from Ref. [332], (b) Uc(R) from
H2, using exact n(r) and producing errors below 20%, (c) Hooke’s atom ṽS(r

′|r), with the
external potential r′ 2/8 (black dashed), and (d) Hooke’s atom ñr(r

′).

work. We used 2000 or less gausslets with total energies errors below 0.1 mH for Z = 1 and

Z = 2. To find the conditional probability using Eq. 2.14, we find the ground state of an

N × N matrix with the Lanczos algorithm [227] and repeat N times. Gausslets make an

excellent basis for CP calculations, but in any basis, CP calculations are receptive to parallel

computing, as each value of r and λ can be computed independently.

Accurate densities from standard DFT calculations are needed for CP calculations. For 2-

electron ions presented in Table 2.1, we choose Hartree-Fock, as it provides a bound density

even for H− [88]. We performed the double integral over r and r′ to find the potential

contribution to correlation, UC. The virial theorem for atoms (relating the total energy to

total kinetic energy, E = −T ) then allows us to deduce EC. For He, the ground-state energy

error is -6 mH, while that of PBE is +10mH. As Z → ∞, the CP calculation correctly yields

a finite value. At Z = 1, the error has increased to 10mH, but H− is not even bound in a

KS-DFT calculation with standard approximations [208].

The virial trick only works for Coulomb-interacting atoms and molecules at equilibrium.

Otherwise, we need to perform the adiabatic connection integral. For N = 2, we know
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Z EHF
X V CP

ee UCP
C UExact

C virial ECP
C EExact

C

1.0 -0.3959 0.2918 -0.1041 -0.0698 -0.0523 -0.0420

2.0 -1.0257 0.9301 -0.0956 -0.0786 -0.0479 -0.0421

3.0 -1.6516 1.5521 -0.0995 -0.0832 -0.0504 -0.0435

4.0 -2.2770 2.1750 -0.1020 -0.0857 -0.0525 -0.0443

6.0 -3.5273 3.4226 -0.1047 -0.0881 -0.0563 -0.0452

Table 2.1: Results for 2-electron Helium-like ions using HF densities. Virial ECP
c is derived

from the virial theorem for atoms.

the exact result as λ → 0 (exchange limit), where ñλ=0
r (r′) = n(r′)/2. By definition, for

2-electrons we have

ṽλS (r
′|r) = vS[n](r

′)− λvHX[n](r
′)− vλC[n](r

′) + ∆ṽλS (r
′|r) . (2.17)

In practice, obtaining vλC[n](r
′) is difficult, and we approximate

ṽλS (r
′|r) ≈


vS[n](r

′) , λ = 0

v[n](r′) + (1− λ)vHX[n](r
′) + ∆ṽλS (r

′|r)
(2.18)

to recover the exchange limit exactly. In the following calculation for H2, we utilize the inter-

polated blue approximation, Eq. 2.14, for ∆ṽλS (r
′|r) and the exact density n(r′) throughout.

We run for λ ∈ {0.0, 0.1, 0.3, 0.5, 0.7, 1.0}, and fit to a first-order Padé approximant, which

is integrated analytically.

The binding curve for H2 as a function of bond length is shown in Fig 1(b), with components

given in Table 2.2. Fig. 2.2(b), shows UC(R) for 3 distinct choices of CP potential. As

R → ∞, any version of the blue electron approximation becomes accurate. Consider what
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R EX V Blue
ee UBlue

C UExact
C EBlue

C EExact
C

1.0 -0.7472 0.6688 -0.0785 -0.0732 -0.0433 -0.0400

2.0 -0.5698 0.4720 -0.0978 -0.0835 -0.0587 -0.0478

4.0 -0.4323 0.2576 -0.1747 -0.1692 -0.1359 -0.1318

8.0 -0.3749 0.1241 -0.2497 -0.2499 -0.2445 -0.2477

Table 2.2: H2 energies versus R, where EBlue
C is computed from Eq. 2.18 with the exact

density.

happens as the bond is stretched. The exact wavefunction has Heitler-London [169] form:

Ψλ(r1, r2) =
1√
2
(ϕA(r1)ϕB(r2) + ϕB(r1)ϕA(r2)) (2.19)

where ϕA and ϕB are atomic orbitals localized on each of the two protons. This yields a

conditional density:

nλ
r (r

′) = nB(r
′), r near A (2.20)

and vice versa, for all λ ̸= 0. Thus the Coulomb energy of the pair density vanishes due to the

lack of overlap, and each atomic region correctly yields a one-electron energy of a separate

hydrogen atom. Standard semilocal DFT must choose between retaining the correct spin

symmetry, as in the PBE curve of Fig 1(b), or sacrificing accurate spin densities[327]. At

the formal level, CP-DFT is an exact theory for bond dissociation, unlike the on-top hole

theory of Ref. [327].

Hooke’s atom consists of two Coulomb repelling electrons in a harmonic potential of force

constant k [193]. At k = 1/4, the density is known analytically, and at r = 0, the exact

ṽλS (r
′|r) is radial. In Fig. 2.2(c) and 2.2(d) we compare the blue electron approximation,

our interpolation formula Eq. 2.14, and the exact CP potential and the resulting densities

ñλ
r (r

′). Note the accuracy of the blue approximation for large r′, and the cusps as r′ → r in
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the exact and approximate CP densities.

In practical calculations, one does not have access to exact densities, but usually KS-DFT

densities from standard approximations are accurate, and in many cases where they are not,

Hartree-Fock densities are better[209]. In principle, if neither suffices, densities could be

found self-consistently by minimizing the energy from CP calculations with respect to the

N -electron density.

2.5 Finite temperatures

Possibly, the most important application of CP-DFT is for thermal equilibrium in warm dense

matter [150]. While thermal KS-DFT calculations have been very successful, finding consis-

tent temperature-dependent approximations is more difficult than at zero temperature [102].

Moreover, calculations using KS solvers eventually fail at extremely high temperatures, due

to convergence difficulties with orbital sums.

For finite temperatures, Eq 2.3 translates to FXC , the XC contribution to the Helmholtz free

energy, which includes entropic contributions [276, 344]. To find accurate CP densities, we

solve the KS equations with finite temperature occupations. (Thermal corrections to vXC are

argued to have little effect on the orbitals [377]). Fig. 1(c) shows results for the potential

XC free energy at rs = 1.0 for a wide range of temperatures. The black curve displays the

analytical parameterization (Ref. [155]). The CPKS approximation mildly overestimates fXC

for t = T/TF between about 0.2 and 9. This accuracy has been achieved from our trivial

CPKS calculation, without any quantum Monte Carlo or other many-body solver.

But for high temperatures, KS-DFT calculations fail to converge due to the exponen-

tial growth in orbitals that contribute, and our calculation is no exception. We there-

fore performed a much simpler CP calculation using the Thomas-Fermi (TF) approxima-
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tion [401, 119], often employed in plasma physics [120, 230], and implementing the simple

blue approximation. We first solved the TF equation at T = 0 to initiate iterations for a full

numerical solution. We make a simple interpolation of Perrot’s [335] accurate parameteriza-

tion of the Helmholtz free energy density f0(n) of the uniform non-interacting electron gas

constructed to yield the correct T = 0 and (classical) T → ∞ limits:

f0(n) = kBTn
(
ln(y)− c + ay

2
3

)
, (2.21)

where y = π2n/
√
2(kBT )

3/2, c = 1 − ln(2/
√
π), and a = 9(2/3)1/3/10. The Fermi tem-

perature is given by kBTF = (3π2n)2/3/2. As T → 0, f0(n) = 3nkBTF/5 as required. TF

theory corresponds to minimizing the Mermin [276] grand potential functional ignoring XC

and making the local density approximation F [n] =
∫
d3rf0(n(r)) for the non-interacting

Helmholtz free energy.

Classical connection: In the classical limit TF theory reduces to the Poisson-Boltzmann

(PB) theory used to treat electrical double layers and many other properties of electrolyte

solutions and ionic liquids [162]. In the high temperature limit we can ignore the third term

in Eq 2.21 yielding

F [n] = kBT

∫
d3r n(r)

(
ln

(
n(r)λ3

2

)
− 1

)
, (2.22)

where λ = (2π/kBT )
1/2 is the thermal de Broglie wavelength. Eq. 2.22 is identical to

the Helmholtz free energy functional of the ideal classical gas, apart from the residual spin

degeneracy factor (2s+1). Employing Eq. 2.22 from the outset corresponds to implementing

the classical DFT [162, 112] that generates PB theory for the one-component plasma. In

the classical limit the TF screening length, λTF [23], reduces to the Debye length λD of the

OCP, given by (λD)
−2 = 4πe2n/kBT .

Fig. 2.3 shows relative XC free energy errors as a function of t = T/TF over a larger temper-
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ature range than Fig. 2.1(c). The blue KS approximation (blue curve) performs well across

its range. CP-TF (purple) overestimates up to t ≈ 10; for larger values, all results merge.

The classical approximation (green) becomes exact at sufficiently high t.

In the classical limit (Boltzmann statistics) the CP approach is equivalent to the Percus

test particle procedure [73, 310]. Fixing a (classical) particle at the origin constitutes an

external potential for the others. The resulting one-body density is proportional to the

pair correlation function of the liquid [21]. The Percus procedure for quantum systems was

pioneered by Chihara [73] and the most successful applications relate to liquid metals and

electron-ion correlations [19].
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Figure 2.3: Percentage error of uniform gas potential XC free energy per electron for the
CP-DFT calculations within KS (blue), TF (purple), and classical (green) approximations
relative to the parameterization of Groth et al. [155].

2.6 Conclusion

Lastly, we mention a connection with factorization schemes in the ground state. Eq. 2.9 can

be used to find a differential equation for Ψ̃λ
r (2 . . . N). But this is not an eigenvalue equation

that you solve with given boundary conditions. Such conditional wavefunctions are not

always the lowest eigenstate if one treats this as an eigenvalue problem [280]. Moreover, the

potential experienced by Ψ̃λ
r (2 . . . N) depends on all N −1 coordinates, so it is not amenable

to the standard KS treatment. Thus this seems an unlikely route for deriving other exact

properties.
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In conclusion, CP-DFT calculations provide a useful alternative to standard KS-DFT. While

more expensive, they are highly parallelizable and in important cases, can succeed where KS-

DFT often fails. Most importantly, such calculations bypass the need to approximate the

XC functional and its potential in difficult cases, such as bond breaking. Our CP potential

approximation becomes exact in many limits. It may be exact even for strictly correlated

electrons, where

ñλ
r (r

′) →
N−1∑
j=1

δ(3)(r′ − fj(r)), (2.23)

and fj(r) is a co-motion function [149, 136]. Several longer works will follow.
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Chapter 3

Conditional probability density

functional theory

This chapter is a reproduction of Ref. [305], which I co-authored with Jielun Chen, Steven

R. White, and Kieron Burke.

3.1 Abstract

We present conditional probability (CP) density functional theory (DFT) as a formally exact

theory. In essence, CP-DFT determines the ground-state energy of a system by finding the

CP density from a series of independent Kohn-Sham (KS) DFT calculations. By directly

calculating CP densities, we bypass the need for an approximate XC energy functional. In

this work we discuss and derive several key properties of the CP density and corresponding

CP-KS potential. Illustrative examples are used throughout to help guide the reader through

the various concepts and theory presented. We explore a suitable CP-DFT approximation

and discuss exact conditions, limitations, and results for selected examples.
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3.2 Introduction

Over the past 30 years, density functional theory (DFT) has emerged as a widespread tool

in many branches of physics and chemistry [60]. In particular, Kohn-Sham (KS) DFT is an

especially popular method to find ground-state energies and electronic densities of molecules

and materials. KS-DFT generally scales better with system size than wavefunction-based

methods, such as coupled-cluster theory [32, 75] or quantum Monte Carlo (QMC) [26],

and is therefore more suitable for modeling realistic systems. However, KS-DFT relies on

finding accurate exchange-correlation (XC) energies, which must be approximated as a func-

tional of spin densities. Hundreds of distinct XC approximations currently exist in standard

codes [238], reflecting the tremendous difficulty in finding general and accurate approxi-

mations. As these standard KS-DFT approximations usually yield accurate self-consistent

densities [208], the resulting errors in energies are primarily due to the flaws in the XC energy

approximation itself, i.e. the energy error would not change significantly if evaluated on the

exact density. Moreover, major deficiencies still remain such as the self-interaction error and

the inability to derive accurate energies in strongly-correlated systems [79].

In the exact theory, one can think of XC energies being determined by the pair den-

sity, P λ(r, r′), which is the joint probability density for finding electrons at two points

given electron-electron interactions with strength λ/|r′ − r| and fixed ground-state density

n(r) [228]. In standard DFT approximations, the on-top pair densities, P λ(r, r), are quite

accurate [319] and several attempts to use pair densities or density matrices in DFT have

been made [328, 131, 286]. This pair density can always be written as

P λ(r, r′) = n(r) ñλ
r (r

′), (3.1)

where ñλ
r (r

′) is the conditional probability (CP) density of finding an electron at r′, given

an electron at r.
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In standard KS-DFT, the exact KS potential, vS[n](r), is defined to yield n(r) in an effective

non-interacting electron problem [103]. Analogously, a conditional probability KS potential

(CP-KS), vS[ñ
λ
r ](r

′), can be defined at each point r in the system, so that it yields ñλ
r (r

′)

from a KS calculation with N − 1 electrons. By the Hohenberg-Kohn (HK) theorem [174],

the CP-KS potential, if it exists, is unique. The above equations are for pure density func-

tionals, and their analogs for spin-decomposed systems will be presented in the next sections.

This approach, recently presented as conditional probability DFT (CP-DFT) in Ref. [270],

is formally exact. The exact system density and CP-KS potential yield exact pair densi-

ties and hence XC energies. However, just like KS-DFT, CP-DFT is only useful if good

approximations can be found for a wide array of problems. A clear advantage of CP-DFT

is that it naturally has no self-interaction error for one electron. Since standard KS-DFT

calculations usually yield highly accurate total system densities [208], an accurate CP-KS

potential approximation should yield highly accurate XC energies.

The CP-DFT approach is analogous to the Overhauser model [298, 96], which was first

proposed to approximate the pair correlation function of the uniform electron gas, but has

also been extended to non-uniform systems through the average pair-density functional theory

(APDFT) approach [147, 146]. However, there are key differences: CP-DFT obtains the full

pair density whereas APDFT obtains the system- and spherically-averaged pair density, and

CP-DFT identifies an exact effective potential within a ground-state KS scheme, the CP-KS

potential.

In the context of CP-DFT, authors in Ref. [270] present the blue electron approximation.

In this rudimentary approximation the CP potential is simply generated by adding 1/|r′ −

r| to the external potential. This impurity potential represents the repulsion due to the

missing electron as if it were a classical point particle at position r. That is, an electron

that is distinguishable from all others (painted blue). The authors use a variant of this

approximation to produce surprisingly accurate results. At zero temperature, the correlation
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energy errors for the uniform gas, simple two electron ions, including H−, and the hydrogen

dimer are below 20%, even as the bond is stretched. Achieving a smooth accurate binding

energy curve for H2 while being in a spin singlet still remains a major challenge to accomplish

in KS-DFT. Moreover, as the temperature is increased, the blue electron approximation for

the uniform gas becomes more accurate, which is intuitively consistent with the classical

limit.

In this paper, we consider only zero temperature and extend the work of [270] by general-

izing to spin-decomposed systems and presenting a formally exact theory for CP-DFT. We

give many exact conditions of the CP density and the corresponding CP-KS potential. We

illustrate examples using simple 3D and 1D systems. In the latter, we use 1D exponential

interactions to mimic the 3D Coulomb interaction [29]. We explore the blue electron approx-

imation presented in [270] and demonstrate that this approximation satisfies several of these

key exact conditions. We discuss failures of the blue electron approximation and suggest

improvements.

The paper is structured as follows. In Section 3.3 we review DFT and define relevant

quantities. In Section 3.4 we present CP-DFT as a formally exact theory. In Section 3.5 we

discus additional relevant properties of the CP density and CP-KS potential. In Section 3.6

we explore approximations in light of exact conditions. Finally, in Section 3.7 we summarize

results and discuss future directions of CP-DFT.
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3.3 Background and Notation

3.3.1 DFT fundamentals

We consider non-relativistic purely electronic problems, and use Hartree atomic units (a.u.)

throughout the paper. Begin with the variational principal for the exact N -electron ground-

state energy

E = min
Ψ

⟨Ψ| Ĥ |Ψ⟩ , (3.2)

where Ĥ is the N -electron Hamiltonian and the search is over all antisymmetric, normalized

many-body wavefunctions Ψ [240]. We consider Hamiltonians of the form

Ĥ = T̂ + V̂ee + V̂ , (3.3)

where T̂ is the usual total kinetic energy operator, V̂ee is the two-body electron-electron

repulsion operator, and V̂ is the one-body, possibly spin-dependent, total external potential

for the system.

DFT replaces the central role of the one-body spin-dependent potentials, v(x), with the

ground-state spin densities n(x), where

n(x) = N

∫
dx2 · · · dxN |Ψ(x, x2, . . . , xN)|2 . (3.4)

Here xi = (ri, σi) incorporates both spatial and spin coordinates and
∫
dx is shorthand

to denote the integral over all space and sum over both spins and N is the total number

of electrons in the system. The total density n(r) is given by a sum over spin densities,

n(r) =
∑

σ n(x). From the HK theorem generalized to spin DFT [423, 425], there is a

one-to-one correspondence between {n(x)} and {v(x)}. From the variational principle, the
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ground-state energy of a system of N -electrons and external potentials v(x) is

E = min
n

(
F [n] +

∫
dx v(x)n(x)

)
(3.5)

where F [n] is the universal part of the Hohenberg-Kohn functional, defined as

F [n] = min
Ψ→n

⟨Ψ| T̂ + V̂ee |Ψ⟩ , (3.6)

where the minimization is over all antisymmetric wavefunctions that yield spin-densities

n(x) [240].

In the KS scheme, there exists an effective one-body potential, vS(x), whose corresponding

ground-state spin densities for a system of non-interacting electrons match those of the

physical interacting system. The total energy of the real system is given in terms of KS

quantities:

E = min
n

(
TS[n] +

∫
dx v(x)n(x) + EH[n] + EXC[n]

)
, (3.7)

where TS is the kinetic energy of the KS non-interacting electrons, EH is the Hartree energy,

n = n↑ + n↓ is the total density, and EXC is the XC energy. We denote the KS wavefunc-

tion as ΦS[n], which we assume here is a single Slater determinant, as is typical. The KS

wavefunction minimizes the kinetic energy functional,

TS[n] = min
Ψ→n

⟨Ψ| T̂ |Ψ⟩ = T [ΦS[n]] , (3.8)

where

T [Ψ] = −1

2

N∑
i=1

⟨Ψ| ∇2
i |Ψ⟩ . (3.9)
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The Euler-Lagrange equation corresponding to Eq. (3.7) is

δTS

δn(x)
+ vS(x) = 0 , (3.10)

and all potentials are undetermined up to a constant. The KS spin-dependent potential is

vS(x) = v(x) +

∫
d3r

n(r)

|r′ − r|
+ vXC[n](x) , (3.11)

with

vXC[n](x) =
δEXC[n]

δn(x)
. (3.12)

The KS orbitals ϕiσ satisfy the KS eigenvalue equation

[
− 1

2
∇2 + vS(x)

]
ϕi(x) = ϵiσϕi(x) . (3.13)

3.3.2 Adiabatic connection

In the adiabatic connection approach to KS-DFT [164, 228, 156], we can modulate the

interaction strength λ of Coulomb-interacting electrons such that

F λ[n] = min
Ψλ→n

⟨Ψλ| T̂ + λ V̂ee |Ψλ⟩ . (3.14)

For λ = 1, we have our real, physical system and ground-state density n. For λ = 0, we have

the KS system, because we have turned the electron-electron interaction off, but kept the

same ground-state density n. We can also consider the limit as λ → ∞, which is the strictly

correlated electron (SCE) limit where the kinetic energy becomes negligible, see section 3.5.4.

In all cases, the ground-state density remains fixed to that of the physical system n. This
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implies that the external potential vλ[n] is λ-dependent. The potential vλ[n] corresponds

to the unique one-body potential for which n(r) is the ground-state density for a system

of Coulomb-interacting electrons with interaction strength λ. As convention, if λ is absent

from the notation then λ = 1 is assumed.

3.3.3 Pair densities and XC holes

It is natural to discuss the spin-decomposed pair densities P λ(x, x′) of the λ-dependent

wavefunctions defined in Eq. (A.31):

P λ(x, x′) =

N(N − 1)

∫
dx3 · · · dxN |Ψλ(x, x′, x3, . . . , xN)|2 ,

(3.15)

which is the probability density of finding an electron of spin σ at r and a second electron of

spin σ′ at r′ for interaction strength λ. The total pair density is the spin-summed quantity:

P λ(r, r′) =
∑
σσ′

P λ(x, x′) , (3.16)

which is the joint probability of finding an electron at r and a second electron at r′ for

interaction strength λ. For λ = 0, Ψλ=0 = ΦS[n] and the pair density is

P λ=0(x, x′) = n(x)n(x′)− |γs(x, x′)|2 , (3.17)

where γS is the KS (first-order) density matrix:

γS(x, x
′) = δσσ′

Nσ∑
i=1

ϕ∗
i (x)ϕi(x

′) , (3.18)

26



The exchange hole is defined as

nX(x, x
′) = −|γS(x, x

′)|2

n(x)
, (3.19)

such that

P λ=0(x, x′) = n(x)
(
n(x′) + nX(x, x

′)
)
. (3.20)

Checking the normalization allows us to deduce

∫
dx′ nX(x, x

′) = −1 . (3.21)

For λ > 0, we can generalize Eq. (3.20) by introducing the λ-dependent correlation hole

nλ
C(x, x

′):

P λ(x, x′) = n(x)
(
n(x′) + nX(x, x

′) + nλ
C(x, x

′)
)
, (3.22)

where nλ=0
C (x, x′) = 0 and normalization dictates

∫
dx′ nλ

C(x, x
′) = 0 . (3.23)

The XC hole, nλ
XC(x, x

′), is simply the sum of the exchange and correlation holes, nλ
XC(x, x

′) =

nX(x, x
′) + nλ

C(x, x
′). Analogously, we can express the spin-summed pair density as

P λ(r, r′) = n(r)
(
n(r′) + nλ

XC(r, r
′)
)
, (3.24)

where

nλ
XC(r, r

′) =

(∑
σ,σ′

n(x)nλ
XC(x, x

′)

)
/n(r) . (3.25)
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This quantity is especially of interest in DFT since it determines the XC energy in the

adiabatic connection integral [63]:

EXC =
1

2

∫ 1

0

dλ

∫
d3r

∫
d3r′

n(r)nλ
XC(r, r

′)

|r− r′|
. (3.26)

3.4 Theory

3.4.1 CP-DFT
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Figure 3.1: Exact CP densities and potentials in 1D He (left) and 1D Be (right): ṽS,y(y
′)

is the CP-KS potential with corresponding CP density ñy(y
′), vS(y

′) the KS potential with
corresponding ground-state density n(y′). Quantities are plotted for reference positions y = 0
and y = 0.8.

To simplify the discussion, we will first consider the case of λ = 1 and pure DFT, i.e. not spin

decomposed. The subsequent sections will introduce the adaption for different interaction

strengths λ and spins σ.

28



We define the total conditional probability (CP) density density ñr(r
′) as

ñr(r
′) ≡ P (r, r′)

n(r)
= n(r′) + nXC(r, r

′) , (3.27)

which corresponds to the conditional probability density of finding an electron at r′, given an

electron at r. The subscript in ñr(r
′) emphasizes the parametric dependence on the reference

position r. In Figure 3.1 we provide example exact densities for a 1-dimensional (1D) model

of the He and Be atoms. The 1D model we use throughout mimics reality by replacing

3D Coulomb interactions, 1/|r′ − r|, with 1D exponentials of the form A exp(−κ|y − y′|),

where y, y′ ∈ R and A, κ > 0 are parameters fitted to a soft Coulomb potential, see [29, 251,

28, 249] for additional information. The purpose of using 1D models here and throughout

the paper is to provide simple and illustrative examples which are qualitatively similar to

3D reality. The 1D “exact” density results are obtained from high accuracy density matrix

renormalization group (DMRG) calculations using the ITensor library [124] with an energy

convergence threshold of 10−7 Hartree. Associated single-particle potentials were obtained

using a modified version of the KS-inversion algorithm outlined in [123]. The code used to

perform KS-inversion is publicly available at [304].

In Figure 3.1 we plot the total ground-state density n(y′) for 1D He, which is spatially

symmetric and analogous to a doubly occupied 1s orbital. The exact KS potential vS(y
′)

corresponding to this density is also plotted. We show the CP density ñy(y
′) for two different

reference points, y = 0 and y = 0.8. Subtracting the ground-state density n(y′) from the CP

density yields the (λ = 1) XC hole for a given reference position. We also show the exchange

CP density which, for 2 electrons in a spin singlet, is simply half the total density. Thus

differences of CP densities from this density are the correlation contributions which are very

tiny when y = 0. For y = 0.8, correlation causes the CP density to be lower in the region of

the electron and greater on the opposite side of the nucleus.
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The upper right panel of the figure is the same as the left, but for the Be atom. Here the

1D Be ground-state density is analogous to a 1s22s2 configuration. Now the CP density

integrates to 3 electrons and is not closely approximated by half the density. However the

same effect occurs when the reference electron is off-center and charge is pushed to the other

side of the nucleus.

The CP density follows several properties. For all reference points r, it must normalize to

N − 1 electrons,

∫
d3r′ ñr(r

′) = N − 1 . (3.28)

In Figure 3.1, taking the area under the curve of any 1D He CP density yields 1 electron.

Similarly, for any 1D Be CP density the integrated area yields 3 electrons. Moreover, since the

pair density is a symmetrical function of r and r′, the CP densities satisfy a complementary

principle:

ñr(r
′) =

n(r′)

n(r)
ñr′(r), (3.29)

which is simply Bayes’ theorem, and may be amenable to modern machine-learning meth-

ods [400]. In Fig. 1, for Be, this means the ratio of where the purple curve intersects the

orange vertical line to where the orange curve hits the purple vertical line equals the ratio of

densities (gray curve) at the two points. For He, since the orange curve is almost identical

to the grey dashed line, any CP density (purple curve) passes through (almost) the same

value at the origin, namely n(0)/2.

Next we turn to the CP potentials that generate CP densities. For a given reference position r

and CP density ñr(r
′), we define the CP potential, ṽr(r

′), as the unique one-body potential

whose total ground-state density for (N − 1) Coulomb interacting electrons yields the total

CP density ñr(r
′). Uniqueness of the CP potential (up to a constant shift) is guaranteed by
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the HK theorem. If it is known, the CP potential for this (N − 1) electron auxiliary system

is simply

ṽr(r
′) = v[ñr](r

′) (3.30)

where v[n](r) is the unique one-body potential for which n(r) is the Coulomb-interacting

ground-state density. In Figure 3.1 the exact CP potentials (and corresponding CP densities)

are plotted for He atom at reference points y = 0.0 and y = 0.8. Notice that in the y = 0.8

case, the potential is asymmetric and contains a kink at the reference position. The kink in

the CP potential exists due to the 1D exponential interaction used. However, for standard 3D

Coulomb interactions, we instead obtain a kink (or cusp) in the CP density at the reference

position due to the electron-electron cusp condition, see section 3.5.2. A general feature in

any dimension is that the CP potential is less negative in the region of the reference point,

as it must push electrons away.

We can generalize this HK map to a system of (N − 1) electrons with interaction strength

α ≥ 0 and ground-state density ñr. In analogy, we follow Section 3.3.2, but throughout we

are careful to use α to denote the interaction strength of the associated (N − 1) electron

axiliary system, while λ will be used exclusively to denote the interaction strength of the

total N electron system with fixed ground-state density n. That is, α and λ are independent

variables in general. For a given α, we have

ṽαr (r
′) = vα[ñr](r

′) , (3.31)

so that ṽS,r(r
′) = ṽα=0

r (r′). In Figure 3.1 exact CP-KS potentials (and corresponding CP

densities) are plotted for 1D He and Be atoms. In the case of the 1D He atom, clearly the

CP potential is the CP-KS potential. In the Be atom y = 0.8 case, we see a bump and kink

in the CP-KS potential at the reference position, resulting in a small dip in the CP density
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in the region near the reference position.

The CP-KS potential can be expressed as

ṽS,r(r
′) = ṽαr (r

′) + α vHX[ñr](r
′) + vαC [ñr](r

′) , (3.32)

where vHX and vαC are the usual KS-DFT Hartree-exchange and correlation potentials, re-

spectively [60]. As in standard KS-DFT, the CP-KS potential can be found self-consistently.

Following Eq. (3.13), for each reference point r the corresponding CP-KS orbitals ϕ̃r,i(r
′)

satisfy the following CP-KS eigenvalue equation

[
− 1

2
∇′2 + ṽS,r(r

′)

]
ϕ̃r,i(r

′) = ϵr,i ϕ̃r,i(r
′) , (3.33)

where
∑N−1

i=1 |ϕ̃r,i(r
′)|2 = ñr(r

′).

Notice that by construction, the CP-DFT approach is formally exact: knowledge of an exact

CP potential, ṽαr (r
′), and a corresponding exact XC potential, ṽαXC(r

′), allows a self-consistent

KS calculation for an exact CP density ñr(r
′).

By construction, CP densities are nowhere negative and normalized to N − 1. Thus if their

kinetic energy is finite (and we know of no counterexample), they are members of the usual

set of well-behaved densities, IN of Ref. [255]. However, this is insufficient to guarantee

non-interacting v-representability, just as in standard DFT [255, 109]. In practice, CP-

DFT calculations use explicit approximations for both vXC and ṽr, guaranteeing that all CP

densities explored are v-representable by construction.

One may question whether a CP density ñr(r
′) contains nodes whenever r = r′ due the

exclusion principle, which might make the kinetic energy diverge. However, CP densities

are derived from the pair density which is a spin-summed quantity, Eq. (3.16), so we avoid

such fermionic nodes. In the spin adaptation of CP-DFT, we must be more careful, see
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Section 3.4.2.

To extract the XC energy from Eq. (3.26) we need the λ-dependent XC holes, nλ
XC(r, r

′),

defined in Eq. (3.24), so we write

ñλ
r (r

′) ≡ P λ(r, r′)

n(r)
= n(r′) + nλ

XC(r, r
′) , (3.34)

for the conditional probability density of finding an electron at r′, given an electron at r and

for interaction strength λ. The λ-dependent CP density also normalizes to N − 1 electrons

and satisfies the complementary principle in Eq. (3.29).

In analogy with previous formalism, for a given r, λ, α and CP density, ñλ
r (r

′), we define

the CP potential, ṽα,λr (r′), as the unique one-body potential whose ground-state density for

α-strength interacting (N − 1) electrons yields the CP density, ñλ
r (r

′). If it exists, the CP

potential is

ṽα,λr (r′) = vα[ñλ
r ](r

′) (3.35)

where

vα[ñλ
r ](r

′) = −δFα[ñλ
r ]

δñλ
r

. (3.36)

The CP-KS potential is ṽλS,r(r
′), where ṽλS,r(r

′) = ṽα=0,λ
r (r′) and

ṽλS,r(r
′) = ṽα,λr (r′) + α vHX[ñ

λ
r ](r

′) + vαC [ñ
λ
r ](r

′) . (3.37)

Again, we ephasize that, by construction, CP-DFT is formally exact: knowledge of an exact

CP potential, if it exists, ṽα,λr , and an exact XC potential, vαXC, allows a self-consistent CP-KS

calculation for an exact CP density ñλ
r . If such exact CP-KS calculations are carried out for
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all λ ∈ [0, 1] and all reference positions, r, in space, and the exact total ground-state density

n is known, then the exact XC energy can be obtained from Eq. (3.26).

3.4.2 Spin-adapted CP-DFT

While Section 3.4.1 presents a formally exact construction for any interacting electron sys-

tem, it is useful in practice to have an analogous spin-decomposed formally exact framework.

Below we omit α and λ dependencies for clarity, but the dependence should follow straight-

forwardly from the Section 3.4.1.

We define the spin-CP density ñx(r
′) as

ñx(r
′) ≡

∑
σ′

ñx(x
′) , (3.38)

where

ñx(x
′) =

P (x, x′)

n(x)
= n(x′) + nXC(x, x

′) . (3.39)

The spin-CP density ñx(r
′) has a natural interpretation: given an electron of spin σ at

reference position r, it is the probability density of finding any electron at position r′. The

spin-CP density normalizes to N − 1 electrons,

∫
d3r′ ñx(r

′) = N − 1 , (3.40)

making it a natural object to use as a starting point for spin-adapted CP-DFT. A weighted
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sum over spin-CP densities can be used to determine the total CP density:

ñr(r
′) =

∑
σ

nσ(r)

n(r)
ñrσ(r

′) . (3.41)

In the case of a spin-unpolarized system, we recover ñ↑r(r
′) = ñ↓r(r

′) = ñr(r
′) as expected.

In Figure 3.2 we provide exact densities from a 1D model of the spin-polarized Li atom. For

each plotted spin-CP and total CP density, taking the area under the curve yields 2 electrons.

The total CP densities are plotted in Figure 3.2 using dashed curves. From Eq. (3.41), the

total CP density can be obtained from a sum of the spin-CP densities, with each weighted by

a fraction of density in that spin channel. In 1D Li, for spin-restricted KS orbitals we have

the exchange-limit (λ = 0) relation n↑(y
′) = ñλ=0

(0,↑)(y
′) = ñλ=0

(y,↓)(y
′). In the upper left panel

of Figure 3.2 we see that indeed n↑(y
′) closely approximates the spin-CP density, ñ(0,↑)(y

′),

with reference point at the origin, which is a high density region dominated by exchange.

In the upper right panel, for the same reference position but opposite spin, we obtain a

very similar spin-CP density, ñ(0,↑)(y
′) ≈ ñ(0,↓)(y

′), because, for this reference point, the 1s

orbital, which is doubly occupied, is dominant. However, for a spin-down reference point the

exchange limit spin-CP density is independent of the reference position, ñλ=0
(y,↓)(y

′) = n↑(y
′),

which is similar to the case in 1D He (Figure 3.1) and correspondingly we see little change

in the down spin-CP density, ñ(y,↓)(y
′), as the reference position is changed from 0 to 0.8.

This is not the case for σ =↑, so we see large differences between ñ(0.8,↑)(y
′) and ñ(0.8,↓)(y

′).

The analog definition for the spin-CP potential, ṽx(r
′), is straightforward: it is the unique

one-body potential whose “accessible” ground-state density from (N−1) Coulomb-interacting

electrons yields the spin-CP density, ñx(r
′), that is, ṽx(r

′) = v[ñx](r
′). Note that this is within

DFT, not spin DFT, and an “accessible” ground-state is one that conserves total spin, e.g.,

the total spins of the N− and (N − 1)-electron systems cannot differ by more than 1/2 unit

of angular momentum [110, 202].
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Figure 3.2: Exact CP densities and potentials in 1D Li with N↑ = 2, N↓ = 1. The CP-
KS potential is ṽS,y(y

′) with corresponding total CP density ñy(y
′) (dashed), the spin-CP-

KS potential is ṽS,x(y
′) with corresponding spin-CP density ñx(y

′), vS,σ(y
′) is the KS spin

potential with corresponding ground-state spin density nσ(y
′), and n(y′) is the total ground-

state density. Quantities are plotted for reference space-spin positions x = (0, ↑), x = (0.8, ↑)
(left) and x = (0, ↓), x = (0.8, ↓) (right).

Practically, the main difference from Section 3.4.1 is that, for each reference point r we

solve two independent self-consistent CP-KS equations (one for each spin σ) to obtain cor-

responding spin-CP densities ñx(r
′) =

∑N−1
i=1 |ϕ̃i,x(r

′)|2. Again, the ground-states should

be accessible from a given spin configuration. For example, in 1D Li with N↑ = 2, N↓ = 1,

if the reference electron is spin-down we must singly-occupy the lowest two CP-KS orbitals

(with spin-up electrons) in the (N − 1) system to conserve spin. If the reference electron is

spin-up, we doubly-occupy the lowest CP-KS orbital. This means that similar looking up

and down spin-CP densities can have corresponding spin-CP-KS potentials that look quite

different. This is why ṽS,(0,↑)(y
′) looks so different from ṽS,(0,↓)(y

′) in Figure 3.2.

Again, we emphasize that spin-CP densities should be a result from pure DFT with spin-

restriction, not spin DFT. One may ask whether a spin-unrestricted CP-KS scheme could be

used to obtain the fully spin-decomposed CP spin densities, ñx(x
′), which correspond to the
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conditional probability density of finding an electron at r′ of spin σ′, given an electron at r

of spin σ. However, these do not spatially integrate (normalize) to a predetermined integer

in general,

∫
d3r′ ñx(x

′) = Nσ′ − δσσ′ +

∫
d3r′ nC(x, x

′) , (3.42)

and so would require an ensemble of fractional particle numbers [103], presumably making

approximations more complicated. Furthermore, these spin densities will contain nodes

whenever x′ = x due to the exclusion principal. For instance, in the Li atom (with N↑ = 2

and N↓ = 1), the spin density ñλ=0
r↑ (r′↑) is non-v-representable, as it is a single-particle

density which is not strictly positive [109]. Therefore, in general we do not recommend fully

spin-decomposed CP-DFT.

3.4.3 CP-DFT with averaged quantities

The spin-CP densities ñλ
x(r

′) are clearly high-dimensional quantities: in general there is a

λ and x dependence. In the following we define exact lower-dimensional quantities which

can equivalently be used to extract relevant exact energies, such as the electron-electron

repulsion potential energy Uee = E
H
+ EXC:

Uee =
1

2

∫ 1

0

dλ

∫
dxn(r)

∫
d3r′

ñλ
x(r

′)

|r′ − r|
. (3.43)

This may be rewritten in terms of purely radial quantities:

Uee =
N

2

∑
σ

∫
du u ⟨ñσ(u)⟩ (3.44)
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where u = r′ − r, u = |r′ − r|, and the system and spherically-averaged CP density is

⟨ñσ(u)⟩ =
1

N

∫ 1

0

dλ

∫
d3r n(r)

∫
dΩu ñ

λ
σr(r+ u) . (3.45)

Note that this radial quantity integrates to N−1. The corresponding radial CP-KS potential

is defined as ṽs[⟨ñσ⟩](u). Knowledge of this much simpler functional also yields the XC energy,

but now only a single 1D integral is required, instead of a 3D integral over r. If useful

approximations can be found directly for ṽs[⟨ñσ⟩](u), CP-DFT calculations would be much

more efficient. This approach is analogous to average pair-density functional theory [146,

147] which utilizes an effective radial potential, such as the Overhauser model [298, 96], to

determine spherically- and system-averaged pair densities.

3.4.4 connection to exact factorization?

In this section we present an explicit differential equation for ñλ
x(r

′). We begin by following

Ref. [136] and partition the λ-dependent N -electron Hamiltonian as

Hλ = Hλ
1 +Hλ

N−1 +
N∑
j=2

λ

|r− rj|
, (3.46)

where Hλ
1 is the Hamiltonian for a single electron

Hλ
1 = −1

2
∇2

r + vλ[n](r) (3.47)

and Hλ
N−1 is the Hamiltonian for (N − 1) λ-strength interacting electrons

Hλ
N−1 =

N∑
i=2

[
− 1

2
∇2

i + vλ[n](ri)

]
+

1

2

N∑
i ̸=j=2

λ

|ri − rj|
. (3.48)
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We factorize the normalized ground-state wavefunction Ψλ of Hλ as

Ψλ(x, x2, . . . , xN) =

√
n(x)

N
Ψ̃λ

x(x2, . . . , xN) . (3.49)

Here, Ψ̃λ
x depends parametrically on x and is antisymmetric under interchange of the N − 1

electrons in its argument, but not under interchange of x with any xi, i ≥ 2, in general. Note

that Ψ̃λ
x is not a ground-state wavefunction in general, but is uniquely defined by Eq. (3.49),

and is often referred to as the conditional amplitude [136]. The ground-state wavefunction

Ψλ yields the spin density n(x), so by construction we have, for all x,

∫
dx2 · · ·

∫
dxN |Ψ̃λ

x(x2, x3, . . . , xN)|2 = 1 . (3.50)

We also identify

ñλ
x(r

′) = (N − 1)
∑
σ′

∫
dx3 · · · dxN |Ψ̃λ

x(x
′, x3, . . . , xN)|2 . (3.51)

That is, the total density of Ψ̃λ
x is the exact spin-CP density ñλ

x. Using Eq. (3.49), we

generalize Ref. [245] and find an effective equation for
√

n(x),

[
Hλ

1 + vλeff(x)

]√
n(x) = Eλ

√
n(x), (3.52)

where Eλ is the ground-state energy of Hλ and the one-body effective potential is

vλeff(x) = λ

∫
d3r′

ñλ
x(r

′)

|r′ − r|
+ ⟨Ψ̃λ

x| Ĥλ
N−1 |Ψ̃λ

x⟩

+
1

2

∫
dx2 · · · dxN |∇rΨ̃

λ
x|2 .

(3.53)
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It is often partitioned this way, where the first term is referred to as the conditional potential

and the last term is the kinetic potential [136]. From Eq. (3.52) we also have

Ĥλ
1

√
n(x)Ψ̃λ

x =
(
Eλ − vλeff(x)

)√
n(x)Ψ̃λ

x

−∇r

√
n(x) · ∇rΨ̃

λ
x −

√
n(x)

2
∇2

rΨ̃
λ
x .

(3.54)

This yields an apparent Schrödinger equation for Ψ̃λ
x with Hamiltonian [135]:

H̃λ
x = Ĥλ

N−1 +
N∑
j=2

λ

|r− rj|
+ vλnuc, x(x2, . . . , xN) (3.55)

where

vλnuc, x(x2, . . . , xN) =

−2∇r

√
n(x) · ∇rΨ̃

λ
x −

√
n(x)∇2

rΨ̃
λ
x

2
√

n(x)Ψ̃λ
x

(3.56)

which is a non-multiplicative potential and includes gradients of Ψ̃λ
x with respect to r. The

full equation reads:

H̃λ
x Ψ̃

λ
x = vλeff(x)Ψ̃

λ
x . (3.57)

This is not a usual eigenvalue equation that you solve with given boundary conditions [142].

It is an inhomogenous differential equation satisfied by Ψ̃λ
x, defined by Eq. (3.49). The total

density of the solution Ψ̃λ
x is the exact spin-CP density ñλ

x(r
′), see Eq. (3.51). Eq. (3.57) is an

example of the exact factorization technique, which is typically used in studying nuclear dy-

namics [7, 8, 13], but can also be applied to the pure electronic problem [363, 142, 212, 353].

The solution Ψ̃λ
x is not always the lowest eigenstate if one treats this as an inhomogenous

eigenvalue problem, see Appendix B in Ref. [142]. That is, in general, Ψ̃λ
x does not cor-

respond to the (N − 1)-electron ground-state wavefunction in CP-DFT for CP potential
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ṽλx(r
′) = v[ñλ

x](r
′) and interaction strength λ. Worse, vλnuc, x depends on N − 1 coordinates

simultaneously, so the usual theorems of DFT cannot be applied. For these reasons, the gen-

eral relationship between CP-DFT and exact electron factorization (EEF) is subtle, contrary

to the connections made between the EEF and DFT through Eq. (3.52) [213]. However, this

analysis can still be useful to CP-DFT in some limits. In Section 3.5.3, we discuss the limit

|r| → ∞, where vλnuc, x vanishes everywhere, and we explore implications to CP-DFT.

3.5 Exact conditions

Throughout, it will be convenient to define a CP correction potential, ∆ṽα,λr (r′), which is

simply the difference between the CP potential and the external potential:

∆ṽα,λx (r′) ≡ ṽα,λx (r′)− vλ[n](r′)

= ṽα[ñλ
x](r

′)− vλ[n](r′) .

(3.58)

3.5.1 Two electron spin-singlet systems

For N = 1, nλ
r (r

′) = 0 since the CP density must normalize to 0 and thus there is naturally

no self-interaction error in CP-DFT for single electron systems [333]. If N = 2, the CP

density has just one electron and the α-dependence and the exact vHXC vanish. If the N = 2

electron system is unpolarized, i.e. a spin singlet, the CP densities are

ñλ
r (r

′) =
2 |Ψλ(r, r′)|2

n(r)
, (3.59)

yielding

ṽλS,r(r
′) = ṽλr (r

′) =
1

2

∇′2Ψλ(r, r′)

Ψλ(r, r′)
+ ϵλr , (3.60)
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where ϵλr is the ground-state enregy of the CP-KS potential, ṽλS,r(r
′). Because the wavefunc-

tion satisfies the Schrödinger equation, we find

∆ṽλr (r
′) + ∆ṽλr′(r) =

λ

|r′ − r|
− Eλ + ϵλr′ + ϵλr . (3.61)

In the limit |r′ − r| → 0 we have to leading order:

∆ṽλr (r
′) → λ

2|r′ − r|
, |r′ − r| → 0 . (3.62)

In the next section, we will see that this exact condition can be more generally derived from

the electron-electron cusp condition. In the exchange limit (λ = 0) for two electron spin-

singlet systems we have ñλ=0
r (r′) = n(r′)/2 exactly, which is independent of the reference

position. From uniqueness, the corresponding CP-KS potential is then

ṽλ=0
S,r (r′) = vS[n](r

′) . (3.63)

In Figure 3.1 for 1D He we plot the CP density in the exchange limit (half the total density),

which is quite close to the CP densities that include correlation.

3.5.2 Cusp condition

The generalized electron coalescence cusp condition requires

∂nλ
XC(x, u)

∂u

∣∣∣∣
u=0

= λ ñλ
x(r), (3.64)

where u = r′ − r, u = |r′ − r|, and the left-hand side has been spherically averaged over

r+u [63]. Setting λ = 0, we see that the cusp condition is a purely correlation-driven effect:

the exchange hole does not contribute to the cusp. For generalized Coulomb systems the CP
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spin density follows

∂ñλ
x(u)

∂u

∣∣∣∣
u=0

= λ ñλ
x(r), (3.65)

for r ̸= Ri, where Ri are nuclei positions. Following Kato’s theorem [201], the cusp condition

is satisfied in CP-DFT with a CP correction potential that has the following condition:

∆ṽα,λr (r′) → λ

2|r′ − r|
, |r′ − r| → 0 . (3.66)

3.5.3 Long-range limits

When the reference position r is sent to infinity, we can generalize Ref. [110] for arbitary

λ to deduce the leading-order term of the ground-state wavefunction of the λ-interacting

N -electron system as

lim
|r|→∞

Ψλ(x, x2, . . . , xN) =

√
n(x)

N
Ψ̃λ,N−1

x̂ (x2, . . . , xN) , (3.67)

where Ψ̃λ,N−1
x̂ is an accessible ground-state of the ionized (N−1)-system and is parametrically

dependent on x̂ = (r̂, σ), where r̂ = r/|r| is the direction and σ is the spin of the electron

sent to infinity. The r̂ dependence occurs when the ionized (N − 1)-system ground-state is

otherwise degenerate [110]. The wavefunction Ψ̃λ,N−1
x̂ is a solution to Eq. (3.57) at the large

r limit. For a finite number of degenerate (N −1) ground-states we expect Ψ̃λ,N−1
x̂ to remain

fixed for small changes in r̂, therefore the gradients in Eq. (3.56) vanish and vλnuc, x vanishes

(see Refs. [145] and [144] for an in-depth discussion and exceptions). Taking α = λ, we

identify to leading order:

∆ṽλ=α
x [n](r′) → λ

|r′ − r|
, |r| → ∞ . (3.68)
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That is, in the large reference position limit, the CP correction potential in Eq. (3.68)

simply represents an impurity perturbation that breaks the possible degeneracy in the ionized

(N − 1)-system ground-state.

We continue this analysis and denote the fully spin-decomposed density of the wavefunction

Ψ̃λ,N−1
x̂ as ñλ,N−1

x̂ (x′) and the total density of this wavefunction as ñλ,N−1
x̂ (r′). The latter

corresponds to the asymptotic limit of the spin-CP density to leading order:

lim
|r|→∞

ñλ
x(r

′) = ñλ,N−1
x̂ (r′) . (3.69)

From the complementary principal, for spin-CP densities we obtain:

lim
|r′|→∞

ñλ
x(r

′) =

∑
σ′ n(x′) ñλ,N−1

x̂′ (x)

n(x)
. (3.70)

For unpolarized systems or the total CP density we obtain

lim
|r′|→∞

ñλ
r (r

′)

n(r′)
=

ñλ,N−1
r̂′ (r)

n(r)
. (3.71)

That is, for a given reference position r, the asymptotic behavior of the total CP density is

the same as the asymptotic behavior of the total density of the system, up to a multiplicative

constant. This can be seen in Figure 3.1. For Be, the ionized N − 1 system has a 1s orbital

very similar to that of the neutral system, so for y = 0 the ratio appearing in Eq. (3.71) is

roughly unity and the CP density and total density match far from the nucleus. For He and

y = 0 the ratio is roughly 1/2 and we see that the CP density and half the total density

overlap closely far away.

At large |r′| the highest occupied KS orbital dominates the density [245] and we have

[
− 1

2
∇′2 + vS[n](r

′)

]√
n(r′) = ϵHOMO

√
n(r′) . (3.72)
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Since ñλ
r (r

′) is simply proportional to n(r′) at large |r′|, from uniqueness (up to a constant

shift) we have

ṽλS,r(r
′) → vS[n](r

′) , |r′| → ∞ . (3.73)

The CP-KS potential approaches the original KS potential far from the system. This can

also be seen in Figure 3.1, where the CP-KS potentials approach the original KS potential

far from the nucleus. We can use Eq. (3.73) to determine a corresponding exact condition

for the CP correction potential defined in Eq. (3.58). From Eqs. (3.32) and (3.58) we have

ṽλS,r(r
′) = vλ[n](r′) + ∆ṽα,λr (r′) + vαHXC[ñ

λ
r ](r

′)

= vs[n](r
′)− vλHXC[n](r

′) + ∆ṽα,λr (r′) + vαHXC[ñ
λ
r ](r

′) .

(3.74)

The asymptotic limit |r′| → ∞ of the usual KS-DFT potentials are well-known to leading

order [108]:

vλHXC[n](r
′) → λ(N − 1)

r′
, |r′| → ∞ . (3.75)

Since the CP density ñλ
r integrates to N − 1 electrons:

vαHXC[ñ
λ
r ](r

′) → α(N − 2)

r′
, |r′| → ∞ . (3.76)

From Eqs. (3.73) - (3.76) we obtain

∆ṽα,λr (r′) → N(λ− α) + 2α− λ

r′
, |r′| → ∞ . (3.77)
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3.5.4 Strictly correlated electron limit

When λ → ∞, we approach the strictly correlated electron (SCE) limit. The Hamiltonian

of Eq. (3.46) has the expansion [136]

Hλ → λ
(
V̂ee + V̂ SCE

)
+O(

√
λ), λ → ∞ , (3.78)

where the last term is kinetic and is subleading. In this limit we have defined

V̂ λ[n] → λV̂ SCE[n] = λ
N∑
i=1

vSCE[n](ri), λ → ∞ , (3.79)

where V̂ SCE[n] is the one-body potential that minimizes the classical potential potential

energy operator V̂ee + V̂ SCE[n] and delivers n(r) as the ground-state density. The ground-

state wavefunction of such a Hamiltonian collapses into a distribution that can be expressed

as [282]

|ΨSCE(x, x2, . . . , xN)|2 =

1

N !

∑
P

∫
d3s

n(s)

N

N∏
i=1

δ(3)(ri − fP(i)(s)) ,
(3.80)

where P denotes a permutation of 1, . . . , N , ensuring |ΨSCE|2 is symmetric with respect to

exchanging the coordinates of identical particles. The co-motion functions, fi(r), dictate the

positions of correlated electrons given an electron at position r. The co-motion functions

satisfy cyclic group properties, with f1(r) ≡ r, f2(r) ≡ f(r), f3(r) = f(f(r)), and so on such

that fN+1(r) = r. See Ref. [371] for additional properties. In the SCE limit, the pair density
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becomes

P SCE(r, r′) =
∑
i ̸=j=1

∫
d3s

n(s)

N
δ(3)(r− fi(s)) δ

(3)(r′ − fj(s))

=
∑
i ̸=j=1

∫
d3s

n(s)

N
δ(3)(fN−i+2(r)− s) δ(3)(fN−j+2(r

′)− s).

(3.81)

We can neglect terms where neither i nor j are equal to 1 since the delta functions in the

integral will not overlap for differing non-trivial co-motion functions. Evaluating the integral

and applying cyclic properties we obtain

P SCE(r, r′) = n(r)
N∑
i=2

δ(3)(r′ − fi(r)) . (3.82)

The CP density is then

ñSCE
x (r′) =

N∑
i=2

δ(3)(r′ − fi(r)) . (3.83)

Partitioning the SCE Hamiltonian in Eq. (3.78) like Eq. (3.46) and neglecting the subleading

gradient terms allows us to identify a corresponding CP correction potential for α, λ → ∞,

λ∆ṽSCE
x [n](r′) =

λ

|r′ − r|
. (3.84)

This is the potential required in this semiclassical limit. In this limit, we have simply fixed

the “missing” electron at position r as if it were a distinguishable particle and solve the

resulting (N − 1) electron system in the presence of this impurity potential, Eq. (3.84). In

the context of classical statistical mechanics, this is equivalent to the Percus test particle

procedure [310, 73, 21].
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Figure 3.3: CP densities and potentials in 1D He (λ = 1): ṽBEA
S,y (y′) is the 1D BEA approxi-

mation to the CP-KS potential with corresponding CP density ñBEA
y (y′), ṽS,y(y

′) is the exact
CP-KS potential with corresponding exact CP density ñy(y

′), vS(y
′) the exact KS potential

with corresponding exact ground-state density n(y′), and v(y′) the external potential for our
1D He atom. Quantities are plotted for reference position y = 0 (left) and for y = 0.8 (right).

3.5.5 Dissociation limit

Consider a simple example of bond dissociation, the stretched H2 bond. At the dissociation

limit, the exact wavefunction has the Heitler-London [169] form (λ ̸= 0):

Ψλ(r1, r2) =
1√
2
(ϕA(r1)ϕB(r2) + ϕB(r1)ϕA(r2)) (3.85)

where ϕA and ϕB are atomic H orbitals localized on each of the two protons. This yields a

CP density:

ñλ
r (r

′) = nB(r
′), r near A , (3.86)
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and vice versa, and vanishes elsewhere. Thus the total electron-electron repulsion potential

energy from Eq. (3.43) vanishes due to the lack of overlap, and each atomic region correctly

yields the one-electron energy of a isolated hydrogen atom.

We can also consider arbitrarily long neutral HN chains. In the spin-singlet case, where N

is an even number, we obtain a generalized version of Eq. (3.85) at the dissociation limit

(λ ̸= 0):

Ψλ(r1, . . . , rN) =
1√
N !

∑
P

N∏
i=1

ϕi(rP(i)) , (3.87)

where ϕi are atomic H orbitals localized on nuclei i, with position Ri, in the enumerated HN

chain. The CP density is:

ñλ
r (r

′) =
N∑

i ̸=j=1

ni(r
′), r near Rj . (3.88)

Again, the total electron-electron repulsion potential energy from Eq. (3.43) vanishes due

to the lack of overlap, and each atomic region correctly yields a one-electron energy of a

isolated hydrogen atom. The corresponding CP potential is

ṽλ,αr (r′) = −
N∑

i ̸=j=1

1

|r′ −Ri|
, r near Rj . (3.89)

Hence the CP correction potential is then

∆ṽλ,αr (r′) =
1

|r′ −Rj|
, r near Rj . (3.90)
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Figure 3.4: CP densities and potentials in 1D Be (λ = 1): ṽBEA,LDA
S,y (y′) is the 1D BEA

approximation to the CP-KS potential using the 1D LDA [29] approximation, see Eq. (3.96).
The corresponding CP density is ṽBEA,LDA

S,y (y′).

3.6 Blue electron approximation

In the blue electron approximation (BEA) we make the simple approximation

∆ṽλ=α,BEA
r (r′) ≡ λ

|r′ − r|
(3.91)

to the CP correction potential defined in Eq. (3.58). We call this the blue electron approx-

imation because it corresponds to the classical result, Eq. (3.84). It is as if our reference

electron was a distinguishable particle, painted blue for instance, fixed at position r, yielding

an impurity potential, Eq. (3.91). Using the BEA and setting λ = α in Eq. (3.74) we obtain

ṽλ,BEA
S,r (r′) = vs[n](r

′) +
λ

|r′ − r|
+ vλHXC[ñ

λ
r ](r

′)− vλHXC[n](r
′) . (3.92)
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While simple and semiclassical in origin, the BEA satisfies a surprising number of exact

conditions discussed in this work.

In the exchange limit (λ = 0), the BEA CP correction potential and vλ=0
HXC terms vanish,

leaving ṽλ=0,BEA
S,r (r′) = vs[n](r

′). For two electron spin-singlet systems, this is exact, see

Eq. (3.63), but not otherwise. Therefore, in general we do not expect the BEA to perform

well for N > 2, unless exchange-limit corrections are also incorporated into the CP correction

potential.

Taking a reference position r that is far away from the system we see that BEA matches

the exact asymptotic behavior in Eq. (3.68) by construction. Similarly, taking λ = α in

Eq. (3.77), we obtain

∆ṽλ=α
r (r′) → λ

r′
, |r′| → ∞ , (3.93)

which matches the asymptotics of BEA in Eq. (3.92) if the exact asymptotic decay of vλHXC(r
′),

Eq.(3.75), is assumed. However, for approximate XC functionals, especially local and semilo-

cal functionals, this condition is usually violated [226].

We can also show that BEA correctly dissociates neutral HN chains. In the dissociation

limit, the exact vλHXC(r
′) terms will vanish and we obtain:

ṽλ,BEA
S,r (r′) =

λ

|r′ − r|
−

N∑
i=1

1

|r′ −Ri|
. (3.94)

In the absence of the first term, this KS potential would yield an N -fold degenerate ground-

state eigenvalue which is equal to the H atom ground-state energy. For λ ̸= 0 and when r is

near {Ri}, the first term breaks some degeneracy: the ground-state eigenvalue has the same

value as before but is now (N − 1)-fold degenerate. The associated ground-state CP-KS
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orbital, ϕ̃0,r, is

ϕ̃0,r(r
′) =

1√
N − 1

N∑
i ̸=j=1

ϕi(r
′) , r near Rj , (3.95)

where ϕi are atomic H orbitals centered at position Ri. The resulting CP density is the exact

one, Eq. (3.89). If an approximate vλHXC(r
′) is used, and there exists a self-interaction error

for 1 electron systems, the atomic H orbitals in Eq. (3.95) are correspondingly approximate.

N Symbol Vee[n, ñ
BEA] Vee[n

LDA, ñBEA, LDA
x ] V HF

ee V exact
ee

2 He 0.659 (-0.031) 0.650 (-0.040) 0.722 (0.032) 0.690

2 Li+ 0.739 (-0.016) 0.735 (-0.020) 0.773 (0.018) 0.755

2 Be++ 0.779 (-0.013) 0.778 (-0.014) 0.802 (0.010) 0.792

3 Li - 1.741 (0.094) 1.682 (0.035) 1.647

3 Be+ - 1.971 (0.113) 1.881 (0.023) 1.858

4 Be - 3.314 (0.126) 3.360 (0.172) 3.188

Table 3.1: Electron-electron repulsion energies, Vee, for 1D systems using various methods.
All energies are given in Hartree units. Errors with the exact are given in parenthesis. For
N = 3 (spin-polarized systems), spin-CP-DFT calculations were performed self-consistently
for each spin channel. 1D Hartree-Fock (HF) results are given as reference. Exact results
are from 1D DMRG calculations [29]. The local BEA of the main text performs better for
3D Coulomb-interacting systems [270].

The BEA was proposed for 3D Coulomb-repelling electrons, for which it works well [270]. For

1D exponential repulsion, it is less accurate. In 1D the BEA takes the analog, ∆ṽλ,BEA
y (y′) =

λA exp(−κ|y − y′|). For λ = 1 we plot the BEA CP potential and density for 1D He in

Figure 3.3. We see that the BEA is reasonably accurate, but it is clear that the BEA

potential, Eq. (3.91), is overly repulsive and overestimates the CP potential at the reference

position. For N > 2 and λ = 1 we use the 1D LDA approximation (parameterized in [29])
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and solve the CP-KS equations self-consistently with the following CP-KS potential:

ṽBEA,LDA
S,y (y′) = v(y′) + A exp(−κ|y − y′|) + vLDA

HXC [ñy](y
′) . (3.96)

We plot this potential for 1D Be in Figure 3.4. The BEA results here are worse than in 1D

He, because of the exchange-limit deficiency previously discussed.

We can also apply this potential in the spin-CP-DFT case to spin-polarized systems, such as

1D Li in Figure 3.5. For σ =↓, the BEA spin-CP density closely approximates the exact and

the BEA does yield an accurate exchange-limit spin-CP density, nLDA
↑ (y′), which is similar

to the exact, ñλ=0
(y,↓)(y

′) = n↑(y
′).

With λ = 1 only we can calculate the total electron-electron repulsion energy, Vee, given the

total ground-state density n and CP density ñy. In our 1D analog we have:

Vee[n, ñy] =
1

2

∫
dy n(y)

∫
dy′ ñy(y

′)A exp(−κ|y − y′|) . (3.97)

In Table 3.1 we tabulate total electron-electron repulsion energies obtained from various

methods. While we note that the BEA is an exceptionally crude approximation in 1D, for

two-electron ions it yields energies that have comparable errors to Hartree-Fock (HF).

In 3D reality with Coulombic interactions, it can be seen from Eq. (3.66) that the BEA yields

a CP density with a cusp that is too large by a factor of 2. To remedy this, we interpolate

with a local density approximation

∆ṽλ,LBEA
r [n](r′) ≡ λ

2|r− r′|

(
1 + Erf

(
|r− r′|
rs(n(r))

))
, (3.98)

where rs = (3/(4πn))1/3 is the Wigner-Seitz radius at the reference point r. This local

blue electron approximation (LBEA) will yield the exact cusp condition by Eq. (3.66) and

satisfies the same discussed exact conditions as the BEA. In Figure 3.6 we plot the CP
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densities and potentials for the (3D) He atom in the (x′, y′, z′ = 0) plane for reference

position r = (0.563, 0, 0). We see that despite noticeable errors in the LBEA CP potential,

the corresponding CP density is rather accurate. The exact results were obtained using exact

diagonalizations in the recently developed gausslet basis set [347, 270]. In Ref. [270], using the

LBEA in Eq. (3.98) with HF-calculated total densities, it was found that ELBEA
XC = −1.0736

Ha (error of 0.007 Ha from the exact XC energy). See Ref. [270] for results on other two-

electron ions, Hooke’s atom, and H2 dissociation. Within APDFT, the Overhauser model

approximation, which represents a radial screened Coulomb interaction, is a close analog to

the LBEA in CP-DFT. In fact, using the Overhauser model, the correlation energy results for

two-electron ions in Ref. [146] are quite similar to the LBEA results of Ref. [270]. However,

in non-radially symmetric systems or systems with more than two electrons, the Overhauser

model and LBEA can produce quite different results. For example, in stretched H2 the

Overhauser model produces noticeable energy errors [148] whereas LBEA obtains the correct

dissociation limit [270].

The CP-DFT approach can be used to address the uniform electron gas (UEG). Because the

UEG is translationally invariant, the dependence on the reference position can be dropped.

In Ref. [270] the LBEA with an added repulsive Gaussian potential term was used in CP-

DFT calculations to accurately approximate the XC energy per particle of the UEG at all rs

values. In addition, the accuracy does not deteriorate as the temperature of the UEG is raised

or if a more primitive method (Thomas-Fermi, as opposed to KS-DFT) is used to calculate

CP densities. At zero temperature, the added Gaussian potential is needed at high densities

where exchange dominates but is not captured well with the LBEA alone. However, it was

also necessary to dampen this Gaussian as rs is increased, yielding a somewhat empirical

procedure but high accuracy results [270]. More recently, Ref. [309] considers an alternative

approach where a portion of the CP density is fixed. Here the parallel component of the

spin-CP density, ñσ(r
′, σ) in Eq. (3.38), is fixed to the exact exchange limit expression for the

UEG (which is known analytically [101]). A spin-CP-DFT calculation is then performed for
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the antiparallel component. As highlighted in Section 3.4.2, using spin densities in spin-CP-

DFT is complicated, as these components do not integrate up to integer particle numbers

in general, see Eq. (3.42). However, in the setting of the UEG this is not a concern, as the

particle number is infinite (or exceedingly large, in a practical calculation). Furthermore, the

parallel component of the spin-CP density is fixed to the exchange limit, which does yield an

integer particle number. By construction, this approach recovers the correct exchange energy

in the high-density limit, and yields sensible accuracy for all other rs in the UEG [309].
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Figure 3.5: Spin-CP densities and potentials in 1D Li with N↑ = 2, N↓ = 1, and λ =

1: ṽBEA,LDA
S,x (y′) is the 1D BEA approximation to the spin-CP-KS potential using the 1D

LDA [29] approximation, see Eq. (3.96), with corresponding spin-CP density ṽBEA,LDA
S,x (y′).

The exact CP-KS potential is ṽS,y(y
′) with corresponding exact CP density ñy(y

′), vS(y
′)

the exact KS potential with corresponding exact ground-state density n(y′), and v(y′) the
external potential for our 1D Li atom.
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Figure 3.6: CP densities and potentials for (3D) He atom (λ = 1): contour plots for the exact
CP density ñr(r

′) (top left) and corresponding exact CP-KS potential ṽr(r
′) (bottom left)

are plotted within the (x′, y′, z′ = 0) plane for reference position r = (0.563, 0, 0) (displayed
as red cross). The corresponding LBEA results are plotted on the right.
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3.7 Conclusions

In this work we present CP-DFT as a formally exact theory. CP-DFT is an approach to

directly calculate CP densities ñr(r
′) from ground-state calculations of N − 1 electrons in

an external potential ṽr(r
′), known as the CP potential. In practice, the CP potential

(or CP correction potential defined in Eq. (3.58)) used to obtain the CP density must be

approximated. The XC energy can be extracted directly from the adiabatic connection

formula using the ground-state density and CP densities. Notably, the CP-DFT approach

bypasses the need for an XC energy functional approximation: only accurate ground-state

densities and CP densities are needed to yield accurate XC energies within CP-DFT. We

also introduce a formally exact spin-CP-DFT approach which can be used to obtain spin-

CP densities. Similar to standard spin-DFT, we anticipate that the spin-CP-DFT approach

may be more amenable to approximations that can address spin-polarized systems with more

accuracy.

Throughout we present several exact conditions associated with CP densities and corre-

sponding CP potentials, including: explicit expressions for two electron systems, long- and

short-range asymptotic limits and conditions for general systems, the strictly correlated elec-

tron limit, and arbitrary neutral hydrogen chains at the dissociation limit.

We highlight an approximation, the blue electron approximation (BEA), which has semi-

classical origins but, surprisingly, satisfies many exact conditions presented. An interpolated

variation of BEA, the local blue electron approximation (LBEA), additionally satisfies the

electron-electron cusp condition in resulting CP densities. For illustrative purposes, we pro-

vide select results for the BEA applied on 1D model systems for He, Li, and Be, as well as

the LBEA applied on the (3D) He atom. Because the BEA was designed for 3D Coulomb-

repelling systems, it works less well for 1D exponential repulsions, so we strongly recommend

against using the 1D-mimic to study the efficacy of BEA. In previous work [270], the LBEA
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was shown to yield usefully accurate results in several systems where standard DFT approx-

imations can fail, such as single electron systems, stretched H2, and the hydrogen anion. In

developing generalizeable CP-DFT approximations, it is clear that additional corrections are

needed to obtain accurate CP and spin-CP densities in the exchange limit, which is not well

captured using the BEA alone, except in two-electron singlet systems.

Exact conditions might play an important role in guiding construction or testing approxi-

mations in CP-DFT. In standard DFT, exact conditions on the energy functionals are most

useful, rather than conditions on the densities or potentials. However, in CP-DFT, where an

accurate CP density is the sole interest, only exact constraints on the CP densities and CP

potentials are useful. Identifying further exact conditions on the CP density (or equivalently,

the XC hole) and associating them to conditions on the CP potential may be helpful in the

development of future CP-DFT approximations.

Overall, this work aims to provide a sound theoretical basis for CP-DFT and spin-CP-DFT.

Simple examples are used throughout to demonstrate concepts and facilitate understanding.

We hope that the content of this work will prompt future approximations and applications.
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Chapter 4

Reassessing the role of exact

conditions in density functional theory

This chapter is a reproduction of Ref. [303], which I co-authored with Kieron Burke.

4.1 Abstract

Exact conditions have long been used to guide the construction of density functional ap-

proximations. Nowadays hundreds of approximations are in common use, many of which

neglect these conditions in their design. We analyze several well-known exact conditions and

revive several obscure ones. Two crucial distinctions are drawn: that between necessary and

sufficient conditions, and between all possible electronic densities and the subset of relevant

Coulombic ground states. Simple search algorithms find violations of sufficient conditions

while others construct densities that violate necessary conditions. We find that many em-

pirical approximations satisfy many exact conditions for chemically relevant densities. We

also find non-empirical approximations satisfy even more conditions than those enforced in
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their construction.

4.2 Introduction

Modern density functional theory (DFT) calculations span many branches of the science of

matter [296, 184, 343, 457]. In the standard Kohn-Sham approach [214], only the exchange-

correlation (XC) energy need be approximated as a functional of the electronic (spin)-

densities. Currently, hundreds of distinct XC approximations are available in standard DFT

codes [266, 238], reflecting the immense difficulty in finding approximations that are generally

accurate.

With the exact XC energy functional, Kohn-Sham DFT provides the exact ground-state den-

sity and energy for any electronic system. Exact conditions are known analytical properties of

the exact functional and have played a vital role in the development of approximations [199].

The argument is that imposing exact conditions makes an approximation better resemble

the exact functional, leading to improved generality. Typically, non-empirical functionals

rely heavily on such conditions, eschew fitting to any chemical bonds, and work reasonably

well for both materials and molecules. Such guiding principles led to a series of successful

and widely used approximations, culminating in “Strongly Constrained and Appropriately

Normed” (SCAN) [388] semilocal functional which attributes much of its success to the

satisfaction of ’all known’ (17) exact conditions that such a functional can satisfy.

On the other hand, many approximations tailored for molecular chemistry applications bla-

tantly ignore exact conditions in their design [341]. Such approximations can be extremely

accurate on comprehensive molecular benchmarks [140], where they are often more accurate

than their more constrained counterparts. Typically, such chemically trained functionals

behave poorly for materials.
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Figure 4.1: An unpolarized ground-state gedanken density with 2 electrons whose correlation
energy is -21 mH in PBE, but +85 mH in LYP. For reference, the He atom density (divided
by 7) is plotted.

We illustrate this difference with the correlation energy of the blue two-electron density in Fig

1, calculated with two generalized gradient approximations (GGA’s). The first, the Perdew-

Burke-Ernzerhof (PBE) correlation functional [313] adheres to many exact conditions and

automatically satisfies the basic requirement that the correlation energy is never positive,

yielding -21 mH. The second, the Lee-Yang-Parr (LYP) correlation functional [234], does not

explicitly enforce many exact conditions and yields the nonsensical +85 mH. Yet LYP has

been used successfully in over 100,000 chemical applications [60].

How can the success of these two seemingly disjoint design paradigms be rationalized? We

resolve this paradox by reassessing the role of exact conditions in modern DFT approxi-

mations. To do this, we develop several new (and not so new) tools. We carefully parse

the logic of exact conditions, finding that many enforced conditions are too strong for real

matter. A computational scanning procedure finds violations, coupled with construction of

corresponding reasonable (but not realistic) densities, as in Fig 1. Half a dozen exact condi-

tions and hundreds of approximate functionals are analyzed. Several obscure conditions are

revived and analyzed, while even well-known conditions yield surprising new twists. Finally,

the role of exact conditions in density functional development is revisited.
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4.3 Results

Begin with the correlation energy. In practice, approximations (denoted by tilde) have the

form:

ẼC[n] =

∫
d3r n(r) ϵ̃C[n](r), (4.1)

where n(r) is an electronic density. While the developers define a conventional correla-

tion energy per electron, ϵ̃C[n](r), that is often implemented explicitly in DFT codes, other

“gauges” exist yielding the same ẼC[n]. For example, ϵ̃C[n](r) and ϵ̃C[n](r) + ∇2(n2/3)/n

yield identical ẼC[n] [325, 90]. Specifically, semilocal functionals can be written

ϵ̃C[n](r) = ϵ̃C(rs(r), ζ(r), s(r), α(r), q(r)) , (4.2)

where rs = (4πn/3)−1/3 is the Wigner-Seitz radius, ζ = (n↑ − n↓)/n is the (dimensionless)

spin polarization, s = |∇n|/(2(3π2)1/3n4/3) is the (dimensionless) reduced gradient, α = (τ−

τVW)/τunif≥ 0 with τ =
∑occ.

i,σ |∇ϕi,σ|2/2, τVW = |∇n|2/8n, τunif = (3/20)(3π2)2/3n5/3
[
(1 +

ζ)5/3+(1−ζ)5/3
]
, and q = ∇2n/(4(3π2)2/3 n5/3) is the reduced Laplacian. The local spin den-

sity approximations (LDA) depends only on rs and ζ, generalized gradient approximations

(GGAs) add dependence on s, while meta-generalized gradient approximations (MGGAs)

can depend on all variables.

A simple exact condition is correlation energy non-positivity,

EC[n] ≤ 0 , (4.3)

which holds for any reasonable density, which we define as being positive, integrating to a

finite quantity N , and have finite von Weizsäcker kinetic energy (IN of Ref. [255] or Eq. 34
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of Ref. [429]). This is routinely enforced via

ϵ̃C[n](r) ≤ 0 for all r and any n(r). (4.4)

Clearly, satisfying this local condition guarantees Eq. (4.3), but it is also excessive, i.e.,

not necessary. Moreover, starting from any ϵ̃C[n](r) that satisfies Eq (4.4), addition of

C∇2(n2/3)/n violates it for sufficiently large C. If local violations of Eq. (4.4) do exist, then

a counterexample density that violates the exact condition in Eq. (4.3) might be found.

If it can be, the exact condition is violated for that density in any gauge. If no such

counterexample can be found, the possibility that a gauge might be found that satisfies

Eq. (4.4) remains open.

Returning to the LYP GGA, we found instances where ϵLYP
C (rs, ζ, s) > 0 for s ≥ 1.74, thus

allowing the possibility of a violating gedanken density. Gedanken densities are thought ex-

periment densities that need not be realistic [325]. So we construct a gedanken density that

has large s ≥ 1.74 values throughout its interior, violating the local condition in Eq. (4.4)

(see Supplemental S1 for details). Importantly, we want such local violations to exist in

energetically relevant regions of the density, that is, spatial regions that substantially con-

tribute to the integral in Eq. 4.1. The gedanken density of Fig 4.1 is radial, nodeless, finite,

continuous, differentiable to first and second order, and integrates to 2 electrons. It is a

reasonable density and is also non-interacting v-representable, and when evaluated using the

LYP correlation functional yields +85 mH. Thus, the LYP functional can violate correlation

non-positivity.

But does LYP violate correlation non-positivity in the restricted space of realistic Coulombic

densities, i.e, those ground-state densities of systems with Coulombic attractions to integer

nuclear charges of small or no overall charge? The gedanken density of Fig 4.1 is not

Coulombic: for instance, it lacks nuclear cusps as required by Kato’s theorem [201].
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Figure 4.2: The distribution g(s) is plotted for various ground-state densities: the gedanken
density in Fig. 4.1, the He and N atoms, and the N2 molecule. The absolute difference
between the N2 molecule and N atom distributions is also plotted. Details of the calculations
can be found in Supplemental S2.

An important property of the gedanken density is that it has energetically relevant regions

of the density with s ≥ 2. The distribution

g(s) =

∫
d3r n(r) δ(3)(s− s(r)) , (4.5)

was introduced in Refs. [476, 475], and g(s) ds is the number of electrons in the system

with reduced density gradient between s and s + ds, i.e, it is an analog of the density

of states for energy levels. In Fig. 4.2, we plot g(s)/N for various ground-state densities:

the gedanken density in Fig. 4.1 and calculated densities for the He and N atoms and the

N2 molecule. Hartree-Fock densities are sufficiently accurate for our purposes. Unlike the

Coulombic densities, the gedanken density g(s) is centered around s ≈ 2, as intended. For

Coulombic systems [475], large s > 2 values are typically only found in the decaying tails

of the density, and are energetically irrelevant. In molecular and extended systems, these

tails (which may not even be present in periodic systems) are even less energetically relevant

than their atomized counterparts [475] : in Fig. 4.2 the distribution g(s)/N of N2 is shifted

to lower s than that of the atomized system (N atom) for s > 1. The electrons in the
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bond between two (or more) atoms have smaller values of s which even vanishes at the bond

center [475]. Although a single electron distributed across an infinitely separated chain of

many protons has energetically relevant regions of large s, such a system is too far from

neutral for our set.

Do large s values contribute importantly to energy differences, such as molecular binding

energies? Valence electrons change considerably but their differences tend to also be ener-

getically relevant only in regions of smaller s values : the difference |g[N2](s)− 2g[N](s)|, is

most prominent in regions s < 2 (see Fig. 4.2) [475]. In non-covalent bonding, s values up to

≈ 7 are relevant in binding energy differences for van der Waals (vdW) complexes [186, 287].

However, in these cases, typically a non-local correlation functional (such as DFT-D [71] or

vdW-DF [154]) is employed which provides the bulk of the energetics that contributes to the

binding of vdW complexes, whereas semilocal contributions are more relevant in structural

aspects such as bonding distances and lattice constants [186].

Revisiting the LYP correlation energy example, we conjecture that no realistic Coulombic

density ever yields a positive correlation energy. Such a density would need to have energeti-

cally relevant regions of the density with large s > 1.74, which is simply not observed in these

systems. Over countless atomic and molecular densities, the LYP correlation functional has

not yielded positive correlation energies [234, 278].

We perform an identical analysis on other popular approximations and tabulate the results

in the first row of Table 4.1. For each exact condition (e.g. Eq. (4.3)), we check for violations

of the corresponding local condition (e.g. Eq. (4.4)) for various semilocal approximations.

To locate violations of such local conditions, we use a simple extensive grid search over

applicable variables, 0 < rs ≤ 5, 0 ≤ ζ ≤ 1, 0 ≤ s ≤ 5, 0 ≤ α ≤ 5, where the upper ranges are

chosen to be reasonably large to encapsulate relevant regions of realistic Coulombic densities

(see Supplemental S11 for more details). This brute-force numerical approach is necessary

since analytical verification is often impossible with the complicated forms of modern XC
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approximations. We utilize the Libxc [238] implementation of XC approximations to evaluate

the XC energy densities in Eq. (4.2).

For a given local condition and approximation, if we find no violations in our grid search, then

we assume that the approximation always satisfies the exact condition for any reasonable

density (denoted by a ✓ in Table 4.1). In other cases (denoted ✓*), the corresponding

local condition may be satisfied only for a restricted range of variable values. For example,

for B3LYP correlation non-positivity, the local condition in Eq. 4.4 is satisfied whenever

s < 2.13 and we display the bounds on the variable s that ensure satisfaction. In some cases

(denoted ✓**), we do not obtain a simple restricted range of variable values, but we find that

local violations are exceedingly “rare” (less than 1% of the total number of permutations

considered).

non-empirical empirical

local condition PBE AM05 SCAN B3LYP CASE21 SOGGA11 M06 B97

EC non-positivity (4.4) ✓ ✓ ✓ ✓*, s < 2.13 ✓ ✓ ✓*, ζ = 0, s < 1.56 ✓*, s < 1.42

EC scaling inequality (A.16) ✓ ✓ ✓ ✓*, s < 2.15 ✓ ✓** ✓*, ζ = 0, s < 1.59 ✓*, s < 1.52

TC upper bound (A.7) ✓ ✓ ✓ ✓ ✓ ✓*, s < 1.36 ✓*, ζ = 0, s < 1.56 ✓*, s < 1.62

UC(λ) monotonicity (4.15) ✓ ✓ ✓ ✓*, s < 1.82 ✓ ✗ ✓*, ζ = 0, s < 1.56 ✓*, s < 1.41

LO extension to EXC (A.18) ✓ ✓ ✓ ✓ ✓ ✓ ✓*, 0.04 < s < 3.62 ✓*, s < 4.46

LO (A.10) ✓ ✓ ✓ ✓*, s < 4.88 ✓ ✓*, s < 4.98 ✓*, 0.06 < s < 3.62 ✓*, s < 4.43

Table 4.1: For each condition, we assess if the local condition is satisfied (or partially satisfied)
for an approximation (with more given in Supplemental S11).

The logic and concepts presented for correlation non-positivity generalize to other exact

conditions on energy functionals. For instance, the Lieb-Oxford (LO) bound [256] extension

to XC energies exact condition [312],

EXC[n] ≥ CLO

∫
d3r n ϵunif

X
[n](r) , (4.6)
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yields the local condition

F̃XC ≤ CLO , (4.7)

where we use CLO = 2.27 in this work (although tighter bounds have been proven [246, 247]),

F̃X(C)[n](r) ≡ ϵ̃X(C)[n](r)/ϵ
unif
X [n](r) is the exchange (correlation) enhancement factor with

F̃XC = F̃X + F̃C and ϵunifX [n](r) = −(3/4π)(3π2n)1/3 is the exchange energy per particle of

an unpolarized uniform electron gas. Many approximations enforce the local Eq. (A.18) to

ensure Eq. 4.6.

Since the combined XC energy is the object of interest, some approximations fail to distin-

guish exchange and correlation. In the exact functional, one can extract EC using uniform

coordinate scaling [242, 243]:

EC[n] = EXC[n]− lim
γ→∞

EXC[nγ]

γ
, (4.8)

where nγ(r) ≡ γ3n(γr) and γ > 0. We apply this “conventional” partitioning to extract

correlation energies where none have been defined or whose partitioning is ambiguous.

E.g., for globals, Eq. (A.21) yields EC of the semilocal form in Eq. (4.2), e.g., ϵB3LYP
C =

0.405ϵLYP
C +0.095ϵVWN5

C [385]. This partitioning can differ from the developer’s intentions or

rationalizations (see Supplemental S4). The LO bound applied to global hybrid functionals

is discussed in Supplemental S5.

Besides Eq. (A.21), many other properties of the exact functional are written in terms of

uniform coordinate scaling (or equivalently, through the adiabatic connection in DFT [164,

228, 156], see Supplemental S7). We simply list these “obscure” conditions and their local

forms (further details and derivations can be found in the Supplemental S3). The correlation
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uniform scaling inequality [242]

(γ − 1)EC[nγ] ≥ γ(γ − 1)EC[n] (4.9)

has a corresponding local condition,

∂F̃C(rs, ζ, s, α, q)

∂rs
≥ 0 . (4.10)

The kinetic contribution to the correlation energy, TC, is non-negative [242, 128]

TC[nγ] = γ
dEC[nγ]

dγ
− EC[nγ] ≥ 0 , (4.11)

and shares the same local condition, Eq. A.16. The TC upper bound [244, 241] reads

TC[nγ] ≤ −γ

(
∂EC[nγ]

∂γ

∣∣∣
γ→0

)
+ EC[nγ] , (4.12)

with corresponding local condition,

∂F̃C

∂rs
≤ F̃C(∞)− F̃C

rs
, (4.13)

where F̃C(∞) = F̃C(rs → ∞). Correlation energy adiabatic connection curves, UC(λ) =

d(λ2EC[n1/λ])/dλ, satisfy a monotonicity condition [243],

dUC(λ)

dλ
≤ 0 , (4.14)

with corresponding local condition [243]

∂

∂rs

(
r2s
∂F̃C

∂rs

)
≥ 0 . (4.15)
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The LO bound [256], often generalized as Eq. 4.6, is precisely

UXC[n] ≥ CLO

∫
d3r n ϵunif

X
[n](r) , (4.16)

where UXC[n] = EXC[n] − TC[n] is the potential correlation energy. The corresponding local

condition,

F̃XC + rs
∂F̃C

∂rs
≤ CLO , (4.17)

ismore restrictive than the commonly used Eq. (A.18). Approximations satisfying Eq. (A.18)

need not satisfy Eq. (A.10), such as B3LYP or SOGGA11 in Table 4.1. Results for a

conjectured condition, TC[n] ≤ −EC[n] [242, 89, 128], are in Supplemental S6, S10, and S11.

This work does not provide a comprehensive study of all known exact conditions in DFT.

A unified subset of several conditions (6) were chosen to illustrate the logic. But we have

not touched on the self-interaction error [333], the asymptotic behavior of exchange and

correlation potentials [15], or the flat-plane energy condition for fractional charges and

spins [284, 79]. We expect our logic can be fruitfully applied to any exact condition in

DFT.

We describe the conditions Eqs. A.12 - A.10 as obscure because, while proven several decades

ago, none appear to be deliberately and generally enforced in modern approximations, even

those that strive to satisfy as many exact conditions as possible. SCAN was designed to

satisfy the correlation uniform scaling inequality (Eq. (A.12)), but only in extreme limits,

γ → 0,∞ [388, 199]. The corresponding local condition in Eq. (A.16) is satisfied in SCAN,

but adjustments of its parameters chosen to fit appropriate norms can produce violations (see

Supplemental S9). Norms refer to properties of specific (but not bonded) reference systems,

such as the uniform gas, the hydrogen atom, or noble gas dimers [388, 43]. So, by enforcing

appropriate norms, SCAN satisfies more exact conditions than were explicitly included. In
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other instances, such as PW91 [312] and LDA, the satisfaction of several of the obscure exact

conditions was proven analytically after their publication [243] (Supplemental S8 is a proof

that PBE satisfies Eq. A.12). We find (numerically) that the non-empirical PBE, AM05, and

SCAN functionals, which were designed to satisfy a large set of exact conditions, also satisfy

many additional exact conditions outside of the original set (Table 4.1). CASE21, a recent

machine-learned empirical functional designed to adhere to select exact conditions [383], also

satisfies these obscure conditions.

In Table 4.1, we also show that many empirical approximations satisfy local conditions in

energetically relevant regions of realistic Coulombic densities, i.e., for s values that are not

too large. When assessing our set of exact conditions on the set of coordinate-scaled HF

densities for atoms H-Ar and their cations, we find that all are satisfied (see Supplemental

S10), suggesting that these approximations will satisfy these conditions in the space of re-

alistic Coulombic densities (possibly excepting the monotonicity condition in SOGGA11).

This is intriguing because most such empirical approximations were designed without explicit

adherence to these exact conditions. This finding appears to reinforce their importance in

approximations: satisfaction of such esoteric exact conditions is hardly accidental. Further-

more, empirical approximations often employ ingredients, such as the dimensionless quanti-

ties s, ζ, α, q, which themselves were chosen to simplify satisfaction of exact conditions. In

consequence, nearly all empirical approximations satisfy two simple exact constraints on the

exchange energy: uniform coordinate scaling [242] and spin scaling [297].

Our results suggest a reassessment of the role of exact conditions in modern density func-

tional development. Is it excessive to enforce strong local conditions to ensure the sat-

isfaction of exact conditions? Flexible empirical model approximations also satisfy many

exact conditions on the (highly relevant) space of realistic Coulombic densities and achieve

high accuracy for molecular processes. When empirical functionals are locally constrained

to satisfy conditions, their molecular benchmark performance is similar to the suboptimal
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performance of their non-empirical counterparts, despite the advantage of training on molec-

ular data [383, 99, 290], and the resulting functionals tend to closely mimic non-empirical

counterparts, such as SCAN [99, 290].

So when is the enforcement of local conditions helpful? The answer appears to lie in the

paucity of highly accurate data for solids. Empirical approximations are mostly developed

for molecules, where copious benchmark data is now available, and are rarely even available

in materials codes (as they typically perform poorly for solids). On the other hand, non-

empirical functionals that dominate materials calculations include norms such as the uniform

gas limit, which take the place of highly accurate data. By reducing to this limit, non-

empirical functionals are guaranteed to yield moderately accurate results for solids. More-

over, the leading corrections in the asymptotic limit differ qualitatively between molecules

and solids, because all molecules have turning surfaces at the Kohn-Sham HOMO energy,

while few solids do [198]. This produces conflicting requirements on the gradient expansion of

the approximation, as shown in the differences between PBE (good for atomic and molecular

energies) and PBEsol (good for solid geometries and vibrations [323]). Such conflicts are re-

solved in SCAN, yielding improved results for both. Even in the presence of highly accurate

data for solids, approximations that fit their data will worsen their results for molecules.

Even for molecular systems, non-empirical approximations like SCAN may also outperform

empirical approximations with the same ingredients, especially when applied to new systems

or new properties outside their training [199, 271, 197]. For instance, when evaluated on the

artificial molecules in the MB16 benchmark [216, 140] (never used to parameterize empirical

functionals), SCAN tends to outperform empirical approximations, including hybrids [199],

suggesting a greater ability to extrapolate.
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4.4 Conclusion

In conclusion, this work explores and revives several exact conditions in DFT and provides

analysis on their satisfaction in approximations. Empirical-based approximations, which

often employ flexible models that do not explicitly enforce exact conditions, typically violate

exact conditions on some densities, but do not violate them for realistic Coulombic systems.

As such approximations are trained on such systems, relevant exact conditions are implicitly

enforced. Specific exact conditions (and appropriate norms) can be especially important

when lacking reference data, where their enforcement (either approximate or exact) helps

maintain the transferability of resulting approximations, e.g., from molecules to solids. These

considerations may aid future approximations to achieve high accuracy that is maintained

across many different classes of systems: molecules, solids, and everything in between, such

as interfaces, clusters, and metal-organic frameworks.
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Chapter 5

Kohn-Sham equations as regularizer:

building prior knowledge into

machine-learned physics

This chapter is a production of Ref. [252], which I co-authored with Li Li, Stephan Hoyer,

Ruoxi Sun, Ekin D. Cubuk, Patrick Riley, and Kieron Burke.

5.1 Abstract

Including prior knowledge is important for effective machine learning models in physics,

and is usually achieved by explicitly adding loss terms or constraints on model architec-

tures. Prior knowledge embedded in the physics computation itself rarely draws attention.

We show that solving the Kohn-Sham equations when training neural networks for the

exchange-correlation functional provides an implicit regularization that greatly improves

generalization. Two separations suffice for learning the entire one-dimensional H2 dissocia-
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tion curve within chemical accuracy, including the strongly correlated region. Our models

also generalize to unseen types of molecules and overcome self-interaction error.

5.2 Introduction

Differentiable programming [34] is a general paradigm of deep learning, where parameters

in the computation flow are trained by gradient-based optimization. Based on the enor-

mous development in automatic differentiation libraries [58, 183, 301, 5], hardware accelera-

tors [192] and deep learning [231], this emerging paradigm is relevant for scientific comput-

ing. It supports extremely strong physics prior knowledge and well-established numerical

methods [182] and parameterizes the approximation by a neural network, which can approx-

imate any continuous function [176]. Recent highlights include discretizing partial differen-

tial equations [31], structural optimization [178], sampling equilibrium configurations [295],

differentiable molecular dynamics [366], differentiable programming tensor networks [254],

optimizing basis sets in Hartree-Fock [395] and variational quantum Monte Carlo [171, 451].

Density functional theory (DFT), an approach to electronic structure problems, took an

enormous step forward with the creation of the Kohn-Sham (KS) equations [214], which

greatly improves accuracy from the original DFT [174, 402, 118]. The results of solving

the KS equations are reported in tens of thousands of papers each year [190]. Given an

approximation to the exchange-correlation (XC) energy, the KS equations are solved self-

consistently. Results are limited by the quality of such approximations, and a standard

problem of KS-DFT is to calculate accurate bond dissociation curves [387]. The difficulties

are an example of strong correlation physics as electrons localize on separate nuclei [78].

Naturally, there has been considerable interest in using machine learning (ML) methods to

improve DFT approximations. Initial work [253, 378] focused on the KS kinetic energy, as
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a sufficiently accurate approximation would allow by-passing the solving of the KS equa-

tions [59, 250]. For XC, recent works focus on learning the XC potential (not functional)

from inverse KS [187], and use it in the KS-DFT scheme [411, 365, 474, 288]. An important

step forward was made last year, when it was shown that a neural network could find func-

tionals using only three molecules, by training on both energies and densities [289], obtaining

accuracy comparable to human-designed functionals, and generalizing to yield accurate at-

omization energies of 148 small molecules [93]. But this pioneering work does not yield

chemical accuracy, nor approximations that work in the dissociation limit. Moreover, it uses

gradient-free optimization which usually suffers from poor convergence behavior on the large

number of parameters used in modern neural networks [105, 265, 355].

Here, we show that all these limitations are overcome by incorporating the KS equations

themselves into the neural network training by backpropagating through their iterations – a

KS regularizer (KSR) to the ML model. In a traditional KS calculation, the XC is given, the

equations are cycled to self-consistency, and all previous iterations are ignored in the final

answer. In other ML work, functionals are trained on either energies alone [137, 369, 44, 360],

or even densities [365, 474, 283], but only after convergence. By incorporating the KS

equations into the training, thereby learning the relation between density and energy at every

iteration, we find accurate models with very little data and much greater generalizability.

Our results are illustrated in Figure 5.1, which is for a one-dimensional mimic of H2 designed

for testing electronic structure methods [29]. The distribution of curves of the ML model

directly predicting E from geometries (direct ML) in (a) clearly fails to capture the physics.

Next we demonstrate KSR with neural XC functionals from the first two rungs of Jacob’s

ladder [326], by constraining the receptive field of the convolutional neural network [1]. The

local density approximation (LDA) has a receptive field of just the current point, while

the generalized gradient approximation (GGA) includes the nearest neighbor points, the

minimal information for computing the spatial gradient of the density. In (b-c), the effect
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Figure 5.1: One-dimensional H2 dissociation curves for several ML models trained from
two molecules (red diamonds) with optimal models (highlighted in color) selected by the
validation molecule at R = 3 (black triangles). The top panel shows energy (with Enn, the
nucleus-nucleus repulsion energy) with exact values shown by the black dashed line. The
bottom panel shows difference from the exact curves with chemical accuracy in grey shadow.
(a) directly predicts E from geometries and clearly fails to capture the physics from very
limited data. (b-d) shows our method (KSR) with different inputs to the model to align with
the first two rungs of Jacob’s ladder [326] (LDA and GGA) and then global (a fully non-
local functional). Uniform gas LDA [29] is shown in brown. Grey lines denote 15 sampled
functionals during training, with darker lines denoting later samples. Atomic units used
throughout.

of the KSR yields reasonably accurate results in the vicinity of the data, but not beyond.

The KSR-LDA behaves similar to the uniform gas LDA [29]. When an XC functional with

a global receptive field is included in (d), chemical accuracy is achieved for all separations

including the dissociation limit. Similar results can be achieved for H4, the one-electron self-

interaction error can easily be made to vanish, and the interaction of a pair of H2 molecules

can be found without any training on this type of molecule (discussed below).
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5.3 Results

Modern DFT finds the ground-state electronic density by solving the Kohn-Sham equations:

{
− ∇2

2
+ vS[n](r)

}
ϕi(r) = ϵiϕi(r). (5.1)

The density is obtained from occupied orbitals n(r) =
∑

i |ϕi(r)|2. Here vS[n](r) = v(r) +

vH[n](r)+vXC[n](r) is the KS potential consisting of the external one-body potential and the

density-dependent Hartree (H) and XC potentials. The XC potential vXC[n](r) = δEXC/δn(r)

is the functional derivative of the XC energy functional EXC[n] =
∫
ϵXC[n](r)n(r)dr, where

ϵXC[n](r) is the XC energy per electron. The total electronic energy E is then given by the

sum of the non-interacting kinetic energy Ts[n], the external one-body potential energy V [n],

the Hartree energy U [n], and XC energy EXC[n].

The KS equations are in principle exact given the exact XC functional [214, 431], which

in practice is the only term approximated in DFT. From a computational perspective, the

eigenvalue problem of Eq. (5.1) is solved repeatedly until the density converges to a fixed

point, starting from an initial guess. We use linear density mixing [219] to improve conver-

gence, n(in)

k+1 = n(in)

k +α(n(out)

k −n(in)

k ). Figure 5.2(a) shows the unrolled computation flow. We

approximate the XC energy per electron using a neural network ϵXC,θ[n], where θ represents

the trainable parameters. Together with the self-consistent iterations in Figure 5.2(b), the

combined computational graph resembles a recurrent neural network [359] or deep equilib-

rium model [27] with additional fixed computational components. Density mixing improves

convergence of KS self-consistent calculations and parallels the now common residual con-

nections in deep neural networks [168] for efficient backpropagation.

If the neural XC functional were exact, KS self-consistent calculations would output the
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exact density and the intermediate energies over iterations would converge to the exact

energy. This intention can be translated into a loss function and the neural XC functional

can be updated end-to-end by backpropagating through the KS self-consistent calculations.

Throughout, experiments are performed in one dimension where accurate quantum solutions

could be relatively easily generated via density matrix renormalization group (DMRG) [438].

The electron-electron repulsion is A exp(−κ|x− x′|), and attraction to a nucleus at x = 0 is

−A exp(−κ|x|) [1]. We design the loss function as an expectation E over training molecules,

L(θ) =Etrain

[∫
dx(nKS − nDMRG)

2/Ne

]
︸ ︷︷ ︸

density lossLn

+ Etrain

[
K∑
k=1

wk(Ek − EDMRG)
2/Ne

]
,︸ ︷︷ ︸

energy lossLE

(5.2)

where Ne is the number of electrons and wk are non-negative weights. Ln minimizes the

difference between the final density with the exact density. The gradient from Ln backprop-

agates through vXC,θ[n] in all KS iterations. However, if LE only optimizes the final energy,

no gradient flows through EXC,θ[n] except for the final iteration. To make backpropagation

more efficient for EXC,θ[n], LE optimizes the trajectory of energies over all iterations, which

directly flows gradients to early iterations [18]. This makes the neural XC functional output

accurate ϵXC at each iteration, and also drives the iterations to quickly converge to the exact

energy. The optimal model is selected with minimal mean absolute energy per electron on

the validation set.

Hundreds of useful XC functional approximations have been proposed [266]. Researchers typ-

ically design the symbolic form from physics intuition, with some (or no) fitting parameters.

Here we build a neural XC functional with several differentiable components with physics

intuition tailored for XC in Figure 5.2(c). A global convolution layer captures the long range

interaction, G(n(x), ξp) = 1
2ξp

∫
dx′n(x′) exp(−|x− x′|/ξp). Note two special cases retrieve
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known physics quantities, Hartree energy density G(n(x), κ−1) ∝ ϵH and electronic density

G(n(x), 0) = n(x). Global convolution contains multiple channels and ξp of each channel is

trainable to capture interaction in different scales. Although the rectified linear unit [291] is

popular, we use the sigmoid linear unit (SiLU) [106, 349] f(x) = x/(1 + exp(−x)) because

the infinite differentiability of SiLU guarantees the smoothness of vXC, the first derivative,

and the second and higher order derivatives of the neural network used in the L-BFGS

training [258]. We do not enforce a specific choice of ϵXC (sometimes called a gauge [325]),

but we do enforce some conditions, primarily to aid convergence of the algorithm. We re-

quire ϵXC to vanish whenever the density does, and that it be negative if at all possible.

We achieved the former using the linearity of SiLU near the origin and turning off the bias

terms in convolution layers. We softly impose the latter by a negative transform layer at

the end, where a negative SiLU makes most output values negative. Finally, we design a

self-interaction gate (SIG) that mixes in a portion of −ϵH to cancel the self-interaction error,

ϵ(out)XC = ϵ(in)XC (1−β)− ϵHβ. The portion is a gate function β(Ne) = exp(−(Ne − 1)2/σ2). When

Ne = 1, then ϵ(out)XC = −ϵH. For more electrons, σ can be fixed or adjusted by the training

algorithm to decide the sensitivity to Ne. For H2 as R → ∞, ϵXC tends to a superposition of

the negative of the Hartree energy density at each nucleus and approaches half that for H+
2 .

Now we dive deeper into the outstanding generalization we observed in a simple but not easy

task: predicting the entire H2 dissociation curve, as shown in Figure 5.1. It is not surpris-

ing that direct ML model completely fails. Neural networks are usually underdetermined

systems as there are more parameters than training examples. Regularization is crucial to

improve generalization [143, 224], especially when data is limited. Most existing works reg-

ularize models with particular physics prior knowledge by imposing constraints via feature

engineering and preprocessing [92, 175], architecture design [403, 368, 215, 373] or physics-

informed loss terms [348, 376]. Another strategy is to generate extra data for training using

prior knowledge: in image classification problems, data are augmented by operations like

flipping and cropping given the prior knowledge that labels are invariant to those opera-
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tions [222]. KSR provides a natural data augmentation because although the exact densities

and energies of only two separations are given, KSR samples different trajectories from an

initial density to the exact density at each training step. More importantly, KSR focuses on

learning an XC functional that can lead the KS self-consistent calculations to converge to the

exact density from the initial density. Figure 5.3 visualizes the density trajectories sampled

by KSR for one training separation R = 3.84. The functional with untrained parameters

(t = 0) samples densities near the initial guess but soon learns to explore broadly and finds

the trajectories toward the vicinity of the exact density.

In contrast, most existing ML functionals learn to predict the output of a single iteration

from the exact density, which is a poor surrogate for the full self-consistent calculations [415].

These standard ML models have two major shortcomings. First, the exact density is un-

known for new systems, so the model is not expected to behave correctly on unseen initial

densities for KS calculations. Second, even if a model is trained on many densities for sin-

gle iteration prediction, it is not guaranteed to converge the self-consistent calculations to

a good solution [356]. On the other hand, since KSR allows the model access to all the

KS iterations, it learns to optimize the entire self-consistent procedure to avoid the error

accumulation from greedy optimization of single iterations. Further comparison for training

neural XC functionals without or with “weaker” KSR is in the supplemental material [1].

Next we retrain our neural XC functional with KSR on Ntrain/2 examples each of H2 and

H4 molecules. Figure 5.4 shows the prediction accuracy of KSR with both energy and

density loss (full KSR), in comparison to KSR with only energy loss (energy only KSR)

and direct ML model. We compute the energy mean absolute error on the holdout sets of

H2 (R ∈ [0.4, 6]) and H4 (R ∈ [1.04, 6]). The average mean absolute error of H2 and H4

with various Ntrain is shown in Figure 5.4(a). Full KSR has the lowest error at minimum

Ntrain = 4, reaching chemical accuracy at 6. As the size of the training set increases, energy

only KSR reaches chemical accuracy at Ntrain = 10, but direct ML model never does (even
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at 20). Then we test models on unseen types of molecules. In Figure 5.4(b), both KSR

models have perfect prediction on H+
2 (R ∈ [0.64, 8.48]) because of the self-interaction gate

in the neural XC functionals, while direct ML models always have large errors. Finally we

take a pair of equilibrium H2 and separate them with R = 0.16 to 9.76 Bohr, denoted as

H2H2. KSR models generalize much better than ML for “zero-shot” prediction [281], where

H2H2 has never been exposed to the model during training.

5.4 Conclusion

Why is the density important in training, and what use are the non-converged iterations?

The density is the functional derivative of the energy with respect to the potential, so it

gives the exact slope of the energy with respect to any change in the potential, including

stretching (or compressing) the bond. Thus the density implicitly contains energetic infor-

mation including the correct derivative at that point in the binding curve. KS iterations

produce information about the functional in the vicinity of the minimum. During training,

the network learns to construct a functional with both the correct minimum and all correct

derivatives at this minimum. In the paradigm of differentiable programming, density is the

hidden state carrying the information through the recurrent structure in Figure 5.2(a). Cor-

rect supervision from Ln greatly helps generalization from very limited data, see Ntrain ≤ 6

in Figure 5.4. But as Ntrain increases, both KSR with and without Ln perform well in energy

prediction. We show the solution of H4 with R = 4.32 in Figure 5.5. With Ln, the density

is clearly much accurate than KSR without Ln (
∫
(nKS − nDMRG)

2dx = 9.2 × 10−5 versus

9.8 × 10−2). Then we compute the corresponding exact vS using inverse KS method [187].

Both functionals do not reproduce the exact vS. However, functional trained with Ln recov-

ered most of the KS potential. Unlike previous works [365, 474, 288] that explicitly included

the KS or XC potential into the loss function, our model never uses the exact KS potential.
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In our KSR setup, the model aims at predicting ϵXC, from which the derived vS yields ac-

curate density. Therefore, predicting vXC is a side product. We also address some concerns

on training explicitly with vXC. One artifact is that generating the exact vS requires an ad-

ditional inverse calculation, which is known to be numerically unstable [187]. [365] observe

outliers while generating training vXC from inverse KS. While vXC is a fascinating and useful

object for theoretical study, because its relation to the density is extremely delicate, it is far

more practical to simply use the density to train on [289].

Differentiable programming blurs the boundary between physics computation and ML. Our

results for KS-DFT serve as proof of principle for rethinking computational physics in this

new paradigm. Although there is no explicit limitation of our algorithm to one dimension,

we expect practical challenges with real molecules, which will require rewriting or extending

a mature DFT code to support automatic differentiation. For example, our differentiable

eigensolver for dense matrices [336] is not suitable for large problems, and will need to be

replaced with methods for partial eigendecomposition of sparse matrices [235, 448]. Beyond

density functionals, in principle all heuristics in DFT calculations, e.g., initial guess, density

update, preconditioning, basis sets, even the entire self-consistent calculations as a meta-

optimization problem [18], could be learned and optimized while maintaining rigorous physics

– getting the best of both worlds.
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Figure 5.2: KS-DFT as a differentiable program. Black arrows are the conventional compu-
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Chapter 6

How Well Does Kohn-Sham

Regularizer Work for Weakly

Correlated Systems?

This chapter is a reproduction of Ref. [195], which I co-authored with Bhupalee Kalita, Jielun

Chen, Li Li, and Kieron Burke.

6.1 Abstract

Kohn-Sham regularizer (KSR) is a differentiable machine learning approach to finding the

exchange-correlation functional in Kohn-Sham density functional theory (DFT) that works

for strongly correlated systems. Here we test KSR for weak correlation. We propose spin-

adapted KSR (sKSR) with trainable local, semilocal, and nonlocal approximations found by

minimizing density and total energy loss. We assess the atoms-to-molecules generalizability

by training on one-dimensional (1D) H, He, Li, Be, Be++ and testing on 1D hydrogen chains,
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LiH, BeH2, and helium hydride complexes. The generalization error from our semilocal

approximation is comparable to other differentiable approaches, but our nonlocal functional

outperforms any existing machine learning functionals, predicting ground-state energies of

test systems with a mean absolute error of 2.7 milli-Hartrees.

6.2 Introduction

Determining the ground-state properties of many-electron systems is fundamental to molec-

ular modeling problems in chemical and material sciences. However, solving the Schrödinger

equation explicitly for more than a few hundred electrons is computationally intractable.

Among several methods of approximation, Kohn-Sham density functional theory (KS-DFT

or simply DFT) [174, 214], a method based on the electron density distribution rather than

the many-electron wave function, provides chemically useful results with O(N3) scaling for an

N -electron system [103]. DFT is formally exact, but the exchange-correlation (XC) energy,

resulting from the quantum-mechanical interaction between electrons, must be approximated

in practice. Hundreds of XC energy functional approximations have been formulated in the

past few decades [266]. Functionals can be designed non-empirically, for example using

physics and chemical-based intuition and satisfying known exact constraints [313], or can

involve some fitting to reference data [468]. However, in any approach, these functional

approximations do not yield chemical accuracy in general, that is, with errors less than

1.6 milli-Hartrees (mH) in atomic units (or 1 kcal/mol). Improving the accuracy of XC

functional approximations often incurs additional computational cost in the practical DFT

calculation [60]. However, there is no systematic way in general to develop and improve XC

functional approximations.

In recent years, machine learning (ML) has been used to find better DFT approximations.

Attempts have been made to enhance either the speed or accuracy of DFT. Some used ML
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techniques to boost computational efficiency by approximating the non-interacting kinetic

energy without solving the KS equations [379, 253, 59, 194]. In an effort to improve the

accuracy of ML-DFT, a significant leap was achieved by Nagai et al. [289], who used a

neural network (NN) model to approximate the XC functional and trained it with high

accuracy coupled cluster (CCSD(T)) energies and densities of just three small molecules,

while self-consistently solving the KS equations. This functional impressively generalized to

148 small molecules [93] to predict their energies and densities with accuracies comparable to

human-designed functionals. However, the test set atomization energies were not chemically

accurate. Also, they didn’t have access to gradient information and were therefore limited to

a gradient-free optimization scheme, which is inherently slow, often suffers poor convergence

issues, and is difficult to scale to more complex NN models.

In DFT, many useful properties are extracted from the density, although an XC functional

approximation need not produce accurate densities along with accurate energies [209]. In

KS-DFT, we calculate the density self-consistently, and there is a nonlinear dependence of

the XC functional on the density. Learning this relationship requires not only the ground

truth mapping of the functional inputs to outputs but also how the functional performs

in the underlying process. Hence the use of differentiable programming [34] becomes more

intuitive [182]. With differentiable programming, conditioning the networks with physical

insights becomes much simpler, and it can further help to ease the process of training.

Recently, Li et al. [252] made a valuable step in this direction by considering the entire DFT

self-consistent calculation as a differentiable program. They implemented an end-to-end dif-

ferentiable DFT code for 1-dimensional (1D) systems using JAX [58], a library that provides

differentiation, vectorization, just-in-time compilation, and other composable transforma-

tions of Python and NumPy programs [163]. They parameterized the XC functional with an

NN which incorporated non-local information about the density, along with known physical

constraints. The self-consistent KS calculations were embedded into the training process by
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backpropagating the gradients through the KS iterations. It was dubbed the Kohn-Sham

regularizer (KSR). It could yield chemically accurate energies for uniformly separated 1D

hydrogen chains at any separation by training on highly accurate energies and densities from

only a few separations.

Following a similar approach, Kasim and Vinko [200] implemented an end-to-end differen-

tiable DFT code in 3D for Gaussian-type orbitals and trained local and semi-local NN-based

XC functional approximations, evaluating performance on small molecules. In another work,

Dick et al. [100] constructed a semilocal XC functional that was carefully curated to account

for several known exact conditions and pretrained to match SCAN, a popular meta-GGA

functional [388]. While both of these works explore the generalizability of ML approximations

for weakly correlated molecules with differentiable DFT codes, they do not incorporate global

information, and their accuracy is limited to that of human-designed semilocal functionals.

A slightly different approach involves introducing an ML correction term to a nonempirical

or semi-empirical XC functional within a KS-DFT self-consistent framework [98, 72]. In such

an approach, only a portion of the XC energy is approximated using ML and the functionals

retain the characteristics of the baseline XC functional used. The recently proposed ML

local hybrid functional, DM21 [211], addresses spin-symmetry breaking and delocalization

error in DFT functionals. Consequently, it performs well on several main-group benchmark

datasets and also correctly dissociates molecules. Unlike KSR, this functional is trained on

large datasets of highly accurate reaction energies (not densities) in the loss function without

explicitly supervising the self-consistent iterations.

[C3] Li et al. [252] explored the generalizability of KSR for a few strongly correlated systems

with stretched bonds which is a completely different domain from most chemical applications

of DFT. The aim there was to generate accurate binding energy curves (all the way to the dis-

sociation limit) using the entire density (for the nonlocal approximation called global-KSR),

using inputs at only two separations, for unpolarized hydrogen chains. The generalizability
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was in finding the entire bond-dissociation energy curve of these chains. Moreover, only the

total density was used and not the spin densities.

In the present work, we propose spin-polarized versions of local, semilocal, and nonlocal

XC functional approximations within a differentiable spin-DFT implementation of KSR. We

modify these approximations to predict XC energy densities using spin-densities as feature

vectors while optimizing the NN parameters using total density and energy loss. Contrary to

Ref. [252], we test the KSR approach in the domain of routine DFT calculations in chemistry,

namely in and around equilibrium bond lengths. We find the remarkable result that training

on energies and densities of a few atoms (and ions) alone produces accurate ground-state

energies for equilibrium molecules (very reminiscent of the use of appropriate norms while

avoiding using any covalent bond energies). We train and test on a variety of different

elements, to obtain the generalizability relevant to chemistry. Almost all previous work in

the chemical domain tests various approximate functional forms employing the standard

ingredients locally [289, 100, 200]. Our work achieves high accuracy using the total density

and is not limited to a specific set of human-chosen features.

6.3 Results

The practical implementation of DFT involves solving the Kohn-Sham (KS) equations to

calculate the ground-state electron density,

{
−1

2
∇2 + vS[n](r)

}
ϕi(r) = ϵiϕi(r). (6.1)

The electron density, n(r), is the sum of the probability density over all occupied one-electron

KS orbitals, n(r) =
∑

i |ϕi(r)|2. The KS potential, vS[n](r), contains the external one-body
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potential, the Hartree potential, and the XC potentials,

vS[n](r) = v(r) + vH[n](r) + vXC[n](r). (6.2)

The XC potential is the functional derivative of the XC energy, EXC[n], with respect to the

electron density [214], vXC[n](r) = δEXC[n](r)/δn(r). We can express EXC[n] in terms of an

XC energy density per electron, ϵXC[n](r):

EXC[n] =

∫
d3r ϵXC[n](r)n(r). (6.3)

The ground-state energy is calculated from the self-consistent density by summing the non-

interacting kinetic energy, TS, the external potential energy, V , the Hartree energy, U , and

the XC energy,

E0 = TS[n] + V [n] + U [n] + EXC[n]. (6.4)

The computational efficiency is also affected by the level of approximation used for the XC

functional [326].

Density matrix renormalization group (DMRG) [438] can be used to efficiently generate

highly accurate benchmark energies and densities for these 1D analog systems. We can

address such systems using 1D KS-DFT calculations as well with suitable XC energy func-

tional approximations, such as the 1D local spin-density approximation (LSDA) which was

constructed in Ref. [30] from the 1D exponentially repelling uniform electron gas.

In essence, KSR is a ML-DFT regularization technique that utilizes a differentiable analog

of the standard self-consistent DFT computational flow during training to train a suitable

parameterized model for EXC[n] = EXC,θ[n], where θ are trainable parameters [252]. In this

work, we consider NN-based (neural) XC models, but KSR as a regularization technique can
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apply more broadly to any differentiable model choice. Knowledge of physical properties

and constraints in the exact XC functional can help guide the construction of a neural XC

approximation. The NN that parameterizes the XC functional in KSR is carefully curated

to account for a few of the expected behaviors of the exact XC functional. Nonlocality

is facilitated by adding a global convolution layer in ϵXC,θ[n] to help capture long-range

interactions. The sigmoid linear unit (SiLU or Swish) [107, 350] activation function is used

throughout because of its infinite differentiability. The KSR network is also complemented

with a self-interaction gate (SIG) that partially cancels the self-interaction error by mixing

in a portion of Hartree energy density to ϵXC.

In Ref. 252 several neural XC functional models were proposed: a local functional which

only depends on the density at each point (KSR-LDA), a semi-local functional that uses

local and gradient information about each point (KSR-GGA), and a global functional which

utilized the global convolution layer and the SIG described above (KSR-global).

A main deficiency of the KSR technique in Ref. 252 is that it does not explicitly account

for spin, and so may not generalize well for spin-polarized systems. Extending this tech-

nique and associated NN models to spin DFT requires a differentiable framework that can

backpropagate through resulting spin densities. Spin is often incorporated in the neural XC

functional using relative polarization, ζ, as a feature [289]. For up and down spin densities,

{n↑, n↓}, ζ = (n↑ − n↓)/n. While ζ can be introduced as an additional input channel to

KSR neural ϵXC, its scale can be very different relative to n in general. Instead, we use up

and down spin densities as input features, which have similar scales. The usual models and

concepts for KSR can be extended to obtain a spin-adapted KSR (sKSR).

In sKSR-global, we have a global convolution layer that takes spin densities as inputs, and

the kernel takes the form:

G (nσ(x), ξp) =
1

2
ξp

∫
dx′nσ(x

′)e−|x−x′|/ξp , (6.5)
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where σ ∈ {↑, ↓} and ξp is a trainable parameter that represents an interaction scale. To

keep the number of parameters comparable with KSR-global, we input each spin density

to a global convolution layer consisting of 8 channels. We then concatenate the output on

the channel dimension and input it to the latter convolution layers. For weakly correlated

systems and greater generalizability, this approximation does not include any SIG. The rest

of the network architecture is kept unchanged. sKSR-LDA and sKSR-GGA approximations

to XC are devoid of global information. For sKSR-LDA, two convolution layers with filter

size one and 8 channels map the spin-density to ϵXC at the same spatial point x. In sKSR-

GGA, we specify the total density gradient explicitly as an additional input channel along

with the spin-densities. Instead of using one convolution layer with filter size three, we use

three convolution layers with filter size one and 8 channels each. The rest of the sKSR-LDA

and sKSR-GGA architectures are also similar to KSR-LDA and KSR-GGA. Fig. 6.1(a) shows

the comparative network structures for all three types of approximations. In all cases, the

resulting ϵXC is symmetrized with respect to the input of the up and down densities:

ϵsymm
XC [n↑, n↓] =

1

2

[
ϵXC[n↑, n↓] + ϵXC[n↓, n↑]

]
. (6.6)

Our approximation replaces the ϵXC in a spin-polarized self-consistent KS-DFT framework.

For spin-polarized systems we perform the above spin-unrestricted KS-DFT procedure, how-

ever for unpolarized systems we use spin-restricted KS-DFT to preserve spin-symmetry.

Fig. 6.1(b) shows the conventional computational flow and the flow of the gradients during

the self-consistent optimization. To train the neural XC functional, we use the following loss
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(a) (b)

Figure 6.1: (a) sKSR-global, sKSR-LDA and sKSR-GGA architectures to calculate ϵXC from
spin-densities. (b) sKSR – differentiable KS-DFT with spin-polarization. Black arrows refer
to the conventional computational flow. The gradients flow along red-dashed arrows to
minimize the loss during training.

function:

L(θ) = Etrain

[
(EsKSR − EDMRG)2/Ne

]︸ ︷︷ ︸
energy lossLE

+Etrain

[∫
dx (nsKSR − nDMRG)2/Ne

]
︸ ︷︷ ︸

density lossLn

, (6.7)

where EsKSR and nsKSR are the converged total energy and total density obtained from

the neural XC functional approximations, and EDMRG and nDMRG are the exact ground-

state electronic energy and total density for each of the test systems. The total loss is

evaluated as an expectation over training examples, where Ne is the number of electrons for

a given training example. All quantities are in atomic units. We only consider the converged

energy in the energy loss term rather than the energy trajectory throughout KS iterations,

which was explored in Ref. 252. In this work we find that the self-consistent calculations

converge quickly for the small atoms and ions used in training, and incorporating energy
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loss from each KS iteration minimally affects the efficiency of the optimization process. The

gradients are calculated based on the total loss with respect to the parameters, θ, through

automatic differentiation. They are back-propagated across the self-consistent cycles and

the parameters of the neural XC functionals are updated until the total loss is minimized.

As a simple consistency test, we pose the question: can KSR learn human-designed func-

tionals from their observable results? Here we specifically investigate whether sKSR-LDA

can learn the relatively simple but general human-designed 1D LSDA XC functional. Since

our sKSR-LDA model utilizes hundreds of parameters, it is unclear whether training on just

a few LSDA generated DFT results will yield a neural XC model that matches LSDA. We

find that by training sKSR-LDA on LSDA-generated He and Li++, we recover the LSDA XC

functional almost exactly for unpolarized and fully polarized systems, see Figure 6.2. The

sKSR-LDA model deviates at the high-density limit (low rS limit) due to the limitation that

our training densities only consist of rS > 0.5.
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Figure 6.2: sKSR-LDA trained on 1D LSDA-calculated Li++ and He energies and densities.
Here rS = 1/2n and ϵunifXC corresponds to the XC energy density of the 1D uniform electron
gas [30].

Next, we assess generalizability by training sKSR models using a few 1D atomic systems and

testing on unseen 1D molecular systems. We trained all three models on DMRG energies

and densities of H, He, Li, Be, and Be++ and validated on Be+. For training and validation
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Table 6.1: Training, validation and test sets for generalizability experiment. The molecules
in the test set refer to the relaxed structures.

Training Validation Testing
H, He, Li Be+ H2, H3, H4, H

+
2 , H

+
3

Be, Be++ LiH, BeH2, HeH
+

H-He-He-H2+

He-H-H-He2+

details, see Supporting Information. The trained model was later used to calculate the prop-

erties of several molecules in their equilibrium ground-state or relaxed form (see Table 6.1).

The errors in total energies, ionization, and atomization energies, as well as the average

density losses for all three neural XC functional approximations, are reported in Table 6.2.

Compared to LSDA, the mean absolute error (MAE) in sKSR-LDA calculated energies is

reduced by a factor of three. On the other hand, sKSR-global is an order of magnitude

higher in accuracy and yields total energies with an MAE of 2.7 mH, not so far from the

chemical accuracy limit of 1.6 mH. The cumulative MAEs for the training, validation and

test datasets are reported in Supporting Information.

Table 6.2: Total energy errors (in mH), density losses (in 10−4 Bohr−1), and errors in ion-
ization potentials for atoms and atomization energies in molecules (in mH) calculated using
uniform gas LSDA [30], sKSR-LDA, sKSR-GGA, and sKSR-global respectively, for the train-
ing, validation, and test sets in Table 6.1.

Dataset Symbol LSDA sKSR-LDA sKSR-GGA sKSR-global

∆E Ln ∆IP ∆E Ln ∆IP ∆E Ln ∆IP ∆E Ln ∆IP
Training H 26.6 5.35 -26.6 4.51 0.55 -4.50 4.49 0.31 -4.49 0.85 0.33 -0.85

He 41.4 2.89 -8.46 20.2 0.63 -21.3 7.49 0.24 -10.2 -0.69 0.03 0.62
Li 33.7 5.02 16.6 -11.5 0.40 37.4 -12.0 1.37 20.2 -2.37 0.12 2.79
Be 24.5 1.18 21.4 -23.5 1.03 12.1 -2.70 0.65 -5.29 1.16 0.07 -1.23
Be++ 55.3 0.75 -18.1 29.2 0.16 -46.1 6.55 0.49 -34.1 0.41 0.02 -1.43

MAE 36.3 3.04 18.3 17.8 0.56 24.3 6.65 0.16 14.8 1.10 0.12 1.38
Validation Be+ 46.0 1.95 9.37 -11.3 0.12 40.5 -7.99 0.61 14.5 -0.07 0.03 0.49

∆AE ∆AE ∆AE ∆AE
Test H2 34.04 1.82 19.2 19.5 0.35 -10.5 6.83 1.99 2.14 -0.73 0.07 2.43

H3 35.6 1.93 44.3 0.45 0.21 13.1 -3.07 5.57 16.5 -3.56 3.22 6.11
H4 32.3 3.82 74.3 7.66 1.59 10.4 -9.34 4.18 27.3 2.87 1.46 0.53
H+

2 19.6 6.68 7.09 2.78 0.71 1.73 1.68 1.71 2.81 -1.94 1.04 2.79
H+

3 31.2 0.78 22.1 20.6 1.87 -11.6 15.4 11.5 -6.44 -0.40 0.47 2.09
LiH 30.9 3.72 29.5 -8.55 2.47 1.53 -16.6 3.86 9.14 -4.38 0.66 2.86
BeH2 32.8 7.49 45.0 -27.8 5.5 13.4 -34.6 3.09 40.9 -5.07 1.29 7.93
HeH+ 37.3 1.71 4.18 18.8 0.17 1.40 5.18 0.59 2.31 -1.60 0.13 0.91
H-He-He-H2+ 36.7 14.7 46.1 5.00 6.00 35.5 -9.04 2.50 24.0 5.39 4.52 -6.77
He-H-H-He2+ 46.1 7.40 36.7 19.9 6.48 20.6 4.35 4.75 10.6 0.79 5.47 -2.18

MAE 33.6 5.00 32.9 13.1 2.53 12.0 10.6 3.98 14.2 2.67 1.83 3.46
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The importance of spin in sKSR can be seen by comparing results with the original KSR-

global model from Ref. [252]. For a valid comparison, we consider KSR-global without the

SIG and train it with the sets from Table. 6.1, without adding the energy trajectory loss.

The MAE in KSR-global predictions for total energies of the test molecules is 10.02 mH,

comparable to sKSR-GGA, but much worse than sKSR-global (see Table. A2 in Supporting

Information). sKSR-global also converges more quickly than KSR-global, reaching lower

training losses with fewer training steps (see Fig. A7 in Supporting Information).

The size of our dataset is practically limited by the chemical space provided by 1D and

the associated exponential interaction. Even though we are dealing with a much smaller

dataset, we trained the sKSR models on the ground-state energies and densities of 5 atomic

systems only and did not include any molecules, contrary to results in Ref. 289 and Ref. 200

which train on derived quantities, such as atomization and ionization energies, and include

molecules in training.

Using sKSR-global, the predicted densities of each molecule have little noticeable error, see

Fig. 6.3(a). The corresponding XC potentials are shown in Fig. 6.3(b). For all unpolarized

systems, we run restricted KS calculations, and the up and down XC potentials match, while

for polarized systems (Li, Be+, H+
2 , and H3 only) we run unrestricted KS calculations. The

sKSR-LDA and sKSR-GGA total densities and XC potentials for the test set are included

in the Supporting Information. The comparison to exact XC potentials is not expected to

be as precise as potentials are extremely sensitive to densities. However, for each of these

examples, we see that the sKSR-global XC potential closely mimics the exact XC potential,

even though we did not include XC potentials in the training. Furthermore, seemingly large

deviations in the XC potentials can result in similar resulting densities. For example, this

can be seen in the case of BeH2 where the XC potentials are noticeably different but the

resulting densities are very similar. The KS potentials are reasonably accurate for the test set

(see Supporting Information). Note that similar to the exact XC potentials, the sKSR-global
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(a)

(b)

Figure 6.3: (a) The densities obtained using sKSR-global (orange dashes) and the exact
ground-state densities (gray), (b) average XC potentials calculated from sKSR-global ap-
proximation (red dashes) to ϵXC and their exact counterparts calculated with DMRG (light
blue) for the test molecules in Table. 6.1 at equilibrium separations. The sKSR potentials
are shifted by a constant for a better comparison with the exact XC potentials. sKSR-global
was trained on H, He, Li, Be, and Be++ and validated on Be+. Note that, in general, these
1D densities and XC potentials can differ even qualitatively from their 3D analogs.
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XC potentials are smooth, due to the use of a smooth activation function.

We can use these potentials to validate the known theoretical properties of the exact XC

potentials for different test systems, compare with other XC approximations, and utilize them

to introduce corrections to existing local and semilocal approximations. Similarly, sKSR-

global can also produce quite accurate spin-densities even though we did not incorporate spin-

densities in the loss function while training the XC functionals (see Fig. A1 in Supporting

Information).

A very interesting question is: how does our weakly-correlated sKSR behave for strongly-

correlated systems? We answer this by studying the paradigm case of the H2 binding curve

in Fig. 6.4, where the sKSR-global curve remains highly accurate up to at least 3 Bohr. Just

as with all single-particle methods, the restricted calculation yields energy that is far too

high in the dissociated limit. On the other hand, an unrestricted calculation, which breaks

spin-symmetry beyond about 4 Bohr, does dissociate correctly, but at the price of poor spin

densities and a kink in the binding energy curve. Fig. A6 in Supporting Information shows

analogous features for sKSR-LDA and sKSR-GGA, and also shows the accuracy of the total

density of the unrestricted solutions at large separations. Fig. 6.4 also shows the result

of a KSR-global calculation (i.e., total density only), but trained just on atoms. While it

naturally dissociates correctly, it is much less accurate. Of course, the KSR-global of Ref. 252

is chemically accurate for the entire curve because its training included a stretched bond.

In many cases, the predictability of sKSR can extend well beyond the equilibrium bond dis-

tance. Fig. 6.5 shows the complete dissociation energy curve of LiH obtained from restricted

calculation. Near equilibrium, sKSR-LDA and sKSR-GGA underestimate the binding en-

ergy but perform better than LSDA. As the bond is stretched, sKSR-GGA and sKSR-LDA

quickly deviate from the expected trajectory. However, sKSR-global performs well through-

out, extending its predictive accuracy well beyond the equilibrium bond distance. We show

the total density and the XC potential of stretched LiH at 5.92 Bohr in Fig. 6.6. LSDA
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Figure 6.4: The binding energy curve of H2 molecule calculated based on the total energy
prediction for H2 molecule and the energy of the individual H atoms. sKSR-global was
evaluated using restricted KS (blue) and unrestricted KS (red dashes) scheme. The DMRG
(black) and KSR-global (green) results are also shown. All the neural approximations, with
and without spin, are trained on the dataset given in Table. 6.1.

largely overestimates the total energy of the stretched molecule, but its density remains rea-

sonably accurate. The XC potentials calculated from neural XC functional approximations

are comparable, with sKSR-global closely approximating the exact behavior. A comparison

of the sKSR-global and the exact total density and XC potential of stretched LiH with re-

spect to the atomic contributions from Lithium and Hydrogen is included in the Supporting

Information.

Figure 6.5: The complete dissociation energy curve of LiH molecule generated with sKSR-
LDA (orange), sKSR-GGA (green) and sKSR-global(red). The DMRG (black dashes) and
the uniform gas LSDA (blue dashes) results are also shown. The neural XC functional
approximations were trained and validated on atoms and ions given in Table. 6.1.
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(a) (b)

Figure 6.6: (a) The total density and (b) the average XC potentials of LiH at a bond-distance
of 5.92 Bohr calculated with the three neural XC functionals as well as uniform-gas LSDA.
The exact (DMRG) average XC potentials are included for comparison.

The approximate total energy of a molecule can have two types of error contributions: the

error due to the approximate functional and the error arising from the self-consistent den-

sity [428]. For most XC functionals, the total density calculated from the self-consistent

solution of the KS equations works as an excellent approximation to the exact density for

most systems. Hence, the density-driven error is often negligible. However, some approxi-

mations can have significant density-driven errors [210]. For our test molecules, the errors in

the self-consistent densities were trivial and consequently had minimal impacts on the atom-

ization energy errors. The functional and density-driven errors in our neural XC functional

approximations are reported for the hydrogen molecule in the supplementary information

section.

6.4 Conclusion

We found that sKSR-global achieves remarkable accuracy and generalization in a very data-

efficient manner by including the self-consistent KS equations into the training. sKSR-global

predicts the ground-state energy of ten unseen molecules in equilibrium with a mean abso-

lute error of 2.7 mH (∼1.7 kcal/mol) when trained with just five atoms and ions. Hence, a
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nonlocal XC functional approximation trained on atomic energies and densities can generate

predictions for weakly-correlated molecules with near chemical accuracy. An extension of

this work can lead to an ML functional that is applicable across a broad chemical spectrum

without using an exceedingly large training set. The end-to-end differentiable implementa-

tion also ensures smooth and reasonable XC potentials. In addition, sKSR-global trained on

atoms can adequately describe a molecule with a stretched bond. Combining differentiable

programming with inherent physical intuition thus takes us one step closer to a generalizable,

chemically accurate ML XC functional.

The application of the current sKSR algorithm is limited to 1D systems and our test set

does not include real 3D molecules. However, the methods presented are transferable to 3D

and we anticipate that the characteristic performance is not unique to 1D systems, as these

systems tend to mimic their 3D analogs [430]. The low-dimensional examples are useful for

quick and rigorous assessment of the quality of an approximation. Besides, the predictions

from the local and semilocal approximation explored in our study are consistent with the

3D differentiable formulations in Ref 200 and Ref. 100.
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Chapter 7

Large scale quantum chemistry with

tensor processing units

This chapter is a reproduction of Ref. [307], which I co-authored with John Kozlowski, Ruyi

Song, Jackson Beall, Martin Ganahl, Markus Hauru, Adam GM Lewis, Yi Yao, Shrestha

Basu Mallick, Volker Blum, and Guifre Vidal.

7.1 Abstract

We demonstrate the use of Google’s cloud-based Tensor Processing Units (TPUs) to acceler-

ate and scale up conventional (cubic-scaling) density functional theory (DFT) calculations.

Utilizing 512 TPU cores, we accomplish the largest such DFT computation to date, with

247848 orbitals, corresponding to a cluster of 10327 water molecules with 103270 electrons,

all treated explicitly. Our work thus paves the way towards accessible and systematic use of

conventional DFT, free of any system-specific constraints, at unprecedented scales.
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7.2 Introduction

Computational methods for quantum chemistry and quantum physics have proven to be

invaluable tools in modern scientific research and technological innovation. The application

space of such methods is vast, ranging from the prediction of novel high-temperature su-

perconductors [104] to the acceleration of drug discovery [69]; from the study of catalytic

processes for e.g. CO2 sequestration [455] and plastic recycling [189] to the design of nano-

materials [56], solar cells [126], and batteries [416].

In the landscape of quantum-based computational methods, density functional theory (DFT)

especially stands out due to its ability to produce accurate results for a wide range of systems

at a relatively low computational cost [190]. Accordingly, an impressive amount of compu-

tational research utilizes DFT calculations each year. For instance, the US National Energy

Research Scientific Computing Center (NERSC) reported that nearly 30% of their supercom-

puter resources in 2018 were spent on DFT calculations alone [25]. Widespread research and

development effort is continuously devoted towards optimizing the performance and accuracy

of DFT calculations, giving rise to a plethora of open-source and commercial DFT software

packages [394]. Several packages can leverage specialized hardware, such as general-purpose

graphics processing units (GPUs), for most of the workload [180, 374, 20, 125, 141, 134, 158].

However, in conventional DFT implementations, i.e., without specific sparsity assumptions

for the density matrix or Hamiltonian matrix, the computational cost scales as the third

power of the number N of orbitals used to describe the system (referred to O(N3) DFT

throughout this work), and this cubic scaling often makes simulating large systems, such as

protein-ligand complexes or metal-organic frameworks [447], prohibitively expensive.

Google’s Tensor Processing Units (TPUs) are application-specific integrated circuits origi-

nally designed to accelerate large-scale machine learning workloads [191, 192, 58, 127, 6].

By leveraging the JAX library [58, 127, 6], it is nevertheless possible to repurpose TPUs
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Figure 7.1: TPU v3 wall time for O(N3) density matrix purification, Eqs. (7.5)-(7.7), as a
function of the number N of orbitals, for clusters of water molecules, both in single (squares)
and double (triangles) precision. A full TPU v3 pod with 2048 cores and 32 TB of memory
is expected to handle N ∼ 500 000 orbitals in our current implementation (extrapolated
results necessitated by temporary resource unavailability).

for other computational tasks [45, 432, 300, 261, 262, 260, 181, 285, 166, 248, 157, 132].

In this work, we demonstrate the use of TPUs as quantum chemistry supercomputers by

accelerating the O(N3) computational bottleneck of DFT approaches which use an auxil-

iary single-particle kinetic energy approximation, such as Kohn-Sham (KS) [174, 214] and

generalized KS (gKS) [370] DFT, where gKS admits hybrid DFT functionals. This enables

the systematic study of quantum chemistry problems at unprecedented scales. As a concrete

demonstration, we performed end-to-end O(N3) DFT calculations on large clusters of water

molecules, reaching a total of N = 247 848 DFT orbitals, corresponding to 10 327 water

molecules with 103 270 electrons, see Fig. 7.1 and Table 7.1. To our knowledge, this is the

largest O(N3) DFT calculation to date, with the previously largest computation consisting

of a single O(N3) DFT iteration with N ≈ 230 000 orbitals on Fujitsu’s K computer [165].

Some variants of DFT, most notably linear-scaling DFT [345, 57, 380, 418], avoid the O(N3)

bottleneck altogether and can thus reach an even larger number of orbitals. However, these

variants rely on additional approximations and conditions, such as truncating density matrix
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Number of Number of Number of TPU TPU wall time (s) Relative energy
orbitals atoms electrons configuration FP32 FP64 per molecule (mHa)
35 544 4 443 14 810 v3-8 65 1 012 0.934
65 668 8 211 27 370 v3-32 102 2 150 0.531
131 544 16 443 54 810 v3-128 209 4 465 0.291
247 848 30 981 103 270 v3-512 350 5 434 0

Table 7.1: Tabulated results in Fig. 7.1, including also number of atoms and electrons.
Wall times for the matrix purification step are shown both for single (FP32) and dou-
ble (FP64) precision. Energies are relative to the largest calculation, E[(H2O)Nmol

]/Nmol −
E[(H2O)10327]/10327, where Nmol is the total number of water molecules. In this sequence,
we used a number of TPU cores that grows roughly as N2. As a result, walltimes are seen
to roughly scale linearly in N , instead of the expected O(N3) scaling.

elements [80], or on special properties of only a subset of density functionals (such as semilo-

cal density functional approximations). In turn, this results in restricted applicability, with

e.g. linear-scaling DFT being suitable for insulating systems but not for metals or systems

with a small energy gap [345]. In practice, conventional O(N3) DFT is a more preferable

choice since it alleviates technical complexity and problem space restrictions associated with

current lower-scaling methods, greatly extending the domain of problems to which DFT can

be applied reliably and with relative ease.

There are many aspects that go into an O(N3) DFT calculation. Throughout we focus

on atom-centered basis sets with all electrons treated explicitly, that is we do not consider

e.g. plane waves or pseudopotentials. At a high level, one can identify two main computa-

tional steps: (a) building the DFT Hamiltonian matrix (with cost O(N) to O(N2)) and (b)

computing the ground state density matrix (O(N3)), see Fig. 7.2.

(a) DFT Hamiltonian build : Given a choice of N atom-centered basis functions χi(r), one

needs to compute the DFT Hamiltonian matrix H and the overlap matrix S, with coefficients

given by

Hij = ⟨χi|H |χj⟩ , Sij = ⟨χi|χj⟩ , (7.1)
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where H represents the DFT Hamiltonian in the continuum and each matrix coefficient

requires computing one or several integrals. Over the past few decades much effort has been

devoted to optimizing the build of the N × N matrix H. Naively, the computational time

here scales as O(N4), however, in many implementations the scaling is effectively reduced to

O(N2) due to two-electron integral screening methods. The scaling can be further reduced to

almost O(N) if other strategies, such as fast multipole methods [437] or fast fourier transform

based methods [418], such as the Ewald method for periodic systems, are employed. In this

work we do not attempt to accelerate the Hamiltonian or overlap matrix build times with

TPUs. Instead, we simply use a well-established all-electron DFT package, the Fritz Haber

Institute ab initio molecular simulations package (FHI-aims) [180, 48, 49], which we run

using CPUs.

(b) Density matrix purification: The pair of matrices H and S define a generalized eigenvalue

problem, the so-called KS equations,

H |ϕα⟩ = eαS |ϕα⟩ , (7.2)

with |ϕα⟩ and eα the KS orbitals and energies. Our goal is to compute the ground state

density matrix

D ≡
N∑

α=1

θ(µ− eα) |ϕα⟩ ⟨ϕα| , (7.3)

where θ(x) is the step function and µ is the chemical potential, chosen such that
∑N

α=1 θ(µ−

eα) = Ne, for Ne the number of electrons in the system. The density matrix D can be

obtained by solving the KS equations (7.2) using standard linear algebra libraries, such as

LAPACK [16] or Intel MKL [3]. An alternative route, which we follow in this work, is to use

a density matrix purification scheme [412, 207]. First, by computing the inverse square root
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Figure 7.2: The two main steps of our implementation of an O(N3) DFT computation, the
Hamiltonian build and computing the ground state density matrix, which we run on CPUs
and TPUs, respectively. The DFT code FHI-aims [48, 49] is used to set up the Hamiltonian
and the ELSI library [456, 472] is used to facilitate the integration of the TPU-based solver
to FHI-aims.
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of S,

S 7→ S− 1
2 (7.4)

we can write the Hamiltonian in an orthonormal basis,

H 7→ H̃ ≡ S− 1
2HS− 1

2 . (7.5)

and re-express (7.2) as a standard eigenvalue problem H̃ |ϕ̃α⟩ = eα |ϕ̃α⟩, where |ϕ̃α⟩ ≡

S1/2 |ϕα⟩. Next we compute the density matrix D̃,

H̃ → D̃ ≡ θ(µI − H̃) =
Ne∑
α=1

θ(µ− eα) |ϕ̃α⟩ ⟨ϕ̃α| , (7.6)

and finally re-express it in the original basis,

D̃ 7→ D ≡ S− 1
2 D̃S− 1

2 . (7.7)

The transformation in Eq. (7.6) is obtained using a standard density matrix purification

scheme that is suitable for TPUs, namely the hole-particle canonical purification scheme [412],

which we elaborate on later in the paper.

If no further modifications are made (e.g., density matrix truncations in linear-scaling DFT),

then the cost of computing D, whether by solving Eq. (7.2) or performing the four matrix

transformations in Eqs. (7.4)-(7.7), scales as O(N3). This constitutes what is known as the

cubic wall of DFT.

The density matrix D is used to derive several important quantities. The real-space electron
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density n(r) is given by

n(r) =
N∑
i,j

χi(r)Dijχj(r) , (7.8)

which can be computed on a real-space grid [48]. The sum of occupied KS eigenvalues, given

by Tr(H D) = Tr(H̃ D̃), is also used to compute the total ground-state energy. Additionally,

the energy weighted density matrix Q,

Q = DH D , (7.9)

is also useful to compute atomic forces analytically [48].

7.3 Results

7.3.1 DFT with TPUs

The main result of our work is the successful use of TPUs to perform the four matrix trans-

formations (7.4)-(7.7), thereby tackling the O(N3) computational bottleneck of DFT. We

employed TPUs of the third generation, denoted v3. A single TPU v3 core contains two

matrix multiply units (MXUs) to formidably accelerate matrix-matrix multiplication (mat-

mul), resulting in about 10 teraFLOPS (floating point operations per second) of measured

single-core matmul performance in single precision. Importantly for our purposes, matmuls

are also available in double precision using a software-emulated 57-bit floating point format.

In this approach, utilized algorithms require many more single precision floating point op-

erations when operating in our emulated double precision than in single precision, and as a

result matmuls in double precision take ∼ 11× longer than in single precision.
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The smallest available TPU configuration consists of 8 TPU v3 cores with a total of 128 GB

of dedicated high bandwidth memory (HBM), controlled by a single host with 48 CPU cores.

The largest configuration is a pod with 2048 TPU v3 cores and 32 TB of HBM, controlled by

256 hosts. Given a choice of configuration, the available TPU cores are directly connected

to nearest neighbors in a 2D torus network through fast inter-core interconnects (ICIs), see

Fig. 7.2. The ICIs are critical to maintaining high performance when distributing matmuls

and other dense linear algebra operations over all available TPU cores. In this work we

used the JAX library [58, 127, 6] to write single program multiple data (SPMD) code and

executed it on configurations made of p TPU cores, denoted v3-p, for p = 8, 32, 128 and 512.

The TPU hardware architecture is especially suited for dense large-scale matmuls, which we

perform in distributed form using the SUMMA algorithm [417], as recently demonstrated in

Ref. [248]. Here it was shown that for sufficiently large matrices a v3-512 TPU can perform

dense matmuls at near-optimal efficiency: the performance per TPU core (measured in

single-precision FLOPS) is maintained at roughly 93% of the single TPU core maximum

performance [248]. It is important to emphasize that TPUs are often ill-suited for other

tasks, and hence the algorithms utilized in this work and those in Ref. [248] had to be picked

carefully and may differ from more conventional choices used in CPUs or GPUs. The use

of DM purification algorithms, rather than direct diagonalization, is especially attractive for

TPUs since all steps can be evaluated from a series of matmuls. Clearly, transformations (7.5)

and (7.7) require large-scale matmuls. Transformations (7.4) and (7.6) are implemented by

an iteration involving matrix polynomials of small degree, where each polynomial requires a

short sequence of matrix additions and multiplications. Specifically, the matrix inverse square

root in (7.4) is implemented using a standard Newton-Schulz iteration [172], whereas for the

density matrix purification in (7.6) we implemented the hole-particle canonical purification

scheme [412]. Further algorithm details can be found in the Supporting Information.

For benchmarking purposes, we have performed end-to-end DFT computations on a sequence
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of increasingly large water clusters with geometries obtained from standard molecular dynam-

ics simulations (see Supporting Information). We leverage the DFT code FHI-aims [48, 49]

to set up and drive calculations using CPUs, then use the TPUs to tackle the O(N3) dense

linear algebra bottlenecks (7.4)-(7.7). We also utilize the ELectronic Structure Infrastructure

(ELSI) library [456, 472] to facilitate the integration of FHI-aims and the TPU solver. In

particular, the DFT Hamiltonian build time and associated computational scaling and par-

allelization are dictated exclusively by the FHI-aims code, which uses numeric atom-centered

orbitals (NAOs) with an explicit finite spatial extent, and a truncated multipole expansion

to accomplish low prefactor and efficient scaling of the Hamiltonian matrix build. While

the computational time required to build the DFT Hamiltonian may vary greatly between

different systems with the same total number of orbitals N (due to possible differences in the

resulting sparsity in the systems), the computational time required for the O(N3) DM pu-

rification step performed on the TPU has much less variability since dense matrix operations

are assumed, which do not utilize any sparsity present (see Supporting Information for more

discussion). Thus, we emphasize that the TPU wall times, which are reported throughout

only for water clusters, are fairly robust with respect to different systems with the same total

number of orbitals.

Throughout this work we perform all-electron calculations using the PBE exchange-correlation

functional and utilize an NAO basis set such that each H2Omolecule contributes 10 electrons,

represented by 24 orbitals (5 for each hydrogen atom and 14 for the oxygen atom). First we

consider a single TPU board with 8 TPU v3 cores controlled by a host with 48 CPU cores,

and we run FHI-aims on the host. Fig. 7.3 shows the wall time for a single DFT iteration

(including both Hamiltonian build on CPUs and density matrix purification on TPUs) as a

function of the size of the water cluster, which ranges from a few thousand to N ≈ 50 000

orbitals. When using the TPU solver in single precision (green curve) we see that the O(N)

Hamiltonian build on 48 CPU cores takes longer than the O(N3) density matrix purification

run on 8 TPU cores, thus shifting the bottleneck. Using the TPU solver in double precision
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Figure 7.3: Wall times for a single DFT iteration on water clusters, using a TPU board
composed of a CPU host (48 CPU cores) and 8 TPU cores with 128 GB of HBM. Green and
purple curves correspond to using single and double precision in the TPU solver, respectively.
The dashed blue curve corresponds to the CPU time spent on FHI-aims (always in double
precision), and should be subtracted from the other curves in order to obtain the time
spent on the TPU solvers. For reference, in red we also plot the time required for a CPU-
only computation using the Eigenvalue soLvers for Petaflop Applications (ELPA), a highly
parallelized eigensolver library [223, 267], run on 48 CPU cores.

is an order of magnitude slower and saturates the TPU’s HBM for N ≈ 36 000 orbitals.

Then we consider larger TPU configurations, of up to 512 TPU v3 cores, to perform end-to-

end DFT computations on larger clusters, of up to 10 327 water molecules (or N = 247 848

orbitals). Fig. 7.1 shows the TPU wall time for the O(N3) density matrix purification for one

DFT iteration. These include 350 (5 434) seconds for a density matrix purification in single

(double) precision on the largest cluster, demonstrating feasibility of DFT computations at

that scale of a quarter of a million orbitals.

7.3.2 Dynamic precision on TPUs

In our implementation, early DFT iterations are treated with single precision and later ones

in double precision. This dynamic precision approach allows us to cut down on the use

of double precision matmuls on TPUs (which are significantly slower than single precision
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Figure 7.4: Convergence trajectory of an end-to-end dynamic precision DFT calculation on a
(H2O)10327 cluster. The absolute total energy differences between subsequent DFT iterations,
i and i−1, are plotted (top). The corresponding difference in real-space densities within the
L1 norm is plotted (bottom).

ones) without sacrificing accuracy of the final converged DFT result. Our criteria to switch

precision is based on relative density changes, using the L1 norm, defined as L1[f(r)] ≡∫
d3r |f(r)|, and relative energy changes:

1

Ne

L1[n[i](r)− n[i−1](r)] < ϵ and (7.10)

|E[i] − E[i−1]|/|E[i]| < ϵ , (7.11)

where n[i](r) is the real-space density at DFT iteration i, E[i] is the corresponding total

ground-state energy, and we use ϵ = 5× 10−7 for single precision.

Fig. 7.4 shows the convergence trajectory of a dynamic precision DFT calculation for the

largest cluster we have considered. We are able to converge such a DFT calculation to a

fairly tight convergence threshold using first 9 single precision DFT iterations, followed by

7 double precision DFT iterations. In a smaller cluster, (H2O)1481 with N = 35 544 orbitals,

a smaller number of double precision iterations are required for convergence, resulting in

115



an overall DFT calculation time that is under 5 hours on a single TPU board (v3-8), see

Supporting Information.

7.4 Conclusion

This work has successfully demonstrated that TPUs can both accelerate and scale up DFT

computations. Significant acceleration is already achieved using only a single TPU board

with 8 TPU v3 cores, see Fig. 3. For instance, an end-to-end dynamic precision DFT

computation with N = 35 544 orbitals consisting of 12 iterations in single precision and 4

iterations in double precision yields converged results in under 5 hours. For context, using

double precision only and the highly optimized ELPA O(N3) solver with 48 CPUs, the same

water cluster calculation required 20 hours to achieve 16 DFT iterations.

In order to scale up the size of DFT computations while retaining high performance two main

ingredients are involved: (i) a larger amount of high bandwidth memory, scaling as O(N2),

to be able to store dense N × N matrices; (ii) a larger number of cores, with state-of-the-

art inter-core connectivity, to more effectively execute the O(N3) floating point operations

involved in the required distributed matrix transformations. As shown in Fig. 1, by using a

number of cores that scales as O(N2) and commensurate amounts of HBM, we can scale up

to N = 500 000 orbitals with wall times that only grow proportional to N .

Once the main ingredients (i) and (ii) are satisfied, the Input/Output (IO) time, i.e. the

end-to-end communication time between the TPU and CPU, can become an important

(and possibly limiting) factor. This IO step is not exclusive to TPUs, for instance, it is

also relevant and analogous in GPU setups that require communication with CPUs. This

step is parallelizable, such that by using a number of TPU and CPU cores that scales

as O(N2), the total IO time remains constant O(1). However, in this context, obtaining
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such optimality will depend on specific implementation details of the DFT code utilized,

such as the matrix distribution pattern on the CPU processor grid. Our current prototype

implementation is modular and generalizeable and IO times scale unfavorably as O(N2), even

becoming the rate-limiting step in some cases (see Supporting Information). Less-general

(but straightforward) engineering approaches are expected to be much more optimal, but

are beyond the scope of this work which aims to demonstrate the use of TPUs in a more

general context.

We emphasize that other hardware accelerators, most notably GPUs, can also accelerate

and scale up DFT computations in a similar manner as discussed above, and Ref. [95]

recently presented a useful and positive development in this direction. Modern distributed

GPU configurations are expected to achieve similar performance to TPUs in this regard,

however, a direct comparison is complicated by the highly diverse nature of distributed

GPU configurations found in practice. On the Summit supercomputer configuration, it

has been reported that 432 distributed Nvidia V100 GPUs can perform matmuls for dense

N > 500 000 matrices with a performance per GPU (measured in FLOPS) that is roughly

85% of the single V100 GPU maximum performance [170].

Here we have focused, for simplicity, on applying DFT to clusters of water molecules. More

complicated systems may present additional difficulties. For instance, protein-ligand com-

plexes often require more elaborate schemes, such as including solvation to facilitate the

convergence of the DFT iteration [239, 357]. Work in progress shows that our TPU-based

large-scale DFT computations can also successfully address protein-ligand complexes with

explicit solvents, as well as in a variety of other large systems, including DNA segments,

carbon nanotubes, and graphene surfaces. In addition to single-point DFT energy calcu-

lations, analytical forces can also be extracted from the TPU-calculated energy-weighted

density matrix, enabling large-scale geometry optimization or Ab initio molecular dynamics

calculations.
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DFT is a highly successful quantum-based method, but it is ultimately a consistent-field ap-

proximation, which may not be accurate enough for certain applications. Fortunately, TPUs

can also accelerate and scale up other, more accurate quantum chemistry approaches where

the computational bottleneck is again given by dense linear algebra operations. For example,

in density matrix renormalization group (DMRG) [438] calculations, TPUs can be used to

reach an unprecedentedly large bond dimension D = 65 536 [132]. Similarly, we anticipate

that TPUs will thrive in other methods such as coupled cluster [117] and Møller–Plesset

perturbation theory [422]. Even when applying such higher-level methods, large-scale DFT

may still be a crucial piece in simulations that require a quantum-mechanically treated region

that embeds a subsystem treated with higher-level correlated methods [390].

To conclude, in this work we have successfully repurposed TPUs as quantum chemistry

supercomputers by tackling theO(N3) computational bottleneck of density functional theory.

We demonstrated performance and scalability with a water cluster withN = 247 848 orbitals,

which to our knowledge is the largest O(N3) DFT computation to date. We remark that

cloud-based TPUs, and other hardware accelerators such as GPUs, are more accessible and

affordable than traditional supercomputer resources. Our work thus paves the way towards

accessible and straightforward use of quantum chemistry computational methods for much

larger systems than were previously possible.
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Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E.
Oliphant. Array programming with NumPy. Nature, 585(7825):357–362, Sept. 2020.

[164] J. Harris and R. Jones. The surface energy of a bounded electron gas. J. Phys. F,
4:1170, 1974.

[165] Y. Hasegawa, J.-I. Iwata, M. Tsuji, D. Takahashi, A. Oshiyama, K. Minami, T. Boku,
H. Inoue, Y. Kitazawa, I. Miyoshi, and M. Yokokawa. Performance evaluation of ultra-
large-scale first-principles electronic structure calculation code on the k computer. Int.
J. High Perform. Comput. Appl., 28(3):335–355, aug 2014.

[166] M. Hauru, A. Morningstar, J. Beall, M. Ganahl, A. Lewis, and G. Vidal. Simulation
of quantum physics with tensor processing units: brute-force computation of ground
states and time evolution. arXiv preprint arXiv:2111.10466, 2021.

[167] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pages 1026–1034, 2015.

[168] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

[169] W. Heitler and F. London. Interaction between neutral atoms and homopolar binding
according to quantum mechanics. Z. Physik, 44:455, 1927.

[170] T. Herault, Y. Robert, G. Bosilca, and J. Dongarra. Generic matrix multiplication for
multi-gpu accelerated distributed-memory platforms over parsec. In 2019 IEEE/ACM
10th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems
(ScalA), pages 33–41. IEEE, 2019.
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Appendix A

Supplemental Info for Chapter 4

This chapter is a reproduction of the supplemental info in Ref. [303].

A.1 Gedanken density details

The Gedanken density used in the main text has the radial form

n(r) ∝


C − A

π
cos−1

(
(1− η) sin

(
2πr
T

− π
2

))
r ≤ rp

e−ar2+br+c r > rp

(A.1)

where the density is a dampened triangle wave starting from the origin where η ≥ 0 controls

the smoothness of the waveform (where η = 0 produces a triangle wave), T > 0 is the period

of the waveform, Np ≥ 0 is an integer that controls the number of peaks in the waveform,

A > 0 is the amplitude, and C > 0 is an offset. At rp = (Np− 3/4)T , the density transitions

to a Gaussian, where a, b, and c are determined by ensuring continuity and first and second

derivative continuity. The final gedanken density is then normalized to the desired number
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of electrons (2 here). Specific variable values used for the gedanken density in the main text

are provided in Table A.1. In Fig. A.1 we plot this gedanken density and its corresponding

Kohn-Sham (KS) potential,

vS(r) =
1

2

d2

dr2

(
r
√

n(r)
)

r
√

n(r)
. (A.2)

C 0.2387324146
A 0.1679968844
η 0.05
T 0.3105085788
Np 5
a 22.0154308155
b 51.4622187780
c 2.2× 10−14

Table A.1: Variable values used in the example gedanken density.
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r
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KS potential / 800

Figure A.1: The example Gedanken density considered in the main text and its corresponding
KS potential. The potential is continuous everywhere.

In Table A.2, the exchange energy for the gedanken density is given for different exchange

approximations, including B88 exchange [36], which was explicitly designed to the correct

large r behavior for Coulombic systems. Two-electron densities, such as the gedanken den-

sity, follow a tight Lieb-Oxford (LO) bound for exchange, EX[n] ≥ 1.174ELDA
X [n] [325]. For
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the gedanken density, 1.174ELDA
X = −0.925 and we see that PBE and B88 exchange violate

this exact condition. On the other hand, SCAN explicitly enforces this tight bound condition

and does not violate it.

exact SCAN LDA PBE B88

-0.832 -0.898 -0.788 -1.062 -1.136

Table A.2: Exchange energies (in atomic units) computed on the two-electron Gedanken
density.

A.2 computational details

All atomic calculations were performed using the PySCF code [391] with the aug-pcseg-4

basis set. The distribution g(s) was computed using a fermi distribution smoothening with

fictitious temperature T = 0.05 (following Ref. [476]). For some systems, increased radial

grids (up to 500) were used in the Gauss-Chebyshev grid scheme [217] to maintain high

fidelity of g(s) at large s values. Further details can be found in our public code [4].

A.3 Local conditions derivations and relations

We derive several of the local conditions used in the main text which have not been previ-

ously reported in the literature to our knowledge. We start with the TC upper bound exact

condition [244]

TC[nγ] ≤ −γ

(
∂EC[nγ]

∂γ

∣∣∣
γ→0

)
+ EC[nγ] , (A.3)
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where [128]

TC[nγ] = γ
∂EC[nγ]

∂γ
− EC[nγ]. (A.4)

For the semilocal approximations considered here,

ẼC[nγ] = γ

∫
d3r n(r)ϵunifX [n](r) F̃C(rs/γ, ζ, s, α, q) . (A.5)

This is due to the fact that the dimensionless quantities ζ, s, α, and q are all scale-invariant,

i.e. ζ[nγ](r) = ζ[n](γr), s[nγ](r) = s[n](γr), and so on. Thus the γ-dependence in the

approximation only shows up in the local quantity, rs[nγ](r) = rs[n](γr)/γ. For compactness,

in the following we drop the explicit dependence on scale-invariant quantities. Substituting

in Eq. (A.5) into Eq. (A.3) and enforcing the inequality on the integrands (that is, the local

enforcement the exact condition) yields

γ
∂F̃C(rs/γ)

∂γ
≥ −F̃C(∞) + F̃C(rs/γ) . (A.6)

Using the chain rule and rearranging we obtain the following local condition

∂F̃C

∂rs
≤ F̃C(∞)− F̃C

rs
. (A.7)

The limit F̃C(∞) is the strictly correlated electron [372] limit, which is discussed further in

Section A.7.

The LO bound [256] exact condition reads

UXC[n] ≥ CLO

∫
d3r n ϵunif

X
[n](r) , (A.8)

where UXC[n] = EXC[n]− TC[n]. For the semilocal approximations considered here, utilizing
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Eq. (A.4) evaluated at γ = 1 we have

ŨXC[n] =

∫
d3r n(r)ϵunifX [n](r)

[
F̃XC + rs

∂F̃C

∂rs

]
. (A.9)

Enforcing the LO bound locally yields the following local condition,

(
1 + rs

∂

∂rs

)
F̃XC ≤ CLO . (A.10)

It is also known that TC[n] ≥ 0, and Eq. (A.4) yields the following condition

γ
∂EC[nγ]

∂γ
− EC[nγ] ≥ 0 . (A.11)

However one can show that this condition is automatically satisfied under the correlation

uniform scaling inequality exact condition [242],

EC[nγ] ≥ γ EC[n] (γ > 1) ,

EC[nγ] ≤ γ EC[n] (γ < 1) .

(A.12)

Let γ > 0 be arbitrary, ϵ > 0, with γ+ = 1 + ϵ/γ and γ− = 1 − ϵ/γ, such that ϵ/γ << 0

(infinitesimal). From Eq. (A.12) we have

EC[nγγ+ ]− EC[nγγ− ] ≥ γ+EC[nγ]− γ−EC[nγ] . (A.13)

Simplifying yields

γ
EC[nγ+ϵ]− EC[nγ−ϵ]

2ϵ
≥ EC[nγ] . (A.14)
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Applying the definition of a derivative and identifying TC[nγ] we obtain TC non-negativity :

TC[nγ] = γ
∂EC[nγ]

∂γ
− EC[nγ] ≥ 0 . (A.15)

Enforcing this condition locally yields the following local condition for approximations

∂F̃C(rs, ζ, s, α, q)

∂rs
≥ 0 , (A.16)

which is the same one that corresponds to Eq. (A.12).

The two inequalities in Eq. (A.12) are equivalent. For instance, let γ′ < 1 be arbitrary

(but strictly positive) and take γ = 1/γ′ > 1. Take n 7→ nγ′ in Eq. (A.12) and we have

EC[nγ′γ] ≥ γEC[nγ′ ]. Substituting for γ and rearranging we have EC[nγ′ ] ≤ γ′EC[n] with

γ′ < 1.

Finally, we note that if the local conditions in Eqs. (A.16) and (A.7) are satisfied, then we

have

F̃XC ≤ F̃XC + rs
∂F̃C

∂rs
≤ F̃X + F̃C(∞). (A.17)

Since the exchange energy follows the simple scaling relation, EX[nγ] = γEX[n], F̃X needs

to be scale-invariant and thus independent of rs. The rightmost side of the inequality,

F̃X + F̃C(∞), is then the maximum value that F̃XC can take (assuming all other variables

besides rs are fixed). Therefore, if an approximation satisfies Eqs. (A.16) and (A.7), then

the local condition

F̃XC ≤ CLO , (A.18)

which is the standard one that corresponds to the LO bound on EXC, will imply Eq. (A.10). In
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Table 1 in the main text, indeed we see that functionals like PBE, AM05, PBE, and CASE21,

which simultaneously satisfy Eqs. (A.16), (A.7), and (A.18), automatically satisfy the LO

in Eq. (A.8).

We also remark that an enhancement factor F̃C that satisfies the conditions in Eqs.(A.16),

(A.7), and (A.18) is monotonic and Lipschitz continuous in rs, i.e., the derivative is bounded,

0 ≤ ∂F̃C/∂rs ≤ K, where K is a finite constant known as the Lipschitz constant. Such

a property of the enhancement factor may help assuage possible issues during numerical

integration [236]. However, this property is only with respect to the rs variable and is clearly

not sufficient to ensure stability.

A.4 conventional exchange and correlation partition-

ing

We define a global hybrid functional approximation as

Ẽhyb
XC [n] = ẼXC[n] + ãEX[n] , (A.19)

where ã > 0,EX[n] is the exact exchange energy, and ẼXC[n] is the remaining semilocal

density functional that can be expressed as

ẼXC[n] =

∫
d3r n(r)ϵ̃XC(rs, ζ, s, α, q) . (A.20)

Note the difference between α and other usual definitions for the mixing parameter in global

hybrids.

In hybrid XC functionals and other available approxmations, the partitioning of the exchange

and correlation may be ambiguous or not defined. In these cases, we use the following
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conventional partitioning

EC[n] = EXC[n]− lim
γ→∞

EXC[nγ]

γ
, (A.21)

which holds for the exact functional [243]. In global hybrid functionals, the exact exchange

contributions cancel out in Eq. (A.21), since EX[nγ] = γEX[n], and do not contribute to

the correlation energy. Here the conventional partitioning for the correlation energy can be

expressed as a semilocal density functional with the following correlation energy per electron

ϵ̃C[n](r) = ϵ̃XC(rs, ζ, s, α, q)− lim
γ→∞

ϵ̃XC(rs/γ, ζ, s, α, q)

γ
. (A.22)

In many cases, the conventional partitioning is consistent with the one defined by the authors

of the approximation (if one exists). This agreement occurs whenever an approximation

satisfies: ẼX[nγ] = γẼX[n] and limγ→∞ ẼC[nγ]/γ → 0. The latter is satisfied when ẼC[nγ]

goes to a finite constant as γ → ∞, but also for approximations of the form

ẼC[n] =

∫
d3r n(r) ϵunif

C
[n] G̃(ζ, s, α, q) , (A.23)

where ϵunif
C

[n] is a suitable parameterization for the correlation energy per electron of the

uniform gas that has logarithmic divergence in the high-density limit (e.g. PW92 [331] or

VWN [427]) and G̃(ζ, s, α, q) depends only on dimensionless variables. In general, the con-

ventional partitioning we use may differ from the developer’s intentions or rationalizations.

For instance, approximations that consider a portion of exact exchange to be part of the cor-

relation energy will not be consistent with our conventional partitioning, since such energy

contributions will cancel out in Eq. (A.21).

Throughout, conventional partitioning is utilized whenever the exchange and correlation
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partitioning is not available in the Libxc library [238]. In our analysis, we do not consider

range-separated hybrid functionals, double-hybrid functionals, or functionals that contain

non-local correlation. Therefore, the correlation energy functional is always expressed in the

standard semilocal form considered in this work.

A.5 Lieb-Oxford bound for hybrid functionals

A global hybrid functional satisfies the XC energy LO bound when

ẼXC[n] ≥ CLOELDA
X [n]− ãEX[n] . (A.24)

The exchange energy alone follows a tighter bound

EX[n] ≥ CX
LOELDA

X [n] , (A.25)

with coefficient CX
LO < CLO. Therefore, we can ensure the LO bound with a semilocal

functional satisfying

ẼXC[n] ≥ (CLO − ã CX
LO)E

LDA
X [n]

≥ CLOELDA
X [n]− ãEX[n] .

(A.26)

Thus, it is sufficient (but not necessary) that ẼXC[n] satisfy a LO-like bound with coefficient

CLO − ã CX
LO. A larger coefficient could result in a violation of the XC energy LO bound

in Eq. (A.24). To see this, let ∆ > 0 and let nX
LO be a density such that EX[nX

LO] =

CLOELDA
X [nX

LO], then (CLO − ã CX
LO +∆)ELDA

X [nX
LO] < CLOELDA

X [nX
LO]− ãEX[nX

LO]. A smaller

coefficient would also ensure Eq. (A.24), but it would be over-restrictive.
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The corresponding local condition is straightforward

F̃XC ≤ CLO − ã CX
LO . (A.27)

The corresponding local condition for the LO bound involving Ũhyb
XC [n] is found by using the

conventional partitioning in Eq. (A.22) and applying Eq. (A.4) to yield

F̃XC + rs
∂F̃C

∂rs
≤ CLO − ã CX

LO . (A.28)

In practice, CLO and CX
LO are not known precisely and need to be approximated with proven

(but not optimal) bounds. To give the most benefit of the doubt when assessing approx-

imations, we use CX
LO = 1.174 (the conjectured tight exchange LO coefficient [329]) and

CLO = 2.27 (which is the same value we use to evaluate non-hybrids).

A.6 Local condition for the conjecture: TC ≤ −EC

While unproven, it has been conjectured [242, 89, 128] that

TC[n] ≤ −EC[n] (conjecture). (A.29)

One can employ the definition in Eq. (A.4) and arrive at the following local condition

∂F̃C

∂rs
≤ F̃C

rs
(conjecture). (A.30)

In the following Sections A.10 and A.11 we explore the satisfaction of Eqs. (A.29) and

(A.30), respectively, in approximate functionals.
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A.7 Relation to adiabatic connection

Uniform coordinate scaling is closely related to the adiabatic connection in DFT, which has

long been an illuminating concept for rationalizing and improving density functional approx-

imations [318]. The formalism developed has also revealed many useful exact conditions.

In the adiabatic connection formalism [164, 228, 156], we insert a variable coupling constant

λ ≥ 0 for Coulomb-interacting electrons with

F λ[n] = min
Ψ→n

⟨Ψ| T̂ + λ V̂ee |Ψ⟩ , (A.31)

where T̂ is the usual total kinetic energy operator, V̂ee is the two-body electron-electron

repulsion operator, and the minimization is over all antisymmetric wavefunctions that yield

the density n. For λ = 1 and ground-state density n(r), we have our real physical system.

Taking λ = 0, we have the KS system, and F λ=0[n] = Ts[n], where Ts[n] is the kinetic energy

of the non-interacting KS system with ground-state density n(r). In all cases λ ≥ 0, the

ground-state density remains fixed to that of the physical system n(r).

The adiabatic connection is directly coupled to uniform coordinate scaling by

F λ[n] = λ2F [n1/λ] . (A.32)

This relation also extends to any other energy functional component, e.g., Eλ
C[n] = λ2EC[n1/λ].

Therefore, exact conditions written in terms of uniform coordinate scaling can be recast in

terms of adiabatic connection quantities.
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Eq. (A.12) is rewritten as

Eλ
C[n] ≥ λEC[n] (λ < 1) ,

Eλ
C[n] ≤ λEC[n] (λ > 1) .

(A.33)

Using

∂EC[n1/λ]

∂(1/λ)
= −∂Eλ

C[n]

∂λ
+ 2

Eλ
C[n]

λ
(A.34)

we recast the exact condition in Eq. (A.3) as

∂Eλ
C[n]

∂λ
≥
(
− ∂Eλ

C[n]

∂λ
+ 2

Eλ
C[n]

λ

)∣∣∣
λ→∞

, (A.35)

and applying L’Hospital’s rule we obtain

∂Eλ
C[n]

∂λ
≥ ∂Eλ

C[n]

∂λ

∣∣∣
λ→∞

. (A.36)

This equation can also be rewritten as a simple statement in the strictly correlated electron

(SCE) [372] limit (λ → ∞),

⟨Ψλ[n]| V̂ee |Ψλ[n]⟩ ≥ ⟨Ψλ→∞[n]| V̂ee |Ψλ→∞[n]⟩ . (A.37)

In the SCE limit, the kinetic energy component is subleading and Ψλ→∞[n] minimizes V̂ee,

thus Eq. (A.37) is clear.
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A.8 Analytical derivation: PBE satisfies the correla-

tion uniform scaling inequality exact condition

The PBE correlation energy functional has the form [313]

EPBE
C [n] =

∫
d3r n(r)

(
ϵPW92
C (rs, ζ) +H(rs, ζ, t)

)
, (A.38)

where ϵPW92
C is the PW92 [331] parameterized correlation energy per electron of the uniform

gas and H(rs, ζ, t) is defined in Ref. [313] along with the dimensionless gradient t. For

simplicity, we set all positive constants in H to unity, as the final conclusion will not depend

on their specific values. With this,

H = ln

[
1 + t2

[
1 + At2

1 + At2 +A2t4

]]
≥ 0 , (A.39)

where

A = [exp
(
−ϵPW92

c

)
− 1]−1 ≥ 0 . (A.40)

In the following, we show that PBE correlation satisfies Eq. (A.16), and thus the correla-

tion uniform scaling inequality exact condition in Eq. (A.12). Since PW92 already satisfies

Eq. (A.16), proving the following condition,

∂

∂rs

(
H(rs, ζ, t)

ϵunif
X

(rs)

)
≥ 0 , (A.41)

is sufficient to ensure that PBE satisfies the exact condition.
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To show this, we start with

∂

∂rs

(
H(rs, ζ, t)

ϵunif
X

(rs)

)
=

( ∂
∂rs

H)

ϵunif
X

+
( ∂
∂rs

ϵunif
X

)H

(ϵunif
X

)2
. (A.42)

Since ϵunif
X

= −(3/4)(3/2π)2/3r−1
s , the second term in Eq. (A.42) is positive. Next we evaluate

the first term,

∂H

∂rs
=

1

1 + x
× ∂x

∂A
× ∂A

∂ϵPW92
c

× ∂ϵPW92
c

∂rs
, (A.43)

where

x = t2
[

1 + At2

1 + At2 + A2t4

]
≥ 0 . (A.44)

The intermediate derivatives are derived analytically:

∂x

∂A
=

−t4A(t2A+ 2)

(t4A2 + t2A+ 1)2
≤ 0 , (A.45)

∂A

∂ϵPW92
c

=
exp
(
−ϵPW92

c

)
(exp(−ϵPW92

c )− 1)2
≥ 0 , (A.46)

and

∂ϵPW92
C

∂rs
≥ 0 . (A.47)

Therefore,

∂H

∂rs
≤ 0 , (A.48)

and the first term in Eq. (A.42) is also positive and thus the exact condition is satisfied.
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A.9 Readjusting parameters in the SCAN functional

While the local condition in Eq. (A.16) is satisfied in the published SCAN functional, rea-

sonable adjustments of the parameters designated for the fitting of the “appropriate norms”

can result in violations of the local condition. Specifically, we adjust the b1c = 0.02858

parameter in SCAN, which was fit to match the correlation energy of the Z → ∞ limit of

two-electron ions (one of the five appropriate norms in SCAN, see the supplementary mate-

rial in Ref. [388]). By evaluating SCAN analytically, we find that using b1c > 0.2 results in

violations of Eq. (A.16). Under this single parameter modification, the other exact condi-

tions that SCAN satisfies are still satisfied by construction. Therefore, by virtue of fitting to

various appropriate norms, the SCAN functional satisfies more exact conditions than were

explicitly enforced.

A.10 exact conditions on atomic system densities

In this assessment, we first calculate Hartree-Fock (HF) densities and orbitals for neutral

atoms H-Ar and their cations. The fixed HF densities and orbitals are then used to eval-

uate the energies (non-self-consistently) from different DFT approximations. HF densities

are used because they provide high quality densities and an equal footing across different

approximations. We also performed separate calculations using self-consistent densities and

observed marginal differences. The absolute errors from the experimental ionization ener-

gies are provided in Fig. A.2. In addition to established approximations, we also test a

very simple modified B3LYP (MOD-B3LYP) which satisfies the correlation exact conditions

discussed for any density,

ϵMOD-B3LYP
C (rs, ζ, s) = Θ(s− 1.82) ϵB3LYP

C (rs, ζ, s) , (A.49)
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where ϵB3LYP
C = 0.405ϵLYP

C +0.095ϵVWN5
C [385].The step function eliminates the local condition

violations found in Table 1 of the main text. As argued in the main text, energy contributions

from such large s values are less relevant in Coulombic systems, and indeed in Fig. A.2 we see

that B3LYP and MOD-B3LYP have MAEs that differ only by 0.1 kcal/mol. Our modified

functional is constructed for demonstration purposes only.

For each HF density (a total of 35 atomic systems), we scale the density nγ with γ ∈ [0.01, 2]

(50 evenly spaced values) and evaluate whether an exact condition is satisfied. Indeed, in

Fig. A.3 we see that the exact conditions tested are all satisfied within our set of functional

approximations and atomic systems. We also test the conjecture Tc ≤ −Ec and find instances

of violation for PBE and M08-HX.
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Figure A.2: Ionization energy errors for atomic systems H-Ar. All approximations are eval-
uated on HF densities and orbitals.

A.11 assessment of local conditions across available ap-

proximations

We utilize an exhaustive grid search to determine whether local conditions are satisfied for a

given approximation. For GGAs, we consider 10000 evenly spaced values of rs ∈ [0.0001, 5],
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Figure A.3: The number of HF atomic densities tested which satisfy a given exact condition.
A total of 35 atomic systems are tested: H-Ar and their cations.

500 evenly spaced values of s ∈ [0, 5], and 100 evenly spaced values of ζ ∈ [0, 1]. For

MGGAs, we consider 5000 evenly spaced values of rs ∈ [0.0001, 5], 100 evenly spaced values

of s ∈ [0, 5], 20 evenly spaced values of ζ ∈ [0, 1], and 100 evenly spaced values of α ∈ [0, 5]

or q ∈ [−10, 10]. The number of values checked per variable is less in MGGAs to alleviate

computational effort due to the combinatorial nature of the exhaustive search.

In determining whether local conditions are satisfied, a reasonable tolerance threshold of

at most ±0.001 is employed to approximately account for numerical errors arising from

the numerical precision used and the finite difference method used to calculate numerical

derivatives (further details can be found in our public code [4]). However, the numerical

errors introduced are not guaranteed to be within the tolerances used.

In the following tables below, we report the fraction of local condition violations found

in our exhaustive search. That is, we divide the number of violations found by the total

number of permutations considered in the extensive grid search parameter space. If we find

0 such violations, then we conclude that the corresponding exact condition is satisfied for

any reasonable density.
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Table A.3: GGA functionals: numerical assessment of corresponding local conditions.

EC[n]
non-positivity

EC[nγ] uniform
scaling inequality

TC[n]
upper bound

UC(λ) monotonicity
LO extension

to EXC

LO
conjecture:
Tc ≤ −Ec

ACGGAP [65, 61] 0 0 0 0 — — 0.414
ACGGA [65, 61] 0 0 0 0 — — 0
AM05 [22, 269] 0 0 0 0 0 0 0
APBE [84] 0 0 0 0 0 0 0.004
B97-D [152] 0.632 0.503 0.559 0.608 0.268 0.183 0.633
B97-GGA1 [76] 0.636 0.514 0.557 0.612 0.390 0.317 0.639
BEEFVDW [435] 0 0 0 0 0.003 0.013 0
BMK [54] 0.627 0.304 0.648 0.621 — — 0.616
CCDF [268] 0 0 0 0 — — 0
CHACHIYO [70] 0 0 0.044 0 0.217 0.217 0.010
CS1 [160, 346] 0.604 0.204 0.528 0.530 — — 0.601
EDF1 [12] 0.605 0.245 0.002 0.231 0.162 0.203 0.527
FT97 [122, 121] 0 0 1e-05 0.003 — — 0
GAM [454] 0.598 0.459 0.560 0.578 0.145 0.083 0.596
GAPC [116] 0.004 0.011 2e-04 0.005 — — 0.015
GAPLOC [116] 4e-04 2e-04 2e-04 0.005 — — 0.033
HCTH-120 [51] 0.495 0.310 0.327 0.450 0.065 0.061 0.507
HCTH-147 [51] 0.467 0.290 0.298 0.422 0.113 0.093 0.478
HCTH-407P [50] 0.536 0.445 0.428 0.508 0.105 0.075 0.543
HCTH-407 [52] 0.481 0.382 0.365 0.450 0.112 0.079 0.489
HCTH-93 [159] 0.435 0.196 0.258 0.386 0.266 0.237 0.446
HCTH-A [159] 0.493 0.289 0.355 0.454 0 0 0.501
HCTH-P14 [275] 0 0 0 0 0 0.029 0
HCTH-P76 [275] 0.986 0.929 0.999 0.991 0.011 0.005 0.978
HLE16 [419] 0.481 0.305 0.364 0.447 0.477 0.473 0.487
HYB-TAU-HCTH [53] 0.615 0.439 0.520 0.585 — — 0.620
KT1 [204] 0.791 0.434 0.096 0.169 0.153 0.076 0.664
KT2 [204] 0.832 0.477 0.106 0.177 0.156 0.077 0.686
KT3 [205] 0.862 0.461 0.120 0.192 0.164 0.077 0.678
LM [229, 179] 0 0.119 0.464 0.384 — — 0
LYPR [14] 0.320 0.113 0.801 0.590 — — 0.438
LYP [233, 279] 0.576 0.218 0.003 0.203 — — 0.511
MGGAC [302] 0 0 0 0 — — 0.007
MOHLYP2 [473] 0.576 0.174 0.002 0.193 0.340 0.337 0.509
MOHLYP [367] 0.243 0.092 0 0.092 0.048 0.096 0.328
MPWLYP1W [94] 0.500 0.190 4e-07 0.168 0.003 0.004 0.474
N12 [338] 0 0 0 0 0.150 0.170 0
NCAP [68] 0.455 0.299 0.029 0.277 0.231 0.207 0.403
OBLYP-D [139] 0.595 0.246 0.002 0.243 0.019 0.020 0.505
OP-B88 [413] 0 2e-04 6e-04 0.002 — — 7e-04
OP-G96 [413, 414] 0 2e-04 6e-04 0.002 — — 7e-04
OP-PBE [413, 414] 0 2e-04 6e-04 0.002 — — 7e-04
OP-PW91 [413, 414] 0 0.001 0.001 0.002 — — 0.001
OP-XALPHA [413, 414] 0 2e-04 6e-04 0.002 — — 7e-04
OPBE-D [139] 0 0 0 0 0.009 0.009 0.006
OPTC [77] 3e-06 0 0 0 — — 0
OPWLYP-D [139] 0.596 0.247 7e-04 0.240 0.019 0.022 0.507
P86-FT [311] 0.454 0.298 0.027 0.276 — — 0.402
P86VWN-FT [311] 0.447 0.297 0.026 0.275 — — 0.389
P86VWN [311] 0.447 0.297 0.026 0.275 — — 0.389
P86 [311] 0.454 0.298 0.027 0.276 — — 0.403
PBE-JRGX [308] 0 0 0 0 — — 0.006
PBE-MOL [97] 0 0 0 0 0 0 0.004
PBE-SOL [324] 0 0 0 0 0 0 0.006
PBE-VWN [218, 314, 315] 0 0 0 0 — — 6e-04
PBE1W [94] 0 0 0 0 0 0 0
PBEFE [362] 0 0 0 0 0 0 0.006
PBEINT [114] 0 0 0 0 0 0 0.005
PBELOC [83] 0 0 0 0.003 — — 0.271
PBELYP1W [94] 0.414 0.157 0 0.141 0 0 0.427
PBE [314, 315] 0 0 0 0 0 0 0.005
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Table A.4: GGA functionals: numerical assessment of corresponding local conditions.

EC[n]
non-positivity

EC[nγ] uniform
scaling inequality

TC[n]
upper bound

UC(λ) monotonicity
LO extension

to EXC

LO
conjecture:
Tc ≤ −Ec

PW91 [312, 316, 317] 3e-06 0 0 0 0 0 0
Q2D [74] 0 0.041 0.012 0.032 0 0 0.002
REGTPSS [321] 0 0 0 0 — — 0.406
REVTCA [405] 0 0 0.003 0.051 — — 0.024
RGE2 [361] 0 0 0 0 0 0 0.005
SCAN-E0 [389] 0 0 0 0 — — 0
SG4 [86] 0 0.048 0.327 0.385 8e-04 0.007 0.050
SOGGA11 [342] 0 0.003 0.064 0.229 0 1e-04 0.002
SPBE [392] 0 0 0 0 — — 0
TAU-HCTH [53] 0.595 0.491 0.492 0.567 — — 0.603
TCA [406] 0 0 0 0 — — 0
TH-FCFO [410] 0.223 0.772 0.233 0.237 0.787 0.228 0.226
TH-FCO [410] 0.200 0.795 0.211 0.214 0.781 0.205 0.203
TH-FC [410] 0.988 0.009 0.994 0.996 0.822 0.990 0.989
TH-FL [410] 0 1.000 0 0 0.498 0 0
TH1 [408] 0.215 0.780 0.224 0.225 0.295 0.220 0.218
TH2 [409] 0.061 0.935 0.070 0.070 0.323 0.065 0.063
TH3 [161] 0.217 0.781 0.217 0.219 0.284 0.218 0.218
TH4 [161] 0.103 0.894 0.106 0.106 0.238 0.105 0.105
TM-LYP [399] 0.575 0.209 0.122 0.173 — — 0.565
TM-PBE [399] 0 0 0 0 — — 0.509
W94 [443] 0 0 0 3e-05 — — 0
WI0 [444] 0.614 0.004 0.002 0.014 — — 0.603
WI [444] 0.900 0.008 0.008 0.023 — — 0.896
WL [445] 0.590 0.166 0.595 0.581 — — 0.377
XLYP [450] 0.576 0.218 0.003 0.203 0.013 0.019 0.511
XPBE [449] 0 0 0 0 0 0 0
ZPBEINT [82] 0 0.020 0.343 0.299 — — 2e-04
ZPBESOL [82] 0 0.013 0.375 0.263 — — 2e-04
ZVPBEINT [85] 0 0.093 0.273 0.226 — — 0.001
ZVPBELOC [113] 0 3e-04 0.199 0.112 — — 0.075
ZVPBESOL [85] 0 0.080 0.299 0.212 — — 0.001
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Table A.5: MGGA functionals: numerical assessment of corresponding local conditions.

EC[n]
non-positivity

EC[nγ] uniform
scaling inequality

TC[n]
upper bound

UC(λ) monotonicity
LO extension

to EXC

LO
conjecture:
Tc ≤ −Ec

B88 [35] 0 0 0 0 — — 0
B94 [39] 0 0 0 0 — — 0
BC95 [40] 0 0 0 0 — — 0
CC06 [66] 0 0 0 0 0 0 0
CS [81, 233] 0.352 0.166 0.252 0.275 — — 0.481
HLE17 [420] 0 0 0 0 0.092 0.093 0
HLTAPW [237] 0 0 0 0 — — 0
KCISK [354, 220, 221, 225, 407] 0 0 0 0.012 — — 0.041
KCIS [354, 220, 221, 225, 407] 0 0 0 0 — — 0
LP90 [232] 0 0.963 0.998 0.990 0 0 0
M06-L [469, 471] 0.700 0.661 0.705 0.696 0.228 0.181 0.698
M11-L [340] 0.385 0.194 0.004 0.153 0.425 0.456 0.478
MN12-L [339] 0.424 0.266 0.022 0.227 0.048 0.086 0.506
MN15-L [453] 0.462 0.184 3e-04 0.156 2e-04 0.006 0.594
OTPSS-D [139] 0 0 0 0 0 0 0.007
PKZB [320] 0 0 0 0 0 0 0.006
R2SCANL [274, 129, 130] 0 0 0 0 0 0 0
R2SCAN [129, 130] 0 0 0 0 0 0 0
REVM06-L [433] 0.777 0.702 0.835 0.783 5e-05 7e-05 0.767
REVSCAN [277] 0.212 0.063 0 0.084 0 0 0.288
REVTM [185] 0 0 0 0 0 0 0.329
REVTPSS [321, 322] 0 0 0 0 0 0 0.424
RSCAN [33] 0 0.008 0.101 0.160 0 0 0
SCANL [272, 273, 389] 0 0 0 0 0 0 0
SCAN [389] 0 0 0 0 0 0 0
TM [397] 0 0 0 0 0 0 7e-04
TPSSLOC [83] 0 0 0 0.003 — — 0.280
TPSSLYP1W [94] 0.408 0.179 0 0.138 0 0 0.420
TPSS [398, 330] 0 0 0 0 0 0 0.008
VSXC [424] 0.298 0.084 0.190 0.260 — — 0.294
ZLP [458] 0 0.943 0.998 0.981 0.343 0.285 0
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Table A.6: Hybrid GGA functionals: numerical assessment of corresponding local conditions.

EC[n]
non-positivity

EC[nγ] uniform
scaling inequality

TC[n]
upper bound

UC(λ) monotonicity
LO extension

to EXC

LO
conjecture:
Tc ≤ −Ec

APBE0 [113] 0 0 0 0 0 0 0.004
APF [24] 0 0 0 0 0 0 0
B1LYP [9] 0.576 0.218 0.003 0.203 0 0 0.511
B1PW91 [9] 0 0 0 0 0 0 0
B1WC [47] 0 0 0 0 0 0 0.005
B3LYP-MCM1 [64] 0.753 0.282 0.681 0.455 0 0 0.590
B3LYP-MCM2 [64] 0.558 0.210 4e-04 0.187 0 0 0.504
B3LYP3 [386] 0.457 0.174 0 0.154 0 0 0.451
B3LYP5 [386] 0.457 0.174 0 0.154 0 0 0.451
B3LYPS [351] 0.414 0.159 0 0.137 0 5e-05 0.442
B3LYP [386] 0.414 0.159 0 0.137 0 8e-05 0.442
B3P86 [2] 0.074 0.141 0 0.209 0 0 0.265
B3PW91 [37] 0 0 0 0 0 0 0
B5050LYP [375] 0.457 0.174 0 0.154 0 0 0.451
B97-1P [76] 0.666 0.463 0.634 0.649 0.056 0.042 0.663
B97-1 [159] 0.698 0.476 0.686 0.687 0.002 0.001 0.693
B97-2 [446] 0.665 0.479 0.605 0.643 0.065 0.048 0.666
B97-3 [206] 0.612 0.464 0.601 0.601 0.089 0.050 0.608
B97-K [54] 0.330 0.004 0.520 0.342 0 0 0.291
B97 [41] 0.645 0.359 0.612 0.626 0.003 0.003 0.641
BHANDHLYP [38, 2] 0.576 0.218 0.003 0.203 0 0 0.511
BHANDH [38, 2] 0.576 0.218 0.003 0.203 0 0 0.511
BLYP35 [352, 203] 0.576 0.218 0.003 0.203 0 0 0.511
CAP0 [67] 0 0 0 0 0.080 0.081 0.005
CASE21 [382] 0 0 0 0 0 0 0.259
EDF2 [257] 0.362 0.132 0 0.125 0 0 0.398
HAPBE [113] 0 0 0 0 0 0 0.012
HFLYP [233, 279] 0.576 0.218 0.003 0.203 0 0 0.511
HPBEINT [115] 0 0 0 0 0 0 0.005
KMLYP [196] 0.121 0.052 0 0.054 0 0 0.279
MB3LYP-RC04 [404] 0.359 0.143 0.001 0.126 0 1e-04 0.375
MPW1K [263] 0 0 0 0 0 0 0
MPW1LYP [10] 0.576 0.218 0.003 0.203 0 0 0.511
MPW1PBE [10] 0 0 0 0 0 0 0.005
MPW1PW [10] 0 0 0 0 0 0 0
MPW3LYP [464] 0.462 0.178 0 0.153 0 0 0.465
MPW3PW [10] 0 0 0 0 0 0 0
MPWLYP1M [367] 0.576 0.218 0.003 0.203 3e-04 3e-04 0.511
O3LYP [173, 77] 0.457 0.174 0 0.154 0.017 0.028 0.451
PBE-2X [393] 0 0 0 0 0 0 0.005
PBE-MOL0 [97] 0 0 0 0 0 0 0.004
PBE-MOLB0 [97] 0 0 0 0 0 0 0.005
PBE-SOL0 [97] 0 0 0 0 0 0 0.006
PBE0-13 [87] 0 0 0 0 0 0 0.005
PBE38 [153] 0 0 0 0 0 0 0.005
PBE50 [46] 0 0 0 0 0 0 0.005
PBEB0 [97] 0 0 0 0 0 0 0.005
PBEH [11, 111] 0 0 0 0 0 0 0.005
QTP17 [188] 0.407 0.156 0 0.135 0 0 0.439
REVB3LYP [259] 0.438 0.168 0 0.145 0 0 0.453
SB98-1A [364] 0.803 0.435 0.903 0.809 0 0 0.786
SB98-1B [364] 0.267 0.049 0.055 0.215 0.013 0.019 0.278
SB98-1C [364] 0.635 0.363 0.593 0.615 0.004 0.004 0.633
SB98-2A [364] 0 0 0 0 0.002 0.012 0
SB98-2B [364] 0.478 0.180 0.327 0.432 2e-05 4e-04 0.484
SB98-2C [364] 0.632 0.371 0.586 0.611 0.001 0.002 0.629
SOGGA11-X [337] 0 0.042 0.176 0.169 0 0.003 0
WC04 [442] 0 0 0 0 0.123 0.240 0
WP04 [442] 0 0 0 0 0.349 0.468 0
X3LYP [450] 0.462 0.178 0 0.153 0 0 0.465
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Table A.7: Hybrid MGGA functionals: numerical assessment of corresponding local condi-
tions.

EC[n]
non-positivity

EC[nγ] uniform
scaling inequality

TC[n]
upper bound

UC(λ) monotonicity
LO extension

to EXC

LO
conjecture:
Tc ≤ −Ec

B0KCIS [407] 0 0 0 0 0 0 0
B86B95 [40] 0 0 0 0 0 9e-04 0
B88B95 [40] 0 0 0 0 0 9e-04 0
B98 [42] 0.202 0.004 0.145 0.119 0 0 0.172
BB1K [460] 0 0 0 0 0 1e-03 0
BR3P86 [292] 0.290 0.336 0.005 0.247 0 6e-04 0.305
DLDF [334] 0.543 0.455 0.523 0.532 0.298 0.241 0.540
EDMGGAH [396] 0.351 0.166 0.254 0.276 0.015 0.013 0.481
M05-2X [463] 0.745 0.696 0.760 0.743 0.070 0.042 0.741
M05 [462] 0.748 0.559 0.767 0.729 0.075 0.073 0.731
M06-2X [471] 0.681 0.613 0.720 0.682 0.058 0.036 0.674
M06-HF [467] 0.298 0.232 0.382 0.313 0.049 0.105 0.284
M06 [471] 0.419 0.229 0.257 0.375 0.329 0.330 0.423
M08-HX [470] 0.039 0.008 0 0.007 0.070 0.259 0.136
M08-SO [470] 0.079 0.019 0 0.015 0.149 0.260 0.196
MN15 [452] 0.785 0.612 0.396 0.631 0.288 0.276 0.860
MPW1B95 [464] 0 0 0 0 0 9e-04 0
MPW1KCIS [459] 0 0 0 0 0 0 0
MPWB1K [464] 0 0 0 0 0 1e-03 0
MPWKCIS1K [459] 0 0 0 0 0 0 0
PBE1KCIS [465] 0 0 0 0 0 0 0
PW6B95 [466] 0 0 0 0 0 9e-04 0
PW86B95 [40] 0 0 0 0 0 9e-04 0
PWB6K [466] 0 0 0 0 0 1e-03 0
REVM06 [434] 0.676 0.591 0.685 0.670 0.003 0.002 0.670
REVTPSSH [91] 0 0 0 0 0 0 0.424
TPSS0 [151] 0 0 0 0 0 0 0.008
TPSS1KCIS [461] 0 0 0 0 0 0 0
TPSSH [384] 0 0 0 0 0 0 0.008
X1B95 [464] 0 0 0 0 0 0 0
XB1K [464] 0 0 0 0 0 4e-05 0
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Appendix B

Supplemental Info for Chapter 5

This chapter is a reproduction of the supplemental info in Ref. [252].

B.1 1D Model systems

In 1D, we utilize exponential Coulomb interactions to mimic the standard 3D Coulomb

potential,

vexp(x) = A exp(−κ|x|), (B.1)

where A = 1.071295 and κ−1 = 2.385345 [29]. Within this model, the external one-body

potential for a nuclei of atomic number Z and position x′ is represented by −Z vexp(x− x′).

The external potential for arbitrary molecular systems and geometries is modeled as

v(x) = −
∑
j

Zjvexp(x− xj) . (B.2)
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For example, a 1D H2 molecule at separation R = 4 can be represented by v(x) = −vexp(x−

2)− vexp(x+ 2). The repulsion between electrons at positions x and x′ is given by the two-

body potential vee(x− x′) = vexp(x− x′). We represent all systems on a 1D grid of m = 513

points each separated by a distance h = 0.08. The center grid point is at the origin, x = 0,

and the range of grid points is x ∈ {−20.48, . . . , 20.48}. For consistency, all nuclei positions

reside on grid points in calculations. In this convention, all molecules in this work are either

symmetric about the origin x = 0 or x = 0.04, depending on the separation between nuclei.

B.2 DMRG calculation details

The real-space interacting Hamiltonian for a 1D system of lattice spacing h becomes in

second quantized notation,

H =
5

4h2

∑
j,σ

njσ−
2

3h2

∑
⟨i,j⟩,σ

c†iσcjσ+
1

24h2

∑
⟨⟨i,j⟩⟩,σ

c†iσcjσ+
∑
j

v(xj)nj+
∑
ij

vee(xi−xj)ni nj ,

(B.3)

where the operator c†jσ creates (and cjσ annihilates) an electron of spin σ on site j, njσ =

c†jσcjσ, and nj = nj↑ + nj↓. The single and double brackets below the sums indicate sums

over nearest and next nearest neighbors, respectively. The hopping term coefficients are

determined by the 4-th order central finite difference approximation to the second derivative.

The Hamiltonian is solved using DMRG to obtain highly accurate ground-state energies

and densities. Calculations are performed using the ITensor library [124] with an energy

convergence threshold of 10−7 Ha.
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B.3 KS calculation details

B.3.1 Local Density Approximation

In our 1D model the electron repulsion is an exponential interaction. To implement a lo-

cal density approximation (LDA) for this interaction we use Ref. [29] which provides the

exponentially repelling uniform gas exchange energy analytically and an accurate parame-

terized model for the correlation energy. We use this specific implementation for all LDA

calculations.

B.3.2 Initial density

We solve the Schrödinger equation of the non-interacting system with the external potential

v(x) defined in Eq. B.2,

{
− ∇2

2
+ v(x)

}
ϕi(x) = ϵi ϕi(x). (B.4)

The density is the square sum of all the occupied orbitals n(x) =
∑

i |ϕi(x)|2. In all the KS

self-consistent calculations presented in this work, we use the density of the non-interacting

system with external potential v(x) as the initial density.

B.3.3 Linear density mixing

Linear density mixing is a well-known strategy to improve the convergence of the KS self-

consistent calculation,

n(in)

k+1 = n(in)

k + α(n(out)

k − n(in)

k ). (B.5)
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In this work, we apply an exponential decay on the mixing factor α = 0.5× 0.9k−1.

B.3.4 XC potential from automatic differentiation

The XC functional ϵXC[n] : Rm → Rm is a mapping from density n ∈ Rm to XC energy

density ϵXC ∈ Rm, where m is the number of grids. Instead of hand-deriving the functional

derivative, we use automatic differentiation in JAX [58] to compute

vXC =
δEXC

δn
=

δ
∫
n ϵXC[n]dx

δn
. (B.6)

The XC energy density ϵXC[n] is denoted as xc_energy_density_fn. It takes the density,

a float array with size m as input argument and returns a float array with size m. This

function can be a conventional physics XC functional (e.g., LDA) or a neural XC functional.

The XC energy EXC can be computed by the following function,

1 def get_xc_energy(density , xc_energy_density_fn , grids):

2 """ Gets the xc energy by discretizing the following integral.

3

4 E_xc = \int density * xc_energy_density_fn(density) dx.

5

6 Args:

7 density: Float numpy array with shape (num_grids ,).

8 xc_energy_density_fn: function takes density and returns float numpy

array

9 with shape (num_grids ,).

10 grids: Float numpy array with shape (num_grids ,).

11

12 Returns:

13 Float.

14 """
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15 return jnp.dot(xc_energy_density_fn(density), density) * utils.get_dx(

grids)

Then the functional derivative vXC = δEXC/δn can be computed via jax.grad function,

1 def get_xc_potential(density , xc_energy_density_fn , grids):

2 """ Gets xc potential.

3

4 The xc potential is derived from xc_energy_density through automatic

5 differentiation.

6

7 Args:

8 density: Float numpy array with shape (num_grids ,).

9 xc_energy_density_fn: function takes density and returns float numpy

array

10 with shape (num_grids ,).

11 grids: Float numpy array with shape (num_grids ,).

12

13 Returns:

14 Float numpy array with shape (num_grids ,).

15 """

16 return jax.grad(get_xc_energy)(

17 density , xc_energy_density_fn , grids) / utils.get_dx(grids)

The jax.grad function computes the gradient of get_xc_energy function with respect to

the first argument density using automatic differentiation. Both functions can be found in

the scf module in the JAX-DFT library.

B.3.5 Symmetry

The training molecules used in this paper are symmetric to their centers. We define the

symmetry operation on functions on the grids S : Rm → Rm. It flips a function at the
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center and averages with itself. In each KS iteration, we enforce the symmetry on the XC

functional, ϵXC[n] → S
(
ϵXC[S(n)]

)
. So EXC and vXC are transformed as

EXC =

∫
n ϵXC[n]dx →

∫
nS
(
ϵXC[S(n)]

)
dx (B.7)

vXC =
δ
∫
n ϵXC[n]dx

δn
→

δ
∫
nS
(
ϵXC[S(n)]

)
dx

δn
. (B.8)

Before the output of each KS iteration, n(out)

k → S(n(out)

k ).

We note that applying the symmetry restriction does not change the model performance

of the molecules around equilibrium. However, because both stretched H2 and H4 have

vanishing KS gaps, the KS self-consistent calculation is difficult to converge. The gradient

information for the KSR relies on the stable output of the KS self-consistent calculation.

In realistic 3D DFT codes, enforcing symmetry is one common strategy to improve the

convergence of KS self-consistent calculations. Therefore, we applied symmetry restriction

so that KSR can obtain stable gradient information in the stretched limit cases.

B.4 Training, validation and test

B.4.1 Weights in trajectory loss

We use wk = 0.9K−kH(k−10), where H is the Heaviside function and K is the total number

of iterations.

B.4.2 Number of KS iterations

We first run KS calculations with the standard uniform gas LDA functional [29]. The number

of iterations to converge the largest separation for different molecules are around 8, 25, 5, 6
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for H2 , H4, H
+
2 , H2H2 respectively. During the training of neural XC functionals with KSR,

we use a fixed number of iterations that is greater than or equal to the estimation from LDA

for each type of molecules so it is sufficient for convergence. The number of iterations for

different molecules are listed in Table B.1.

Table B.1: Number of iterations for different molecules.

H2 H4 H+
2 H2H2

train 15 40 – –
validation 15 40 – –
test 15 40 5 10

B.4.3 Dataset for learning H2 dissociation from two molecules

H2 dissociation curves in Figure 1 are trained from exact densities and energies of two

molecules. One is a compressed H2 (R = 1.28) and the other is a stretched H2 (R = 3.84)

molecule. The optimal checkpoint is selected by a validation molecule with R = 2.96.

B.4.4 Dataset for learning and predicting several types of molecules

Training molecules

The distances between nearby atoms for training molecules used in Figure 4 are listed in

Table B.2.

Validation molecules

The distances between nearby atoms for validation molecules used in Figure 4 are listed in

Table B.3.
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Table B.2: Distances between nearby atoms for training molecules used in Figure 4.

Ntrain H2 H4

4 1.28 3.84 2.08 3.36
6 0.48 1.28 3.84 1.28 2.08 3.36
8 0.48 1.28 3.04 3.84 1.28 2.08 3.36 4.48
10 0.48 1.28 3.04 3.84 4.64 1.28 2.08 3.36 4.00 4.48
12 0.48 1.28 2.40 3.04 3.84 4.64 1.28 2.08 3.04 3.36 4.00 4.48
14 0.48 1.28 2.40 3.04 3.52 3.84 4.64 1.28 2.08 3.04 3.36 3.68 4.00 4.48
16 0.48 1.28 1.76 2.40 3.04 3.52 3.84 4.64 1.28 2.08 2.56 3.04 3.36 3.68 4.00 4.48
18 0.48 1.28 1.76 2.40 3.04 3.52 3.84 4.16 4.64 1.28 2.08 2.56 3.04 3.36 3.68 4.00 4.48 4.80
20 0.48 0.80 1.28 1.76 2.40 3.04 3.52 3.84 4.16 4.64 1.28 1.76 2.08 2.56 3.04 3.36 3.68 4.00 4.48 4.80

Table B.3: The distances between nearby atoms for validation molecules used in Figure 4.
The validation set is fixed for calculations with 4 ≤ Ntrain ≤ 20.

Molecule R
H2 1.68, 2.96, 4.40, 5.52
H4 1.84, 2.64, 3.28, 5.04

Test molecules

The distances between nearby atoms for test molecules used in Figure 4 are listed in Ta-

ble B.4.

Molecule R

H2
0.40, 0.56, 0.72, 0.88, 1.04, 1.20, 1.36, 1.52, 1.84, 2.00, 2.16, 2.32, 2.48, 2.64, 2.80, 3.12, 3.28, 3.44, 3.60, 3.76,
3.92, 4.08, 4.24, 4.56, 4.72, 4.88, 5.04, 5.20, 5.36, 5.68, 5.84, 6.00

H4
1.04, 1.20, 1.36, 1.52, 1.68, 2.00, 2.16, 2.32, 2.48, 2.80, 2.96, 3.12, 3.44, 3.60, 3.76, 3.92, 4.08, 4.24, 4.40, 4.56
4.72, 4.88, 5.20, 5.36, 5.52, 5.68, 5.84, 6.00

H+
2

0.64, 0.80, 0.96, 1.12, 1.28, 1.44, 1.60, 1.76, 1.92, 2.08, 2.24, 2.40, 2.48, 2.56, 2.64, 2.72, 2.88, 3.04, 3.20, 3.36,
3.52, 3.68, 3.84, 4.00, 4.16, 4.32, 4.48, 4.64, 4.80, 4.96, 5.12, 5.28, 5.44, 5.60, 5.76, 5.92, 6.08, 6.24, 6.40, 6.56,
6.72, 6.88, 7.04, 7.20, 7.36, 7.52, 7.68, 7.84, 8.00, 8.16, 8.32, 8.48

H2H2
0.16, 0.48, 0.80, 1.12, 1.44, 1.76, 2.08, 2.40, 2.72, 3.04, 3.36, 3.68, 4.00, 4.32, 4.64, 4.96, 5.28, 5.60, 5.92, 6.24,
6.56, 6.88, 7.20, 7.52, 7.84, 8.16, 8.48, 8.80, 9.12, 9.44, 9.76

Table B.4: The distances between nearby atoms for test molecules used in Figure 4. The
test set is fixed for calculations with 4 ≤ Ntrain ≤ 20.

Test errors

We extend the plot of test errors in Figure 4 to Ntrain = 20 in Figure B.1 and list all the

numerical values in Table B.5.
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Figure B.1: Test generalization of ML models as a function of the total number of training
examples Ntrain: full KSR (blue), energy only KSR (pink) and direct ML (orange) on (a)
holdout H2 and H4, and unseen types of molecules (b) H+

2 (c) H2H2. Black dashed lines show
chemical accuracy. All the numerical values are listed in Table B.5.

Table B.5: Numerical values of test errors plotted in Figure B.1.

Model Molecule
Ntrain

4 6 8 10 12 14 16 18 20

KSR Ln + LE

H2 and H4 3.91× 10−3 8.15× 10−4 7.04× 10−4 7.82× 10−4 1.32× 10−3 8.64× 10−4 1.23× 10−3 1.25× 10−3 1.11× 10−3

H+
2 1.71× 10−5 1.71× 10−5 1.71× 10−5 1.71× 10−5 1.71× 10−5 1.71× 10−5 1.71× 10−5 1.71× 10−5 1.71× 10−5

H2H2 1.42× 10−2 3.23× 10−3 4.02× 10−3 9.41× 10−3 2.83× 10−3 6.23× 10−3 5.62× 10−3 3.23× 10−3 6.87× 10−3

KSR LE

H2 and H4 4.82× 10−2 3.99× 10−3 2.27× 10−3 1.66× 10−3 1.23× 10−3 1.17× 10−3 9.37× 10−4 1.35× 10−3 9.73× 10−4

H+
2 1.71× 10−5 1.71× 10−5 1.71× 10−5 1.71× 10−5 1.71× 10−5 1.71× 10−5 1.71× 10−5 1.71× 10−5 1.71× 10−5

H2H2 9.19× 10−2 5.56× 10−3 5.99× 10−3 2.36× 10−2 5.35× 10−3 4.38× 10−3 4.67× 10−3 1.68× 10−2 1.26× 10−2

ML
H2 and H4 4.95× 10−2 1.18× 10−2 3.77× 10−3 2.60× 10−3 2.80× 10−3 2.65× 10−3 2.79× 10−3 3.89× 10−3 2.70× 10−3

H+
2 4.10× 10−1 2.71× 10−1 3.26× 10−1 3.01× 10−1 3.09× 10−1 3.07× 10−1 3.08× 10−1 3.09× 10−1 2.76× 10−1

H2H2 1.36 1.11 1.27 1.14 1.15 1.14 1.15 1.16 1.15

Dissociation curve of H2, H4, H
+
2 and H2H2

Figure B.2 shows the dissociation curve of H2, H4, H
+
2 and H2H2. Curves of KSR-global (blue)

are computed from the neural XC functional trained from the full KSR with Ntrain = 8 (four

H2 molecules and four H4 molecules) in Figure B.1. KSR fits H2 and H4 well even in the

stretched limit. KSR perfectly predicts H+
2 because of self-interaction gate in the neural

XC functional. Although H2H2 has never been exposed to the model during training, KSR

performs well at small distances (R < 3) and at large distances (R > 8) but slightly overbinds

around R = 5.
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Figure B.2: Dissociation curves of (a) H2, (b) H4, (c) H+
2 , and (d) H2H2. Dashed black

lines are the exact curves. Dashed brown lines denote the results computed from uniform
gas LDA and blue solid lines denote the results computed from KSR-global.

B.5 Neural networks

B.5.1 Architecture

Figure B.3 illustrates the model architectures used in Figure 1. In the ML model that

directly predicts energy from geometry (Figure B.3(a)), we first solve Eq. B.4 to obtain a

density for a particular molecular geometry. We use this density as a smooth representation

of the geometry. The first few layers (global conv-conv-SiLU-conv-SiLU) are identical to the

KSR-global in Figure B.3(d). Next, we use convolution layers with 128 channels and dense

layers to increase the capacity of the model. Finally, a dense layer with a single unit outputs

the scalar E.

The KSR-LDA and KSR-GGA approaches do not have the global convolution layer be-

188



(a)	ML

global	conv	×	16

conv	(1,) ×	1
negative	transform

SIG

conv	(3,) ×	16

SiLU

conv	(3,) ×	16

SiLU

global	conv	×	16

conv	(3,) ×	16

SiLU

conv	(3,) ×	16

SiLU

conv	(3,) ×	128

SiLU

conv	(3,) ×	128

SiLU

max	pool	(2,) +	�a�en

dense	128

SiLU

dense	1

(b)	KSR-LDA (d)	KSR-global

conv	(1,) ×	1
negative	transform

conv	(1,) ×	16

SiLU

conv	(1,) ×	16

SiLU

conv	(1,) ×	16

SiLU

(c)	KSR-GGA

conv	(1,) ×	1
negative	transform

conv	(3,) ×	16

SiLU

conv	(1,) ×	16

SiLU

conv	(1,) ×	16

SiLU

molecule

Figure B.3: Model architectures of (a) the ML model that directly predicts energy E from
geometry, (b) the neural LDA with KSR, (c) the neural GGA with KSR, and (d) the neural
global functional.

cause the use of global information violates the local and semi-local approximation. The

first layer of KSR-LDA is a convolution with filter size 1. It mimics the physics of the

standard LDA approach by mapping the density value to the XC energy density at the

same point, ϵLDA
XC,θ : R1 → R1. KSR-GGA uses a convolution layer with filter size 3 to map

the density values of three nearby points to the XC energy density at the center point,

ϵGGA
XC,θ : R3 → R1. The XC energy density in the entire space is also computed pointwise,

ϵXC =
{
ϵGGA
XC,θ[n(x−1, x0, x1)], . . . , ϵ

GGA
XC,θ[n(xm−2, xm−1, xm)]

}
∈ Rm. The remaining network

structure of KSR-LDA and KSR-GGA is identical to KSR-global, except for self-interaction

gate (SIG).
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B.5.2 Layers

Convolution

Filter weights in 1D convolution are initialized by He normal initialization [167]. The stride

is one. The edges are padded with zero to ensure that the size of the output spatial dimension

is the same as the size of the unpadded input spatial dimension. There is no bias term.

Global convolution

Global convolution contains multiple channels to capture the interaction in different scales.

The operation in each channel is

G(n(x), ξp) =
1

2ξp

∫
dx′n(x′) exp(−|x− x′|/ξp). (B.9)

where ξp is trainable and controls the scale of the interaction. We parameterize ξp = a +

(b− a) · σ(ηp) using the sigmoid function σ(x) = 1/(1 + exp(−x)) to bound ξp ∈ (a, b). ηp is

initialized using the normal distribution N (0, 10−4). For the 16-channel global convolution

layer used in this work, we have η1 ≡ 0 to preserve the input density and the rest ηp ∈

(0.1, κ−1) are trainable.

Dense

The dense layer is only used in the ML model (Figure B.3(a)). The weights are initial-

ized using Glorot normal initialization [138] and bias terms are initialized using the normal

distribution N (0, 10−4).
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B.5.3 Checkpoint selection

Each calculation is repeated with 25 random seeds. The model is trained by L-BFGS [258] im-

plemented in SciPy [421] scipy.optimize.fmin_l_bfgs_b with factr=1,m=20,pgtol=1e-14.

Parameter checkpoints are saved every 10 steps until L-BFGS stops. The optimal check-

point is the checkpoint with the lowest average energy error per electron on validation sets,

E{Sval}EM∈Sval
|(E − EDMRG)|/Ne, where E is the final energy from KS calculations, EDMRG

is the exact energy, and Ne is the number of electrons. The validation sets {Sval} and the

molecules M in each sets are listed in Table B.3.

B.6 Training a neural XC functional without KS reg-

ularization

[365] proposed a neural XC functional that can be used in a KS self-consistent calculation

in the inference stage. Unlike our work, which trains the network through KS calculations,

they train the network in a single-step. The training set contains 12800 molecules and

the validation set contains 6400 molecules. Here, the molecules are exact solutions of one-

dimensional two-electron problems in the external potential of up to three random nuclei

(Equation 4 in [365]). The exact vXC for each molecule is computed by an inverse KS method.

They input exact ground state density and train the network to predict XC energy per length

eXC that minimizes the loss function: a weighted combination of the mean square errors

(MSE) of the XC energy, XC potential, its numerical spatial derivative, and the difference

between the XC energy and the integral over the potential (Equation 5 in [365]),

L(θ) = αMSE(EXC)+βMSE(vXC)+γMSE
(dvXC(x)

dx

)
+δMSE

(
EXC−

∫
dx vXC(x)n(x)

)
,

(B.10)
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where α = 1.0, β = 100.0, γ = 10.0, and δ = 1.0 is the weights used in [365].
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Figure B.4: Training the neural XC functional using (a) single-step and (b) Kohn-Sham
regularization. Both functionals use Kohn-Sham self-consistent calculations in the inference
stage.

It is natural to pose the question: does the generalization from the two H2 training molecules

in Figure 1 result from using KS self-consistent calculations in the inference stage rather

than the training stage? This is a reasonable concern because the XC energy is usually a

small portion of the total energy. To justify this concern, we first use inverse KS to get

the exact vXC on the two H2 molecules used in the H2 experiment. Then, we take the

model architecture 1 and loss function in [365] and attempt to learn the entire dissociation

curve of H2 from two molecules. Figure B.4 compares the results from KS self-consistent

calculations using functionals trained on (a) single-step and (b) Kohn-Sham regularization.

It is not surprising that even though both approaches use KS self-consistent calculations

in the inference stage, the model trained on a single-step fails to generalize in the small

training set limit (1/6400 training set size to the original paper). The neural XC functional

is a many-to-many mapping, which is very hard to learn with limited data. Moreover, KS

self-consistent calculations start with an initial density that is not the exact ground state

density. It is clearly out of the interpolation region for the model that has only seen exact

densities of two molecules.
1The only difference is that this model predicts ϵXC[n](x) rather than eXC[n](x) in [365]. The relation

between them is eXC[n](x) = ϵXC[n](x) · n(x)
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We would like to emphasize that this comparison aims to show that using KS calculations

in training – Kohn-Sham regularizer – is crucial to the generalization. A single-step model

could work well as reported in [365] with a larger training set and exact vXC.

B.7 Training a neural XC functional with “weaker”

Kohn-Sham regularization

(a)	stop	gradient	before	iteration	K

molecule

K
-1

K
-21

Kohn-Sham
iterations
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molecule
K
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K
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iterations

KSTOP
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K
-1STOPK
-21

Kohn-Sham
iterations
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(b) stop	gradient	before	iteration	K-1

(c)	no	stop	gradient

weak

strong

Figure B.5: Computational graph with different KSR strength. (a) stop gradient before
iteration K. (b) stop gradient before iteration K− 1. (c) no stop gradient. This is the same
computation graph used in the main text.

Unlike other methods that build physics prior knowledge to the model through constraint,

KSR “augments” densities for the model during training. Thus, there is no single coefficient

to explicitly control the strength of the regularization. A straightforward idea to control

the KSR strength is to change the total number of iterations K in the KS self-consistent

calculations. However, a small K may not be sufficient to converge KS calculations. Thus it

is ambiguous to understand whether the worse performance is from weaker regularization or

unconverged KS calculations. Here we design an approach to control the strength of KSR
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Figure B.6: H2 dissociation curves trained from two molecules (red diamonds) with a
corresponding computational graph shown in Figure B.5.

by stopping the gradient flow in the backpropagation and keeping K fixed.

Stop gradient is a common operation in differentiable programming. It acts as an identity

in the forward pass so it does not affect the KS calculations. In the backpropagation, it sets

the gradient passing through it to zero. As shown in Figure B.5, we stop gradient before

a certain KS iteration k = k∗ so all the previous iterations k < k∗ have no access to the

gradient information. Since the gradient may still flow into the iteration k from LE through

its energy output Ek, we also stop the gradient on Ek for k < k∗. To simplify the graph, we

remove the arrows between Ek to LE for k < k∗. In Figure B.5(a), the neural XC functional is

updated only from the gradient information flowing through the final iteration. (b) is similar

to (a) but has access to the gradient flowing through the last two iterations. No stop gradient

is applied to (c) and it is identical to the computational graph we used in the main text.

We repeat the same experiment in Figure 1. Figure B.6 shows the H2 dissociation curves

trained with three stop gradient setting in Figure B.5. In Figure B.6(a), L-BFGS converges

quickly as there is no sufficient gradient information for training. By including the gradient

information in the K − 1-th iteration, the distribution of the dissociation curves predicted

by the model during training get closer to the true curve in (b). For comparison, we place

the distribution of dissociation curves from model without stop gradient in (c), previously

194



shown in Figure 1(d), where the physics of the true dissociation curve is captured.
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Appendix C

Supplemental Info for Chapter 7

This chapter is a reproduction of the supplemental info in Ref. [307].

C.1 orthogonalization details

The original set of N basis functions χi(r), corresponding in our current FHI-aims imple-

mentation to numeric atom-centered orbitals (NAOs), are not orthogonal, in the sense that

the overlap matrix S, with coefficients

Sij = ⟨χi|χj⟩ =
∫

d3r χi(r)χj(r) (C.1)

is not the identity matrix, but some non-trivial, positive definite matrix. To identify the

linear combinations of orbitals that are occupied in the ground state of the system, we

need to account for overlaps between the orbitals. This can be done using the Löwdin
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decomposition, where the Hamiltonian matrix H, with coefficients

Hij = ⟨χi|H|χj⟩ =
∫

d3r χi(r)H(r)χj(r), (C.2)

is transformed into an orthonormal basis as H 7→ H̃ = S− 1
2HS− 1

2 . The transformed Hamil-

tonian H̃ can then be purified, as described in the next section, to yield the density matrix

D̃, which is then transformed back into the original orbitals basis,

D̃ 7→ D = S− 1
2 D̃S− 1

2 . (C.3)

For this purpose, the inverse square root S− 1
2 of the overlap matrix is needed. To compute it

efficiently on TPUs, we need an algorithm for computing the matrix inverse square root for

which the computational bottleneck reduces to repeated matrix multiplications. As discussed

in [172], this can be achieved using Newton-Schulz iterations. The iteration

X[n+1] =
1

2
X[n](3I −X2

[n]), X[0] = A, (C.4)

converges to the matrix sign function of A, which turns positive eigenvalues to +1 and

negative eigenvalues to −1. Notice that two matrix multiplications are needed for each

iteration. These matrix multiplications can be executed very quickly when distributed over

a set of TPUs. The inverse square root can in turn be cast as a sign function as

sgn


0 S

I 0


 =

 0 S
1
2

S− 1
2 0

 . (C.5)

Applying the iteration (C.4) to the block matrix in (C.5) results in the Denman-Beavers

iteration for computing the inverse square root.

In single (double) precision, the above procedure typically converges in about 35-50 (65-90)

197



iterations, depending on how small the absolute value of the smallest (in absolute value)

eigenvalue of matrix A is. In order to further accelerate this computation, we introduce the

pre-conditioning polynomial iteration (which we described and justified in Sect. III.D of

[248] in the related context of the matrix sign function for singular values),

X[n+1] = aX[n](I −
4

27
a2X2

[n]), X[0] = A, (C.6)

where a = 3
2

√
3 − s− for some choice of small s− > 0. [Notice that for a = 3/2, that is

s− = 3(
√
3−1)/2 we recover (C.4).] This pre-conditioning polynomial accelerates the growth

of small eigenvalues of A, until they become of size at least s−. From then on, the regular

Newton-Schulz iteration is used to bring all the positive eigenvalues to 1, with quadratic

convergence. For s− = 0.1, in single (double) precision we need 15-20 (35) iterations of the

pre-conditioning polynomial and 10 (10) iterations of the regular polynomial, for a total of

25-30 (45) iterations.

The inverse of S is of course very sensitive to poor conditioning of S, which for the over-

lap matrix corresponds to (nearly) linearly dependent orbitals, a common occurrence when

dealing with large molecules. The danger of instability and poor accuracy due to small eigen-

values of S is especially pressing if operating in low numerical precision. Consequently we

always compute S− 1
2 in double precision. Because TPUs do not operate natively in double

precision but rather rely on software emulation, this incurs a significant time cost. However,

in a full DFT simulation that cost gets amortized: the overlap matrix does not change be-

tween DFT iterations (only the Hamiltonian does), and thus we only need to compute S− 1
2

once at the first iteration, write the result to disk, and reread and use it at all the successive

iterations with negligible cost.
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C.2 purification details

By density matrix purification we mean the map from a Hermitian matrix H̃ of linear size

N to a certain density matrix D̃, itself a projector into the subspace corresponding to the

Ne smallest (or most negative) eigenvalues of H̃, where Ne is the number of electrons in the

system. [As in the rest of the paper, the tilde in the Hamiltonian H̃ and density matrix

D̃(k) denotes that these matrices are expressed in an orthonormalized basis of orbitals, as

described in the previous section.] In symbols, let

H̃ = V ΣV H (C.7)

be the ascendingly sorted eigendecomposition of H̃, and let ρ ≡ diag(11, 12, . . . , 1Ne , 0Ne+1, 0Ne+2, . . . , 0N)

be a diagonal matrix with Ne 1’s followed by N −Ne 0’s on the main diagonal. Then D̃ is

defined by

D̃ ≡ V ρV H . (C.8)

It follows identically that D̃2 = D̃, so that D̃ is indeed a projector.

With the decomposition (C.7) in hand, D̃ is trivially computed by the manual substitu-

tion Σ → ρ. Unfortunately an efficient algorithm for Hermitian eigendecomposition is not

presently available in a distributed-TPU context. Instead, we turn to matrix-multiplication

based purification algorithms originally developed in the context of linear scaling methods

(see [207] for a review; note that since our matrices are dense and are not truncated, our

implementations scale as N3 despite the name).

Density matrix purification algorithms can be divided into two classes [299] by the manner

in which Ne is specified. In grand canonical purification, a so-called chemical potential µ is

given, and D̃ found so that the Ne + 1’th most negative entry of Σ is the first to exceed µ.
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This can be achieved by shifting the spectrum of H̃ by µ so that the latter divides negative

from positive eigenvalues, and then computing a polar decomposition using the methods of

[248].

In the canonical purification used in this work, Ne is instead specified directly. Compared to

the grand canonical case this is more directly relevant to computations of molecular electronic

structure, where µ is unknown but the number Ne of electrons is provided.

Various algorithms for canonical purification have been proposed in the literature. The

original scheme is presented in [299], and is variously referred to as canonical purification

(in which case other algorithms are given a different name), trace-preserving purification, or

the Palser and Manolopoulos scheme. The trace-resetting schemes proposed in [293, 294]

are probably most common in practical use. We use the generalized or hole-particle scheme

presented in [412]. In our TPU experiments this iteration yields performance comparable to

that of [293, 294], but avoids certain branching conditionals which are awkward to phrase

efficiently on the TPU.

All such schemes work by first mapping the input H̃ to some initial X[0] with eigenvectors un-

changed but eigenvalues bound in [0, 1], and then repeatedly applying a matrix-multiplication

based iteration which also preserves eigenvectors. This iteration is chosen so that the eigen-

values of its fixed point X[∞] are exactly either 0 or 1 with Tr(X[∞]) = Ne; X[∞] then satisfies

(C.8) and it is thus equal to D̃, up to numerical error. In practice, the number of purification

iterations required for convergence varies across different Hamiltonians and the numerical

precision desired. Relevant factors include the size of the energy gap and the fraction of oc-

cupied to unoccupied states. Typically, less than 50 purification iterations are required [412].

Calculations performed to double precision tend to require more purification iterations, up

to twice as many as the same calculation performed to single precision.

Details of the specific iteration we use are given in [412]. It can be reproduced by the
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initialization

X[0] = β1I + β2(µI − H̃), (C.9a)

µ =
TrH̃

N
, (C.9b)

β1 =
k/N

e+ − µ
, (C.9c)

β2 =
1− k/N

µ− e−
, (C.9d)

where e+ and e− are estimates of the largest and smallest eigenvalues of H̃ obtained by e.g.

the Gershgorin circle theorem. Note that in practice we use the slightly more complicated

initialization referred to as HPCP+ in [412], which gives moderately improved performance

when Ne is far from N/2. In either case, the iterate X[n+1] is found from its predecessor X[n]

via

X ′
[n] = I −X[n], (C.10a)

X[n+1] = X[n] + 2

(
X2

[n]X
′
[n] −

Tr(X2
[n]X

′
[n])

Tr(X[n]X
′
[n])

X[n]X
′
[n]

)
. (C.10b)

Once D̃ is found, its counterpart in the non-orthogonal basis, D, is found by applying (C.3).

In Fig. C.1 we demonstrate the computational scaling of density matrix purification on TPUs

using dense random Hermitian matrices and single precision. In this benchmark we scale

both the system size (dimension of the matrix, N) and the number of TPU v3 cores used.

Starting with a single TPU board, consisting of 8 TPU v3 cores, we can systematically scale

up to hundreds (or thousands) of TPU v3 cores. Using a full TPU v3 pod (consisting of

2048 TPU v3 cores), we project that we can address dense systems of N = 500 000 orbitals

within 30 minutes using single precision.

For dense linear algebra, the computational scaling here is cubic. If suitable sparsity is

assumed, and the density matrix is correspondingly truncated, sparse linear algebra can be
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Figure C.1: Average wall times for TPU density matrix purification (normalized to a total
of 50 purification iterations) in single precision using dense random Hermitian matrices of
dimension N . Open-circle data points (v3-2048 results) are a linear extrapolation from v3-
512 results.

used to obtain linear scaling. Such linear scaling approaches have been implemented and

used in practice within computational quantum chemistry packages, however their practical

application is limited to systems whose density matrix has a sufficient sparsity structure to

ensure accurate results.

C.3 FHI-aims TPU integration details

We outline the practical details of integrating a TPU-based density matrix solver with the

CPU-based DFT package FHI-aims. The platform and integration described here is a proto-

type. Its main purpose is to illustrate, in actual end-to-end DFT computations, the viability

of accelerating the O(N3) bottleneck using TPUs.

The software ELSI [456, 472] is used to facilitate the connection between FHI-aims and the

TPU by providing an interface and abstraction in which FHI-aims, or other codes, such as

Siesta [133] and DFTB+ [177], can utilize external eigensolvers launched within ELSI. We

implement in-house routines to launch the TPU-based density matrix purification (instead of
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an eigensolver) using the ELSI standard. In all calculations, we use an off-the-shelf FHI-aims

code with no modifications (version 210226).

In the course of a DFT calculation, FHI-aims utilizes the following matrices: the overlap

matrix S, the DFT Hamiltonian H, and the density matrix D. FHI-aims distributes each

matrix across CPU processes and memory using a 2D block-cyclic distribution pattern.

On the other hand, in our current TPU implementation which utilizes SUMMA (Scalable

Universal Matrix Multiplication Algorithm), our TPU-based solver requires matrices to be

distributed across a TPU processor grid as 2D blocks in a checkerboard distribution, see [248]

for more details. This poses a practical matrix communication challenge between the CPU-

based and TPU-based schemes since their matrix distribution patterns differ in both cyclicity

and the number of processors. A simple solution to communicate such matrices between CPU

and TPU is to serialize and transfer the respective matrices and deserialize and redistribute

them in the desired scheme. Specifically, we utilize available MPI processes on the CPU to

serialize (and deserialize) to a network disk using the ELSI IO module and compressed sparse

column (CSC) format with no cyclicity. Double precision is used throughout. We note that

each process (CPU and TPU) calculates where its data should be within the serialized CSC

representation of the whole matrix and reads (writes) to (from) only that portion of the

matrix representation on the centralized network drive. That is, our implementation incurs

some algorithmic overhead but only communicates the data that is needed.

This is not the most performant solution, however, it is generalizable, makes use of ex-

isting tooling within ELSI, and avoids the complexity of the various distribution patterns.

Due to the use of the CSC format, serializing (writing) dense matrices to disk is especially

costly and dominates the total CPU-TPU communication time for large system sizes. For

transparency, in Fig. C.2 we plot the average observed total end-to-end CPU-TPU commu-

nication time (excluding the TPU density matrix purification time) incurred in our current

implementation. There are, however, several ways to further optimize the current integra-
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tion. For instance, we are currently using an off-the-shelf network file system (NFS) share,

and replacing it with a different implementation of a portable operating system interface

(POSIX) compliant distributed file system (one designed for high-performance applications)

would result in a much higher throughput and would not require any changes to our code.

In addition, further algorithmic optimizations are likely possible.
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Figure C.2: Total end-to-end CPU-TPU communication time per DFT iteration (excluding
the TPU density matrix purification time) incurred in current integration with FHI-aims.

Within FHI-aims all calculations are performed using the all-electron “light defaults” numeric

atom-centered basis set [48]. This results in 5 basis functions per H atom and 14 basis

functions per O atom in the water cluster calculations. All calculations are non-periodic

with open boundary conditions and utilize the PBE [313] XC functional. The geometries of

water clusters are directly obtained from Ref. [381] which were generated by taking spherical

cutouts of varying radii from a large molecular dynamics simulation of bulk water at standard

pressure and an average temperature of 300K (further details can be found in Ref. [358]).

In our implementation with FHI-aims, hybrid functionals can also be used without any

modification, but simply result in longer DFT Hamiltonian build times on CPUs. Analyt-

ical forces are also available from FHI-aims using TPU-computed energy-weighted density
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matrices, which are also communicated using the above scheme and facilitated using ELSI.

C.4 dynamic precision on smaller water clusters

The dynamic precision approach illustrated in Fig. 4 of the main text for 10 327 water

molecules, when applied to smaller systems, allows for a larger part of the computation to

be performed in single precision. For instance, an end-to-end converged DFT calculation on

(H2O)1481 cluster with N = 35 544 orbitals required 11 iterations in single precision and 4

iterations in double precision, with an overall time of under 5 hours on a single TPU (v3-8)

board, see Fig. C.3.
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Figure C.3: Convergence trajectory of an end-to-end dynamic precision DFT calculation on
a (H2O)1481 cluster with N = 35 544 orbitals. The absolute total energy differences between
subsequent DFT iterations, i and i − 1, are plotted (top). The corresponding difference in
real-space densities within the L1 norm is plotted (bottom).
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