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Behavioral/Cognitive

Feature Interactions Enable Decoding of Sensorimotor
Transformations for Goal-Directed Movement

Deborah A. Barany,1 Valeria Della-Maggiore,2 Shivakumar Viswanathan,1 Matthew Cieslak,1 and Scott T. Grafton1

1Brain Imaging Center, Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106, and 2Department of
Physiology and Biophysics, School of Medicine, University of Buenos Aires, C1121ABG Buenos Aires, Argentina

Neurophysiology and neuroimaging evidence shows that the brain represents multiple environmental and body-related features to
compute transformations from sensory input to motor output. However, it is unclear how these features interact during goal-directed
movement. To investigate this issue, we examined the representations of sensory and motor features of human hand movements within
the left-hemisphere motor network. In a rapid event-related fMRI design, we measured cortical activity as participants performed
right-handed movements at the wrist, with either of two postures and two amplitudes, to move a cursor to targets at different locations.
Using a multivoxel analysis technique with rigorous generalization tests, we reliably distinguished representations of task-related fea-
tures (primarily target location, movement direction, and posture) in multiple regions. In particular, we identified an interaction between
target location and movement direction in the superior parietal lobule, which may underlie a transformation from the location of the
target in space to a movement vector. In addition, we found an influence of posture on primary motor, premotor, and parietal regions.
Together, these results reveal the complex interactions between different sensory and motor features that drive the computation of
sensorimotor transformations.

Key words: fMRI; MVPA; sensorimotor transformations

Introduction
Executing a goal-oriented movement requires the brain to trans-
form goal-relevant sensory information to specific motor com-
mands. Neurophysiological and neuroimaging assays of reaching
and pointing actions implicate a network distributed over pari-
etal, premotor, and primary motor regions in the computing of
transformations from sensory to motor information (Kalaska et
al., 1997; Kalaska, 2009; Beurze et al., 2010). These regions rep-
resent a complicated combination of sensory and motor features,
posing a challenge in identifying loci where actual transforma-
tions take place.

For example, neurons in the superior parietal lobule (SPL),
dorsal (PMd) and ventral (PMv) premotor cortex, and primary
motor cortex (M1) represent the target’s spatial location, al-
though in M1, this information is strongly linked to movement

execution (Lacquaniti et al., 1995; Shen and Alexander, 1997a,
1997b). Neurons in these regions also show directional tuning,
with stronger modulation from kinetic variables in M1 than in
PMd or SPL (Scott and Kalaska, 1997; Scott et al., 1997; Hamel-
Pâquet et al., 2006). Arm posture representations in M1 are
linked to the active maintenance of limb position, whereas rep-
resentations in PMd and SPL relate to planning and updating
posture (Kalaska and Hyde, 1985; Crammond and Kalaska, 1996;
Graziano et al., 2005; Kurtzer et al., 2005). In humans, neural
representations have been identified for movement direction in
M1, PMd, and parietal areas (Eisenberg et al., 2010; Fabbri et al.,
2010) and for body posture in SPL (Parkinson et al., 2010).

Here, we aimed to disentangle the functional relationships
linking these representations. We reasoned that loci for transfor-
mations would represent both the input and output features of
that transformation and thus could be operationally identifiable
by the extent to which a region’s cortical activity reflects the in-
teraction between pairs of features. To address this challenge, we
designed an fMRI experiment to directly investigate sensorimo-
tor feature representations and their hypothesized interactions
within a region.

Participants performed right-handed wrist movements to
vertical or horizontal targets in one of two postures, providing a
structured set of movements that differ systematically in terms of
target location, movement direction, movement amplitude, pos-
ture (wrist orientation), and wrist angle. Movement-related
BOLD activity on each trial was evaluated using multivoxel pat-
tern analysis (MVPA; Haynes and Rees, 2006). In our MVPA
protocol, a classifier was first trained to decode two movements,
A and B, that differed across multiple features (e.g., target loca-
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tion, direction, or posture). We hypothesized that the activity
evoked by each feature’s neural representation would contribute
differentially to the resulting classifier. To parse the independent
contributions of individual features, we tested the classifier’s abil-
ity to generalize to the decoding of movements, A� and B�, that
shared only some features of A and B (e.g., direction and pos-
ture), respectively, but not others (e.g., target location). A critical
test was whether the features that contributed most to generaliza-
tion performance varied across regions.

Within this novel framework, we report evidence identifying
SPL as a locus in the transformation between target location and
movement direction and show the ubiquity of posture-
dependent representations in the motor system.

Materials and Methods
Participants. Fifteen healthy, right-handed participants (six men; mean
age 22.73 years, range 20 –26) with normal or corrected-to-normal vision
participated in the 2 d experiment. All participants provided written
consent approved by the Human Subjects Committee, Office of Re-
search, University of California, Santa Barbara and were paid for their
participation. One participant’s data were not used due to excessive head
motion during scanning.

Apparatus. Participants were positioned supine in the MRI scanner
with their legs shifted to the left side of the scanner table on a plastic board
to allow extra room for wrist movements. A photograph of the typical
positioning arrangement for a participant before being moved into the
scanner is shown in Figure 1. Each participant’s head and neck were
padded with foam to minimize head motion and headphones and ear-
plugs were worn for ear protection and noise cancellation. The partici-
pant’s right arm was placed on a foam cushion such that the wrist
extended slightly in front of the cushion and the elbow rested at an angle.
To prevent individual finger movement and to provide comfort, partic-
ipants wore a contoured swim paddle on their right hand. A custom-
made rigid-body tracking device was secured on the back of the right
hand with an elastic bandage (Fig. 1). The device consisted of three
light-emitting diodes (LEDs) mounted on a Plexiglas frame. Each LED
was connected to a battery pack placed on the scanner table. Three
shielded cameras (Precision Point Tracking System; WorldViz) placed
outside the scanner recorded the six degrees of freedom positions of the
LEDs at 150 Hz, allowing for recording of precise movement kinematics.

All stimuli were back-projected onto a screen using an LCD projector
(1024 � 768 resolution, CPX505; Hitachi) housed in a Faraday cage
behind the magnet bore. Participants viewed the stimuli via an angled
mirror on top of the head coil. The experiment was conducted in dark-
ness so that the participants only received visual input from the stimuli
on the screen. A sheet was placed over the front of the magnet bore during
the experimental sessions to ensure that the hand and the LEDs on the
hand were not visible and to prevent the motion-tracking cameras from
picking up extraneous light sources. In addition, we recorded the mon-
ocular eye position of eight of the participants using an Eyelink 1000 eye

tracker (SR Research) at a 1000 Hz sampling rate during the fMRI
sessions.

Stimuli. Visual stimuli were projected on the rear screen using the
Vizard Virtual Reality Software Toolkit (version 4.0; WorldViz). A target
consisted of a large, white disc 200 pixels in diameter containing a small,
concentric blue circle that was 100 pixels in diameter. The target was
displayed in one of five positions—middle, top, bottom, left, and right—
relative to the center of the display. A schematic of these target positions
and their correspondence to the participant’s hand position is shown in
Figure 2A. The participant’s hand position was marked on the screen by

Figure 1. Experimental setup. Participants were positioned with their legs to the left of the
scanner table to allow more room for wrist movement. A custom-made motion-tracking device
was placed on the back of the participant’s right hand. Cameras recorded the rigid-body posi-
tions of the tracking device during the task. The participant is shown in the neutral position
(corresponding to the middle target) for the palm-down posture.

Figure 2. Task design. A, All wrist movements were completed across four different run
types. Each run was performed with either a palm-down or palm-mid posture and to vertical or
horizontal targets. The targets are depicted next to the wrist position required to reach the
target for the given posture (note that the wrist positions shown exaggerate the actual devia-
tion necessary to reach the target). Each movement within a run was either of small (center-out
and to-the-center movements) or large amplitude. B, Task progression. CT, Completion time.
Participants were instructed to move their wrist to guide a yellow cursor to the inner blue target
after target onset. The cursor and blue target disappeared after reaching the target and partic-
ipants were required to hold their position until the next target appeared. The boxes depict an
example of the visual stimuli seen by the participant when performing a large-amplitude move-
ment to the top target. Below each box are the wrist positions in the palm-down posture
associated with each cursor position (the actual wrist deviation required for a large-amplitude
movement was 15.6°). The length of the hold depended on the CT such that the next target
onset or hold trial followed 4 s after the previous target onset. BOLD responses were estimated
from both the target onset of the movement and the onset of the 2 s extra hold trials.
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a cursor (yellow circle 50 pixels in diameter) that had its movements
yoked to the instantaneous values of the pitch and yaw of the wrist
obtained from the tracking device, as shown schematically in Figure 2B.
A 7.8° deviation of the wrist moved the cursor 300 pixels from the center
of the middle target to the center of the top, bottom, left, or right targets.
When the participant made an error (see Procedure), the white part of
the target turned gray for the remainder of the trial. Throughout the task, a
red fixation cross (40 � 40 pixels) was displayed at the center of the screen. In
addition, to make sure that the participants maintained the desired posture,
the background on the screen turned red any time the roll position of the
wrist was �10° away from the initially calibrated posture.

Trial design. We used a rapid event-related design. Eight functional
runs were completed during 2 separate sessions over 2 d. The first session
consisted of four functional runs that varied in posture and target pre-
sented. The same runs were completed in a different order (counterbal-
anced for each participant) in the second session. Repeating the runs each
day allowed for a sufficient number of trials to be collected for classifica-
tion analyses. The run order was also counterbalanced across partici-
pants. All moves in each run were performed in the same posture: either
palm-down (thumb pointing horizontally) or palm-mid (thumb point-
ing vertically). In addition, all moves in a run were to one of three targets:
either vertical targets (top/middle/bottom) or horizontal targets (left/
middle/right). This resulted in a two-posture (palm-down, palm-mid) �
two-target (vertical, horizontal) factorial design for run type. Blocking
the runs in this manner (as shown in Fig. 2A) was intended to simplify the
overall task demands.

There were six different types of movements per functional run (24
total movement types across the four runs). The movement types varied
in start position, end position, movement direction, and movement am-
plitude. Movements were in one of two directions (up or down in the
vertical target run and left or right in the horizontal target run) and of
either small (e.g., top to middle target, 7.8° wrist deviation) or large (e.g.,
top to bottom target, 15.6° wrist deviation) amplitude. The targets were
presented in a pseudorandom order according to a customized maxi-
mum length sequence (or m-sequence) to ensure that the six different
movements in each run were counterbalanced across trials and to im-
prove statistical efficiency in the BOLD signal estimation (Buracas and
Boynton, 2002; Liu and Frank, 2004; Liu, 2004).

Each run contained 186 (�1) trials. Of these trials, 128 were move-
ment trials and 58 were “hold” trials that simply required the participant
to maintain their current position for an additional 2 s. We included
additional hold trials as null events to vary (i.e., “jitter”) the intervals
randomly between the movement trials and to obtain estimates of the
BOLD responses evoked by holding a specific posture without any
movement. Of the movement trials, 86 were small amplitude and 42
were large amplitude. Participants were provided breaks every 48
trials (three breaks per run). After each break, the movement started
at the middle target again, leading to slightly more moves (approxi-
mately three) from the middle target than from the peripheral targets in
each run. Otherwise, trials were equally divided in terms of start position,
end position, and direction of movement.

Procedure. On the first day, participants completed a 10 min training
session inside the scanner for both postures and all target types. Before
each functional run, the participant’s wrist was aligned to the correct
posture and position such that the participant’s arm and hand formed a
straight line, as shown in Figure 1. We calibrated this position to corre-
spond to the center of the middle target. At the beginning of each run,
participants were required to move to, and then hold, their wrist at this
neutral position for 14 s. As shown in Figure 2B, once a new target
appeared, participants were instructed to move their wrist to guide the
cursor to the inner blue area of the target as smoothly and as quickly as
possible without sacrificing accuracy. When they reached the blue area of
the target successfully, the entire target would turn white and the cursor
would disappear. At this point, participants were required to hold their
current position until the next target appeared. The hold period was
composed of the time remaining in a 4 s window following the end of a
movement (4 s minus completion time, CT) and then 0, 1, or 2 additional
2 s hold trials (0, 2, or 4 s of holding) before the next movement trial
began. The number of additional hold trials was determined according to

the m-sequence distribution. Therefore, between each movement, par-
ticipants held their current position for a minimum of 2 s up to a maxi-
mum of 8 s minus CT. Participants were instructed to fixate on the red
cross located in the center of the display at all times during the
experiment.

In addition to online feedback from the cursor, participants were pro-
vided with feedback dynamically during the performance of the task and
with an accuracy score to help them make the desired smooth move-
ments. The target turned gray if the participant missed or overshot the
target, moved too slowly, or drifted away from the target during the hold
period. If the cursor drifted outside the target during holds, it reappeared
until it was guided back to center. Throughout the run, if the partici-
pant’s posture started to differ �10° from the initially calibrated posture,
the background on the screen turned red until the posture was realigned
correctly. An accuracy score for each trial was computed based on
whether the participant moved to the target without error and on how
well the end position was held. A moving average of accuracy scores from
the previous 20 trials was displayed every seven trials. A final average
accuracy was displayed at the end of each run.

MRI scanning and preprocessing. fMRI data were collected using a Sie-
mens 3T Magnetom TIM Trio system (12 channel phased-array head
coil). BOLD contrast was measured with a T2-weighted echo planar
gradient-echo imaging sequence (TR � 2000 ms; TE � 30 ms; FA � 90°;
FOV � 192 mm). Each volume consisted of 37 slices acquired parallel to
the AC-PC plane (interleaved acquisition; 3 mm with 0.5 mm gap; 3 � 3
mm in-plane resolution). Target onset always coincided with the begin-
ning of a new functional image. Before the functional runs, a high-
resolution T1-weighted sagittal sequence image of the whole brain was
acquired (TR � 15 ms; TE � 4.2 ms; FA � 9°; FOV � 256 mm).

Preprocessing of the MRI data was performed with the AFNI software
package (Cox, 1996). Volumes were motion corrected and coregistered
to an EPI template in one interpolation step using a weighted sinc func-
tion to minimize smoothing introduced by lower-order interpolation
methods. To identify artifacts during preprocessing steps, time series
diagnostics were used to assess image quality (http://imaging.mrc-cbu.
cam.ac.uk/imaging/DataDiagnostics) and detect excessive head motion.
Images with especially high movement variability or problems in acqui-
sition (such as problems with uniform signal distribution or slice inten-
sity) were individually inspected and replaced with the average of the
images that followed and preceded it if the image in question contained a
defect. If any images were removed for a participant, volumes underwent
motion correction and coregisteration again. Overall, 0.15% of the im-
ages acquired per subject during trial performance were replaced (�4.7
images per subject). A brain mask for each participant was created by
multiplying binary masks from each run based on signal-to-noise ratios
in each voxel. The intersection of the binary masks was taken to produce
voxels that were likely to contain brain tissue in all of the runs.

Extraction of regions of interest. To relate our work to previous neuro-
physiological and neuroimaging data demonstrating sensory or
movement-related representations (Kalaska et al., 1997; Kakei et al.,
2001; Fabbri et al., 2010), we restricted our analysis to regions that are
broadly accepted to be involved in the planning and control of arm
movements (Picard and Strick, 2001; Filimon, 2010). This conservative,
hypothesis-driven approach (rather than a data-driven, exploratory ap-
proach) was adopted to establish whether our novel analysis strategy
could indeed identify sensorimotor representations and transformations
and to avoid potential biases and false positives associated with the large
number of comparisons in an exploratory approach. Regions of interest
(ROIs) were defined a priori from anatomy rather than from the func-
tional data obtained from the experiment because the latter would have
restricted the analysis to a network showing movement-related differ-
ences in the BOLD signal.

We analyzed six left-hemisphere (LH) ROIs and one right-hemisphere
(RH) ROI, individually defined on each participant’s cortical surface.
The LH ROIs were the anterior portion of motor cortex (M1a), the
posterior portion of motor cortex (M1p), PMd, PMv, SPL, and the cal-
carine sulcus (CA; Fig. 3). Motor, premotor, and parietal areas were
chosen based on predefined anatomical parcellations (Geyer et al., 1996;
Picard and Strick, 2001; Tomassini et al., 2007; Destrieux et al., 2010).
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The primary motor cortex ROI was split into anterior and posterior
portions because these subregions have known anatomical differences
and differ electrophysiologically during sensorimotor tasks (Scott and
Kalaska, 1997; Rathelot and Strick, 2009). The LH CA was chosen as a
positive control region because it responds selectivity to lateralized visual
input (Tootell et al., 1998). The RH CA was used as an additional control
for one analysis to test the validity of applying MVPA to the dataset. RH
sensorimotor ROIs were not included in the current set of analyses be-
cause we focused on regions that control right-handed hand movements
directly.

SPL and CA were all identified from individual T1-weighted scans
using an automated parcellation scheme in FreeSurfer (Destrieux et al.,
2010). All participants were mapped to a standard sphere using a cortex-
based alignment. Regions were then drawn on the standard sphere and
mapped back to voxels on participant native space. M1a, M1p, PMd, and
PMv were free-drawn on a standardized surface mesh in SUMA (Saad et
al., 2004) according to gross anatomical landmarks (Geyer et al., 1996;
Picard and Strick, 2001; Tomassini et al., 2007), projected to the standard
sphere in FreeSurfer, and finally mapped back to participant native space
using their own T1-weighted image.

On average, across all participants, M1a contained 156 voxels (SE � 6,
range 128 –218), M1p contained 130 voxels (SE � 4, range 109 –158),
PMd contained 351 voxels (SE � 10, range 279 – 418), PMv contained
392 voxels (SE � 10, range 297– 437), SPL contained 381 voxels (SE � 17,
range 279 – 473), LH CA contained 210 voxels (SE � 11, range 130 –283),
and RH CA contained 196 voxels (SE � 10, range 121–263).

MVPA. We used a standard multivariate binary classification protocol
(Pereira et al., 2009) to assess how patterns of neural activity in the ROIs
differed depending on the type of movement performed. All classifica-
tion analyses were performed using the single-trial � estimates of the
BOLD response (Rissman et al., 2004). Single-trial �-values for all move
and hold trial types were estimated independently using the LeastSquares-
All method (Mourão-Miranda et al., 2006) with seventh-order Legendre
polynomial regressors in the baseline to reduce scanner drift artifacts and
physiologic noise. The onsets of the trials were modeled as delta functions
and convolved with the canonical SPM double-gamma-shaped hemody-
namic response function. Single-trial estimates were based on un-
smoothed data because smoothing could blur potentially relevant
information (Mur et al., 2009). In addition, serial autocorrelation was
corrected for using an ARMA (1,1) model. To normalize the estimates,
the �-values across all conditions were z-scored voxelwise. As described
in the Trial Design section, an m-sequence was used to order the trials to
rigorously ensure a first-order counterbalancing of trials to limit any
systematic spillover effects between movement types.

Classification analyses were performed using a soft-margin linear support
vector machine implemented in LIBSVM (Chang and Lin, 2011) in MAT-
LAB. The regularization parameter, C, had a fixed value equal to 1 in all our
analyses. For each movement type, trials from both sessions were pooled to
increase the number of samples available for training, which minimizes
overfitting (Hughes, 1968; Trunk, 1979; Raudys and Jain, 1991).

The classification analyses were based on a two-step logic. The first
step is to determine whether a classifier can successfully distinguish be-

tween two classes of movements, A and B. For example, class A might
include movements in the leftward direction and to the left target,
whereas class B might include movements in the rightward direction and
to the right target. We refer to this first step as “base classification.” If
such a base classifier exists, the second step is to determine whether that
same classifier can generalize to distinguish between two different move-
ment classes, A� and B�, which have a hypothesized similarity to the
movements in the classes A and B, respectively. In the example, class A�
might include leftward movements to the center target and class B� might
include movements in the rightward direction to the center target. Here,
movement direction is a shared feature because classes A and A� are both
leftward movements and classes B and B� are both rightward movements.
Base classifiers for regions that represent of movement direction would
be hypothesized to generalize to distinguish between classes A� and B�.
We refer to this second step as “generalization.”

Base classification was evaluated using a “stratified k-fold cross-
validation” procedure. The number of folds, k, was dictated by the inter-
nal structure of each class, which could consist of several different kinds
of movements from runs during different sessions. Stratified cross-
validation was used in favor of leave-one-out cross-validation to ensure
that trials of each movement type and from each of the two sessions were
always equally represented in the training data (Kohavi, 1995). This con-
straint was achieved as follows: Across the different analyses, each class
always consisted of N � n � k � 2 trials, where n is the number of
movement types (of the 24 possible movement types) in each class, k is
the number of trials of each movement type available for analysis from
each run, and 2 is the number of sessions containing trials of each move-
ment type. To ensure that this balanced structure was always maintained,
the number of folds was equal to k, with one trial from each of the n
movement types and each of the 2 sessions being left out on each fold.
The cross-validation accuracy for one participant was the mean of the
classification accuracy of the left-out trials across the k folds. Two classes
were deemed to be significantly discriminable if the mean group-level
cross-validation accuracy was statistically greater than random chance
(here, equal to 50% for binary classification) as assessed by a one-tailed t
test (Bode and Haynes, 2009; Oosterhof et al., 2012; Gallivan et al., 2013).
Because the same classification protocol for base classification was ap-
plied to multiple ROIs, the statistical evaluations of mean base classifica-
tion performance were corrected for multiple comparisons using the
false discovery rate (FDR) correction (Benjamini and Yekutieli, 2001).

The generalization test was nested within the cross-validation pro-
cedure. The classifier obtained on each fold was subsequently used to
classify the trials from two classes having a different composition of
movement types from the classes in the base classification step. The
generalization accuracy was the mean of the classification accuracy of
each of the k classifiers on these new, previously unseen classes. A classi-
fier was deemed to successfully generalize if the mean group-level gener-
alization accuracy was greater than random chance (equal to 50%) as
assessed by a one-tailed t test. Importantly, successful classification of the
base classes (i.e., above-chance cross-validation accuracy across subjects)
is a necessary precursor to evaluate generalization classification. If the
base classifier cannot successfully discriminate two movement classes, A
and B, then it would be meaningless to interpret the generalization per-
formance of that classifier on some other classes, A� and B�.

As with base classification, the statistical evaluations of mean general-
ization performance were also corrected for multiple comparisons (using
an FDR correction) based on the number of ROIs that were evaluated for
each generalization. Strictly speaking, this correction criterion (i.e.,
based on the number of ROIs tested) is a more stringent criterion than
required as an appropriate correction for generalization is the number of
generalization tests evaluated with a particular base classifier.

Movement kinematics. A key demand of the MVPA analyses is that
individual movements that are defined to be of the same type are in fact
similar to each other. Therefore, we sought to eliminate outlier move-
ments from classification analyses based on kinematics. To identify po-
tential outliers, we first applied a fourth-order two-way Butterworth low-
pass filter at 5 Hz to the kinematic data. The start and end of the
movement were defined as the time when the velocity surpassed and
dropped �10% of the peak velocity, respectively. For each trial, we cal-

Figure 3. Anatomical ROIs for a typical participant. The RH CA (data not shown) was used for
one test as a control region. Otherwise, all ROIs were in the LH.
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culated reaction time, movement time, mean tangential velocity, move-
ment length, movement error at maximum tangential velocity, and the
polar angle between start and movement offset positions.

Movement trials were discarded from further analyses for any one of
the following six reasons: (1) reaction time exceeded 750 ms; (2) move-
ment length was �50% greater or less than ideal path length for that trial
(7.8° for small amplitude, 15.6° for large amplitude); (3) the start posi-
tion occurred outside of the outer white circle of the start target (i.e., the
wrist angle was �2.6° from the start; (4) the position at movement offset
occurred outside of the outer white circle of the goal target (i.e., the wrist
angle was �2.6° from the goal); (5) the polar angle between start and
offset position was �10° off from the ideal straight-path angle of 0°; or
(6) their posture (forearm rotation, as measured by the roll angle) drifted
�10° for longer than 15 ms. Hold trials were discarded for any one of
three reasons: (1) the length of the hold trial was �190 ms or �210 ms;
(2) movement length was �3 SDs above or below the median movement
length for holds; or (3) posture (forearm rotation, as measured by the roll
angle) drifted �10° for longer than 15 ms. In addition, when multiple
hold trials followed one movement trial, only the first hold trial was
included in the analysis. The inclusion criteria for movements and holds
were strict to minimize differences among movements of the same type
because this could influence classification results.

Eye tracking. We obtained usable eye-tracking data for each of the 24
different movement types for six of the 15 participants. The primary
motivation for eye tracking was qualitative—we sought to assess partic-
ipants’ ability to comply with the instructions to fixate under the de-
manding conditions of the current experiment and to assess whether
certain movement types were associated with large, systematic differ-
ences in eye movements that could influence the interpretation of the
classification results. Because eye tracking was only used for a subset of
participants, we did not individually remove any trials from the classifi-
cation analyses based on eye movements.

During each trial, a saccade was recorded if the eye movement velocity
exceeded 30°/s and the eye movement acceleration exceeded 8000°/s 2.
We included the entire movement period—from the target onset to the
beginning of the first hold trial or the next movement trial—in the anal-
ysis. For each participant with usable eye-tracking data, we analyzed the
number of saccades per trial, saccade amplitude (in degrees of visual
angle), and number of saccades per direction (defined for each as right,
left, up, or down).

Results
Kinematic performance
A variety of kinematic variables (see Movement Kinematics) were
used to exclude individual trials to maintain homogeneity be-
tween trials of the same movement type. Based on these exclusion
criteria, on average, 8.1% (SE � 0.96%) of movement trials were
discarded per participant and 0.3% (SE � 0.11%) of hold trials
were discarded, leaving an average of 39.1 (SE � 0.32) trials for
each of the 24 movement types across all participants. The three
panels of Figure 4A shows the complete set of hand paths as a
function of space that met the inclusion criteria for one partici-
pant. As can be seen, the hand paths of the same category (center-
out, to-the-center, and large-amplitude) are similar in length and
consistent across the two postures.

The qualitative kinematic similarity across the movement
types was present at the group level as well. Figure 4B plots the
average (�SE) hand position across participants as a function of
time for both horizontal (Fig. 4B, top) and vertical (Fig. 4B, bot-
tom) movement trajectories. Each of the solid lines indicates the
position for a different direction and posture combination. The
trajectories start at movement onset and end at the mean move-
ment time for the given category. For interpretative convenience,
we mirror reflected the leftward and downward trajectories about
the 0° position before averaging so that all movements of the
same category could each be plotted relative to the same start

Figure 4. Kinematic performance. A, Example of movement paths from one participant
for each of the 24 movement types organized into subplots according to movement cat-
egory (center-out, to-the-center, or large-amplitude). Each path is depicted as a line
connecting a green dot to a red dot, where a green dot indicates the hand position at
target onset and the red dot indicates the hand position at movement offset. The gray
lines indicate movements made with a palm-mid posture and the black lines indicate
movements made with a palm-down posture. The paths are overlaid on the five different
target positions to indicate how the wrist positions map onto the cursor positions seen by
the participant. B, Average positions of the wrist from the center target as a function of
time from movement onset plotted separately for horizontal trajectories (for rightward
and leftward movements) and vertical trajectories (for upward and downward move-
ments). Positions for leftward and downward movements were mirror reflected approx-
imately 0° before trial averaging, so that all movements for each movement category
could be plotted with the same start point. Each trajectory is plotted up to the mean
movement time for the given movement category. The shaded color areas indicate the SE
of the trajectories across participants at each time point. C, Average tangential velocity
(�SE) across all participants for each of the 24 movement types.
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point. As can be seen in each of the plots, the instantaneous
positions for movements in the same category are qualitatively
similar across posture and direction of movement.

However, given the task conditions involved different biome-
chanical constraints between the wrist movements, we also
expected kinematic deviations between movement types. We
probed the extent of these kinematic deviations using average
tangential velocity as a representative kinematic parameter.
The mean tangential velocities for the different movement cat-
egories are shown in Figure 4C. As is readily evident from the
figure, the mean velocity for large-amplitude movements is no-
ticeably higher than both small-amplitude movements (i.e.,
center-out and to-the-center). Furthermore, the velocity for
large-amplitude movements seems to be in turn modulated by
posture (i.e., palm-down or palm-mid) and movement direction
(i.e., right, left, up or down).

These qualitative observations were confirmed by a
repeated-measures ANOVA with three factors: movement cat-
egory (center-out, to-the-center, and large-amplitude) � pos-
ture (palm-down, palm-mid) � movement direction (right, left,
up, and down). There was a main effect of movement category
(F(2,26) � 164.7, p � 0.001). Consistent with this main effect,
large-amplitude velocities were greater than center-out and to-
the-center velocities (t(13) � 13.94, p � 0.001, t(13) � 12.23, p �
0.001, FDR corrected) and to-the-center velocities were greater
than center-out velocities (t(13) � 2.32, p � 0.037, FDR cor-
rected). Furthermore, there was a statistically significant two-way
interaction between posture and direction (F(3,29) � 10.69, p �
0.001). Velocity was significantly higher in the palm-down pos-
ture than the palm-mid posture for both upward (t(13) � 4.28,
p � 0.004) and downward movements (t(13) � 2.76, p � 0.033),
but not for leftward (t(13) � 1.35, p � 0.265) or rightward (t(13) �
1.14, p � 0.277) movements (all t test p-values FDR corrected).
Finally, there was a statistically significant three-way interaction
of posture, direction, and movement category (F(3,29) � 8.36, p �
0.001). This interaction is consistent with the prominent role of
posture and direction on the velocities of large-amplitude move-
ments, as shown in Figure 4C. No other main effects or interac-
tions were significant.

Although these results indicate that there are clear kinematic
differences among the movement types, we sought to determine
whether any of these differences would affect the interpretation
of our classification analyses. A potential concern is that success-
ful generalization performance for a feature of interest (e.g.,
movement direction or posture) may be due to neural signals
relating to kinematic parameters that covary with that feature. To
account for this possibility, we conducted paired t tests to
determine whether the base classification categories (tested in
the upcoming sections) differed among any of three kinematic
parameters: CT (reaction time plus movement time), tangential
velocity, and movement error at peak velocity. If there is a signif-
icant kinematic difference between the two base classes, A and B,
and that same pattern exists in the generalization classes, A� and
B�, then we cannot rule out that kinematic parameter as a con-
founding factor for generalization.

For the three parameters tested, we only found significant
kinematic differences among the base classes relevant to the
decoding of posture. These differences, and their possible im-
plications for generalization, are further discussed in the cor-
responding decoding section (see Decoding Posture across
Movement Direction). All other differences were nonsignificant
(all t � 2.35, all p � 0.05).

Eye movements
To assess the possibility that the classifier may be influenced by
differences in eye movements across conditions, we analyzed the
eye movements from six of the participants. Overall, participants
made an average of 2.90 (SE � 0.52) saccades per trial, with
average saccade amplitude of 0.83° (SE � 0.17) of visual angle. Of
the saccades, an average of 29.9% (SE � 6.3%) were in the right-
ward direction, 31.9% (SE � 7.3%) were in the leftward direc-
tion, 22.8% (SE � 5.8%) were in the upward direction, and
15.4% (SE � 4.9%) were in the downward direction and these
differences were not significantly different (F(5,3) � 1.21, p �
0.341).

Because the control of eye and hand movements involve pre-
motor and posterior parietal regions (Snyder, 2000), we were
concerned that eye movements might systematically covary with
the sensorimotor features of interest, which would then influence
classification results. Even though participants were instructed to
fixate on the center of the screen, it is possible that participants
made saccades to the target. Therefore, we conducted paired t
tests to determine whether the number of saccades, saccade am-
plitude, or saccade direction differed among the base classifica-
tion categories. For example, if more leftward eye movements
were made to targets on the left than on the right for both center-
out movements (base classes) and for large-amplitude movements
(generalization classes), then that would suggest that any successful
classification of spatial target location or movement direction might
be due solely to eye movements.

Across all eye-movement measures tested, we found only one
significant difference in saccade amplitude among the base
classes (see Decoding Direction and Joint across Posture). No
other significant differences were found for saccade amplitude
and there were no significant differences in number of saccades
or saccade direction for any of the base classification pairs (all t �
2.86, all p � 0.05 FDR corrected for number of base classification
pairs in a decoding section). This suggests that successful classi-
fication performance cannot be entirely explained by systematic
differences in eye movements.

Decoding spatial target location
In the first analysis, we evaluated the ability of the CA to decode
spatial target information. It is well established that CA responds
to lateralized stimuli—that is, the LH CA responds to targets on
the right side of space and the RH CA responds to targets on the
left side of space (Tootell et al., 1998). We used this fact to deter-
mine whether we could successfully apply the generalization ap-
proach to measure specificity in the BOLD response at the scale of
single trials and to evaluate the validity of our data. All reported
p-values for base classification and generalization are FDR cor-
rected for two ROIs.

The base classification involved large-amplitude movements,
as depicted in Figure 5A, top. The movements differed in target
location: one movement was to the left target and the other was to
the right target. Across participants, each of the two classes con-
tained an average of 64 trials (SE � 2.67), drawing from move-
ments in both the palm-down and palm-mid postures. The mean
accuracy of base classification was well above chance in CA in
both hemispheres (LH CA: 79.0%, t(13) � 13.43, p � 0.001 RH
CA: 78.1%, t(13) � 11.84, p � 0.001). These high accuracies pro-
vided preliminary evidence that the lateralized location of the
spatial target could be decoded from CA. However, there are
other factors apart from target location that could be driving the
difference between these two movements. To evaluate the speci-
ficity of the classification to target location, we tested the extent to

Barany et al. • Decoding Sensorimotor Transformations J. Neurosci., May 14, 2014 • 34(20):6860 – 6873 • 6865



which the classifier could accurately decode target location even if
the movements were different.

The trained classifier was first tested on how well it could
distinguish small-amplitude leftward movements to the center
target from small-amplitude rightward movements to the right
target (average of 68 trials, SE � 2.35, per class; Fig. 5A, center).
Here, the movement directions are the same, but the movement
amplitudes are different from the movements in base classifica-
tion. Importantly, the target locations are matched to the loca-
tions in the base classification only on the right side of space. If
CA only responds to lateralized targets, then the classifier trained
on data from the LH CA, but not the RH CA, should be able to
discriminate between these novel movements. This was indeed
the case. The LH CA classified significantly above chance (t(13) �
9.07, p � 0.001), but not the RH CA (t(13) � 1.54, p � 0.07). For
completeness, we also evaluated the left-field version of the test—
namely, we tested the classifier’s ability to distinguish between
small-amplitude leftward movements to the left target from
small-amplitude rightward movements to the center target (av-
erage of 66 trials, SE � 2.13, per class; Fig. 5A, bottom). In this
case, only the RH CA should generalize above chance. Indeed, the
RH CA, but not the LH CA, classified significantly above chance

(RH CA: t(13) � 9.80, p � 0.001, LH CA: t(13) � 0.64, p � 0.27;
Fig. 5B).

From these two generalization tests, we conclude that the base
classifier’s model was driven by differential responses in CA in
each hemisphere to the target’s location in the visual field. If this
were not the case, then generalization to novel movements would
not have been possible. Furthermore, the clear hemispheric dif-
ferences in CA provide initial evidence supporting our analysis
strategy of using a generalization procedure to detect preferential
coding biases within a region. The results suggest that generaliza-
tion performance is reflective of task-relevant physiological fac-
tors, rather than factors arising from movement-related or
measurement-related noise. We can continue to use LH CA as a
positive control region to assess the validity of the following gen-
eralization tests and to compare the performance of CA with that
of the LH sensorimotor ROIs.

Relative decoding of movement direction and target location
Central to sensorimotor transformations are the conversion of
sensory inputs into a movement vector. To identify candidate
sites for these transformations, we investigated whether regions
differed in their relative sensitivity to spatial location of the target
(i.e., a sensory property) and movement direction and amplitude
(i.e., movement-relevant properties). Because the task involved
right-hand movements, we restricted our attention to LH senso-
rimotor regions. All reported p-values for base classification and
generalization are FDR corrected for these six ROIs.

The base classification involved the center-out movements
shown in Figure 6A, top. Each class had an average of 66 trials
(SE � 2.50), which included movements in both palm-down and
palm-mid postures. The movements differed both in the location
of the targets and in the movement directions. Applying the cross-
validation procedure, the two movements were successfully classi-
fied in all ROIs (M1a: t(13) � 2.00, p � 0.033; M1p: t(13) � 2.52, p �
0.019; PMd: t(13) � 2.77, p � 0.016; PMv: t(13) � 2.20, p � 0.028;
SPL: t(13) � 7.34, p � 0.001; and CA: t(13) � 10.31, p � 0.001;
Fig. 6B).

Because the movements differed in both target location and
movement direction, an accurate base classifier’s model could
rely on differences in the BOLD response related to either feature
or an interaction of the two features. To parse out the contribu-
tions of movement direction and spatial target location, we used
two generalization tests. The obtained base classifiers were eval-
uated for their ability to generalize to new classes of movements
that: (1) shared the same target locations and movement direc-
tion but differed in movement amplitude (average of 65 trials,
SE � 2.78, per class; Fig. 6A, center) and (2) differed in target
locations but shared the same movement direction and ampli-
tude (average of 68 trials, SE � 1.75, per class; Fig. 6A, bottom).

The first generalization test evaluated how well the base clas-
sifier could dissociate large-amplitude movements to the left
from large-amplitude movements to the right. In this test, both
spatial target location and movement direction matched the
movements in base classification, but movement amplitude dif-
fered. As shown in Figure 6C, generalization accuracy was above
chance in PMd (t(13) � 4.69, p � 0.001), PMv (t(13) � 2.33, p �
0.028), SPL (t(13) � 6.70, p � 0.001), and CA (t(13) � 10.65, p �
0.001). Generalization performance for M1a (t(13) � 1.68, p �
0.070) and M1p (t(13) � 1.20, p � 0.125) was not statistically
above chance. This implies that, for the ROIs with above-chance
generalization, representations of spatial target location and/or
movement direction contributed to the classifier’s model in base
classification. However, with this first test, we cannot distinguish

Figure 5. Decoding spatial target location. A, Visualization of base classification and gener-
alization tests. Targets (large white circle and blue inner circle) show the goal position for the
given movement (red fixation cross is in the center of the screen). The white arrows depict the
directionality and length of the movement. For both base classification and generalization,
movements in both palm-down and palm-mid postures were included. Base classification ac-
curacy was computed using a stratified k-fold cross-validation procedure. Generalization accu-
racy was based on how well the base classifier decoded the two movement types in the
generalization test. For example, in Generalization 1, a small-amplitude rightward movement
to the right target (bottom movement in the center panel) was counted as correct if the base
classifier decoded it as a large-amplitude rightward movement to the right target (bottom
movement in the top panel). B, Classification accuracies for the two generalization tests for LH
and RH CA. Both regions had significant above-chance accuracies for base classification (see
Results). Dashed line represents at-chance performance (50%). Error bars represent within-
subject SEM (Morey, 2008). Black asterisks indicate significantly above-chance classification
after FDR correction (Benjamini and Yekutieli, 2001).
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contributions for target location from contributions for move-
ment direction.

We used the second generalization test to determine the con-
tribution of movement direction, independent of target location,
to the base classification model. Leftward to-the-center move-
ments were compared with rightward to-the-center movements.
Here, movement direction and amplitude matched the directions
and amplitudes in base classification, but the spatial target loca-
tions did not match. In this case, generalization accuracy was
above chance in M1a (t(13) � 3.22, p � 0.004), M1p (t(13) � 6.05,
p � 0.001), PMd (t(13) � 5.42, p � 0.001), PMv (t(13) � 7.15, p �
0.001), and SPL (t(13) � 3.93, p � 0.001), but not in CA (t(13) �
0.90, p � 0.193). Above-chance generalization implies that rep-
resentations of movement direction and/or movement ampli-
tude play a role in the base classification model for those ROIs.

Based on the combined results of both generalization tests, we
can infer the likely representations contributing to evoked re-
sponses in the base classification model. First, the at-chance per-
formance in CA when spatial target in generalization does not
match base classification again shows that, as predicted, this re-
gion represents mainly lateralized visual input (Fig. 6C). Second,
M1a and M1p generalized only in the second case, when both
movement direction and movement amplitude were the same as
in base classification, but not when amplitude differed. This sug-
gests that responses in M1 are dependent on movement-specific
properties but independent of target location. Finally, we found
evidence that PMd, PMv, and SPL represent movement direc-
tion, because these regions showed above-chance generalization
across both tests and direction was the only feature that was al-
ways matched to movements in base classification. Nonetheless,
the question remains of whether spatial target location contrib-
utes additional information to the base classifier’s model in each
of these three ROIs—a question we tested by evaluating the rela-
tive differences in generalization accuracy across the two gener-
alization tests. Specifically, we conducted two separate two-way,
repeated-measures ANOVA tests to compare generalization ac-
curacies for movement direction and spatial target location in
SPL and PMd and in SPL and PMv.

Strikingly, there was an interaction among sensorimotor re-
gions such that generalization accuracy for SPL was higher when
spatial target and direction matched target and direction in base
classification, whereas PMd had a higher accuracy when direction
and amplitude matched, but not spatial target (F(1,13) � 16.51,
p � 0.002). The same interaction was present when comparing
SPL with PMv: whereas SPL exhibited a higher accuracy for spa-
tial target, PMd had a higher accuracy for direction independent
of spatial target (F(1,13) � 12.91, p � 0.003; p-values were FDR
corrected for two comparisons). These results suggest that SPL
codes for both spatial target and direction, because accuracy was
higher when visual signals could contribute to generalization per-
formance. In contrast, the sensitivity to movement properties in
PMd and PMv was largely invariant to differences in visual sig-
nals, suggesting that these regions contain representations of di-
rection that are distinct from the representations of spatial target
location (Fig. 6C).

We also investigated whether there was similar relative decod-
ing of spatial target position and movement direction for vertical
movements. The base classifier was trained to discriminate be-
tween upward center-out movements and downward center-out
movements. An average of 62 trials (SE � 2.47) across both palm-
down and palm-mid postures were included in each class. Of the
sensorimotor ROIs tested, base classification was significantly
above chance in M1a (55.1%, t(13) � 3.15, p � 0.010), PMv
(54.4%, t(13) � 2.95, p � 0.009), and SPL (58.8%, t(13) � 4.43, p �
0.002). The classification performance in M1p (52.5%, t(13) �
1.19, p � 0.127) and PMd (53.2%, t(13) � 1.62, p � 0.064) was not
statistically above chance, so we could not test generalization
performance in these two ROIs.

The base classifier was first tested to determine how well it
could distinguish large-amplitude upward movements from
large-amplitude downward movements (average of 57, SE �
4.25, trials per class; Fig. 6A, center). Similar to the horizontal
case, both PMv (53.9%, t(13) � 2.99, p � 0.008) and SPL (56.2%,
t(13) � 3.52, p � 0.006) exhibited significant above-chance gen-
eralization, whereas M1a did not reach above-chance accuracy
(52.0%, t(13) � 1.67, p � 0.059). In the second generalization test,
upward to-the-center movements were tested against downward
to-the-center movements. Here, all three ROIs that had signifi-

Figure 6. Relative decoding of movement direction and target location. A, Visualization of
base classification and generalization tests. Base classification and generalization tests are de-
picted in the same way as in Figure 5A. In this case, in Generalization 1, a large-amplitude
leftward movement (top movement in the center panel) was counted as correct if the base
classifier decoded it as a center-out leftward movement (top movement in the top panel). In
Generalization 2, a to-the-center leftward movement (top movement in the bottom panel) was
correct if it was decoded as a center-out leftward movement. Movements included were pooled
across palm-down and palm-mid postures. B, Base classification accuracies for the LH regions.
C, Classification accuracies for the two generalization tests. Note that although PMd, PMv, and
SPL all show significant above-chance classification in both generalization tests, there is an
interaction such that SPL has higher accuracy when movement direction and spatial target
location are the same as in base classification. In contrast, PMd and PMv have higher accuracies
when movement direction and movement amplitude are the same as in base classification.
Dashed line represents at-chance performance (50%). Error bars represent within-subject SEM
(Morey, 2008). Black asterisks indicate significantly above-chance classification after FDR cor-
rection (Benjamini and Yekutieli, 2001).

Barany et al. • Decoding Sensorimotor Transformations J. Neurosci., May 14, 2014 • 34(20):6860 – 6873 • 6867



cant base classification also had above-chance generalization
accuracies: M1a (52.4%, t(13) � 2.17, p � 0.025), PMv (53.1%,
t(13) � 2.62, p � 0.016), and SPL (52.8%, t(13) � 3.01, p � 0.015).
Furthermore, SPL had a higher generalization accuracy in the
first generalization test, when the spatial target matched that of
base classification (t(13) � 2.01, p � 0.033), suggesting that, as in
the horizontal case, spatial target information enhanced decod-
ing performance in SPL.

Decoding posture across movement direction
In the previous classification tests, movements using different
postures were grouped together. However, posture could influ-
ence decoding within a region as well (Parkinson et al., 2010). To
determine how representations of posture in both dynamic and
static conditions might influence the BOLD response, we tested
both large-amplitude movements and hold trials at peripheral
targets. In the base classification for movements, we trained the
classifier to dissociate all large-amplitude right and left move-
ments in the palm-down posture from all large-amplitude right
and left movements in the palm-mid posture (Fig. 7A, top). Pool-
ing both directions gave the classifier an average of 65 trials (SE �
2.78) in each class. A separate base classification evaluated the
vertical version of the test (Fig. 7A, bottom) and base classifica-
tion results reflect the average of both tests. All reported p-values
for base classification and generalization are FDR corrected for
the six LH ROIs. Overall, as shown in Figure 7B, all LH ROIs
exhibited above-chance accuracy: M1a, t(13) � 14.47, p � 0.001;
M1p, t(13) � 12.00, p � 0.001; PMd, t(13) � 20.16, p � 0.001;
PMv, t(13) � 21.57, p � 0.001; SPL, t(13) � 29.05, p � 0.001; and
CA, t(13) � 15.75, p � 0.001.

Although the main difference between movements evaluated
in base classification was posture, it is possible that the classifier’s
model was driven exclusively by non-movement-related factors.
To rule out this possibility, we conducted a generalization test in
which movements were aimed to the top and bottom targets. This
generalization test evaluated the base classifier’s ability to gener-
alize to posture (palm-up vs palm-mid) across movement direc-
tion and target location.

In the generalization test, the base classifier that was trained to
distinguish between postures for large-amplitude horizontal
movements was then tested to distinguish between postures for
large-amplitude vertical movements (average of 57 trials, SE �
4.25, per class; Fig. 7A, bottom). Overall generalization results
reflect the average of this test and the case where the base classi-
fication and generalization sets are switched. As shown in Figure
7C, M1a (t(13) � 2.30, p � 0.023), M1p (t(13) � 3.47, p � 0.006),
PMd (t(13) � 3.08, p � 0.009), PMv (t(13) � 2.45, p � 0.022), and
SPL (t(13) � 3.75, p � 0.001) showed significant above-chance
generalization. CA generalization was not significantly above
chance (t(13) � 1.72, p � 0.054).

These results suggest that the sensorimotor regions contain
representations of posture and rule out the possibility that the
results of base classification in the sensorimotor regions were
entirely driven by non-movement related factors such as run
effects. It is important to note that it is a combination of posture
and the gravity plane that is consistent with these generalization
results, and not the muscle groups involved in the movements or
the specific movement plane within a wrist-centered frame of
reference (Kakei et al., 1999).

Furthermore, the generalization to posture is in fact the op-
posite of what would be expected if base classification and gener-
alization were based on kinematic properties. For pooled up and
down movements, we see significant differences among palm-

down and palm-mid movements, such that palm-down move-
ments have higher movement velocity (t(13) � 4.81, p � 0.001),
lower CT (t(13) � 3.95, p � 0.003), and smaller movement error
(t(13) � 6.18, p � 0.001) than palm-mid movements (all p-values
are FDR corrected for the two base classification pairs tested).
However, we see the opposite pattern for pooled right and left
movements—that is, palm-down movements exhibit slightly
slower movement velocity and CT, as well as significantly larger
movement error (t(13) � 2.37, p � 0.034). These kinematic results
possibly reflect the greater difficulty in performing radial and
ulnar deviations (i.e., palm-mid up and down, palm-down right
and left) than extensions and flexions (i.e., palm-down up and
down, palm-mid right and left). Therefore, if base classification
and generalization were based on these kinematic properties,

Figure 7. Decoding posture across movement direction. A, Visualization of base classifica-
tion and the generalization test. Base classification and generalization are depicted in the same
way as in Figure 5A except that movements were not pooled across postures. Note that, here,
postures are matched for base classification and generalization. For example, a palm-down up
movement (one of the left movements in the bottom panel) is correctly classified if the base
classifier decodes it as a palm-down left or right movement (top movements in the top panel).
To test for static posture, we did not use the movement trials as shown, but rather used 2 s “hold
trials” to peripheral targets that occurred after some movements. B, Base classification accura-
cies for LH regions. Note that there are two separate base classifications: one for movements and
one for holds. C, Classification accuracies for the two generalization tests. Generalization accu-
racies reflect the average of the base classification/generalization pair shown and the opposite
pair (i.e., base classification contains up/down movements and generalization contains left/
right movements). Because generalization accuracies for posture during movement and pos-
ture during holds used different base classifiers, they cannot be compared directly. Dashed line
represents at-chance performance (50%). Error bars represent within-subject SEM (Morey,
2008). Black asterisks indicate significantly above-chance classification after FDR correction
(Benjamini and Yekutieli, 2001).
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generalization accuracies to posture would have been in the op-
posite direction from what we observed.

To test for potential decoding of static posture, we modeled
the prespecified 2 s hold trials in which the participant held their
position at 1 of the 4 peripheral targets. The base classification
problem was to distinguish between all holds at the right and left
targets in the palm-down posture from all holds at right and left
targets in the palm-mid posture. In the generalization test, the
base classifier was tested on how well it could dissociate holds at
the top and bottom targets in the palm-down posture from holds
at the top and bottom targets in the palm-mid posture. Note that
the target positions in the hold case were the same as those in the
movement tests. An average of 48 trials (SE � 1.48) were used in
each posture class for base classification and an average of 46
trials (SE � 1.31) in each class for generalization. The results
from this case and the case where the base classification and gen-
eralization sets were switched were averaged to give the overall
classification accuracies. As with movements, all ROIs had an
above-chance cross-validation accuracy: M1a, t(13) � 7.50, p �
0.001; M1p, t(13) � 8.90, p � 0.001; PMd, t(13) � 16.96, p � 0.001;
PMv, t(13) � 15.14, p � 0.001; SPL, t(13) � 13.46, p � 0.001; and
CA, t(13) � 6.01, p � 0.001 (Fig. 7B). However, no ROI exhibited
significant above-chance generalization (Fig. 7C). Because the
base classification model was different for moves and holds, we
cannot compare the generalization accuracies for dynamic and
static posture directly.

Decoding direction and joint across posture
In the final analysis, we examined the decoding of movement
direction and joint angle representations that are independent of
posture. This allowed us to measure both the main effects of
direction and joint and potential posture-direction interactions.
A posture– direction interaction in a region is likely if the region
can generalize to direction when postures are pooled in both base
classification and generalization (Fig. 6C), but not generalize to
direction when the generalization test contains movements in
different postures from the movements in base classification.

Base classification involved two large-amplitude movements
performed in the same posture, but to opposite directions (ex-
ample shown in Fig. 8A, top). Therefore, each class in base clas-
sification differed in both external-related features (i.e., spatial
target, movement direction) and body-related features (i.e., joint
angle, muscle). There were four possible base classifications that
matched this constraint: (1) left palm-mid versus right palm-
mid, (2) left palm-down versus right palm-down, (3) up palm-
mid versus down palm-mid, and (4) up palm-down versus down
palm-down. The overall base classification accuracy reflected the
average of the four individual accuracies and all reported p-values
for base classification and generalization are FDR corrected for
the six LH ROIs. For each base classification (and generalization),
an average of 35 trials (SE � 1.65) were used in each class. This is
approximately half the number of trials used in the previous
classifications, because trials are not pooled across posture or
direction. As shown in Figure 8B, all LH ROIs had above-
chance cross-validation accuracies: M1a, t(13) � 9.60, p �
0.001; M1p, t(13) � 7.30, p � 0.001; PMd, t(13) � 9.73, p � 0.001;
PMv, t(13) � 10.25, p � 0.001; SPL, t(13) � 8.41, p � 0.001; and CA,
t(13) � 14.18, p � 0.001.

There was a significant difference in eye movements for one of
the base classification pairs: saccade amplitude during palm-
down movements in the downward direction (M � 0.95, SE �
0.19) was significantly larger than saccade amplitude during
palm-down movements in the upward direction (M � 0.80, SE �

0.20) (t(5) � 3.94, p � 0.044, FDR corrected for the four base
classification pairs tested). Note, however, that this was the only
significant eye movement difference for all four base classifica-
tion pairs and that the four classification accuracies were similar.
Therefore, though we cannot rule out the possibility, it is unlikely
that the significant base classification accuracies were driven by
differences in saccade amplitude.

Because spatial target, movement direction, and body-related
features all differed in base classification, the classifier’s model
could be based on differences in the BOLD response stemming

Figure 8. Decoding direction and joint across posture. A, Visualization of a representative
base classification and generalization pair. Base classification and generalization are depicted in
the same way as in Figure 5A except that movements were not pooled across postures. In the
example shown, in Generalization 1, a large-amplitude leftward movement in the palm-down
posture (top movement in the center panel) was correctly classified if it was decoded as a
large-amplitude leftward movement in the palm-mid posture (top movement in the top panel).
In Generalization 2, a large-amplitude downward movement in the palm-down posture (i.e., a
flexion, left movement in the bottom panel) was correct if it was decoded as a large-amplitude
leftward movement in the palm-mid posture (i.e., a flexion). B, Base classification accuracies for
LH regions. Overall accuracies reflect the individual accuracies for the four possible base classi-
fications (see Results for details). C, Classification accuracies for the two generalization tests.
Accuracies shown reflect the average of four base classification/generalization pairs. Note that
M1a, M1p, PMd, and PMv do not have significant generalization accuracies when movement
direction is matched in the base classification/generalization pairs. This is in contrast to the
significant generalization accuracies for movement direction shown in Figure 6C, when classi-
fication was based on pooled postures. Dashed line represents at-chance performance (50%).
Error bars represent within-subject SEM (Morey, 2008). Black asterisks indicate significantly
above-chance classification, after FDR correction (Benjamini and Yekutieli, 2001).
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from any one of these features or an interaction between features.
To determine whether the model was based on external features
or joint-based features, we performed two separate generaliza-
tion tests. In each test, the base classifiers for each region were
tested on how well they could generalize to different movements
that shared spatial target location and movement direction but
not joint angle (Fig. 8A, center) and that shared joint angle but
differed on movement direction and target location (Fig. 8A,
bottom). Note that both generalization tests differed in posture
from base classification, so any successful generalization would
not make use of responses related to postural representations. In
contrast, if representations were posture dependent, then gener-
alization would be unlikely in either test.

In the first generalization test, the base classifier was tested on
how well it could distinguish between movements that matched
in terms of spatial target and movement direction (e.g., base
classification: right palm-down vs left palm-down; generaliza-
tion: right palm-mid vs left palm-mid). The overall decoding
accuracy reflects the average of the four tests. Here, only SPL
(t(13) � 4.65, p � 0.001) and CA (t(13) � 5.92, p � 0.001)
showed significant above-chance generalization accuracies
(Fig. 8C). This implies that the base classifier detected BOLD
responses related to target location/movement direction repre-
sentations in SPL and CA, but not in the other ROIs. Based on this
result and the previous results for decoding of spatial target, it is
likely that CA detects visual target features, whereas SPL may
detect spatial target location and/or movement direction (Fig.
6C). M1a, M1p, PMd, and PMv all classified above chance for di-
rection in the previous test, when postures were pooled (Fig. 6C), but
not here, when the test was across postures. This suggests that rep-
resentations of movement direction in these regions are posture
dependent.

The second generalization test evaluated the extent to which
the base classifier in an ROI could distinguish between move-
ments based on the joint angle of that movement (e.g., base clas-
sification: a right palm-down ulnar deviation vs left palm-down
radial deviation; generalization: a down palm-mid ulnar devia-
tion vs an up palm-mid radial deviation). No ROI classified sig-
nificantly above chance for this intrinsic generalization test,
suggesting that, at least with the given analysis, sensorimotor
regions cannot decode intrinsic joint angle independently of pos-
ture (Fig. 8C). Note, however, that for both generalization tests of
direction and joint angle across posture, chance-level generaliza-
tion does not strictly imply that these ROIs do not code for the
features tested. It is possible that the base classifier’s model was
based predominately on spurious factors or features not specifi-
cally tested. Alternatively, it is possible that the classifier’s model
could not discriminate between mixed representations present in
a single ROI.

Discussion
We applied MVPA to fMRI data to identify representations of
individual movements in the human motor system in terms of
sensory or motor properties. Our goal was to characterize these
representations and their interactions to identify regions in-
volved in sensorimotor transformations. Using a robust general-
ization procedure, we found evidence that SPL is likely involved
in facilitating a transformation between spatial target location
and movement direction. Furthermore, we found that both PMd
and PMv showed sensitivity to movement direction indepen-
dently of differences in target location or movement amplitude,
suggesting that these regions are broadly tuned to direction. In
contrast, directional tuning in M1a and M1p depended on move-

ment amplitude. Finally, posture was a modulating factor across
all sensorimotor regions examined, highlighting the importance
of body-specific components in movement planning and
execution.

Previous neuroimaging studies have used a variety of behav-
iors to dissociate brain maps related to sensorimotor transforma-
tion. These include tasks that manipulate movement direction
(Cowper-Smith et al., 2010; Eisenberg et al., 2010; Fabbri et al.,
2010; Toxopeus et al., 2011), spatial target location (Eisenberg et
al., 2011), static posture (Suminski et al., 2007), dynamic posture
(Pellijeff et al., 2006; Parkinson et al., 2010), movement goal (Gal-
livan et al., 2013), and reference frames (Ogawa and Inui, 2012).
The present results build on previous work by identifying how
multiple features are coded together in different regions of the
human motor system. With an MVPA generalization approach,
we simultaneously studied both sensory- and movement-related
features using the same set of movements. For example, we suc-
cessfully distinguished between representations of target location
and movement direction without the need to change the task by
remapping direction via visuomotor rotation (Eisenberg et al.,
2011). In addition, our participants made free wrist movements
without the use of a manipulandum, allowing movement repre-
sentations to be established with respect to the hand, rather than
with respect to a tool.

SPL contained representations for both spatial target location
and movement direction, which is consistent with single-neuron
recordings in nonhuman primates (Lacquaniti et al., 1995;
McGuire and Sabes, 2011; Bremner and Andersen, 2012), fMRI
results in humans (Connolly et al., 2003; Medendorp et al., 2003),
and behavioral findings in optic ataxia patients (Khan et al.,
2013). Furthermore, the interaction between spatial target and
movement direction in SPL (i.e., the enhanced generalization
accuracy when target information was available) suggests that
SPL might perform computations involving both features that
are crucial for a transformation. Although the present data are
consistent with the idea that information about target and direc-
tion is combined within SPL, we cannot conclude that this is a
forward transformation because the results might alternatively
reflect feedback from upstream processing or contributions from
independent modules (Buneo et al., 2002; Chang and Snyder,
2010; Konen et al., 2013). It is important to consider that, al-
though the present study focuses on SPL, similar transformations
between visual and motor information have been found in hu-
mans across multiple subregions in the posterior parietal cortex,
including those along the intraparietal sulcus (Grefkes et al.,
2004; Tanabe et al., 2005; Blangero et al., 2009; Erickson and
Kayser, 2013). Future work is needed to clarify the interplay be-
tween these subregions in processing the transformation from
target location to movement direction.

Unlike SPL, target location did not affect generalization accu-
racies for movement direction in PMv and PMd. This finding is
consistent with results from single-neuron recordings in PMd
and PMv in nonhuman primates, in which neurons show sensi-
tivity to direction independently of target location (Kurata, 1993;
Shen and Alexander, 1997b). Furthermore, direction was reliably
decoded in PMd and PMv even when movement amplitude dif-
fered from base classification, suggesting a general representation
of direction. However, generalization accuracies for movement
direction were higher when movement amplitude was consistent
across the base classification and generalization sets, which may
imply that these regions are involved in the generation of specific
movement vectors (Pesaran et al., 2006). Note that movement
direction as discussed here is an arbitrary feature that correlates
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with other movement factors, such as force output and goal state,
which we cannot disentangle in the present study.

Previous studies have characterized differences in spinal con-
nectivity (Rathelot and Strick, 2009) and functionality (Geyer et
al., 1996) putatively in M1a and M1p, motivating our interest in
analyzing these areas separately. Neurons located in M1p contain
more muscle-like features, likely due to their direct projections to
motoneurons. In contrast, M1a neurons are more related to ex-
ternal features and have no direct projections onto motor neu-
rons (Scott and Kalaska, 1997; Rathelot and Strick, 2009). Our
results show that both M1 subdivisions behave similarly in that
they both generalized for movement direction when movement
amplitude, but not spatial target, matched the movements in base
classification. This suggests that M1 representations of direction
are amplitude dependent, supporting recent MVPA findings that
M1 can distinguish between different amplitudes during drawing
movements (Kadmon Harpaz et al., 2014).

Movement direction was successfully decoded in motor re-
gions when postures were pooled together, but testing for gener-
alization across posture revealed that movement representations
are posture specific. Previous fMRI and neurophysiology studies
have found evidence for posture-dependent mappings through-
out the motor system (Scott and Kalaska, 1997; Ajemian et al.,
2001; Graziano et al., 2002; Parkinson et al., 2010; Zimmermann
et al., 2013). In our task, we found direct evidence for represen-
tation of posture in all sensorimotor regions tested. Conversely,
the purely visual CA could not dissociate palm-down from palm-
mid postures, indicating that the above-chance generalization for
posture in sensorimotor ROIs was not due to visual or other
spurious factors. Furthermore, testing across posture eliminated
generalization to movement direction in M1a, M1p, PMd, and
PMv (cf. Figs. 6C, 8C). SPL generalized across posture, but this
may be more related to visual coding of the target, rather than
posture-invariant directional tuning (Fernandez-Ruiz et al.,
2007).

During movement, SPL in particular is thought to combine
visual and proprioceptive signals to continually update an inter-
nal estimate of the limb (Wolpert et al., 1998; Shi et al., 2013).
Under static conditions, M1 shows more posture-related activity
relative to premotor or parietal areas (Kalaska and Hyde, 1985;
Crammond and Kalaska, 1996). Surprisingly, we found that all
sensorimotor regions could decode posture during movement,
but no ROI successfully decoded posture during hold trials. This
suggests that representations of posture are related to posture-
dependent planning, rather than to the static maintenance of
position (Ajemian et al., 2001). However, it is important to keep
in mind that, here, lack of generalization does not strictly imply
that static posture is not coded in the motor system. It is possible
that the base classifiers were not sufficiently trained to detect the
relevant features, especially given that fewer trials were used for
the posture while holding in position than during movement.

Although previous evidence suggests that neural activity in
motor and premotor cortices is related to intrinsic patterns of
muscle activity (Kakei et al., 1999; Kakei et al., 2001), which
would vary with joint angle, we found no significant decoding for
joint angle in any of the ROIs tested. However, the ability to
decode “pure” intrinsic features from fMRI data is difficult given
our current task design. To perform free wrist movements, par-
ticipants had to also maintain forearm posture against gravity
during each stage of movement (execution and the hold period).
Therefore, each movement requires motor cortex activity for
postural control as well as for flexion or extension across a given
joint. We speculate that the neuronal populations for postural

and dynamic control are closely admixed in the motor cortex. In
this case, the generalization approach would not be able to detect
a true “mixed” representation.

In general, mixed representations in cortical regions pose a
challenge for standard MVPA algorithms, which assume singular
representations within a region. In the present study, we used
MVPA to detect representations of multiple features and their
interactions within a region using the generalization procedure as
a hard criterion—that is, generalization is only above chance if
the classifier behavior is based on the particular feature(s) tested.
With this approach, we found that the interactions between input
and output features in SPL are consistent with the idea that this
region is involved in computations underlying a transformation
from spatial target to movement vector. We also identified im-
portant interactions among movement direction, amplitude, and
posture in premotor and primary motor cortex. Although the
present study focused on transformations between features, a
future challenge is to identify loci for transformations of the same
feature between multiple frames of reference (Ogawa and Inui,
2012). Because reference frames are often mixed within neural
populations (Kakei et al., 1999; Chang and Snyder, 2010;
McGuire and Sabes, 2011), parsing out these representations
with fMRI will require a more sophisticated approach, such as
finding voxel subsets that best code for a movement property or
reference frame of interest. The ability to characterize both
between-feature and within-feature interactions will give a more
complete understanding of large-scale representations underly-
ing sensorimotor transformations for goal-directed movement.
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