Title
Search for doubly charmed baryons ミcc+ and ミcc++ in BABAR

Permalink

https://escholarship.org/uc/item/3gj838ch

Journal

Physical Review D, 74(1)
ISSN
2470-0010

Authors

Aubert, B
Barate, R
Bona, M
et al.

Publication Date

2006-07-01
DOI
10.1103/physrevd.74.011103

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Search for doubly charmed baryons $\Xi_{c c}^{+}$and $\Xi_{c c}^{++}$in BABAR

B. Aubert, ${ }^{1}$ R. Barate, ${ }^{1}$ M. Bona, ${ }^{1}$ D. Boutigny, ${ }^{1}$ F. Couderc, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ V. Poireau, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ E. Grauges, ${ }^{2}$ A. Palano, ${ }^{3}$ J. C. Chen, ${ }^{4}$ N. D. Qi, ${ }^{4}$ G. Rong, ${ }^{4}$ P. Wang, ${ }^{4}$ Y. S. Zhu, ${ }^{4}$ G. Eigen, ${ }^{5}$ I. Ofte, ${ }^{5}$ B. Stugu, ${ }^{5}$
G. S. Abrams, ${ }^{6}$ M. Battaglia, ${ }^{6}$ D. N. Brown, ${ }^{6}$ J. Button-Shafer, ${ }^{6}$ R. N. Cahn, ${ }^{6}$ E. Charles, ${ }^{6}$ M. S. Gill, ${ }^{6}$ Y. Groysman, ${ }^{6}$ R. G. Jacobsen, ${ }^{6}$ J. A. Kadyk, ${ }^{6}$ L. T. Kerth, ${ }^{6}$ Yu. G. Kolomensky, ${ }^{6}$ G. Kukartsev, ${ }^{6}$ G. Lynch, ${ }^{6}$ L. M. Mir, ${ }^{6}$ P. J. Oddone, ${ }^{6}$ T. J. Orimoto, ${ }^{6}$ M. Pripstein, ${ }^{6}$ N. A. Roe, ${ }^{6}$ M. T. Ronan, ${ }^{6}$ W. A. Wenzel, ${ }^{6}$ P. del Amo Sanchez, ${ }^{7}$ M. Barrett, ${ }^{7}$ K. E. Ford, ${ }^{7}$
T. J. Harrison, ${ }^{7}$ A. J. Hart, ${ }^{7}$ C. M. Hawkes, ${ }^{7}$ S. E. Morgan, ${ }^{7}$ A. T. Watson, ${ }^{7}$ K. Goetzen, ${ }^{8}$ T. Held, ${ }^{8}$ H. Koch, ${ }^{8}$ B. Lewandowski, ${ }^{8}$ M. Pelizaeus, ${ }^{8}$ K. Peters, ${ }^{8}$ T. Schroeder, ${ }^{8}$ M. Steinke, ${ }^{8}$ J. T. Boyd, ${ }^{9}$ J. P. Burke, ${ }^{9}$ W. N. Cottingham, ${ }^{9}$ D. Walker, ${ }^{9}$ T. Cuhadar-Donszelmann, ${ }^{10}$ B. G. Fulsom, ${ }^{10}$ C. Hearty, ${ }^{10}$ N. S. Knecht, ${ }^{10}$ T. S. Mattison, ${ }^{10}$ J. A. McKenna, ${ }^{10}$ A. Khan, ${ }^{11}$ P. Kyberd, ${ }^{11}$ M. Saleem, ${ }^{11}$ D. J. Sherwood, ${ }^{11}$ L. Teodorescu, ${ }^{11}$ V. E. Blinov, ${ }^{12}$ A. D. Bukin, ${ }^{12}$ V. P. Druzhinin, ${ }^{12}$ V. B. Golubev, ${ }^{12}$ A. P. Onuchin, ${ }^{12}$ S. I. Serednyakov, ${ }^{12}$ Yu. I. Skovpen, ${ }^{12}$ E. P. Solodov, ${ }^{12}$ K. Yu Todyshev, ${ }^{12}$ D. S. Best, ${ }^{13}$ M. Bondioli, ${ }^{13}$ M. Bruinsma, ${ }^{13}$ M. Chao, ${ }^{13}$ S. Curry, ${ }^{13}$ I. Eschrich, ${ }^{13}$ D. Kirkby, ${ }^{13}$ A. J. Lankford, ${ }^{13}$ P. Lund, ${ }^{13}$ M. Mandelkern, ${ }^{13}$ R. K. Mommsen, ${ }^{13}$ W. Roethel, ${ }^{13}$ D. P. Stoker, ${ }^{13}$ S. Abachi, ${ }^{14}$ C. Buchanan, ${ }^{14}$ S. D. Foulkes, ${ }^{15}$ J. W. Gary, ${ }^{15}$ O. Long, ${ }^{15}$ B. C. Shen, ${ }^{15}$ K. Wang, ${ }^{15}$ L. Zhang, ${ }^{15}$ H. K. Hadavand, ${ }^{16}$ E. J. Hill, ${ }^{16}$ H. P. Paar, ${ }^{16}$ S. Rahatlou, ${ }^{16}$ V. Sharma, ${ }^{16}$ J. W. Berryhill, ${ }^{17}$ C. Campagnari, ${ }^{17}$ A. Cunha, ${ }^{17}$ B. Dahmes, ${ }^{17}$ T. M. Hong, ${ }^{17}$ D. Kovalskyi, ${ }^{17}$ J. D. Richman, ${ }^{17}$ T. W. Beck, ${ }^{18}$ A. M. Eisner, ${ }^{18}$ C. J. Flacco, ${ }^{18}$ C. A. Heusch, ${ }^{18}$ J. Kroseberg, ${ }^{18}$ W. S. Lockman, ${ }^{18}$ G. Nesom, ${ }^{18}$ T. Schalk, ${ }^{18}$ B. A. Schumm, ${ }^{18}$ A. Seiden, ${ }^{18}$ P. Spradlin, ${ }^{18}$ D. C. Williams, ${ }^{18}$ M. G. Wilson, ${ }^{18}$ J. Albert, ${ }^{19}$ E. Chen, ${ }^{19}$ A. Dvoretskii, ${ }^{19}$ D. G. Hitlin, ${ }^{19}$ I. Narsky, ${ }^{19}$ T. Piatenko, ${ }^{19}$ F. C. Porter, ${ }^{19}$ A. Ryd, ${ }^{19}$ A. Samuel, ${ }^{19}$ R. Andreassen,,20 G. Mancinelli, ${ }^{20}$ B. T. Meadows, ${ }^{20}$ M. D. Sokoloff, ${ }^{20}$ F. Blanc,,${ }^{21}$ P. C. Bloom, ${ }^{21}$ S. Chen, ${ }^{21}$ W. T. Ford, ${ }^{21}$ J. F. Hirschauer, ${ }^{21}$ A. Kreisel, ${ }^{21}$ U. Nauenberg, ${ }^{21}$ A. Olivas, ${ }^{21}$ W. O. Ruddick, ${ }^{21}$ J. G. Smith, ${ }^{21}$ K. A. Ulmer, ${ }^{21}$ S. R. Wagner,,21 J. Zhang,,21 A. Chen, ${ }^{22}$ E. A. Eckhart, ${ }^{22}$ A. Soffer, ${ }^{22}$ W. H. Toki, ${ }^{22}$ R. J. Wilson, ${ }^{22}$ F. Winklmeier, ${ }^{22}$ Q. Zeng, ${ }^{22}$ D. D. Altenburg, ${ }^{23}$ E. Feltresi, ${ }^{23}$ A. Hauke, ${ }^{23}$ H. Jasper, ${ }^{23}$ A. Petzold, ${ }^{23}$ B. Spaan, ${ }^{23}$ T. Brandt, ${ }^{24}$ V. Klose, ${ }^{24}$ H. M. Lacker, ${ }^{24}$ W.F. Mader, ${ }^{24}$ R. Nogowski, ${ }^{24}$ J. Schubert, ${ }^{24}$ K. R. Schubert, ${ }^{24}$ R. Schwierz, ${ }^{24}$ J. E. Sundermann, ${ }^{24}$ A. Volk, ${ }^{24}$ D. Bernard, ${ }^{25}$ G. R. Bonneaud, ${ }^{25}$ P. Grenier, ${ }^{25, *}$ E. Latour, ${ }^{25}$ Ch. Thiebaux, ${ }^{25}$ M. Verderi, ${ }^{25}$ D. J. Bard, ${ }^{26}$ P. J. Clark, ${ }^{26}$ W. Gradl, ${ }^{26}$ F. Muheim, ${ }^{26}$ S. Playfer, ${ }^{26}$ A. I. Robertson, ${ }^{26}$ Y. Xie, ${ }^{26}$ M. Andreotti, ${ }^{27}$ D. Bettoni, ${ }^{27}$ C. Bozzi, ${ }^{27}$ R. Calabrese, ${ }^{27}$ G. Cibinetto, ${ }^{27}$ E. Luppi, ${ }^{27}$ M. Negrini, ${ }^{27}$ A. Petrella, ${ }^{27}$ L. Piemontese, ${ }^{27}$ E. Prencipe, ${ }^{27}$ F. Anulli ${ }^{28}$ R. Baldini-Ferroli, ${ }^{28}$ A. Calcaterra, ${ }^{28}$ R. de Sangro, ${ }^{28}$ G. Finocchiaro, ${ }^{28}$ S. Pacetti, ${ }^{28}$ P. Patteri, ${ }^{28}$ I. M. Peruzzi, ${ }^{28,}{ }^{\dagger}$ M. Piccolo, ${ }^{28}$ M. Rama, ${ }^{28}$ A. Zallo, ${ }^{28}$ A. Buzzo, ${ }^{29}$ R. Capra, ${ }^{29}$ R. Contri, ${ }^{29}$ M. Lo Vetere, ${ }^{29}$ M. M. Macri, ${ }^{29}$ M. R. Monge, ${ }^{29}$ S. Passaggio, ${ }^{29}$ C. Patrignani, ${ }^{29}$ E. Robutti, ${ }^{29}$ A. Santroni, ${ }^{29}$ S. Tosi, ${ }^{29}$ G. Brandenburg, ${ }^{30}$ K. S. Chaisanguanthum, ${ }^{30}$ M. Morii, ${ }^{30}$ J. Wu, ${ }^{30}$ R. S. Dubitzky, ${ }^{31}$ J. Marks, ${ }^{31}$ S. Schenk, ${ }^{31}$ U. Uwer, ${ }^{31}$ W. Bhimji, ${ }^{32}$ D. A. Bowerman, ${ }^{32}$ P. D. Dauncey, ${ }^{32}$ U. Egede, ${ }^{32}$ R. L. Flack, ${ }^{32}$ J . A. Nash, ${ }^{32}$ M. B. Nikolich, ${ }^{32}$ W. Panduro Vazquez, ${ }^{32}$ X. Chai, ${ }^{33}$ M. J. Charles, ${ }^{33}$ U. Mallik, ${ }^{33}$ N. T. Meyer, ${ }^{33}$ V. Ziegler, ${ }^{33}$ J. Cochran, ${ }^{34}$ H. B. Crawley, ${ }^{34}$ L. Dong, ${ }^{34}$ V. Eyges, ${ }^{34}$ W. T. Meyer, ${ }^{34}$ S. Prell, ${ }^{34}$ E. I. Rosenberg, ${ }^{34}$ A. E. Rubin, ${ }^{34}$ A. V. Gritsan, ${ }^{35}$ M. Fritsch, ${ }^{36}$ G. Schott,,${ }^{36}$ N. Arnaud, ${ }^{37}$ M. Davier, ${ }^{37}$ G. Grosdidier, ${ }^{37}$ A. Höcker, ${ }^{37}$ F. Le Diberder, ${ }^{37}$ V. Lepeltier, ${ }^{37}$ A. M. Lutz, ${ }^{37}$ A. Oyanguren, ${ }^{37}$ S. Pruvot, ${ }^{37}$
S. Rodier, ${ }^{37}$ P. Roudeau, ${ }^{37}$ M. H. Schune, ${ }^{37}$ A. Stocchi, ${ }^{37}$ W. F. Wang, ${ }^{37}$ G. Wormser, ${ }^{37}$ C. H. Cheng, ${ }^{38}$ D. J. Lange, ${ }^{38}$ D. M. Wright, ${ }^{38}$ C. A. Chavez, ${ }^{39}$ I. J. Forster, ${ }^{39}$ J. R. Fry, ${ }^{39}$ E. Gabathuler, ${ }^{39}$ R. Gamet, ${ }^{39}$ K. A. George, ${ }^{39}$ D. E. Hutchcroft, ${ }^{39}$ D. J. Payne,,${ }^{39}$ K. C. Schofield, ${ }^{39}$ C. Touramanis, ${ }^{39}$ A. J. Bevan, ${ }^{40}$ F. Di Lodovico, ${ }^{40}$ W. Menges, ${ }^{40}$ R. Sacco, ${ }^{40}$ G. Cowan, ${ }^{41}$ H. U. Flaecher, ${ }^{41}$ D. A. Hopkins, ${ }^{41}$ P. S. Jackson, ${ }^{41}$ T. R. McMahon, ${ }^{41}$ S. Ricciardi, ${ }^{41}$ F. Salvatore, ${ }^{41}$ A. C. Wren, ${ }^{41}$ D. N. Brown, ${ }^{42}$ C. L. Davis, ${ }^{42}$ J. Allison, ${ }^{43}$ N. R. Barlow, ${ }^{43}$ R. J. Barlow, ${ }^{43}$ Y. M. Chia, ${ }^{43}$ C. L. Edgar, ${ }^{43}$ G. D. Lafferty, ${ }^{43}$ M. T. Naisbit, ${ }^{43}$ J. C. Williams, ${ }^{43}$ J. I. Yi, ${ }^{43}$ C. Chen, ${ }^{44}$ W. D. Hulsbergen, ${ }^{44}$ A. Jawahery, ${ }^{44}$ C. K. Lae, ${ }^{44}$ D. A. Roberts, ${ }^{44}$ G. Simi, ${ }^{44}$ G. Blaylock, ${ }^{45}$ C. Dallapiccola, ${ }^{45}$ S. S. Hertzbach, ${ }^{45}$ X. Li, ${ }^{45}$ T. B. Moore, ${ }^{45}$ S. Saremi, ${ }^{45}$ H. Staengle, ${ }^{45}$ S. Y. Willocq, ${ }^{45}$ R. Cowan, ${ }^{46}$ G. Sciolla, ${ }^{46}$ S. J. Sekula, ${ }^{46}$ M. Spitznagel, ${ }^{46}$ F. Taylor, ${ }^{46}$ R. K. Yamamoto, ${ }^{46}$ H. Kim, ${ }^{47}$ P. M. Patel, ${ }^{47}$ S. H. Robertson,,47 A. Lazzaro, ${ }^{48}$ V. Lombardo, ${ }^{48}$ F. Palombo, ${ }^{48}$ J. M. Bauer, ${ }^{49}$ L. Cremaldi, ${ }^{49}$ V. Eschenburg, ${ }^{49}$ R. Godang, ${ }^{49}$ R. Kroeger, ${ }^{49}$ D. A. Sanders, ${ }^{49}$ D. J. Summers, ${ }^{49}$ H. W. Zhao, ${ }^{49}$ S. Brunet, ${ }^{50}$ D. Côté, ${ }^{50}$ P. Taras, ${ }^{50}$ F. B. Viaud, ${ }^{50}$ H. Nicholson, ${ }^{51}$ N. Cavallo, ${ }^{52, \ddagger}$ G. De Nardo, ${ }^{52}$ F. Fabozzi, ${ }^{52, \#}$ C. Gatto, ${ }^{52}$ L. Lista, ${ }^{52}$ D. Monorchio, ${ }^{52}$ P. Paolucci, ${ }^{52}$ D. Piccolo, ${ }^{52}$ C. Sciacca, ${ }^{52}$ M. Baak, ${ }^{53}$ G. Raven, ${ }^{53}$ H. L. Snoek, ${ }^{53}$ C. P. Jessop, ${ }^{54}$ J. M. LoSecco, ${ }^{54}$ T. Allmendinger, ${ }^{55}$ G. Benelli, ${ }^{55}$ K. K. Gan, ${ }^{55}$ K. Honscheid, ${ }^{55}$ D. Hufnagel, ${ }^{55}$ P. D. Jackson, ${ }^{55}$ H. Kagan, ${ }^{55}$ R. Kass, ${ }^{55}$ A. M. Rahimi, ${ }^{55}$ R. Ter-Antonyan, ${ }^{55}$ Q. K. Wong, ${ }^{55}$ N. L. Blount, ${ }^{56}$ J. Brau, ${ }^{56}$ R. Frey, ${ }^{56}$ O. Igonkina, ${ }^{56}$ M. Lu, ${ }^{56}$ C. T. Potter, ${ }^{56}$ R. Rahmat, ${ }^{56}$ N. B. Sinev, ${ }^{56}$ D. Strom, ${ }^{56}$ J. Strube, ${ }^{56}$ E. Torrence, ${ }^{56}$ F. Galeazzi, ${ }^{57}$ A. Gaz, ${ }^{57}$ M. Margoni, ${ }^{57}$ M. Morandin, ${ }^{57}$ A. Pompili, ${ }^{57}$ M. Posocco, ${ }^{57}$ M. Rotondo, ${ }^{57}$ F. Simonetto, ${ }^{57}$ R. Stroili, ${ }^{57}$
C. Voci, ${ }^{57}$ M. Benayoun, ${ }^{58}$ J. Chauveau, ${ }^{58}$ P. David, ${ }^{58}$ L. Del Buono, ${ }^{58}$ Ch. de la Vaissière, ${ }^{58}$ O. Hamon, ${ }^{58}$ B. L. Hartfiel, ${ }^{58}$ M. J. J. John, ${ }^{58}$ J. Malclès, ${ }^{58}$ J. Ocariz, ${ }^{58}$ L. Roos, ${ }^{58}$ G. Therin, ${ }^{58}$ P. K. Behera, ${ }^{59}$ L. Gladney, ${ }^{59}$ J. Panetta, ${ }^{59}$ M. Biasini, ${ }^{60}$ R. Covarelli, ${ }^{60}$ M. Pioppi, ${ }^{60}$ C. Angelini, ${ }^{61}$ G. Batignani, ${ }^{61}$ S. Bettarini, ${ }^{61}$ F. Bucci, ${ }^{61}$ G. Calderini, ${ }^{61}$ M. Carpinelli, ${ }^{61}$ R. Cenci, ${ }^{61}$ F. Forti, ${ }^{61}$ M. A. Giorgi, ${ }^{61}$ A. Lusiani, ${ }^{61}$ G. Marchiori, ${ }^{61}$ M. A. Mazur, ${ }^{61}$ M. Morganti, ${ }^{61}$ N. Neri, ${ }^{61}$ G. Rizzo, ${ }^{61}$ J. Walsh,,61 M. Haire, ${ }^{62}$ D. Judd, ${ }^{62}$ D. E. Wagoner, ${ }^{62}$ J. Biesiada, ${ }^{63}$ N. Danielson, ${ }^{63}$ P. Elmer, ${ }^{63}$ Y. P. Lau, ${ }^{63}$ C. Lu, ${ }^{63}$ J. Olsen, ${ }^{63}$ A. J.S. Smith, ${ }^{63}$ A. V. Telnov, ${ }^{63}$ F. Bellini, ${ }^{64}$ G. Cavoto, ${ }^{64}$ A. D'Orazio, ${ }^{64}$ D. del Re, ${ }^{64}$ E. Di Marco, ${ }^{64}$ R. Faccini, ${ }^{64}$ F. Ferrarotto, ${ }^{64}$ F. Ferroni, ${ }^{64}$ M. Gaspero, ${ }^{64}$ L. Li Gioi, ${ }^{64}$ M. A. Mazzoni, ${ }^{64}$ S. Morganti, ${ }^{64}$ G. Piredda, ${ }^{64}$ F. Polci, ${ }^{64}$ F. Safai Tehrani, ${ }^{64}$ C. Voena, ${ }^{64}$ M. Ebert, ${ }^{65}$ H. Schröder, ${ }^{65}$ R. Waldi, ${ }^{65}$ T. Adye, ${ }^{66}$ N. De Groot, ${ }^{66}$ B. Franek, ${ }^{66}$ E. O. Olaiya, ${ }^{66}$ F. F. Wilson, ${ }^{66}$ S. Emery, ${ }^{67}$ A. Gaidot, ${ }^{67}$ S. F. Ganzhur, ${ }^{67}$ G. Hamel de Monchenault, ${ }^{67}$ W. Kozanecki, ${ }^{67}$ M. Legendre, ${ }^{67}$ G. Vasseur, ${ }^{67}$ Ch. Yèche, ${ }^{67}$ M. Zito, ${ }^{67}$ X. R. Chen, ${ }^{68}$ H. Liu, ${ }^{68}$ W. Park, ${ }^{68}$ M. V. Purohit, ${ }^{68}$ J. R. Wilson, ${ }^{68}$ M. T. Allen, ${ }^{69}$ D. Aston, ${ }^{69}$ R. Bartoldus, ${ }^{69}$ P. Bechtle, ${ }^{69}$ N. Berger, ${ }^{69}$ A. M. Boyarski, ${ }^{69}$ R. Claus, ${ }^{69}$ J. P. Coleman, ${ }^{69}$ M. R. Convery, ${ }^{69}$ M. Cristinziani, ${ }^{69}$ J. C. Dingfelder, ${ }^{69}$ J. Dorfan, ${ }^{69}$ G. P. Dubois-Felsmann, ${ }^{69}$ D. Dujmic, ${ }^{69}$ W. Dunwoodie, ${ }^{69}$ R. C. Field, ${ }^{69}$ T. Glanzman, ${ }^{69}$ S. J. Gowdy, ${ }^{69}$ M. T. Graham, ${ }^{69}$ V. Halyo, ${ }^{69}$ C. Hast, ${ }^{69}$ T. Hryn'ova, ${ }^{69}$ W. R. Innes, ${ }^{69}$ M. H. Kelsey, ${ }^{69}$ P. Kim, ${ }^{69}$ D. W. G. S. Leith,,${ }^{69}$ S. Li, ${ }^{69}$ S. Luitz, ${ }^{69}$ V. Luth,${ }^{69}$ H. L. Lynch, ${ }^{69}$ D. B. MacFarlane, ${ }^{69}$ H. Marsiske, ${ }^{69}$ R. Messner, ${ }^{69}$ D. R. Muller, ${ }^{69}$ C. P. O'Grady, ${ }^{69}$ V. E. Ozcan, ${ }^{69}$ A. Perazzo, ${ }^{69}$ M. Perl, ${ }^{69}$ T. Pulliam, ${ }^{69}$ B. N. Ratcliff, ${ }^{69}$ A. Roodman, ${ }^{69}$ A. A. Salnikov, ${ }^{69}$ R. H. Schindler, ${ }^{69}$ J. Schwiening, ${ }^{69}$ A. Snyder, ${ }^{69}$ J. Stelzer, ${ }^{69}$ D. Su, ${ }^{69}$ M. K. Sullivan, ${ }^{69}$ K. Suzuki, ${ }^{69}$ S. K. Swain, ${ }^{69}$ J. M. Thompson, ${ }^{69}$ J. Va'vra, ${ }^{69}$ N. van Bakel, ${ }^{69}$ M. Weaver, ${ }^{69}$ A. J. R. Weinstein, ${ }^{69}$ W. J. Wisniewski, ${ }^{69}$ M. Wittgen, ${ }^{69}$ D. H. Wright, ${ }^{69}$ A. K. Yarritu, ${ }^{69}$ K. Yi, ${ }^{69}$ C. C. Young, ${ }^{69}$ P. R. Burchat, ${ }^{70}$ A. J. Edwards, ${ }^{70}$ S. A. Majewski, ${ }^{70}$ B. A. Petersen, ${ }^{70}$ C. Roat, ${ }^{70}$ L. Wilden, ${ }^{70}$ S. Ahmed, ${ }^{71}$ M. S. Alam, ${ }^{71}$ R. Bula, ${ }^{71}$ J. A. Ernst, ${ }^{71}$ V. Jain, ${ }^{71}$ B. Pan, ${ }^{71}$ M. A. Saeed, ${ }^{71}$ F. R. Wappler, ${ }^{71}$ S. B. Zain, ${ }^{71}$ W. Bugg, ${ }^{72}$ M. Krishnamurthy, ${ }^{72}$ S. M. Spanier, ${ }^{72}$ R. Eckmann, ${ }^{73}$ J. L. Ritchie, ${ }^{73}$ A. Satpathy, ${ }^{73}$ C. J. Schilling, ${ }^{73}$ R. F. Schwitters, ${ }^{73}$ J. M. Izen, ${ }^{74}$ I. Kitayama, ${ }^{74}$ X. C. Lou, ${ }^{74}$ S. Ye, ${ }^{74}$ F. Bianchi, ${ }^{75}$ F. Gallo, ${ }^{75}$ D. Gamba, ${ }^{75}$ M. Bomben, ${ }^{76}$ L. Bosisio, ${ }^{76}$ C. Cartaro, ${ }^{76}$ F. Cossutti, ${ }^{76}$ G. Della Ricca, ${ }^{76}$ S. Dittongo, ${ }^{76}$ S. Grancagnolo, ${ }^{76}$ L. Lanceri, ${ }^{76}$ L. Vitale, ${ }^{76}$ V. Azzolini, ${ }^{77}$ F. Martinez-Vidal, ${ }^{77}$ Sw. Banerjee, ${ }^{78}$ B. Bhuyan, ${ }^{78}$ C. M. Brown, ${ }^{78}$ D. Fortin, ${ }^{78}$ K. Hamano, ${ }^{78}$ R. Kowalewski, ${ }^{78}$ I. M. Nugent, ${ }^{78}$ J. M. Roney, ${ }^{78}$ R. J. Sobie, ${ }^{78}$ J. J. Back, ${ }^{79}$ P. F. Harrison, ${ }^{79}$ T. E. Latham, ${ }^{79}$ G. B. Mohanty, ${ }^{79}$ M. Pappagallo, ${ }^{79}$ H. R. Band, ${ }^{80}$ X. Chen, ${ }^{80}$ B. Cheng, ${ }^{80}$ S. Dasu, ${ }^{80}$ M. Datta, ${ }^{80}$ K. T. Flood, ${ }^{80}$ J. J. Hollar, ${ }^{80}$ P. E. Kutter, ${ }^{80}$ B. Mellado, ${ }^{80}$ A. Mihalyi, ${ }^{80}$ Y. Pan, ${ }^{80}$ M. Pierini, ${ }^{80}$ R. Prepost, ${ }^{80}$ S. L. Wu, ${ }^{80}$ Z. Yu, ${ }^{80}$ and H. Neal ${ }^{81}$

(BABAR Collaboration)

[^0]
SEARCH FOR DOUBLY CHARMED BARYONS $\Xi_{c c}^{+}$AND $\Xi_{c c}^{++}$IN BABAR PHYSICAL REVIEW D 74, 011103(R) (2006)

${ }^{26}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
${ }^{27}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
${ }^{28}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
${ }^{29}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
${ }^{30}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{31}$ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
${ }^{32}$ Imperial College London, London, SW7 2AZ, United Kingdom
${ }^{33}$ University of Iowa, Iowa City, Iowa 52242, USA
${ }^{34}$ Iowa State University, Ames, Iowa 50011-3160, USA
${ }^{35}$ Johns Hopkins University, Baltimore, Maryland 21218, USA
${ }^{36}$ Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
${ }^{37}$ Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS et Université Paris-Sud 11,
Centre Scientifique d'Orsay, B.P. 34, F-91898 ORSAY Cedex, France
${ }^{38}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
${ }^{39}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom
${ }^{40}$ Queen Mary, University of London, E1 4NS, United Kingdom
${ }^{41}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
${ }^{42}$ University of Louisville, Louisville, Kentucky 40292, USA
${ }^{43}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{44}$ University of Maryland, College Park, Maryland 20742, USA
${ }^{45}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
${ }^{46}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
${ }^{47}$ McGill University, Montréal, Québec, Canada H3A $2 T 8$
${ }^{48}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
${ }^{49}$ University of Mississippi, University, Mississippi 38677, USA
${ }^{50}$ Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
${ }^{51}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA
${ }^{52}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
${ }^{53}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
${ }^{54}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{55}$ Ohio State University, Columbus, Ohio 43210, USA
${ }^{56}$ University of Oregon, Eugene, Oregon 97403, USA
${ }^{57}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
${ }^{58}$ Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
${ }^{59}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{60}$ Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
${ }^{61}$ Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
${ }^{62}$ Prairie View A\&M University, Prairie View, Texas 77446, USA
${ }^{63}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{64}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
${ }^{65}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{66}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
${ }^{67}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
${ }^{68}$ University of South Carolina, Columbia, South Carolina 29208, USA
${ }^{69}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA
${ }^{71}$ Stanford University, Stanford, California 94305-4060, USA
${ }^{71}$ State University of New York, Albany, New York 12222, USA
${ }^{72}$ University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{73}$ University of Texas at Austin, Austin, Texas 78712, USA
${ }^{74}$ University of Texas at Dallas, Richardson, Texas 75083, USA
${ }^{75}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
${ }^{76}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
${ }^{77}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
${ }^{78}$ University of Victoria, Victoria, British Columbia, Canada V8W $3 P 6$
${ }^{79}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
${ }^{80}$ University of Wisconsin, Madison, Wisconsin 53706, USA

[^1](Received 18 May 2006; published 13 July 2006)

Abstract

We search for the production of doubly charmed baryons in $e^{+} e^{-}$annihilations at or near a center-ofmass energy of 10.58 GeV , in a data sample with an integrated luminosity of $232 \mathrm{fb}^{-1}$ recorded with the BABAR detector at the PEP-II storage ring at the Stanford Linear Accelerator Center. We search for $\boldsymbol{\Xi}_{c c}^{+}$ baryons in the final states $\Lambda_{c}^{+} K^{-} \pi^{+}$and $\Xi_{c}^{0} \pi^{+}$, and $\Xi_{c c}^{++}$baryons in the final states $\Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+}$and $\Xi_{c}^{0} \pi^{+} \pi^{+}$. We find no evidence for the production of doubly charmed baryons.

DOI: 10.1103/PhysRevD.74.011103
PACS numbers: 13.85.Rm, 14.20.Lq

I. INTRODUCTION AND OVERVIEW

The lowest-mass doubly charmed baryons are predicted to be the members of an isospin doublet ($\Xi_{c c}^{+}=c c d$ and $\Xi_{c c}^{++}=c c u$ [1]) with $J^{P}=\frac{1}{2}{ }^{+}$and $L=0$. There are many theoretical predictions for the $\Xi_{c c}^{+}$and $\Xi_{c c}^{++}$masses and lifetimes [2-11]. The predicted masses lie in a range of approximately 3.5 to $3.8 \mathrm{GeV} / c^{2}$ [3-8]. The mass difference between the $\Xi_{c c}^{+}$and the $\Xi_{c c}^{++}$is predicted to be on the order of $1 \mathrm{MeV} / c^{2}$ [9]. The $\Xi_{c c}^{+}$and $\Xi_{c c}^{++}$lifetimes are expected to be between about 0.1 and 0.2 ps , and 0.5 and 1.5 ps , respectively [10,11]. Theoretical estimates for branching fractions relevant to this paper are $B\left(\Xi_{c c}^{+} \rightarrow\right.$ $\left.\Lambda_{c}^{+} K^{-} \pi^{+}\right)=0.03, B\left(\Xi_{c c}^{+} \rightarrow \Xi_{c}^{0} \pi^{+}\right)=0.02, B\left(\Xi_{c c}^{++} \rightarrow\right.$ $\left.\Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+}\right)=0.05$, and $B\left(\Xi_{c c}^{++} \rightarrow \Xi_{c}^{0} \pi^{+} \pi^{+}\right)=0.05$ [12].

Several predictions have been made for the production cross sections of doubly charmed baryons in $e^{+} e^{-}$annihilations [13-15]; the predictions range from 1 to 250 fb for an $e^{+} e^{-}$center-of-mass (CM) energy near 10.58 GeV , and translate into $\mathcal{O}\left(10^{2}-10^{4}\right)$ doubly charmed baryons produced in the BABAR data set of $232 \mathrm{fb}^{-1}$ analyzed here. Measured cross sections for double- $c \bar{c}$ production in Belle [16] and BABAR [17] are an order of magnitude larger than nonrelativistic QCD predictions. Calculations for $c \bar{c} c \bar{c}$ and $c c \bar{c} \bar{c}$ cross sections are very similar; therefore, the predicted cross sections for doubly charmed baryons may also have been underestimated.

The SELEX collaboration, which uses the Fermilab $600 \mathrm{GeV} / c$ charged hyperon beam, has published evidence for the $\Xi_{c c}^{+}$baryon in the $\Lambda_{c}^{+} K^{-} \pi^{+}$and $p D^{+} K^{-}$ decay modes with a mass of $(3518.7 \pm 1.7) \mathrm{MeV} / \mathrm{c}^{2}$ $[18,19]$. The $\Xi_{c c}^{++}$baryon, detected in the decay mode $\Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+}$, with a mass of $3460 \mathrm{MeV} / c^{2}$, was reported by SELEX at ICHEP 2002 [20]. The $\Xi_{c c}^{+}-\Xi_{c c}^{++}$mass difference of $60 \mathrm{MeV} / c^{2}$ is not consistent with theoretical expectations. SELEX sets an upper limit (at 90% confidence level) of 33 fs on the lifetime of the $\Xi_{c c}^{+}$baryon, in conflict with theoretical predictions. The photoproduction experiment FOCUS does not observe any $\Xi_{c c}$ states [21] although they observe $19,500 \Lambda_{c}^{+}$baryons, compared to 1650 for SELEX.

In this paper, we describe a search for the production of $\Xi_{c c}$ baryons in a data sample corresponding to an integrated luminosity of $232 \mathrm{fb}^{-1}$ recorded with the $B A B A R$ detector at the PEP-II asymmetric-energy $e^{+} e^{-}$storage
ring at the Stanford Linear Accelerator Center. Events containing $\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}$candidates are searched for the presence of $\Xi_{c c}^{+} \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+}$and $\Xi_{c c}^{++} \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+}$ candidates. Events containing $\Lambda \rightarrow p \pi^{-}$candidates are searched for the presence of $\Xi_{c c}^{+} \rightarrow \Xi_{c}^{0} \pi^{+}$and $\Xi_{c c}^{++} \rightarrow$ $\Xi_{c}^{0} \pi^{+} \pi^{+}$candidates where $\Xi_{c}^{0} \rightarrow \Xi^{-} \pi^{+}$and $\Xi^{-} \rightarrow \Lambda \pi^{-}$.
The BABAR detector is described in detail elsewhere [22]. The tracking of charged particles is provided by a five-layer double-sided silicon vertex tracker (SVT) and a 40-layer drift chamber (DCH). Discrimination among charged pions, kaons, and protons relies on ionization energy loss ($\mathrm{d} E / \mathrm{d} x$) in the DCH and SVT, and on Cherenkov photons detected in a ring-imaging detector (DIRC). A CsI(Tl) crystal calorimeter is used to identify electrons and photons. These four detector subsystems are mounted inside a $1.5-\mathrm{T}$ solenoidal superconducting magnet. The instrumented flux return for the solenoidal magnet provides muon identification.

For event simulations, we use the Monte Carlo (MC) generators JETSET74 [23] and EVTGEN [24] with a full detector simulation based on GEANT4 [25]. These simulations are used to estimate the reconstruction efficiencies of the searches. For each of the four $\exists_{c c}$ decay channels used in our searches, we produce approximately 100000 simulated $e^{+} e^{-} \rightarrow c \bar{c}$ events in which at least one of the primary charm quarks hadronizes into a $\Xi_{c c}$. The distribution of momentum in the CM frame (p^{*}) for simulated $\Xi_{c c}$ peaks at about $2.5 \mathrm{GeV} / c$, with 80% above $2.0 \mathrm{GeV} / c$ and 62% above $2.3 \mathrm{GeV} / c$. The $\Xi_{c c}^{+}$and $\Xi_{c c}^{++}$baryons are simulated with the SELEX masses of 3520 and $3460 \mathrm{MeV} / c^{2}$, respectively. The $\Xi_{c c}^{+}, \Xi_{c c}^{++}$, and Λ_{c}^{+}decays are generated according to phase space.

We search for $\Xi_{c c}$ production as an excess of candidates in the distribution of the difference in the measured masses of the $\Xi_{c c}$ and the candidate daughter baryon. Some mass uncertainties cancel in this mass difference, improving the mass resolution and thereby the signal-to-background ratio. We use the following notation: $\Delta M(A-B) \equiv M(A)-$ $M(B)$, where A is the parent and B is the daughter baryon. $M(X)$ refers to the measured invariant mass of the X candidate.

Selection criteria are chosen to maximize ϵ / \sqrt{B}, where ϵ is the simulated reconstruction efficiency and B is the number of candidates in data in upper and lower sidebands of the mass-difference regions in which we search for $\Xi_{c c}$
signals. During this process the search regions were hidden to minimize potential experimenter bias.

Charm hadrons carry a significant fraction of the initial energy of the charm quark, whereas random combinations of charged particles in an event form lower-energy candidates. To take advantage of this difference, we select $\Xi_{c c}$ candidates for which the p^{*} of the $\Xi_{c c}$ is above a minimum value. For $\Xi_{c c}$ decay modes containing a Λ_{c}^{+}, the optimal requirement is $p^{*}>2.3 \mathrm{GeV} / c$. Because the background levels for events containing a Ξ_{c} candidate are lower, we apply the less stringent requirement $p^{*}>2.0 \mathrm{GeV} / c$. To facilitate comparisons with theoretical predictions, we repeat the searches with no requirement on p^{*}.

We conduct searches for $\Xi_{c c}$ near the masses of the states observed by SELEX and over wider ranges that include many of the theoretically predicted masses. We use MC techniques to account for the width of the search region in the statistical interpretation of the results.

II. SEARCH FOR DECAYS TO $\boldsymbol{\Lambda}_{\boldsymbol{c}}^{+} \boldsymbol{K}^{-} \boldsymbol{\pi}^{+}\left(\boldsymbol{\pi}^{+}\right)$

In the searches for $\Xi_{c c}^{+} \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+}$and $\Xi_{c c}^{++} \rightarrow$ $\Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+}$, we reconstruct the Λ_{c}^{+}baryon in its decay to $p K^{-} \pi^{+}$. Pion, kaon and proton candidates are identified using the SVT, DCH and DIRC. The χ^{2} probability for the Λ_{c}^{+}daughter particles and for the $\Xi_{c c}$ daughter particles to each come from a common vertex is required to be above 1%. The number of reconstructed Λ_{c}^{+}signal events is approximately 600000 .

The distribution of the mass difference $\Delta M\left(\Xi_{c c}-\Lambda_{c}^{+}\right)$ is shown in Fig. 1 for candidates with $M\left(\Lambda_{c}^{+}\right)$between 2281 and $2291 \mathrm{MeV} / c^{2}(\pm 0.8 \sigma)$, and also for $M\left(\Lambda_{c}^{+}\right)$ sidebands $\left(2256<M\left(\Lambda_{c}^{+}\right)<2281 \mathrm{MeV} / c^{2}\right.$ and $2291<$ $M\left(\Lambda_{c}^{+}\right)<2316 \mathrm{MeV} / c^{2}$). To search for a signal in data and to estimate the efficiency, we perform two-dimensional fits to $M\left(\Lambda_{c}^{+}\right)$and $\Delta M\left(\Xi_{c c}-\Lambda_{c}^{+}\right)$. The range of $M\left(\Lambda_{c}^{+}\right)$ used in all fits is 2256 to $2316 \mathrm{MeV} / c^{2}$. We search for $\Xi_{c c}$ states with masses between 3390 and $3600 \mathrm{MeV} / c^{2}$ ($\Delta M\left(\Xi_{c c}-\Lambda_{c}^{+}\right)$between 1100 and $1310 \mathrm{MeV} / c^{2}$). The mass-difference sidebands in data are between 890 and $1100 \mathrm{MeV} / c^{2}$, and 1310 and $1520 \mathrm{MeV} / c^{2}$.

Approximately half of all background $\Xi_{c c}$ candidates are due to true Λ_{c}^{+}particles combined with random pion and kaon candidates from the rest of the event. This background is fit with a Gaussian shape in $M\left(\Lambda_{c}^{+}\right)$and a linear shape in $\Delta M\left(\Xi_{c c}-\Lambda_{c}^{+}\right)$. Another significant background contribution is from false Λ_{c}^{+}candidates. This source of background is fit with the product of a linear function in $M\left(\Lambda_{c}^{+}\right)$and a linear function in $\Delta M\left(\Xi_{c c}-\right.$ Λ_{c}^{+}).

MC simulations show that $\Xi_{c c}$ signals peak in three different ways in the $M\left(\Lambda_{c}^{+}\right)$versus $\Delta M\left(\Xi_{c c}-\Lambda_{c}^{+}\right)$plane. In most cases, the $\Xi_{c c}$ is reconstructed correctly and the measured values of both $M\left(\Lambda_{c}^{+}\right)$and $\Delta M\left(\Xi_{c c}-\Lambda_{c}^{+}\right)$lie close to the generated values; such candidates are fit with the product of two Gaussian distributions, one in each

FIG. 1. Distributions of the mass difference $\Delta M\left(\Xi_{c c}-\Lambda_{c}^{+}\right)$ for (a,b) $\Xi_{c c}^{+}$and (c,d) $\Xi_{c c}^{++}$candidates with (a,c) no p^{*} requirement and (b,d) $p^{*}>2.3 \mathrm{GeV} / c$. Data points with error bars correspond to candidates near the Λ_{c}^{+}mass: $2281<M\left(\Lambda_{c}^{+}\right)<$ $2291 \mathrm{MeV} / c^{2}$. Shaded histograms correspond to candidates in $M\left(\Lambda_{c}^{+}\right) \quad$ sidebands $\quad\left(2256<M\left(\Lambda_{c}^{+}\right)<2281 \mathrm{MeV} / c^{2} \quad\right.$ and $\left.2291<M\left(\Lambda_{c}^{+}\right)<2316 \mathrm{MeV} / c^{2}\right)$, scaled to represent the expected amount of non- Λ_{c}^{+}background in the data projections.
variable. The MC signal resolution for $\Delta M\left(\Xi_{c c}-\Lambda_{c}^{+}\right)$is $3.5 \mathrm{MeV} / c^{2}$ and $3.0 \mathrm{MeV} / c^{2}$ for $\Xi_{c c}^{+}$and $\Xi_{c c}^{++}$, respectively. When $\Xi_{c c}$ candidates are reconstructed from the correct tracks but the kaon and/or pion from the Λ_{c}^{+}decay is swapped with the kaon and/or pion from the $\exists_{c c}$ decay,

TABLE I. Efficiencies determined from $e^{+} e^{-} \rightarrow \Xi_{c c} X$ simulations. With the p^{*} criterion applied, the efficiency is calculated for $\Xi_{c c}$ baryons generated with p^{*} above $2.3 \mathrm{GeV} / c$ for the Λ_{c}^{+} modes and $2.0 \mathrm{GeV} / c$ for the Ξ_{c} modes. The first error is statistical; the second is systematic.

p^{*} Criterion	Particle	Λ_{c}^{+}Mode Eff. (\%)	Ξ_{c}^{0} Mode Eff. (\%)
Yes	$\Xi_{c c}^{++}$	$4.2 \pm 0.1 \pm 0.2$	$6.1 \pm 0.1 \pm 0.6$
Yes	$\Xi_{c c}^{+}$	$10.4 \pm 0.1 \pm 0.5$	$9.3 \pm 0.1 \pm 0.7$
No	$\Xi_{c c}^{++}$	$3.6 \pm 0.1 \pm 0.2$	$5.9 \pm 0.1 \pm 0.5$
No	$\Xi_{c c}^{+}$	$9.7 \pm 0.1 \pm 0.5$	$9.0 \pm 0.1 \pm 0.7$

the reconstruction has the correct $M\left(\Xi_{c c}\right)$ but an incorrect $M\left(\Lambda_{c}^{+}\right)$. These events are fit in both MC simulations and data with a Gaussian function in $\Delta M\left(\Xi_{c c}-\Lambda_{c}^{+}\right)+$ $M\left(\Lambda_{c}^{+}\right)=M\left(\Xi_{c c}\right)$ and are included as part of the signal. When the Λ_{c}^{+}is correctly reconstructed but is combined with an incorrect pion and/or kaon to form the $\Xi_{c c}$, the reconstruction has the correct $M\left(\Lambda_{c}^{+}\right)$but an incorrect $\Delta M\left(\Xi_{c c}-\Lambda_{c}^{+}\right)$. Such events are not distinguishable from Λ_{c}^{+}combinatoric background.

Each shape parameter describing the signal is constrained in the fit to lie within a range determined from the Monte Carlo simulation, allowing for possible inaccuracies in the simulation. The integral of the signal function is allowed to be negative. Efficiencies for the reconstruction of $\Xi_{c c}$ baryons decaying to $\Lambda_{c}^{+} K^{-} \pi^{+}$and $\Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+}$are calculated from the signal yields from fits to the MC simulated samples. These efficiencies are listed in Table I. The systematic uncertainties are due to inaccuracies in the simulation of tracking reconstruction (0.8% per track, added linearly) and particle identification (1.0% per kaon, 1.0% per pion, and 4.0% per proton). When setting upper limits on production cross sections, additional systematic uncertainties arise due to the uncertainties on the integrated luminosity (1.0\%) and $\sigma\left(e^{+} e^{-} \rightarrow \Lambda_{c}^{+} X\right) B\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)(4.7 \%)$.

We conduct searches for a signal within $10 \mathrm{MeV} / c^{2}$-wide regions around the $\Xi_{c c}^{+}$and $\Xi_{c c}^{++}$masses reported by SELEX, and within the $210 \mathrm{MeV} / c^{2}$-wide
region described earlier. The wide search region is divided into 21 sequential $10 \mathrm{MeV} / c^{2}$ search subregions. For each subregion, we perform a two-dimensional fit over a $100 \mathrm{MeV} / c^{2}$-wide range in mass difference centered on the subregion, constraining the mean of the Gaussian signal function to lie within that subregion.

The significance of any potential signal is determined through the use of parametrized MC simulations. Samples of pairs of variables $\left(M\left(\Lambda_{c}^{+}\right), \Delta M\left(\Xi_{c c}-\Lambda_{c}^{+}\right)\right)$are generated according to the background shapes measured in data, with no signal contribution. The distributions of $M\left(\Lambda_{c}^{+}\right)$ versus $\Delta M\left(\Xi_{c c}-\Lambda_{c}^{+}\right)$from these simulations are then searched in the same manner as in data. A significance measure N / σ_{N}, where N is the fitted number of signal candidates and σ_{N} is the uncertainty on this number, is determined for each fit. In order to statistically combine the results of the 21 fits into one search, only the largest of the 21 significance measures is used. The significance measure from data is compared to the distribution of significance measures from the MC simulations that represent those data. This comparison gives the probability of measuring this particular value of N / σ_{N} or higher in data under the hypothesis that no $\Xi_{c c}$ are produced.

None of the Λ_{c}^{+}decay mode searches finds evidence for $\Xi_{c c}$. The most statistically significant signal is for a $\Xi_{c c}^{+}$ baryon with $\Delta M\left(\Xi_{c c}^{+}-\Lambda_{c}^{+}\right)$between $1250 \mathrm{MeV} / c^{2}$ and $1260 \mathrm{MeV} / c^{2}$, when candidates are required to have $p^{*}>$ $2.3 \mathrm{GeV} / c$. With a significance measure of $N / \sigma_{N}=$ $66 / 24$, we find that there is an 8% probability that background alone could produce this signal. This corresponds to a significance of 1.4σ, which does not constitute evidence for the $\Xi_{c c}^{+}$baryon.

Using efficiencies $(\boldsymbol{\epsilon})$ listed in Table I and integrated luminosity (L) of $(232 \pm 2) \mathrm{fb}^{-1}$, we extract values for the upper limit on the production cross section times branching fraction(s) (\mathcal{S}) directly from negative-log-likelihood functions. A conversion factor $\mathcal{F}=L \epsilon$ and its uncertainty $\sigma_{\mathcal{F}}$ are incorporated in a Gaussian extension to the likelihood function (\mathcal{L}) so that all systematic uncertainties are included in the results. \mathcal{L} takes the form

TABLE II. The 95%-confidence-level upper limits on measured rates for the production of $\Xi_{c c}$ baryons with and without a p^{*} requirement of $2.3 \mathrm{GeV} / c$ for Λ_{c}^{+}modes and $2.0 \mathrm{GeV} / c$ for the Ξ_{c} modes. The columns labeled $N^{+(+)}$give the upper limits on the number of signal $\Xi_{c c}^{+(+)}$baryons. $\sigma^{+(+)}$denotes the production cross section $\sigma\left(e^{+} e^{-} \rightarrow \Xi_{c c}^{+(+)} X\right) ; \sigma$ in the denominator indicates that the cross section has been normalized to $\sigma\left(e^{+} e^{-} \rightarrow \Lambda_{c}^{+} X\right) B\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)$. The factor B in a column heading signifies that the values in the column correspond to a cross section times the branching fractions $B\left(\Xi_{c c}^{+(+)} \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+}\left(\pi^{+}\right)\right) B\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)$for decay modes with Λ_{c}^{+}and $B\left(\Xi_{c c}^{+(+)} \rightarrow \Xi_{c}^{0} \pi^{+}\left(\pi^{+}\right)\right) B\left(\Xi_{c}^{0} \rightarrow \Xi^{-} \pi^{+}\right)$for decay modes with Ξ_{c}^{0}. For each wide mass range, the upper limit corresponds to the maximum upper limit over the range.

	Upper Limits for $\Xi_{c c} \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+}\left(\pi^{+}\right)$						Upper Limits for $\Xi_{c c} \rightarrow \Xi_{c}^{0} \pi^{+}\left(\pi^{+}\right)$			
	N^{+}	$\sigma^{+} B$	$\left(\sigma^{+} / \sigma\right) B$	N^{++}	$\sigma^{++} B$	$\left(\sigma^{++} / \sigma\right) B$	N^{+}	$\sigma^{+} B$	N^{++}	$\sigma^{++} B$
Wide Mass Range	328	14.5 fb	13.3×10^{-4}	199	23.9 fb	22.0×10^{-4}	58	4.3 fb	58	6.6 fb
Wide Mass Range, p^{*} Req.	106	4.4 fb	5.6×10^{-4}	54	5.5 fb	6.9×10^{-4}	41	3.0 fb	28	3.1 fb
SELEX Mass	169	7.5 fb	6.9×10^{-4}	91	10.9 fb	10.0×10^{-4}	26	2.0 fb	49	5.6 fb
SELEX Mass, p^{*} Req.	53	2.2 fb	2.7×10^{-4}	31	3.2 fb	4.0×10^{-4}	18	1.3 fb	31	3.4 fb

$$
\mathcal{L}=e^{-\left(N-\mathcal{S} f-n_{b}\right)} e^{-(\mathcal{F}-f)^{2} / 2 \sigma_{\mathcal{F}}^{2}} \prod_{i}^{N} P\left(\vec{x}_{i} ; \mathcal{S}, f, n_{b}, \vec{a}\right)
$$

where N is the total number of fitted events; $\mathcal{S} f=n_{s}$ and n_{b} are the fitted number of signal and background events, respectively; f is the fitted conversion factor from \mathcal{S} to n_{s}; \vec{a} are shape parameters; and P is the probability function for the data point \vec{x}_{i}. The value of \mathcal{S} for which $-\ln \mathcal{L}$ is 1.35 units above the minimum value for which \mathcal{S} is positive is interpreted as the 95%-confidence-level upper limit. These limits are listed in Table II.

To facilitate comparison with the production rate of Λ_{c}^{+} and to take advantage of the cancellation of the $\Lambda_{c}^{+} \rightarrow$ $p K^{-} \pi^{+}$branching fraction, we also normalize the upper limits to $\sigma\left(e^{+} e^{-} \rightarrow \Lambda_{c}^{+} X\right) B\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)$, measured with $22 \mathrm{fb}^{-1}$ of data collected at $\sqrt{s} \sim 10.54 \mathrm{GeV}$; these upper limits are also listed in Table II. The p^{*} criterion that is applied to the $\Xi_{c c}$ candidates is also applied to the Λ_{c}^{+} candidates in the normalization mode.

III. SEARCH FOR DECAYS TO $\boldsymbol{\Xi}_{\boldsymbol{c}}^{\boldsymbol{0}} \boldsymbol{\pi}^{+}\left(\boldsymbol{\pi}^{+}\right)$

In the search for $\Xi_{c c}^{+} \rightarrow \Xi_{c}^{0} \pi^{+}$and $\Xi_{c c}^{++} \rightarrow \Xi_{c}^{0} \pi^{+} \pi^{+}$ decays, the Ξ_{c}^{0} is detected in the decay chain $\Xi_{c}^{0} \rightarrow$ $\Xi^{-} \pi^{+}, \Xi^{-} \rightarrow \Lambda \pi^{-}, \Lambda \rightarrow p \pi^{-}$. We search for $\Xi_{c c}$ states with masses between 3370 and $3770 \mathrm{MeV} / c^{2}\left(\Delta M\left(\Xi_{c c}-\right.\right.$ Ξ_{c}^{0}) between 900 and $1300 \mathrm{MeV} / c^{2}$). The mass-difference sidebands in data are $800<\Delta M\left(\Xi_{c c}-\Xi_{c}^{0}\right)<$ $900 \mathrm{MeV} / c^{2}$ and $1300<\Delta M\left(\Xi_{c c}-\Xi_{c}^{0}\right)<1400 \mathrm{MeV} / c^{2}$.

For Λ and Ξ^{-}candidates, we require a minimum signed three-dimensional flight distance of +2.0 cm and +0.5 cm , respectively, where the flight distance is the projection of the vector from the primary vertex to the decay point, onto the momemtum vector of the candidate. Λ candidates are required to be within $\pm 3.6 \mathrm{MeV} / c^{2}(\pm$ 3σ) of the world average mass [26]. Ξ^{-}candidates are required to be within $\pm 5.4 \mathrm{MeV} / c^{2}(\pm 3 \sigma)$ of the world average mass difference $\Delta M\left(\Xi^{-}-\Lambda\right)$, and Ξ_{c}^{0} candidates are required to be within $\pm 14 \mathrm{MeV} / c^{2}(\pm 2 \sigma)$ of the world average mass difference $\Delta M\left(\Xi_{c}^{0}-\Xi^{-}\right)$[26]. For all candidate baryons, we require the vertex fit to have a χ^{2} probability greater than 0.01%. The number of reconstructed Ξ_{c}^{0} signal events is approximately 11700. Figure 2 shows the distributions of mass difference for all $\Xi_{c c}$ candidates that satisfy these criteria, with no p^{*} requirement and with $p^{*}>2.0 \mathrm{GeV} / c$. The reconstruction efficiencies are given in Table I.

Systematic uncertainties arise mainly from possible inaccuracies in the simulation of track reconstruction and particle identification (5% for $\Xi_{c c}^{+}$and 6% for $\Xi_{c c}^{++}$), vertex quality (6%), and mass and mass-difference resolutions (1%); the values in parentheses are the relative uncertainties in these efficiencies. Other sources include uncertainties in the total luminosity (1.0%) and in the branching fractions for $\Lambda \rightarrow p \pi^{-}(0.8 \%)$ and $\Xi^{-} \rightarrow$ $\Lambda \pi^{-}$(0.03\%).

To search for a signal in the $400 \mathrm{MeV} / c^{2}$-wide search region, we fit the mass-difference distribution with two Gaussian functions, with common means and fixed widths, to represent the signal, and a first-order polynomial for the background. The values of the Gaussian widths are determined from the MC simulation; the root-mean-squared

FIG. 2. Distributions of the mass difference $\Delta M\left(\Xi_{c c}-\Xi_{c}^{0}\right)$ for (a,b) $\Xi_{c c}^{+}$and (c,d) $\Xi_{c c}^{++}$candidates with (a,c) no p^{*} requirement and (b,d) $p^{*}>2.0 \mathrm{GeV} / c$. Data points with error bars correspond to $\Xi_{c c}$ candidates reconstructed using Ξ_{c}^{0} candidates near the Ξ_{c}^{0} mass, $2457<M\left(\Xi_{c}^{0}\right)<2485 \mathrm{MeV} / c^{2}$; the shaded histograms correspond to $M\left(\Xi_{c}^{0}\right)$ sidebands $\left(2451<M\left(\Xi_{c}^{0}\right)<\right.$ $2457 \mathrm{MeV} / c^{2}$ and $\left.2487<M\left(\Xi_{c}^{0}\right)<2501 \mathrm{MeV} / c^{2}\right)$ scaled to represent the expected amount of non- Ξ_{c}^{0} background in the $M\left(\Xi_{c}^{0}\right)$ signal region.
B. AUBERT et al.
deviation for $\Delta M\left(\Xi_{c c}^{+}-\Xi_{c}^{0}\right)$ is $5.5 \mathrm{MeV} / c^{2}$ and for $\Delta M\left(\Xi_{c c}^{++}-\Xi_{c}^{0}\right)$ it is $4.2 \mathrm{MeV} / c^{2}$. We conduct 50 fits with the mean of the Gaussian signal function constrained to lie in $5010-\mathrm{MeV} / c^{2}$ ranges, each of which overlaps neighboring ranges by $2 \mathrm{MeV} / c^{2}$. Using a MC approach, we calculate the upper limit on the number of signal events using the statistically most significant of the 50 fits. To do this, we generate N signal events according to the Gaussian signal function and background events according to a firstorder polynomial, where the number of background events is determined from the mass-difference sidebands. We fit the resulting MC distribution as described above for data, and record the number of signal events S for the statistically most significant fit. We repeat this process 10000 times, varying N by the fractional systematic uncertainty on efficiency. We then find the value F for which only 5% of the trials have $S<F$. We repeat the above process starting with different values of N to find the value of N for which F is the number of signal events found in the most significant fit in data. This value of N is the 95% CL upper limit on the number of events, shown in Table II for both $\Xi_{c c}^{+}$and $\Xi_{c c}^{++}$, with and without p^{*} requirements. We also present in Table II the limits obtained when we explicitly search for the states observed by SELEX. For comparison, the measured rate for the singly charmed Ξ_{c} baryon in BABAR is $\sigma\left(e^{+} e^{-} \rightarrow \Xi_{c}^{0} X\right) B\left(\Xi_{c}^{0} \rightarrow \Xi^{-} \pi^{+}\right)=$ $(388 \pm 39 \pm 41) \mathrm{fb}$ [27].

PHYSICAL REVIEW D 74, 011103(R) (2006)

V. SUMMARY

In conclusion, we have searched for doubly charmed baryons in $e^{+} e^{-}$annihilations at or near a center-of-mass energy of 10.58 GeV . We do not observe any significant signals for the $\Xi_{c c}^{+}$baryon in the decay modes $\Lambda_{c}^{+} K^{-} \pi^{+}$ and $\Xi_{c}^{0} \pi^{+}$, or for the $\Xi_{c c}^{++}$baryon in the decay modes $\Lambda_{c}^{+} K^{-} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{+}$and $\Xi_{c}^{0} \pi^{+} \boldsymbol{\pi}^{+}$.

ACKNOWLEDGMENTS

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support $B A B A R$. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), Marie Curie EIF (European Union), the A.P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation.
[1] Throughout this paper, whenever a particle or decay mode is given, the charge conjugate is also implied.
[2] S. Bianco, F. L. Fabbri, D. Benson, and I. Bigi, Riv. Nuovo Cimento 26N7, 1 (2003).
[3] A. De Rujula, H. Georgi, and S. L. Glashow, Phys. Rev. D 12, 147 (1975).
[4] S. Fleck and J. M. Richard, Prog. Theor. Phys. 82, 760 (1989).
[5] R. Roncaglia, D. B. Lichtenberg, and E. Predazzi, Phys. Rev. D 52, 1722 (1995).
[6] S. S. Gershtein, V. V. Kiselev, A. K. Likhoded, and A.I. Onishchenko, Mod. Phys. Lett. A 14, 135 (1999).
[7] S. P. Tong, Y. B. Ding, X. H. Guo, H. Y. Jin, X. Q. Li, P. N. Shen, and R. Zhang, Phys. Rev. D 62, 054024 (2000).
[8] R. Lewis, N. Mathur, and R. M. Woloshyn, Phys. Rev. D 64, 094509 (2001).
[9] C. Itoh, T. Minamikawa, K. Miura, and T. Watanabe, Phys. Rev. D 61, 057502 (2000).
[10] B. Guberina, B. Melic, and H. Stefancic, hep-ph/9911241.
[11] V. V. Kiselev, A.K. Likhoded, and A.I. Onishchenko, Phys. Atom. Nucl. 62, 1940 (1999).
[12] J.D. Bjorken (private communication).
[13] V. V. Kiselev, A. K. Likhoded, and M. V. Shevlyagin, Phys. Lett. B 332, 411 (1994).
[14] V. V. Braguta, V. V. Kiselev, and A.E. Chalov, Phys. At.

Nucl. 65, 1537 (2002).
[15] J. P. Ma and Z. G. Si, Phys. Lett. B 568, 135 (2003).
[16] K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 89, 142001 (2002).
[17] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 72, 031101 (2005).
[18] M. Mattson et al. (SELEX Collaboration), Phys. Rev. Lett. 89, 112001 (2002).
[19] A. Ocherashvili et al. (SELEX Collaboration), Phys. Lett. B 628, 18 (2005).
[20] J. S. Russ (SELEX Collaboration), hep-ex/0209075.
[21] S. P. Ratti (FOCUS Collaboration), Nucl. Phys. B, Proc. Suppl. 115, 33 (2003).
[22] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[23] T. Sjostrand, Comput. Phys. Commun. 82, 74 (1994).
[24] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
[25] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[26] S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004).
[27] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 95, 142003 (2005).

[^0]: ${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
 ${ }^{2}$ Universitat de Barcelona, Facultat de Fisica Dept. ECM, E-08028 Barcelona, Spain
 ${ }^{3}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
 ${ }^{4}$ Institute of High Energy Physics, Beijing 100039, China
 ${ }^{5}$ University of Bergen, Institute of Physics, N-5007 Bergen, Norway
 ${ }^{6}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
 ${ }^{7}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
 ${ }^{8}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
 ${ }^{9}$ University of Bristol, Bristol BS8 1TL, United Kingdom
 ${ }^{10}$ University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
 ${ }^{11}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
 ${ }^{12}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
 ${ }^{13}$ University of California at Irvine, Irvine, California 92697, USA
 ${ }^{14}$ University of California at Los Angeles, Los Angeles, California 90024, USA
 ${ }^{15}$ University of California at Riverside, Riverside, California 92521, USA
 ${ }^{16}$ University of California at San Diego, La Jolla, California 92093, USA
 ${ }^{17}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
 ${ }^{18}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
 ${ }^{19}$ California Institute of Technology, Pasadena, California 91125, USA
 ${ }^{20}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
 ${ }^{21}$ University of Colorado, Boulder, Colorado 80309, USA
 ${ }^{22}$ Colorado State University, Fort Collins, Colorado 80523, USA
 ${ }^{23}$ Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany
 ${ }^{24}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
 ${ }^{25}$ Ecole Polytechnique, LLR, F-91128 Palaiseau, France

[^1]: *Also at Laboratoire de Physique Corpusculaire, Clermont-Ferrand, France
 ${ }^{\dagger}$ Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
 ${ }^{\ddagger}$ Also with Università della Basilicata, Potenza, Italy

