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Abstract

Variational sampling and optimal design of rare nonequilibrium molecular dynamics

by

Avishek Das

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor David T. Limmer, Chair

Nonequilibrium driving can independently tune the structure and dynamics of molecular and
colloidal systems, resulting in novel assembly and transport phenomena that are not found
in equilibrium. Exploring nonequilibrium dynamics through numerical simulations is crucial
towards understanding the working mechanisms of functional inorganic or biological materi-
als. However, behavior of dynamical observables in such systems at experimental timescales
is often dominated by statistically rare fluctuations that are poorly sampled in simulated
trajectories. Rare event sampling algorithms that assume a Boltzmann distribution of con-
figurations and detailed balance for dynamics cannot be applied out of thermal equilibrium,
thus limiting available techniques that can efficiently sample nonequilibrium rare events.

In this thesis we have developed novel variational algorithms for the sampling and design of
rare nonequilibrium molecular dynamics trajectories by application of an optimized driving
force. This approach relies on the equivalence of a trajectory ensemble conditioned on a rare
event to occur to an ensemble driven with the optimal force where the rare event occurs
typically. For systems with many interacting degrees of freedom, we numerically learn the
optimal force within arbitrary basis sets by statistically estimating explicit gradients of tra-
jectory probability. This method allows us to efficiently compute large deviation functions
of dynamical observables in nonequilibrium steady-states, and to automate the inverse de-
sign of self-assembling colloids and molecular machines for desired structure and dynamics.
We have finally augmented our approach with reinforcement learning techniques, resulting
in a new paradigm to efficiently compute nonequilibrium reaction rates, Variational Path
Sampling. Our approach of using optimized forces to improve sampling of nonequilibrium
trajectories is versatile and can give access to rare reactive fluctuations and dynamical phases
that cannot be sampled otherwise.
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Chapter 1

Introduction

1.1 Nonequilibrium rare events in physics and

chemistry

The past few decades have seen rapid growth in the capability of computer simulations to
address questions about the microscopic dynamics of diverse chemical and biological systems
across multiple length and time scales. Computer simulations have been used to elucidate re-
action pathways for physical processes like dissolution of a solute [1], for deciphering reaction
mechanisms of atomic and molecular rearrangements in solvents [2], to understand energy,
charge and mass transport through electrochemical cells, microfluidic devices and crystalline
and amorphous solids [3, 4, 5, 6, 7], and to explore assembly and ordering phenomena in
inorganic and biological materials [8, 9, 10]. Even in classical limits where the effects of
quantum coherence are negligible, dynamics in a condensed phase is often collective, involv-
ing interactions of a given system of interest with thermal, mechanical or chemical baths
that can inject noise and memory into the system’s dynamics [11]. The complexity of such
dynamics at the nanoscale makes any analytical treatment prohibitive, and hence conclu-
sions about reaction mechanisms, transport properties and inverse design of materials are
often drawn from computer simulations. Nanoscale dynamical information obtained from
computer simulations are also extensively used to build coarse-grained effective models of
materials, allowing a reduced description at longer length and time scales [12]. But infer-
ring such high-level description from the microscopic dynamics of molecules faces the crucial
challenge of sampling rare dynamical events.

Rare events in molecular simulations often give rise to complicated nonlinear dynam-
ics that are of broad interest [13]. Molecular dynamics simulations involve integrating a
known equation of motion, such as Newton’s equations, in the presence of many degrees of
freedom. For temporal integration we choose a quadrature timestep that is usually smaller
than the fastest modes of motion in the system, that of atomic translations and molecular
rotations in the sub-picosecond scale. However, condensed phase environments stabilize mul-
tiple metastable states in molecules, and crucial dynamics like the folding of a protein from
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its secondary to tertiary structure, or the nucleation of a stable phase from a metastable
one, occur at timescales many orders of magnitude longer than molecular motion [14, 15].
This is not due to the progress along these reaction coordinates being inherently slow, but
arises from the presence of kinetic bottlenecks with narrow funnels of entry that are only
rarely encountered. As a result, these dynamics are only observed in molecular simulations
with a low probability even though they drastically alter the properties of the system on
experimental timescales. Developing special numerical techniques to sample such rare but
interesting events with correct statistical likelihood in molecular dynamics simulations has
occupied much of the efforts of statistical physicists working in physical chemistry problems.
A majority of these techniques assume the system to be in thermal equilibrium, which simpli-
fies the fluctuations of observables due to the configurational distribution being Boltzmann.
This however limits their applicability to driven systems that are ubiquitously encountered
and exploited in functional chemistry and biology.

A system kept away from thermal equilibrium by hindering its relaxation or through a
continuous supply of energy is subject to fewer physical constraints than one evolving within
an equilibrium state. As a consequence, the application of external forces or the internal
consumption of energy can produce structures and responses without equilibrium equivalent
[16, 17, 18]. Driving a system dissipatively can decouple its dynamical constraints from
its structure, and thus stabilize otherwise transient states, or generate dynamical fluxes be-
tween otherwise non-reactive structures. Nonequilibrium driving can assist molecular motors
to transduce energy and move ions against thermodynamic gradients [19], stabilize clusters
of motile bacteria without attractive interactions [20], and overcome thermodynamic limits
on the selectivity of assembly and control [21, 22]. A majority of manufacturing processes
in industrial chemistry, synthesis protocols for nanomaterials, geophysics and geochemistry
of climate fluctuations, and biological reactions that govern living systems occur in nonequi-
librium conditions [23, 24, 25, 26]. Advances in the theory and modeling of nonequilibrium
steady-states, borrowing tools from probability theory and stochastic calculus [19, 27, 28],
have resulted in an increased interest in trying to understand the behavior in systems out of
equilibrium and leverage their versatility to design new functional materials [20, 29, 30, 31,
22, 32, 33]. Thermodynamic partition function formalism has been generalized to ensembles
of trajectories via large deviation theory [34] and transport theories have been developed
to quantify linear and higher-order response functions to nonequilibrium perturbations [35,
36]. The second law of thermodynamics has also been generalized to far-from-equilibrium
dynamics through fluctuation theorems that relate fluctuations of nonequilibrium structure
and dynamics to thermodynamic quantities like entropy or work [37, 38, 39], and thermody-
namic uncertainty relations that always bound current fluctuations [40, 41].

Despite progress in these theoretical directions, quantifying emergent nonequilibrium be-
havior with computer simulations is currently hampered by the lack of robust tools to sample
the rare fluctuations required to estimate response functions, overcome kinetic bottlenecks,
and reach the timescales of experimental relevance. Commonly used numerical methods for
sampling nonequilibrium dynamics rely on stratifying trajectory ensembles to build up rare
events stepwise, but do not apply additional importance sampling forces that can gener-
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ate inherently uncorrelated statistical realizations. In the present work we have developed
variational techniques to sample and design rare dynamical fluctuations for a generic class
of stochastic systems that violate detailed balance. Our approach relies on optimizing an
additional driving force that reproduces the unbiased rare fluctuations of the unperturbed
system. Our numerical methods have allowed us to learn this force in complex molecular
and colloidal systems within arbitrary basis sets and efficiently extract the statistics and
mechanism of nonequilibrium rare events. Chapter 1 briefly discusses the trajectory en-
semble formalism to quantify rare events in transient and steady-state trajectories, and the
backgrounds of large deviations and reaction rate theory that our formalism is based on.
In Chapter 2 we develop a variational algorithm for the use of optimized control forces to
sample rare current and activity fluctuations of particles in a nonequilibrium steady-state on
a one-dimensional model potential. Chapter 3 applies this algorithm towards the automated
discovery of inverse design principles for DNA-labeled colloids in a shear flow. In Chapter
4 we then develop more efficient optimization algorithms based on reinforcement learning
tools to solve finite and infinite duration variational problems. Finally, Chapter 5 applies
this approach to develop a new algorithm to compute reaction rates in far-from-equilibrium
systems like active matter, that we call Variational Path Sampling (VPS).

1.2 Langevin dynamics and trajectory ensembles

We aim to temporally integrate the equations of motion at molecular and colloidal scales
to simulate rare dynamics of systems of interest. Conventional molecular dynamics in an
isolated system is described by Newton’s equations of motion that are integrated with sym-
plectic schemes that conserve energy, like the velocity Verlet algorithm [42]. However, driving
a system with external forces performs work on it, and in order to relax into a steady-state,
the excess energy must be discarded by the system as dissipation into a bath. Driven systems
are thus often modeled as open systems where energy is not conserved, and where there is
on average a finite dissipative flow between the system and the bath, resulting in nonequi-
librium. Moreover, dynamics in a condensed phase can often be simplified by interpreting
the interesting part of the system to be open and in contact with the rest of the system as
a thermal bath, which only affects the interesting part through frictional forces and Brow-
nian noise. This dynamics could be interpreted as a method to thermostat the system at
a fixed temperature, or as an approximation to the noisy diffusive dynamics encountered
by molecules and colloids suspended in liquid solvents or in contact with a large number
of thermalized vibrational excitations. We will describe our nonequilibrium variational al-
gorithms only in the context of this Langevin dynamics. Generalization to other kinds of
stochastic dynamics is straightforward as long as every trajectory has a closed form nonzero
probability.
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We consider dynamics described by a Langevin equation of the form [11],

ṙi(t) = vi(t) (1.1)

miv̇i(t) = Fi[r
N(t)]− γivi(t) + ηi(t) (1.2)

where ṙi and v̇i are the rate of change of the i-th particle’s position and velocity, γi is the
corresponding friction coefficient, and Fi[r

N(t)] is the sum of all conservative and noncon-
servative forces exerted on the i-th particle that depends on the full configuration of the
N -particle system, rN . The final term, ηi(t), represents a thermal bath-induced white-noise,
as a Gaussian random number with zero mean, ⟨ηiα(t)⟩ = 0, and delta-correlated in time,

⟨ηiα(t)ηjβ(t′)⟩ = 2γikBTδijδαβδ(t− t′) (1.3)

for component (α, β), with kBT being Boltzmann’s constant times the temperature. The
relation between the variance of the Gaussian white noise with the friction coefficient of
the bath derives from the second fluctuation-dissipation theorem. Given the approximate
diameter of a particle is σ and it is suspended in the bath with friction γ, the time taken to
diffuse its own length is given by t∗ = σ2/D, where Di = kBT/γ is the diffusion constant.
In most cases we will consider the high-friction limit of the Langevin equation, formally
taken as m/γt∗ → 0, where the particles lose their inertia and instead are governed by the
overdamped Langevin equation

γiṙi(t) = Fi[r
N(t)] + ηi(t) (1.4)

The overdamped equation can model the dynamics of a wide range of colloidal systems
including nanocrystals, proteins and polymers in a condensed phase with a sufficiently large
bath. On the other hand, describing inertial dynamics like vibrations and hydrodynamic
effects require using the full Langevin equation in an underdamped regime. We note that the
underdamped equation could be considered formally to be a generalized overdamped equation
for all dynamical coordinates, in the joint phase space of position and velocity, with the latter
being in contact with a bath at zero friction. Hence we will do most discussions of numerical
techniques developed here in the context of the overdamped Langevin equations without loss
of generality. Similarly, generalizations to systems with state-dependent diffusion matrices
are straightforward from our formalism.

The Langevin equation is simulated by discretizing time into integration timesteps. Given
ṙ(t)dt is a stochastic differential, care must be taken with respect to discretizing time-
integrals and connecting them to physical observables. We will follow in most cases the
Ito formalism, where the integration of the dynamics is interpreted as

γiri(t+∆t) = γiri(t) + Fi[r
N(t)]∆t+

√
2γikBT∆tN t

i (1.5)

where N t
i is a vector of independent Gaussian random numbers with zero mean and unit

variance. Here each step taken in r is fully defined by the forces evaluated at the previous
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value of r. This should be contrasted with the Stratonovich convention,

γiri(t+∆t) = γiri(t) + Fi

[
rN(t) + rN(t+∆t)

2

]
∆t+

√
2γikBT∆tN t

i, (1.6)

where the dynamical equation has to be solved self-consistently at every timestep. Choosing
either of the two conventions results in different dynamics if the pre-factor of the Gaussian
noise depends on the configurations r. The Stratonovich formalism makes differential cal-
culus easier as the chain rule of differentiation holds unchanged, while the Ito formalism
simplifies integral calculus as the change of r(t) in every step is uncorrelated from the noise
N t
i . In our work we will use the Ito formalism for integrating the Langevin equation as well

as integrating all stochastic integrals for physical observables. With this convention, the time
evolution of the probability distribution of the configurations {rN}, denoted as P (rN , t), is
described in forward direction by the Fokker-Planck equation [43]

∂P (rN , t)

∂t
=
∑
i

[
−∇i ·

(
Fi[r

N(t)]P (rN , t)
)
+Di∇2

iP (r
N , t)

]
(1.7)

This equation can be derived from the Langevin dynamics by a Kramers-Moyal expansion,
a moment expansion of the transition probabilities due to the stochastic noise [43]. The
Fokker-Planck equation, also known as the forward Kolmogorov equation, along with bound-
ary conditions describes the forward time evolution of the full probability distribution of the
stochastic dynamics arising from Eq. 1.4. In principle, the Fokker-Planck equation formally
predicts the probability of all rare dynamics that the Langevin dynamics can generate. In
practice, it is often not possible to obtain analytical or even numerical solutions from the
Fokker-Planck equation when the system size is large. In many-body systems with identi-
cal particles, the Fokker-Planck equation is often hierarchically coarse-grained to describe
effective evolution of one or two-body densities [44].

Dynamical events of interest simulated with the Langevin equation also manifest in the
ensemble of trajectories. We will denote a trajectory as a stochastic object X(tf ) defined as
a sequence of configurations generated from a Langevin dynamics of duration tf , X(tf ) ≡
{rN(0), rN(∆t), rN(2∆t), . . . , rN(tf )}. An ensemble generated by Langevin trajectories with
all possible statistical realizations of the Gaussian noise will be referred to as the trajectory
ensemble associated with the dynamics. For any particular trajectory with a pre-specified
initial condition, every step has been taken with a Gaussian probability exp(−N 2

i /2)/
√
2π.

We write the total trajectory probability in the fine discretization limit as [45]

P [X] ∝ p(rN(0)) exp

(∫ tf

0

dt
∑
i

(γiṙi − Fi)
2

4γikBT

)
(1.8)

where the normalization constant is formally infinite. The exponent is referred to as the
stochastic action associated with each trajectory, in analogy with the path-integral descrip-
tion of Schrödinger’s wave mechanics. All three levels of descriptions of the stochastic dy-
namics of our system of interest, through configurations, densities and trajectories as in
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Equations 1.4, 1.7 and 1.8, are fully equivalent, and we will often draw connections between
the three to fully characterize the physical and chemical mechanisms of rare fluctuations.
However, the fact that the full trajectory probability has a closed form expression in terms
of the applied forces, even in cases where the forces are nonconservative and the dynamics
is out of equilibrium, makes our approach of reweighting trajectories with an optimal con-
trol force viable. Hence we will be using trajectory ensembles constructed from molecular
dynamics simulations to apply our variational algorithms.

1.3 Steady-state rare events: large deviation theory

The statistics of persistent rare events in nonequilibrium steady-states can be analyzed using
large deviation theory. Large deviation theory is a branch of probability dealing with the
exponential scaling of large fluctuations of the sample mean or empirical mean of a large
number of stochastic observables. This can be thought of as a generalization of the central
limit theorem in probability towards describing large fluctuations of sample means, or large
deviations. The central components in large deviation theory are the rate function, which
describes the log-likelihood of the sample mean, and the scaled cumulant generating function
for its probability distribution [46]. These two are jointly referred to as large deviation
functions and, in the case of the probability distribution being convex and differentiable,
are connected through the Legendre-Fenchel transform, a generalization of the Legendre
transform used for thermodynamic free energies. In recent years, the classical theory for
constructing thermodynamic free energies from statistical mechanical partition functions
has been reinterpreted with the language of large deviation theory, with the thermodynamic
system size being the large deviation limit [34]. This has allowed interpreting steady-state
trajectory ensembles to also be in the (temporal) large deviation limit, and has provided large
deviation functions as dynamical free energies for specific observables of interest, encoding
stability and response in arbitrarily far-from-equilibrium steady-states. In this section we
will review the large deviation formalism for trajectory ensembles and its use to obtain
statistics of rare events.

For ease of notation we will denote all coordinates of the system, rN(t), sometimes simply
as r. For a specific trajectory, X(tf ) = {r(0), ..., r(tf )} spanning an observation time, tf , we
are interested in fluctuations of time-averaged dynamical observables Atf of the form

Atf [X(tf )] =
1

tf

∫ tf

0

dt f [r(t)] +
1

tf

∫ tf

0

dtg[r(t)] · ṙ(t) (1.9)

where f is a scalar function and g is a vector function with components, gi, with the second
term being evaluated in the Ito sense [47]. Many physically relevant observables like the par-
ticle density, particle current, and entropy production can all be expressed in this trajectory
averaged form. We will be interested in the statistics of rare time-extensive fluctuations, the
large deviations, of Atf in the long time limit, tf →∞.
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Figure 1.1: Large deviation principle for observable At arising from Brownian diffusion. a)
Trajectories of the time-integrated observable tAt starting from the same point diverge in
time with a variance proportional to t over times longer than intrinsic correlation times of
the system. c) Trajectories of the time-averaged analogue At of the same observable. The
probabilities concentrate around the mean value with asymptotic scaling as exponential in
time multiplied by the negative of the rate function I(At).

We assume that in the long time limit, the probability distribution of Atf satisfies a large
deviation principle, with a rate function, or log likelihood, I(A), defined by [34]

I(A) = − lim
tf→∞

1

tf
ln⟨δ(A− Atf [X(tf )])⟩ (1.10)

where the angular brackets denote a trajectory average

⟨δ(A− Atf [X(tf )])⟩ =
∫
D[X(tf )]δ(A− Atf [X(tf )])P [X(tf )] (1.11)

and P [X(tf )] denotes the path probability associated with trajectoryX(tf ). We will consider
thermalized systems that have exponentially decaying correlation functions and thus are ex-
pected to obey the large deviation principle. The large deviation principle for time-integrated
and time-averaged observables in the long time limit is illustrated in Fig. 1.1.

The long time behavior of Atf can also be characterized by its scaled cumulant generating
function (SCGF), defined as

Ψ(s) = lim
tf→∞

1

tf
ln
〈
e−stfAtf

〉
(1.12)

where s is a counting parameter conjugate to Atf , and denotes the extent of biasing or tilting
on the typical value of Atf . Larger positive or negative values of s probe rarer fluctuations.
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This is clear by noting that the derivatives of Ψ(s) report on the cumulants of Atf , such as

dΨ(s)

ds
= −⟨Atf ⟩, and

d2Ψ(s)

ds2
= tf⟨(δAtf )2⟩ (1.13)

where δA = A− ⟨A⟩ are the fluctuations of A. We refer to the rate function, I(A), and the
SCGF, Ψ(s), collectively as the large deviation functions. When the rate function is convex,
it can be obtained from the SCGF using a Legendre-Fenchel transform

I(A) = inf
s
[−sA−Ψ(s)] (1.14)

where inf refers to an infimum taken over all possible values of s. Together, the large
deviation functions encode stability of dynamical phases in nonequilibrium systems [48, 49,
50, 51, 52], characterize complex dynamical behavior [53, 54, 55, 56, 57] and describe linear
and nonlinear multivariate response of nanoscale systems to nonequilibrium perturbations
[58, 36, 59, 60, 61]. The SCGF defined in the trajectory ensemble picture can also be derived
from the eigenspectrum of a tilted backward Fokker-Planck propagator defined as

Ls = −sf +
∑
i

[s
2
(∇i · gi)gi + Fi · (∇i − sgi)

+γikBT (∇2
i − s(∇i · gi)− 2sgi ·∇i + s2g2

i )
]

(1.15)

where we have suppressed the arguments of Fi, gi, and f for compactness. This operator
can be derived similar to the Fokker-Planck equation from the Kramers-Moyal expansion
for infinitesimal propagation of ⟨exp(−stfAf )⟩ with increasing tf [62]. We have adopted the
form of the operator used in [63] towards the Ito definition of Atf rather than Stratonovich,
by adding the first term in the square brackets in Eq. 1.15. This operator satisfies an
eigenvalue equation

Lsϕs(r
N) = Ψ(s)ϕs(r

N) (1.16)

where Ψ(s) and ϕs(r
N) are respectively the largest real eigenvalue and corresponding right

eigenvector of Ls, which follows from the Perron-Frobenius theorem and the long time limit of
the SCGF. Constructing and solving this eigenvalue equation in a chosen functional basis for
ϕs(r

N) is an option to obtain the SCGF Ψ(s), however, the dimension of the solution space
scales exponentially with the system size, rendering this approach impractical in many-body
systems.

1.4 Barrier crossing events: reaction rate theory

Interesting chemical events in liquid and solid phase involving transduction of energy from
one class of dynamical modes in a molecule to another often happen when a trajectory
goes over a free energy barrier that separates long-lived metastable states. Rate constants
of such rare events in equilibrium depend on the free energy cost of being at the top of
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the barrier as well as the dynamical flux contributing to such a barrier crossing. One of
the fundamental approaches to quantify reaction rates in equilibrium systems is transition
state theory that assumes configurations at the top of the barrier to be in quasi-equilibrium
with the rest of the system, thus decoupling the dynamics from the Boltzmann energetics.
In reality, this approximation leads to an overestimation of the rate, as many trajectories
that cross the barrier still recross back to the reactant basin in a correlated fashion to
the configurational statistics. Thus a full treatment for exact reaction rate computation in
even equilibrium system requires a trajectory ensemble formalism [13, 64]. Additionally,
in nonequilibrium reactions, such as the nucleation of a liquid phase in repulsive motile
particles [65], in the shear induced unfolding of proteins in blood vessels [66] and in rare
switching events in biochemical networks [67], the existence of a free energy as a state-
function is not guaranteed, and dynamics is inherently coupled to structural fluctuations.
In the limit of low temperature compared to the barrier-height, Freidlin-Wentzell theory
approximates barrier-crossing trajectories to be comprised of a long sequence of infinitesimal
noise fluctuations along a progress coordinate, thus mapping the fluctuation into a large
deviation and yielding corresponding rate estimates [68, 69]. However, for systems with
diffusive degrees of freedom at ambient temperature, the overlap between the problem of
sampling short barrier-crossing trajectories of finite duration and that of sampling large
deviations in steady-state trajectories of infinite duration remains unexplored and the tools
used in either disciplines are mostly disparate.

In this section we will discuss how to compute reaction rates from ensembles of trajecto-
ries. When we want to sample reactive trajectories that cross a free energy barrier transiently
in time but otherwise follow typical steady-state statistics, either in or out of equilibrium,
we want to restrict our trajectory ensemble to have a finite duration tf , but initialized from
an ensemble of steady-state configurations {rN(0)}. We will denote the initial and final
basins in configuration space as A and B, and the rate constant of going from A to B as
k. In case of the reaction being rare on simulation timescales, tf usually is in the range
τ ‡ < tf << 1/k, where τ † is the timescale of relaxation within the initial metastable basin
or that of the typical transition path duration, while 1/k is the typical waiting time for the
reaction to happen spontaneously. This separation of timescales is usually associated with
a large gap in the eigenspectrum of the Fokker-Planck operator governing the dynamics in
the system. We have schematically illustrated this for a general order parameter q in Fig.
1.2(a). We also define indicator functions hA(t) and hB(t) at any given time t as

hA(B)[r
N(t)] =

{
1 if rN(t) ∈ A(B)

0 else.
(1.17)

The rate constant k can be computed as the reactive flux of trajectories into B conditioned
on starting from A,

k =
d

dtf
⟨hB(tf )|hA(0)⟩ =

d

dtf

⟨hA(0)hB(tf )⟩
⟨hA⟩

(1.18)
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Figure 1.2: Reaction rate computation from side-side correlation function. a) Separation of
timescales between the relaxation time within each metastable well and the typical waiting
time for barrier-crossing. Blue line is a schematic illustration of the proportion of time spent
by a barrier-crossing trajectory in the wells and on the barrier. (Inset) Time series of order
parameter q. b) Linear regime of the side-side correlation function, with the slope given by
the reaction rate.

where the averages are computed over trajectories X(tf ) and the average in the denomi-
nator is time-independent in a steady-state. Eq. 1.18 for the reaction rate yields a time-
independent constant for all times that fall between the separated molecular and reactive
timescales, and so the side-side correlation function ⟨hB(t)|hA(0)⟩ is linear in t in that regime.
When the separation of timescales is large, the offset to the correlation function from the
initial nonlinear portion is small enough, and the rate constant can be computed from a
simple time-scaling [70], as

k ≈ ⟨hB(tf )|hA(0)⟩
tf

=
1

tf

ZAB(tf )

ZA
(1.19)

where ZAB(t) and ZA are defined as trajectory partition functions ZAB(t) = ⟨hA(0)hB(t)⟩
and ZA = ⟨hA⟩. This linear scaling regime is schematically demonstrated in Fig. 1.2 (b).
Reaction rate constants can thus be computed by counting the number of reactive trajectories
proportional to all trajectories.

The side-side correlation is the central observable of interest for all sampling techniques
for reactive trajectories. Sometimes the computation of the side-side correlation is done in
two steps,

kAB = ⟨ḣB(t)|hA(0)⟩ =
⟨ḣA+(δt)hA(0)⟩

⟨hA⟩
⟨hB(t)|hA+(δt)⟩ (1.20)
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where the first term in the product is the escape flux from the basin A towards B, with
ḣ(δt) denoting the time-derivative of the indicator h(δt) when some infinitesimal time δt
has elapsed after last being in A, and the second term in the product is the probability of
reaching B given a trajectory has escaped towards B but is still in the vicinity of A. The
escape flux and the conditional reactive probabilties can be evaluated separately and then
combined to produce the reactive flux, i.e., the reaction rate.

The growth statistics of the side-side correlation produces only the rate constant, but
does not by itself contain information about the reaction mechanism. A microscopic quantity
that encodes the reaction mechanism is the committor function, defined as the probability of
reaching target state B after some transient time τ ‡ when started from system configurations
{rN}, as

p(rN , τ ‡) =
⟨δ(rN(0)− rN)hB(τ

‡)⟩
⟨δ(rN(0)− rN)⟩

(1.21)

where angular brackets again mean a trajectory average [70, 64]. We see that the com-
mittor function is just a generalization of a side-side correlation function for starting from
all coordinates instead of from just the initial metastable basin. The transient time τ ‡ is
comparable to the typical time for natural transition paths, i.e., the time taken between
the last escape from A and the first subsequent entry into B. Since trajectories started
from most regions in configuration space do not react within this short time, the committor
will be mostly either 0 or 1, but for only a few special configurations that connect A to B
along the correct reaction coordinate, the committor will smoothly change in value, taking
a value of 0.5 at the exact set of transition states. Thus the committor function encodes
the intrinsic mechanism of the rare event by identifying the dynamical bottleneck. Regions
of configuration space having different values of the committor function are said to be par-
titioned by a separatrix, another name for an iso-committor surface. The direction of the
gradient of the committor function, comprising of normals to consecutive separatrix surfaces,
can be identified as the reaction coordinate, which is the natural coordinate on which the
reaction proceeds. Knowing the reaction coordinate will equip us to tune the exact reaction
mechanism microscopically and thus a key goal of enhanced sampling algorithms is to learn
a committor surface from harvested reactive trajectories.

1.5 Existing sampling techniques for rare

nonequilibrium trajectories

Enhanced sampling methods within equilibrium ensembles are standard tools that enable
the determination of phase diagrams and the calculation of rates of rare events, through the
evaluation of equilibrium free energies and rare dynamics that obeys detailed balance. The
methods typically rely on either enhancing the sampling of the tails of a Boltzmann distribu-
tion by adding a suitable umbrella potential [42, 71], or by resampling parts of configurational



CHAPTER 1. INTRODUCTION 12

and trajectory ensembles to construct rare fluctuations [72], or both [73]. Nonequilibrium
systems pose additional complications over equilibrium ones in terms of sampling both rare
structures and dynamics. Nonequilibrium structural configurations are not Boltzmann dis-
tributed and the existence of free energies as a functional of only density-like variables is
not guaranteed, so methods analogous to umbrella sampling in configuration space have not
been possible. Though some recent approaches discuss candidate theories for quantifying
the amplification of reaction rates with nonequilibrium driving, they feature bounds instead
of exact reweighting relations, and involve dynamical observables like heat dissipation rather
than thermodynamic state-functions like energy or entropy [74, 75]. Nonequilibrium dy-
namics on the other hand breaks detailed balance, and it is not possible to construct a
rare barrier-crossing trajectory by propagating a transition state configuration forward and
backward in time. Instead, most nonequilibrium importance sampling methods for barrier-
crossing trajectories start with a distribution of initial configurations and push the trajectory
ensemble up the barrier in a forward ratchet-like fashion, performing nonequilibrium meta-
work in the space of the trajectories [76]. We have discussed below some of these trajectory
sampling methods for nonequilibrium large deviations and reactive events.

The dynamical analogues of equilibrium free energies for nonequilibrium steady-states
are large deviation functions that describe the likelihood of fluctuations of time-averaged
observables and encode the response and stability of the system. The aim of dynamical
importance sampling methods for nonequilibrium steady-states is thus to estimate large de-
viation functions from a trajectory ensemble. As large deviation functions like the SCGF
contain exponentially rare statistics, the tails of the probability distribution of the observable
of interest must be sampled in order to have an accurate estimate. Efforts to compute large
deviation functions in systems with many degrees of freedom have largely been restricted
to Monte Carlo based approaches like cloning [77, 78] and list-based algorithms [79]. Most
current algorithms scale exponentially in computational effort the further the rare fluctua-
tion is from the mean behavior, as apart from stratification or population dynamics, most
do not employ additional importance sampling [80, 81, 82, 83]. Recent work adding control
forces to importance sample trajectory based Monte Carlo has demonstrated that even an
approximate force can greatly improve the efficiency of Monte Carlo methods in estimating
large deviation functions [84, 85, 86]. Consequently there has been much work to find ap-
proximate control forces analytically or through empirical arguments in both lattice-based
and continuous systems [87, 88, 89] and several iterative effective force optimization tech-
niques have been proposed with varying levels of generality or accuracy [90, 91, 92, 93]. The
control forces in general can have many-body components in interacting particle systems [94,
89], can be long-ranged in systems with dynamical phase transitions [95], and can stabilize
otherwise metastable states [96]. However, many-body control forces have been derived only
from analytical approximations in simple limits, and efficient numerical techniques to learn
many-body optimal forces in systems of chemical relevance is currently lacking.

In contrast, nonequilibrium rate calculation has been entirely reliant on trajectory strat-
ification and Monte-Carlo resampling based approaches. Most such techniques build on the
classic Weighted Ensemble method introduced by Huber and Kim [97] and subsequently re-
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fined and applied to equilibrium biological problems like protein folding and protein-ligand
binding by Zuckerman, Chong and others [98]. The original Weighted Ensemble algorithm
is applicable for nonequilibrium dynamics but not very efficient for generating reactive tra-
jectories. The Transition Path Sampling algorithm [70, 99], widely used to compute rates
of molecular isomerization and dissociation in solvents at equilibrium, can be applied to
nonequilibrium systems by either restricting the set of moves that require detailed balance
[81], or by directly accounting for the change in nonequilibrium path action by noise sampling
[100]. The most widely used method for computing reaction rates in stochastic nonequi-
librium systems is Forward Flux Sampling, that starts with the forward flux of escaping
trajectories from the reactant basin and generates reactive trajectories stepwise by dividing
the progress coordinate into multiple bins [101, 102]. A related approach is nonequilibrium
umbrella sampling, that keeps track of the entry and exit flux of bins in configuration space
in order to output the nonequilibrium steady-state distribution [103, 104]. The application
of control forces to enhance the sampling of reactive events has been extremely limited and
been confined only to equilibrium systems. Recent works by Rotskoff and Vanden-Eijnden
recast the rare event sampling as a variational learning of an equilibrium committor surface
[105, 106], however, connections have not been made between the committor function and the
optimal force. Other approaches that use an importance sampling potential have explicitly
used Boltzmann statistics, and have only seen moderate improvements in sampling statis-
tics on adding suboptimal control potentials [107, 108]. However, the exact optimal control
force is formally known to generate uncorrelated statistical realizations of rare trajectories
directly [109], thus making the rate computation direct without need of additional impor-
tance sampling, in arbitrarily far-from-equilibrium systems. Hence there exists a dearth of
efficient numerical methods to compute the optimal control force within conveniently chosen
basis sets for evaluating nonequilibrium reactive events in complex molecular and colloidal
systems. It is this gap that our variational techniques are able to address.
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Chapter 2

Variational optimization of
steady-state trajectories

In this chapter we will develop a variational algorithm to optimize a control force within a
chosen basis to compute large deviation functions. For Markovian systems, there exists an
optimal control force, which is the unique additional force having the smallest contribution
to the path ensemble measure that can be added to the system to make a rare fluctuation
typical [63, 110]. This optimal control force satisfies several variational identities [111]. By
deriving such a variational principle and explicit forms for the gradients required to optimize
it, we develop an algorithm that approximates the control force sufficiently well so as to
make quantitatively accurate estimates of the likelihood of rare events within nonequilib-
rium steady-states. In this way, we generalize previous work on variational control of single
particle systems to interacting, continuous force systems, bypassing the need for exponen-
tially scaling Monte Carlo sampling. Our algorithm is similar in strategy to the recent use of
thermodynamic variational principles to compute equilibrium free energies [71], and to the
Rayleigh-Ritz variational principle that others have used to nonperturbatively compute effec-
tive forces far from equilibrium [112]. The variational principle that underlies our algorithm
is related to minimum-entropy production principles [113, 114]. and the Donsker-Varadhan
formula in Markov Stochastic processes [115]. While our variational estimate of the large
deviation function is subject to errors associated with the representation of the control force,
we derive exact corrections that can be evaluated straightforwardly. In the first two systems
studied, these corrections are easy to evaluate, as our control forces are sufficiently close
to the optimal control forces to make these corrections perturbatively small. However, in
cases where the corrections are large, we show that using optimized control forces in con-
junction with standard Monte Carlo algorithms can increase the statistical efficiency in the
estimation of large deviation functions by orders of magnitude. In this way, our algorithm
is similar to the use of variationally optimized wavefunctions for quantum Diffusion Monte
Carlo calculations [116].1

1Most of the content of this chapter was originally part of the publication [117].
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2.1 Variational principle from Girsanov reweighting

Computing either of the large deviation functions of Atf requires sampling exponentially rare
fluctuations. These rare fluctuations can in principle be made to occur more frequently by
introducing an additional control force into the system as a means of importance sampling.
In the presence of the additional force, λ(rN), over the original force, F(rN), the computation
of the SCGF can done by changing the path ensemble measure,

Ψ(s) = lim
tf→∞

1

tf
ln

∫
D[X(tf )]e

−stfAtf
P [X(tf )]

Pλ[X(tf )]
Pλ[X(tf )]

= lim
tf→∞

1

tf
ln
〈
eOλ
〉
λ

(2.1)

where ⟨·⟩λ denotes an average in the controlled path ensemble with path probabilities
Pλ[X(tf )], and Oλ[X(tf )] can be derived from the difference in Onsager-Machlup path-
actions ∆Uλ[X(tf )], [45]

Oλ[X(tf )] = −stfAtf +
∫ tf

0

dt
∑
i

λ2
i − 2λi · (γiṙi − Fi)

4γikBT
≡ −stfAtf −∆Uλ (2.2)

interpreted in the Ito sense. Changing the force for such a Gaussian process does not change
the normalization constant associated with the path ensemble in the long time limit where
boundary terms from the initial and final configurations can be ignored.

Expanding Eq. 2.1 in terms of its cumulants, and using Jensen’s inequality, we find a
variational expression for the SCGF,

Ψ(s) ≥ lim
tf→∞

1

tf
⟨Oλ⟩λ (2.3)

in terms of the mean of Oλ[X(tf )], averaged within the controlled path ensemble. This
expression is identical to previous work by Chetrite and Touchette that was derived using
the contraction principle [111]. To see this, here we note that we can write ⟨Oλ⟩λ in two
ways,

⟨Oλ⟩λ =

〈
−stfAtf +

∫ tf

0

dt
∑
i

λ2
i − 2λi · (γiṙi − Fi)

4γikBT

〉
λ

(2.4)

=

〈
−stfAtf −

∫ tf

0

dt
∑
i

λ2
i

4γikBT

〉
λ

(2.5)

where we derive the second expression from the first by using the driven Langevin equation
γiṙi = Fi + λi + ηi and that, for an Ito dynamics, ⟨λi(t) · ηi(t)⟩ = 0 because of causality.

Among the forces that make the rare value of the observable statistically typical, the one
closest to the original force is the optimal force that realizes the supremum of the inequality.
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This many-body function can be approximated within a chosen ansatz with variationally
optimizable parameters {χ}. In the limit that {χ} represents all possible functional forms
of the many-body force, this ansatz becomes exact [111], so that

Ψ(s) = sup
{χ1,χ2,...}

lim
tf→∞

1

tf

〈
Oλ[{χ}]

〉
λ[{χ}] (2.6)

where the optimal coefficients {χ} will in general depend on s.
The existence of a control force that saturates the supremum in Eq. (2.6) follows again

from the largest real eigenvalue Ψ(s) and the corresponding right eigenvector ϕs(r
N), of the

generator of the SCGF in Eq. 1.15, that directly gives the value of the SCGF,. The optimal
force λ∗

s that solves Eq. 2.6 is related to ϕs through a Hopf-Cole transform [118, 63, 111]
defined as

λ∗
s,i = Fi + 2γikBT (−sg +∇i lnϕs) (2.7)

and the controlled dynamics associated with this optimal force can be obtained from a
generalized Doob transform of Ls [63, 119]. That λ

∗
s saturates the variational inequality 2.3

can be seen by writing the eigenvalue equation as

Ψ(s) = ϕ−1
s Lsϕs, (2.8)

and multiplying both sides by a steady-state configurational probability distribution asso-
ciated with a generic control force, ρλ(r

N). If we then integrate over all coordinates with
appropriate boundary conditions, it can be shown that the variational surface is convex
around the supremum [113],

Ψ(s) = lim
tf→∞

1

tf

〈
Oλ +

∫ tf

0

dt
∑
i

(λ− λ∗)2

4γikBT

〉
λ

(2.9)

However, though the variationally surface is locally convex, it may not be globally convex.
Following the same derivation as above but with starting from an eigenvalue equation for a
general (non-dominant) eigenvalue, the corresponding eigenvector, and its Hopf-Cole trans-
form, it can be shown that the SCGF estimator in Eq. 2.6 can give the exact value of the
real part of any eigenvalue of the tilted generator, for a physically meaningful force. This
means that at dynamical crossovers when two eigenvalues approach each other and cross as
a function of s, the variational expression is almost (infinitesimally) satisfied by two distinct
forces, making the variational surface either slowly varying or bimodal.

For an interacting many-body system, the dominant eigenvector is a many body state,
and therefore the optimal control force is many-bodied. Generally, we will assume that the
control force is well approximated by a low rank ansatz such as obtained from a low order
many body expansion.

Obtaining the SCGF from directly diagonalizing the tilted generator in many-body sys-
tems is prohibitively expensive due to the size of the multi-dimensional state space over
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which Ls is defined. There have been recent advances to approximate this state space using
Matrix Product States for lattice based models [120, 121]. However, for continuous space
systems with many particles, it is expected that Eq. 2.6 will present a physically motivated
way to formulate approximate solutions to the eigenvalue problem and to the computation
of Ψ(s), and subsequently, I(A). It is worth noting that the constrained optimization of a
variational expression analogous to (2.6) can also be directly used to compute I(A) [111],
with a straightforward extension of the algorithm described below.

2.2 Optimization algorithm with explicit gradients

In order to optimize Eq. 2.6 by gradient descent, we need to calculate derivatives of
⟨Oλ[X(tf )]⟩λ with respect to the variational parameters {χ} in the limit of a large tf . Us-
ing these explicitly calculated gradients in the optimization algorithm can reduce the noise
and numerical instabilities associated with finite difference schemes, that are generally used
to empirically estimate the gradients from the optimization trajectory through the param-
eter space. The explicit gradients that we use have the form of expectation values in the
controlled ensemble,

lim
tf→∞

1

tf

∂

∂χ
⟨Oλ⟩λ

= lim
tf→∞

1

tf

[〈
δOλ[X]

δλ
· ∂λ
∂χ

〉
λ

+

〈
Oλ[X]

∂ lnPλ[X]

∂χ

〉
λ

]
(2.10)

where χ is any of the optimizable parameters specifying the control force. The first term
is a simple trajectory average and is straightforward to compute. In a steady-state, we
replace the time-extensive integral divided by the trajectory time with only the instantaneous
contribution,

lim
tf→∞

1

tf

〈
δOλ[X]

δλ
· ∂λ
∂χ

〉
λ

=

〈
δȮλ

δλ
· ∂λ
∂χ

〉
λ

(2.11)

where Eqns. (1.9) and (2.2) have been used to write Oλ[X] as a time integral of Ȯλ(t).
The second term is a two-time correlation function that is expected to have a high

variance if directly computed in this form in a steady-state. Explicit functional forms of
∂ lnPλ[X]/∂χ can be derived from the normalized path probabilities as,〈

Oλ[X]
∂ lnPλ[X]

∂χ

〉
λ

=

〈∫ tf

0

dt Ȯλ(t)

∫ tf

0

dt
′ ∑

i

ηi(t
′
)

2γikBT
· ∂λi(t

′
)

∂χ

〉
λ

−
〈∫ tf

0

dt Ȯλ(t)

〉
λ

〈∫ tf

0

dt
′ ∑

i

ηi(t
′
)

2γikBT
· ∂λi(t

′
)

∂χ

〉
λ

. (2.12)
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The second term comes from the derivative of the normalization constant for Pλ[X], and
it is formally zero as reweighting with a changed force doesn’t change the normalization
constants for the Gaussian white noise. We see this explicitly as ⟨ηi(t

′
) · ∂λi(t

′
)/∂χ⟩ = 0

due to causality where the product is Ito. Nevertheless, including this term during empirical
estimation of the gradient reduces its variance, working as a noisy baseline subtraction.

The averages in Eq. 2.12 can be computed by propagating additional coordinates yχ(t)
associated with each variational parameter χ as

yχ(0) = 0 , ẏχ(t) =
∑
i

ηi(t)

2γikBT
· ∂λi(t)

∂χ
(2.13)

where the sum has been performed over all dynamical coordinates of the system, and its
fluctuation is defined as δẏχ(t) = ẏχ(t)−⟨ẏχ(t)⟩λ . These fictitious coordinates are known in
the literature as Malliavin weights [122] and have previously been used to calculate parameter
sensitivity of steady-state distributions in Langevin systems [123]. Provided these averages
are evaluated in the steady-state generated by the control force, γiṙi = Fi + λi + ηi, we
can invoke time-translational invariance and note that only past noise history correlates
with the observable to simplify Eq. 2.10. We start by defining the fluctuations in Ȯλ(t) as
δȮλ(t) = Ȯλ(t)− ⟨Ȯλ(t)⟩λ and rewriting the right-hand side of Eq. 2.10 as∫ tf

0

dt

∫ tf

0

dt
′ ⟨δȮλ(t)δẏχ(t

′
)⟩λ

=

∫ 0

−tf
dτ

∫ tf

−τ
dt

′⟨δȮλ(τ + t
′
)δẏχ(t

′
)⟩λ +

∫ tf

0

dτ

∫ tf−τ

0

dt
′⟨δȮλ(τ + t

′
)δẏχ(t

′
)⟩λ (2.14)

=

∫ 0

−tf
dτ

∫ tf

−τ
dt

′⟨δȮλ(τ)δẏχ(0)⟩λ +

∫ tf

0

dτ

∫ tf−τ

0

dt
′⟨δȮλ(τ)δẏχ(0)⟩λ (2.15)

where at first we have replaced τ = t− t′ and changed the limits of integration appropriately,
and then used time-translation invariance in the nonequilibrium steady-state. We now note
that ⟨δȮλ(τ)δẏχ(0)⟩λ is zero for all τ < 0, as the Malliavin weight ẏχ(0) is proportional to
ηi(0) which is causally independent from all past values of Ȯλ. Hence the first term vanishes
and the second term simplifies to,∫ tf

0

dt

∫ tf

0

dt
′ ⟨δȮλ(t)δẏχ(t

′
)⟩λ =

∫ tf

0

(tf − τ)dτ ⟨δȮλ(τ)δẏχ(0)⟩λ (2.16)

Dividing both sides by tf , taking the limit of tf → ∞ and assuming a rapidly decaying
correlation function in the steady-state gives the second term in Eq. 2.10 as

lim
tf→∞

1

tf

〈
Oλ[X]

∂ lnPλ[X]

∂χ

〉
λ

=

∫ ∞

0

dt
〈
δẏχ(0)δȮλ(t)

〉
λ

(2.17)

where the gradient is proportional to an integrated time-correlation function. This is an
example of a generalized fluctuation-dissipation formula [124].
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Putting together the two contributions,

lim
tf→∞

1

tf

∂

∂χ
⟨Oλ⟩λ =

〈
δȮλ[X]

δλ
· ∂λ
∂χ

〉
λ

+

∫ ∞

0

dt
〈
δẏχ(0)δȮλ(t)

〉
λ
, (2.18)

we arrive at an explicit form for the gradient of our SCGF estimate with respect to the vari-
ational parameters that can be estimated as time-averages from a straightforward molecular
dynamics trajectory with the control forces. In practice, we will take the integral over the
time correlation function in Eq. (2.18) up to a time ∆t. The exact form we use to evaluate
this correlation function on-the-fly is obtained from Eq. 2.17 by translating the correla-
tion time-lag [0, t] to [−t, 0], replacing the dummy variable t by −t and carrying out the
integration explicitly, as∫ ∞

0

dt
〈
δẏχ(0)δȮλ(t)

〉
λ
=

∫ ∞

0

dt
〈
δẏχ(−t)δȮλ(0)

〉
λ
=

∫ 0

−∞
dt
〈
δẏχ(t)δȮλ(0)

〉
λ

(2.19)

≈
〈
δyχ(0+)δȮλ(0)

〉
λ
−
〈
δyχ(−∆t)δȮλ(0)

〉
λ

(2.20)

Here the time 0+ denotes the next infinitesimal timestep after time 0, and ∆t is large enough
such that the estimator is accurate upto a desired tolerance. We propagate the dynamics
of yχ and keep a history upto lag-time ∆t, such that we can statically correlate with Ȯλ

at every timestep. The baseline subtraction at ∆t and the subtraction of the averages for
computing the correlations from joint expectations helps keep the variance of the gradient
well-behaved, even in a steady-state where yχ(t) is a random walk with a time-extensive
variance [122].

We also note here that when ⟨Oλ⟩λ is represented as Eq. 2.4, the first term in the gradient
in Eq. 2.18 is zero. This is seen readily by inserting Eq. 2.4 into Eq. 2.18 to get the first
term as 〈

δȮλ[X]

δλ
· ∂λ
∂χ

〉
λ

=

〈∫ tf

0

dt
∑
i

λi − γiṙi + Fi

2γikBT
· ∂λ
∂χ

〉
λ

=

〈∫ tf

0

dt
∑
i

− ηi(t)

2γikBT
· ∂λ(t)
∂χ

〉
λ

= 0 (2.21)

due to causality. It can be shown that this term is also proportional to the derivative of the
normalization constant for the trajectory probabilities with respect to changing the force,
and this is zero [125]. However, if one uses the form of ⟨Oλ⟩λ from Eq. 2.5, the first term in
Eq. 2.18 is not zero and must be independently computed as a static average.

When the explicit gradients are averaged over a long steady-state trajectory at every
optimization step, the noise in the gradients become small compared to their means and
they can be directly used to perform variants of gradient descent. We perform an iterative
optimization in the parameter space spanned by {χ} in order to estimate the SCGF. We use
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an algorithm called Nesterov’s Accelerated Gradient Descent [126, 127] which shows super-
linear convergence. This algorithm updates a conjugate momentum pχ in parameter space to
accelerate optimization with inertia, as well as prevents inertial oscillations with a predictive
step. The conjugate momentum is a sum of the scaled gradient with scaling parameter αχ,
and the scaled momentum from the previous optimization step with scaling parameter νχ.
These parameters can be chosen at the start of the optimization or can be tuned with itera-
tions to improve convergence. We stop either a fixed number of optimization steps or when
the norm of the force gradients are less than a tolerance value. The optimization algorithm
is given in pseudocode form in Algorithm 1.

This algorithm converges to a local optimum in the parameter space, which can be dif-
ferent from the global optimum when the variational surface or its projection on a truncated
basis space is not convex. The convergence can also be significantly slow at values of s near
a crossover point or a phase transition. In the event that we converge to a local optimum,
we incur a systematic error in the SCGF that can be corrected with a cumulant expansion.

2.3 Corrections of systematic errors

In general, the ansatz specified by the parameters {χ} will not form a complete basis for
a many body system. This is because generically, the dominant eigenvector of Eq. 1.16
is a many-body state, containing exponentially many parameters, and not expected to be
exactly expressible with a low rank form. Because of this, the variationally converged SCGF
Ψ̃(s) obtained from Eq. 2.6 with an optimized force λ̃ will have a systematic error. This
error, and errors associated with convergence to a local maximum, can both be corrected in
principle by computing the remaining terms of the cumulant expansion

Ψ(s) = Ψ̃(s) + lim
tf→∞

1

tf

∞∑
ℓ=2

κℓ
ℓ!

(2.22)

where {κℓ} are the second and higher cumulants in the expansion of ln⟨exp(Oλ̃)⟩λ̃ and the

force λ̃ is the solution of the variational problem in the approximate and incomplete ansatz.
If the ansatz used to express the control force, λ̃, is close enough to the optimal force
obtained from the Doob transform, the correction terms are small in magnitude and the
series will converge quickly. This will occur when the trajectory distribution generated by
the controlled dynamics has significant overlap with the tilted distribution of the original
dynamics.

In cases where the ansatz is poor and many cumulants are needed, brute force convergence
of the correction will be difficult. In such cases, control forces can be used as guiding functions
for estimating the SCGF through Monte Carlo based approaches like the cloning algorithm.
In the cloning algorithm, an ensemble of Nw trajectories generated from the ordinary path
probabilities P [X(tf )] are branched with corresponding weights of exp(−stfAtf ). However,
under the controlled dynamics, following Eq. 2.1, the weighted path probabilities can be
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Algorithm 1 Nesterov’s Accelerated Gradient Descent with Malliavin weights

1: inputs Variational parameters for a general force λχ(r
N , t)

2: parameters Force gradient and momentum learning rates αχ, νχ; total optimization
steps I; trajectory length tf consisting of J timesteps of duration δt each; number of
trajectories N

3: initialize choose initial weights χ, define iteration variables i and j, force gradients and
conjugate momenta δχλ and pχ, define functional form for stepwise differential increments
(rewards) ξ to the loss-function stfAtf +∆Uλ

4: i← 0
5: pχ ← 0
6: repeat
7: Generate trajectory [X(t)] with first-order Euler propagation in presence of the ad-

ditional force λ[{χ + νχpχ}] and wait till it relaxes into a nonequilibrium steady-state.
Configurations, times, noises (with variance 2γkBT∆t), Malliavin weights, and rewards
are denoted by rNj , tj,ηj, yχ(tj) and ξ(tj) = ξj respectively.

8: j ← 0
9: δχλ ← 0
10: yχ(t0)← 0
11: repeat
12: ẏχ(tj)← ηj · ∇χλχ(r

N
j , tj)/2kBT∆t

13: yχ(tj+1)← yχ(tj) + ∆tẏχ(tj)
14: δχλ ← δχλ + ξjyχ(tj+1)
15: j ← j + 1
16: until j = J
17: δχλ ← δχλ/J
18: average δχλ over N trajectories to get δ

χ

λ

19: pχ ← νχpχ − αχδχλ
20: χ← χ+ pχ

21: i← i+ 1
22: until i = I
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written as [84, 89]
Ps[X(tf )] ∝ e−stfAtfP [X] = eOλ[X]Pλ[X] (2.23)

where system evolution under an approximate controlled dynamics is nonconservative and
must be accompanied by branching steps with weights given by exp(Oλ). An estimate of the
SCGF is then obtained from the normalization constant of this weight, so that in the limit
of large Nw,

Ψ(s) =
1

tf
ln

1

Nw

Nw∑
j=1

eOλ[Xj ] (2.24)

where Oλ[Xj] denotes the time-integrated observable for the walker labelled as j.

When the variationally optimized λ̃ is used to generate trajectories and to compute the
branching probabilities, the efficiency of the cloning algorithm is improved as the control
force samples the rare fluctuations in the observable. When λ̃ is actually the optimal force
λ∗
s derived from the Doob transform, all trajectories achieve the rare fluctuation as typical

behavior, and the weight of each trajectory becomes a constant. In this situation no trajecto-
ries are killed in the branching step of the cloning algorithm, and the sampling is statistically
optimal [77]. However, even with an approximate ansatz the variationally optimized force
slows down the rate of death of uncorrelated trajectories with increasing tf , as demonstrated
in Section 2.5.

The variational algorithm along with the cumulant-correction has improved scaling prop-
erties compared to the cloning algorithm. By adopting an approximate ansatz for the many-
body force containing, for example, one-body and two-body terms, for a system of identical
particles we can exploit their permutation symmetry and optimize a single one-body and
two-body force. Hence the variational algorithm scales linearly with the system size, the
computational cost arising only from the propagation of trajectories of interacting particles.
This is in contrast to the cloning algorithm, which has an exponential scaling for observables
that are system size extensive [81]. Also, while the cloning algorithm scales exponentially
with s, the variational algorithm depends on the bias only through the complexity of the
optimal force and scales linearly with the number of variational parameters required to ap-
proximate the force. Hence in cases that the dominant part of the optimal force can be
simply expressed within the choice of the ansatz, the computational cost for the algorithm
to converge does not increase with s. This indicates a resummation of the exponential bias
through the modification of the control force. Neither does the algorithm scale with increas-
ing observation time tf , as the tf →∞ limit has already been incorporated in the algorithm.
Lastly, this algorithm can be parallelized trivially by distributing the computation of the
expectation values at each step of the iteration to independent trajectories on independent
processors.

To study the accuracy and efficiency of our variational algorithm to compute the SCGF
and the optimal force, in the next sections we apply it to three different continuous time and
space systems. The first is a benchmark system where we can test our algorithm against
a numerically exact result. This model consists of a driven underdamped particle in a
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one-dimensional periodic potential, for which we have studied rare fluctuations of the total
current. The second system is comprised of multiple repulsive overdamped particles, where
we have focused on the fluctuations of the total activity, which measures how much the
particles explore configuration space. In this system, we demonstrate the ability of our al-
gorithm to compute the optimal control force even through singular changes in the SCGF
across a dynamical phase transition. The third system consists of multiple repulsive particles
in a periodic potential having a wavelength equal to the particle diameter and an external
nonequilibrium force, such that it is a Brownian analogue of the Asymmetric Simple Exclu-
sion Process (BASEP). We study its current SCGF and find that many-body effective forces
are necessary to generate rare backward current fluctuations at high packing fractions.

2.4 Current fluctuations in non-interacting

overdamped/underdamped system

An underdamped particle being driven on a periodic potential by a constant external force is
a simple system with two dynamical coordinates, position and velocity, that can exhibit non-
trivial nonequilibrium properties due to competing ballistic and diffusive modes of transport
[128, 129]. Large deviation functions for current fluctuations in this model can be obtained
by numerically exact diagonalizations of the tilted generator, and the controlled ensemble
can show diverse behavior in different parameter regimes [130]. We consider this model to
benchmark our variational optimization algorithm.

Specifically, we consider an underdamped particle of mass m moving in a one-dimenional
periodic box of length L = 2π. The forces acting on the particle are derived from a cosine
potential, V (x) = V0 cos(x), where V0 is the magnitude of the potential, and include a
constant external driving force, Fext. For the particle in contact with a bath of temperature,
T , and friction coefficient, γ, the equations of motion for the position, x, and velocity, v, are

ẋ = v

mv̇ = F (x)− γv + η (2.25)

where F (x) = −V ′
(x) + Fext and η(t) is a Gaussian white noise with

⟨η(t)⟩ = 0 ⟨η(t)η(t′)⟩ = 2γkBTδ(t− t′) (2.26)

where kB is Boltzmann’s constant. These equations of motion have the form of Eqs. (1.1)
and (1.3) with two dynamical coordinates and a vanishing noise in position [130].

We investigate the statistics of the time-averaged current flowing through the system,

Jtf =
1

tf

∫ tf

0

dt v(t) (2.27)
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which measures the total displacement of the particle. The SCGF for current is given by

Ψ(s) = sup
u(x,v)

1

tf

〈∫ tf

0

dt

(
−sv + u2 − F 2 − 2γv(u− F )

4γkBT
− mv̇(u− F )

2γkBT

)〉
u

(2.28)

where the path average is obtained from the controlled dynamics

mv̇ = u(x, v)− γv + η (2.29)

and the optimal force is in general a function of both position and velocity. We expand the
additional force λ(x, v) = u(x, v)− F (x) in an ansatz

u(x, v) = F (x) +

M1∑
p=−M1

M2∑
q=0

cp,qe
ipxvq (2.30)

where cpq are parameters that can be optimized variationally subject to c∗−p,q = cp,q, and the
number of position and velocity basis functions are (2M1 + 1) and (M2 + 1) respectively.
The basis is complete in the limit of large M1 and M2. Note that this force incorporates the
periodicity of x and also allows the external nonequilibrium driving, which is the p = q = 0
term, to be optimized. In the high friction limit, the dynamics becomes overdamped and
in that limit the optimal force becomes a function of just the particle position. For small
friction, inertia is important and the general form of the optimal force must be considered.
We note that this velocity-dependent drift function is a force only in a generalized sense.

The SCGF and the optimized control force obtained from the variational algorithm can
be compared to numerically exact results obtained by solving the eigenvalue equation for
the tilted generator given by [130]

Ls = v
∂

∂x
− 1

m
[vγ − F (x)] ∂

∂v
+
γkBT

m2

∂2

∂v2
− sv (2.31)

as in Eq. (1.16). The exact control force is obtained using the right eigenvector ϕs(x, v)
corresponding to the largest real eigenvalue, as

u(x, v) = F (x) +
2γkBT

m

∂ lnϕs(x, v)

∂v
(2.32)

where numerical diagonalization of Ls can be performed by expressing the right and left
eigenvectors over a position-velocity grid and representing the differential operators in Lλ
using a second order finite difference scheme. The boundary conditions are periodic in the
position grid and reflective in the velocity grid, so that only forward (backward) difference
at the minimum (maximum) velocity grid point is used to represent the differential operator.

We have computed the cumulant-corrected large deviation functions in this system and
have compared them to the numerically exact results. We have worked with kBT = 1 and
γ = 1. These parameters along with the length of the box L = 2π let us define our natural
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Figure 2.1: a) Convergence of Ωn(∆t) for s = −0.5, for different n. Shaded region represents
optimal choice of ∆t for gradient descent. b) Simultaneous convergence of SCGF and biased
density for s = −0.5.

time unit as t∗ = 4π2kBT/γL
2. All observables have been reported in dimensionless units

following these definitions. We have done our computations at two values of mass, m/γt∗ = 1
and m/γt∗ → 0. We have also chosen V0 = 2 and Fext = 1. The numerically exact result was
obtained with a grid of 140 × 50 points in the position-velocity space. The position points
span all of the box and the velocity points are centered at (Fext − 2skBT )/γ corresponding
to the mean velocity in the V0 → 0 limit. For all the simulations, the timestep was chosen
to be 0.001 natural time units. For m/γt∗ → 0, an Euler scheme was used to integrate the
overdamped equation of motion, while for m/γt∗ = 1, a velocity Verlet scheme was used [42].

For each iterative step during the optimization, a trajectory of duration 104 units was
simulated. During the first half of each trajectory, the system was allowed to come to a
steady-state, and the time-averaged gradients were computed only with the second half of
the trajectories. For implementing Eq. 2.18, we integrated the correlation function up to
∆t = 100. The size of the basis was M1 = 3,M2 = 1 for m/γt∗ = 1 and M1 = 3,M2 = 0
for m/γt∗ → 0, the overdamped limit. The optimization parameters used for the gradient
descent were µ = 0.5, ν = 0.2. Near s = 0, all cpq were initialized at zero, and subsequent
optimizations with increasing magnitude of s were initialized from a previously optimized
set of cpq taken from the nearest value of s. In the overdamped limit, an accurate estimate
of the SCGF could be obtained with just the variational optimization, with the cumulant
correction merely a confirmation of the optimal control forces being correct. However for
m/γt∗ = 1, the variational SCGF had to be corrected with cumulants computed with an
observation time tf = 100 and a total trajectory length 105 units.

The choice of a finite integration limit ∆t to compute the integral in Eq. 2.17 depends
on both the intrinsic correlation times of the system and the timescale of the variance of the
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Figure 2.2: Large deviation functions for current fluctuations in a driven underdamped
system in a periodic potential. a) SCGF for m/γt∗ = 1 with M1 = 3,M2 = 1 and for
m/γt∗ → 0 with M1 = 3,M2 = 0. b) Rate functions obtained by a numerical Legendre-
Fenchel transform of the SCGFs. The legend is the same as that used in a). (Inset) Schematic
diagram of the simulated system.

integrated correlation function to diverge. To illustrate this, we plot

Ωn(∆t) =

∫ ∆t

0

dt
〈
δẏn(0)δȮλ(t)

〉
λ

(2.33)

for this system in the m/γt∗ → 0 limit. The ansatz can be written in this limit as

u(x) = F (x) + c0 +
3∑

n=1

[cn cosx+ c−n sinx] (2.34)

and for Fig. 2.1, we have chosen cn parameter values randomly between −1 and 1, with
s = −0.5. We see that even though the correlation function converges for large ∆t, the
error in the computed gradient increases steadily. For all the results in this paper, ∆t was
chosen to balance between these two effects so that the computed gradients suffers from no
systematic error and minimum statistical error.

Using these numerically estimated gradients, the accelerated gradient descent algorithm
converges superlinearly, and in Fig. 2.1 we have plotted the decrease of the systematic error
δΨ(s) in the current SCGF estimate with optimization steps in the limitm/γt∗ → 0. We also
show the simultaneous convergence of the controlled ensemble steady-state density ρssu (x) to
the true biased steady-state density ρs(x) ∝ Θs(x)ϕs(x) where Θs and ϕs are the dominant
left and right eigenvectors of the tilted generator (2.31). We demonstrate this by plotting
the relative entropy of the two,

D(ρssu ||ρs) =
∫
dx ρssu (x) log

(
ρssu (x)

ρs(x)

)
(2.35)
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Figure 2.3: Overdamped limit, m/γt∗ → 0, of the driven particle on a periodic potential. a)
Optimized control forces (dashed lines) overlaid on the exact control force (solid lines). The
thick curve is for s = 0 and the curves above (below) are for s in intervals of +0.5(−0.5). b)
Basis size errors in the variational estimate of Ψ(s), where the deviation δΨ(s) = Ψ̃(s)−Ψ(s)

is the difference between the finite basis result Ψ̃(s) from the exact SCGF.

which shows that even as only the current is being optimized to have a nontypical value, the
entire trajectory ensemble simultaneously converges to the exact biased ensemble.

Following this procedure, we obtain estimates of SCGFs that are in quantitative agree-
ment with the numerically exact results throughout the range of s considered, as shown in
Fig. 2.2(a). We have also calculated the rate functions for the current, Fig. 2.2(b), in these
two parameter regimes by a numerical Legendre-Fenchel transform of the SCGFs.

The SCGFs in Fig. 2.2(a) both have a locked region where the current changes slowly
with s, and an unlocked region for larger magnitudes of s. Due to the time-reversal properties
of Ls, the SCGF shows a Gallavotti-Cohen symmetry [131]

ψ(λ) = ψ(−Fext/kBT − λ) (2.36)

which is clear through the reflection symmetry about s = 0.5 of the SCGF in Fig. 2.2(a).
Analogously, the rate function obeys a fluctuation theorem symmetry

I(J) = I(−J) + FextJ/kBT (2.37)

indicating the exponentially rare probability of a current in the direction opposite to the
applied force.

Figure 2.3(a) shows the position-dependent optimal forces obtained in the overdamped
limit, u(1)(x), overlaid on the numerically exact answers obtained from diagonalization [132],
for multiple values of s. In the limit of |s| → ∞, the optimal forces approach the free-diffusion
limit, where the majority of contribution comes from a constant nonequilibrium driving.
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Figure 2.4: Underdamped system, m/γt∗ = 1, of the driven particle on a periodic potential.
a) (L-R) Exact and optimized control forces, u(x, v), for s = 1.5, with the solid contour at
u(x, v) = −2, and the dashed (dotted) contours being at differences of +1 (−1). Exact and
optimized control forces, u(x, v), for s = −2 with the solid contour at u(x, v) = 5 and the
dashed (dotted) contours being at differences of +1 (−1). b) Convergence of the cumulant
expansion for representative values of s.

When |s| is of the order |Fext|/kBT , the forces have a non-trivial position dependence. This
is manifested in the size of the basis-set, M1, required to obtain the optimal control force
accurately. Figure 2.3(b) shows the effect of finite basis size on the error made in estimating
Ψ(s). Increasing M1 reduces the error and ultimately the ansatz becomes exact when M1 is
large. The error decreases when going to larger |s| as the forces are easier to represent using
the first few basis functions. The error bars were computed from 5 independent estimates of
the SCGF using independent trajectories.

For them/γt∗ = 1 system, inertial effects are important and the optimal force depends on
both position and velocity, and the optimal force has a complicated functional dependency
that is difficult to represent using a small number of basis functions. Using a truncated basis
to represent the control force leads to a systematic error in the SCGF estimate obtained using
Eq. 2.28 that can be corrected using the cumulant expansion in Eq. (2.22). Figure 2.4(a)
shows the approximate forces obtained from the variational optimization compared to the
numerically exact results. When s is near the Gallavotti-Cohen symmetry point, the average
current is small and the optimal control force is a complicated function of both v and x.
Within our ansatz, the optimized u(x, v) does not reproduce the exact form of the optimal
control force. Nevertheless, these approximate forces recover the majority of the SCGF, so
that the cumulant expansion converges for all tested s points. Figure 2.4(a) also contains
the optimal force at a larger positive s, where the forces lose their velocity dependence and
simplify towards the free-diffusion limit. In this limit, position based forces are sufficient to



CHAPTER 2. VARIATIONAL OPTIMIZATION OF STEADY-STATE
TRAJECTORIES 29

recover the SCGF quantitatively.
Figure 2.4(b) shows the convergence of the consecutive terms of the cumulant expansion

in Eq. 2.22 for different values of s. κ1, the first cumulant, is identical to Ψ̃(s), the variational
estimate. Error bars were calculated using 5 independent trajectories for the estimation of
the cumulants. Even though our basis is small and approximate, the cumulants computed
from a single trajectory have decreasing amplitudes for various values s, showing that the
variational force is accurate enough to approach the force derived from the Doob transform.
We note that the sign of the cumulants need not be positive, and therefore the variational
structure in the estimate of Ψ(s) holds only for the first cumulant. Further, the magnitude of
the terms in the cumulant expansion need not be strictly decreasing. Figure 2.4(b) includes
an example of a nonmonotonic convergence for s = 1.1. Moreover, the sign of the error of the
approximate SCGF at a given truncation of the cumulant expansion can change resulting in
the cancellation of errors of two oppositely signed cumulant corrections and an accidental
near agreement of the exact SCGF. We have found that by considering the convergence of
the consecutive terms of the cumulant expansion we can reliably determine the accuracy of
the approximate SCGF.

2.5 Activity fluctuations in interacting overdamped

system

To study how this algorithm performs in an interacting system, we consider the fluctuations
of the activity in a system of overdamped repulsive particles on a line. In both lattice
and continuum models of volume excluding particles in one dimension, it has been reported
that there are two characteristically distinct types of activity fluctuations, with a dynamical
phase transition separating them [133]. For rare large negative values of the activity, such
systems spontaneously phase separate into macroscopically sized clusters, whereas for rare
small values of the activity, they form a hyperuniform phase in which long-wavelength density
fluctuations are suppressed. This behavior emerges as a singularity in the SCGF and a closing
of the gap in the eigenspectrum of the tilted operator, which in the hydrodynamic scaling
limit is predicted to occur with a critical point at sc → 0+ [133, 89]. This system is thus
suitable to test the effectiveness of the variational algorithm in computing rare fluctuations
that are collective in origin.

Specifically, we study the fluctuations of dynamical activity in a system of N overdamped
repulsive particles in a one-dimensional periodic box of length L. The equation of motion is

γẋi = Fi(x) + ηi (2.38)

where Fi(x) is the total force felt by the i-th particle,

Fi(x) = −
∂

∂xi

∑
j ̸=i

VWCA(xij) (2.39)
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where xij = xi − xj and the force is derived from a WCA pair potential

VWCA(r) =

[
4ϵ

(
σ12

r12
− σ6

r6

)
+ ϵ

]
, r < 21/6σ (2.40)

= 0 , r ≥ 21/6σ

with characteristic energy, ϵ, and length scale, σ. The Gaussian white noise, ηi, is specified
by

⟨ηi(t)⟩ = 0 , ⟨ηi(t)ηj(t′)⟩ = 2γkBTδijδ(t− t′) (2.41)

We work with kBT = 0.5, γ = 1 and σ = 1. As before, we define our unit of time for this sys-
tem as 2kBT/γσ

2 and we have reported all observables in dimensionless units. Additionally,
we set ϵ = 1 and consider a density of ρ = Nσ/L = 0.5, so that the box is half-filled.

We study a measure of activity derived from the probability that the particles stay in
the same state in a short time interval [134]. This form of the activity,

Ktf =
1

tf

∫ τ

0

dt
∑
i

(
F 2
i

4γkBT
+

1

2γ

∂Fi
∂xi

)
(2.42)

is also a part of the time-symmetric component of the path-action [135], and its long time
statistics are similar to other commonly used metrics that count the total number of hops
for particles on a lattice [136, 137]. Using Ito’s Lemma to simplify the last term in Eq. 2.2,
the variational expression for the SCGF becomes

Ψ(s) = sup
u(x1,x2,...,xN )

1

tf

〈∫ tf

0

dt
∑
i

[
−s
(

F 2
i

4γkBT
+

1

2γ

∂Fi
∂xi

)
+
u2i − F 2

i

4γkBT
+

1

2γ

∂(ui − Fi)
∂xi

]〉
u

(2.43)

where in addition to the force, we require the gradient of both the original and the control
force.

For this system, the optimal control force u(x) is in general long-range and many-bodied.
Previous work on related one-dimensional systems have shown long-range repulsive interac-
tions stabilizing the hyperuniform state for values of activity small in magnitude [95], and
long-range attractive forces acting on the surface of particle clusters that emerge in rare large
negative fluctuations of the activity [89]. For our variational ansatz, we have approximated
the many-body force as a sum of long-range pairwise interactions. Pair forces are the lowest
rank approximation to this system due to its translational invariance. From the Hopf-Cole
transform, optimization of a pair force is analogous to optimization of a two-body Jastrow
function as used in variational quantum Monte Carlo [138].

To represent the control force, we expand it in a basis of Laguerre polynomials Lp with
coefficients cp as

ui =
∑
j ̸=i

[
− ∂

∂xi
VWCA(xij) +

M3∑
p=1

cpLp(x̃ij)e
−x̃ij/2 xij

|xij|

]
(2.44)
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Figure 2.5: Size-scaling of activity fluctuations of repulsive particles on a line. a) O(N2)
scaling of Ψ(s) in the phase-separated state. (Inset) O(N) scaling in the hyperuniform
state. b) Change in mean activity across the dynamical phase transition. (Inset) Schematic
representation of the phase-separated (left) and hyperuniform (right) states.

where x̃ij = α − β|xij| is a linear transformation on the distance between particles i and
j. The parameters α and β can be adjusted to set a scale and a cutoff for where the force
smoothly decays to zero, and M3 determines the size of the basis. The basis is complete for
all possible two-body forces in the limit of large M3. The exponential factor makes the basis
functions orthogonal and aids in the convergence of the optimization. We have usedM3 = 10
for all of our results. We have fixed β = 2/L, and optimized {cp} and α with starting values
of 0 and L/2 respectively. In each iteration of the optimization, a trajectory of length 2×104

time units is simulated, the first half again reserved for equilibration and the second half
being used to compute the gradients. For computing the integrated correlation function in
Eq. 2.18, we have used ∆t = 200 units. After obtaining the optimized control force in this
ansatz, we use it to compute the unbiased SCGF using a cumulant expansion as before, with
an observation time tf = 10 and a total trajectory length of 5× 104 units. Across the range
of s considered, we find convergence using the first three cumulants to correct the variational
result. The SCGF obtained from this cumulant expansion is identical to results obtained
using a guided cloning algorithm that has been described later in this section.

In Figure 2.5(a) we have plotted the size scaled SCGF, and the mean activity, for positive
and negative values of s. For s < 0, we find the system in a hyperuniform state, where all
particles are pushed apart from each other and long-range density fluctuations are suppressed
[133]. The SCGF is size-extensive in this range of s. For s≫ 0 the particles phase separate,
forming a single cluster. In the region where s is positive but small, there is a phase transition
to this clustered state accompanied by an inflection point in the mean activity, shown in
Fig. 2.5(b), obtained from taking the numerical derivative of the SCGF, ⟨K⟩s = Ψ′(s). The
extensive scaling regime has been explored systematically in a related model and found to
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Figure 2.6: Optimal pair-potential for positive and negative s for N = 40.

agree well with predictions from macroscopical fluctuation theory [89]. In our studies, we find
it limited to 0 < s < 0.02. For large positive values of s, the cluster is a highly compressed
solid with system-spanning correlations that result in the SCGF scaling super-extensively.
In this regime of the SCGF, the typical force is on the order of

√
N , and can continue to

increase with increasing s because of the soft repulsion of the WCA potential. Inspection of
the distribution of mean squared forces reveals that the cluster is not homogeneous, but most
compressed in its interior with lower density near the edges, with a system size independent
profile. The phase transition from a disordered state to a clustered state is in accord with
previous observations in related systems, and result in diverging correlation times rendering
the precise study of the critical point difficult [89, 133]. We therefore focus our attention on
the two phases on either side of that transition. Error bars were obtained from independent
statistics from 3 distinct trajectories.

Figure 2.6 shows the effective pair-potential, V (2)(r), derived from the optimal control
force at different values of s, for N = 40, obtained by the numerical integration of the control
force. The potential is long-ranged and repulsive in the hyperuniform phase, and long-ranged
and attractive in the clustered phase. The long-range potential leads to the observed size
scaling in Fig. 2.5, because it imposes infinite range correlations. We also observe that the
depth of the attractive potential for increasingly positive values of s tends to saturate, while
the magnitude of the repulsive potential for increasingly negative s does not. This difference
arises from the steeply rising WCA forces that can achieve more negative values of ⟨K⟩s
with just a slight decrease in the nearest neighbor distance in the controlled system. In the
hyperuniform phase, achieving the rarer values of activity implies an exponentially small
number of collisions between the particles, which leads to an increasing repulsive control
force. These optimal control forces derived from the variational ansatz do not contain many-
body components unlike analytically derived approximate forces [89], yet they achieve the
same phenomenology of phase separation and hyperuniformity described previously.
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Figure 2.7: Characterization of the two dynamical phases for N = 80. a) Pair distribution
functions within the phase separated, s = 0.1, and (inset) hyperuniform, s = −0.1, states.
b) Structure factor for various system sizes in the hyperuniform state, s = −1.

Figure 2.7(a) characterizes the steady-state radial distribution function g(r),

ρg(r) = N⟨δ(r − |x12|)⟩u (2.45)

obtained in these phases, for a system size of N = 80, where x12 denotes the interparticle
distance between each distinct pair of particles. In the phase-separated state, the particles
form a solid cluster that has sharp peaks in g(r) at intervals of σ. In the hyperuniform phase,
the particles are repelled away from each other and g(r) has little structure aside from the
volume-exclusion. We also characterize the structure of the hyperuniform state through the
structure factor, S(q), as a function of the wavenumber q, obtained from

S(q) =
1

L

〈∣∣∣∣∣
N∑
j=1

e−iqxj

∣∣∣∣∣
2〉

u

(2.46)

where the averages are computed in the ensemble with the control force. A linear increase
of S(q) from zero at small q is a signature of the suppression of long-wavelength density
fluctuations in the hyperuniform phase, which we confirm in Fig. 2.7(b). The spike at
q = 2π/21/6σ results from 21/6σ being the distance of closest approach of the repulsive
particles without experiencing a force.

Under large positive activity bias, we find that the overdamped repulsive particles form
a highly compressed cluster. This cluster is described by system-spanning correlations.
Shown in Fig. 2.8 is the size-scaled profile for the first term of the collective activity (2.42),
⟨F 2

i ⟩s/4γkBT , with respect to a size-scaled particle index Ni = i− (N + 1)/2. The particles
are indexed from one end of the cluster to the other, such that the center of the cluster is
indexed at Ni = 0. The compressed cluster does not break apart during the duration of the
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Figure 2.8: Size-scaling of the mean squared force profile within the cluster for s = 0.1.

trajectories observed, so that large |Ni| unambiguously refers to particles close to the surface
of the cluster. The total mean activity ⟨K⟩s is proportional to the total mean squared force
appearing in the first term, such that the profile of the second term in the definition looks
analogous only with an opposite sign [137]. The O(N2) scaling of the mean squared force
and its size-invariant parabolic profile explains the super-extensive SCGF scaling and the
system spanning correlations in this s regime.

While we have not investigated the phase transition directly, the disparate behavior of
either side of the dynamical phase transition provides a useful test of our ability to obtain
control forces, as the structure and dynamics of the system in the phase separated and
hyperuniform states are very different. Despite their differences in both regimes, we are
able to obtain control forces that are near enough to the optimal force to converge the large
deviation functions using a brute force evaluation of the remaining cumulant expansion.
Nevertheless, we expect this strategy may fail in general, in which case a more robust means
of estimating the remaining contribution must be employed. To explore such alternatives,
we apply these control forces as guiding functions within the cloning algorithm [84]. To
quantify the statistical benefit from the control forces, we start with a trajectory ensemble
of Nw = 32000 walkers and monitor the decay rate in the number of uncorrelated walkers,
Nc, with and without the control forces. The number of uncorrelated walkers is defined as
those with a distinct history, having not been previously merged into an existing walker.
Figures 2.9(a) and (b) show the statistics of the walkers with respect to observation time,
with and without the control forces, in a system with 20 particles, and branching steps taken
every 0.5 time units. We have plotted f cs (t) = Nc(t)/Nw(t), where t is the observation time,
to represent the growth of correlation in the trajectory ensemble.

In the clustered state, incorporating the control forces improves the number of uncorre-
lated walkers by multiple orders of magnitude. For larger positive s, an unbiased estimate of
the SCGF can be obtained only when the variational control forces are used. The improve-
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Figure 2.9: Improvement of walker statistics of the cloning algorithm using approximate
control forces as guiding functions in an N=20 system, represented by f cs (t) = Nc(t)/Nw(t),
after an observation time t. Blue circles are without a guiding force and green squares are
with the variationally optimized guiding force. Decay of the fraction of uncorrelated walkers
with increasing observation time in a) the phase-separated state (s = 0.04) and b) the
hyperuniform state (s = −0.2). (Insets) Decay of the fraction of uncorrelated walkers after
t = 20 as a function of s in a) the phase-separated state (s = 0.04) and b) the hyperuniform
state (s = −0.2).

ment in the statistics of the walkers increases for more positive s because the magnitude of
the SCGF grows rapidly, and therefore the weight carried by the branching step increases.
We see this effect in the inset, where we show the fraction of uncorrelated walkers left after
an observation time and how it varies with s [84].

The decay of the walkers depends on the overlap between the tilted trajectory ensemble
and that generated from the controlled dynamics. Slower decay will result when the control
dynamics generates a trajectory ensemble that is close, in this sense, to the tilted trajectory
ensemble. This behavior is analogous to other approximate guiding function based impor-
tance sampling, such as that arrived by iterative feedback [86] or analytical approximation
[89]. These effects are seen in the hyperuniform phase as well, albeit the decay of walkers in
the ordinary cloning algorithm is less drastic, and so is the improvement by incorporating
the guiding forces. The improvement in statistical efficiency upon including the optimized
forces is not restricted to the cloning algorithm, and could be analogously adopted within
transition path sampling [89] or forward flux sampling [102].
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2.6 Current fluctuations in interacting overdamped

system

The Asymmetric Simple Exclusion Process (ASEP) has been extensive studied as a model
for many-body systems in nonequilibrium statistical physics [139]. ASEP is defined on a one-
dimensional lattice where each site can accommodate at most one particle, and the particles
hop forward or backward to neighboring sites with asymmetric rates without overtaking each
other. Boundary-driven nonequilibrium steady-states in ASEP have been well-characterized
to contain several dynamical phases that arise from both local density and collective cur-
rent order-parameters [140, 141]. Conditioning trajectory ensembles on large deviations of
currents have been previously shown to induce long-range effective forces that decay loga-
rithmically [95, 142]. Specialized tools using matrix product states and other tensor network
techniques have also recently been developed to sample rare current fluctuations and charac-
terize the dynamical phase behavior in ASEP and its generalization to two dimensions [121,
143].

Despite being defined only on a discrete lattice in one spatial dimension, ASEP has
been widely used to study the phenomenology of the nonequilibrium stochastic transport of
biomolecular cargo inside the cell [144]. The movement of ribosomes on RNA during protein
synthesis [145], the active traffic of load-carrying molecular motors on microtubules [146] and
the single-file transport of ions and small molecules through ion-channels [147] have been
mapped into ASEP to characterize their dynamical regimes and their energetic efficiency.
The mapping between ASEP and these systems comprising of continuous space hopping
between a sequence of metastable wells becomes accurate in the limit that barrier heights are
large compared to thermal energy. However, rare current fluctuations are often collective and
involve correlated hops involving neighboring multiple particles, for which the introduction of
infinitesimal fluctuations in inter-particle distances may change the phase behavior. Indeed,
dynamical phases featuring current reversals have been previously observed in lattice models
but not found in its continuous space analogue in a model for stochastic pumps [148, 149].
To better understand the continuous space generalization of ASEP and to characterize its
driven phase behavior, Brownian ASEP (BASEP) has been recently introduced as a model for
single-file transport [150, 151]. BASEP consists of hard volume-excluding spheres diffusing on
a one-dimensional periodic potential driven by a constant external force. This model features
rich structural phenomenogy depending on the flux of incoming and outgoing particles,
average density and the commensurability of particle diameters with the wavelength of the
periodic potential. But the rare current fluctuations, response and the dynamical phase
behavior of BASEP trajectory ensembles have not been studied and compared against those
of ASEP to determine the latter’s applicability in studying real space dynamics.

In this section we have used our variational algorithm to construct the large deviation
functions for currents in a soft-sphere analogue of the BASEP. We have generalized our model
we used in Section 2.4 for describing multiple interacting particles in a periodic potential.
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We consider N diffusive particles governed by the overdamped Langevin equation,

γẋi = Fi(x
N) + ηi (2.47)

in a one-dimensional box of length 2Nπ/ρ, where ρ is the packing fraction of the system,
Fi is the total force on the i-th particle, and ηi is a Gaussian white noise with zero mean
and variance 2γkBT . Each particle experiences a periodic potential V (xi) = V0 cos(xi), a
constant external driving force Fext, and a pairwise WCA repulsion VWCA(xi − xj) from all
the other particles, similar to the previous section in Eq. 2.40. We consider only the case
σ = 2π, such that each potential well can accommodate at most one particle without high
energetic cost. We have defined a collective current J over a trajectory X(tf ) of duration tf
as

J =
1

tf

∫ tf

0

dt
∑
i

ẋidt (2.48)

The collective current can thus be also interpreted as the drift in the center of mass of
the particles. A peculiarity of working with a continuous description of space is that if
V0 = 0, momentum is well-defined and conserved modulo the effect of the thermal noise.
The current in the V0 = 0 limit is exactly as if each particle is being driven independently by
the external force Fext. This means that the effect of having a high density of particles only
becomes manifest in the statistics of average collective current through a non-zero external
potential energy function. When V0 is non-zero and comparable to kBT , at high ρ non-zero
current is generated from sequential correlated hops from collections of adjacent particles.
Such current-carrying mechanism is shown in Fig. 2.10(a) via the collection of particle
coordinates {xi} as a function of time t at parameters ρ = 0.5, kBT = 0.5, V0 = 1 and
Fext = 1.5.

For a system of N = 100 particles, we compute the SCGF Ψ(s) associated with biasing
this time-averaged current, by applying our variational algorithm to compute an optimal
force. As basis functions we choose a combination of one-body periodic functions and two-
body pairwise functions, ui = Fi(x) + u

(1)
i (x) +

∑
j ̸=i u

(2)
i (xi − xj), that are described by

Equations 2.34 and 2.44. We study the convergence of the variational estimate for the
SCGF at three values of packing fraction, a dilute limit, an intermediate regime and a dense
limit where every well is occupied. We have learnt this force with M1 = 5 and M3 = 5
basis functions for bias s in the range of [−2, 5]. We have worked with units kBT = 0.5,
γ = 1 and our natural time unit as t∗ = 2ρ2kBT/γN

2 which evaluates to the same timescale
defined in Section 2.4. All observables have been reported in dimensionless units following
these definitions. We have also chosen V0 = 1 and the external driving force Fext = 1. For
all the simulations, the timestep was chosen to be 0.001 natural time units and an Euler
scheme was used to integrate the overdamped equation of motion. For each iterative step
during the optimization, a trajectory of duration 5 × 107 units was simulated. Similar to
our computations with the single overdamped particle, the system was allowed to come
to a steady-state for the first half of the trajectory, and the time-averaged gradients were
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Figure 2.10: a) Snapshot of the many-particle trajectory ensemble at half-filling, demonstrat-
ing correlated sequential hops that lead to non-zero current. b) Variational SCGF estimators
for ρ = 0, 0.5 and 1.0. Dotted vertical line represents Gallavotti-Cohen symmetry point at
s = 1.5. Green dashed line represents the segment of SCGF for ρ = 1, s < 1.5 reflected to
the region s > 1.5.

computed only with the second half of the trajectories. For implementing Eq. 2.18, we
integrated the correlation function up to ∆t = 100. We chose optimization learning rates
µ = 0.1, ν = 0.0.

In Fig. 2.10(b) we have shown the variational SCGF estimates obtained for our system
at three different densities. We find that the SCGF follows the similar locked and unlocked
regimes we had seen for the single particle case, which is identical to the dilute limit. The
SCGF does not change much from the dilute limit to ρ = 0.5, and only changes appreciably
near full packing At a high density, the biased current value in the locked part of the SCGF
reduces from the low-density limit. This is manifested as a sharp change at s = 0, which
is arising from a diverging second cumulant of current, the latter being proportional to the
second derivative of the SCGF. For any density, the SCGF should respect a Gallavotti-Cohen
reflection symmetry about the line s = 1.5. This is respected for small and intermediate
densities, but when the box is fully packed, we see this symmetry not being bveyed by the
variational estimator, which implies that the optimal force cannot be adequately represented
within our basis set ansatz. Nevertheless, given the variational principle and that the sym-
metry must hold for the correct Ψ(s), we get an estimate of the error being made by reflecting
one-half of the SCGF on the other half. This construction is shown as the green dashed line
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in Fig. 2.10(b).
Despite the percentage error being small, we could not correct the variational estimate

with a converging cumulant expansion or a guided cloning procedure with statistics from
upto 109 timesteps. This is due to the fluctuations in the system being extremely rare, and
also hints at the converged forces being quite far from the actual optimal force in the system.
Looking closer into the one-body and two-body components of our optimized force, we find
that for all values of s the two-body component optimizes to a negligible value compared to
the one-body parts. This suggests that a pairwise two-body force ansatz is a poor approx-
imation for the many-body nature of the true optimal force. Improved representations of
many-body effective forces through neural networks [152] might be promising as better basis
sets for optimal forces generating rare current fluctuations in this system.

2.7 Conclusion

We have developed a variational algorithm to compute optimal control forces for Langevin
models driven into nonequilibrium steady-states. We have used the control forces to sample
rare fluctuations in time integrated dynamical observables like current and activity, in order
to compute large deviation functions, and shown that they can be used to improve the
efficiency of the cloning algorithm. Our variational algorithm, along with the correction of
the systematic error with the cumulant expansion, has improved scaling properties compared
to trajectory ensemble methods, and can be useful in dealing with many-particle chemical
or biological systems.

Though we worked with Langevin models of structureless particles, the algorithm is
straightforward to generalize to higher dimensions, where optimal control forces might have
significant rotational components. It can also be extended to lattice models, where the rate
matrix has to be expressed in a variational ansatz. A system modeled by a different stochastic
equation of motion, like that employing an Andersen thermostat [42] or quantum trajectory-
based approaches [153, 154], can also be treated through this algorithm by changing only
the functional forms of the path-actions provided a Doob transformation exists.

The versatility of the variational algorithm allows for its use with different force ansatzes.
In the activity-biased system, using a low-rank approximation for a many-body optimal con-
trol force was sufficiently accurate. However in cases where the control force is not expressible
in a simple functional form or even as a many-body expansion, machine learning using ar-
tificial neural networks could be used to approximate it. The variational algorithm relies
on evaluating functional derivatives of the force with respect to the parameters, which can
be automated with autodifferentiation algorithms [155], as has already been demonstrated
in equilibrium free energy calculations [156]. The use of techniques developed in this paper
can aid the formulation of such optimization algorithms in the future. Additionally, this
algorithm can be used for model reduction in high-dimensional systems [157], and hence to
extend Variational Force-Matching and Ultra Coarse Graining algorithms [158, 159, 160] out
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of equilibrium, so that biomolecular and other soft matter systems can be simulated over
large length and time scales with effective forces in nonequilibrium steady-states.

Lastly, this framework of solving the optimal forces can tackle inverse-design problems
out of equilibrium. Various inverse-design algorithms have been proposed that can obtain
optimal forces to rationalize materials design with targeted properties and to guide directed
self-assembly of smaller objects [161, 162]. Our variational algorithm can be used to ob-
tain optimal forces suitable for targeted assembly or tailored particle distributions when
nonequilibrium driving forces are present, and hence can be used to characterize and predict
dynamical phases in new functional materials.
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Chapter 3

Inverse design of nonequilibrium
colloidal self-assembly

The self-assembly of soft and biological matter out of equilibrium can result in novel struc-
tures and dynamical responses not constrained by thermodynamic considerations [163, 164,
165, 166, 167, 33]. The microscopic violation of detailed balance in such systems can be
used to design a wide range of functional materials with enhanced thermomechanical, opto-
electronic or drug-delivery properties [168, 169, 170]. Predictive inverse design to drive the
assembly of target dissipative structures requires a dynamical description of the system [171,
172, 173, 48, 174]. In this chapter we apply our variational algorithm to automate the dis-
covery of inverse design principles for colloidal self assembly in a nonequilibrium steady-state
in molecular dynamics simulations. The algorithm uses a variational principle arising from
rare dynamical fluctuations of the system in a trajectory ensemble, and optimizes the yield
of target clusters or their rate of formation with statistically estimated explicit gradients in
the design parameter space. We demonstrate the performance of this algorithm by obtaining
optimal design principles for the self-assembly of DNA-labeled colloids [175] driven out of
equilibrium by a shear flow. We expect that the ability to uncover general optimal inverse
design principles away from equilibrium will enable bottom-up synthesis of new materials
and elucidate the processes encoding structure in biological contexts [176, 177, 18].

Self-assembly of nanoscale building blocks is increasingly used to engineer functional ma-
terials with novel properties arising from their complex nanostructures. Colloidal systems
offer a versatile paradigm for inverse design towards a desired target structure due to the
independent tunability of shape, valency and assembly environment [178]. In thermody-
namic equilibrium, stabilizing a target structure amounts to lowering its free energy, which
is typically achieved by increasing both the interaction strength and specificity. This princi-
ple has been exploited to achieve the self-assembly of a variety of clusters and superlattices
from colloids and nanocrystals with crystal facets decorated with organic ligands or DNA
[179, 180, 8]. However, employing these principles in practice requires mitigating dynamical
effects like slow coarsening and kinetic trapping [173, 172]. Optimal forces for self-assembly
must achieve a trade-off between slow relaxation at high interaction strengths, and slow
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growth at high interaction specificity [181, 182]. Self-assembly of colloids and biomolecules
in nonequilibrium steady-states provide a route to decouple kinetics from stability and mit-
igate this tradeoff. Directive self-assembly has been achieved by driving the system with a
constant supply of chemical fuel, or by applying external fields [183, 184, 185, 186]. How-
ever, the design of such systems must confront the continuous supply of energy necessary
to prevent the system from relaxing to equilibrium. Existing computational methods to
discover inverse design principles for nonequilibrium self assembly are limited due to the
configurational probability not following the Boltzmann distribution and the corresponding
variational structure afforded by the free energy no longer being valid under such dissipative
conditions.

Recent advances in the theoretical treatment of the stochastic thermodynamics of nonequi-
librium steady-states have made possible a trajectory ensemble description of self-assembly,
treating structure and dynamics on an equal statistical footing [27, 19]. This has enabled
basic principles governing assembly away from equilibrium to be formulated [22, 74]. In this
work we develop a perspective and accompanying numerical technique based on these in-
sights. Rather than considering the probability of observing a state and tuning its associated
free energy, we consider the likelihood that a trajectory forms a specific structure as quanti-
fied by a stochastic action, and how that action is changed by modifying the intermolecular
and applied forces. We show that fluctuations around a nonequilibrium steady-state encode
the susceptibility of a system to assemble, in a manner analogous to a fluctuation-dissipation
relationship. Further, optimal forces that assemble a target structure or maximize reactive
flux while minimizing the change to the stochastic action satisfy a variational principle [63,
111]. We extend and apply our optimization algorithm to solve this variational expression
and compute the optimal control force to sample rare dynamical phases [117]. We show
that this algorithm can be used to solve the inverse design problem, deciphering how rare
fluctuations encode stability away from equilibrium.

We outline below an inverse design algorithm for the self-assembly of sheared DNA-coated
colloids into different target nanoclusters. The algorithm is based on a variational principle
relating rare fluctuations in an ensemble of trajectories conditioned on evolving a target
structure, to effective forces achieving the target as the typical dynamical state. Working
with a trajectory ensemble, where the probability distribution is known, circumvents the
difficulty of not knowing the distribution of configurations within a nonequilibrium steady-
state. To solve the variational problem, we have used generalized response relations for
the gradients of the steady-state trajectory probability to a change in the inter-particle and
externally driven forces.1

1Most of the content of this chapter was originally part of the publication [187].
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3.1 Coarse-grained model for DNA-labeled colloids

For concreteness, we consider a model of N colloidal particles in a cubic box of length L,
evolving with an overdamped Langevin equation of the form,

γṙi = ui + ηηηi (3.1)

where ṙi are time derivatives of the coordinates of the i-th particle and ui are the forces
acting on it. The friction coefficient of the colloids with the thermal bath is denoted γ and
ηηηi are Gaussian white noise that satisfy

⟨ηηηi(t)⟩ = 0 , ⟨ηηηi(t)ηηηj(t′)⟩ = 2γkBT I3δijδ(t− t′) (3.2)

where I3 is the 3×3 identity matrix and kBT is Boltzmann’s constant times the temperature.
The angular brackets denote an averaging operation over the random noise distribution.
As we consider dynamics in the presence of a shear flow, we use Lees Edwards boundary
conditions [188].

We use an ansatz of DNA-labeled spherical isotropic colloids as programmable building
blocks for self-assembly. The interaction between these colloids, mediated by the DNA
molecules attached to their surface, consists of a volume-exclusion repulsion and a short-
range attraction [189]. The effective interaction strengths and the pairwise specificity can be
independently tuned by varying the sequences of the grafted DNA molecules. During self-
assembly, the short-range forces generate a competition between local and global order that
leads to frustration and unique phase behavior and dynamical effects [190, 191]. This system
has been computationally and experimentally demonstrated to form finite nanoclusters with
specific target structures [192, 193]. The high-dimensional design space has the possibility
to offer multiple pathways to stabilize any cluster out of the many nearly degenerate states
formed without the specificity of the DNA-mediated attraction. To illustrate the performance
of the variational algorithm, we consider the nonequilibrium self-assembly of 21 such rigid
and nonrigid clusters, some examples of which are demonstrated in Figure 3.1a.

We examine the self-assembly of these colloidal particles under a constant linear shear
flow. Shear flows are known phenomenologically to alter the stability of compact and ex-
tended colloidal structures [194, 195]. A recent paradigm of colloidal assembly being increas-
ingly explored is that in a microfluidic device, where the confining walls generate a strong
shear on the assembling clusters [196, 197]. This system offers a canonical nonequilibrium
setting to explore inverse design principles. Taken together, the forces acting on the i-th
colloid are

ui = fSi (ri)−∇∇∇i

∑
j ̸=i

V (rij) (3.3)

where V (r) = VWCA(r) + VMorse(r) and VWCA(rij) is a WCA pair potential representing
the volume exclusion interactions, and VMorse(rij) denotes the DNA-mediated short-range
pairwise attraction. The force due to a shear flow, fSi (ri), has the form

fSi (ri) = fzix̂ (3.4)
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Figure 3.1: Model details for self-assembly of DNA-labeled colloids. a) Examples of finite
rigid and nonrigid nanoclusters for which we have studied design principles, along with the
corresponding point groups for molecular symmetries denoted underneath. b) Graphical
forms of the potential energy functions, the WCA potential (blue) and the WCA and Morse
potential combined (red) for Dij = 10kBT . The orange dashed line denotes the bond cutoff
rb = 1.35σ and the black dashed line denotes the potential cutoff rc = 2.12σ.

which has magnitude f and generates a constant gradient of the x component of the velocity
along the z direction. The WCA pair potential has the functional form

VWCA(rij) = 4ϵ

[(
σ

rij

)12

−
(
σ

rij

)6
]
+ ϵ , rij < 21/6σ

= 0 , rij ≥ 21/6σ (3.5)

with particle diameter σ and energy scale ϵ. The attractive Morse potential has the functional
form

VMorse(rij) = Dij

(
e−2α(rij−21/6σ) − 2e−α(rij−21/6σ)

)
(3.6)

where Dij is the magnitude of the bond energy and α determines its width.
We work in units of kBT = 1, γ = 1 and σ = 1. The natural time scale with these

units is t0 = γσ2/kBT and times are expressed in these units throughout. We set ϵ = 10kBT
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and α−1 = σ/10. The attractive energy scale Dij and the shear flow rate f are tuned as
variational parameters to induce self-assembly. They have been restricted to vary within
the range 0 ≤ Dij ≤ 10kBT and 0 ≤ f ≤ 50kBT/σ

2 to avoid large relaxation times and to
stay within the overdamped regime. Figure 3.1b shows the potentials for the inter-particle
interactions. The Morse potential and its force have both been truncated and shifted, using
the Shifted Forces approximation [198], to decay smoothly to zero at rc = 2.12σ.

In order to avoid finite size effects in the formation of small clusters, we study a low
packing fraction of ϕ = 0.01. We use a first order Euler discretization for the equation of
motion in Eq. 3.1. Since the potentials in Eq. 3.3 are narrow and short-range, we have to
use a small timestep of 5 × 10−5t0 in order to sample the potentials accurately. We have
used trajectories of length ranging from τ/t0 = 2.5× 103 to 104.

3.2 Automated inverse design algorithm

Variational principle

In order to uncover design principles for self-assembly, we consider the task of finding the
set of forces that fulfill the condition of assembling a target structure as the typical state of
the system in the long time limit. Such tasks in stochastic dynamics are generalizations of
Brownian bridges and known to have unique solutions [111]. They have played an important
role recently in the application of large deviation theory to physical systems driven far from
equilibrium [86, 81, 93, 199, 117].

We start by defining an observable Aτ as a time averaged indicator function for a target
cluster,

Aτ [r
N(t)] =

1

τ

∫ τ

0

1[rN(t)] dt (3.7)

where 1[rN(t)] = 1 for a configuration satisfying a geometric criterion consistent with a
target cluster and 1[rN(t)] = 0 otherwise, for each time t along a trajectory rN(t) of total
duration τ . The average value of the observable quantifies the yield of the target cluster. For
all colloidal clusters considered, 1 is computed by constructing a bond-connectivity matrix.
A cutoff of rb = 1.35σ has been used to define a bond between two particles. Indicator
functions for rigid target clusters are then uniquely determined by permutation-invariant
measures of this connectivity matrix [200]. For nonrigid target clusters, along with the
bond-connectivity matrix, we additionally consider measures of the geometry of the cluster
for defining the indicator function.

Rather than considering trajectories conditioned on a particular value of Aτ directly,
which is numerically cumbersome, we work within an ensemble equivalent representation
[118]. Using a counting parameter λ, we can statistically bias a system towards a particular
value of Aτ within a nonequilibrium steady state. The cumulant generating function Ψ(s)
is the partition function associated with the trajectory ensemble under the statistical action
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of s,

Ψ(s) = lim
τ→∞

1

τ
ln
〈
e−sτAτ

〉
0

(3.8)

where the angular brackets denote a path average over trajectory probability P0[r
N(t)], as〈

e−sτAτ
〉
0
=

∫
D[rN(t)] exp

(
−sτAτ [rN(t)]

)
P0[r

N(t)] (3.9)

The subscript 0 refers to the average being computed in a reference ensemble where the
particles do not typically show the desired self-assembly behavior. For this reference system
we have chosen an equilibrium ensemble of colloids interacting only with the WCA repulsive
forces, i.e., Dij = f = 0, such that ui = −∇∇∇i

∑
j ̸=i VWCA(rij) which is denoted as FWCA

i (rN).

When the optimizable parameters are tuned to vary u, the trajectory probability P0[r
N(t)]

changes to Pu[r
N(t)]. The cumulant generating function can be estimated in the modified

ensemble as,

Ψ(s) = lim
τ→∞

1

τ
ln

∫
D[rN(t)]e−sτAτ

P0[r
N(t)]

Pu[rN(t)]
Pu[r

N(t)]

= lim
τ→∞

1

τ
ln
〈
e−sτAτ+∆S[u]

〉
u

(3.10)

where the functional form of the relative action ∆S[u] can be derived from Onsager-Machlup
theory [45],

∆S[u] = S[u]− S[FWCA]

=

∫ τ

0

N∑
i=1

(ṙi − ui)
2 − (ṙi − FWCA

i )2

4γkBT
dt (3.11)

with the integral being computed in the Ito sense. This change of measure analogous to
a Girsanov transform [63] relates the original likelihood of self-assembly in the reference
ensemble to the ensemble under the control force.

Since the exponential is a convex function, we apply Jensen’s inequality to Eq. 3.10

Ψ(s) ≥ lim
τ→∞

1

τ
⟨−sτAτ +∆S[u]⟩u (3.12)

to obtain a variational expression for the cumulant generating function. In the long time
limit for τ → ∞, we can replace trajectory averages with static averages and simplify the
relative action using the equation of motion for ṙi. Hence we arrive at our final variational
expression,

Ψ(s) ≥ ⟨Ω[u]⟩u =

〈
−s1(rN)−

N∑
i=1

(ui − FWCA
i )2

4γkBT

〉
u

(3.13)

where ⟨Ω[u]⟩u is the target function to optimize.
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For a bounded observable like the indicator function, a large negative value of s enforces
the desired conditioning. The problem of saturating the variational inequality is known to
have a unique solution when u(rN) can take all possible functional forms, the optimal force
being a generalization of Doob’s h-transform [111]. Optimizing ⟨Ω[u]⟩u will lead to a set of
many-body forces for assembling target clusters in high yield. In practice the use of only
one-body and two-body forces in Eqs. 3.3-3.6 need not saturate the inequality. The second
term in the variational expression is associated with the Kullback-Leibler divergence between
the reference and conditioned trajectory ensembles. This term enforces the smallest excess
force out of all possible control forces, and thus acts as a regularizer in the optimization
process. While the solution to Eq. 3.13 uniquely selects the force that shows fluctuations
closest to rare fluctuations in the original ensemble, it is not a unique inverse design criterion
and alternatives can in principle be constructed [201]. However, the optimization scheme
that we construct in the next section can be generally extended to other functional forms of
regularizers.

Stochastic gradient descent

To numerically optimize Eq. 3.13, we derive explicit gradients of the variational estimator
⟨Ω[u]⟩u, using an algorithm that we have previously employed to estimate large deviation
functions in nonequilibrium steady-states [117]. The general form of the gradient with respect
to any variational parameter c ∈ {Dij, f} is

∂⟨Ω[u]⟩u
∂c

=

〈
∂Ω[u]

∂u

∂u

∂c

〉
u

−
∫ ∞

0

〈
δΩ(t)δ

(
∂Ṡ[u]

∂u

∂u

∂c

)
(0)

〉
u

dt (3.14)

where Ṡ[u] is the time derivative of the action S[u]. Equation 3.14 is a generalized fluctuation-
dissipation relation for a nonequilibrium response in the design parameter space. For com-
putational purposes, we approximate the gradient expression by integrating the correlation
function in the second term up to a fixed large time interval ∆t = 5t0. Due to the small
density, we have to use a low variance estimate for the explicit gradient in Eq. 3.14 for the
specific case of optimizing the shear flow rate f as described later.

The corresponding variational algorithm consists of a stochastic gradient descent opti-
mization [202] for a large negative value of s in Eq. 3.13. Starting from an initial point
in parameter space {Dij, f}, we simulate the dynamics of the system using Eq. 3.1, and
after relaxation into a steady state, statistically estimate the explicit gradient of the varia-
tional estimator, Eq. 3.14. We perform stochastic gradient descent updating all variational
parameters c at every step of the optimization, with the update rule at the n-th step being

cn+1 = cn + αn
∂⟨Ω[u]⟩u

∂c

∣∣∣∣∣
cn

(3.15)

where the stochastic gradients are evaluated within a steady-state with the current value of
the parameters, and αn is the learning rate for any of the c parameters in the n-th optimiza-
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Figure 3.2: Optimization procedure for an Oh cluster. a) The convergence of the yield with
increasing number of optimization steps. Different colors represent varying learning rates.
b) Convergence of Dij for the green yield curve in (a). (Inset) Bond structure and the
corresponding MA Dij matrix for the Oh cluster. Blue and white elements in the matrix
denote bonds with Dij = 10kBT and Dij = 0, respectively.

tion step. The level of noisy fluctuations in each parameter during the optimization process
can be tuned independently through the corresponding learning rates. If the variational
surface changes sharply, the learning rate has to be decreased with increasing n to anneal to
the optimal solution basin. The learning rates have also been chosen individually for each
example such that in each optimization step, the rate of change of Dij/kBT is in the range
[0.1, 0.5] and that of fσ2/kBT is in the range [1, 5].

Convergence and choice of s

To illustrate the performance of the optimization algorithm, we study the assembly of 6
particles into an octahedral (Oh) target cluster. An octahedron is not the highest yield
cluster formed in a system of 6 hard sphere colloids with infinitely short-range attractions
[192], and is formed in only 6% yield with strong, nonspecific interactions. Figure 3.2a
shows the yield as a function of optimization steps with different learning rates and different
trajectory noise histories. For all these examples, the yield is optimized over multiple orders
of magnitude with the final converged value being close to 100%. This change of the order
parameter over several orders of magnitude arises from the observable being defined as the
probability of forming the target cluster, and in cases where the change is more drastic, would
necessitate the use of two different learning rates in Eq. 3.15. At a constant learning rate,
the learning curves show two distinct regions, such that a gradual rise in yield is followed by
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Figure 3.3: Stability of the high-yield solution with s. a) Convergence of the yield starting
from the 10kBT MA solution. Different colors represent varying values of st0 in the range
[−4× 104,−103], with the converged value of the yield increasing monotonically with |s|. b)
Blue crosses with errorbars are the converged bond energy of the MA solution at varying
values of s. Red line is a linear fit.

a rapid convergence to the saturation value.
Figure 3.2b shows the convergence of Dij for one of the optimization runs. For 6 particles

there are 15 distinct interactions, all of which are optimized. The starting point is a non-
specific attraction Dij = 4kBT for all ij pairs. The optimization curve shows two regions,
an initial spreading of the Dij values followed by a rapid permutation symmetry breaking
and a clear segregation of the 15 interactions into 12 attractive and 3 repulsive parameters.
The 12 attractive interactions are all statistically equal, as are the 3 repulsive interactions.
The attractive interactions correspond to the 12 bonds in the connectivity matrix for the
octahedron. The symmetry breaking is spontaneous and is aided by the initial noisy fluc-
tuations during optimization. Different noise histories in the trajectory lead to a symmetry
breaking for which different sets of Dij parameters become attractive or repulsive. For the
finite clusters considered, this symmetry breaking is general. We refer to the specific Dij

solutions for the optimal yield of a target cluster as an alphabet, and the particular Dij in
which there is a pairwise attractive interaction for every contact in the target structure as
a Maximal Alphabet (MA). This strategy has been previously shown to be effective in the
self-assembly of short-range interacting colloids into small clusters [175, 193].

For the octahedral cluster, we have studied the stability of the MA solution for varying
values of s. We find a bimodal structure of the variational surface, with the algorithm
converging to either a MA solution or a trivial solution u = FWCA, depending on the value
of s. Figure 3.3a demonstrates the convergence of the octahedral yield with different values
of st0 varying in the range [−4× 104,−103], starting from an MA solution with 10kBT bond
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Figure 3.4: Design principles for rigid clusters. a) Bond structure of clusters (i-ix), along
with their corresponding point groups, optimal yields and their converged alphabets on a
color scheme indicated by the colorbar at the top. b) Yield as a function of a nonspecific
attraction Dij = D for fixed shear f = 0. c) Yield as a function of the shear rate f for
fixed optimal alphabets. The colors of the points in b) and c) correspond to the colors of the
clusters in a).

energies and a yield of 100%. For moderate but decreasing values of |s|, the algorithm remains
stable in the MA solution, but with monotonically decreasing yields and bond energies. For
less negative values of s than a critical value of sc = −5× 103/t0, the MA solution becomes
unstable and the algorithm finds the u = FWCA solution. Rather than optimizing the yield in
Eq. 3.13, at small values of s the second term is optimized. For some moderate s values, the
MA basin is only a local optimum and the crossover behavior shows s-dependent hysteresis.
We find this bistablity of the variational surface to be generic.

Asymptotic dependence of solution on s

We analytically solve for the asymptotic dependence of the bond energy D as a function of
the bias s, for the formation of one bond, independent from the dynamics of the other bonds.
We can represent this simplified system as an equilibrium, two state Markov model with the
rates of transition between the bonded and unbonded states kb and ku, respectively. These
rates are determined by their mean ν = (ku + kb)/2 and their ratio ku/kb = exp(∆F/kBT ),
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where ∆F is the free energy difference of the two states.
The cumulant generating function associated with fluctuations in the bonded state satifies

a eigenvalue equation of the form,

Wsrs = Ψ(s)rs (3.16)

where rs is a right eigenvecture, and operator Ws is given by

Ws =

(
−ku − s ku

kb −kb

)
(3.17)

which is equal to the adjoint of the transition rate matrix when s = 0. For the optimal rates
that generate the statistics equivalent to this rate matrix, we need the Doob’s transform of the
matrix [63]. For this purpose we diagonalize the matrix to find the eigenvector corresponding
to the dominant eigenvalue as (r1, 1) where

r1 =
e
− ∆F

kBT

4ν

[
(−s+ 2ν) + e

∆F
kBT (−s− 2ν)

−
√
e
2 ∆F
kBT (−s− 2ν)2 + (−s+ 2ν)2 + 2e

∆F
kBT (s2 + 4ν2)

]
(3.18)

and ku and kb have been rewritten with ∆F and ν.
The modified rates that generate the optimal dynamics are given by k̃u = ku/r1t0 and

k̃b = kbr1t0. The modified free energy difference corresponding to these rates is ∆F̃ =
kBT ln(k̃u/k̃b). Using Eq. (3.18), in the s→ −∞ limit the optimal free energy goes as

∆F̃ ∼ ∆F − 2kBT ln(|st0|) (3.19)

In this limit, the free energy is dominated by the negative of the bond-formation energy D,
and hence the latter is asymptotically D ∼ 2kBT ln(|st0|).

Figure 3.3b shows the dependence of the average optimized bond energies of the converged
MA solutions from the previous figure, as a function of varying s. This illustrates the depth
of the MA basin in the parameter space. In the limit that each bond is formed independently,
D∗
s is expected to asymptotically vary as ∼ 2kBT ln(|st0|). Over the range of s considered, we

find a logarithmic dependence but with a different coefficient, ∼ 1.3 ln(|st0|). This suggests
that the free energy is approximately pairwise additive.

In the limit of large negative s, which in practice is chosen such that the estimate of the
first term in Eq. 3.13 is at least an order of magnitude larger than the negative second term,
the variational algorithm can be used to automate the discovery of optimal forces for the
self-assembly of clusters of arbitrary shapes and sizes, in a nonequilibrium steady-state. The
optimal forces stabilize the target clusters in an arbitrary ensemble without accounting for
the dynamics of transient relaxation towards its steady-state. For fixed number of tunable
parameters, the computational cost scales linearly with system size since the only bottleneck
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Figure 3.5: Design principles for nonrigid clusters. a) Bond structure of clusters (x-xv),
along with their corresponding point groups, optimal yields and their converged alphabets
on the same color scheme that was used in Fig. 3.4. b) Yield as a function of the shear rate
for Dij fixed at the optimal alphabet. The colors of the points correspond to the clusters in
a).

is propagating a steady-state trajectory long enough to compute statistically converged gra-
dients. The algorithm also scales linearly with the number of variational parameters, but
with a small proportionality constant as all the gradients are estimated from the same trajec-
tory. The use of the statistically estimated gradients significantly lowers the computational
cost in contrast to numerically estimating the gradients from finite difference techniques by
propagating multiple trajectories at different points in the parameter space. We next use our
variational algorithm to study and rationalize the optimal design principles for a collection
of rigid and nonrigid clusters.

3.3 Design principles for yields of rigid and nonrigid

clusters

We have investigated the formation of small low-energy rigid and nonrigid clusters with
6,7 or 8 particles. We discover distinct design principles of these clusters and rationalize
our findings by analyzing the response function of yield to the shear flow rate. We also
demonstrate that the variational algorithm can obtain high yield optimal solutions even with
constraints imposed on the total number of experimentally realizable design parameters. The
design principles we obtain are expected to be general for the nonequilibrium self-assembly
of short-range interacting colloids in a sheared steady-state.
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Rigid clusters

We study the formation of a family of rigid clusters that are all known to be the lowest energy
structures for systems of hard sphere colloids with identical infinitely short-range attractions.
These clusters have previously been systematically enumerated and tabulated [203, 204], and
their free-energy landscapes have been theoretically and experimentally studied [192]. These
finite clusters are the colloidal analogs to small molecules and have been shown to be involved
in the controlled seeding and growth of polycrystalline phases and kinetically arrested gels
[205, 206].

For each of these clusters, we optimize {Dij, f} to extremize the yield within this force
ansatz. In the limit that the attractive interactions between the particles were infinitely
short-range, there would be no internal low-energy distortion modes and the bond-connectivity
matrix would correspond to a unique geometry. For our optimization, the indicator func-
tion refers to the corresponding bond-connectivity matrix conditions being satisfied. Figure.
3.4a summarizes the design principles discovered for these clusters. The point groups for
the symmetries of each of these clusters have been indicated along with the highest yields
obtained. For chiral Cn clusters, the yields are the racemic yield.

For each of these clusters, the corresponding optimal alphabet discovered by the varia-
tional algorithm has also been indicated. We find that for clusters (i-iv), the optimal solution
for Dij is the MA. For the chiral C2 cluster (v), the optimal alphabet is closely related to the
MA but has a higher symmetry and is equivalent to a smaller 3 × 3 alphabet, while having
the same yield. For clusters (vi-ix), all of which contain a radial 5-fold motif, the optimal
yields are much less than 100%, and the optimal alphabets are not MA. The reason is the
competition with structures with higher number of bonds. These lower energy structures
would be geometrically unfeasible for infinitely short-range attractions, however in our model
the short-range bonds have nonzero vibrations, which is sufficient to lead to the formation of
the extra bonds. Unlike MA, the optimal alphabet discovered by the variational algorithm
penalizes the formation of these lower energy competing structures.

Figures 3.4b and 3.4c show two slices through the optimization landscape in the parameter
space of {Dij, f}. Figure 3.4b is a diagonal slice through Dij, such that all Dij = D, while
fixing f = 0. We find that for the two 6 particle clusters (i) and (ii), there is a monotonic
increase in yield with increasingD. This suggests that even when the attractive forces are not
infinitely short-range, both of these clusters are energetically the most stable configurations,
and the only competing structures are higher in energy. When D = 10kBT , the C2v cluster
(i) is formed with a yield of 93% compared to the 6% yield of the Oh cluster (ii), which
is consistent with the stabilization due to the rotational entropy in the former [192]. All
the other clusters (iii-ix) in Fig. 3.4b show a turnover in yield with increasing D. This is
due to competing low energy structures that are formed at large enough nonspecific D. We
expect this design principle of a turnover in yield with increasing nonspecific attractions to
be general for larger clusters, since most larger clusters built from short-range interacting
particles will contain the radial 5-fold motif [204]. The value of the attraction D at the yield
turnover is determined by a competition between the energetic stabilization of the lower
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energy structure and the destabilization of structures with missing bonds.
Figure 3.4c shows a slice through the optimization landscape with varying the shear rate

f , while fixing Dij at their optimal value found by the variational algorithm. We see that
for this class of rigid clusters, the yield monotonically decreases with increasing shear rate.
We expect this feature to be general for rigid clusters, since rigid clusters need no additional
geometric stabilization that can be provided by shear, which only energetically destabilizes
the bonds in the cluster. This perspective is confirmed in Sec. 3.3 using a linear response
theory.

Nonrigid clusters

For our ansatz of short-range interacting colloids, clusters with N particles but fewer than
3N − 6 bonds in total, and fewer than 3 bonds for every particle, are not minimally rigid
in that they have zero energy deformation modes [203, 204]. These clusters are not formed
in high yield as stable ground state structures in equilibrium. We have used the variational
algorithm to uncover optimal nonequilibrium design principles for a family of such nonrigid
clusters. The clusters we have considered belong to a family of planar two-dimensional
structures known as polyiamonds. They have been shown to self-assemble from colloids in the
presence of a spatial heterogeneity, like in hydrodynamically driven assembly of sedimenting
colloids in the presence of a substrate [207, 208, 209]. Within our control force ansatz, we
investigate whether the shear flow planes are sufficient to stabilize these clusters.

For the optimization process, the indicator function for the cluster yield has been defined
using both the bond connectivity matrix and the flatness of the clusters, as discussed in the
next subsection. Figure 3.5a shows the optimal design principles obtained for clusters (x-xiv).
The variational algorithm converges on the MA solution for theDij parameters for all of these
clusters. The yields, however, are not 100% due to contribution from competing buckled
configurations where the polyiamonds fold over the triangular faces to form tetrahedral
motifs. Moreover, with the MA fixed, the optimal yield is at a non-zero shear flow. Figure
3.5b shows the yield as a function of the shear rate for fixed optimal alphabets. The location
of the turnover in yield depends on the competition between geometric stabilization of the
planar structure from the shear flow lines and energetic destabilization of the bonds. This
design principle of planar two-dimensional clusters being stabilized by a shear flow appears
to be general, and stands in contrast to the rigid clusters which are strictly destabilized by
shear.

Effect of shear on geometry of nonrigid clusters

Shear flow enhances the yield of nonrigid clusters (x-xv) by stabilizing a planar geometry and
suppressing buckling modes. Here we have computed the probability distribution P (cos θ)
of the average flatness, defined as cos θ = [cos(θABC) + cos(θDEF )]/2, conditioned on the
correct bond connectivity matrix for the cluster being satisfied. The angles, θABC and θDEF
are defined in Fig. 3.6. The flatness is −1 for a perfectly planar geometry, but increases due
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Figure 3.6: Flatness distribution for the geometry of the C2h cluster (x), keeping the Dij

fixed at the optimal solution and changing the shear rate f . (Inset) The flatness is measured
through the angles θABC and θDEF .

to buckling and bending of the nonrigid cluster. For defining the indicator function for the
nonrigid cluster, we used a flatness cutoff of cos θ ≤ −0.8. We have looked at a population
where the bond-connectivity matrix condition is satisfied but the flatness is unconditioned.
This is illustrated in Fig. 3.6 for the C2h cluster (x). We have kept the Dij forces fixed at
the optimized alphabet, and plotted the distribution of flatness at two values of shear, at
equilibrium with f = 0 and also at f = 20kBT/σ

2 which is close to the optimal value for
highest yield. We find that the planar geometry is a transient state at equilibrium, with
the most probable states corresponding to the buckling of one or both of the angles θABC
and θDEF . The shear flow destabilizes the buckled conformations and stabilizes the planar
state instead, so that at f = 20kBT/σ

2 the most probable conformation is the correct planar
geometry.

Estimating explicit gradients in the low-density limit

Using Eq. 3.14, the second term in the explicit gradient with respect to the shear flow rate
f is 〈

δΩ(t)δ

(
∂Ṡ[u]

∂u

∂u

∂f

)
(0)

〉
u

=
1

2γkBT

〈
δΩ(t)δ

(
N∑
i=1

ηxi zi

)
(0)

〉
u

(3.20)
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Figure 3.7: Response of yield to shear for a rigid and a nonrigid cluster, with Dij fixed at
the corresponding optimal alphabets, and shear fixed at f = 5kBT/σ

2. a) Total correlation
function (black squares) for an Oh cluster (ii), and its torque (orange circles) and virial stress
(red triangles) parts. b) The same correlation functions for the C2h cluster (x).

where we have simplified the stochastic action using the equation of motion. Since zi ap-
pears in the expression independently for each particle, and the density of the particles is
vanishingly small, the z-diffusion timescale of the cluster diverges, and the correlation func-
tion takes a long time to converge. Thus any gradient estimate we obtain by integrating the
correlation function to a finite time ∆t will contain a systematic error. In order to obtain an
unbiased gradient, we recognize that in the large λ limit we are working in, the major part
of Ω(t) is from 1(t), which by our definition depends only on the internal coordinates of the
particle, and due to the spatial translation symmetry in our system, is decoupled from the
center-of-mass diffusion. This decoupling is directly expressed by a regrouping of terms in
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the sum over particles,

s

〈
δ1(t)δ

(
N∑
i=1

ηxi zi

)
(0)

〉
u

=
s

N

〈
δ1(t)δ

([
N∑
i=1

ηxi

][
N∑
i=1

zi

])
(0)

〉
u

+
s

N

〈
δ1(t)δ

 N∑
i,j=1
i>j

(ηxi − ηxj )(zi − zj)

 (0)

〉
u

(3.21)

where in the first term the z coordinate of the center of mass has been explicitly factored out.
We identify that the indicator function does not correlate with the center-of-mass motion and
so the first term is 0. We use only the second term to approximately evaluate the gradients
of Eq. 3.13 with respect to the shear flow rate f .

Response of structure to shear

The origin of the response of yield to shear flow is related to the relaxation dynamics of
order parameter fluctuations in the unperturbed system. The response coefficients for rigid
and nonrigid clusters can be understood using a generalized linear response theory [210, 36].
Keeping the Dij parameters fixed, the linear response of the yield to a change in shear flow
rate can be decomposed into two terms,

∂⟨1⟩u
∂f

=
1

kBT

∫ ∞

0

dt ⟨δΓ(0)δ1(t)⟩u

+
1

kBT

∫ ∞

0

dt ⟨δM(0)δ1(t)⟩u (3.22)

where we have used the low variance estimator for the correlation function in 3.3. Here, Γ
is related to the dynamical torque acting on the cluster,

Γ =
1

2γN

∑
i>j

[(γẋi − fzi)− (γẋj − fzj)](zi − zj) (3.23)

and M refers to the virial stress on the cluster due to internal forces,

M =
1

2γN

∑
i>j

[F x
i − F x

j ](zi − zj) (3.24)

where Fi = −∇∇∇i

∑
j ̸=i [VWCA(rij) + VMorse(rij)] is the conservative force acting on the i-th

particle. Γ and M are time-reversal asymmetric and symmetric parts respectively [211] of
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the full stochastic action gradient, R = Γ +M . Decomposing in this form is necessary to
preserve the deconvolution of the center-of-mass motion from the internal coordinates of the
cluster [212].

This linear response function is 0 at equilibrium due to the spatial parity symmetry
of the system. Hence we have characterized the different components of this correlation
function at a small value of shear f = 5kBT/σ

2, for the rigid cluster (ii) and the nonrigid
cluster (x), fixing Dij to their corresponding MA interactions. The results are shown in
Fig. 3.7. We find that the component coming from the virial stress has opposite signs at
small times for the rigid and the nonrigid cluster, which accounts for the opposite signs
of the gradient of the yield. The tumbling motion of the clusters in a shear flow couples
positively with the internal order parameter in the case of a nonrigid cluster and leads to
an increase in yield with increasing shear flow rate at small values of shear. The shear flow
planes function as a spatial heterogeneity that is generally a precondition for stabilizing these
planar clusters during self-assembly. At large shear, the yields of both rigid and nonrigid
clusters are decreased with increasing shear due to the larger anti-correlation between the
torque and the indicator function.

These design principles in and out-of-equilibrium are general in their scope of applicability
for small clusters formed by DNA-coated colloids. Nevertheless, a key limitation of this
approach is the linear system size scaling of the number of different kinds of DNA-labeled
colloids required in order to assemble a cluster, evident in the corresponding quadratic scaling
of the number of variational parameters. We have addressed this limitation in the next
section.

Smaller alphabets

Engineering a system with an extensive number of specific interactions is difficult, even with
DNA-coated colloids. It is advantageous in this regard to uncover alphabets that code for
the minimal sufficient interactions to stabilize a target structure, in such a way that does not
increase with increasing system size. For example, polymers and crystals are macroscopic
structures that can be assembled with a finite number of specific interactions, as both only
require a repeating microscopic number of components to be stabilized, either a sequence of
monomers or a unit cell. For clusters that do not have a clear repeating unit, discovering
optimal design principles with smaller alphabets is nontrivial.

We have studied this problem by considering the 6 different low-symmetry 8-particle
clusters (xvi-xxi) shown in Fig. 3.8. For each of these clusters, there is no direct way to
partition the interactions into 2 or 4 classes based on their bonding environment or symmetry.
We have used the variational algorithm to optimize the yield of each of these clusters, with
a 2 particle, 4 particle and 8 particle alphabet, in which Dij has 3, 10 and 28 independent
variational parameters respectively. Clusters (xvi-xix) have near 100% yields for the full
sized alphabet. Clusters (xx) and (xxi) compete with higher bonded clusters containing
the radial 5-fold motif, and so have an optimal yield of lower than 100% even with an 8
particle alphabet. Nevertheless, for all the clusters, a 4 particle alphabet can give quite large
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Figure 3.8: Design principles for low symmetry clusters (xvi-xxi) with smaller alphabets.
Each column corresponds to the point group of each cluster, its optimal yields and forces
with 2×2, 4×4, and 8×8 sized alphabets in the three rows. The color scheme for the bonded
structure refers to the optimal partitioning of 8 particles within 2, 4 or 8 labels, and the
visualization of the Dij matrices follow the same color scheme as in Fig. 3.4.

yields in comparison to the maximum possible yield. The variational algorithm identifies the
optimal way to partition the groups of interactions of these clusters despite the lack of clear
symmetry.

For the C1 cluster (xix), even a 2 particle alphabet has a high yield, despite not having
any exact two-fold symmetry. In this case, the algorithm has recognized a near-symmetry
in the cluster and has partitioned it into 2 groups. The symmetry of these letters is close to
the symmetrical alphabet that was discovered by the algorithm in a related C2 cluster (v)
in Fig. 3.4. We expect this potential to discover optimal design principles for large clusters
with a small number of groups, to be promising towards the self-assembly of experimentally
realizable systems with practical constraints on the limits of bottom-up design.

3.4 Design principles for yields of microphase

separation

In the previous sections we discussed optimization of the yield of colloidal nanoclusters under
a shear flow. The design principles we found however are only valid in systems consisting
of particles of only one set of the corresponding alphabet. In cases where there are many
copies of the alphabet, it is an entirely new paradigm to search for a set of design principles
that produce many copies of identically sized nanoclusters. Formation of such a phase in
a self-assembled system, identified by the spontaneous emergence of a microscopic cluster
size scale even in the presence of a thermodynamic number of particles, is referred to as
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Figure 3.9: Optimized design principles for microphase separation into 6-particle clusters.
(a) and (b) are optimization curves for shear driving and active driving respectively. Dashed
black lines denote the optimization step where the learning rates are lowered in order to
anneal into the final solution well. (c) and (d) are optimized Dij and vi alphabets for (a)
and (b) respectively. The shear in (a) optimizes to 50kBT/σ

2, the maximum allowed value.
(e) and (f) denote cluster size distributions for the optimized system with N = 48 and a test
system with the converged forces but with N = 96.

microphase separation or self-limited assembly. Such a phase will compete with a typical
gas phase or bulk condensed phase, where the cluster size distribution either has a most
probable value at 1 or O(N), with N being the thermodynamic system size. A system with
self-limited assembly will show a peak at a microscopic size in the cluster size distribution,
with microscopic being defined as the peak position being O(1), invariant to changing the
system size in the thermodynamic limit. Apart from the cluster size distribution, peaks in
structure factor corresponding to a recurring microscopic lengthscale can also be used as a
suitable order parameter to detect a microphase [213].

Biological systems widely use self-limited assembly to regulate volumes of cells, vesicles,
and viral capsids [214, 215], efficiently package genetic material in nuclei [216], and tune
mechanoelastic properties of cytoskeletal bundles [217]. The mechanism for stabilizing these
structures are current areas of research. Stabilizing a microphase against bulk condensation
requires either conservative forces or dissipative driving to compete against surface tension.
In equilibrium systems, multiple mechanisms of self-limited assembly via short-range at-
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tractive and long-range repulsive interactions, through geometric frustration, and through
kinetic control, have been well studied [213, 218, 219]. Inverse design algorithms for design-
ing microphase separation by optimizing a Boltzmann distribution have also been previously
studied [220]. But the role of nonequilibrium mechanical or chemical control of microphase
separation, such as is ubiquitous in active processes in cells, is not well understood.

In this section we apply the variational algorithm to design DNA-labeled colloidal par-
ticles for microphase separation under nonequilibrium driving. Our observable to optimize
is a time averaged indicator function, as defined in Eq. 3.7, for the formation of 6-particle
clusters of any geometry and connectivity. As basis set we choose a 6 × 6 alphabet, where
now the nonzero diagonal elements denote pairwise interaction strength between multiple
copies of identical particles. We simulated with overdamped Langevin dynamics a periodic
box of 8 copies of the alphabet, with a total of N = 48 particles at a packing fraction of 0.02.
The particles feel pairwise WCA repulsion given by Eq. 3.5, and a Morse potential attrac-
tion with tunable amplitudes given by Eq. 3.6, representing a coarse-grained DNA-mediated
effective force. We optimize the yield of 6-particle clusters under two different dissipative
driving conditions: a shear flow with a tunable rate given by Eq. 3.4, and alternately by
making the colloidal particles active with a self-propulsion force given by

fAi = vip̂i (3.25)

where vi is an optimizable magnitude of self-propulsion, and p̂i is a three-dimensional po-
larization vector that diffuses as [221]

˙̂pi =
√

2Dr(p̂i × Γi) (3.26)

Here Dr = 3kBT/γσ
2 is the rotational diffusivity and Γi are unit variance Gaussian white

noise that satisfy

⟨Γi(t)⟩ = 0 ⟨Γi(t)Γj(t
′
)⟩ = 2I3δijδ(t− t

′
) (3.27)

We optimize self-propulsion vi also within a 6-particle alphabet. We choose the biasing
parameter s in Eq. 3.13 to be −1010 as the second term in the cost-function scales with the
system size and is larger than in previous sections.

Figure 3.9 shows the results of the optimization for microphase separation with shear
driving and active driving. (a) and (b) are learning curves showing the increasing yield of
6-particle clusters with optimization steps. Similar to previous sections, we have had to lower
the learning rate in order to anneal smoothly into the solution well. The optimized values of
the yield are 5− 7%, compared with an initial value of 1− 2%. Subfigures (c) and (d) show
the optimized alphabets in the respective systems. In the shear-driven system, the shear flow
rate optimizes to a value of 50kBT/σ

2 which is the maximum we allow during optimization.
The optimized Dij alphabet is relatively sparse, coding for a few strong attractions. This
implies same particles from multiple alphabets bonding together to increase probability of a
6-particle cluster. This is confirmed by a size-scaling analysis of the cluster-size distribution
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profile. For N = 48, the distribution is peaked at 1 and shows a second peak at a cluster
size of 6, similar to the expected distribution in a microphase separated system, however, on
doubling the system size, the second peak moves to approximately double the desired cluster
size. This confirms that the alphabet codes for multiple copies of the same kind of particle
assembling into 6-particle cluster, and that this is not true microphase separation. Attempts
at eliminating these finite size effects by optimizing larger systems directly did not result in
a second peak in the cluster-size distribution profile.

The optimization run for active driving converges smoother than the previous case, how-
ever, the algorithm finds a large degenerate class of solutions where either all particles
experience strong attraction and strong activity, or they are both weak, with many solutions
in between. The high attraction and activity solution has been shown with colormaps in Fig.
3.9(d). This solution does not result in a microphase, as has been shown in the cluster-size
distribution profile in subfigure (f). The distribution is peaked at 1 and it is invariant to
system size, thus being typical behavior for a gaseous phase. For optimal forces with weaker
attractions, the optimized activities required to melt the clusters into a gas are also weak.
The variational algorithm finds this same class of gas-phase solutions regardless of choice of
starting points in parameter space.

Hence we see that shear driving or active driving are unable to generate microphase
separation in coarse-grained models of DNA-labeled colloids. This results from the inability
of these mechanically driven dissipative modes to couple to specific probability fluxes that
increase the probability of a microphase separated state. In the next section we extend
our algorithm to directly optimize reactive fluxes and currents for single nanoclusters to
isomerize between different shapes.

3.5 Design principles for reactive flux in steady-states

Self-assembly is a dynamic process that involves stabilizing a target structure as well as
increasing the kinetic flux into the target [172]. Fluxionality of a target structure is important
in order to correct structural errors during its assembly. Further, any functional structure
like an enzyme or a molecular motor must be not only stable but also able to disassemle
and reassemble in a dynamic nonequilibrium steady-state. Functional molecules are able to
couple their internal reactive modes to external mechanical or chemical dissipative forces,
thus breaking detailed balance in specific reaction coordinates that are coupled to their
output work. Thus, optimizing self-assembly for optimizing the probability flux in and out of
a target structure is the path to designing functional materials. Previous work on optimizing
the reactivity of self-assembled nanoclusters have used equilibrium approximations to look at
single transient realizations of reactive barrier crossing [222, 162], however, the design of long-
lived probability fluxes and currents in and out of functional structures in nonequilibrium
steady-states remain unexplored.

In this section, we use our variational algorithm to optimize reactive fluxes and currents
flowing between 6-particle clusters of C2v and Oh geometries in a sheared steady-state of
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Figure 3.10: Optimal design principles for high reactive fluxes and currents. (a) shows the
three major states the sheared colloids go through to manifest high fluxes and currents.
(b) and (c) are optimized Dij alphabets for high reactive fluxes between C2v and Oh, and
for high reactive current from C2v to Oh respectively. d) Integrated reactive displacement
corresponding to the high-current solution, at zero and nonzero shear flow rate. (e) and (f)
are the steady-state averaged time-dependent reactive fluxes in both directions for the high
flux and high current solutions respectively, at zero (dashed blue and red lines) and nonzero
(blue and red symbols) shear flow rates. The vertical dashed black lines denote the delay δt
used in the optimization.

N = 6 particles. Our flux observable is defined as

QC2v→Oh
δt =

1

τ

∫ τ

0

1C2v(t)1Oh
(t+ δt)dt (3.28)

for a fixed delay time δt. Similarly, we define the reverse flux QOh→C2v

δt , and currents JC2v→Oh
δt
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and JOh→C2v

δt as the differences of the fluxes,

JC2v→Oh
δt = QC2v→Oh

δt −QOh→C2v

δt (3.29)

The delay-time is chosen to be comparable to the typical transition path time needed for
individual reactive events to happen, as observed from pre-optimization simulations. This
definition of probability current is associated with a nonzero entropy production and is
nonzero on average only in a nonequilibrium steady-state. Directly optimizing such proba-
bility currents will design the system to couple the specified reaction coordinate maximally
to the ambient mechanical dissipatively driven mode.

We choose the same parameters for overdamped Langevin dynamics simulations and op-
timization as we had chosen in Section 3.2. We have chosen the time delay to be δt = 0.025t0,
comparable to observed transition path timescales from a nonspecific alphabet simulation of
Dij = 5kBT for all pairwise attractions, at equilibrium. We find that both the unidirectional
fluxes and the currents are maximized when the shear flow rate is the largest we allow,
f = 50kBT/σ

2. Designing the system for high fluxes and currents lead to the prevalence
of three major states as shown in Fig. 3.10(a). The high flux optimization runs on either
direction yield the same optimal alphabet, Fig, 3.10(b), that is an intermediate between the
respective maximal alphabet solutions for C2v and Oh. However, the optimal alphabet for
high currents from C2v to Oh resemble neither of those two, but codes for the octahedral
cluster to sometimes unfold into the nonrigid C2h cluster shown in subfigure (a), and, keeping
the correct order of bonds, refold into a C2v cluster. These irreversible hops are what causes
the symmetry of the bidirectional reactive fluxes to break and contributes to positive current
round the loop. We have shown in Fig. 3.10(d) the total displacement due to this current,

R[X(t)] =

∫ t

0

JC2v→Oh
δt (t)dt (3.30)

that increases to nonzero values with time at the driven nonequilibrium steady-state, as
opposed to an equilibrium system having the same conservative forces as the optimized
alphabet. These nonzero displacements are used in enzymes and molecular motors to denote
the amount of irreversible work done and the emergence of these currents denotes that the
molecule has been successfully designed to harvest mechanical nonequilibrium driving to
produce usable work [223]. In contrast, optimization runs for the reverse current JOh→C2v

δt

were unsuccessful to find any set of forces that led to any positive value. The optimal value of
the reverse current was found to be zero arising from either maintenance of the bidirectional
reactive flux symmetry or from the nonequilibrium driving being too small to generate any
fluxes at all. This selectivity in the ability of only specific reaction coordinates to positively
couple to the shear driving is remarkable and could arise from the comparative mechanical
deformation modes and radii of gyration of the C2v and Oh clusters, as that is how they
couple to a shear flow.

We have explicitly shown the steady-state averaged time-dependent reactive fluxes in the
optimized solutions for high flux and high current in Figures 3.10(e) and (f) respectively The
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vertical black dashed line denotes the choice of δt, and we see that the side-side correlation
functions there have gone into the linear regimes but haven’t started saturating yet. The
correlation functions in both cases have periodic oscillations corresponding to the fast tum-
bling motion of the cluster in the sheared steady-state. At the long time limit t → ∞, the
reactive fluxes in both directions become identical and time-independent due to the loss of
correlation. In subfigure (e), we see that the reactive flux has been maximized in both direc-
tions while approximately preserving their symmetry. The shear flow has an active role in
this high flux, as clear from the same correlation functions with the same optimized alphabet
but at f = 0. Subfigure (f) similarly shows the reactive fluxes for the optimized high-current
forces. Here we see that the algorithm has found a way to maximally break the symmetry
between the two reactive fluxes at the given value of δt, by delaying the reverse reactive flux
compared to the forward. This breakdown of detailed balance in this prespecified reaction
coordinate is evidently achieved by the only nonconservative force in the system, the shear
flow, as demonstrated by the restoration of the symmetry by putting the shear flow rate to
0 even with the optimized pairwise forces.

We have thus shown that the variational algorithm can be used to tune reactive fluxes
and currents in a nonequilibrium steady-state. In a sheared system this amounts to max-
imizing the coupling between mechanical driving and chemical degrees of freedom for the
colloids, thus harvesting the dissipative driving to break detailed balance in select modes.
The optimizability of the currents itself depends on the ability of the custers in the relevant
direction to be mechanically affected by a shear flow. This approach opens a promising av-
enue for application of the variational algorithm to directly design functional materials which
may convert dissipation into usable work. In the next section we look at such a molecular
machine and directly optimize observables related to its performance.

3.6 Optimal design principles for molecular machines

Molecular machines are functional molecules that consume chemical energy at a nonequilib-
rium steady-state to perform useful mechanical or chemical work. The operation of molecular
machines far from thermal equilibrium enables them to overcome thermodynamic bounds
on performance as well as produce a finite power. The operation of molecular machines to
produce desired levels of power at high efficiency has been extensively studied with the tools
of stochastic thermodynamics and fluctuation theorems[19], with geometric near-equilibrium
response theory [201, 224] and with large deviation theory for efficiency fluctuations [225].
The nonequilibrium operation of molecular machines have been analyzed in the framework
of free energy and information transduction between multiple nonequilibrium reservoirs and
the role of tight internal coupling for efficient operation of molecular machines has been
recognized [226]. Nevertheless, most design approaches for molecular dynamics models of
machines use phenomenological surveys to find high power and high efficiency solutions,
instead of an automated method that can discover novel solutions. In this section we ex-
tend our variational algorithm for the discovery of high power and high efficiency regimes
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Figure 3.11: Optimal design principles for a model for ATP synthase. a) A schematic rep-
resentation of the two-particle system, where the F0 particle (blue) climbs down a potential
ramp driven by µH+, and the coupled F1 particle is pulled up a ramp doing work against
µATP. b) Representative statistical realization of the two-dimensional trajectories for a pre-
optimization starting point (red), at a set of parameters with maximum efficiency but not
high power (black), and a set of parameters with both maximum power and efficiency (or-
ange). (c) and (d) are the optimization landscapes for power and efficiency respectively.
Black lines are the trajectories taken by the variational algorithm through the parameter
space in either of the two cases. The square, triangle and circle denote the set of parameters
corresponding to (b).

that have been previously phenomenologically studied, in a coarde-grained model for the
molecular motor ATP synthase.

The F0 − F1 ATP synthase is vital towards most of the ATP production from aerobic
respiration in mitochondria. This motor resides across membranes in mitochondria and
transforms cross-membrane proton motive force into energetic phosphate bonds to make
ATP. The motor consists of two subunits F0 and F1 each having a three-fold symmetry. The
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F0 subunit is rotated by protons moving across the membrane due to proton motive force
µH+, which in turn drives the F1 subunit to rotate and produce µATP, a chemical potential
leading to ATP synthesis from ADP and inorganic phosphate. We model the rotation of
the F0 and F1 subunits as overdamped Langevin dynamics of two coupled particles in one-
dimensional periodic cosine potentials [227]. This model is schematically illustrated in Fig.
3.11(a). The coordinates of the particles, θ0 and θ1, diffuse in the potential energy landscape

V (θ0, θ1) = −
1

2
E0 cosno(θ0 − ϕ)−

1

2
E1 cosn1θ1 −

1

2
Ecouple cos(θ0 − θ1) (3.31)

where E0 and E1 are barrier heights in the periodic potential, ϕ is a phase offset between
θ0 and θ1 and Ecouple is the coupling energy of the two particles. We allow θ0 and θ1 to
be in the range [0, 2π] with periodic boundaries. Aside from the conservative forces, the F0

particle is driven by a constant external force µH+ and the F1 particle by a constant force
µATP. Choice of these two driving forces as µH+ > 0, µATP < 0 and |µH+| > |µATP| pushes
the system out of equilibrium and allows the machine to do work against µATP. Similar to
Ref. [227], we choose n0 = n1 = 3 and E0 = E1. With this model, the input and output
powers and the efficiency associated with each trajectory are defined by

PH+[X(t)] =
2πµH+

τ

∫ τ

0

θ̇0dt (3.32)

PATP[X(t)] = −2πµATP

τ

∫ τ

0

θ̇1dt (3.33)

η =
PATP

PH+

(3.34)

with the efficiency being bounded by −µATP/µH+. The parameter regimes for optimal per-
formance in terms of these metrics in this model has been studied in detail in Ref. [227].

We use our variational algorithm to find optimal choice of the parameters used in Eq.
3.31 for independently maximizing power and efficiency. For a cost-function, we retain only
the first term in Eq. 3.13 with the power or efficiency as observables, the choice of s thus
being rendered to that of the learning rate. Optimization of a trajectory-averaged output
power is exactly similar to the approach used for yields and reactive fluxes, and for gradients
of trajectory averaged efficiency with respect to variational parameters {c}, we use the chain
rule

∂η

∂c
=
PH+∂cPATP − PATP∂cPH+

P2
H+

(3.35)

We hold constant E0 = E1 = 2kBT , µH+ = 4kBT and µATP = 2kBT to avoid trivial
optimization of power with increased chemical potentials and decreasing barrier heights and
that of efficiency with changing ratio of chemical potentials. Our variational parameters ϕ
and Ecouple are allowed to vary in [−π, π] and [5kBT, 20kBT ] respectively. For simulating the
dynamics at each optimization step and estimating gradients, we use a timestep of 10−5, an
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integration time ∆t for Malliavin weights as 10, and a trajectory length of 500, all in units of
the natural diffusive timescale of the system with friction coefficients and diffusion constant
both being unity.

We initialize the power and efficiency optimization runs from ϕ = 0, Ecouple = 10kBT
and had to lower learning rates in two steps to anneal to the solution well. The results
of the optimization runs through the two-dimensional parameter landscape for power and
efficiency are shown in Fig. 3.11(c) and (d) respectively, with single statistical realizations
of equal durations of unoptimized, high-efficiency and high-power trajectories shown in Fig.
3.11(b). We see that unoptimized trajectories have generally correlated motion between
θ0 and θ1 albeit with sudden failure modes that lead to loss of power and efficiency. In
contrast, high power is uniquely achieved at a high value of Ecouple around a phase shift
of −2.2, which is similar to results in Ref. [227]. The high power trajectories also have
high efficiency, as shown by the highly correlated motion of θ1 versus θ0 with a high slope.
There is however a large near-degenerate regime of parameters, at high Ecouple, where near-
maximum efficiency close to the theoretical bound is achieved irrespective of the phase shift.
This is the regime of tight coupling between input and output coordinates where any energy
leakage is minimal. The algorithm finds this degenerate solution basin and diffuses out in
it, as the noise in the stochastically evaluated gradients becomes comparable in magnitude
to the gradient of the efficiency landscape. There is therefore a class of solutions at high
coupling strength and positive phase shift that have high efficiency but low output power.
One such statistical realization is shown in Fig. 3.11(b), where the two coordinates have
tightly efficient correlations but the total amount of displacement for the same amount of
elapsed time is less than the high-power solution. Further analysis in terms of the exact
mechanism of successful and failed energy transduction segments in these trajectories is
required in order to generalize these design principles to machines with more degrees of
freedom that can dissipate and reroute energy.

3.7 Conclusion

We have developed an inverse design algorithm for the self-assembly of colloidal clusters in a
nonequilibrium steady-state. The formalism exploits a variational structure originating from
large deviation techniques for importance sampling in trajectory ensembles. The algorithm
optimizes the yield of clusters of arbitrary shapes, sizes and geometry by tuning control forces
within an arbitrarily chosen ansatz, with statistically estimated explicit gradients. We have
demonstrated the performance of the algorithm using an ansatz of DNA-labeled colloidal
clusters self-assembled in a shear flow, and have obtained design rules for different families
of rigid and nonrigid clusters. This algorithm scales linearly both in system size and in the
number of optimizable parameters in the force ansatz, but its performance is independent of
the specific order parameter chosen for the self-assembly process. For example, the choice of
a locally defined structural order parameter such as the density or the degree of crystallinity
as the optimized observable can produce design principles for the assembly of extended
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dispersed or periodic structures out of equilibrium. Similarly, dynamical order parameters
like the instantaneous flux between two stable states and performance metrics of molecular
machines like output power and efficiency can also be optimized using the same variational
procedure in a suitable trajectory ensemble. Hence this algorithm can be used to tune both
structural and dynamical properties of clusters in a nonequilibrium steady-state to produce
dynamical phases having no equilibrium analogs.

This variational algorithm differs from other available inverse design algorithms for soft
matter in and out of equilibrium. The equivalent variational structure in configuration space
for systems in thermal equilibrium, where the potential energy function is optimizable and
explicit gradients can be statistically estimated by autodifferentiation, has been used exten-
sively as the basis of both importance sampling and inverse design algorithms [71, 156, 228].
This configuration space approach with explicit gradients is not feasible in nonequilibrium
systems due to the probability measure being non-Boltzmann. Out of equilibrium, there
have been theoretical approaches to rationalizing design principles in one or two component
systems [22, 229, 21].

In the absence of a closed form expression for the configuration space measure, machine
learning algorithms have been previously used to identity optimal design principles by track-
ing an order parameter during or at the end of finite-duration trajectories [230, 231, 232, 233].
Machine learning or neuroevolution based approaches are equivalent to estimating numerical
gradients in the design space using finite-difference methods, and have similar convergence
properties as explicit gradient based methods in the limit of small optimization steps [234].
However, since our multidimensional statistical gradient estimates are obtained using in-
formation from the same trajectory, our explicit gradient based method is expected to be
advantageous in a high-dimensional design space as typically encountered in the bottom-up
design of soft materials.

Finally, a class of design algorithms employ a trajectory ensemble based approach to sta-
tistically estimate explicit gradients of the dynamical response in colloidal systems [162, 222]
and are formally closest to our approach. These algorithms probe the transient dynamical
response of self-assembly trajectories, which however do not predict the long-time properties
of the self-assembled cluster in a nonequilibrium steady-state. In our algorithm, we have
explicitly evaluated the long-time steady-state limit and arrived at the novel fluctuation-
dissipation relation in design space in Eq. 3.14. This will enable our explicit-gradient based
method to be directly used to optimize both structural and dynamic properties of driven
phases of soft matter, and automate the discovery of new functional materials.

Data Availability

The data that support the findings of this study are openly available in Zenodo at
https://doi.org/10.5281/zenodo.4289235 [235].

10.5281/zenodo.4289235
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Chapter 4

Reinforcement Learning of rare
diffusive dynamics

We have so far developed an optimization technique based on stochastic gradient descent to
optimize control forces to sample and design rare but important trajectories. The perfor-
mance of our variational algorithm relies on getting a low-variance estimate of the explicit
gradients of the cost function in parameter space. In the steady-state problems we have
studied, we have seen a large improvement in statistical efficiency of sampling compared to
direct population dynamics approaches, allowing us to probe novel regimes of rare fluctua-
tions. However, the accelerated gradient descent method only incorporates memory through
an inertia vector, while discarding prior information about the parts of the cost-function
landscape that it visited before. Additionally, generalization of the optimization algorithm
to finite duration trajectories amplifies the problem of noisy gradients, as in finite duration
the gradients have to explicitly computed by a temporal double integral of a correlation
function, instead of a single steady-state integral. This necessitates development of more
advanced learning algorithms where auxiliary functions can reduce the variance of gradi-
ents and store memory of the cost-function landscape. In this chapter, borrowing notions
from reinforcement learning [236], we have developed a method to generate rare dynamical
trajectories directly through the optimization of an auxiliary dynamics that generates an
ensemble of trajectories with the correct relative statistical weights. Within this ensemble
of trajectories, a variational estimate of the likelihood of the rare event is obtainable from a
simple expectation value. We have built on the work in Refs. [117, 125] and past literature
on reinforcement learning for continuous time processes [237, 238, 239, 240, 241, 242, 243,
244].

The techniques of reinforcement learning aim to learn the best decisions to make in each
state in order to achieve some goal. Algorithms developed in this context have led to many
significant advancements in recent years across tasks requiring an intelligent agent to interact
with an environment, such as in gameplay [245, 246, 247] and robotics [248, 249, 250], with
a variety of recent applications in physics [251, 252, 253, 254, 255, 256, 257, 258]. However,
many of these situations are framed as discrete time problems, with relatively little work
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done in stochastic continuous time control [237, 238]. For diffusive processes and importance
sampling molecular dynamics, we formulate a reinforcement learning procedure to learn the
correct force to influence the probability of choosing each next state. From this perspective,
we take a policy gradient based approach [259, 260, 238, 248, 249], learning a generative
model for the evolution of the state. The optimized force found is such that rare events are
made typical while staying close to the original force, providing a dynamics that can aid in
efficiently sampling the targeted trajectory ensemble.

A key advantage of the reinforcement learning techniques we develop is the use of an
additional learning process for a function which guides the optimization of the dynamics, a
so-called value function [261], which describes how relevant each state is to the rare events of
interest. This value function substantially reduces the variance in estimates of the gradient of
the parameters specifying a force, allowing for the use of less data in each optimization step
and subsequently more complex approximations to the auxiliary dynamics. We show how
this approach can be successfully applied to both finite time problems in which the dynamics
is constrained to guarantee the occurrence of some rare transition like a barrier crossing, and
to time-homogeneous problems where we are interested in the statistics of time-integrated
observables in the long time limit as characterized by its large deviation function.1

4.1 Trajectory ensemble Formalism

We consider systems evolving with a diffusive dynamics over time t of a configuration x.
These configurations evolve according to a force vector F(x, t) and noise vector of equal
dimension W with associated constant noise matrix G invertible within the stochastically
evolving subspace, represented by the stochastic differential equation (SDE)

dx = F(x, t)dt+G · dW, (4.1)

where the noise W follows a Wiener process, with increments dW drawn from a Gaussian
with zero mean and dt variance.Throughout we will work in dimensionless variables that
imply unit energy scales and mobilities. The requirement of G being invertible within the
stochastic subspace may in principle be relaxed, however in that case there may be multiple
noise vectors corresponding to the same change of state, making the evaluation of transi-
tion probabilities necessary for our optimization approach difficult. We will follow the Ito
convention for ease of notation and implementation with standard numerical integrators.
Throughout, we do not assume in Eq. 4.1 that the force is gradient or that the noise obeys
a detailed balance, and thus our approach is generally applicable to equilibrium as well as
nonequilibrium dynamics.

We aim to probe rare fluctuations in trajectory observables. Here we consider trajectories,
X0,T , defined as the sequence of configurations over an observation time T , though gener-
alizations of fluctuating observation times are possible [263] . Generally, we will consider

1Most of the content of this chapter was originally part of the publication [262].
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observables that are functions of time-integrated variables over the trajectory,

O [X0,T ] =

∫ T

0

dtA[xt, t] +B[xt, t] · ẋ(t), (4.2)

where the first term is a state dependent observable, while the second term depends on a
stochastic increment, with both A[xt, t] and B[xt, t] being state dependent. However, we
will also consider cases in which A[xt, t] is a function of a single time in order to impose end
point conditioning. Expectations of functions of such observables are defined through path
integrals of the form

⟨f (O [Xt,t′ ])⟩p =
∫
DXt,t′dxt P [Xt,t′ ] f (O [Xt,t′ ]) , (4.3)

where P [Xt,t′ ] is the total probability of a trajectory decomposable into P [Xt,t′ ] = p [Xt,t′ |xt]
ρ(xt) where p [Xt,t′ |xt] is the transition probability conditioned on starting in configuration
xt with initial probability ρ(xt).

Probabilities for trajectories between times t and t′ starting at xt are defined by

p [Xt,t′ |xt] ∝ exp
{
−1

2

∫ t′
t
dt′′ |G−1 · (ẋ− F)|2

}
(4.4)

where we suppressed the arguments of xt and F[xt, t] for shorthand. This is the standard
Onsager-Machlup form for the diffusive dynamics considered here [264]. The measure over
paths between times t and t′ starting from position xt is defined such that∫

DXt,t′p [Xt,t′|xt] = 1 (4.5)

where the transition probability is normalized when integrated over all trajectories. These
path probabilities satisfy

p [Xt,t′′ |xt] = p [Xt′,t′′|xt′ ] p [Xt,t′ |xt] (4.6)

and
DXt,t′′ = DXt′,t′′DXt,t′ (4.7)

due to the Markovian noise in Eq. 4.1.
Trajectories sampled with P [X0,T ] will be dominated by the most typical values of

O [X0,T ]. We will encode the rare trajectories with atypical values of O [X0,T ] by reweighting
the original trajectory ensemble defined by Eq. 4.4, multiplying each trajectory by an observ-
able dependent factor. Such reweightings occur naturally in statistical studies of rare events
and are isomorphic to extended ensemble approaches in equilibrium configurational prob-
lems. The ensemble of events we are interested in is constructed by weighting the probability
of trajectories in the original dynamics by an exponentially positive number,

Ps [X0,T ] = e−sO[X0,T ]−λ(s,T )P [X0,T ] , (4.8)
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where Ps [X0,T ] is denoted as a tilted path ensemble, biased by a statistical field s in such
a way to promote rare fluctuations in O [X0,T ]. The quantity λ(s, T ) normalizes the tilted
distribution, and is identifiable as a cumulant generating function (CGF)

λ(s, T ) = lnZ(s, T ) = ln
〈
e−sO[X0,T ]

〉
p
, (4.9)

and equal to the logarithm of the tilted path partition function Z(s, T ). The reweighted path
ensemble generally defines a new transition probability ps [Xt,t′|xt] and initial condition. The
evaluation of λ(s, T ) is a common objective in studies of diffusive systems as it describes
the statistics of O [X0,T ]. Contributions to λ(s, T ) or Ps [X0,T ] are dominated by trajectories
with large or small values of O [X0,T ], depending on the sign of s. The exponential bias,
exp(−sO [X0,T ]), can also be constructed to function as a filter based on fulfilling specific
criteria. In such cases Ps [X0,T ] is identified as the probability that a trajectory fulfills a
specific conditioning, and its ensemble a corresponding conditioned path ensemble. Common
examples are Brownian bridges [109, 265, 266], where trajectories are conditioned to end at
xT = x′, in which O [X0,T ] is 1 if xT = x′ and is 0 otherwise, and s is taken sufficiently
negative that only those trajectories for which the constraint is satisfied have significant
weight.

4.2 Gradient optimization for finite time constrained

dynamics

Our aim is to find a dynamics which generates trajectories with probability as close to the
reweighted trajectories ensemble as possible. For the diffusive dynamics considered here, this
is exactly achievable in principle through a so-called generalized Doob transformation [267,
142, 51, 63, 110, 268]. The generalized Doob transformation defines a modified dynamics
with an added drift force that is generally time dependent but with an identical noise as in
the original SDE. However, constructing this transformation is often not possible in practice,
as it requires diagonalizing a modified Fokker-Planck operator which in interacting systems
is exponentially complex [269]. Here we aim to parametrize a drift force with tunable param-
eters θ to approximate the generalized Doob transform. With the modified force, Fθ(x, t),
we have a modified SDE

dx = Fθ(x, t)dt+G dW, (4.10)

with corresponding trajectory probabilities

pθ [Xt,t′ |xt] ∝ exp
{
−1

2

∫ t′
t
dt′′ |G−1 · (ẋ− Fθ)|2

}
(4.11)

which still satisfy the Markovian properties of the original dynamics and the same normal-
ization constant. See Ref. [125] for a discussion of problems in which the optimal dynamics
is required to be non-Markovian, in the context of discrete time Markov processes.
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We seek to learn a set of parameters θ to minimize the Kullback-Leibler (KL) divergence
between the modified dynamics and the reweighted trajectory ensemble defined by Eq. 4.8.
The KL divergence is defined as

DKL(pθ|ps) =

〈
ln

(
pθ[X0,T |x0]ρ(x0)

ps[X0,T |x0]ρ(x0)

)〉
pθ

, (4.12)

where the expectation is taken with respect to the parametrized dynamics. This quantity
is a measure of the similarity between the modified and reweighted trajectory ensembles.
Achieving a zero value when pθ is given by the generalized Doob transform, the KL divergence
has a unique minimum when this Doob transformed dynamics is contained within the space
of parametrized dynamics, providing a variational estimate of the CGF. We note that this
definition of the KL divergence differs from much of the literature considering optimization
of a parametrized diffusive dynamics [270, 271, 272, 273], where the parametrized dynamics
pθ and target dynamics ps appear in an opposite way. In principle the initial distribution
should also be parametrized, as it will be modified by the reweighting, however depending
on the space of distributions chosen these can be hard to sample. We drop this modification
for simplicity.

Low variance gradient estimation

In order to optimize the force, Fθ, we follow techniques introduced in the reinforcement learn-
ing literature [236, 274, 275, 276, 248, 277]. Substituting the parametrized and reweighted
trajectory probabilities into the KL divergence, we may rewrite it as an average over a
parameter dependent time-integrated observable

DKL(pθ|ps) = −⟨R [X0,T ]⟩pθ + λ(s, T ) (4.13)

where in the language of reinforcement learning we define a return, R [X0,T ], as

R [X0,T ] = −sO [X0,T ]− ln

(
pθ [X0,T |x0]

p [X0,T |x0]

)
(4.14)

with the negative of the average of the second term measuring the KL divergence, DKL(pθ|p),
between the parametrized dynamics and the original dynamics. This return is analogous to a
regularized form of reinforcement learning [275, 277] similar to that considered in maximum-
entropy reinforcement learning [248, 249, 276]. When evaluated at the generalized Doob
transform the KL divergence vanishes and the return evaluates to the CGF. Away from
the Doob transform, the positivity of the KL divergence results in the return variationally
bounding the CGF from below [111].

We aim to minimize the KL divergence through stochastic gradient descent in the pa-
rameter space. For this we need the gradient of DKL(pθ|ps) with respect to θ,

∇θDKL(pθ|ps) = − ⟨R [X0,T ]∇θ ln pθ [X0,T |x0]⟩pθ
(4.15)
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where we note
⟨∇θR [X0,T ]⟩pθ = 0 (4.16)

due to conservation of probability [125]. The factor multiplying the return is commonly
referred to as the Malliavin weight in the stochastic analysis literature [122], and corresponds
to a particular case of the eligibility traces found in reinforcement learning [261, 236, 278,
279, 280], which we denote as yθ(T ) = ∇θ ln pθ [X0,T |x0]. It can be rewritten by substituting
the path probability,

yθ(t
′′)− yθ(t′) =

∫ t′′

t′
dt ẏθ(t), (4.17)

where

ẏθ(t) =
[
G−1 · (ẋ(t)− Fθ(t))

]
·
[
G−1 · ∇θFθ(t)

]
(4.18)

is the integrand of the Malliavin weight.
Were we to stop at Eq. 4.15, we would proceed to optimize a generative model (the

diffusive dynamics with our parameterized force) of the trajectories using a score-function
based approach, similar to standard unsupervised learning. However, following the methods
of reinforcement learning, we can use a combination of the Markovianity of the generative
model and other variance reduction techniques to produce a gradient estimator which is
much more efficient to estimate. To begin with, we can simplify Eq. 4.15 by noting that due
to Markovianity, the Malliavin weight only correlates with the return in the future, and we
can rewrite the gradient as

∇θDKL(pθ|ps) = −
〈∫ T

0

dtR [Xt−,T ] ẏθ(t)

〉
pθ

= χMCR(θ, T ), (4.19)

where we used t− as a shorthand for t − ϵ for some small positive ϵ. We refer to the
optimization of the modified dynamics using this formulation of the gradient as χMCR, as it
is analogous to the Monte-Carlo returns (MCR), or REINFORCE [281, 282] policy gradient
algorithm in reinforcement learning. In the long observation time limit, employing this
gradient in stochastic optimization reduces to previous variational Monte Carlo procedures
[117].

This estimator of the gradient is non-optimal for two reasons. First, it requires evaluation
of a two time correlation function. In steady state, stationarity can be invoked to eliminate
one of those integrals, however under finite time conditioning this simplification is not pos-
sible. Second, it has a high variance and requires significant averaging to converge accurate
gradients. This is because both the Malliavin weight and the return undergo a random walk
with linearly increasing variance [122]. Building on the analogies with the reinforcement
learning formalism we define a value function as a path average of the return,

V (x, t) = ⟨R [Xt,T ]⟩pθ,x . (4.20)
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conditioned on starting at the position and time, xt = x. Introduced into the gradients of
DKL(pθ|ps) in distinct ways, the value functions can be used to tame both problems of the
naive MCR gradient estimate.

First, we introduce a value function as a baseline that depends only on the state at the
time t in order to reduce the variance of the gradient. We note that ẏθ(t) is linear in the
noise and thus averages to zero when multiplied by a function of the state at or before t.
Defining a temporal difference error

δ [Xt−,T , t] = R [Xt−,T ]− V (xt, t) , (4.21)

we write the dynamical gradient as

∇θDKL(pθ|ps) = −
〈∫ T

0

dtδ [Xt−,T , t] ẏθ(t)

〉
pθ

= χMCVB(θ, T ) (4.22)

where we have formally subtracted zero. We refer to this gradient estimator as χMCVB, for
Monte Carlo Value Baseline (MCVB) [236]. The subtraction of the state point dependent
value function reduces the variance of the gradient by accounting for the mean uncorrelated
part of each return between t− and T with ẏθ(t), focusing on how this return differs from
the average behaviour encoded by the value function.

Second, we introduce a value function that encodes an estimate of the return in the future
in order to further reduce the variance and also the complications associated with estimating
the two-time correlation function. We can replace part of the return by a value function that
is conditioned at some τ , such that t− < τ < T ,

⟨R [Xt−,T ] ẏθ(t)⟩ = ⟨V (xt+τ , t+ τ) ẏθ(t)⟩
+ ⟨R [Xt−,t+τ ] ẏθ(t)⟩ (4.23)

where we set the value function to zero for V (x, t) with t > T . Combining this value
function form of the kernel of the gradient with the value baseline, we define another temporal
difference error

δ′ [Xt−,t+τ , t] (4.24)

= V (xt+τ , t+ τ) +R [Xt−,t+τ ]− V (xt, t) ,

and we arrive at a distinct formulation of the gradient

∇θDKL(pθ|ps) = −
〈∫ T

0

dt δ′ [Xt−,t+τ , t] ẏθ(t)

〉
pθ

= χAC(θ, T ) (4.25)

which we denote χAC(θ, T ) for actor-critic gradient (AC) estimator, for the analogous algo-
rithm in reinforcement learning [236, 248]. Here the value function is seen as criticizing the
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transitions generated by the dynamics, i.e. the actor. Variance reduction of gradient esti-
mates is therefore achieved by replacing potentially noisy return samples with the average
behaviour expected in the future of the xt+τ state. In Sec. 4.4, we will compare the accuracy
and statistical efficiency of these three gradient estimators: MCR, MCVB, and AC. Before
that we discuss how the value functions are simultaneously parametrized and learnt along
side the modified force.

Parametrizing value functions

While the gradient expressions are exact and the use of value functions expected to facilitate
their convergence, using them requires knowledge of the exact value function for the modified
dynamics, a formidable task in complex problems. In order to make their use tractable, we
optimize a representation of the value function in addition to the modified force. Specifi-
cally, we introduce a parametrization of the value function denoted Vψ. To optimize this
approximation we note that the value functions satisfy a self-consistency equation called the
Bellman equation [283]

V (x, t) = ⟨V (xt+τ , t+ τ) +R [Xt,t+τ ]⟩pθ,x , (4.26)

which has a unique solution for a given dynamics and return (as defined by the tilting
observable and the dynamics via Eq. 4.14). We aim to minimize the error in this equation,
thus optimizing our parametrized value towards this unique solution. Our approach is to
minimize the squared difference between the two sides of Eq. 4.26 with the true value function
replaced by the parametrized value function, and apply gradient descent to it. Such an
approach is the subject of gradient temporal difference methods [284, 285, 286], but produces
a gradient estimate which is difficult to evaluate, containing products of expectations which
require independent samples. A part of the resultant gradient is however simpler to compute.
We derive it by substituting only the right hand side of Eq. 4.26 with our parametrized value
function to provide a fixed target for the left and defining a corresponding error function
based on the squared difference. To construct a loss, we integrate these errors along each
trajectory, and average them over the trajectory ensemble. This results in a loss function
L(ψ, ψi), that we take as a function of two weights, ψ and ψi,

L(ψ, ψi) =

1

2

〈∫ T

0

dt
{
⟨Vψi

(xt+τ , t+ τ) +R [Xt,t+τ ]⟩pθ,x

− Vψ (xt, t)
}2
〉
pθ

, (4.27)

where the weight ψi is the weights after update i, used to provide the fixed target estimate
towards which we want to move the functional of ψ. The derivative is then taken with respect
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to ψ, before setting ψ = ψi to find the gradient of this loss for the current parameters. Such
an approach is referred to as semi-gradient in the reinforcement learning literature,[236] used
to achieve the majority of state-of-the-art reinforcement learning results, and proves stable
provided the data used to estimate the gradient is sampled using a dynamics which is close to
pθ as we intend to do. As mentioned above, alternative methods which additionally consider
the variation of the target with ψ can be found in the RL literature, allowing for the use
of data sampled from an alternative dynamics, utilized via importance sampling [284, 285,
286].

Writing an approximate temporal difference for the value function parametrization, within
MCVB

δψ [Xt−,T , t] = R [Xt−,T ]− Vψ (xt, t) , (4.28)

or for AC

δ′ψ [Xt−,t+τ , t]

= Vψ (xt+τ , t+ τ) +R [Xt−,t+τ ]− Vψ (xt, t) , (4.29)

we have gradients of the form

∇ψL(ψ, ψi)|ψ=ψi

= −

〈∫ T

0

dt δψi
[Xt−,T , t] ∇ψVψ (xt, t)|ψ=ψi

〉
pθ

, (4.30)

for the loss function from the value function parametrization, where for the AC algorithm
δψi

is replaced with δ′ψi
. Given this value function approximation, we can approximate the

gradient of the KL divergence by replacing the exact temporal difference with these ap-
proximate temporal differences. We then use the same trajectories to estimate the force
and value function gradients and simultaneously learn both. For the MCVB algorithm, an
approximate value function does not bias the gradients as the future return that correlates
with the Malliavin weight stays intact and the expectation of the Malliavin weight is identi-
cally 0. However, for the AC algorithm, an approximate value function can introduce a bias
into gradients as it replaces the average of the future return, which it may not accurately
represent.

Employing gradients with or without value functions, we can construct a stochastic de-
scent algorithm to optimize the modified forces which can be used to estimate the likelihoods
of rare events and the trajectories by which they emerge. The algorithms require the evalu-
ation of the forces, value function, their parametric gradients and noises over the course of
simulating trajectories. Ensembles of trajectories can then be used to construct an empirical
estimate of the gradient via computing the Malliavin weights, returns, and the temporal
difference. These empirical estimates then iterate the two weights with respective learning
rates αθ and αψ for the force and value function respectively. The resultant algorithm is
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outlined in pseudocode below in Alg. 2. Detailed versions of the individual algorithms with
computationally efficient on-the-fly implementations for simulating trajectories with discrete
timesteps are presented in the next section.

Algorithm 2 Gradient optimization using finite time trajectories

1: inputs dynamical approximation Fθ(x, t), value approximation Vψ(x, t)
2: parameters learning rates αθ, αψ; total optimization steps I; trajectory length T con-

sisting of J timesteps of duration ∆t each; number of trajectories N
3: initialize choose initial weights θ and ψ, define iteration variables i and j, force and

value function gradients δP , δV , temporal difference δ (can be R [Xt−,T ] or δψ [Xt−,T , t]
or δ

′

ψ [Xt−,t+τ , t] for MCR/MCVB/AC)
4: i← 0
5: repeat
6: Using chosen method to generate trajectories X0,T with configurations, times and

temporal differences denoted by xj, tj and δj respectively.
7: j ← 0
8: δP ← 0
9: δV ← 0
10: repeat
11: δP ← δP + δj ẏθ(tj)∆t
12: δV ← δV + δj∇ψVψ(xj, tj)∆t
13: j ← j + 1
14: until j = J
15: average δP ,δV over N trajectories to get δP , δV
16: θ ← θ + αθδP
17: ψ ← ψ + αψδV
18: i← i+ 1
19: until i = I

4.3 Discrete timestep implementations of finite time

algorithms

We now describe how the time-continuous equations of the reinforcement learning algorithm
are efficiently implemented in simulations with a fixed discrete timestep ∆t, though variable
timesteps may be easily used. We use an Euler propagator to integrate the SDE in Equation
(4.10) as

xt+∆t = xt +∆tFθ(xt, t) +G∆Wt (4.31)
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where ∆W is a Gaussian random variable with mean 0 and variance ∆t. The trajectory
probability from Eq. (4.11) is now given by products of stepwise probabilities

pθ [Xt,t+∆t|xt]

=
exp

{
− 1

2∆t
|G−1 (xt+∆t − xt −∆tFθ(xt, t))|2

}
2π∆t det(G)

(4.32)

Next we discretize the gradient of the logarithm of trajectory probabilities using the Ito
convention. We propagate the Malliavin weights from Eq. (4.18) as

yθ(t+∆t) = yθ(t)+
[
G−1 (xt+∆t − xt −∆tFθ(xt, t))

]
·
[
G−1∇θFθ(t)

]
(4.33)

We also write the full return (4.14) through a sum of stepwise rewards as

R [xt−,t+τ ] =
∑

j:j∆t<τ

r (xj+1,xj, t+ j∆t) (4.34)

where the timestep index j starts from -1 in this sum, with the notation t− accounting for
the timestep before the current one, and the subscript j refers to the time t + j∆t. The
reward at each step is defined as

r (xj+1,xj, t+ j∆t)

= −s (Aj∆t+Bj · (xj+1 − xj) + A(xj+1)δjn)

+
[G−1(xj+1 − xj −∆tFθ(xj, tj))]

2

2

− [G−1(xj+1 − xj −∆tF(xj, tj))]
2

2
, (4.35)

using the definition of the observable from Eq. (4.2) and accounting for an additional singular
reward at the end of the trajectory after the last timestep n. Here the first three terms come
from the observable and the last two terms represent the KL divergence between the original
and optimized dynamics.

Now we combine the rewards, Malliavin weights and value functions in multiple ways to
produce the gradients in the different algorithms. The pseudocodes of efficient implementa-
tions of these are presented below.
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Monte-Carlo returns

The gradient in the Monte Carlo returns algorithm can be rewritten from Equation (4.19)
as

χMCR(θ, T ) = −
〈∫ T

0

dt R [Xt−,T ] ẏθ(t)

〉
pθ

= −
〈∫ T

0

dt ẏθ(t)

∫ T

t−
dt

′
Ṙ(t

′
)

〉
pθ

= −

〈∫ T

0

dt Ṙ(t)

∫ t+

0

dt
′
ẏθ(t

′
)

〉
pθ

= −
〈∫ T

0

dt Ṙ(t)yθ(t
+)

〉
pθ

(4.36)

where the return has been written as a time integral of its differential changes, and t+ is
shorthand for t+ϵ for some small positive ϵ. This has converted the double time integral into
a single time integral, which is then evaluated on-the-fly while propagating the trajectory.
An implementation of this algorithm with a fixed timestep ∆t is described in the pseudocode
in Alg. 3.
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Algorithm 3 Finite time MCR

1: inputs dynamical approximation Fθ(x, t)
2: parameters learning rate αθ; total optimization steps I; trajectory length T consisting

of J timesteps of duration ∆t each; number of trajectories N
3: initialize choose initial weights θ, define iteration variables i and j, force gradient δP ,

stepwise rewards r representing the increments in return
4: i← 0
5: repeat
6: Using chosen method to generate trajectories X0,T with configurations, times, noises,

Malliavin weights and rewards denoted by xj, tj,∆Wj, yθ(tj) and r(xj+1,xj, tj) = rj
respectively

7: j ← 0
8: δP ← 0
9: yθ(t0)← 0
10: repeat
11: yθ(tj+1)← yθ(tj) + ∆Wj · [G−1∇θFθ(xj, tj)]
12: δP ← δP + rjyθ(tj+1)
13: j ← j + 1
14: until j = J
15: average δP over N trajectories to get δP
16: θ ← θ + αθδP
17: i← i+ 1
18: until i = I

Monte-Carlo returns with a value baseline

We use a similar technique to rewrite the double time integral for the gradient in the Monte
Carlo value baseline algorithm, Equation (4.22), using a single time integral as

χMCVB(θ, T )

= −
〈∫ T

0

dt {R [Xt−,T ]− Vψ(xt, t)} ẏθ(t)
〉
pθ,ψ=ψi

= −
〈∫ T

0

dt
{
Ṙ(t)yθ(t

+)− Vψ(xt, t)ẏθ(t)
}〉

pθ,ψ=ψi

. (4.37)
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We rewrite the gradient of the value error in Eq. (4.30) similarly as

∇ψL(ψ, ψi)

∣∣∣∣
ψ=ψi

= −

〈∫ T

0

dt

{
Ṙ(t)

(∫ t+

0

dt
′∇ψVψ(t

′
)

)

− Vψ(t)∇ψVψ(t)

}〉
pθ,ψ=ψi

= −

〈∫ T

0

dt

{
Ṙ(t)zψ(t

+)− Vψ(t)żψ(t)
}〉

pθ,ψ=ψi

, (4.38)

where the arguments of the value function Vψ(xt, t) have been suppressed as Vψ(t) and the
integral of the gradient of the value function upto and including current time has been
denoted as zψ(t

+). We explicitly set the V (xt, t) to 0 for any t ≥ T , i.e., after the last
timestep, in these expressions. The single time integral is then evaluated on-the-fly as the
trajectory is propagated. If the force and the value function approximations use the same
set of basis functions as we do with a fixed grid of Gaussians, the MCVB algorithm incurs no
additional computational cost over the MCR algorithm. An implementation of this algorithm
with a fixed timestep ∆t is described in the pseudocode in Alg. 4.

Actor-critic

We rewrite the gradient in the Actor-critic algorithm from Equation (4.25) using a shift in
time origin as

χAC(θ, T )

=−
〈∫ T

0

dt δ
′
[Xt−,t+τ , t] ẏθ(t)

〉
pθ,ψ=ψi

=−
〈∫ T+τ

τ

dt δ
′
[Xt−−τ,t, t− τ ] ẏθ(t− τ)

〉
pθ,ψ=ψi

(4.39)

where the change in return and the value function for t ≥ T is explicitly set to 0. We
similarly write the gradient of the value error from Eq. (4.30) as

∇ψL(ψ, ψi)

∣∣∣∣
ψ=ψi

= −

〈∫ T+τ

τ

dt δ
′
[Xt−−τ,t, t− τ ]

∇ψVψ(xt−τ , t− τ)

〉
pθ,ψ=ψi

(4.40)
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Algorithm 4 Finite time MCVB

1: inputs dynamical approximation Fθ(x, t), value approximation Vψ(x, t)
2: parameters learning rates αθ, αψ; total optimization steps I; trajectory length T con-

sisting of J timesteps of duration ∆t each; number of trajectories N
3: initialize choose initial weights θ and ψ, define iteration variables i and j, force and

value function gradients δP , δV , stepwise rewards r representing the increments in return
4: i← 0
5: repeat
6: Using chosen method to generate trajectories X0,T with configurations, times,

noises, Malliavin weights, integral of value function gradients, and rewards denoted by
xj, tj,∆Wj, yθ(tj), zψ(tj) and r(xj+1,xj, tj) = rj respectively

7: j ← 0
8: δP ← 0
9: δV ← 0
10: yθ(t0)← 0
11: zψ(t0 ← 0)
12: repeat
13: ẏθ(tj)← ∆Wj · [G−1∇θFθ(xj, tj)]/∆t
14: yθ(tj+1)← yθ(tj) + ∆tẏθ(tj)
15: żψ(tj)← ∇ψVψ(xj, tj)
16: zψ(tj+1)← zψ(tj) + ∆tżψ(tj)
17: δP ← δP + rjyθ(tj+1)− Vψ(xj, tj)ẏθ(tj))
18: δV ← δV + rjzψ(tj+1)− Vψ(xj, tj)żψ(tj)
19: j ← j + 1
20: until j = J
21: average δP ,δV over N trajectories to get δP , δV
22: θ ← θ + αθδP
23: ψ ← ψ + αψδV
24: i← i+ 1
25: until i = I
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These integrals are then evaluated on-the-fly along with trajectory propagation. Since the
gradients involve correlations of the differential return r with the differential Malliavin weight
ẏθ and the value function gradient żψ = ∇ψVψ from τ time in the past, this makes it
necessary to store and use this history, along with the reward and the value function, for the
past τ/∆t timesteps. Aside from this additional memory requirement, given a delay time τ
which is much smaller than the trajectory duration, the Actor-critic algorithm has similar
computational cost comparable to the MCR and MCVB algorithms. This implementation
of the algorithm is described in the pseudocode in Alg. 5.
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Algorithm 5 Finite time AC

1: inputs dynamical approximation Fθ(x, t), value approximation Vψ(x, t)
2: parameters learning rates αθ, αψ; total optimization steps I; trajectory length T con-

sisting of J timesteps of duration ∆t each; temporal delay M = τ/∆t; number of tra-
jectories N

3: initialize choose initial weights θ and ψ, define iteration variables i and j, force and
value function gradients δP , δV , stepwise rewards r representing the increments in return

4: i← 0
5: repeat
6: Using chosen method to generate trajectories X0,T with configurations, times, noises,

changes in Malliavin weights, value function gradients, temporal difference, rewards and
cumulative rewards denoted by xj, tj,∆Wj,∆yθ(tj), żψ(tj), δ

′
j, r(xj+1,xj, tj) = rj and

R
[
Xtj−τ,tj

]
= Rj−M,j respectively, and rj = V (x, tj) = 0 whenever j < 0 or j ≥ J

7: j ← 0
8: δP ← 0
9: δV ← 0
10: R−M,0 ← 0
11: repeat
12: Rj−M,j ← Rj−M−1,j−1 + rj − rj−M
13: if j < J then
14: ∆yθ(tj)← ∆Wj · [G−1∇θFθ(xj, tj)]
15: żψ(tj)← ∇ψVψ(xj, tj)
16: end if
17: if j ≥M then
18: δ

′
j ← V (xj, tj) +Rj−M,j − V (xj−M , tj−M)

19: δP ← δP + δ
′
j∆yθ(tj−M)

20: δV ← δV + δ
′
j żψ(tj−M)

21: end if
22: j ← j + 1
23: until j = J +M
24: average δP ,δV over N trajectories to get δP , δV
25: θ ← θ + αθδP
26: ψ ← ψ + αψδV
27: i← i+ 1
28: until i = I

4.4 Rare fluctuations in finite time

We have used the algorithms discussed above to examine rare fluctuations of trajectories of
fixed duration, starting from a fixed point in configuration space. The specific observable we
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have investigated is an indicator function for reaching a desired region, Γ, in configuration
space, O[X0,T ] = hΓ[xT ], where

hΓ[xT ] =

{
1 xT ∈ Γ
0 otherwise

,

at the final time T . Rare trajectories reaching a target basin in configuration space are
often of interest as transition paths for reactive events, and significant development has
been undertaken to efficiently generate them [70, 287, 288, 289, 105]. Computing optimal
drift forces for generating these rare trajectories enables the study of reactive dynamics in
a direct manner. We expect these algorithms to find use in the study of diffusive dynamics
where Monte Carlo approaches have difficulty sampling [82, 290, 291, 292]. Further, as
the modified force is used with the original noise from the SDE, we have access to the full
reactive trajectory ensemble allowing the interrogation of the statistics of the reactive events
in a way that other direct path methods like nudged elastic band and zero temperature
string methods do not, as they represent only the dominant path [293, 294, 295, 296]. As a
consequence, we expect out method will find use when there is a large path space entropy.

The CGF for an indicator variable is given by

λ(s, T ) = ln
〈
e−shΓ[xT ]

〉
p

(4.41)

as an average in the original reference dynamics. From Eq. (4.13), the KL divergence being
nonnegative implies the average return is bounded above by the value of the CGF λ(s, T ).
The bound can be saturated only by the unique optimal drift force. We compare the value
of the optimized return to numerically exact estimates of the CGF given as

λ(s, T ) = ln

{
1 + (e−s − 1)

∫
Γ

dx ρ(x, T )

}
, (4.42)

where the definition of the indicator function and the final time distribution ρ(x, T ) evolved
from a specific initial condition has been used. This form demonstrates the statistics of a
single-time indicator observable is described solely by its mean,

⟨hΓ⟩p =
∫
Γ

dx ρ(x, T ) . (4.43)

For a rare fluctuation such that ⟨hΓ⟩p < 0.5, this form indicates that there are two distinct
regimes in the biased ensemble with s < 0. For a small magnitude of the bias, the indicator
function stays close to the unbiased value. Below a critical value of s∗ = − ln[⟨hΓ⟩p/(1 −
⟨hΓ⟩p)] the indicator crosses over to being close to 1. For all of our calculations, we choose a
fixed value of s estimated to be smaller then the threshold. With this value of s, we compute
the right side of Eq. (4.42) using an eigen-expansion of the propagator of the Fokker-Planck
equation of the original dynamics, and compare with the value of the average return from
the gradient descent algorithms having the same value of s. Details of this calculation and
comparison to an approximate Kramers escape rate are in Section 4.5.
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Figure 4.1: Softened Brownian bridges: (Left column) Smoothened learning curves
showing running estimates of the CGF (a), average value of the indicator observable with
the optimized dynamics (b), and the average cost function (c), as functions of optimization
steps i, with the MCR(‘A’, yellow), MCVB(‘B’, green) and AC(‘C’,blue) algorithms. The
horizontal dashed grey lines denote the numerically exact values. (Middle column) 100
trajectories obtained with the final converged dynamics from the three different algorithms
but with the same noise history.(Right column) (g) and (h) show the smoothened convergence
of a time-slice of the force parameters, as a function of optimization steps i, in the absence
(MCR) and presence (MCVB) of a value function. (i) shows the convergence of the KL
divergence cost with finer basis sets optimized with the MCVB algorithm. Green (31x×21t),
black (31x×41t), orange (31x×81t) and brown (41x×201t) curves show that in the increasing
basis limit, the cost-function estimate approaches the value expected from the numerically
exact CGF.

Softened Brownian bridges

The first example we consider is a softened version of a so-called Brownian bridge [297, 109],
in which a one-dimensional Brownian motion starting from the origin is biased to end near
a particular point. The reference dynamics is simply given by free diffusion,

dx =
√
2dW (4.44)

where comparing to Eq. 4.1 we have G =
√
2. We consider the target well, Γ(x), to be

defined as {1 − ϵ ≤ x ≤ 1 + ϵ} with ϵ = 0.1. The dynamics is simulated with a discrete
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timestep of 0.001. We use a tilting parameter s = −100 to bias the original ensemble towards
higher occurrence of the rare event.

We optimize a force and value function parametrized by linear combinations of Gaussian
distributions with fixed variance and mean. Given a set of means {(xm, tm)}Mm=0 and variances
{σm}Mm=0, the force and value function of a position x at time t are given by the coefficients
{θm}Mm=0 and {ψm}Mm=0 as

Fθ(x, t) = F (x) +
M∑
m=0

θme
− (x−xm)2+(t−tm)2

2σm

Vψ(x, t) =
M∑
m=0

ψme
− (x−xm)2+(t−tm)2

2σm , (4.45)

where initially the basis sets are a grid of 31× 21 Gaussians in the x-t space. The Gaussians
in time are spaced uniformly between t ∈ [0, T ), with standard deviations equal to half the
grid-spacing. A third of the Gaussians in space are placed between x ∈ [−4,−0.5], a third
in x ∈ (−0.5, 1.5) and a third in x ∈ [1.5, 5]. These three families of Gaussians each have
standard deviations half of the corresponding grid spacings. We initialize all θm = ψm = 0.

We consider the performance of the three algorithms differing in the gradient used to
optimize them. These include an algorithm that uses no value function (MCR), one that
uses a value baseline (MCVB), and one that uses a value function for future returns with
τ = 0.1 (AC). We evaluate the efficiency of the algorithms by comparing learning curves,
convergence with respect to basis, and properties of the learnt dynamics, shown in Fig 4.1.
All figures comparing different algorithms use the same noise history and the same amount
of statistics, such that the differences are solely ascribed to the learned dynamics. The
MCR algorithm uses a learning rate of αθ = 0.4. The MCVB algorithm learning rates
αθ = 0.4, αψ = 50, and the AC algorithm learning rates αθ = 1, αψ = 0.05.

In Figs. 4.1(a-c), we show learning curves for the total return, the average of the indicator
observable, and the KL divergence, generated with 12 trajectories at each optimization step
for each of the three algorithms. We have compared the results obtained with this finite
basis to the numerically exact value of the optimal return and the corresponding observable
average and KL divergence, obtained from Eq. 4.42 where for free diffusion the distribution
is known. We find that while all three algorithms quickly achieve a dynamics which mostly
fulfills the indicator function conditioning, the MCR algorithm struggles to optimize the KL
divergence cost, while the MCVB and AC algorithm achieve converged values efficienctly.
As expected, each algorithm provides a variational estimate to the CGF with the MCVB
and AC outperforming MCR. Trajectories with the final learned dynamics for the three
algorithms are plotted in Fig. 4.1(d-f). The MCR algorithm finds forces that constrain
the bridge trajectories too excessively, which results in the suboptimal estimate of the KL
divergence. The AC trajectories are closest to the optimal bridge trajectories [109] while
the MCVB trajectories lie in between. The main reason for the difference in performance
in the three algorithms is the resultant suppression in the statistical errors in the gradient
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estimate. This is illustrated in Figs. 4.1(g-h) where the convergence of the gradients of the
31 Gaussian coefficients at a time slice of t = 0.7 is shown for both MCR and MCVB. Since
the αθ learning rate is same in both algorithms, the large suppression of fluctuations in the
MCVB learning curves results from a more statistically converged gradient estimate using
a value function. This suppression of gradient errors at limited statistics in the MCVB and
AC algorithms is directly illustrated in Section 4.6.

We have studied the convergence of the KL divergence estimate towards the optimal value
extracted from the numerically exact CGF, using the MCVB algorithm with an increasing
position and time basis. We increased the number of time Gaussians, from 21 to 41 to 81,
to observe the KL divergence cost shrinking as the finer grained force can better support
the singular indicator function condition at the end of the trajectory. We also ran the
optimization with a much bigger basis of 41x × 201t Gaussians, and used 248 trajectories
at every optimization step and learning rates αθ = 5, αψ = 1000. The Gaussians in x have
standard deviations equal to half the grid spacing, while the Gaussians in t have standard
deviations equal to a third of the grid spacing. While the estimate increased, in this particular
problem, obtaining the numerically exact KL divergence would require use of still finer-
grained Gaussians in space and time in order to represent the singularities of the edges of
the target region and of the last timestep.

Barrier crossing with multiple reaction pathways

We now investigate the ability of the three algorithms to find the optimal dynamics in two-
dimensional barrier-crossing problems, the first involving a potential allowing for multiple
reaction pathways. The two-dimensional potential U(x) we consider2 has two minima and
two degenerate reaction pathways involving the upper and lower halves of the x = (x, y)
plane as illustrated in Fig. 4.2. Barrier-crossing from one well to another is a rare event
occurring with one randomly chosen pathway [72]. Without prior knowledge of the possibility
of multiple reaction paths, path sampling algorithms typically need special techniques to
discover them [298]. We use our reinforcement learning algorithms to compute an optimal
force Fθ(x, t) that reproduces unbiased and uncorrelated reaction paths.

The reference equation of motion we consider is

dx = −∇U(x) +
√
2dW (4.46)

where the matrix G is proportional to the identity. We use a discretization timestep of
0.001. The trajectories start from the minimum of the left well, at (x, y) = (−1.11, 0), and are
allowed to run for a duration of T = 1.5 and checked for reaching the right target well defined
as x > 0, U(x, y) < 0. This small region centered around (1.11,0) is used as Γ for defining the
indicator function observable. The value of T has been chosen to be slightly greater than the
typical transition path timescale, such that the optimized force should reproduce trajectories
that follow the natural steady-state fluctuations of the system. As long as the choice of

2The potential we use is U(x, y) = 4/3[4(1−x2− y2)2+2(x2− 2)2+((x+ y)2− 1)2− ((x− y)2− 1)2− 2]
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Figure 4.2: Multiple reaction pathways: (Left column) Smoothened learning curves
showing running estimates of the CGF (a), average value of the indicator observable with
the optimized dynamics (b), and the average cost function (c), as functions of optimization
steps i, with the MCR(yellow), MCVB(green) and AC(blue) algorithms. The vertical grey
lines denote the end of initialization and beginning of optimization run. The horizontal
dashed grey lines denote the numerically exact values. The parameter values from the end
of the initialization with MCVB and AC have been called B0 and C0 respectively. The forces
at the end of optimization with AC is called C. (Middle column) 6 representative trajectories
obtained with the forces B0 (panel d), C0 (panel e), and C (panel f). (Right column) Two-
dimensional vectorial representation of the spatially dependent forces as a function of time,
at t = 1 (g), t = 1.3 (h) and t = 1.5 (i), obtained from the converged parameters at C.

T is arbitrarily larger than the typical transition path timescale, the optimally generated
trajectories will represent unbiased reactive transitions, with additional times being spent in
the initial or final metastable states [299]. In the absence of an approximate transition path
time estimate, the optimization can be performed over a range of T increasing by orders of
magnitude till one enters the regime where side-side correlation functions for the dynamics
of barrier crossing behave linearly [72]. We use a value of s = −500 to obtain the CGF. The
force and the value function are approximated again as a grid of Gaussians with optimizable
coefficients, a simple generalization of the one-dimensional Brownian bridge.

The duration of the trajectories we consider, T , is much smaller than the typical first
passage time for the rare fluctuation we are interested in studying. As such, a general
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complication arises in initializing our algorithms in that in the absence of a modified force,
few trajectories satisfy the indicator function condition. Consequently, the gradients for
updating the modified forces are generally very small and noisy. In order to initialize our
learning process, we start with a softened version of the indicator function of the form

h̃[xT ] = −[(xT − xf )2 + (yT − yf )2] (4.47)

which is quadratic, and non-vanishing across the full domain. After optimizing the return
with this observable, we obtain a force that can surpass the barrier, and the optimization
with the sharp indicator function observable can begin. This technique of breaking down
the optimization of the return into two segments prioritizing each of the two terms of the
return is analogous to curriculum learning in reinforcement learning [300]. In many-body
systems, the quadratic metric can be defined only in the space of the order parameter that
distinguishes the initial and product states. For our multi-channel problem, we initialize
learning with (xf , yf ) = (1.11, 0) in the softened indicator, which is the minimum of the
target well. Our approach consists of comparing the performance of the three algorithms
MCR, MCVB and AC in the initialization with the quadratic observable, and then using
the AC algorithm to optimize the return with the indicator function observable.

Figures 4.2(a-c) demonstrate the learning curves for the full return, the average of the
indicator function and the KL divergence cost. The three initializations each use 60 tra-
jectories at every optimization step. The basis functions for the force and value function
used are a grid of 21 × 21 × 41 Gaussians in the x − t space for each component indepen-
dently. The Gaussians are placed uniformly on the time axis t ∈ [0, T ), while the position
Gaussians are distributed uniformly between x ∈ [−1.5, 1.5] and y ∈ [−1.5, 1.5]. The learn-
ing rates used in the initialization are αθ = 1 for MCR, αθ = 1, αψ = 0.5 for MCVB and
αθ = 1, αψ = 0.5, τ = 0.001 for AC, and the learning rate for the final optimization is
αθ = 0.2, αψ = 0.08, τ = 0.1 in the AC algorithm. In the learning curves, we compare the
convergence of the return with numerically exact values obtained by computing the RHS in
Eq. 4.42 with a spectral expansion using a Discrete Variable Representation basis [301]. We
see that all three algorithms quickly find forces that satisfy the conditioning, but the KL
divergence cost is optimized best by the AC algorithm. While each affords a similar varia-
tional estimate after the initial optimization, we find qualitative differences in the family of
barrier-crossing trajectories obtained from the MCR/MCVB and from the AC algorithm.

Typical trajectories obtained with forces from the end of initialization with MCVB and
AC, and at the end of optimization with AC, are shown in Figs. 4.2(d-f). The force obtained
from MCVB spontaneously breaks the symmetry in the potential and chooses one reaction
path out of the two. This force solution is a local optimum in the MCR and MCVB algo-
rithms, and it does not naturally relax to a symmetric force that would be representative of
the degeneracy of the reaction paths. Trajectories from the AC algorithm spend significant
amount of time exploring the initial well, such that the discovered forces recognize the pres-
ence of multiple pathways approximately. These forces are further refined during the second
optimization, such that the reactive trajectories obtained at the end are restored to be almost
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Figure 4.3: Müller-Brown potential: (Left column) Smoothened learning curves show-
ing running estimates of the CGF (a), average value of the indicator observable with the
optimized dynamics (b), and the average cost function (c), as functions of optimization steps
i, with the MCR(yellow), MCVB(green) and AC(blue) algorithms. The vertical grey lines
denote the end of initialization and beginning of optimization run. The horizontal dashed
grey lines denote the approximate values from a Kramer’s escape rate approximation. On
the AC learning curve in (a), the parameter values at i = 70 and i = 80 (the vertical dashed
lines) have been called C0 and C1 respectively. The values at the end of initialization with
MCVB and AC are called B0 and C2, and at the end of AC optimization are called C.
(Middle column) 4 representative trajectories obtained with the forces C0(d), C1(e), and
C2(f). (Right column) 4 representative trajectories obtained with the forces C(g) and B0(h).
(i) Potential energy as a function of time for 100 representative trajectories driven with the
force parameters C.

fully symmetric like the natural barrier-crossing fluctuations of the system are expected to
be. These symmetric two-dimensional forces obtained at the end of the AC optimization are
plotted at three slices of time, in Figs. 4.2(g-i). The forces grow in magnitude as a function
of time and generally follow the contours of the underlying potential, and towards the end
they gather support in unlikely parts of the potential. The ability of the AC algorithm to
discover time-dependent forces that lead to exploration of multiple reaction pathways can
prove valuable in uncovering reactive trajectories in systems where such degeneracies are not
known a priori.
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Barrier crossing with a long lived intermediate

Another difficult problem in the generation of transition paths and reactive trajectories
typically comes from the presence of long-lived intermediates. In order to study the usefulness
of our learning algorithms in this context, we consider as an example the dynamics on the
so-called Müller-Brown potential [302]. This two-dimensional potential surface has been
used extensively as a testing case for methods relying on the instantonic approximation for
barrier-crossing trajectories [299, 303]. The potential is a sum of four Gaussians3, where
three local minima are separated by two barriers as illustrated in Fig. 4.3. We employed
our algorithms to find forces that generate uncorrelated trajectories that cross both barriers,
starting from a local minimum and ending in the global minimum, that are positioned on
either side of the third metastable minimum.

The system evolves with diffusive Langevin dynamics of the same form as Eq. 4.46 us-
ing a timestep of 0.0001. We are interested in trajectories starting from x = (0.63, 0.03)
in the rightmost local minumum, and ending near the global minimum, centered around
x = (−0.5, 1.5), with the indicator function region Γ being defined by U(x) < 145). The
trajectories are chosen to be of a fixed duration of T = 0.15, which is on the order of the
expected total transition path timescale from Kramers’ theory added to the expected relax-
ation time in the intermediate well [304, 299]. For initializing the forces we use a softened
quadratic modification of the indicator, in Eq. 4.47, with s = −10000, while we use a bias
value of s = −2000 with the indicator observable to compute the CGF. To represent the
x and y components independently of the time-dependent optimal force and to represent
the value function, we use a basis of Gaussians with optimizable coefficients placed on a
21×21×21 grid in x− t. The time Gaussians are placed uniformly between t ∈ [0, T ), while
the space Gaussians placed uniformly between x ∈ [−1.5, 1.5] and y ∈ [−0.5, 2].

In Figs. 4.3(a-c), we have compared the learning curves with MCR, MCVB and AC
algorithms during initialization with the smooth indicator function in Eq. 4.47 and the AC
algorithm for the final optimization of the full return with the sharp indicator function.
Each algorithm uses 60 trajectories at every optimization step to estimate the gradient. The
learning rates for the initialization are αθ = 1 for MCR, αθ = 1, αψ = 1 for MCVB, and
αθ = 0.5, αψ = 0.2, τ = 0.0001 for AC, and the learning rates for the final optimization
are αθ = 0.1, αψ = 0.01, τ = 0.01 for AC. The learning curves have been compared with
approximately calculated values of the CGF and the KL div obtained with a Kramer’s
escape rate estimate along the Minimum Energy Path [293].

We find that all three algorithms optimize the quadratic observable relatively quickly, but
the AC algorithm performs the best at optimizing the KL divergence cost. In Figs. 4.3(d-h),
we illustrate a few uncorrelated trajectories generated with the modified forces at various
stages of the initialization and optimization with the AC method and the end of the initial-
ization with the MCVB method. We find that the forces with the AC algorithm are such

3The potential takes the form, U(x, y) =
∑

i Ai exp[ai(x− x̄i)
2 + bi(x− x̄i)(y − ȳi) + ci(y − ȳi)

2] where
A = (−200,−100,−170, 15), a = (−1,−1,−6.5, 0.7), b = (0, 0, 11, 0.6), c = (−10,−10,−6.5, 0.7), x̄ =
(1, 0,−0.5,−1), and ȳ = (0, 0.5, 1.5, 1).
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that the trajectories discover and cross the two barriers and the metastable well between
them one after another. At the end of the AC initialization, the trajectories have discovered
the metastable well and have crossed both barriers to end in the target well. The AC algo-
rithm by this stage of optimization has also moved the major part of the short trajectory
from staying in the initial well to the metastable well. This feature is constant through-
out the AC optimization, with only minor changes in the force being carried out inside the
target end well. The force from the MCVB initialization, on the other hand, only gener-
ates trajectories that connect the initial and target well without relaxing significantly in the
metastable well. This would be contrary to the instantonic relaxation mechanism in the
system, as the stochastic action is minimized by the local relaxation in the metastable well.
In Fig. 4.3(i) we have plotted the potential energy as a function of time, for 100 uncorrelated
barrier-crossing trajectories, which are driven by the final force from the AC algorithm. The
trajectories cross the two barriers at roughly fixed times, and spend majority of the time in
the metastable well.

The comparison of the three algorithms illustrates the significant improvement of conver-
gence performance of the MCVB and AC algorithm over the naive MCR approach afforded
by value functions. For rare reactive events, we have found that the AC algorithm is suited
best to find trajectories that explore configuration space the most in search for the easier
barriers to cross, and thus is closest in resembling the natural fluctuations of the system.
The errors in the converged values of the CGF depend on the truncation of the force basis
and statistical uncertainties. The MCVB and AC algorithms preserve the computational
scaling of the MCR with the trajectory duration, and only change the prefactors of the scal-
ing by a small fraction making them viable methods for applications to complex systems.
The AC algorithm with a small τ will incur a systematic error in the gradients if the value
approximation is not accurate, which goes away at an intermediate τ but at the expense of
a larger memory cost that may slow down the algorithm without any change in the scaling.
Nevertheless, it is possible to use these algorithms with useful combinations of hyperparam-
eters to achieve efficient convergence with a small amount of averaging. The value functions
obtained during the optimizations serve as dynamical equivalents of the committor function,
in that they encode the expected value of the probability to reach the target well and the
associated KL divergence cost, while starting from any point in configuration space at any
point in time. Understanding these connections to reaction coordinate design is likely a
fruitful future direction of research.

4.5 Alternative CGF estimates

Numerically exact CGF

We have compared the CGF from the reinforcement learning algorithms in Section 4.4 with
numerically exact values obtained from explicitly calculating ⟨hΓ⟩p in equation (4.43) by solv-
ing the corresponding Fokker-Planck operator. The Fokker-Planck operator for the original
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dynamics in Eq. (4.46) is given by

L = −∇.F(x) +∇2 (4.48)

where F(x) = −∇U(x) is the underlying conservative force.
We want to use this operator in order to find the probability ⟨hΓ⟩p as

⟨hΓ⟩p =
∫
Γ

dx ρ(x, T ) =

∫
Γ

dx eLT δ(x− x0) (4.49)

We exponentiate the operator in its spectral eigenbasis. Since the forces in the original
dynamics are conservative, diagonalizing L becomes easier through a similarity transform
into a Hermitian operator L [43, 109],

L = eU(x)/2Le−U(x)/2

= ∇2 − 1

4
(∇U(x))2 + 1

2
∇2U(x). (4.50)

We diagonalize L to obtain eigenvalues −λn and eigenfunctions ϕn(x),

Lϕn(x) = −λnϕn(x). (4.51)

Since L is Hermitian, the eigenfunctions {ϕn(x)} are mutually orthonormal and can be used
to introduce a resolution of identity

δ(x− x0) =
∑
n

ϕn(x0)ϕn(x) (4.52)

The original operator L related by the similarity transform has eigenvalues −λn and eigen-
functions e−U(x)/2ϕn(x). This spectral expansion of L can be used to estimate the probability
⟨hΓ⟩p as

⟨hΓ⟩p =
∫
Γ

dx eLT δ(x− x0)

= eU(x0)/2
∑
n

e−λnT
∫
Γ

dx e−U(x)/2ϕn(x) (4.53)

The final time T that we use in our barrier-crossing simulations is chosen such that τrlx <
T < τrxn where τrlx and τrxn are respectively the timescale of relaxation in the starting or the
ending well, and the timescale of the barrier-crossing reaction, which is expected to be the
slowest dynamical mode in the system. Hence when the set {λn} is ordered, the factor e−λnT
should be negligible for all but the few smallest values of n. The sum over n in Equation
(4.53) is thus expected to converge within a few terms.

We diagonalize the operator L using a Discrete Variable Representation basis constructed
from Hermite polynomials [301] in two dimensions, χM,N(αx, αy), where α = 5 is a scaling
factor. We obtain identically converged estimates of ⟨hΓ⟩p with basis sizes ranging from
50 × 50 to 100 × 100 using 10 terms in the spectral expansion. The CGF value is then
calculated using ⟨hΓ⟩p in Equations (4.42) and (4.43).
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CGF from Kramers escape rate

In one-dimension, corresponding to a dynamics of

dq = −U ′
(q) +

√
2dW, (4.54)

an approximate expression for the barrier-crossing probability in time T is given by the
Kramers escape rate in the overdamped limit [11], as

⟨hΓ⟩p ≈
T

2π
(U

′′
(qA)|U

′′
(q†)|)1/2e−(U(q†)−U(qA)) (4.55)

where q is the reaction coordinate and qA and q† are the locations of the initial well and the
barrier respectively.

In the case of the Müller-Brown potential, we assume the ideal reaction coordinate to
be along the Minimum-Energy Path obtained using a Nudged Elastic Band method [293,
294, 295]. With the potential energy U(q) computed along this path q, we use quadratic fits
around the initial well (qA) and around the largest barrier (q†) to find the double-derivative
terms. Finally we use this approximate value of ⟨hΓ⟩p in Equation (4.42) and (4.43) to obtain
the CGF.

4.6 Errors in gradient estimates

In Figure 4.4 we have directly compared the three algorithms for their ability to reduce
the variance of the gradient estimates during optimization in the softened Brownian bridge
problem. We have chosen the force and value function coefficients θ and ψ from the i =
100 step of the MCVB optimization run in Fig. 4.1(b) in the Brownian bridge problem.
This value function is thus not exact for the corresponding force but is representative of
typical inaccuracies encountered during learning. Keeping these coefficients fixed, we have
estimated the gradients of the KL divergence using the three algorithms, while varying the
number of uncorrelated trajectories Nw over which the estimates are averaged. Plotted
in Fig. 4.4 are the total variance in the gradient estimate summed over all components,∑

mVar[∇θmDKL(pθ|ps)], from the different algorithms. The variances are computed from
fluctuations over 10 uncorrelated sets of Nw trajectories. The dependence on Nw in log-log
scale corresponds to a linear trend with a slope of −1 as expected from the variance of sample
means of uncorrelated samples. We find that use of the MCVB and AC algorithms greatly
reduces the variance compared to the MCR approach, equivalent to a 5 to 100 times increase
in the amount of input trajectory data. We find that the smallest variance corresponds to
the AC algorithm with the smallest possible τ , set to the timestep 0.001. However, this
choice incurs a systematic error in the expectation of the gradient due to the inaccuracy in
the value function, while neither MCVB nor AC with a large τ are susceptible to it. This is
manifested in the scaled L1 norm of the error in the expected gradient from the algorithms.
The expectation is calculated over 105 trajectories and the error in MCR is zero by definition.
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Figure 4.4: Statistical convergence of gradient estimates Total variance of the gradient
summed over all components, using MCR(black), MCVB(red), AC with τ = 0.001(blue)
and AC with τ = 0.1(green), as a function of the number of uncorrelated trajectories Nw for
averaging.

The L1 norms of the errors, divided by that of the true gradient, are 0.22, 7.49 and 1.16 from
MCVB, AC(τ = 0.001) and AC(τ = 0.1) respectively. This shows that the systematic error
incurred by AC at small τ can be reduced by having a larger τ , while still having significantly
less variance than MCVB and MCR. The crossover between the systematic and statistical
error in the AC algorithm depending on τ is also the reason starting the optimization with
a small τ and later annealing with a large τ is an efficient strategy, given that the memory
requirement scales linearly with τ . We note that the systematic error is formally zero by
definition in the expectation of the MCVB gradient estimate as well: the small non-zero
value stems from a finite number of samples being used to estimate the expectation.

4.7 Gradient optimization for infinite time dynamics

We now generalize the approach of the previous section to focus on the statistics of time-
integrated quantities in the long time limit. While for finite time, the generalized Doob
transform is time dependent, under mild assumptions in the long time limit the optimal
dynamics is time-homogeneous [63]. As a consequence, the parametrization of the modified
force and value function is simplified, and explicitly dependent only on the instantaneous
configuration of the system. The generalization of the algorithms to this case consists of two
main changes. First, we employ online learning, since there is no end to each trajectory.
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Second, a modified definition of return and value are required to avoid divergences in the
infinite time limit.

We formulate the infinite time problem by adapting an approach in reinforcement learning
based on time-averaged returns [260, 305, 306, 307]. Specifically, we consider the long-
time average of the KL divergence of the trajectory ensemble. Under assumptions of time-
independence and ergodicity,

dKL(pθ|ps) = lim
T→∞

1

T
DKL(pθ|ps)

= −⟨r(x, ẋ)⟩pθ + λ(s), (4.56)

the time average KL divergence reduces to an average over the steady state distribution of
the instantaneous change of the return r(x, ẋ). Above, we have defined a scaled CGF,

λ(s) = lim
T→∞

1

T
lnZ(s, T ), (4.57)

that is finite as long as the cumulants of the time-integrated observable are time extensive.
The reward, r(x, ẋ), is defined as

r(ẋ,x) = −sA[x]− sB[x] · ẋ (4.58)

+
1

2

{
|G−1 · (ẋ− Fθ) |2 − |G−1 · (ẋ− F) |2

}
and is time-independent and evaluatable within the steady state. A gradient expression
analogous to MCR can be derived straightforwardly [117].

The previous definition of the value will diverge in the infinite time limit. A simple
modification to address this issue is to remove the average reward scaled by the length of
the trajectory segment, defining a differential return

∆R [Xt,t′ ] = R [Xt,t′ ]− (t′ − t)⟨r(ẋ,x)⟩pθ (4.59)

and corresponding differential value function

V (x) = lim
T→∞

⟨∆R [X0,T ]⟩pθ,x . (4.60)

which satisfies a modified Bellman equation

V (x) = ⟨V (xτ ) + ∆R [X0,τ ]⟩pθ,x , (4.61)

containing the differential return between states, rather than the standard return, and re-
lating the value of states separated by a period of time τ .

This modified Bellman equation can be simply rearranged to give an alternative equation
for our time-averaged KL divergence

dKL(pθ|ps) = − 1

τ
⟨V (xτ ) +R [X0,τ ]− V (x)⟩pθ,x

+ λ(s), (4.62)
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which we note holds for all x. Differentiating the right side of this equation with respect
to θ does not involve the gradient of the stationary state. Therefore, taking the derivative
and then averaging over the stationary state under Fθ,

4 we can write an estimate of the
dynamical gradient as

∇θdKL(pθ|ps) = −
1

τ
⟨δ [X0,τ ′ ] yθ(τ)⟩pθ , (4.63)

where we have defined the differential temporal difference error

δ [X0,τ ′ ] = V (xτ ′) + ∆R [X0,τ ′ ]− V (x0) , (4.64)

reached after introducing an additional baseline in the form of τ ′⟨r(ẋ,x)⟩pθ . In this equation
we have arrived at a gradient estimate which depends only on the gradient of the transition
probabilities, contained in the Malliavin weights yθ(τ), and not the gradient of the stationary
state itself. This can thus be easily calculated during a simulation using the parametrized
dynamics.

Note the period of time τ ′ over which the temporal difference is calculated is independent
of the period of time τ over which the Malliavin weight is calculated, provided the former
is longer. The specific algorithm we consider involves taking the time τ small enough so
that the Malliavin weight can be approximated by τ ẏθ[x0] which is possible due to the time
homogeneous steady state we average within. We thus calculate the estimate as

∇θdKL(pθ|ps) = −⟨δ [X0,τ ′ ] ẏθ(0)⟩pθ
= χAC(θ) (4.65)

which we denote as the actor-critic gradient in the long time limit. In practice, we will take
τ ′ = ∆t, a single time-step in a numerical simulation. A long time limit generalization of
the MCVB gradient could be constructed similarly, but this is not considered here.

As in the finite time case, to construct this estimate we also need an approximation to
the value function, Vψ(x). Following a similar construction for the loss function as before,
averaging the error over the stationary state, we estimate the gradient by which to update
the value function parameters as

∇ψL(ψ) = −⟨δψ [X0,τ ′ ]∇ψVψ (x0)⟩pθ , (4.66)

with the approximate temporal difference

δψ [X0,τ ′ ] = Vψ (xτ ′) + ∆R [X0,τ ′ ]− Vψ (x0) , (4.67)

which also replaces the exact temporal difference in gradient estimates for the dynamics.
Finally, we also have flexibility with our estimate of the scaled CGF. This can be done using
a running average of the reward,

⟨r⟩pθi = ⟨r⟩pθi−1
+ αr(⟨r⟩pθi − ⟨r⟩pθi−1

) (4.68)
4Taking this derivative results in gradients of the value function at x and xT with respect to θ, however,

these cancel out when averaging over the stationary state.
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where αr is the learning rate and the subscript pθi denotes the parameters from the ith
iteration. Alternatively, a lower variance, higher bias estimate may be constructed by noting
that we can rearrange Eq. 4.61 to find

⟨r⟩pθi = ⟨r⟩pθi−1
+ αr⟨δψ[X0,τ ′ ]⟩pθi , (4.69)

an alternative equation for the average. After discretization, an algorithm based on utilising
single-transition estimates of these gradients is outlined in pseudocode below in Alg. 6.

Algorithm 6 KL regularized differential actor-critic

1: inputs force approximation Fθ(x), value approximation Vψ(x)

2: parameters learning rates αθi , α
ψ
i , α

R
i ; total updates N

3: initialize choose initial weights θ and ψ, initial average r̄, define iteration variable i,
individual error δ

4: i← 0
5: repeat
6: Generate a transition from x to x′ according to the dynamics given by Fθ(x) and

noise vector w ∼ N (0, 1)

7: ẏθ =
wTG−1∇θFθ√

∆t

8: δ ← Vψ(x
′) + r(x,x′)− r̄ − Vψ(x)

9: θ ← θ + αθi δẏθ
10: ψ ← ψ + αψi δ∇ψVψ(x)
11: r̄ ← r̄ + αRi δ
12: i← i+ 1
13: until i = N

4.8 Rare fluctuations in the long time limit

Here we apply our approach to study the statistics of time-integrated currents in the long time
limit. Persistent currents are the hallmark of a nonequilibrium system, and their fluctuations
have been studied intensively [27, 308, 309, 199]. Foundational results have been derived that
constrain the symmetries of current fluctuations and relate their cumulants. For example,
the fluctuation theorems dictate that the CGF satisfies a reflection symmetry about the
driving force for the current, due to the microscopic reversibility of the underlying stochastic
dynamics [310, 37]. A number of numerical approaches have been developed to evaluate
the scaled cumulant generating function, an example of a large deviation function [34, 70,
311, 312, 77, 313, 314]. These functions provide information of the long time behavior of
stochastic systems, and encode response relationships and stability. Within this context, our
approach is similar to other controlled dynamics [89, 86, 315, 88, 273, 84, 93, 117] based
means of evaluating large deviation functions in the continuum and can be used directly as
we show below or in concert with Monte Carlo algorithms.
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Figure 4.5: Overdamped current fluctuations: (a) Learning curves showing running es-
timates of the SCGF, (b) time-averaged KL divergence to the original dynamics dKL(pθ(s,i)|p)
during training for bias s at step i, and (c) the time-averaged velocity. The color of each
curve indicates the value of of the bias s, corresponding with the colors of the data points
in the lower plots. Estimates of (d) the SCGF, (e) time-averages KL divergence with the
original dynamics and (f) time-averaged velocity, for the final dynamics found at each value
of the bias s indicated on the x axis. The inset of (d) shows the absolute error with numerical
diagonalization results, represented by grey circles in (d).

To study the accuracy and efficiency of the algorithm, we consider statistics of the velocity
of a particle on a ring of length L = 2π with position x moving in a periodic potential. The
periodic potential has the form U(x) = U0 cos(x) with magnitude U0, and is driven by a
constant force f , such that

F (x) = −dU(x)
dx

+ f (4.70)

is the total force for the particle on the ring. The observable we consider is the integrated
current, O[X0,T ] = J [X0,T ] given by

J [X0,T ] =

∫ T

0

dt ẋ(t) . (4.71)

This observable has a different interpretation depending on whether the dynamics are under-
or overdamped, both of which we consider below. In the underdamped case, the current is
simply a function of the state with A(x) = v and B = 0, while in the overdamped case it
depends on the stochastic increment, A(x) = 0, B(x) = 1.

The corresponding scaled CGF we aim to compute is

λ(s) = lim
T→∞

1

T
ln
〈
e−sJ [X0,T ]

〉
p
. (4.72)
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The first derivative of λ(s)

v(s) = −dλ(s)
ds

(4.73)

reports on the average velocity in the tilted ensemble and is a useful indicator of the tails of
the reference distribution. The scaled CGF exhibits a Lebowitz-Spohn symmetry [310] such
that

λ(s) = λ(−f − s) (4.74)

where f is the affinity for the current. The scaled CGF can be computed by the numerical
solution of a generalized eigenvalue problem [117] which we use for this low dimensional
system to compare the accuracy of our results.

Despite its simplicity this system has been shown to present non-trivial non-equilibrium
phenomena due to the competition between ballistic and diffusive motion [314, 129, 130].
Here, the overdamped regime acts as a simple benchmark which can be easily solved by
diagonalizating a projection of the Fokker-Planck equation [130]. The underdamped regime
is a much more difficult problem to solve, due to a higher dimensional state space and long
relaxation time. Indeed, despite access to the SCGF via diagonalization [130], accurate
results for the force in the underdamped case have been elusive. However, the actor-critic
approach can solve this problem easily.

Current fluctuations of an overdamped particle

In the overdamped case, the evolution equation for the particle on a ring is given by

dx = F (x)dt+
√
2dW (4.75)

which is a dimensionless one-dimensional SDE. We integrate this equation with a timestep
of 0.001. Since the position is periodic, an ideal representation of both the force and value
function is given by a Fourier series

Fθ(x) = F (x) + aθ +
M∑
i=1

bθi sin(ix) + cθi cos(ix), (4.76)

and

Vψ(x) = aψ +
M∑
i=1

bψi sin(ix) + cψi cos(ix), (4.77)

with coefficients aθ,aψ, {bθi , cθi }Mi=1 and {bψi , c
ψ
i }Mi=1 truncated to dimension M .

The results of the differential AC algorithm are shown in Fig. 4.5. We have truncated the
basis with M = 5 and used learning rates of αθ = 0.1 and αψ = 0.01. We annealed across
the range s considered, first learning the dynamics at s = −0.5, before sweeping across to
s = 1.5 in steps of ∆s = 0.1. The reward learning rate began at αR = 10−5 and decreased
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Figure 4.6: Underdamped current fluctuations: (a) Learning curves showing run-
ning estimates of the SCGF, (b) time-averaged KL divergence to the original dynamics
dKL(pθ(s,i)|p) during training for bias s at step i, and (c) the time-averaged velocity, calcu-
lated as the dynamics is trained. The color of each curve indicates the value of of the bias
s, corresponding with the colors of the data points in the lower plots. Estimates of (d) the
SCGF, (e) time-averages KL divergence with the original dynamics and (f) time-averaged
velocity of the final dynamics for each value of the bias s indicated on the x axis. The inset
of (d) shows the absolute error with numerical diagonalization results, represented by grey
circles in (d). Results with estimated corrections using the algorithm in Ref.[117] are shown
as triangles in (d) and its inset. Dashed curves in (d-f) show the results for the overdamped
case for comparison.

linearly to αR = 10−6 throughout training at each value of s, to enable rapid convergence to
an accurate result.

We detail estimates of three quantities calculated during the learning process. In Fig. 4.5(a)
we show the estimate of λ(s), the quantity the algorithm is attempting to maximize. In
Fig. 4.5(b) we show an estimate of the time-averaged KL divergence. In Fig. 4.5(c) we show
an estimate of the time-averaged velocity. These estimates are running averages calculated
using the samples taken from each transition, with learning rates of 0.1αR. Learning curves
are plotted for training at each individual bias s during the annealing process. For small
changes of s, we see that convergence to an accurate estimate of the scale CGF is achieved
in approximately 106 training steps, each utilizing data from a single transition. This results
in a speed of up to two orders of magnitude over the MCR algorithm [117].

In Figs. 4.5(d-f) we plot the end points of each of these learning curves for the three
observables plotted in Figs. 4.5(a-c). In Fig. 4.5(d) we see the expected Lebowitz-Spohn
symmetry with reflection about s = 1/2 for the scaled CGF. The inset shows the absolute
error compared to the diagonalization of the Fokker-Planck equation, ϵ(s), which illustrates
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quantitative accuracy across the s values considered. The maximal error is on the order
of 1%. Likewise, we see the expected anti-symmetry in the time-averaged KL divergence
and velocity in Figs. 4.5(e) and (f). Both of these are also quantitatively accurate. This
antisymmetry implies that the optimal force differs from the reference force more for s > 1
than s < 0. This demonstrates that the regular production of trajectories with significant
negative time-integrated velocities requires a substantial change in the systems dynamics,
in contrast to those with a significant positive velocity. Nevertheless the learning algorithm
employed here is capable of parametrizing the modified force sufficiently well to work across
these regimes.

Current fluctuations of an underdamped particle

In the underdamped case, the position and velocity evolve according to two coupled SDEs
given by

dx = vdt, (4.78)

dv = F (x)dt− vdt+
√
2dW

where the noise acts only on the velocity, v, and the friction, inverse temperature, and mass
are taken as unity. As before we discretize our equations with a timestep of 0.001. For
the underdamped case, the modified force and value function depends on both the position
and velocity of the particle. The approximation need only provide a single output for a
force applied to the velocity, as the optimal dynamics can not change the evolution of the
position since the position is not directly influenced by noise. To do accomplish this, a simple
approach we have taken is to discretize the force and value function approximation along the
velocity dimension. More precisely, we can adapt the Fourier series from the overdamped
case,

Fθ(x, v) = aθ(v) +

M1∑
i=1

bθi (v) sin(ix) + cθi (v) cos(ix), (4.79)

with velocity dependent coefficients given by

aθ(v) = a0I0(v) + aM2+1IM2+1(v) +

M2∑
j=1

ajIj,j+1(v)

(4.80)

where

Ij,j+1(v) =

{
1 v0 + j∆v < v < v0 + (j + 1)∆v

0 else
(4.81)

and the boundary cases I0(v) and IM2+1(v) return 1 for v less than v0 or greater than
v0 + (M2 + 1)∆v, respectively. We employ analogous equations for bθi (v) and cθi (v). To
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achieve accurate results, we find a spacing of ∆v = 0.02 is sufficient, with v0 = −8,M2 = 700
providing a broad enough range to encompass all relevant velocities at the biases considered.
We use a Fourier basis with M1 = 5. As before, we use the same functional for the value
function as for this modified force.

Figure 4.6 shows estimates of same three quantities as the overdamped case throughout
the same annealed learning process. Here we increased the value learning rate to αψ = 0.1,
retain a dynamics learning rate of αθ = 0.1, and keep the scaled CGF learning rate fixed to
αR = 10−6 throughout training. Curves in Figs. 4.6(b,c) are produced from data calculated
using the same learning rate as the scaled CGF, before using a windowed average over
100 steps to smooth the curve. We generally see fast convergence to an accurate result in
approximately 108 transitions worth of updates. The large learning time compared to the
overdamped results reflect the significantly finer basis employed for the underdamped model.

The ends of these curves are plotted below in Figs. 4.6(d-f). In the inset of Figs. 4.6(d)
we see that we find accurate results compared to the numerically exact answers across the
range of s considered. We see analogous results to the overdamped case, reproduced in
dashed lines in Figs. 4.6(e,f), the underdamped system obeys the expected Lebowitz-Spohn
symmetry. Compared to the overdamped system, the features of the KL divergence and
average velocity in underdamped system are sharper.

There are three distinct behaviors for the system as a function of s. For large negative
s, the velocity increases significantly. For very large positive s the velocity decreases anal-
ogously. For small and intermediate positive s, there is a broad plateau where the velocity
is close to zero. These distinct regions are clearly demonstrated in Fig 4.7 where we plot
the final optimized forces for a set of s, along with sample trajectories generated by these
forces. We see different behavior for biases of s < 0, 0 < s < 1 and 1 < s. For s < 0
the trajectories regularly loop round the ring in the positive direction. For 0 < s < 1 the
trajectories generally do not transition round the ring and instead remain in a small region
of space. For s > 1 the trajectories loop around the ring in the negative direction.

For comparison, we have optimized the same functional form using the MCR algorithm,
as analogous to Ref. [117]. The AC algorithm provides more accurate results than MCR,
when optimized using the same amount of statistics [117]. The MCR results are produced
by annealing across from s = 1.5 down to s = −0.5 in steps of 0.1. Training for each value of
s involves 20 updates constructed using 50 trajectories with 106 time steps each, for a total
of 109 transitions worth of data. After optimizing the hyperparameters, we see in Fig. 4.8
the convergence in the MCR algorithm is still much slower than the AC algorithm. As a
consequence, the best results we can achieve using the same amount of transitions fail to
converge to the correct values of the scaled CGF for biases close to s ≳ 1. This demonstrates
one key advantage of utilizing value functions. Due to the reduction in variance of gradient
estimates using a small amount of data, we can perform many more updates using the same
amount of transitions, improving convergence.



CHAPTER 4. REINFORCEMENT LEARNING OF RARE DIFFUSIVE DYNAMICS107

Figure 4.7: Modified forces and their dynamics: The final forces learnt during the
optimization process for bias s = −0.3(a), 0.0(b), 0.5(c) and 1.3(d) with 3 sample trajectories
of length T = 10 for each force.

4.9 Conclusion

In this paper we have demonstrated how regularized reinforcement learning algorithms can
be used to optimize a diffusive dynamics to effectively sample rare trajectories. A key
ingredient of our approach is a value function that estimates how relevant each state is
to the rare dynamics, a function learnt while simultaneously guiding optimization of the
dynamics, allowing for reduced data generation and more detailed function approximations.
Across a range of systems and observables, we found that the lower variance estimate of the
gradient employing value functions enabled accurate and efficient characterization of rare
dynamical fluctuations. In finite time problems, the AC algorithm in particular was able to
solve particularly challenging problems associated with multiple reactive channels and long
lived intermediates. In the long time limit, the AC algorithm reproduces exact results for
the cumulant generating function by directly optimizing to an accurate representation of
the Doob dynamics, removing the need to calculate additional corrections or do additional
importance sampling.
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Figure 4.8: Comparison between AC and MCR algorithms: (a) learning curves
plotted verses the amount of data used during training, for the AC algorithm (solid, colored
lines) and the MCR algorithm (colored crosses and dashed gray lines). Curves and crosses
are color coded by the value of the bias s being trained for. (b) Final results for the AC
algorithm (colored crosses) and the MCR algorithm (gray triangles), with absolute errors to
the value from numerical diagonalization shown in the inset.
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While we have focused here on the simulation of rare event dynamics and the direct
evaluation of their likelihoods, the methods of finding optimized forces developed here can be
straightforwardly combined with trajectory importance sampling methods such as transition
path sampling [70] or cloning [77] to correct for inaccuracies associated with an incomplete
basis. Indeed, previous work has demonstrated that auxiliary dynamics can significantly
improve the statistical efficiency of trajectory sampling methods [117, 81, 92, 316]. Further,
Monte Carlo approaches can be used to generate data to train the optimal dynamics in a
feedback routine as previously demonstrated [86, 315]. This could emphasize the parts of
the state space relevant to the rare events earlier than by simply generating data with the
current dynamics, thus speeding up optimization. Application to more complex models, such
as many-body systems, will be an important development of this line of research. Accurate
approximation of the force in many-body problems may require the use of more sophisticated
function approximations, such as neural networks, however, a difficult balance will need to
be struck between the representative power of the approximation and the computational cost
to calculate it. More powerful function approximations will also necessitate the use of more
sophisticated algorithms, as training such approximations can become unstable when using
correlated data, as we do here.
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Chapter 5

Direct evaluation of rare events from
variational path sampling

The constituent agents of active matter– biomolecules, colloids, or cells– autonomously con-
sume energy to fuel their motion [317, 318]. Their resultant nonequilibrium states have
non-Boltzmann phase-space densities and exhibit exotic structural and dynamical collective
fluctuations, including motility-induced phase separation and swarming [20, 319, 320, 48,
321]. Within these nonequilbrium steady-states, fleeting fluctuations can free particles from
external potentials [322, 323, 324], nucleate stable phases from metastable ones [325, 65], and
assemble passive objects [326, 327]. The study of such rare dynamical events within active
matter and the calculation of their associated rates is difficult. Traditional equilibrium rate
theories like transition state theory and Kramer’s theory require knowledge of the form of the
steady-state distribution that is not in general available [328]. Further, only a few numeri-
cal methods exist that can be used to tame the exponential computational cost associated
with sampling the unlikely fluctuations that lead to transitions between metastable states.
Existing methods improve sampling by stratifying or branching stochastic trajectories [102,
103, 311] but do not typically employ driving forces to specifically enhance the sampling of
these rare events.

Here we present a perspective and an associated numerical algorithm, termed Variational
Path Sampling (VPS), for estimating transition rates in active systems using optimized time-
dependent driving forces. Our approach relies on a equality between the rate of a rare event
in a reference system and a ratio of path partition functions in the reference system and with
a driving force that makes the rare event occur with high probability. The VPS algorithm
solves a variational problem to approximate the functional form of an optimal time-dependent
driving force for this estimate and is applicable to any stochastic dynamics. With VPS we
investigate how driven fluids can direct motion into useful function. We apply this technique
to study the rate of conformational changes of a passive dimer in a dense bath of active
Brownian particles [329, 330, 331]. This model exemplifies how collective active fluctuations
around passive solutes can drive self-assembly and speed up transitions between distinct
metastable states [332, 333]. We find the rate to switch between the dimer’s two metastable
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states increases dramatically with increasing activity in the bath, which we rationalize with a
recent dissipation bound from stochastic thermodynamics [74]. We study the computational
efficiency of rate estimation with VPS and demonstrate its advantage over existing trajectory
stratification based methods like Forward Flux Sampling [102].1

5.1 Variational principle for rate computation

We consider a system described by overdamped Brownian dynamics of the form,

γiṙi(t) = Fi[r
N(t)] + ηi(t) (5.1)

where ṙi is the rate of change of the i-th particle’s position, γi is the corresponding friction
coefficient, and Fi[r

N(t)] is the sum of all conservative, nonconservative and active forces
exerted on the i-th particle that depends on the full configuration of the N -particle system,
rN . The final term, ηi(t), is a Gaussian white-noise with ⟨ηiα(t)⟩ = 0 and

⟨ηiα(t)ηjβ(t′)⟩ = 2γikBTδijδαβδ(t− t′) (5.2)

for component (α, β) and kBT is Boltzmann’s constant times the temperature. In order to
study the transition rate between two long-lived metastable states, denoted A and B, we
define each from a given configuration using the indicator functions,

hX [r
N(t)] =

{
1 if rN(t) ∈ X
0 else

, (5.3)

for either X = A,B. In practice this designation requires an order parameter capable of
distinguishing configurations and grouping them into these distinct metastable states like
that illustrated in Fig. 5.1(a) in one dimension. Assuming there exists a separation between
the time τ ‡ required to traverse the transition region between the two metastable states, and
the typical waiting time for the transition, the rate k can be evaluated from the probability
to observe a transition, per unit time [335]

k =
⟨hB(tf )hA(0)⟩

tf⟨hA⟩
= t−1

f ⟨hB|A(tf )⟩ , (5.4)

where the angular brackets denote an average over trajectories of duration τ ‡ < tf ≪
1/k started from a steady-state distribution in A and ⟨hB|A(tf )⟩ denotes the conditional
probability for transitioning between A and B in time tf . When tf is chosen to satisfy the
timescale separation described above, k is independent of time.

If the transition is rare, most short trajectories are nonreactive leading to difficulties in
estimating the rate directly. Instead of trying to evaluate the small transition probability

1Most of the content of this chapter was originally part of the publication [334].
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through stratification as other existing methods do [102, 103], we instead optimize a time-
dependent driving force λ(rN , t) that constrains the transition to occur, and evaluate the
probability cost associated with adding that force to the original dynamics. For a general
time-dependent force λ, using the Onsager-Machlup form for the probabilities of stochastic
trajectories [336], the rate expression in Eq. 5.4 can be rewritten as [74]

k = t−1
f

〈
e−∆Uλ

〉
B|A,λ , (5.5)

where ⟨⟩B|A,λ denotes a conditioned average computed in presence of the additional force.
This relation holds for forces λ that affect the transition to occur with probability 1, such
that the rate in the driven ensemble is 1/tf . The average is of the exponential of the change
in the path action, ∆Uλ,

∆Uλ[X] = −
∫ tf

0

dt
∑
i

[λ2
i − 2λi · (γiṙi − Fi)]

4γikBT
, (5.6)

between trajectories generated with the added force and in its absence. The path action and
all other stochastic integrals are evaluated in the Ito convention.

Equation 5.5 is a direct estimator for a rate employing an auxiliary control system, but it
only becomes useful when the protocol λ(rN , t) generates trajectories in a manner equivalent
to the unbiased reactive trajectory distribution. This is because the expectation can be
viewed as an overlap between the two reactive path distributions, and without significant
overlap the exponential average is difficult to estimate. We express the optimality of λ using
Jensen’s inequality after taking the logarithm of Eq. 5.5 to obtain a variational principle,

ln k ≥ − ln tf − ⟨∆Uλ⟩B|A,λ . (5.7)

If the average change in conditioned path action ⟨∆Uλ⟩B|A,λ is minimized over all possible
functional forms of λ, the rate can be obtained directly as a simple ensemble average of
∆Uλ∗ at the minimizer λ = λ∗.

The optimal control force λ∗ that saturates Eq. 5.7 is unique and given by the solution
of the backward Kolmogorov equation [337, 338, 339] as detailed in the following subsection.
Specifically, the optimal force is 2kBT times the gradient of the logarithm of the commitor
probability [340] of ending in state B at tf . A schematic illustration of the optimal effective
time-dependent potential Vt(R) added to a double well potential is illustrated in Fig. 5.1(a).
The resultant force gradually destabilizes the reactant well to ensure the transition almost
surely within the short duration tf . Viewed in the backwards direction of time, the potential
follows the negative logarithm of the relaxation of an initially localized distribution in B to
its steady-state. The force is thus optimal in the sense that reactive trajectories, like those in
Fig. 5.1(b), generated with it are drawn from the reference path ensemble with the correct
statistical weights. Generically, λ∗(rN , t) is a function of all particle coordinates, so it is not
typically tractable to compute. We demonstrate here that one- and two-body representations
of λ can be sufficiently close to optimal as to estimate the rate accurately even in cases where
the rare event is collective, similar to related observations in large-deviation sampling [84,
86, 87, 117].
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Figure 5.1: Reactive trajectories with VPS. (a)Schematic representation of the total optimal
time-dependent potential in an isolated passive dimer as t goes from 0 to tf . Shaded regions
are the compact (A, pink) and extended (B, light blue) states. (b) Unbiased reactive trajec-
tories generated with λ(R, t).

Demonstration of optimal control force

For ease of notation, we consider states A and B being specific phase space points, rNA
and rNB , respectively. Let λ∗(rN , t) = 2kBT∇Φ, where Φ(rNB , tf |rN , t) is the log of the
probability to end at a single target configuration, rNB , conditioned on being at rN at time t.
This conditioned probability satisfies the logarithmic transform of the backward Kolmogorov
equation [109, 337, 338, 339, 268],

∂tΦ +
∑
i

[
Di(∇iΦ)

2 +∇iΦ · Fi/γi +Di∇2
iΦ

]
= 0 (5.8)

where Di = kBT/γi is the diffusion constant and the gradients act on ri. The optimal force
achieves the reactive transition by construction, rendering ⟨hB|A⟩λ∗ = 1. The change in path
action with the optimal force is

∆Uλ∗ [X] = −
∫ tf

0

dt
∑
i

Di(∇iΦ)
2 +∇iΦ · Fi/γi −∇iΦ · ṙi (5.9)

Using Ito’s Lemma for the total time derivative of Φ to eliminate the final term,

∆Uλ∗ [X] = −
∫ tf

0

dt

{∑
i

[
Di(∇iΦ)

2 +∇iΦ · Fi/γi +Di∇2
iΦ
]
− Φ̇ + ∂tΦ

}
(5.10)

and substituting the backward Kolmogorov equation

∆Uλ∗ [X] =

∫ tf

0

dt Φ̇ = Φ(rNB , tf |rNB , tf )− Φ(rNB , tf |rNA , 0) (5.11)
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the change of action can be evaluated exactly. The boundary terms from the exact integration
are 0 and the log of the transition probability between A and B in the reference system. The
latter can be identified with ln⟨hB|A⟩, resulting in the equality in Eq. 7 using the definition
of the rate k in Eq. 4. This reasoning extends linearly to cases where A and B are collections
of configurations.

5.2 Optimized control force for passive dimer

We study the accuracy and utility of this formalism in a system comprised of an active
bath and a passive dimer that can undergo conformational changes between two metastable
states. All particles interact pairwise via a Weeks-Chandler-Andersen (WCA) repulsive
potential [341]

VWCA(r) =

{
4ϵ

[(σ
r

)12
−
(σ
r

)6]
+ ϵ

}
Θ(rWCA − r) (5.12)

with energy scale ϵ, and particle diameter σ, truncated at rWCA ≡ 21/6σ with the Heaviside
function Θ. Active particles experience an additional self-propulsion force of magnitude v0,
Fa
i (t) = v0e[θi(t)] where the director is e(θi) = (cos θi, sin θi) and θi obeys θ̇i(t) = ξi(t) with,

⟨ξi(t)⟩ = 0, ⟨ξi(t)ξj(t′)⟩ = 2Dθδijδ(t− t′) (5.13)

for angular diffusion constant Dθ. Passive solutes separated by distance R are bound by a
double-well potential

Vdw(R) = ∆V
[
1− (R− rWCA − w)2/w2

]2
(5.14)

with an energy barrier of height ∆V between the compact and extended states at R = rWCA

and R = rWCA + 2w respectively [342]. We study the transition rates between these states,
employing indicator functions hA(t) = Θ(RA − R) and hB(t) = Θ(R − RB) for RA = 1.25σ
and RB = 1.85σ. Conformation transitions like these in dense fluids are collective in origin
[342] and serve as a sensitive probe of the bath.

The VPS algorithm estimates an optimal force using a low-rank ansatz by iteratively
solving the variational problem in Eq. 5.7, and uses this force to directly obtain a rate
estimate. For computing the rate of isomerization of the passive dimer, we approximate λ∗

with a time-dependent interaction along the dimer bond vector R, expressed as a sum of
Gaussians

λ(R, t) = R̂

MR,Mt∑
p,q=1

c(i)pq e
−

(R−µR,p)
2

2ν2
R

− (t−µt,q)
2

2ν2t (5.15)

where c
(1)
pq = −c(2)pq are variational parameters to be tuned, and the locations and widths µR,p,

µt,q, νR and νt are held fixed. To impose the conditioning while minimizing ⟨∆Uλ⟩B|A,λ, we
use a Lagrange multiplier s to construct a loss function Ωλ = ⟨∆Uλ⟩λ + s(⟨hB|A⟩λ − 1).
For a general force that does not ensure the transition with unit probability, there is a
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multiplicative contribution to the estimate of the rate in Eq. 5.5 from ⟨hB|A⟩λ, which for
most optimized forces is negligible.

The optimization problem maps onto the computation of a cumulant generating function
for the statistics of the indicator hB(tf ) studied previously [339, 262], with the short trajec-
tories starting from a steady-state distribution in the initial state. As such we can employ
generalizations of recent reinforcement learning procedures to efficiently estimate the gradi-
ents of the loss function with respect to the variational parameters [125]. Specifically, we
modify the Monte-Carlo Value Baseline (MCVB) algorithm [262] which performs a stochas-

tic gradient descent to optimize c
(i)
pq . We add two preconditioning steps over the MCVB

algorithm. First, we generate an initial reactive trajectory using a routine reminiscent of
well-tempered metadynamics [343]. Then we symmetrize the learned force to ensure time
translational invariance of the transition paths. We denote this preconditioning algorithm
MCVB-T, which is described in Section 5.4

We first illustrate the systematic convergence of VPS by estimating the isomerization rate
of an isolated passive dimer. Such a simplified system allows us to compare to numerically
exact results, and study convergence of the force ansatz in the complete basis limit, where
MR,Mt → ∞ and the Gaussians cover the thermally sampled region in R and t. For
this simple system, we take kBT = γ = σ = ϵ = 1, w = 0.25σ, with diffusive timescale
τ = σ2γ/kBT . We simulate the one-dimensional version of Eq. 5.1 along R, with Vdw(R)
only. For simplicity we define state A by the initial condition R(0) = rWCA, and state B via
RB = 1.45σ. To provide a steady-state value in Eq. 5.4 [262, 299], we use an Euler method
and take in this example tf = γwσ/

√
8kBT∆V . We choose µR,p and µt,q evenly distributed

in R/σ ∈ [0.9, 1.77] and t ∈ [0, tf ], respectively, and νR, νt to be half the distance between
Gaussian centers. We consider basis sizes MR =Mt = 2− 40, each optimized independently
and used to sample ∼ 105 transition paths.

Figure 5.2(a) illustrates a typical learning curve for the control force, showing convergence
of the variational rate bound towards the numerically exact rate. The variational estimate
requires a basis of MR,Mt > 40 to approach the rate to within the statistical uncertainty
of the estimate, however alternative estimates with small basis sets can be refined using a
cumulant expansion approximation to Eq. 5.5. Specifically, truncating the exact exponential
relation at the ℓth cumulant as

ln k ≈ − ln tf +
ℓ∑

n=1

1

n!

dn ln
〈
e−∆Uλ

〉
B|A,λ

d∆Un
λ

(5.16)

provides an approximation to the rate that converges in the limit that ℓ is large. Figure 5.2(b)
illustrates this convergence, where we find that even coarse-representations of the control
force can yield close estimates of the rate with only the first few cumulants, illustrating a
tradeoff between basis set completeness and statistical efficiency. Sweeping across a wide
range of barrier heights in Fig. 5.2(c), we find excellent agreement between the log-rate from
brute force simulations and a truncation of the cumulant expansion to ℓ = 2 using MR = 80
and Mt = 30.
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Figure 5.2: Convergence of isomerization rates for an isolated passive dimer. (a) Learning
curve for ∆V = 10kBT and MR,Mt = 20. (b) Convergence of the variational rate estimate
(circles) and cumulant corrections for ℓ = 2 (triangles) and ℓ = 4 (squares) with basis size as
compared to the numerically exact answer (dashed line). (c) Variational (circles) and ℓ = 2
(triangles) estimate of the rate compared to the exact value (dashed line) with increasing
barrier height.
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5.3 Active driving in dimer isomerization

We next compute the isomerization rate with VPS when the dimer is immersed in an explicit
solvent of active Brownian particles with N = 80 and a total density of 0.6/σ2. The dimer
particles have a friction γd = 2γ and the solvent particles have γs = 4γ. We take γ = σ =
ϵ = 1, kBT = 0.5, ∆V = 7kBT , τ = σ2γ/2kBT = 1, Dθ = 1/τ and timestep 10−5τ . We
also change w = 0.45σ such that the collisional cross-section of the dimer is large. Collisions
with active particles transduce energy along the dimer bond and we study the change in the
isomerization rate as the bath activity v0σ/kBT is varied from 0 to 18. We use a basis size
of MR = Mt = 50 distributed between R/σ ∈ [0.9, 2.3] and t ∈ [0, tf ] where tf = 0.2τ . The
optimization starts by learning forces λ(R, t) for the isolated dimer with WCA interactions
between monomers, followed by the MCVB-T algorithm. Then, λ(R, t) is optimized in the
presence of the bath for v0 = 0 and higher values of v0 are initialized from converged forces
at the previous v0.

The rate is a strong function of activity, increasing twenty-fold over the range of v0’s
considered. While the variational rate estimate from Eq. 5.7 is closest for the passive bath,
it weakens with increasing v0, indicating a growing importance of solvent degrees of freedom
in the optimal control force. With converged forces at each v0, we run 106 trajectories of
length tf to compute k from Eq. 5.5. This estimate correctly predicts the suppression of k due
to passive solvation and can be converged statistically for v0σ/kBT < 9, which is supported
by direct rate estimates from unbiased simulations in Fig. 5.3(a). Above v0σ/kBT = 9, the
optimized force is not close enough to λ∗ to estimate k directly through the exponential
average or a low order cumulant expansion.

Provided we have access to the transition path ensemble from direct unbiased simulations
or methods like Transition Path Sampling [70, 81, 344] we can supplement the estimate of k
using histogram reweighting [42]. k satisfies a reweighting relation of the form,

k =
e−∆UλPB|A,λ(∆Uλ)

tfPB|A,0(∆Uλ)
(5.17)

where we have defined PB|A,λ(∆Uλ) = ⟨δ(∆Uλ[X]−∆Uλ)⟩B|A,λ and similarly for its undriven
counterpart λ = 0. We evaluate k with this estimator by sampling 104 driven and only 6-100
unbiased reactive paths, using the Bennett Acceptance Ratio [345] to evaluate the ratio of
probabilities. Compared with the brute-force estimate in Fig. 5.3(a), we find this reweighting
predicts k accurately across all values of v0 with significantly higher statistical efficiency then
a brute force calculation, which validates the accuracy and utility of the control forces. We
have compared the VPS rate estimates in Section 5.6, using either Eqs. 5.5 and 5.17, to the
Rosenbluth variant of Forward Flux Sampling [102], and find that VPS is statistically more
efficient and converges more quickly with the number of reactive trajectories.

Access to an ensemble of transition paths in this active system gains us mechanistic
insight into the process. The rate enhancement observed for the compact to extended state
transition of the passive dimer with bath activity can be understood using recent results
from stochastic thermodynamics. Specifically the rate enhancement achievable by coupling a
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Figure 5.3: Rate enhancement of isomerization in an active fluid. (a) Change in the rate as
estimated from direct unbiased simulations (crosses), from exponential estimate (squares),
and from histogram reweighting (circles). The excess dissipated heat (triangles) bounds the
rate enhancement achievable demarked by the red shaded region. The thick tick mark on
the left denotes the rate for the isolated dimer. (b) and (c) Typical snapshots of reactive
trajectories of the active bath (blue) and passive dimer (red), at t = 0 and t = tf .

reactive mode to a nonequilibrium driving force is bounded from above by the heat dissipated
over the course of the transition [74]. In this case the nonequilibrium driving is afforded by
the interactions between the dimer and the active bath, so the bound takes the form

ln k ≤ ln k0 +
1

2kBT
⟨Q−Q0⟩B|A (5.18)

where k0 is the rate at v0 = 0 and ⟨Q − Q0⟩B|A is the dissipative heat less its average at
v0 = 0 given by

Q =

∫ tf

0

dt
∑
i∈d

∑
j∈s

(ṙi − ṙj) · FWCA(rij) (5.19)

which is a sum of the total force from the WCA potential of the solvent particles (s) on
the dimer (d) times the difference in their velocities in an ensemble at fixed v0 (SM). This
bound is verified in Fig. 5.3(a) for all v0, and saturated at small v0. The specific mechanism
of energy transfer from bath to dimer that promotes transitions is clarified by examining
reactive trajectories driven by the biasing force and are typical, after removal of the bias
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from the incomplete basis set. Figures 5.3 (b) and (c) show typical snapshots of the solvated
dimer at the start and end of the reaction. Energy transfer results from active particles
accumulating around the dimer, and preferentially in its cross-section, pushing it apart into
an extended state. This mechanism of action is reminiscent of how nonequilibrium agents
collect in the corners of mesoscopic gears to power their directed rotation [332, 333]. At low
v0, we find the driven isomerization process is efficient, while deviation from the bound at
large v0 demonstrates that energy is additionally funneled into non-reactive modes. Further
studies showing the unbiased nature of the VPS-sampled transition path ensemble in terms
of duration and distribution of transition paths, and quantification of the changing solvation
environment with v0 are provided in Sections 5.5 and 5.8.

5.4 Protocol for learning optimal force

We optimize the time-dependent control force λ(R, t) by minimizing ⟨∆Uλ⟩B|A,λ over vari-

ational parameters c
(i)
pq using Lagrange multiplier s to impose the B|A conditioning. If

s is chosen to be more negative than an approximately estimated threshold value s∗ =
ln[⟨hB|A⟩/(1 − ⟨hB|A⟩)], the optimized forces drive the reaction with unit probability and s
need not be individually optimized. For a rare transition, any choice of s with a magni-
tude an order or more larger than the energy barrier height will robustly provide forces that
always satisfy the B|A conditioning [262].

For optimization we use an extension of a reinforcement learning algorithm called Monte
Carlo Value Baseline (MCVB) [262]. This algorithm computes the correlation of the gra-
dient of the log of the trajectory probability, called Malliavin weights [117, 122], with the
instantaneous change in ∆Uλ and hB over the course of the trajectory. These yield the
exact gradients of the loss-function Ωλ with respect to the tunable parameters, with which
a stochastic gradient descent is performed. The MCVB algorithm simultaneously learns
the driving force and a corresponding value function, V(R, t) = ⟨∆Uλ,t + shB|A⟩λ|R(t)=R,
where ∆Uλ,t contains the integrated action difference only within [t, tf ] and the expectation
is conditioned on starting from R at time t. The value function greatly reduces the the
variance of the gradients at zero cost, allowing better convergence. Our modification to this
algorithm, refered to as MCVB-T, is a preconditioning step that enforces time translational
symmetry for the log of the bridge probability, Φ(rNf , tf |rN , t) = Φ(rNf , tf − t|rN , 0), as the
reference forces are not explicit functions of time. This is achieved by randomly choosing
a tmid ∈ [0, tf ] for every trajectory used for averaging the force gradient, and applying the
force λ(R, t ∈ [tmid, tf ]) on it only for a duration [tmid, tf ]. This ensures that trajectories
undergoing the transition at late times are accounted for while training the force.

Details of the MCVB-T algorithm are available in the pseudocode in Algorithm 7. The
set of Gaussian coefficients parametrizing the force and the value function are denoted in
short by χ and ψ respectively. The MCVB algorithm is a special case of MCVB-T with fixed
tmid = 0.
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Algorithm 7 Monte-Carlo Value Baseline with Time-translation invariance (MCVB-T)

1: inputs Gaussian coefficients for a general force λχ(r
N , t) and value function Vψ(rN , t)

2: parameters learning rates αχ, αψ; total optimization steps I; trajectory length tf con-
sisting of J timesteps of duration ∆t each; number of trajectories N

3: initialize choose initial weights χ and ψ, define iteration variables i and j, force and
value function gradients δP , δV , define functional form for stepwise increments (rewards)
ξ to the loss-function ∆Uλ + shB|A

4: i← 0
5: repeat
6: Generate trajectories [X(t)] with first-order Euler propagation starting from uncor-

related steady-state configurations in state A. Every trajectory starts experiencing the
force λ from a random time tmid which is sampled uniformly from [0, tf ]. Configurations,
times, noises (with variance 2γkBT∆t), Malliavin weights, integral of value function gra-
dients, and rewards are denoted by rNj , tj,ηj, yχ(tj), zψ(tj) and ξ(tj) = ξj respectively.

7: j ← 0
8: δP ← 0
9: δV ← 0
10: yχ(t0)← 0
11: zψ(t0)← 0
12: repeat
13: ẏχ(tj)← ηj · ∇χλχ(r

N
j , tj)/2kBT∆t

14: yχ(tj+1)← yχ(tj) + ∆tẏχ(tj)
15: żψ(tj)← ∇ψVψ(rNj , tj)
16: zψ(tj+1)← zψ(tj) + ∆tżψ(tj)
17: δP ← δP + ξjyχ(tj+1)− Vψ(rNj , tj)ẏχ(tj))
18: δV ← δV + ξjzψ(tj+1)− Vψ(rNj , tj)żψ(tj)
19: j ← j + 1
20: until j = J
21: average δP ,δV over N trajectories to get δP , δV
22: χ← χ− αχδP
23: ψ ← ψ + αψδV
24: i← i+ 1
25: until i = I
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Figure 5.4 illustrates all learning curves that led to the results in Fig. 3, plotting lnhB|A−
∆Uλ

∣∣
B|A as a function of training steps. The averages of this estimator and the gradients

are computed over 40 trajectories simulated at each training step. The trajectories are
initialized with coordinates randomly chosen from a collection of 10000 steady-state dimer
and bath configurations in state A, collected once in every 0.1τ time units from a long
trajectory without any driving forces. We first learn optimal forces in the absence of the
explicit bath in Fig. 5.4(a), and then optimize these forces in the presence of the bath
in Fig. 5.4(b). We start our optimization by first finding an arbitrary force that ensures

the transition with a nonzero probability. We learn initial parameters c
(i)
pq with a routine

similar to well-tempered metadynamics [343]. Starting with c
(i)
pq = 0, at fixed frequency we

add c
(i)
pq 7→ c

(i)
pq + τmωTm/[Tm + ωN (R, t)], where N (R, t) is a running histogram of order

parameter R up to the current time t, and hyperparameters Tm, ω and τm determine how
quickly the force landscape is filled. The blue learning curve in Fig. 5.4(a) refers to 100
steps of metadynamics run with τm = 10t/Mt, ω = 4000 and Tm = 9000. We find that the
force solely from metadynamics is highly suboptimal compared to the rate bound, indicated
by the black dashed line. Starting with a λ averaged over all metadynamics steps and with
V = 0, we next optimize both sets of parameters with MCVB-T and then MCVB each over
1000 steps with learning rates αχ = 40, αψ = 200 and s = −100. We find that the variational
estimate converges tightly to the exact rate bound.

Figure 5.4: Learning curves for variational bound. (a) Optimization for the isolated dimer
with 100 steps of well-tempered metadynamics(blue), 1000 steps MCVB-T(orange) and 1000
steps MCVB(green). Black dashed line is ln ktf for the isolated dimer. (b) Learning curves
for 1000 steps each, in presence of the explicit bath with v0σ/kBT = 0, 2, 4, ..., 18. Black
dotted lines denote the corresponding converged values.

Next we use the converged λ and V to start the optimization in presence of the bath,
as illustrated in Figure 5.4(b). We successively optimize for each v0σ/kBT ∈ {0, 2, 4, ..., 18}
starting from the previous converged result, each over 1000 steps. Each time we choose
(αχ, αψ) = (0, 200) for the first 200 steps and (40, 200) for the remaining 800 steps. Learning
the value function before starting to change the force in this way avoids a brief period of
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divergence at the beginning of each optimization run [262]. The results are robust towards
changing the learning rates as long as αψ is kept about 5-10 times of αχ, such that the value
function is always approximately accurate whenever the force is being changed.

Results in Fig. 2 were also obtained similar to this protocol, but with no value function.
For Fig. 2(c), the initialization parameters τm, ω and Tm are chosen at each barrier height
so that at least half of the transitions are reactive.

5.5 Unbiased reactive events from VPS

We use Eq. 5 and 13 in the main text to obtain rate estimates from direct simulations using
the low-rank optimized force λ. For the passive dimer in an active bath with v0σ/kBT = 8,
we have illustrated in Figure 5.5(a) overlap of the driven distribution PB|A,λ(∆Uλ) with the
unbiased distribution PB|A(∆Uλ) after tilting to correct the systematic error. The scaling
constant krwt, which is our estimate for the rate k, has been evaluated from Bennett Ac-
ceptance Ratio method [345] by using the tilting exponent as the reduced potential. This
overlap is observable only when the driving force λ is near-optimal. If the tilted distribution
does not contain enough statistics to represent the unbiased distribution, the estimate kexp
from Eq. 5 given by the area under the tilted distribution will underestimate the rate. If
the basis set is complete and the exact optimal force λ∗ can be obtained, ∆Uλ∗ will follow
a Dirac delta distribution PB|A,λ∗(∆Uλ∗) = δ(∆Uλ∗ + ln ktf ), and the first cumulant will be
sufficient to describe the log of the average of the exponential. This is also evident in Eq.
5.11 where λ = λ∗ makes ∆Uλ[X] trajectory independent. In that case, all three estimates
of k from Eqs. 5, 7 and 13 will be equal and the unbiased reactive events will be entirely
force-assisted rather than being driven by thermal fluctuations.

Figure 5.5(b) shows the systematic and statistical errors in ln ktf calculated as VPS
estimates kexp and krwt from Equations 5 and 13 respectively in the main text. We have
computed the errors by comparing to direct unbiased simulation, as the number Nw of
uncorrelated trajectories of duration tf is varied, expressed through the total number of
simulation timesteps NF = Nwtf/δt where δt is a single timestep. Given the optimized
driving force, kexp is computed by averaging over Nw trajectories and krwt is obtained by
reweighting PB|A,λ(∆Uλ) and PB|A(∆Uλ) each computed with Nw/2 total trajectories, of
which only a fraction are reactive without the driving force. At small NF , kexp systematically
underestimates the rate due to the full area under e−∆UλPB|A(∆Uλ) not being accessible
because of incomplete overlap, making kexp formally unbiased but statistically biased. This
error disappears with large NF . However, the full rate can still be successfully obtained by
comparing segments of incomplete distributions. Thus even when the undriven trajectory
ensemble has ≤ 10 reactive trajectories at smaller values of NF , krwt incurs much less error
and provides a rate estimate that is both formally and statistically unbiased.

Figure 5.5(c) demonstrates convergence of the transition path ensemble obtained from
direct simulations with the optimized forces even before the tilting correction. PB|A,λ(τ

‡) and
PB|A(τ

‡) are distributions of the transition path time τ ‡ measured as the time after leaving
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Figure 5.5: Unbiased rates, statistical convergence and transition path ensemble with VPS
for v0σ/kBT = 8

. (a) Overlap of the incomplete tilted biased and the unbiased distributions, with the
scaling coefficient computed from Bennett Acceptance Ratio. (b) Errors in the rate

estimates from Equations 5 (kexp) and 13 (krwt) and from Forward Flux Sampling (kFFS)as
the amount of total simulation timesteps NF is varied. (c) Probability Density Functions
(PDF) of transition path times and reactive escape times in the transition path ensemble,

computed from the driven trajectories and unbiased reactive trajectories.

state A and before reaching state B without returning to A. PB|A(τ
‡) is from 2000 reactive

trajectories obtained from 106 total unbiased simulated trajectories, while PB|A,λ(τ
‡) is from

a total of 2000 driven trajectories all of which were reactive. We find convergence in the
distribution of transition path times signifying direct access to the nearly unbiased transition
path ensemble by using the optimal force. Similarly we compare the distribution of the start
time of the reaction trxn ∈ [0, tf ] measured as the time the trajectory last leaves A before
arriving in B. We again find convergence in the driven ensemble compared to the unbiased
reactive ensemble indicating the forces λ(R, t) are near-optimal at all values of t.

The directly evaluated rates without additional forces used to compare VPS estimates
have in most cases been computed from 5 trajectories, each of duration 104τ with τ being the
diffusive timescale. We compute k using Eq. 4 by evaluating the expectation with a rolling
window over the trajectories after relaxing to a steady-state. We deviate from this protocol
only for Figure 2(c), where the barrier heights are too large to estimate the rate from direct
simulations. Here we use a numerically exact escape rate obtained from Kramer’s theory
[11].

5.6 Comparison with Forward Flux Sampling

In Figure 5.5(b) we have compared the numerical cost of VPS at an active self-propulsion
v0σ/kBT = 8 with that of a Rosenbluth-like variant of Forward Flux Sampling (RB-FFS)
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[102]. Starting from an ensemble of steady-state configurations in A, RB-FFS uses multi-
ple interfaces between A and B to sequentially generate the transition path ensemble and
compute the nonequilibrium reaction rate without an additional driving force [346, 67]. The
transition paths generated from RB-FFS are unbranched and each has an associated weight
as part of the transition path ensemble, analogous to VPS, from which the rate is estimated.

In order to apply RB-FFS, we define the interfaces along R as R/σ ∈ {1.25, 1.29, 1.33,
1.38, 1.43, 1.50, 1.57, 1.65, 1.72, 1.77, 1.81, 1.85} with the first and the last interfaces corre-
sponding to RA and RB respectively. We start RB-FFS trajectories from the same ensemble
of steady-state configurations in A that we have used for VPS, and record the configurations
whenever the trajectories cross RA from the A side. Every time a trajectory reaches B, we
replace it in A at a random steady-state configuration. From each ofM0 recorded configura-
tions located at RA, we generate reactive paths by shootingM = 100 trajectories from each
interface sequentially and randomly choosing one out of those that reach the next interface
instead of coming back to A. The rate estimate is given by product of the forward flux of
crossing RA and the conditional probabilities of reaching subsequent interfaces, computed
from an average over weighted reactive trajectories from the RB-FFS simulation [102]. We
have variedM0 between 20 and 7000 to study the convergence of the RB-FFS rate estimate
kFFS as a function of the total number of simulation timesteps NF , as shown in Figure 5.5(b).
Statistical errors have been estimated over 3 independent parallel runs of the entire RB-FFS
procedure.

We find that the VPS rate estimates kexp and krwt incur much smaller errors than kFFS
at small NF , though at large NF all estimates converge to the same rate. Specifically, krwt

converges to the true rate fastest among the three estimates, and kexp incurs much smaller
systematic errors than kFFS even before convergence. This demonstrates that the use of the
optimized force in a simple low-dimensional basis in VPS reduces the computational cost
of estimating the exact rate by an order of magnitude or more compared to a trajectory
stratification based method like RB-FFS. Further, we find that in RB-FFS, obtaining suffi-
cient statistics given by a largeM0 required the use of a long serial simulation to converge
the flux of crossing the first interface at RA. Parallelization of the M trajectory segments
starting from each interface scaled poorly due to a broad distribution of durations over the
trajectory segments, each of which must continue till they reach either the next interface,
or A. Since shooting from the next interface can only start after the slowest of the previous
trajectory segment has concluded, parallel implementations of RB-FFS scaled poorly and
required overall a very long serial simulation. Our attempts to parallelize RB-FFS in an
alternate fashion by reducing the serial configurationsM0 worsened the systematic error in
kFFS even when averaged over fully independent RB-FFS implementations over many parallel
threads. In contrast, every step of VPS is trivially parallelizable because of all trajectories
being of the same duration tf , which corresponds to NF = 2 × 104. As a result, a parallel
implementation of VPS reduced its cost linearly and the overall computation required much
shorter serial simulations.
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5.7 Dissipative rate bounds

Stochastic thermodynamics provides a fundamental speed-limit on the enhancement achiev-
able of the rate k of a rare nonequilibrium transition over a reference equilibrium rate k0 in
terms of the excess heat dissipation in the reactive path ensemble [74],

ln k ≤ ln k0 +
1

2kBT
⟨Q⟩B|A (5.20)

where ⟨Q⟩B|A is defined as the time-reversal asymmetric contribution from the change in
path action between the equilibrium reference and the nonequilibrium system in which it
is measured. This bound holds under mild assumptions of instantonic or diffusive transi-
tions and follows from a similar change of measure as leads to Eq. 7, with the additional
observation of the time-reversal symmetric contribution of the change in path action being
negligible near equilibrium. Here we show how to arrive at Eq. 14 employing this bound. As
in the main text, we assume a separation of timescales between local relaxation and typical
transitions so that the rate problem is well-posed.

We consider the rate enhancement afforded by coupling the dimer to an active solvent
over the equilibrium passive bath isomerization rate. However, if we simply compute the
excess heat dissipated as resulting from the time reversal asymmetric change in path action
in turning v0 from 0 to some finite value, the heat will be extensive in the number of solvent
degrees of freedom and thus not have a well-defined thermodynamic limit. To mitigate this,
we note that the isomerization rate of the dimer would be independent of v0 if the dimer
and solvent did not interact. Denoting kni and kni0 the rates of isomerization when the dimer
is uncoupled to the solvent at finite or zero v0, respectively, then k

ni = kni0 and

ln
k

k0
= ln

k

kni
kni0
k0
≤ 1

2kBT

(
⟨Q⟩B|A − ⟨Q⟩B|A,0

)
(5.21)

where ⟨Q⟩B|A is the excess dissipation resulting from turning on interactions between the
dimer and solvent at finite v0, and ⟨Q⟩B|A,0 = Q0 results from turning on interactions between
the dimer and solvent at v0 = 0. The inequality is preserved even though a difference of
heats is taken since the second ratio of rates kni0 /k0 are both evaluated at equilibrium and
thus the symmetric part of the action is zero. This second heat subtracts out the dissipation
that is uncorrelated with the isomerization, and the remaining excess dissipation is left finite
even when the number of solvent particles is large, so long as the dimer is correlated with
the solvent over a finite distance.

The full path action for a system at finite v0 in the presence of dimer-solvent interactions
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is

Uv0 = −
1

4kBT

∫ tf

0

dt γ−1
d

∑
i∈d

[
γdṙi +∇iVdw −

∑
j∈d

FWCA(rij)−
∑
j∈s

FWCA(rij)

]2

+ γ−1
s

∑
i∈s

[
γsṙi − v0e[θi]−

∑
j∈d

FWCA(rij)−
∑
j∈s

FWCA(rij)

]2
− 1

4Dθ

∫ tf

0

dt
∑
i∈s

θ̇2i

(5.22)

and using the convention that v0 is invariant under time-reversal [48], the dissipated heat
associated with turning on interactions between the solvent and dimer is

Q(tf) =

∫ tf

0

dt

[∑
i∈d

∑
j∈d

ṙiFWCA(rij) +
∑
j∈s

∑
i∈d

ṙjFWCA(rji)

]
(5.23)

and is the same if v0 = 0 or is nonzero. Since FWCA(rji) = −FWCA(rij) we find the definition
of the Q in Eq. 15.

We measure ⟨Q⟩B|A(tf ) by averaging Eq. 5.23 over reactive trajectories of length tf = .2τ
sampled from long, 2×108 time-step, simulations in the nonequilibrium steady state at fixed
v0, with all other parameters as in the main text. Assuming transitions are uncorrelated, we
compile Q samples from 24 − 96 independent simulations, and use this data to calculate a
mean and standard error, as depicted in Fig. 3 (red triangles).

5.8 Nonequilibrium solvation structure

We have studied how the solvation structure around the dimer evolves with activity. We com-
pute the two-dimensional pair distribution functions for the position of the solvent around
the dimer bond within a conditioned steady state ensemble average

gX(r, ϕ1) =
1

ρsρd

⟨
∑

i∈s δ(r
d
cm)δ(r − |ri − rdcm|)δ(ϕ1 − arccos(ri ·R))hX(R)⟩

⟨hX(R)⟩
, (5.24)

with the center of the dimer bond rdcm = (r1 + r2)/2 as a reference. Here, r is the radial
distance between rdcm and surrounding bath particles, which make an angle ϕ1 with the bond
vector R = r1 − r2. The indicator function hX(R) restricts configurations where the bond
length R falls into state X. Similarly, we probe the orientation of active solute particles
around the dimer bond vector with the pair distribution

gX(r, ϕ2) =
1

ρsρd

⟨
∑

i∈s δ(r
d
cm)δ(r − |ri − rdcm|)δ(ϕ1 − arccos(e[θi] ·R))hX(R)⟩

⟨hX(R)⟩
. (5.25)

where ϕ2 is the angle between a bath director and the dimer bond, and ρsσ
2 = 0.6 is the

density of the solvent, and ρdσ
2 = 0.008 is the density of the dimers. To compute gX(r, ϕi)
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Figure 5.6: Solvation structure of the dimer by the active bath. Difference in pair distri-
butions ∆gX(r, ϕ1) (Left) and ∆gX(r, ϕ2) (Right). Configurations are conditioned such that
the bath is sampled with the dimer in the collapsed state ∆gA(r, ϕ1,2) (Top), the transition
region ∆gAB(r, ϕ1,2) (Middle) or the extended state ∆gB(r, ϕ1,2) (Bottom).

we average over configurations sampled from 24 simulations each with a length of 2 × 108

time-steps.
In Fig. 5.6, we consider the change in the pair distributions ∆gX(r, ϕi=1,2) = gX(r, ϕi=1,2,

v0 = 9)−gX(r, ϕi=1,2, v0 = 0) in an active bath with v0 = 9 and its equilibrium counterpart at
v0 = 0. The different rows impose different conditions for the dimer bond distance R = |R|
to be either primarily in state X = A (top row), with R < 1.55σ, in the transition region
X = AB between states 1.55σ < R < 1.65σ (center row), or mostly in state X = B (bottom
row), with R > 1.65σ.

These results demonstrate that the rate enhancement is correlated with active particles
dynamically wedging within the cross section of the dimer, pushing it apart into an extended
state. The left column of Fig. 5.6 demonstrates that activity greatly enhances the packing
of bath particles between the two bonded dimer particles, while the right column illustrates
that bath particles preferentially orient perpendicular to the bond vector once far enough
within the cross section. In state A, the active nature of the bath causes particles to push
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the dimer apart along R, as evidenced by the depletion for ϕ2 = π/2 and r/σ > 1 in the
top-right panel of Fig. 5.6. The transition region, center-left, shows a significantly higher
peak in the radial distribution function around ϕ2 = π/2, marking a decrease in the height
of the effective free energy barrier along R. This analysis also illustrates the mechanism of
increased stability in the active dimer extended state. Namely, Fig. 5.6 bottom-left shows
that the driven bath particles act to inhibit the extended state from closing.

5.9 Conclusion

In conclusion, we developed a novel formalism and corresponding algorithm termed Vari-
ational Path Sampling to compute rate constants in nonequilibrium systems by optimally
driving the systems to transition between metastable states. The method consists of varia-
tionally obtaining an optimal time-dependent force within a chosen basis set and using it to
estimate the rate and elucidate the reaction mechanism from direct simulations. We have
applied VPS to predict and explain the enhancement of isomerization rate of a passive dimer
in an explicit active bath, and demonstrated the role of dissipation in the rate amplification.
VPS can be used to compute rates in arbitrary stochastic systems and extends the use of
optimal control forces in large deviation sampling to transient rare events [117, 339, 84,
89, 86]. VPS complements trajectory-level importance sampling methods by generating the
rare reactive event through a time-series of driving forces instead of a sequence of rare noise
histories. We expect this approach to find broad use in rate computations for rare events in
dissipative systems throughout the physical sciences and across scales.

Data availability

The source code and data that reproduce the findings of this study are openly available on
Zenodo at https://doi.org/10.5281/zenodo.5763101 [347].

https://doi.org/10.5281/zenodo.5763101
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[57] Carlos Pérez-Espigares and Pablo I. Hurtado. “Sampling rare events across dynamical
phase transitions”. In: Chaos 29.8 (2019), p. 083106.

[58] Chloe Ya Gao and David T Limmer. “Transport coefficients from large deviation
functions”. In: Entropy 19.11 (2017), p. 571.

[59] David T Limmer, Chloe Y Gao, and Anthony R Poggioli. “A large deviation theory
perspective on nanoscale transport phenomena”. In: The European Physical Journal
B 94.7 (2021), pp. 1–16.

[60] David Andrieux and Pierre Gaspard. “Fluctuation theorem and Onsager reciprocity
relations”. In: J. Chem. Phys. 121.13 (2004), pp. 6167–6174.



BIBLIOGRAPHY 133

[61] Pierre Gaspard. “Multivariate fluctuation relations for currents”. In: New J. Phys.
15.11 (2013), p. 115014.

[62] Hugo Touchette. “Introduction to dynamical large deviations of Markov processes”.
In: arXiv:1705.06492 (2017).
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