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Abstract

Variational sampling and optimal design of rare nonequilibrium molecular dynamics

by

Avishek Das

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor David T. Limmer, Chair

Nonequilibrium driving can independently tune the structure and dynamics of molecular and
colloidal systems, resulting in novel assembly and transport phenomena that are not found
in equilibrium. Exploring nonequilibrium dynamics through numerical simulations is crucial
towards understanding the working mechanisms of functional inorganic or biological materi-
als. However, behavior of dynamical observables in such systems at experimental timescales
is often dominated by statistically rare fluctuations that are poorly sampled in simulated
trajectories. Rare event sampling algorithms that assume a Boltzmann distribution of con-
figurations and detailed balance for dynamics cannot be applied out of thermal equilibrium,
thus limiting available techniques that can efficiently sample nonequilibrium rare events.

In this thesis we have developed novel variational algorithms for the sampling and design of
rare nonequilibrium molecular dynamics trajectories by application of an optimized driving
force. This approach relies on the equivalence of a trajectory ensemble conditioned on a rare
event to occur to an ensemble driven with the optimal force where the rare event occurs
typically. For systems with many interacting degrees of freedom, we numerically learn the
optimal force within arbitrary basis sets by statistically estimating explicit gradients of tra-
jectory probability. This method allows us to efficiently compute large deviation functions
of dynamical observables in nonequilibrium steady-states, and to automate the inverse de-
sign of self-assembling colloids and molecular machines for desired structure and dynamics.
We have finally augmented our approach with reinforcement learning techniques, resulting
in a new paradigm to efficiently compute nonequilibrium reaction rates, Variational Path
Sampling. Our approach of using optimized forces to improve sampling of nonequilibrium
trajectories is versatile and can give access to rare reactive fluctuations and dynamical phases
that cannot be sampled otherwise.
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Chapter 1

Introduction

1.1 Nonequilibrium rare events in physics and
chemistry

The past few decades have seen rapid growth in the capability of computer simulations to
address questions about the microscopic dynamics of diverse chemical and biological systems
across multiple length and time scales. Computer simulations have been used to elucidate re-
action pathways for physical processes like dissolution of a solute [1], for deciphering reaction
mechanisms of atomic and molecular rearrangements in solvents [2], to understand energy,
charge and mass transport through electrochemical cells, microuidic devices and crystalline
and amorphous solids [3, 4, 5, 6, 7], and to explore assembly and ordering phenomena in
inorganic and biological materials [8, 9, 10]. Even in classical limits where the e�ects of
quantum coherence are negligible, dynamics in a condensed phase is often collective, involv-
ing interactions of a given system of interest with thermal, mechanical or chemical baths
that can inject noise and memory into the system's dynamics [11]. The complexity of such
dynamics at the nanoscale makes any analytical treatment prohibitive, and hence conclu-
sions about reaction mechanisms, transport properties and inverse design of materials are
often drawn from computer simulations. Nanoscale dynamical information obtained from
computer simulations are also extensively used to build coarse-grained e�ective models of
materials, allowing a reduced description at longer length and time scales [12]. But infer-
ring such high-level description from the microscopic dynamics of molecules faces the crucial
challenge of sampling rare dynamical events.

Rare events in molecular simulations often give rise to complicated nonlinear dynam-
ics that are of broad interest [13]. Molecular dynamics simulations involve integrating a
known equation of motion, such as Newton's equations, in the presence of many degrees of
freedom. For temporal integration we choose a quadrature timestep that is usually smaller
than the fastest modes of motion in the system, that of atomic translations and molecular
rotations in the sub-picosecond scale. However, condensed phase environments stabilize mul-
tiple metastable states in molecules, and crucial dynamics like the folding of a protein from
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its secondary to tertiary structure, or the nucleation of a stable phase from a metastable
one, occur at timescales many orders of magnitude longer than molecular motion [14, 15].
This is not due to the progress along these reaction coordinates being inherently slow, but
arises from the presence of kinetic bottlenecks with narrow funnels of entry that are only
rarely encountered. As a result, these dynamics are only observed in molecular simulations
with a low probability even though they drastically alter the properties of the system on
experimental timescales. Developing special numerical techniques to sample such rare but
interesting events with correct statistical likelihood in molecular dynamics simulations has
occupied much of the e�orts of statistical physicists working in physical chemistry problems.
A majority of these techniques assume the system to be in thermal equilibrium, which simpli-
�es the uctuations of observables due to the con�gurational distribution being Boltzmann.
This however limits their applicability to driven systems that are ubiquitously encountered
and exploited in functional chemistry and biology.

A system kept away from thermal equilibrium by hindering its relaxation or through a
continuous supply of energy is subject to fewer physical constraints than one evolving within
an equilibrium state. As a consequence, the application of external forces or the internal
consumption of energy can produce structures and responses without equilibrium equivalent
[16, 17, 18]. Driving a system dissipatively can decouple its dynamical constraints from
its structure, and thus stabilize otherwise transient states, or generate dynamical uxes be-
tween otherwise non-reactive structures. Nonequilibrium driving can assist molecular motors
to transduce energy and move ions against thermodynamic gradients [19], stabilize clusters
of motile bacteria without attractive interactions [20], and overcome thermodynamic limits
on the selectivity of assembly and control [21, 22]. A majority of manufacturing processes
in industrial chemistry, synthesis protocols for nanomaterials, geophysics and geochemistry
of climate uctuations, and biological reactions that govern living systems occur in nonequi-
librium conditions [23, 24, 25, 26]. Advances in the theory and modeling of nonequilibrium
steady-states, borrowing tools from probability theory and stochastic calculus [19, 27, 28],
have resulted in an increased interest in trying to understand the behavior in systems out of
equilibrium and leverage their versatility to design new functional materials [20, 29, 30, 31,
22, 32, 33]. Thermodynamic partition function formalism has been generalized to ensembles
of trajectories via large deviation theory [34] and transport theories have been developed
to quantify linear and higher-order response functions to nonequilibrium perturbations [35,
36]. The second law of thermodynamics has also been generalized to far-from-equilibrium
dynamics through uctuation theorems that relate uctuations of nonequilibrium structure
and dynamics to thermodynamic quantities like entropy or work [37, 38, 39], and thermody-
namic uncertainty relations that always bound current uctuations [40, 41].

Despite progress in these theoretical directions, quantifying emergent nonequilibrium be-
havior with computer simulations is currently hampered by the lack of robust tools to sample
the rare uctuations required to estimate response functions, overcome kinetic bottlenecks,
and reach the timescales of experimental relevance. Commonly used numerical methods for
sampling nonequilibrium dynamics rely on stratifying trajectory ensembles to build up rare
events stepwise, but do not apply additional importance sampling forces that can gener-
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ate inherently uncorrelated statistical realizations. In the present work we have developed
variational techniques to sample and design rare dynamical uctuations for a generic class
of stochastic systems that violate detailed balance. Our approach relies on optimizing an
additional driving force that reproduces the unbiased rare uctuations of the unperturbed
system. Our numerical methods have allowed us to learn this force in complex molecular
and colloidal systems within arbitrary basis sets and e�ciently extract the statistics and
mechanism of nonequilibrium rare events. Chapter 1 briey discusses the trajectory en-
semble formalism to quantify rare events in transient and steady-state trajectories, and the
backgrounds of large deviations and reaction rate theory that our formalism is based on.
In Chapter 2 we develop a variational algorithm for the use of optimized control forces to
sample rare current and activity uctuations of particles in a nonequilibrium steady-state on
a one-dimensional model potential. Chapter 3 applies this algorithm towards the automated
discovery of inverse design principles for DNA-labeled colloids in a shear ow. In Chapter
4 we then develop more e�cient optimization algorithms based on reinforcement learning
tools to solve �nite and in�nite duration variational problems. Finally, Chapter 5 applies
this approach to develop a new algorithm to compute reaction rates in far-from-equilibrium
systems like active matter, that we call Variational Path Sampling (VPS).

1.2 Langevin dynamics and trajectory ensembles

We aim to temporally integrate the equations of motion at molecular and colloidal scales
to simulate rare dynamics of systems of interest. Conventional molecular dynamics in an
isolated system is described by Newton's equations of motion that are integrated with sym-
plectic schemes that conserve energy, like the velocity Verlet algorithm [42]. However, driving
a system with external forces performs work on it, and in order to relax into a steady-state,
the excess energy must be discarded by the system as dissipation into a bath. Driven systems
are thus often modeled as open systems where energy is not conserved, and where there is
on average a �nite dissipative ow between the system and the bath, resulting in nonequi-
librium. Moreover, dynamics in a condensed phase can often be simpli�ed by interpreting
the interesting part of the system to be open and in contact with the rest of the system as
a thermal bath, which only a�ects the interesting part through frictional forces and Brow-
nian noise. This dynamics could be interpreted as a method to thermostat the system at
a �xed temperature, or as an approximation to the noisy di�usive dynamics encountered
by molecules and colloids suspended in liquid solvents or in contact with a large number
of thermalized vibrational excitations. We will describe our nonequilibrium variational al-
gorithms only in the context of this Langevin dynamics. Generalization to other kinds of
stochastic dynamics is straightforward as long as every trajectory has a closed form nonzero
probability.
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We consider dynamics described by a Langevin equation of the form [11],

_r i (t) = v i (t) (1.1)

mi _v i (t) = F i [r N (t)] �  i v i (t) + � i (t) (1.2)

where _r i and _v i are the rate of change of thei -th particle's position and velocity,  i is the
corresponding friction coe�cient, and F i [r N (t)] is the sum of all conservative and noncon-
servative forces exerted on thei -th particle that depends on the full con�guration of the
N -particle system,r N . The �nal term, � i (t), represents a thermal bath-induced white-noise,
as a Gaussian random number with zero mean,h� i� (t)i = 0, and delta-correlated in time,

h� i� (t)� j� (t0)i = 2 i kBT � ij � �� � (t � t0) (1.3)

for component (�; � ), with kBT being Boltzmann's constant times the temperature. The
relation between the variance of the Gaussian white noise with the friction coe�cient of
the bath derives from the second uctuation-dissipation theorem. Given the approximate
diameter of a particle is� and it is suspended in the bath with friction , the time taken to
di�use its own length is given by t � = � 2=D, where D i = kBT= is the di�usion constant.
In most cases we will consider the high-friction limit of the Langevin equation, formally
taken asm=t � ! 0, where the particles lose their inertia and instead are governed by the
overdamped Langevin equation

 i _r i (t) = F i [r N (t)] + � i (t) (1.4)

The overdamped equation can model the dynamics of a wide range of colloidal systems
including nanocrystals, proteins and polymers in a condensed phase with a su�ciently large
bath. On the other hand, describing inertial dynamics like vibrations and hydrodynamic
e�ects require using the full Langevin equation in an underdamped regime. We note that the
underdamped equation could be considered formally to be a generalized overdamped equation
for all dynamical coordinates, in the joint phase space of position and velocity, with the latter
being in contact with a bath at zero friction. Hence we will do most discussions of numerical
techniques developed here in the context of the overdamped Langevin equations without loss
of generality. Similarly, generalizations to systems with state-dependent di�usion matrices
are straightforward from our formalism.

The Langevin equation is simulated by discretizing time into integration timesteps. Given
_r (t)dt is a stochastic di�erential, care must be taken with respect to discretizing time-
integrals and connecting them to physical observables. We will follow in most cases the
Ito formalism, where the integration of the dynamics is interpreted as

 i r i (t + � t) =  i r i (t) + F i [r N (t)]� t +
p

2 i kBT� tN t
i (1.5)

where N t
i is a vector of independent Gaussian random numbers with zero mean and unit

variance. Here each step taken inr is fully de�ned by the forces evaluated at the previous
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value of r . This should be contrasted with the Stratonovich convention,

 i r i (t + � t) =  i r i (t) + F i

�
r N (t) + r N (t + � t)

2

�
� t +

p
2 i kBT� tN t

i ; (1.6)

where the dynamical equation has to be solved self-consistently at every timestep. Choosing
either of the two conventions results in di�erent dynamics if the pre-factor of the Gaussian
noise depends on the con�gurationsr . The Stratonovich formalism makes di�erential cal-
culus easier as the chain rule of di�erentiation holds unchanged, while the Ito formalism
simpli�es integral calculus as the change ofr (t) in every step is uncorrelated from the noise
N t

i . In our work we will use the Ito formalism for integrating the Langevin equation as well
as integrating all stochastic integrals for physical observables. With this convention, the time
evolution of the probability distribution of the con�gurations f r N g, denoted asP(r N ; t), is
described in forward direction by the Fokker-Planck equation [43]

@P(r N ; t)
@t

=
X

i

�
� r i �

�
F i [r N (t)]P(r N ; t)

�
+ D i r 2

i P(r N ; t)
�

(1.7)

This equation can be derived from the Langevin dynamics by a Kramers-Moyal expansion,
a moment expansion of the transition probabilities due to the stochastic noise [43]. The
Fokker-Planck equation, also known as the forward Kolmogorov equation, along with bound-
ary conditions describes the forward time evolution of the full probability distribution of the
stochastic dynamics arising from Eq. 1.4. In principle, the Fokker-Planck equation formally
predicts the probability of all rare dynamics that the Langevin dynamics can generate. In
practice, it is often not possible to obtain analytical or even numerical solutions from the
Fokker-Planck equation when the system size is large. In many-body systems with identi-
cal particles, the Fokker-Planck equation is often hierarchically coarse-grained to describe
e�ective evolution of one or two-body densities [44].

Dynamical events of interest simulated with the Langevin equation also manifest in the
ensemble of trajectories. We will denote a trajectory as a stochastic objectX (t f ) de�ned as
a sequence of con�gurations generated from a Langevin dynamics of durationt f , X (t f ) �
f r N (0); r N (� t); r N (2� t); : : : ; r N (t f )g. An ensemble generated by Langevin trajectories with
all possible statistical realizations of the Gaussian noise will be referred to as the trajectory
ensemble associated with the dynamics. For any particular trajectory with a pre-speci�ed
initial condition, every step has been taken with a Gaussian probability exp(�N 2

i =2)=
p

2� .
We write the total trajectory probability in the �ne discretization limit as [45]

P[X ] / p(r N (0)) exp

 Z t f

0
dt

X

i

( i _r i � F i )2

4 i kBT

!

(1.8)

where the normalization constant is formally in�nite. The exponent is referred to as the
stochastic action associated with each trajectory, in analogy with the path-integral descrip-
tion of Schr•odinger's wave mechanics. All three levels of descriptions of the stochastic dy-
namics of our system of interest, through con�gurations, densities and trajectories as in
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Equations 1.4, 1.7 and 1.8, are fully equivalent, and we will often draw connections between
the three to fully characterize the physical and chemical mechanisms of rare uctuations.
However, the fact that the full trajectory probability has a closed form expression in terms
of the applied forces, even in cases where the forces are nonconservative and the dynamics
is out of equilibrium, makes our approach of reweighting trajectories with an optimal con-
trol force viable. Hence we will be using trajectory ensembles constructed from molecular
dynamics simulations to apply our variational algorithms.

1.3 Steady-state rare events: large deviation theory

The statistics of persistent rare events in nonequilibrium steady-states can be analyzed using
large deviation theory. Large deviation theory is a branch of probability dealing with the
exponential scaling of large uctuations of the sample mean or empirical mean of a large
number of stochastic observables. This can be thought of as a generalization of the central
limit theorem in probability towards describing large uctuations of sample means, orlarge
deviations. The central components in large deviation theory are the rate function, which
describes the log-likelihood of the sample mean, and the scaled cumulant generating function
for its probability distribution [46]. These two are jointly referred to as large deviation
functions and, in the case of the probability distribution being convex and di�erentiable,
are connected through the Legendre-Fenchel transform, a generalization of the Legendre
transform used for thermodynamic free energies. In recent years, the classical theory for
constructing thermodynamic free energies from statistical mechanical partition functions
has been reinterpreted with the language of large deviation theory, with the thermodynamic
system size being the large deviation limit [34]. This has allowed interpreting steady-state
trajectory ensembles to also be in the (temporal) large deviation limit, and has provided large
deviation functions as dynamical free energies for speci�c observables of interest, encoding
stability and response in arbitrarily far-from-equilibrium steady-states. In this section we
will review the large deviation formalism for trajectory ensembles and its use to obtain
statistics of rare events.

For ease of notation we will denote all coordinates of the system,r N (t), sometimes simply
as r . For a speci�c trajectory, X (t f ) = f r (0); :::; r (t f )g spanning an observation time,t f , we
are interested in uctuations of time-averaged dynamical observablesA t f of the form

A t f [X (t f )] =
1
t f

Z t f

0
dt f [r (t)] +

1
t f

Z t f

0
dt g[r (t)] � _r(t) (1.9)

wheref is a scalar function andg is a vector function with components,gi , with the second
term being evaluated in the Ito sense [47]. Many physically relevant observables like the par-
ticle density, particle current, and entropy production can all be expressed in this trajectory
averaged form. We will be interested in the statistics of rare time-extensive uctuations, the
large deviations, ofA t f in the long time limit, t f ! 1 .
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Figure 1.1: Large deviation principle for observableA t arising from Brownian di�usion. a)
Trajectories of the time-integrated observabletA t starting from the same point diverge in
time with a variance proportional to t over times longer than intrinsic correlation times of
the system. c) Trajectories of the time-averaged analogueA t of the same observable. The
probabilities concentrate around the mean value with asymptotic scaling as exponential in
time multiplied by the negative of the rate function I (A t ).

We assume that in the long time limit, the probability distribution of A t f satis�es a large
deviation principle, with a rate function, or log likelihood,I (A), de�ned by [34]

I (A) = � lim
t f !1

1
t f

lnh� (A � A t f [X (t f )]) i (1.10)

where the angular brackets denote a trajectory average

h� (A � A t f [X (t f )]) i =
Z

D[X (t f )]� (A � A t f [X (t f )])P[X (t f )] (1.11)

and P[X (t f )] denotes the path probability associated with trajectoryX (t f ). We will consider
thermalized systems that have exponentially decaying correlation functions and thus are ex-
pected to obey the large deviation principle. The large deviation principle for time-integrated
and time-averaged observables in the long time limit is illustrated in Fig. 1.1.

The long time behavior ofA t f can also be characterized by its scaled cumulant generating
function (SCGF), de�ned as

	( s) = lim
t f !1

1
t f

ln
D

e� st f A t f

E
(1.12)

wheres is a counting parameter conjugate toA t f , and denotes the extent ofbiasingor tilting
on the typical value ofA t f . Larger positive or negative values ofs probe rarer uctuations.



CHAPTER 1. INTRODUCTION 8

This is clear by noting that the derivatives of 	( s) report on the cumulants ofA t f , such as

d	( s)
ds

= �h A t f i ; and
d2	( s)

ds2
= t f h(�A t f )2i (1.13)

where�A = A � h Ai are the uctuations of A. We refer to the rate function, I (A), and the
SCGF, 	( s), collectively as the large deviation functions. When the rate function is convex,
it can be obtained from the SCGF using a Legendre-Fenchel transform

I (A) = inf
s

[� sA � 	( s)] (1.14)

where inf refers to an in�mum taken over all possible values ofs. Together, the large
deviation functions encode stability of dynamical phases in nonequilibrium systems [48, 49,
50, 51, 52], characterize complex dynamical behavior [53, 54, 55, 56, 57] and describe linear
and nonlinear multivariate response of nanoscale systems to nonequilibrium perturbations
[58, 36, 59, 60, 61]. The SCGF de�ned in the trajectory ensemble picture can also be derived
from the eigenspectrum of a tilted backward Fokker-Planck propagator de�ned as

L s = � sf +
X

i

hs
2

(r i � gi )gi + F i � (r i � sgi )

+  i kBT(r 2
i � s(r i � gi ) � 2sgi � r i + s2g2

i )
�

(1.15)

where we have suppressed the arguments ofF i , gi , and f for compactness. This operator
can be derived similar to the Fokker-Planck equation from the Kramers-Moyal expansion
for in�nitesimal propagation of hexp(� stf A f )i with increasing t f [62]. We have adopted the
form of the operator used in [63] towards the Ito de�nition ofA t f rather than Stratonovich,
by adding the �rst term in the square brackets in Eq. 1.15. This operator satis�es an
eigenvalue equation

L s� s(r N ) = 	( s)� s(r N ) (1.16)

where 	( s) and � s(r N ) are respectively the largest real eigenvalue and corresponding right
eigenvector ofL s, which follows from the Perron-Frobenius theorem and the long time limit of
the SCGF. Constructing and solving this eigenvalue equation in a chosen functional basis for
� s(r N ) is an option to obtain the SCGF 	( s), however, the dimension of the solution space
scales exponentially with the system size, rendering this approach impractical in many-body
systems.

1.4 Barrier crossing events: reaction rate theory

Interesting chemical events in liquid and solid phase involving transduction of energy from
one class of dynamical modes in a molecule to another often happen when a trajectory
goes over a free energy barrier that separates long-lived metastable states. Rate constants
of such rare events in equilibrium depend on the free energy cost of being at the top of
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the barrier as well as the dynamical ux contributing to such a barrier crossing. One of
the fundamental approaches to quantify reaction rates in equilibrium systems is transition
state theory that assumes con�gurations at the top of the barrier to be in quasi-equilibrium
with the rest of the system, thus decoupling the dynamics from the Boltzmann energetics.
In reality, this approximation leads to an overestimation of the rate, as many trajectories
that cross the barrier still recross back to the reactant basin in a correlated fashion to
the con�gurational statistics. Thus a full treatment for exact reaction rate computation in
even equilibrium system requires a trajectory ensemble formalism [13, 64]. Additionally,
in nonequilibrium reactions, such as the nucleation of a liquid phase in repulsive motile
particles [65], in the shear induced unfolding of proteins in blood vessels [66] and in rare
switching events in biochemical networks [67], the existence of a free energy as a state-
function is not guaranteed, and dynamics is inherently coupled to structural uctuations.
In the limit of low temperature compared to the barrier-height, Freidlin-Wentzell theory
approximates barrier-crossing trajectories to be comprised of a long sequence of in�nitesimal
noise uctuations along a progress coordinate, thus mapping the uctuation into a large
deviation and yielding corresponding rate estimates [68, 69]. However, for systems with
di�usive degrees of freedom at ambient temperature, the overlap between the problem of
sampling short barrier-crossing trajectories of �nite duration and that of sampling large
deviations in steady-state trajectories of in�nite duration remains unexplored and the tools
used in either disciplines are mostly disparate.

In this section we will discuss how to compute reaction rates from ensembles of trajecto-
ries. When we want to sample reactive trajectories that cross a free energy barrier transiently
in time but otherwise follow typical steady-state statistics, either in or out of equilibrium,
we want to restrict our trajectory ensemble to have a �nite durationt f , but initialized from
an ensemble of steady-state con�gurationsf r N (0)g. We will denote the initial and �nal
basins in con�guration space asA and B, and the rate constant of going fromA to B as
k. In case of the reaction being rare on simulation timescales,t f usually is in the range
� z < t f << 1=k, where � y is the timescale of relaxation within the initial metastable basin
or that of the typical transition path duration, while 1=k is the typical waiting time for the
reaction to happen spontaneously. This separation of timescales is usually associated with
a large gap in the eigenspectrum of the Fokker-Planck operator governing the dynamics in
the system. We have schematically illustrated this for a general order parameterq in Fig.
1.2(a). We also de�ne indicator functionshA (t) and hB (t) at any given time t as

hA(B ) [r N (t)] =

(
1 if r N (t) 2 A(B)

0 else:
(1.17)

The rate constantk can be computed as the reactive ux of trajectories intoB conditioned
on starting from A,

k =
d

dtf
hhB (t f )jhA (0)i =

d
dtf

hhA (0)hB (t f )i
hhA i

(1.18)
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Figure 1.2: Reaction rate computation from side-side correlation function. a) Separation of
timescales between the relaxation time within each metastable well and the typical waiting
time for barrier-crossing. Blue line is a schematic illustration of the proportion of time spent
by a barrier-crossing trajectory in the wells and on the barrier.(Inset) Time series of order
parameterq. b) Linear regime of the side-side correlation function, with the slope given by
the reaction rate.

where the averages are computed over trajectoriesX (t f ) and the average in the denomi-
nator is time-independent in a steady-state. Eq. 1.18 for the reaction rate yields a time-
independent constant for all times that fall between the separated molecular and reactive
timescales, and so the side-side correlation functionhhB (t)jhA (0)i is linear in t in that regime.
When the separation of timescales is large, the o�set to the correlation function from the
initial nonlinear portion is small enough, and the rate constant can be computed from a
simple time-scaling [70], as

k �
hhB (t f )jhA (0)i

t f
=

1
t f

ZAB (t f )
ZA

(1.19)

where ZAB (t) and ZA are de�ned as trajectory partition functions ZAB (t) = hhA (0)hB (t)i
and ZA = hhA i . This linear scaling regime is schematically demonstrated in Fig. 1.2 (b).
Reaction rate constants can thus be computed by counting the number of reactive trajectories
proportional to all trajectories.

The side-side correlation is the central observable of interest for all sampling techniques
for reactive trajectories. Sometimes the computation of the side-side correlation is done in
two steps,

kAB = h_hB (t)jhA (0)i =
h_hA+ (�t )hA (0)i

hhA i
hhB (t)jhA+ (�t )i (1.20)
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where the �rst term in the product is the escape ux from the basin A towards B, with
_h(�t ) denoting the time-derivative of the indicator h(�t ) when some in�nitesimal time �t
has elapsed after last being inA, and the second term in the product is the probability of
reachingB given a trajectory has escaped towardsB but is still in the vicinity of A. The
escape ux and the conditional reactive probabilties can be evaluated separately and then
combined to produce the reactive ux,i.e., the reaction rate.

The growth statistics of the side-side correlation produces only the rate constant, but
does not by itself contain information about the reaction mechanism. A microscopic quantity
that encodes the reaction mechanism is the committor function, de�ned as the probability of
reaching target stateB after some transient time� z when started from system con�gurations
f r N g, as

p(r N ; � z) =
h� (r N (0) � r N )hB (� z)i

h� (r N (0) � r N )i
(1.21)

where angular brackets again mean a trajectory average [70, 64]. We see that the com-
mittor function is just a generalization of a side-side correlation function for starting from
all coordinates instead of from just the initial metastable basin. The transient time� z is
comparable to the typical time for natural transition paths, i.e., the time taken between
the last escape fromA and the �rst subsequent entry into B . Since trajectories started
from most regions in con�guration space do not react within this short time, the committor
will be mostly either 0 or 1, but for only a few special con�gurations that connectA to B
along the correct reaction coordinate, the committor will smoothly change in value, taking
a value of 0:5 at the exact set of transition states. Thus the committor function encodes
the intrinsic mechanism of the rare event by identifying the dynamical bottleneck. Regions
of con�guration space having di�erent values of the committor function are said to be par-
titioned by a separatrix, another name for an iso-committor surface. The direction of the
gradient of the committor function, comprising of normals to consecutive separatrix surfaces,
can be identi�ed as the reaction coordinate, which is the natural coordinate on which the
reaction proceeds. Knowing the reaction coordinate will equip us to tune the exact reaction
mechanism microscopically and thus a key goal of enhanced sampling algorithms is to learn
a committor surface from harvested reactive trajectories.

1.5 Existing sampling techniques for rare
nonequilibrium trajectories

Enhanced sampling methods within equilibrium ensembles are standard tools that enable
the determination of phase diagrams and the calculation of rates of rare events, through the
evaluation of equilibrium free energies and rare dynamics that obeys detailed balance. The
methods typically rely on either enhancing the sampling of the tails of a Boltzmann distribu-
tion by adding a suitable umbrella potential [42, 71], or by resampling parts of con�gurational
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and trajectory ensembles to construct rare uctuations [72], or both [73]. Nonequilibrium
systems pose additional complications over equilibrium ones in terms of sampling both rare
structures and dynamics. Nonequilibrium structural con�gurations are not Boltzmann dis-
tributed and the existence of free energies as a functional of only density-like variables is
not guaranteed, so methods analogous to umbrella sampling in con�guration space have not
been possible. Though some recent approaches discuss candidate theories for quantifying
the ampli�cation of reaction rates with nonequilibrium driving, they feature bounds instead
of exact reweighting relations, and involve dynamical observables like heat dissipation rather
than thermodynamic state-functions like energy or entropy [74, 75]. Nonequilibrium dy-
namics on the other hand breaks detailed balance, and it is not possible to construct a
rare barrier-crossing trajectory by propagating a transition state con�guration forward and
backward in time. Instead, most nonequilibrium importance sampling methods for barrier-
crossing trajectories start with a distribution of initial con�gurations and push the trajectory
ensemble up the barrier in a forward ratchet-like fashion, performing nonequilibriummeta-
work in the space of the trajectories [76]. We have discussed below some of these trajectory
sampling methods for nonequilibrium large deviations and reactive events.

The dynamical analogues of equilibrium free energies for nonequilibrium steady-states
are large deviation functions that describe the likelihood of uctuations of time-averaged
observables and encode the response and stability of the system. The aim of dynamical
importance sampling methods for nonequilibrium steady-states is thus to estimate large de-
viation functions from a trajectory ensemble. As large deviation functions like the SCGF
contain exponentially rare statistics, the tails of the probability distribution of the observable
of interest must be sampled in order to have an accurate estimate. E�orts to compute large
deviation functions in systems with many degrees of freedom have largely been restricted
to Monte Carlo based approaches like cloning [77, 78] and list-based algorithms [79]. Most
current algorithms scale exponentially in computational e�ort the further the rare uctua-
tion is from the mean behavior, as apart from strati�cation or population dynamics, most
do not employ additional importance sampling [80, 81, 82, 83]. Recent work adding control
forces to importance sample trajectory based Monte Carlo has demonstrated that even an
approximate force can greatly improve the e�ciency of Monte Carlo methods in estimating
large deviation functions [84, 85, 86]. Consequently there has been much work to �nd ap-
proximate control forces analytically or through empirical arguments in both lattice-based
and continuous systems [87, 88, 89] and several iterative e�ective force optimization tech-
niques have been proposed with varying levels of generality or accuracy [90, 91, 92, 93]. The
control forces in general can have many-body components in interacting particle systems [94,
89], can be long-ranged in systems with dynamical phase transitions [95], and can stabilize
otherwise metastable states [96]. However, many-body control forces have been derived only
from analytical approximations in simple limits, and e�cient numerical techniques to learn
many-body optimal forces in systems of chemical relevance is currently lacking.

In contrast, nonequilibrium rate calculation has been entirely reliant on trajectory strat-
i�cation and Monte-Carlo resampling based approaches. Most such techniques build on the
classic Weighted Ensemble method introduced by Huber and Kim [97] and subsequently re-
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�ned and applied to equilibrium biological problems like protein folding and protein-ligand
binding by Zuckerman, Chong and others [98]. The original Weighted Ensemble algorithm
is applicable for nonequilibrium dynamics but not very e�cient for generating reactive tra-
jectories. The Transition Path Sampling algorithm [70, 99], widely used to compute rates
of molecular isomerization and dissociation in solvents at equilibrium, can be applied to
nonequilibrium systems by either restricting the set of moves that require detailed balance
[81], or by directly accounting for the change in nonequilibrium path action by noise sampling
[100]. The most widely used method for computing reaction rates in stochastic nonequi-
librium systems is Forward Flux Sampling, that starts with the forward ux of escaping
trajectories from the reactant basin and generates reactive trajectories stepwise by dividing
the progress coordinate into multiple bins [101, 102]. A related approach is nonequilibrium
umbrella sampling, that keeps track of the entry and exit ux of bins in con�guration space
in order to output the nonequilibrium steady-state distribution [103, 104]. The application
of control forces to enhance the sampling of reactive events has been extremely limited and
been con�ned only to equilibrium systems. Recent works by Rotsko� and Vanden-Eijnden
recast the rare event sampling as a variational learning of an equilibrium committor surface
[105, 106], however, connections have not been made between the committor function and the
optimal force. Other approaches that use an importance sampling potential have explicitly
used Boltzmann statistics, and have only seen moderate improvements in sampling statis-
tics on adding suboptimal control potentials [107, 108]. However, the exact optimal control
force is formally known to generate uncorrelated statistical realizations of rare trajectories
directly [109], thus making the rate computationdirect without need of additional impor-
tance sampling, in arbitrarily far-from-equilibrium systems. Hence there exists a dearth of
e�cient numerical methods to compute the optimal control force within conveniently chosen
basis sets for evaluating nonequilibrium reactive events in complex molecular and colloidal
systems. It is this gap that our variational techniques are able to address.
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Chapter 2

Variational optimization of
steady-state trajectories

In this chapter we will develop a variational algorithm to optimize a control force within a
chosen basis to compute large deviation functions. For Markovian systems, there exists an
optimal control force, which is the unique additional force having the smallest contribution
to the path ensemble measure that can be added to the system to make a rare uctuation
typical [63, 110]. This optimal control force satis�es several variational identities [111]. By
deriving such a variational principle and explicit forms for the gradients required to optimize
it, we develop an algorithm that approximates the control force su�ciently well so as to
make quantitatively accurate estimates of the likelihood of rare events within nonequilib-
rium steady-states. In this way, we generalize previous work on variational control of single
particle systems to interacting, continuous force systems, bypassing the need for exponen-
tially scaling Monte Carlo sampling. Our algorithm is similar in strategy to the recent use of
thermodynamic variational principles to compute equilibrium free energies [71], and to the
Rayleigh-Ritz variational principle that others have used to nonperturbatively compute e�ec-
tive forces far from equilibrium [112]. The variational principle that underlies our algorithm
is related to minimum-entropy production principles [113, 114]. and the Donsker-Varadhan
formula in Markov Stochastic processes [115]. While our variational estimate of the large
deviation function is subject to errors associated with the representation of the control force,
we derive exact corrections that can be evaluated straightforwardly. In the �rst two systems
studied, these corrections are easy to evaluate, as our control forces are su�ciently close
to the optimal control forces to make these corrections perturbatively small. However, in
cases where the corrections are large, we show that using optimized control forces in con-
junction with standard Monte Carlo algorithms can increase the statistical e�ciency in the
estimation of large deviation functions by orders of magnitude. In this way, our algorithm
is similar to the use of variationally optimized wavefunctions for quantum Di�usion Monte
Carlo calculations [116].1

1Most of the content of this chapter was originally part of the publication [117].
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2.1 Variational principle from Girsanov reweighting

Computing either of the large deviation functions ofA t f requires sampling exponentially rare
uctuations. These rare uctuations can in principle be made to occur more frequently by
introducing an additional control force into the system as a means of importance sampling.
In the presence of the additional force,� (r N ), over the original force,F(r N ), the computation
of the SCGF can done by changing the path ensemble measure,

	( s) = lim
t f !1

1
t f

ln
Z

D[X (t f )]e� st f A t f
P[X (t f )]
P� [X (t f )]

P� [X (t f )]

= lim
t f !1

1
t f

ln


eO�

�
�

(2.1)

where h�i� denotes an average in the controlled path ensemble with path probabilities
P� [X (t f )], and O� [X (t f )] can be derived from the di�erence in Onsager-Machlup path-
actions � U� [X (t f )], [45]

O� [X (t f )] = � stf A t f +
Z t f

0
dt

X

i

� 2
i � 2� i � ( i _r i � F i )

4 i kBT
� � stf A t f � � U� (2.2)

interpreted in the Ito sense. Changing the force for such a Gaussian process does not change
the normalization constant associated with the path ensemble in the long time limit where
boundary terms from the initial and �nal con�gurations can be ignored.

Expanding Eq. 2.1 in terms of its cumulants, and using Jensen's inequality, we �nd a
variational expression for the SCGF,

	( s) � lim
t f !1

1
t f

hO� i � (2.3)

in terms of the mean ofO� [X (t f )], averaged within the controlled path ensemble. This
expression is identical to previous work by Chetrite and Touchette that was derived using
the contraction principle [111]. To see this, here we note that we can writehO� i � in two
ways,

hO� i � =

*

� stf A t f +
Z t f

0
dt

X

i

� 2
i � 2� i � ( i _r i � F i )

4 i kBT

+

�

(2.4)

=

*

� stf A t f �
Z t f

0
dt

X

i

� 2
i

4 i kBT

+

�

(2.5)

where we derive the second expression from the �rst by using the driven Langevin equation
 i _r i = F i + � i + � i and that, for an Ito dynamics, h� i (t) � � i (t)i = 0 because of causality.

Among the forces that make the rare value of the observable statistically typical, the one
closest to the original force is the optimal force that realizes the supremum of the inequality.
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This many-body function can be approximated within a chosen ansatz with variationally
optimizable parametersf � g. In the limit that f � g represents all possible functional forms
of the many-body force, this ansatz becomes exact [111], so that

	( s) = sup
f � 1 ;� 2 ;:::g

lim
t f !1

1
t f



O� [f � g]

�
� [f � g]

(2.6)

where the optimal coe�cients f � g will in general depend ons.
The existence of a control force that saturates the supremum in Eq. (2.6) follows again

from the largest real eigenvalue 	(s) and the corresponding right eigenvector� s(r N ), of the
generator of the SCGF in Eq. 1.15, that directly gives the value of the SCGF,. The optimal
force � �

s that solves Eq. 2.6 is related to� s through a Hopf-Cole transform [118, 63, 111]
de�ned as

� �
s;i = F i + 2 i kBT(� sg + r i ln � s) (2.7)

and the controlled dynamics associated with this optimal force can be obtained from a
generalized Doob transform ofL s [63, 119]. That� �

s saturates the variational inequality 2.3
can be seen by writing the eigenvalue equation as

	( s) = � � 1
s L s� s; (2.8)

and multiplying both sides by a steady-state con�gurational probability distribution asso-
ciated with a generic control force,� � (r N ). If we then integrate over all coordinates with
appropriate boundary conditions, it can be shown that the variational surface is convex
around the supremum [113],

	( s) = lim
t f !1

1
t f

*

O� +
Z t f

0
dt

X

i

(� � � � )2

4 i kBT

+

�

(2.9)

However, though the variationally surface is locally convex, it may not be globally convex.
Following the same derivation as above but with starting from an eigenvalue equation for a
general (non-dominant) eigenvalue, the corresponding eigenvector, and its Hopf-Cole trans-
form, it can be shown that the SCGF estimator in Eq. 2.6 can give the exact value of the
real part of any eigenvalue of the tilted generator, for a physically meaningful force. This
means that at dynamical crossovers when two eigenvalues approach each other and cross as
a function of s, the variational expression is almost (in�nitesimally) satis�ed by two distinct
forces, making the variational surface either slowly varying or bimodal.

For an interacting many-body system, the dominant eigenvector is a many body state,
and therefore the optimal control force is many-bodied. Generally, we will assume that the
control force is well approximated by a low rank ansatz such as obtained from a low order
many body expansion.

Obtaining the SCGF from directly diagonalizing the tilted generator in many-body sys-
tems is prohibitively expensive due to the size of the multi-dimensional state space over
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which L s is de�ned. There have been recent advances to approximate this state space using
Matrix Product States for lattice based models [120, 121]. However, for continuous space
systems with many particles, it is expected that Eq. 2.6 will present a physically motivated
way to formulate approximate solutions to the eigenvalue problem and to the computation
of 	( s), and subsequently,I (A). It is worth noting that the constrained optimization of a
variational expression analogous to (2.6) can also be directly used to computeI (A) [111],
with a straightforward extension of the algorithm described below.

2.2 Optimization algorithm with explicit gradients

In order to optimize Eq. 2.6 by gradient descent, we need to calculate derivatives of
hO� [X (t f )]i � with respect to the variational parametersf � g in the limit of a large t f . Us-
ing these explicitly calculated gradients in the optimization algorithm can reduce the noise
and numerical instabilities associated with �nite di�erence schemes, that are generally used
to empirically estimate the gradients from the optimization trajectory through the param-
eter space. The explicit gradients that we use have the form of expectation values in the
controlled ensemble,

lim
t f !1

1
t f

@
@�

hO� i �

= lim
t f !1

1
t f

��
�O � [X ]

� �
�

@�
@�

�

�

+
�

O� [X ]
@ln P� [X ]

@�

�

�

�
(2.10)

where � is any of the optimizable parameters specifying the control force. The �rst term
is a simple trajectory average and is straightforward to compute. In a steady-state, we
replace the time-extensive integral divided by the trajectory time with only the instantaneous
contribution,

lim
t f !1

1
t f

�
�O � [X ]

� �
�

@�
@�

�

�

=

*
� _O�

� �
�

@�
@�

+

�

(2.11)

where Eqns. (1.9) and (2.2) have been used to writeO� [X ] as a time integral of _O� (t).
The second term is a two-time correlation function that is expected to have a high

variance if directly computed in this form in a steady-state. Explicit functional forms of
@ln P� [X ]=@�can be derived from the normalized path probabilities as,

�
O� [X ]

@ln P� [X ]
@�

�

�

=

* Z t f

0
dt _O� (t)

Z t f

0
dt

0
X

i

� i (t
0
)

2 i kBT
�

@� i (t
0
)

@�

+

�

�
� Z t f

0
dt _O� (t)

�

�

* Z t f

0
dt

0
X

i

� i (t
0
)

2 i kBT
�

@� i (t
0
)

@�

+

�

: (2.12)
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The second term comes from the derivative of the normalization constant forP� [X ], and
it is formally zero as reweighting with a changed force doesn't change the normalization
constants for the Gaussian white noise. We see this explicitly ash� i (t

0
) � @� i (t

0
)=@�i = 0

due to causality where the product is Ito. Nevertheless, including this term during empirical
estimation of the gradient reduces its variance, working as a noisy baseline subtraction.

The averages in Eq. 2.12 can be computed by propagating additional coordinatesy� (t)
associated with each variational parameter� as

y� (0) = 0 ; _y� (t) =
X

i

� i (t)
2 i kBT

�
@� i (t)

@�
(2.13)

where the sum has been performed over all dynamical coordinates of the system, and its
uctuation is de�ned as � _y� (t) = _y� (t) � h _y� (t)i � . These �ctitious coordinates are known in
the literature as Malliavin weights [122] and have previously been used to calculate parameter
sensitivity of steady-state distributions in Langevin systems [123]. Provided these averages
are evaluated in the steady-state generated by the control force, i _r i = F i + � i + � i , we
can invoke time-translational invariance and note that only past noise history correlates
with the observable to simplify Eq. 2.10. We start by de�ning the uctuations in _O� (t) as
� _O� (t) = _O� (t) � h _O� (t)i � and rewriting the right-hand side of Eq. 2.10 as

Z t f

0
dt

Z t f

0
dt

0
h� _O� (t)� _y� (t

0
)i �

=
Z 0

� t f

d�
Z t f

� �
dt

0
h� _O� (� + t

0
)� _y� (t

0
)i � +

Z t f

0
d�

Z t f � �

0
dt

0
h� _O� (� + t

0
)� _y� (t

0
)i � (2.14)

=
Z 0

� t f

d�
Z t f

� �
dt

0
h� _O� (� )� _y� (0)i � +

Z t f

0
d�

Z t f � �

0
dt

0
h� _O� (� )� _y� (0)i � (2.15)

where at �rst we have replaced� = t � t
0
and changed the limits of integration appropriately,

and then used time-translation invariance in the nonequilibrium steady-state. We now note
that h� _O� (� )� _y� (0)i � is zero for all � < 0, as the Malliavin weight _y� (0) is proportional to
� i (0) which is causally independent from all past values of_O� . Hence the �rst term vanishes
and the second term simpli�es to,

Z t f

0
dt

Z t f

0
dt

0
h� _O� (t)� _y� (t

0
)i � =

Z t f

0
(t f � � )d� h� _O� (� )� _y� (0)i � (2.16)

Dividing both sides by t f , taking the limit of t f ! 1 and assuming a rapidly decaying
correlation function in the steady-state gives the second term in Eq. 2.10 as

lim
t f !1

1
t f

�
O� [X ]

@ln P� [X ]
@�

�

�

=
Z 1

0
dt

D
� _y� (0)� _O� (t)

E

�
(2.17)

where the gradient is proportional to an integrated time-correlation function. This is an
example of a generalized uctuation-dissipation formula [124].
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Putting together the two contributions,

lim
t f !1

1
t f

@
@�

hO� i � =

*
� _O� [X ]

� �
�

@�
@�

+

�

+
Z 1

0
dt

D
� _y� (0)� _O� (t)

E

�
; (2.18)

we arrive at an explicit form for the gradient of our SCGF estimate with respect to the vari-
ational parameters that can be estimated as time-averages from a straightforward molecular
dynamics trajectory with the control forces. In practice, we will take the integral over the
time correlation function in Eq. (2.18) up to a time � t. The exact form we use to evaluate
this correlation function on-the-y is obtained from Eq. 2.17 by translating the correla-
tion time-lag [0; t] to [� t; 0], replacing the dummy variablet by � t and carrying out the
integration explicitly, as

Z 1

0
dt

D
� _y� (0)� _O� (t)

E

�
=

Z 1

0
dt

D
� _y� (� t)� _O� (0)

E

�
=

Z 0

�1
dt

D
� _y� (t)� _O� (0)

E

�
(2.19)

�
D

�y � (0+) � _O� (0)
E

�
�

D
�y � (� � t)� _O� (0)

E

�
(2.20)

Here the time 0+ denotes the next in�nitesimal timestep after time 0, and �t is large enough
such that the estimator is accurate upto a desired tolerance. We propagate the dynamics
of y� and keep a history upto lag-time � t, such that we can statically correlate with _O�

at every timestep. The baseline subtraction at �t and the subtraction of the averages for
computing the correlations from joint expectations helps keep the variance of the gradient
well-behaved, even in a steady-state wherey� (t) is a random walk with a time-extensive
variance [122].

We also note here that whenhO� i � is represented as Eq. 2.4, the �rst term in the gradient
in Eq. 2.18 is zero. This is seen readily by inserting Eq. 2.4 into Eq. 2.18 to get the �rst
term as

*
� _O� [X ]

� �
�

@�
@�

+

�

=

* Z t f

0
dt

X

i

� i �  i _r i + F i

2 i kBT
�

@�
@�

+

�

=

* Z t f

0
dt

X

i

�
� i (t)

2 i kBT
�

@� (t)
@�

+

�

= 0 (2.21)

due to causality. It can be shown that this term is also proportional to the derivative of the
normalization constant for the trajectory probabilities with respect to changing the force,
and this is zero [125]. However, if one uses the form ofhO� i � from Eq. 2.5, the �rst term in
Eq. 2.18 is not zero and must be independently computed as a static average.

When the explicit gradients are averaged over a long steady-state trajectory at every
optimization step, the noise in the gradients become small compared to their means and
they can be directly used to perform variants of gradient descent. We perform an iterative
optimization in the parameter space spanned byf � g in order to estimate the SCGF. We use
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an algorithm called Nesterov's Accelerated Gradient Descent [126, 127] which shows super-
linear convergence. This algorithm updates a conjugate momentump� in parameter space to
accelerate optimization with inertia, as well as prevents inertial oscillations with a predictive
step. The conjugate momentum is a sum of the scaled gradient with scaling parameter� � ,
and the scaled momentum from the previous optimization step with scaling parameter� � .
These parameters can be chosen at the start of the optimization or can be tuned with itera-
tions to improve convergence. We stop either a �xed number of optimization steps or when
the norm of the force gradients are less than a tolerance value. The optimization algorithm
is given in pseudocode form in Algorithm 1.

This algorithm converges to a local optimum in the parameter space, which can be dif-
ferent from the global optimum when the variational surface or its projection on a truncated
basis space is not convex. The convergence can also be signi�cantly slow at values ofs near
a crossover point or a phase transition. In the event that we converge to a local optimum,
we incur a systematic error in the SCGF that can be corrected with a cumulant expansion.

2.3 Corrections of systematic errors

In general, the ansatz speci�ed by the parametersf � g will not form a complete basis for
a many body system. This is because generically, the dominant eigenvector of Eq. 1.16
is a many-body state, containing exponentially many parameters, and not expected to be
exactly expressible with a low rank form. Because of this, the variationally converged SCGF
e	( s) obtained from Eq. 2.6 with an optimized forcee� will have a systematic error. This
error, and errors associated with convergence to a local maximum, can both be corrected in
principle by computing the remaining terms of the cumulant expansion

	( s) = e	( s) + lim
t f !1

1
t f

1X

`=2

� `

`!
(2.22)

where f � `g are the second and higher cumulants in the expansion of lnhexp(Oe� )i e� and the
force e� is the solution of the variational problem in the approximate and incomplete ansatz.
If the ansatz used to express the control force,e� , is close enough to the optimal force
obtained from the Doob transform, the correction terms are small in magnitude and the
series will converge quickly. This will occur when the trajectory distribution generated by
the controlled dynamics has signi�cant overlap with the tilted distribution of the original
dynamics.

In cases where the ansatz is poor and many cumulants are needed, brute force convergence
of the correction will be di�cult. In such cases, control forces can be used as guiding functions
for estimating the SCGF through Monte Carlo based approaches like the cloning algorithm.
In the cloning algorithm, an ensemble ofNw trajectories generated from the ordinary path
probabilities P[X (t f )] are branched with corresponding weights of exp(� stf A t f ). However,
under the controlled dynamics, following Eq. 2.1, the weighted path probabilities can be
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Algorithm 1 Nesterov's Accelerated Gradient Descent with Malliavin weights
1: inputs Variational parameters for a general force� � (r N ; t)
2: parameters Force gradient and momentum learning rates� � , � � ; total optimization

steps I ; trajectory length t f consisting ofJ timesteps of duration �t each; number of
trajectories N

3: initialize choose initial weights� , de�ne iteration variables i and j , force gradients and
conjugate momenta� �

� and p� , de�ne functional form for stepwise di�erential increments
(rewards) � to the loss-functionstf A t f + � U�

4: i  0
5: p�  0
6: repeat
7: Generate trajectory [X (t)] with �rst-order Euler propagation in presence of the ad-

ditional force � [f � + � � p� g] and wait till it relaxes into a nonequilibrium steady-state.
Con�gurations, times, noises (with variance 2 kBT� t), Malliavin weights, and rewards
are denoted byr N

j ; t j ; � j ; y� (t j ) and � (t j ) = � j respectively.
8: j  0
9: � �

�  0
10: y� (t0)  0
11: repeat
12: _y� (t j )  � j � r � � � (r N

j ; t j )=2kBT� t
13: y� (t j +1 )  y� (t j ) + � t _y� (t j )
14: � �

�  � �
� + � j y� (t j +1 )

15: j  j + 1
16: until j = J
17: � �

�  � �
� =J

18: average� �
� over N trajectories to get �

�
�

19: p�  � � p� � � � �
�
�

20: �  � + p�

21: i  i + 1
22: until i = I



CHAPTER 2. VARIATIONAL OPTIMIZATION OF STEADY-STATE
TRAJECTORIES 22

written as [84, 89]
Ps[X (t f )] / e� st f A t f P[X ] = eO� [X ]P� [X ] (2.23)

where system evolution under an approximate controlled dynamics is nonconservative and
must be accompanied by branching steps with weights given by exp(O� ). An estimate of the
SCGF is then obtained from the normalization constant of this weight, so that in the limit
of largeNw ,

	( s) =
1
t f

ln
1

Nw

NwX

j =1

eO� [X j ] (2.24)

whereO� [X j ] denotes the time-integrated observable for the walker labelled asj .
When the variationally optimized e� is used to generate trajectories and to compute the

branching probabilities, the e�ciency of the cloning algorithm is improved as the control
force samples the rare uctuations in the observable. Whene� is actually the optimal force
� �

s derived from the Doob transform, all trajectories achieve the rare uctuation as typical
behavior, and the weight of each trajectory becomes a constant. In this situation no trajecto-
ries are killed in the branching step of the cloning algorithm, and the sampling is statistically
optimal [77]. However, even with an approximate ansatz the variationally optimized force
slows down the rate of death of uncorrelated trajectories with increasingt f , as demonstrated
in Section 2.5.

The variational algorithm along with the cumulant-correction has improved scaling prop-
erties compared to the cloning algorithm. By adopting an approximate ansatz for the many-
body force containing, for example, one-body and two-body terms, for a system of identical
particles we can exploit their permutation symmetry and optimize a single one-body and
two-body force. Hence the variational algorithm scales linearly with the system size, the
computational cost arising only from the propagation of trajectories of interacting particles.
This is in contrast to the cloning algorithm, which has an exponential scaling for observables
that are system size extensive [81]. Also, while the cloning algorithm scales exponentially
with s, the variational algorithm depends on the bias only through the complexity of the
optimal force and scales linearly with the number of variational parameters required to ap-
proximate the force. Hence in cases that the dominant part of the optimal force can be
simply expressed within the choice of the ansatz, the computational cost for the algorithm
to converge does not increase withs. This indicates a resummation of the exponential bias
through the modi�cation of the control force. Neither does the algorithm scale with increas-
ing observation timet f , as thet f ! 1 limit has already been incorporated in the algorithm.
Lastly, this algorithm can be parallelized trivially by distributing the computation of the
expectation values at each step of the iteration to independent trajectories on independent
processors.

To study the accuracy and e�ciency of our variational algorithm to compute the SCGF
and the optimal force, in the next sections we apply it to three di�erent continuous time and
space systems. The �rst is a benchmark system where we can test our algorithm against
a numerically exact result. This model consists of a driven underdamped particle in a
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one-dimensional periodic potential, for which we have studied rare uctuations of the total
current. The second system is comprised of multiple repulsive overdamped particles, where
we have focused on the uctuations of the total activity, which measures how much the
particles explore con�guration space. In this system, we demonstrate the ability of our al-
gorithm to compute the optimal control force even through singular changes in the SCGF
across a dynamical phase transition. The third system consists of multiple repulsive particles
in a periodic potential having a wavelength equal to the particle diameter and an external
nonequilibrium force, such that it is a Brownian analogue of the Asymmetric Simple Exclu-
sion Process (BASEP). We study its current SCGF and �nd that many-body e�ective forces
are necessary to generate rare backward current uctuations at high packing fractions.

2.4 Current uctuations in non-interacting
overdamped/underdamped system

An underdamped particle being driven on a periodic potential by a constant external force is
a simple system with two dynamical coordinates, position and velocity, that can exhibit non-
trivial nonequilibrium properties due to competing ballistic and di�usive modes of transport
[128, 129]. Large deviation functions for current uctuations in this model can be obtained
by numerically exact diagonalizations of the tilted generator, and the controlled ensemble
can show diverse behavior in di�erent parameter regimes [130]. We consider this model to
benchmark our variational optimization algorithm.

Speci�cally, we consider an underdamped particle of massm moving in a one-dimenional
periodic box of lengthL = 2� . The forces acting on the particle are derived from a cosine
potential, V(x) = V0 cos(x), where V0 is the magnitude of the potential, and include a
constant external driving force,Fext . For the particle in contact with a bath of temperature,
T, and friction coe�cient,  , the equations of motion for the position,x, and velocity, v, are

_x = v

m _v = F (x) � v + � (2.25)

whereF (x) = � V
0
(x) + Fext and � (t) is a Gaussian white noise with

h� (t)i = 0 h� (t)� (t0)i = 2k BT � (t � t0) (2.26)

where kB is Boltzmann's constant. These equations of motion have the form of Eqs. (1.1)
and (1.3) with two dynamical coordinates and a vanishing noise in position [130].

We investigate the statistics of the time-averaged current owing through the system,

Jt f =
1
t f

Z t f

0
dt v(t) (2.27)
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which measures the total displacement of the particle. The SCGF for current is given by

	( s) = sup
u(x;v )

1
t f

� Z t f

0
dt

�
� sv +

u2 � F 2 � 2v (u � F )
4k BT

�
m _v(u � F )

2k BT

��

u

(2.28)

where the path average is obtained from the controlled dynamics

m _v = u(x; v) � v + � (2.29)

and the optimal force is in general a function of both position and velocity. We expand the
additional force � (x; v) = u(x; v) � F (x) in an ansatz

u(x; v) = F (x) +
M 1X

p= � M 1

M 2X

q=0

cp;qeipx vq (2.30)

wherecpq are parameters that can be optimized variationally subject toc�
� p;q = cp;q, and the

number of position and velocity basis functions are (2M 1 + 1) and (M 2 + 1) respectively.
The basis is complete in the limit of largeM 1 and M 2. Note that this force incorporates the
periodicity of x and also allows the external nonequilibrium driving, which is thep = q = 0
term, to be optimized. In the high friction limit, the dynamics becomes overdamped and
in that limit the optimal force becomes a function of just the particle position. For small
friction, inertia is important and the general form of the optimal force must be considered.
We note that this velocity-dependent drift function is aforce only in a generalized sense.

The SCGF and the optimized control force obtained from the variational algorithm can
be compared to numerically exact results obtained by solving the eigenvalue equation for
the tilted generator given by [130]

L s = v
@

@x
�

1
m

[v � F (x)]
@
@v

+
k BT
m2

@2

@v2
� sv (2.31)

as in Eq. (1.16). The exact control force is obtained using the right eigenvector� s(x; v)
corresponding to the largest real eigenvalue, as

u(x; v) = F (x) +
2k BT

m
@ln � s(x; v)

@v
(2.32)

where numerical diagonalization ofL s can be performed by expressing the right and left
eigenvectors over a position-velocity grid and representing the di�erential operators inL �

using a second order �nite di�erence scheme. The boundary conditions are periodic in the
position grid and reective in the velocity grid, so that only forward (backward) di�erence
at the minimum (maximum) velocity grid point is used to represent the di�erential operator.

We have computed the cumulant-corrected large deviation functions in this system and
have compared them to the numerically exact results. We have worked withkBT = 1 and
 = 1. These parameters along with the length of the boxL = 2� let us de�ne our natural
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Figure 2.1: a) Convergence of 
n (� t) for s = � 0:5, for di�erent n. Shaded region represents
optimal choice of � t for gradient descent. b) Simultaneous convergence of SCGF and biased
density for s = � 0:5.

time unit as t � = 4� 2kBT=L 2. All observables have been reported in dimensionless units
following these de�nitions. We have done our computations at two values of mass,m=t � = 1
and m=t � ! 0. We have also chosenV0 = 2 and Fext = 1. The numerically exact result was
obtained with a grid of 140� 50 points in the position-velocity space. The position points
span all of the box and the velocity points are centered at (Fext � 2skBT)= corresponding
to the mean velocity in theV0 ! 0 limit. For all the simulations, the timestep was chosen
to be 0:001 natural time units. For m=t � ! 0, an Euler scheme was used to integrate the
overdamped equation of motion, while form=t � = 1, a velocity Verlet scheme was used [42].

For each iterative step during the optimization, a trajectory of duration 104 units was
simulated. During the �rst half of each trajectory, the system was allowed to come to a
steady-state, and the time-averaged gradients were computed only with the second half of
the trajectories. For implementing Eq. 2.18, we integrated the correlation function up to
� t = 100. The size of the basis wasM 1 = 3; M2 = 1 for m=t � = 1 and M 1 = 3; M2 = 0
for m=t � ! 0, the overdamped limit. The optimization parameters used for the gradient
descent were� = 0:5; � = 0:2. Near s = 0, all cpq were initialized at zero, and subsequent
optimizations with increasing magnitude ofs were initialized from a previously optimized
set of cpq taken from the nearest value ofs. In the overdamped limit, an accurate estimate
of the SCGF could be obtained with just the variational optimization, with the cumulant
correction merely a con�rmation of the optimal control forces being correct. However for
m=t � = 1, the variational SCGF had to be corrected with cumulants computed with an
observation timet f = 100 and a total trajectory length 105 units.

The choice of a �nite integration limit � t to compute the integral in Eq. 2.17 depends
on both the intrinsic correlation times of the system and the timescale of the variance of the
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Figure 2.2: Large deviation functions for current uctuations in a driven underdamped
system in a periodic potential. a) SCGF form=t � = 1 with M 1 = 3; M2 = 1 and for
m=t � ! 0 with M 1 = 3; M2 = 0. b) Rate functions obtained by a numerical Legendre-
Fenchel transform of the SCGFs. The legend is the same as that used in a). (Inset) Schematic
diagram of the simulated system.

integrated correlation function to diverge. To illustrate this, we plot


 n (� t) =
Z � t

0
dt

D
� _yn (0)� _O� (t)

E

�
(2.33)

for this system in them=t � ! 0 limit. The ansatz can be written in this limit as

u(x) = F (x) + c0 +
3X

n=1

[cn cosx + c� n sinx] (2.34)

and for Fig. 2.1, we have chosencn parameter values randomly between� 1 and 1, with
s = � 0:5. We see that even though the correlation function converges for large �t, the
error in the computed gradient increases steadily. For all the results in this paper, �t was
chosen to balance between these two e�ects so that the computed gradients su�ers from no
systematic error and minimum statistical error.

Using these numerically estimated gradients, the accelerated gradient descent algorithm
converges superlinearly, and in Fig. 2.1 we have plotted the decrease of the systematic error
� 	( s) in the current SCGF estimate with optimization steps in the limit m=t � ! 0. We also
show the simultaneous convergence of the controlled ensemble steady-state density� ss

u (x) to
the true biased steady-state density� s(x) / � s(x)� s(x) where � s and � s are the dominant
left and right eigenvectors of the tilted generator (2.31). We demonstrate this by plotting
the relative entropy of the two,

D(� ss
u jj � s) =

Z
dx � ss

u (x) log
�

� ss
u (x)

� s(x)

�
(2.35)
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Figure 2.3: Overdamped limit,m=t � ! 0, of the driven particle on a periodic potential. a)
Optimized control forces (dashed lines) overlaid on the exact control force (solid lines). The
thick curve is for s = 0 and the curves above (below) are fors in intervals of +0:5(� 0:5). b)
Basis size errors in the variational estimate of 	(s), where the deviation� 	( s) = e	( s) � 	( s)
is the di�erence between the �nite basis resulte	( s) from the exact SCGF.

which shows that even as only the current is being optimized to have a nontypical value, the
entire trajectory ensemble simultaneously converges to the exact biased ensemble.

Following this procedure, we obtain estimates of SCGFs that are in quantitative agree-
ment with the numerically exact results throughout the range ofs considered, as shown in
Fig. 2.2(a). We have also calculated the rate functions for the current, Fig. 2.2(b), in these
two parameter regimes by a numerical Legendre-Fenchel transform of the SCGFs.

The SCGFs in Fig. 2.2(a) both have alocked region where the current changes slowly
with s, and anunlockedregion for larger magnitudes ofs. Due to the time-reversal properties
of L s, the SCGF shows a Gallavotti-Cohen symmetry [131]

 (� ) =  (� Fext =kBT � � ) (2.36)

which is clear through the reection symmetry abouts = 0:5 of the SCGF in Fig. 2.2(a).
Analogously, the rate function obeys a uctuation theorem symmetry

I (J ) = I (� J ) + Fext J=kBT (2.37)

indicating the exponentially rare probability of a current in the direction opposite to the
applied force.

Figure 2.3(a) shows the position-dependent optimal forces obtained in the overdamped
limit, u(1) (x), overlaid on the numerically exact answers obtained from diagonalization [132],
for multiple values ofs. In the limit of jsj ! 1 , the optimal forces approach the free-di�usion
limit, where the majority of contribution comes from a constant nonequilibrium driving.
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Figure 2.4: Underdamped system,m=t � = 1, of the driven particle on a periodic potential.
a) (L-R) Exact and optimized control forces,u(x; v), for s = 1:5, with the solid contour at
u(x; v) = � 2, and the dashed (dotted) contours being at di�erences of +1 (� 1). Exact and
optimized control forces,u(x; v), for s = � 2 with the solid contour at u(x; v) = 5 and the
dashed (dotted) contours being at di�erences of +1 (� 1). b) Convergence of the cumulant
expansion for representative values ofs.

When jsj is of the orderjFext j=kBT, the forces have a non-trivial position dependence. This
is manifested in the size of the basis-set,M 1, required to obtain the optimal control force
accurately. Figure 2.3(b) shows the e�ect of �nite basis size on the error made in estimating
	( s). IncreasingM 1 reduces the error and ultimately the ansatz becomes exact whenM 1 is
large. The error decreases when going to largerjsj as the forces are easier to represent using
the �rst few basis functions. The error bars were computed from 5 independent estimates of
the SCGF using independent trajectories.

For the m=t � = 1 system, inertial e�ects are important and the optimal force depends on
both position and velocity, and the optimal force has a complicated functional dependency
that is di�cult to represent using a small number of basis functions. Using a truncated basis
to represent the control force leads to a systematic error in the SCGF estimate obtained using
Eq. 2.28 that can be corrected using the cumulant expansion in Eq. (2.22). Figure 2.4(a)
shows the approximate forces obtained from the variational optimization compared to the
numerically exact results. Whens is near the Gallavotti-Cohen symmetry point, the average
current is small and the optimal control force is a complicated function of bothv and x.
Within our ansatz, the optimized u(x; v) does not reproduce the exact form of the optimal
control force. Nevertheless, these approximate forces recover the majority of the SCGF, so
that the cumulant expansion converges for all testeds points. Figure 2.4(a) also contains
the optimal force at a larger positives, where the forces lose their velocity dependence and
simplify towards the free-di�usion limit. In this limit, position based forces are su�cient to
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recover the SCGF quantitatively.
Figure 2.4(b) shows the convergence of the consecutive terms of the cumulant expansion

in Eq. 2.22 for di�erent values ofs. � 1, the �rst cumulant, is identical to e	( s), the variational
estimate. Error bars were calculated using 5 independent trajectories for the estimation of
the cumulants. Even though our basis is small and approximate, the cumulants computed
from a single trajectory have decreasing amplitudes for various valuess, showing that the
variational force is accurate enough to approach the force derived from the Doob transform.
We note that the sign of the cumulants need not be positive, and therefore the variational
structure in the estimate of 	( s) holds only for the �rst cumulant. Further, the magnitude of
the terms in the cumulant expansion need not be strictly decreasing. Figure 2.4(b) includes
an example of a nonmonotonic convergence fors = 1:1. Moreover, the sign of the error of the
approximate SCGF at a given truncation of the cumulant expansion can change resulting in
the cancellation of errors of two oppositely signed cumulant corrections and an accidental
near agreement of the exact SCGF. We have found that by considering the convergence of
the consecutive terms of the cumulant expansion we can reliably determine the accuracy of
the approximate SCGF.

2.5 Activity uctuations in interacting overdamped
system

To study how this algorithm performs in an interacting system, we consider the uctuations
of the activity in a system of overdamped repulsive particles on a line. In both lattice
and continuum models of volume excluding particles in one dimension, it has been reported
that there are two characteristically distinct types of activity uctuations, with a dynamical
phase transition separating them [133]. For rare large negative values of the activity, such
systems spontaneously phase separate into macroscopically sized clusters, whereas for rare
small values of the activity, they form a hyperuniform phase in which long-wavelength density
uctuations are suppressed. This behavior emerges as a singularity in the SCGF and a closing
of the gap in the eigenspectrum of the tilted operator, which in the hydrodynamic scaling
limit is predicted to occur with a critical point at sc ! 0+ [133, 89]. This system is thus
suitable to test the e�ectiveness of the variational algorithm in computing rare uctuations
that are collective in origin.

Speci�cally, we study the uctuations of dynamical activity in a system ofN overdamped
repulsive particles in a one-dimensional periodic box of lengthL. The equation of motion is

 _x i = Fi (x) + � i (2.38)

whereFi (x) is the total force felt by the i -th particle,

Fi (x) = �
@

@xi

X

j 6= i

VWCA (x ij ) (2.39)
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wherex ij = x i � x j and the force is derived from a WCA pair potential

VWCA (r ) =
�
4�

�
� 12

r 12
�

� 6

r 6

�
+ �

�
; r < 21=6� (2.40)

= 0 ; r � 21=6�

with characteristic energy,� , and length scale,� . The Gaussian white noise,� i , is speci�ed
by

h� i (t)i = 0 ; h� i (t)� j (t0)i = 2k BT � ij � (t � t0) (2.41)

We work with kBT = 0:5,  = 1 and � = 1. As before, we de�ne our unit of time for this sys-
tem as 2kBT=� 2 and we have reported all observables in dimensionless units. Additionally,
we set� = 1 and consider a density of� = N�=L = 0:5, so that the box is half-�lled.

We study a measure of activity derived from the probability that the particles stay in
the same state in a short time interval [134]. This form of the activity,

K t f =
1
t f

Z �

0
dt
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is also a part of the time-symmetric component of the path-action [135], and its long time
statistics are similar to other commonly used metrics that count the total number of hops
for particles on a lattice [136, 137]. Using Ito's Lemma to simplify the last term in Eq. 2.2,
the variational expression for the SCGF becomes

	( s) = sup
u(x1 ;x2 ;:::;x N )

1
t f
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(2.43)

where in addition to the force, we require the gradient of both the original and the control
force.

For this system, the optimal control forceu(x) is in general long-range and many-bodied.
Previous work on related one-dimensional systems have shown long-range repulsive interac-
tions stabilizing the hyperuniform state for values of activity small in magnitude [95], and
long-range attractive forces acting on the surface of particle clusters that emerge in rare large
negative uctuations of the activity [89]. For our variational ansatz, we have approximated
the many-body force as a sum of long-range pairwise interactions. Pair forces are the lowest
rank approximation to this system due to its translational invariance. From the Hopf-Cole
transform, optimization of a pair force is analogous to optimization of a two-body Jastrow
function as used in variational quantum Monte Carlo [138].

To represent the control force, we expand it in a basis of Laguerre polynomialsLp with
coe�cients cp as

ui =
X

j 6= i

�
�

@
@xi

VWCA (x ij ) +
M 3X

p=1

cpLp(~x ij )e� ~x ij =2 x ij

jx ij j

�
(2.44)
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Figure 2.5: Size-scaling of activity uctuations of repulsive particles on a line. a)O(N 2)
scaling of 	( s) in the phase-separated state. (Inset) O(N ) scaling in the hyperuniform
state. b) Change in mean activity across the dynamical phase transition. (Inset) Schematic
representation of the phase-separated (left) and hyperuniform (right) states.

where ~x ij = � � � jx ij j is a linear transformation on the distance between particlesi and
j . The parameters� and � can be adjusted to set a scale and a cuto� for where the force
smoothly decays to zero, andM 3 determines the size of the basis. The basis is complete for
all possible two-body forces in the limit of largeM 3. The exponential factor makes the basis
functions orthogonal and aids in the convergence of the optimization. We have usedM 3 = 10
for all of our results. We have �xed� = 2=L, and optimizedf cpg and � with starting values
of 0 andL=2 respectively. In each iteration of the optimization, a trajectory of length 2� 104

time units is simulated, the �rst half again reserved for equilibration and the second half
being used to compute the gradients. For computing the integrated correlation function in
Eq. 2.18, we have used �t = 200 units. After obtaining the optimized control force in this
ansatz, we use it to compute the unbiased SCGF using a cumulant expansion as before, with
an observation timet f = 10 and a total trajectory length of 5 � 104 units. Across the range
of s considered, we �nd convergence using the �rst three cumulants to correct the variational
result. The SCGF obtained from this cumulant expansion is identical to results obtained
using a guided cloning algorithm that has been described later in this section.

In Figure 2.5(a) we have plotted the size scaled SCGF, and the mean activity, for positive
and negative values ofs. For s < 0, we �nd the system in a hyperuniform state, where all
particles are pushed apart from each other and long-range density uctuations are suppressed
[133]. The SCGF is size-extensive in this range ofs. For s � 0 the particles phase separate,
forming a single cluster. In the region wheres is positive but small, there is a phase transition
to this clustered state accompanied by an inection point in the mean activity, shown in
Fig. 2.5(b), obtained from taking the numerical derivative of the SCGF,hK i s = 	 0(s). The
extensive scaling regime has been explored systematically in a related model and found to
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Figure 2.6: Optimal pair-potential for positive and negatives for N = 40.

agree well with predictions from macroscopical uctuation theory [89]. In our studies, we �nd
it limited to 0 < s < 0:02. For large positive values ofs, the cluster is a highly compressed
solid with system-spanning correlations that result in the SCGF scaling super-extensively.
In this regime of the SCGF, the typical force is on the order of

p
N , and can continue to

increase with increasings because of the soft repulsion of the WCA potential. Inspection of
the distribution of mean squared forces reveals that the cluster is not homogeneous, but most
compressed in its interior with lower density near the edges, with a system size independent
pro�le. The phase transition from a disordered state to a clustered state is in accord with
previous observations in related systems, and result in diverging correlation times rendering
the precise study of the critical point di�cult [89, 133]. We therefore focus our attention on
the two phases on either side of that transition. Error bars were obtained from independent
statistics from 3 distinct trajectories.

Figure 2.6 shows the e�ective pair-potential,V (2) (r ), derived from the optimal control
force at di�erent values ofs, for N = 40, obtained by the numerical integration of the control
force. The potential is long-ranged and repulsive in the hyperuniform phase, and long-ranged
and attractive in the clustered phase. The long-range potential leads to the observed size
scaling in Fig. 2.5, because it imposes in�nite range correlations. We also observe that the
depth of the attractive potential for increasingly positive values ofs tends to saturate, while
the magnitude of the repulsive potential for increasingly negatives does not. This di�erence
arises from the steeply rising WCA forces that can achieve more negative values ofhK i s

with just a slight decrease in the nearest neighbor distance in the controlled system. In the
hyperuniform phase, achieving the rarer values of activity implies an exponentially small
number of collisions between the particles, which leads to an increasing repulsive control
force. These optimal control forces derived from the variational ansatz do not contain many-
body components unlike analytically derived approximate forces [89], yet they achieve the
same phenomenology of phase separation and hyperuniformity described previously.
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Figure 2.7: Characterization of the two dynamical phases forN = 80. a) Pair distribution
functions within the phase separated,s = 0:1, and (inset) hyperuniform, s = � 0:1, states.
b) Structure factor for various system sizes in the hyperuniform state,s = � 1.

Figure 2.7(a) characterizes the steady-state radial distribution functiong(r ),

�g (r ) = N h� (r � j x12j)i u (2.45)

obtained in these phases, for a system size ofN = 80, where x12 denotes the interparticle
distance between each distinct pair of particles. In the phase-separated state, the particles
form a solid cluster that has sharp peaks ing(r ) at intervals of � . In the hyperuniform phase,
the particles are repelled away from each other andg(r ) has little structure aside from the
volume-exclusion. We also characterize the structure of the hyperuniform state through the
structure factor, S(q), as a function of the wavenumberq, obtained from

S(q) =
1
L

* �
�
�
�
�

NX

j =1

e� iqx j

�
�
�
�
�

2+

u

(2.46)

where the averages are computed in the ensemble with the control force. A linear increase
of S(q) from zero at small q is a signature of the suppression of long-wavelength density
uctuations in the hyperuniform phase, which we con�rm in Fig. 2.7(b). The spike at
q = 2�= 21=6� results from 21=6� being the distance of closest approach of the repulsive
particles without experiencing a force.

Under large positive activity bias, we �nd that the overdamped repulsive particles form
a highly compressed cluster. This cluster is described by system-spanning correlations.
Shown in Fig. 2.8 is the size-scaled pro�le for the �rst term of the collective activity (2.42),
hF 2

i i s=4k BT, with respect to a size-scaled particle indexN i = i � (N + 1) =2. The particles
are indexed from one end of the cluster to the other, such that the center of the cluster is
indexed at N i = 0. The compressed cluster does not break apart during the duration of the
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Figure 2.8: Size-scaling of the mean squared force pro�le within the cluster fors = 0:1.

trajectories observed, so that largejN i j unambiguously refers to particles close to the surface
of the cluster. The total mean activity hK i s is proportional to the total mean squared force
appearing in the �rst term, such that the pro�le of the second term in the de�nition looks
analogous only with an opposite sign [137]. TheO(N 2) scaling of the mean squared force
and its size-invariant parabolic pro�le explains the super-extensive SCGF scaling and the
system spanning correlations in thiss regime.

While we have not investigated the phase transition directly, the disparate behavior of
either side of the dynamical phase transition provides a useful test of our ability to obtain
control forces, as the structure and dynamics of the system in the phase separated and
hyperuniform states are very di�erent. Despite their di�erences in both regimes, we are
able to obtain control forces that are near enough to the optimal force to converge the large
deviation functions using a brute force evaluation of the remaining cumulant expansion.
Nevertheless, we expect this strategy may fail in general, in which case a more robust means
of estimating the remaining contribution must be employed. To explore such alternatives,
we apply these control forces as guiding functions within the cloning algorithm [84]. To
quantify the statistical bene�t from the control forces, we start with a trajectory ensemble
of Nw = 32000 walkers and monitor the decay rate in the number of uncorrelated walkers,
Nc, with and without the control forces. The number of uncorrelated walkers is de�ned as
those with a distinct history, having not been previously merged into an existing walker.
Figures 2.9(a) and (b) show the statistics of the walkers with respect to observation time,
with and without the control forces, in a system with 20 particles, and branching steps taken
every 0.5 time units. We have plottedf c

s (t) = Nc(t)=Nw(t), where t is the observation time,
to represent the growth of correlation in the trajectory ensemble.

In the clustered state, incorporating the control forces improves the number of uncorre-
lated walkers by multiple orders of magnitude. For larger positives, an unbiased estimate of
the SCGF can be obtained only when the variational control forces are used. The improve-
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Figure 2.9: Improvement of walker statistics of the cloning algorithm using approximate
control forces as guiding functions in an N=20 system, represented byf c

s (t) = Nc(t)=Nw(t),
after an observation timet. Blue circles are without a guiding force and green squares are
with the variationally optimized guiding force. Decay of the fraction of uncorrelated walkers
with increasing observation time in a) the phase-separated state (s = 0:04) and b) the
hyperuniform state (s = � 0:2). (Insets) Decay of the fraction of uncorrelated walkers after
t = 20 as a function ofs in a) the phase-separated state (s = 0:04) and b) the hyperuniform
state (s = � 0:2).

ment in the statistics of the walkers increases for more positives because the magnitude of
the SCGF grows rapidly, and therefore the weight carried by the branching step increases.
We see this e�ect in the inset, where we show the fraction of uncorrelated walkers left after
an observation time and how it varies withs [84].

The decay of the walkers depends on the overlap between the tilted trajectory ensemble
and that generated from the controlled dynamics. Slower decay will result when the control
dynamics generates a trajectory ensemble that is close, in this sense, to the tilted trajectory
ensemble. This behavior is analogous to other approximate guiding function based impor-
tance sampling, such as that arrived by iterative feedback [86] or analytical approximation
[89]. These e�ects are seen in the hyperuniform phase as well, albeit the decay of walkers in
the ordinary cloning algorithm is less drastic, and so is the improvement by incorporating
the guiding forces. The improvement in statistical e�ciency upon including the optimized
forces is not restricted to the cloning algorithm, and could be analogously adopted within
transition path sampling [89] or forward ux sampling [102].
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2.6 Current uctuations in interacting overdamped
system

The Asymmetric Simple Exclusion Process (ASEP) has been extensive studied as a model
for many-body systems in nonequilibrium statistical physics [139]. ASEP is de�ned on a one-
dimensional lattice where each site can accommodate at most one particle, and the particles
hop forward or backward to neighboring sites with asymmetric rates without overtaking each
other. Boundary-driven nonequilibrium steady-states in ASEP have been well-characterized
to contain several dynamical phases that arise from both local density and collective cur-
rent order-parameters [140, 141]. Conditioning trajectory ensembles on large deviations of
currents have been previously shown to induce long-range e�ective forces that decay loga-
rithmically [95, 142]. Specialized tools using matrix product states and other tensor network
techniques have also recently been developed to sample rare current uctuations and charac-
terize the dynamical phase behavior in ASEP and its generalization to two dimensions [121,
143].

Despite being de�ned only on a discrete lattice in one spatial dimension, ASEP has
been widely used to study the phenomenology of the nonequilibrium stochastic transport of
biomolecular cargo inside the cell [144]. The movement of ribosomes on RNA during protein
synthesis [145], the active tra�c of load-carrying molecular motors on microtubules [146] and
the single-�le transport of ions and small molecules through ion-channels [147] have been
mapped into ASEP to characterize their dynamical regimes and their energetic e�ciency.
The mapping between ASEP and these systems comprising of continuous space hopping
between a sequence of metastable wells becomes accurate in the limit that barrier heights are
large compared to thermal energy. However, rare current uctuations are often collective and
involve correlated hops involving neighboring multiple particles, for which the introduction of
in�nitesimal uctuations in inter-particle distances may change the phase behavior. Indeed,
dynamical phases featuring current reversals have been previously observed in lattice models
but not found in its continuous space analogue in a model for stochastic pumps [148, 149].
To better understand the continuous space generalization of ASEP and to characterize its
driven phase behavior, Brownian ASEP (BASEP) has been recently introduced as a model for
single-�le transport [150, 151]. BASEP consists of hard volume-excluding spheres di�using on
a one-dimensional periodic potential driven by a constant external force. This model features
rich structural phenomenogy depending on the ux of incoming and outgoing particles,
average density and the commensurability of particle diameters with the wavelength of the
periodic potential. But the rare current uctuations, response and the dynamical phase
behavior of BASEP trajectory ensembles have not been studied and compared against those
of ASEP to determine the latter's applicability in studying real space dynamics.

In this section we have used our variational algorithm to construct the large deviation
functions for currents in a soft-sphere analogue of the BASEP. We have generalized our model
we used in Section 2.4 for describing multiple interacting particles in a periodic potential.
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We considerN di�usive particles governed by the overdamped Langevin equation,

 _x i = Fi (xN ) + � i (2.47)

in a one-dimensional box of length 2N�=� , where � is the packing fraction of the system,
Fi is the total force on the i -th particle, and � i is a Gaussian white noise with zero mean
and variance 2k BT. Each particle experiences a periodic potentialV(x i ) = V0 cos(x i ), a
constant external driving forceFext , and a pairwise WCA repulsionVWCA (x i � x j ) from all
the other particles, similar to the previous section in Eq. 2.40. We consider only the case
� = 2� , such that each potential well can accommodate at most one particle without high
energetic cost. We have de�ned a collective currentJ over a trajectory X (t f ) of duration t f

as

J =
1
t f

Z t f

0
dt

X

i

_x i dt (2.48)

The collective current can thus be also interpreted as the drift in the center of mass of
the particles. A peculiarity of working with a continuous description of space is that if
V0 = 0, momentum is well-de�ned and conserved modulo the e�ect of the thermal noise.
The current in the V0 = 0 limit is exactly as if each particle is being driven independently by
the external forceFext . This means that the e�ect of having a high density of particles only
becomes manifest in the statistics of average collective current through a non-zero external
potential energy function. WhenV0 is non-zero and comparable tokBT, at high � non-zero
current is generated from sequential correlated hops from collections of adjacent particles.
Such current-carrying mechanism is shown in Fig. 2.10(a) via the collection of particle
coordinatesf x i g as a function of time t at parameters� = 0:5, kBT = 0:5, V0 = 1 and
Fext = 1:5.

For a system ofN = 100 particles, we compute the SCGF 	(s) associated with biasing
this time-averaged current, by applying our variational algorithm to compute an optimal
force. As basis functions we choose a combination of one-body periodic functions and two-
body pairwise functions,ui = Fi (x) + u(1)

i (x) +
P

j 6= i u(2)
i (x i � x j ), that are described by

Equations 2.34 and 2.44. We study the convergence of the variational estimate for the
SCGF at three values of packing fraction, a dilute limit, an intermediate regime and a dense
limit where every well is occupied. We have learnt this force withM 1 = 5 and M 3 = 5
basis functions for biass in the range of [� 2; 5]. We have worked with unitskBT = 0:5,
 = 1 and our natural time unit as t � = 2� 2kBT=N 2 which evaluates to the same timescale
de�ned in Section 2.4. All observables have been reported in dimensionless units following
these de�nitions. We have also chosenV0 = 1 and the external driving forceFext = 1. For
all the simulations, the timestep was chosen to be 0:001 natural time units and an Euler
scheme was used to integrate the overdamped equation of motion. For each iterative step
during the optimization, a trajectory of duration 5 � 107 units was simulated. Similar to
our computations with the single overdamped particle, the system was allowed to come
to a steady-state for the �rst half of the trajectory, and the time-averaged gradients were
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Figure 2.10: a) Snapshot of the many-particle trajectory ensemble at half-�lling, demonstrat-
ing correlated sequential hops that lead to non-zero current. b) Variational SCGF estimators
for � = 0; 0:5 and 1:0. Dotted vertical line represents Gallavotti-Cohen symmetry point at
s = 1:5. Green dashed line represents the segment of SCGF for� = 1, s < 1:5 reected to
the regions > 1:5.

computed only with the second half of the trajectories. For implementing Eq. 2.18, we
integrated the correlation function up to � t = 100. We chose optimization learning rates
� = 0:1; � = 0:0.

In Fig. 2.10(b) we have shown the variational SCGF estimates obtained for our system
at three di�erent densities. We �nd that the SCGF follows the similar locked and unlocked
regimes we had seen for the single particle case, which is identical to the dilute limit. The
SCGF does not change much from the dilute limit to� = 0:5, and only changes appreciably
near full packing At a high density, the biased current value in the locked part of the SCGF
reduces from the low-density limit. This is manifested as a sharp change ats = 0, which
is arising from a diverging second cumulant of current, the latter being proportional to the
second derivative of the SCGF. For any density, the SCGF should respect a Gallavotti-Cohen
reection symmetry about the line s = 1:5. This is respected for small and intermediate
densities, but when the box is fully packed, we see this symmetry not being bveyed by the
variational estimator, which implies that the optimal force cannot be adequately represented
within our basis set ansatz. Nevertheless, given the variational principle and that the sym-
metry must hold for the correct 	( s), we get an estimate of the error being made by reecting
one-half of the SCGF on the other half. This construction is shown as the green dashed line
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in Fig. 2.10(b).
Despite the percentage error being small, we could not correct the variational estimate

with a converging cumulant expansion or a guided cloning procedure with statistics from
upto 109 timesteps. This is due to the uctuations in the system being extremely rare, and
also hints at the converged forces being quite far from the actual optimal force in the system.
Looking closer into the one-body and two-body components of our optimized force, we �nd
that for all values of s the two-body component optimizes to a negligible value compared to
the one-body parts. This suggests that a pairwise two-body force ansatz is a poor approx-
imation for the many-body nature of the true optimal force. Improved representations of
many-body e�ective forces through neural networks [152] might be promising as better basis
sets for optimal forces generating rare current uctuations in this system.

2.7 Conclusion

We have developed a variational algorithm to compute optimal control forces for Langevin
models driven into nonequilibrium steady-states. We have used the control forces to sample
rare uctuations in time integrated dynamical observables like current and activity, in order
to compute large deviation functions, and shown that they can be used to improve the
e�ciency of the cloning algorithm. Our variational algorithm, along with the correction of
the systematic error with the cumulant expansion, has improved scaling properties compared
to trajectory ensemble methods, and can be useful in dealing with many-particle chemical
or biological systems.

Though we worked with Langevin models of structureless particles, the algorithm is
straightforward to generalize to higher dimensions, where optimal control forces might have
signi�cant rotational components. It can also be extended to lattice models, where the rate
matrix has to be expressed in a variational ansatz. A system modeled by a di�erent stochastic
equation of motion, like that employing an Andersen thermostat [42] or quantum trajectory-
based approaches [153, 154], can also be treated through this algorithm by changing only
the functional forms of the path-actions provided a Doob transformation exists.

The versatility of the variational algorithm allows for its use with di�erent force ansatzes.
In the activity-biased system, using a low-rank approximation for a many-body optimal con-
trol force was su�ciently accurate. However in cases where the control force is not expressible
in a simple functional form or even as a many-body expansion, machine learning using ar-
ti�cial neural networks could be used to approximate it. The variational algorithm relies
on evaluating functional derivatives of the force with respect to the parameters, which can
be automated with autodi�erentiation algorithms [155], as has already been demonstrated
in equilibrium free energy calculations [156]. The use of techniques developed in this paper
can aid the formulation of such optimization algorithms in the future. Additionally, this
algorithm can be used for model reduction in high-dimensional systems [157], and hence to
extend Variational Force-Matching and Ultra Coarse Graining algorithms [158, 159, 160] out
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of equilibrium, so that biomolecular and other soft matter systems can be simulated over
large length and time scales with e�ective forces in nonequilibrium steady-states.

Lastly, this framework of solving the optimal forces can tackle inverse-design problems
out of equilibrium. Various inverse-design algorithms have been proposed that can obtain
optimal forces to rationalize materials design with targeted properties and to guide directed
self-assembly of smaller objects [161, 162]. Our variational algorithm can be used to ob-
tain optimal forces suitable for targeted assembly or tailored particle distributions when
nonequilibrium driving forces are present, and hence can be used to characterize and predict
dynamical phases in new functional materials.
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Chapter 3

Inverse design of nonequilibrium
colloidal self-assembly

The self-assembly of soft and biological matter out of equilibrium can result in novel struc-
tures and dynamical responses not constrained by thermodynamic considerations [163, 164,
165, 166, 167, 33]. The microscopic violation of detailed balance in such systems can be
used to design a wide range of functional materials with enhanced thermomechanical, opto-
electronic or drug-delivery properties [168, 169, 170]. Predictive inverse design to drive the
assembly of target dissipative structures requires a dynamical description of the system [171,
172, 173, 48, 174]. In this chapter we apply our variational algorithm to automate the dis-
covery of inverse design principles for colloidal self assembly in a nonequilibrium steady-state
in molecular dynamics simulations. The algorithm uses a variational principle arising from
rare dynamical uctuations of the system in a trajectory ensemble, and optimizes the yield
of target clusters or their rate of formation with statistically estimated explicit gradients in
the design parameter space. We demonstrate the performance of this algorithm by obtaining
optimal design principles for the self-assembly of DNA-labeled colloids [175] driven out of
equilibrium by a shear ow. We expect that the ability to uncover general optimal inverse
design principles away from equilibrium will enable bottom-up synthesis of new materials
and elucidate the processes encoding structure in biological contexts [176, 177, 18].

Self-assembly of nanoscale building blocks is increasingly used to engineer functional ma-
terials with novel properties arising from their complex nanostructures. Colloidal systems
o�er a versatile paradigm for inverse design towards a desired target structure due to the
independent tunability of shape, valency and assembly environment [178]. In thermody-
namic equilibrium, stabilizing a target structure amounts to lowering its free energy, which
is typically achieved by increasing both the interaction strength and speci�city. This princi-
ple has been exploited to achieve the self-assembly of a variety of clusters and superlattices
from colloids and nanocrystals with crystal facets decorated with organic ligands or DNA
[179, 180, 8]. However, employing these principles in practice requires mitigating dynamical
e�ects like slow coarsening and kinetic trapping [173, 172]. Optimal forces for self-assembly
must achieve a trade-o� between slow relaxation at high interaction strengths, and slow
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growth at high interaction speci�city [181, 182]. Self-assembly of colloids and biomolecules
in nonequilibrium steady-states provide a route to decouple kinetics from stability and mit-
igate this tradeo�. Directive self-assembly has been achieved by driving the system with a
constant supply of chemical fuel, or by applying external �elds [183, 184, 185, 186]. How-
ever, the design of such systems must confront the continuous supply of energy necessary
to prevent the system from relaxing to equilibrium. Existing computational methods to
discover inverse design principles for nonequilibrium self assembly are limited due to the
con�gurational probability not following the Boltzmann distribution and the corresponding
variational structure a�orded by the free energy no longer being valid under such dissipative
conditions.

Recent advances in the theoretical treatment of the stochastic thermodynamics of nonequi-
librium steady-states have made possible a trajectory ensemble description of self-assembly,
treating structure and dynamics on an equal statistical footing [27, 19]. This has enabled
basic principles governing assembly away from equilibrium to be formulated [22, 74]. In this
work we develop a perspective and accompanying numerical technique based on these in-
sights. Rather than considering the probability of observing a state and tuning its associated
free energy, we consider the likelihood that a trajectory forms a speci�c structure as quanti-
�ed by a stochastic action, and how that action is changed by modifying the intermolecular
and applied forces. We show that uctuations around a nonequilibrium steady-state encode
the susceptibility of a system to assemble, in a manner analogous to a uctuation-dissipation
relationship. Further, optimal forces that assemble a target structure or maximize reactive
ux while minimizing the change to the stochastic action satisfy a variational principle [63,
111]. We extend and apply our optimization algorithm to solve this variational expression
and compute the optimal control force to sample rare dynamical phases [117]. We show
that this algorithm can be used to solve the inverse design problem, deciphering how rare
uctuations encode stability away from equilibrium.

We outline below an inverse design algorithm for the self-assembly of sheared DNA-coated
colloids into di�erent target nanoclusters. The algorithm is based on a variational principle
relating rare uctuations in an ensemble of trajectories conditioned on evolving a target
structure, to e�ective forces achieving the target as the typical dynamical state. Working
with a trajectory ensemble, where the probability distribution is known, circumvents the
di�culty of not knowing the distribution of con�gurations within a nonequilibrium steady-
state. To solve the variational problem, we have used generalized response relations for
the gradients of the steady-state trajectory probability to a change in the inter-particle and
externally driven forces.1

1Most of the content of this chapter was originally part of the publication [187].
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3.1 Coarse-grained model for DNA-labeled colloids

For concreteness, we consider a model ofN colloidal particles in a cubic box of lengthL,
evolving with an overdamped Langevin equation of the form,

 _r i = u i + ��� i (3.1)

where _r i are time derivatives of the coordinates of thei -th particle and u i are the forces
acting on it. The friction coe�cient of the colloids with the thermal bath is denoted  and
��� i are Gaussian white noise that satisfy

h��� i (t)i = 0 ; h��� i (t)��� j (t0)i = 2k BTI 3� ij � (t � t0) (3.2)

whereI 3 is the 3� 3 identity matrix and kBT is Boltzmann's constant times the temperature.
The angular brackets denote an averaging operation over the random noise distribution.
As we consider dynamics in the presence of a shear ow, we use Lees Edwards boundary
conditions [188].

We use an ansatz of DNA-labeled spherical isotropic colloids as programmable building
blocks for self-assembly. The interaction between these colloids, mediated by the DNA
molecules attached to their surface, consists of a volume-exclusion repulsion and a short-
range attraction [189]. The e�ective interaction strengths and the pairwise speci�city can be
independently tuned by varying the sequences of the grafted DNA molecules. During self-
assembly, the short-range forces generate a competition between local and global order that
leads to frustration and unique phase behavior and dynamical e�ects [190, 191]. This system
has been computationally and experimentally demonstrated to form �nite nanoclusters with
speci�c target structures [192, 193]. The high-dimensional design space has the possibility
to o�er multiple pathways to stabilize any cluster out of the many nearly degenerate states
formed without the speci�city of the DNA-mediated attraction. To illustrate the performance
of the variational algorithm, we consider the nonequilibrium self-assembly of 21 such rigid
and nonrigid clusters, some examples of which are demonstrated in Figure 3.1a.

We examine the self-assembly of these colloidal particles under a constant linear shear
ow. Shear ows are known phenomenologically to alter the stability of compact and ex-
tended colloidal structures [194, 195]. A recent paradigm of colloidal assembly being increas-
ingly explored is that in a microuidic device, where the con�ning walls generate a strong
shear on the assembling clusters [196, 197]. This system o�ers a canonical nonequilibrium
setting to explore inverse design principles. Taken together, the forces acting on thei -th
colloid are

u i = f S
i (r i ) � r rr i

X

j 6= i

V(r ij ) (3.3)

where V(r ) = VWCA (r ) + VMorse(r ) and VWCA (r ij ) is a WCA pair potential representing
the volume exclusion interactions, andVMorse(r ij ) denotes the DNA-mediated short-range
pairwise attraction. The force due to a shear ow,f S

i (r i ), has the form

f S
i (r i ) = fz ix̂ (3.4)
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Figure 3.1: Model details for self-assembly of DNA-labeled colloids. a) Examples of �nite
rigid and nonrigid nanoclusters for which we have studied design principles, along with the
corresponding point groups for molecular symmetries denoted underneath. b) Graphical
forms of the potential energy functions, the WCA potential (blue) and the WCA and Morse
potential combined (red) forD ij = 10kBT. The orange dashed line denotes the bond cuto�
rb = 1:35� and the black dashed line denotes the potential cuto�r c = 2:12� .

which has magnitudef and generates a constant gradient of thex component of the velocity
along thez direction. The WCA pair potential has the functional form

VWCA (r ij ) = 4 �

" �
�
r ij

� 12

�
�

�
r ij

� 6
#

+ � ; r ij < 21=6�

= 0 ; r ij � 21=6� (3.5)

with particle diameter � and energy scale� . The attractive Morse potential has the functional
form

VMorse(r ij ) = D ij

�
e� 2� (r ij � 21=6 � ) � 2e� � (r ij � 21=6 � )

�
(3.6)

whereD ij is the magnitude of the bond energy and� determines its width.
We work in units of kBT = 1,  = 1 and � = 1. The natural time scale with these

units is t0 = � 2=kBT and times are expressed in these units throughout. We set� = 10kBT
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and � � 1 = �= 10. The attractive energy scaleD ij and the shear ow rate f are tuned as
variational parameters to induce self-assembly. They have been restricted to vary within
the range 0� D ij � 10kBT and 0 � f � 50kBT=� 2 to avoid large relaxation times and to
stay within the overdamped regime. Figure 3.1b shows the potentials for the inter-particle
interactions. The Morse potential and its force have both been truncated and shifted, using
the Shifted Forces approximation [198], to decay smoothly to zero atr c = 2:12� .

In order to avoid �nite size e�ects in the formation of small clusters, we study a low
packing fraction of � = 0:01. We use a �rst order Euler discretization for the equation of
motion in Eq. 3.1. Since the potentials in Eq. 3.3 are narrow and short-range, we have to
use a small timestep of 5� 10� 5t0 in order to sample the potentials accurately. We have
used trajectories of length ranging from�=t 0 = 2:5 � 103 to 104.

3.2 Automated inverse design algorithm

Variational principle

In order to uncover design principles for self-assembly, we consider the task of �nding the
set of forces that ful�ll the condition of assembling a target structure as the typical state of
the system in the long time limit. Such tasks in stochastic dynamics are generalizations of
Brownian bridges and known to have unique solutions [111]. They have played an important
role recently in the application of large deviation theory to physical systems driven far from
equilibrium [86, 81, 93, 199, 117].

We start by de�ning an observableA � as a time averaged indicator function for a target
cluster,

A � [r N (t)] =
1
�

Z �

0
1[r N (t)] dt (3.7)

where 1[r N (t)] = 1 for a con�guration satisfying a geometric criterion consistent with a
target cluster and 1[r N (t)] = 0 otherwise, for each timet along a trajectory r N (t) of total
duration � . The average value of the observable quanti�es the yield of the target cluster. For
all colloidal clusters considered,1 is computed by constructing a bond-connectivity matrix.
A cuto� of rb = 1:35� has been used to de�ne a bond between two particles. Indicator
functions for rigid target clusters are then uniquely determined by permutation-invariant
measures of this connectivity matrix [200]. For nonrigid target clusters, along with the
bond-connectivity matrix, we additionally consider measures of the geometry of the cluster
for de�ning the indicator function.

Rather than considering trajectories conditioned on a particular value ofA � directly,
which is numerically cumbersome, we work within an ensemble equivalent representation
[118]. Using a counting parameter� , we can statistically bias a system towards a particular
value of A � within a nonequilibrium steady state. The cumulant generating function 	(s)
is the partition function associated with the trajectory ensemble under the statistical action
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of s,

	( s) = lim
� !1

1
�

ln


e� s�A �

�
0

(3.8)

where the angular brackets denote a path average over trajectory probabilityP0[r N (t)], as



e� s�A �

�
0

=
Z

D[r N (t)] exp
�
� s�A � [r N (t)]

�
P0[r N (t)] (3.9)

The subscript 0 refers to the average being computed in a reference ensemble where the
particles do not typically show the desired self-assembly behavior. For this reference system
we have chosen an equilibrium ensemble of colloids interacting only with the WCA repulsive
forces,i.e., D ij = f = 0, such that u i = �r rr i

P
j 6= i VWCA (r ij ) which is denoted asFWCA

i (r N ).
When the optimizable parameters are tuned to varyu, the trajectory probability P0[r N (t)]

changes toPu [r N (t)]. The cumulant generating function can be estimated in the modi�ed
ensemble as,

	( s) = lim
� !1

1
�

ln
Z

D[r N (t)]e� s�A �
P0[r N (t)]
Pu [r N (t)]

Pu [r N (t)]

= lim
� !1

1
�

ln


e� s�A � +� S[u ]

�
u

(3.10)

where the functional form of the relative action �S[u] can be derived from Onsager-Machlup
theory [45],

� S[u] = S[u] � S[FWCA ]

=
Z �

0

NX

i =1

( _r i � u i )2 � ( _r i � FWCA
i )2

4k BT
dt (3.11)

with the integral being computed in the Ito sense. This change of measure analogous to
a Girsanov transform [63] relates the original likelihood of self-assembly in the reference
ensemble to the ensemble under the control force.

Since the exponential is a convex function, we apply Jensen's inequality to Eq. 3.10

	( s) � lim
� !1

1
�

h� s�A � + � S[u]i u (3.12)

to obtain a variational expression for the cumulant generating function. In the long time
limit for � ! 1 , we can replace trajectory averages with static averages and simplify the
relative action using the equation of motion for_r i . Hence we arrive at our �nal variational
expression,

	( s) � h 
[ u]i u =

*

� s1(r N ) �
NX

i =1

(u i � FWCA
i )2

4k BT

+

u

(3.13)

whereh
[ u]i u is the target function to optimize.
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For a bounded observable like the indicator function, a large negative value ofs enforces
the desired conditioning. The problem of saturating the variational inequality is known to
have a unique solution whenu(r N ) can take all possible functional forms, the optimal force
being a generalization of Doob's h-transform [111]. Optimizingh
[ u]i u will lead to a set of
many-body forces for assembling target clusters in high yield. In practice the use of only
one-body and two-body forces in Eqs. 3.3-3.6 need not saturate the inequality. The second
term in the variational expression is associated with the Kullback-Leibler divergence between
the reference and conditioned trajectory ensembles. This term enforces the smallest excess
force out of all possible control forces, and thus acts as a regularizer in the optimization
process. While the solution to Eq. 3.13 uniquely selects the force that shows uctuations
closest to rare uctuations in the original ensemble, it is not a unique inverse design criterion
and alternatives can in principle be constructed [201]. However, the optimization scheme
that we construct in the next section can be generally extended to other functional forms of
regularizers.

Stochastic gradient descent

To numerically optimize Eq. 3.13, we derive explicit gradients of the variational estimator
h
[ u]i u , using an algorithm that we have previously employed to estimate large deviation
functions in nonequilibrium steady-states [117]. The general form of the gradient with respect
to any variational parameterc 2 f D ij ; f g is

@h
[ u]i u

@c
=

�
@
[ u]

@u
@u
@c

�

u

�
Z 1

0

*

� 
( t)�

 
@_S[u]

@u
@u
@c

!

(0)

+

u

dt (3.14)

where _S[u] is the time derivative of the actionS[u]. Equation 3.14 is a generalized uctuation-
dissipation relation for a nonequilibrium response in the design parameter space. For com-
putational purposes, we approximate the gradient expression by integrating the correlation
function in the second term up to a �xed large time interval � t = 5t0. Due to the small
density, we have to use a low variance estimate for the explicit gradient in Eq. 3.14 for the
speci�c case of optimizing the shear ow ratef as described later.

The corresponding variational algorithm consists of a stochastic gradient descent opti-
mization [202] for a large negative value ofs in Eq. 3.13. Starting from an initial point
in parameter spacef D ij ; f g, we simulate the dynamics of the system using Eq. 3.1, and
after relaxation into a steady state, statistically estimate the explicit gradient of the varia-
tional estimator, Eq. 3.14. We perform stochastic gradient descent updating all variational
parametersc at every step of the optimization, with the update rule at then-th step being

cn+1 = cn + � n
@h
[ u]i u

@c

�
�
�
�
�
cn

(3.15)

where the stochastic gradients are evaluated within a steady-state with the current value of
the parameters, and� n is the learning rate for any of thec parameters in then-th optimiza-
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Figure 3.2: Optimization procedure for an Oh cluster. a) The convergence of the yield with
increasing number of optimization steps. Di�erent colors represent varying learning rates.
b) Convergence ofD ij for the green yield curve in (a). (Inset) Bond structure and the
corresponding MAD ij matrix for the Oh cluster. Blue and white elements in the matrix
denote bonds withD ij = 10kBT and D ij = 0, respectively.

tion step. The level of noisy uctuations in each parameter during the optimization process
can be tuned independently through the corresponding learning rates. If the variational
surface changes sharply, the learning rate has to be decreased with increasingn to anneal to
the optimal solution basin. The learning rates have also been chosen individually for each
example such that in each optimization step, the rate of change ofD ij =kBT is in the range
[0:1; 0:5] and that of f � 2=kBT is in the range [1; 5].

Convergence and choice of s

To illustrate the performance of the optimization algorithm, we study the assembly of 6
particles into an octahedral (Oh) target cluster. An octahedron is not the highest yield
cluster formed in a system of 6 hard sphere colloids with in�nitely short-range attractions
[192], and is formed in only 6% yield with strong, nonspeci�c interactions. Figure 3.2a
shows the yield as a function of optimization steps with di�erent learning rates and di�erent
trajectory noise histories. For all these examples, the yield is optimized over multiple orders
of magnitude with the �nal converged value being close to 100%. This change of the order
parameter over several orders of magnitude arises from the observable being de�ned as the
probability of forming the target cluster, and in cases where the change is more drastic, would
necessitate the use of two di�erent learning rates in Eq. 3.15. At a constant learning rate,
the learning curves show two distinct regions, such that a gradual rise in yield is followed by
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Figure 3.3: Stability of the high-yield solution with s. a) Convergence of the yield starting
from the 10kBT MA solution. Di�erent colors represent varying values ofst0 in the range
[� 4� 104; � 103], with the converged value of the yield increasing monotonically withjsj. b)
Blue crosses with errorbars are the converged bond energy of the MA solution at varying
values ofs. Red line is a linear �t.

a rapid convergence to the saturation value.
Figure 3.2b shows the convergence ofD ij for one of the optimization runs. For 6 particles

there are 15 distinct interactions, all of which are optimized. The starting point is a non-
speci�c attraction D ij = 4kBT for all ij pairs. The optimization curve shows two regions,
an initial spreading of the D ij values followed by a rapid permutation symmetry breaking
and a clear segregation of the 15 interactions into 12 attractive and 3 repulsive parameters.
The 12 attractive interactions are all statistically equal, as are the 3 repulsive interactions.
The attractive interactions correspond to the 12 bonds in the connectivity matrix for the
octahedron. The symmetry breaking is spontaneous and is aided by the initial noisy uc-
tuations during optimization. Di�erent noise histories in the trajectory lead to a symmetry
breaking for which di�erent sets ofD ij parameters become attractive or repulsive. For the
�nite clusters considered, this symmetry breaking is general. We refer to the speci�cD ij

solutions for the optimal yield of a target cluster as analphabet, and the particular D ij in
which there is a pairwise attractive interaction for every contact in the target structure as
a Maximal Alphabet (MA). This strategy has been previously shown to be e�ective in the
self-assembly of short-range interacting colloids into small clusters [175, 193].

For the octahedral cluster, we have studied the stability of the MA solution for varying
values of s. We �nd a bimodal structure of the variational surface, with the algorithm
converging to either a MA solution or a trivial solutionu = FWCA , depending on the value
of s. Figure 3.3a demonstrates the convergence of the octahedral yield with di�erent values
of st0 varying in the range [� 4� 104; � 103], starting from an MA solution with 10kBT bond



CHAPTER 3. INVERSE DESIGN OF NONEQUILIBRIUM COLLOIDAL
SELF-ASSEMBLY 50

Figure 3.4: Design principles for rigid clusters. a) Bond structure of clusters (i-ix), along
with their corresponding point groups, optimal yields and their convergedalphabetson a
color scheme indicated by the colorbar at the top. b) Yield as a function of a nonspeci�c
attraction D ij = D for �xed shear f = 0. c) Yield as a function of the shear ratef for
�xed optimal alphabets. The colors of the points in b) and c) correspond to the colors of the
clusters in a).

energies and a yield of 100%. For moderate but decreasing values ofjsj, the algorithm remains
stable in the MA solution, but with monotonically decreasing yields and bond energies. For
less negative values ofs than a critical value of sc = � 5 � 103=t0, the MA solution becomes
unstable and the algorithm �nds theu = FWCA solution. Rather than optimizing the yield in
Eq. 3.13, at small values ofs the second term is optimized. For some moderates values, the
MA basin is only a local optimum and the crossover behavior showss-dependent hysteresis.
We �nd this bistablity of the variational surface to be generic.

Asymptotic dependence of solution on s

We analytically solve for the asymptotic dependence of the bond energyD as a function of
the biass, for the formation of one bond, independent from the dynamics of the other bonds.
We can represent this simpli�ed system as an equilibrium, two state Markov model with the
rates of transition between the bonded and unbonded stateskb and ku, respectively. These
rates are determined by their mean� = ( ku + kb)=2 and their ratio ku=kb = exp(� F=kBT),
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where � F is the free energy di�erence of the two states.
The cumulant generating function associated with uctuations in the bonded state sati�es

a eigenvalue equation of the form,

Wsr s = 	( s)r s (3.16)

wherer s is a right eigenvecture, and operatorWs is given by

Ws =
�

� ku � s ku

kb � kb

�
(3.17)

which is equal to the adjoint of the transition rate matrix whens = 0. For the optimal rates
that generate the statistics equivalent to this rate matrix, we need the Doob's transform of the
matrix [63]. For this purpose we diagonalize the matrix to �nd the eigenvector corresponding
to the dominant eigenvalue as (r1; 1) where

r1 =
e� � F

k B T

4�

�
(� s + 2� ) + e

� F
k B T (� s � 2� )

�
q

e2 � F
k B T (� s � 2� )2 + ( � s + 2� )2 + 2e

� F
k B T (s2 + 4� 2)

�
(3.18)

and ku and kb have been rewritten with � F and � .
The modi�ed rates that generate the optimal dynamics are given by~ku = ku=r1t0 and

~kb = kbr1t0. The modi�ed free energy di�erence corresponding to these rates is �~F =
kBT ln(~ku=~kb). Using Eq. (3.18), in thes ! �1 limit the optimal free energy goes as

� ~F � � F � 2kBT ln(jst0j) (3.19)

In this limit, the free energy is dominated by the negative of the bond-formation energyD,
and hence the latter is asymptoticallyD � 2kBT ln(jst0j).

Figure 3.3b shows the dependence of the average optimized bond energies of the converged
MA solutions from the previous �gure, as a function of varyings. This illustrates the depth
of the MA basin in the parameter space. In the limit that each bond is formed independently,
D �

s is expected to asymptotically vary as� 2kBT ln(jst0j). Over the range ofs considered, we
�nd a logarithmic dependence but with a di�erent coe�cient, � 1:3 ln(jst0j). This suggests
that the free energy is approximately pairwise additive.

In the limit of large negative s, which in practice is chosen such that the estimate of the
�rst term in Eq. 3.13 is at least an order of magnitude larger than the negative second term,
the variational algorithm can be used to automate the discovery of optimal forces for the
self-assembly of clusters of arbitrary shapes and sizes, in a nonequilibrium steady-state. The
optimal forces stabilize the target clusters in an arbitrary ensemble without accounting for
the dynamics of transient relaxation towards its steady-state. For �xed number of tunable
parameters, the computational cost scales linearly with system size since the only bottleneck
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Figure 3.5: Design principles for nonrigid clusters. a) Bond structure of clusters (x-xv),
along with their corresponding point groups, optimal yields and their convergedalphabets
on the same color scheme that was used in Fig. 3.4. b) Yield as a function of the shear rate
for D ij �xed at the optimal alphabet. The colors of the points correspond to the clusters in
a).

is propagating a steady-state trajectory long enough to compute statistically converged gra-
dients. The algorithm also scales linearly with the number of variational parameters, but
with a small proportionality constant as all the gradients are estimated from the same trajec-
tory. The use of the statistically estimated gradients signi�cantly lowers the computational
cost in contrast to numerically estimating the gradients from �nite di�erence techniques by
propagating multiple trajectories at di�erent points in the parameter space. We next use our
variational algorithm to study and rationalize the optimal design principles for a collection
of rigid and nonrigid clusters.

3.3 Design principles for yields of rigid and nonrigid
clusters

We have investigated the formation of small low-energy rigid and nonrigid clusters with
6,7 or 8 particles. We discover distinct design principles of these clusters and rationalize
our �ndings by analyzing the response function of yield to the shear ow rate. We also
demonstrate that the variational algorithm can obtain high yield optimal solutions even with
constraints imposed on the total number of experimentally realizable design parameters. The
design principles we obtain are expected to be general for the nonequilibrium self-assembly
of short-range interacting colloids in a sheared steady-state.
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Rigid clusters

We study the formation of a family of rigid clusters that are all known to be the lowest energy
structures for systems of hard sphere colloids with identical in�nitely short-range attractions.
These clusters have previously been systematically enumerated and tabulated [203, 204], and
their free-energy landscapes have been theoretically and experimentally studied [192]. These
�nite clusters are the colloidal analogs to small molecules and have been shown to be involved
in the controlled seeding and growth of polycrystalline phases and kinetically arrested gels
[205, 206].

For each of these clusters, we optimizef D ij ; f g to extremize the yield within this force
ansatz. In the limit that the attractive interactions between the particles were in�nitely
short-range, there would be no internal low-energy distortion modes and the bond-connectivity
matrix would correspond to a unique geometry. For our optimization, the indicator func-
tion refers to the corresponding bond-connectivity matrix conditions being satis�ed. Figure.
3.4a summarizes the design principles discovered for these clusters. The point groups for
the symmetries of each of these clusters have been indicated along with the highest yields
obtained. For chiral Cn clusters, the yields are the racemic yield.

For each of these clusters, the corresponding optimalalphabetdiscovered by the varia-
tional algorithm has also been indicated. We �nd that for clusters (i-iv), the optimal solution
for D ij is the MA. For the chiral C2 cluster (v), the optimal alphabetis closely related to the
MA but has a higher symmetry and is equivalent to a smaller 3� 3 alphabet, while having
the same yield. For clusters (vi-ix), all of which contain a radial 5-fold motif, the optimal
yields are much less than 100%, and the optimalalphabetsare not MA. The reason is the
competition with structures with higher number of bonds. These lower energy structures
would be geometrically unfeasible for in�nitely short-range attractions, however in our model
the short-range bonds have nonzero vibrations, which is su�cient to lead to the formation of
the extra bonds. Unlike MA, the optimal alphabetdiscovered by the variational algorithm
penalizes the formation of these lower energy competing structures.

Figures 3.4b and 3.4c show two slices through the optimization landscape in the parameter
space off D ij ; f g. Figure 3.4b is a diagonal slice throughD ij , such that all D ij = D, while
�xing f = 0. We �nd that for the two 6 particle clusters (i) and (ii), there is a monotonic
increase in yield with increasingD. This suggests that even when the attractive forces are not
in�nitely short-range, both of these clusters are energetically the most stable con�gurations,
and the only competing structures are higher in energy. WhenD = 10kBT, the C2v cluster
(i) is formed with a yield of 93% compared to the 6% yield of the Oh cluster (ii), which
is consistent with the stabilization due to the rotational entropy in the former [192]. All
the other clusters (iii-ix) in Fig. 3.4b show a turnover in yield with increasingD. This is
due to competing low energy structures that are formed at large enough nonspeci�cD. We
expect this design principle of a turnover in yield with increasing nonspeci�c attractions to
be general for larger clusters, since most larger clusters built from short-range interacting
particles will contain the radial 5-fold motif [204]. The value of the attractionD at the yield
turnover is determined by a competition between the energetic stabilization of the lower
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energy structure and the destabilization of structures with missing bonds.
Figure 3.4c shows a slice through the optimization landscape with varying the shear rate

f , while �xing D ij at their optimal value found by the variational algorithm. We see that
for this class of rigid clusters, the yield monotonically decreases with increasing shear rate.
We expect this feature to be general for rigid clusters, since rigid clusters need no additional
geometric stabilization that can be provided by shear, which only energetically destabilizes
the bonds in the cluster. This perspective is con�rmed in Sec. 3.3 using a linear response
theory.

Nonrigid clusters

For our ansatz of short-range interacting colloids, clusters withN particles but fewer than
3N � 6 bonds in total, and fewer than 3 bonds for every particle, are not minimally rigid
in that they have zero energy deformation modes [203, 204]. These clusters are not formed
in high yield as stable ground state structures in equilibrium. We have used the variational
algorithm to uncover optimal nonequilibrium design principles for a family of such nonrigid
clusters. The clusters we have considered belong to a family of planar two-dimensional
structures known as polyiamonds. They have been shown to self-assemble from colloids in the
presence of a spatial heterogeneity, like in hydrodynamically driven assembly of sedimenting
colloids in the presence of a substrate [207, 208, 209]. Within our control force ansatz, we
investigate whether the shear ow planes are su�cient to stabilize these clusters.

For the optimization process, the indicator function for the cluster yield has been de�ned
using both the bond connectivity matrix and the atness of the clusters, as discussed in the
next subsection. Figure 3.5a shows the optimal design principles obtained for clusters (x-xiv).
The variational algorithm converges on the MA solution for theD ij parameters for all of these
clusters. The yields, however, are not 100% due to contribution from competing buckled
con�gurations where the polyiamonds fold over the triangular faces to form tetrahedral
motifs. Moreover, with the MA �xed, the optimal yield is at a non-zero shear ow. Figure
3.5b shows the yield as a function of the shear rate for �xed optimal alphabets. The location
of the turnover in yield depends on the competition between geometric stabilization of the
planar structure from the shear ow lines and energetic destabilization of the bonds. This
design principle of planar two-dimensional clusters being stabilized by a shear ow appears
to be general, and stands in contrast to the rigid clusters which are strictly destabilized by
shear.

E�ect of shear on geometry of nonrigid clusters

Shear ow enhances the yield of nonrigid clusters (x-xv) by stabilizing a planar geometry and
suppressing buckling modes. Here we have computed the probability distributionP(cos� )
of the average atness, de�ned ascos� = [cos(� ABC ) + cos(� DEF )]=2, conditioned on the
correct bond connectivity matrix for the cluster being satis�ed. The angles,� ABC and � DEF

are de�ned in Fig. 3.6. The atness is� 1 for a perfectly planar geometry, but increases due
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Figure 3.6: Flatness distribution for the geometry of the C2h cluster (x), keeping theD ij

�xed at the optimal solution and changing the shear ratef . (Inset) The atness is measured
through the angles� ABC and � DEF .

to buckling and bending of the nonrigid cluster. For de�ning the indicator function for the
nonrigid cluster, we used a atness cuto� ofcos� � � 0:8. We have looked at a population
where the bond-connectivity matrix condition is satis�ed but the atness is unconditioned.
This is illustrated in Fig. 3.6 for the C2h cluster (x). We have kept theD ij forces �xed at
the optimized alphabet, and plotted the distribution of atness at two values of shear, at
equilibrium with f = 0 and also at f = 20kBT=� 2 which is close to the optimal value for
highest yield. We �nd that the planar geometry is a transient state at equilibrium, with
the most probable states corresponding to the buckling of one or both of the angles� ABC

and � DEF . The shear ow destabilizes the buckled conformations and stabilizes the planar
state instead, so that atf = 20kBT=� 2 the most probable conformation is the correct planar
geometry.

Estimating explicit gradients in the low-density limit

Using Eq. 3.14, the second term in the explicit gradient with respect to the shear ow rate
f is
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Figure 3.7: Response of yield to shear for a rigid and a nonrigid cluster, withD ij �xed at
the corresponding optimalalphabets, and shear �xed at f = 5kBT=� 2. a) Total correlation
function (black squares) for an Oh cluster (ii), and its torque (orange circles) and virial stress
(red triangles) parts. b) The same correlation functions for the C2h cluster (x).

where we have simpli�ed the stochastic action using the equation of motion. Sincezi ap-
pears in the expression independently for each particle, and the density of the particles is
vanishingly small, thez-di�usion timescale of the cluster diverges, and the correlation func-
tion takes a long time to converge. Thus any gradient estimate we obtain by integrating the
correlation function to a �nite time � t will contain a systematic error. In order to obtain an
unbiased gradient, we recognize that in the large� limit we are working in, the major part
of 
( t) is from 1(t), which by our de�nition depends only on the internal coordinates of the
particle, and due to the spatial translation symmetry in our system, is decoupled from the
center-of-mass di�usion. This decoupling is directly expressed by a regrouping of terms in
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the sum over particles,
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where in the �rst term the z coordinate of the center of mass has been explicitly factored out.
We identify that the indicator function does not correlate with the center-of-mass motion and
so the �rst term is 0. We use only the second term to approximately evaluate the gradients
of Eq. 3.13 with respect to the shear ow ratef .

Response of structure to shear

The origin of the response of yield to shear ow is related to the relaxation dynamics of
order parameter uctuations in the unperturbed system. The response coe�cients for rigid
and nonrigid clusters can be understood using a generalized linear response theory [210, 36].
Keeping theD ij parameters �xed, the linear response of the yield to a change in shear ow
rate can be decomposed into two terms,

@h1i u

@f
=

1
kBT

Z 1

0
dt h� �(0) � 1(t)i u

+
1

kBT

Z 1

0
dt h� M(0)� 1(t)i u (3.22)

where we have used the low variance estimator for the correlation function in 3.3. Here, �
is related to the dynamical torque acting on the cluster,

� =
1

2N

X

i>j

[( _x i � fz i ) � ( _x j � fz j )](zi � zj ) (3.23)

and M refers to the virial stress on the cluster due to internal forces,

M =
1

2N

X

i>j

[F x
i � F x

j ](zi � zj ) (3.24)

where F i = �r rr i
P

j 6= i [VWCA (r ij ) + VMorse(r ij )] is the conservative force acting on thei -th
particle. � and M are time-reversal asymmetric and symmetric parts respectively [211] of
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the full stochastic action gradient,R = � + M . Decomposing in this form is necessary to
preserve the deconvolution of the center-of-mass motion from the internal coordinates of the
cluster [212].

This linear response function is 0 at equilibrium due to the spatial parity symmetry
of the system. Hence we have characterized the di�erent components of this correlation
function at a small value of shearf = 5kBT=� 2, for the rigid cluster (ii) and the nonrigid
cluster (x), �xing D ij to their corresponding MA interactions. The results are shown in
Fig. 3.7. We �nd that the component coming from the virial stress has opposite signs at
small times for the rigid and the nonrigid cluster, which accounts for the opposite signs
of the gradient of the yield. The tumbling motion of the clusters in a shear ow couples
positively with the internal order parameter in the case of a nonrigid cluster and leads to
an increase in yield with increasing shear ow rate at small values of shear. The shear ow
planes function as a spatial heterogeneity that is generally a precondition for stabilizing these
planar clusters during self-assembly. At large shear, the yields of both rigid and nonrigid
clusters are decreased with increasing shear due to the larger anti-correlation between the
torque and the indicator function.

These design principles in and out-of-equilibrium are general in their scope of applicability
for small clusters formed by DNA-coated colloids. Nevertheless, a key limitation of this
approach is the linear system size scaling of the number of di�erent kinds of DNA-labeled
colloids required in order to assemble a cluster, evident in the corresponding quadratic scaling
of the number of variational parameters. We have addressed this limitation in the next
section.

Smaller alphabets

Engineering a system with an extensive number of speci�c interactions is di�cult, even with
DNA-coated colloids. It is advantageous in this regard to uncoveralphabets that code for
the minimal su�cient interactions to stabilize a target structure, in such a way that does not
increase with increasing system size. For example, polymers and crystals are macroscopic
structures that can be assembled with a �nite number of speci�c interactions, as both only
require a repeating microscopic number of components to be stabilized, either a sequence of
monomers or a unit cell. For clusters that do not have a clear repeating unit, discovering
optimal design principles with smalleralphabetsis nontrivial.

We have studied this problem by considering the 6 di�erent low-symmetry 8-particle
clusters (xvi-xxi) shown in Fig. 3.8. For each of these clusters, there is no direct way to
partition the interactions into 2 or 4 classes based on their bonding environment or symmetry.
We have used the variational algorithm to optimize the yield of each of these clusters, with
a 2 particle, 4 particle and 8 particlealphabet, in which D ij has 3, 10 and 28 independent
variational parameters respectively. Clusters (xvi-xix) have near 100% yields for the full
sized alphabet. Clusters (xx) and (xxi) compete with higher bonded clusters containing
the radial 5-fold motif, and so have an optimal yield of lower than 100% even with an 8
particle alphabet. Nevertheless, for all the clusters, a 4 particlealphabetcan give quite large
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Figure 3.8: Design principles for low symmetry clusters (xvi-xxi) with smaller alphabets.
Each column corresponds to the point group of each cluster, its optimal yields and forces
with 2� 2, 4� 4, and 8� 8 sizedalphabetsin the three rows. The color scheme for the bonded
structure refers to the optimal partitioning of 8 particles within 2, 4 or 8 labels, and the
visualization of the D ij matrices follow the same color scheme as in Fig. 3.4.

yields in comparison to the maximum possible yield. The variational algorithm identi�es the
optimal way to partition the groups of interactions of these clusters despite the lack of clear
symmetry.

For the C1 cluster (xix), even a 2 particlealphabethas a high yield, despite not having
any exact two-fold symmetry. In this case, the algorithm has recognized a near-symmetry
in the cluster and has partitioned it into 2 groups. The symmetry of these letters is close to
the symmetrical alphabet that was discovered by the algorithm in a related C2 cluster (v)
in Fig. 3.4. We expect this potential to discover optimal design principles for large clusters
with a small number of groups, to be promising towards the self-assembly of experimentally
realizable systems with practical constraints on the limits of bottom-up design.

3.4 Design principles for yields of microphase
separation

In the previous sections we discussed optimization of the yield of colloidal nanoclusters under
a shear ow. The design principles we found however are only valid in systems consisting
of particles of only one set of the corresponding alphabet. In cases where there are many
copies of the alphabet, it is an entirely new paradigm to search for a set of design principles
that produce many copies of identically sized nanoclusters. Formation of such a phase in
a self-assembled system, identi�ed by the spontaneous emergence of a microscopic cluster
size scale even in the presence of a thermodynamic number of particles, is referred to as
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Figure 3.9: Optimized design principles for microphase separation into 6-particle clusters.
(a) and (b) are optimization curves for shear driving and active driving respectively. Dashed
black lines denote the optimization step where the learning rates are lowered in order to
anneal into the �nal solution well. (c) and (d) are optimized D ij and vi alphabets for (a)
and (b) respectively. The shear in (a) optimizes to 50kBT=� 2, the maximum allowed value.
(e) and (f) denote cluster size distributions for the optimized system withN = 48 and a test
system with the converged forces but withN = 96.

microphase separation or self-limited assembly. Such a phase will compete with a typical
gas phase or bulk condensed phase, where the cluster size distribution either has a most
probable value at 1 orO(N ), with N being the thermodynamic system size. A system with
self-limited assembly will show a peak at a microscopic size in the cluster size distribution,
with microscopic being de�ned as the peak position beingO(1), invariant to changing the
system size in the thermodynamic limit. Apart from the cluster size distribution, peaks in
structure factor corresponding to a recurring microscopic lengthscale can also be used as a
suitable order parameter to detect a microphase [213].

Biological systems widely use self-limited assembly to regulate volumes of cells, vesicles,
and viral capsids [214, 215], e�ciently package genetic material in nuclei [216], and tune
mechanoelastic properties of cytoskeletal bundles [217]. The mechanism for stabilizing these
structures are current areas of research. Stabilizing a microphase against bulk condensation
requires either conservative forces or dissipative driving to compete against surface tension.
In equilibrium systems, multiple mechanisms of self-limited assembly via short-range at-
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tractive and long-range repulsive interactions, through geometric frustration, and through
kinetic control, have been well studied [213, 218, 219]. Inverse design algorithms for design-
ing microphase separation by optimizing a Boltzmann distribution have also been previously
studied [220]. But the role of nonequilibrium mechanical or chemical control of microphase
separation, such as is ubiquitous in active processes in cells, is not well understood.

In this section we apply the variational algorithm to design DNA-labeled colloidal par-
ticles for microphase separation under nonequilibrium driving. Our observable to optimize
is a time averaged indicator function, as de�ned in Eq. 3.7, for the formation of 6-particle
clusters of any geometry and connectivity. As basis set we choose a 6� 6 alphabet, where
now the nonzero diagonal elements denote pairwise interaction strength between multiple
copies of identical particles. We simulated with overdamped Langevin dynamics a periodic
box of 8 copies of the alphabet, with a total ofN = 48 particles at a packing fraction of 0.02.
The particles feel pairwise WCA repulsion given by Eq. 3.5, and a Morse potential attrac-
tion with tunable amplitudes given by Eq. 3.6, representing a coarse-grained DNA-mediated
e�ective force. We optimize the yield of 6-particle clusters under two di�erent dissipative
driving conditions: a shear ow with a tunable rate given by Eq. 3.4, and alternately by
making the colloidal particles active with a self-propulsion force given by

f A
i = vip̂ i (3.25)

where vi is an optimizable magnitude of self-propulsion, and̂p i is a three-dimensional po-
larization vector that di�uses as [221]

_̂pi =
p

2D r (p̂ i � � i ) (3.26)

Here D r = 3kBT=� 2 is the rotational di�usivity and � i are unit variance Gaussian white
noise that satisfy

h� i (t)i = 0 h� i (t)� j (t
0
)i = 2I 3� ij � (t � t

0
) (3.27)

We optimize self-propulsionvi also within a 6-particle alphabet. We choose the biasing
parameters in Eq. 3.13 to be� 1010 as the second term in the cost-function scales with the
system size and is larger than in previous sections.

Figure 3.9 shows the results of the optimization for microphase separation with shear
driving and active driving. (a) and (b) are learning curves showing the increasing yield of
6-particle clusters with optimization steps. Similar to previous sections, we have had to lower
the learning rate in order to anneal smoothly into the solution well. The optimized values of
the yield are 5� 7%, compared with an initial value of 1� 2%. Sub�gures (c) and (d) show
the optimized alphabets in the respective systems. In the shear-driven system, the shear ow
rate optimizes to a value of 50kBT=� 2 which is the maximum we allow during optimization.
The optimized D ij alphabet is relatively sparse, coding for a few strong attractions. This
implies same particles from multiple alphabets bonding together to increase probability of a
6-particle cluster. This is con�rmed by a size-scaling analysis of the cluster-size distribution
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pro�le. For N = 48, the distribution is peaked at 1 and shows a second peak at a cluster
size of 6, similar to the expected distribution in a microphase separated system, however, on
doubling the system size, the second peak moves to approximately double the desired cluster
size. This con�rms that the alphabet codes for multiple copies of the same kind of particle
assembling into 6-particle cluster, and that this is not true microphase separation. Attempts
at eliminating these �nite size e�ects by optimizing larger systems directly did not result in
a second peak in the cluster-size distribution pro�le.

The optimization run for active driving converges smoother than the previous case, how-
ever, the algorithm �nds a large degenerate class of solutions where either all particles
experience strong attraction and strong activity, or they are both weak, with many solutions
in between. The high attraction and activity solution has been shown with colormaps in Fig.
3.9(d). This solution does not result in a microphase, as has been shown in the cluster-size
distribution pro�le in sub�gure (f). The distribution is peaked at 1 and it is invariant to
system size, thus being typical behavior for a gaseous phase. For optimal forces with weaker
attractions, the optimized activities required to melt the clusters into a gas are also weak.
The variational algorithm �nds this same class of gas-phase solutions regardless of choice of
starting points in parameter space.

Hence we see that shear driving or active driving are unable to generate microphase
separation in coarse-grained models of DNA-labeled colloids. This results from the inability
of these mechanically driven dissipative modes to couple to speci�c probability uxes that
increase the probability of a microphase separated state. In the next section we extend
our algorithm to directly optimize reactive uxes and currents for single nanoclusters to
isomerize between di�erent shapes.

3.5 Design principles for reactive ux in steady-states

Self-assembly is a dynamic process that involves stabilizing a target structure as well as
increasing the kinetic ux into the target [172]. Fluxionality of a target structure is important
in order to correct structural errors during its assembly. Further, any functional structure
like an enzyme or a molecular motor must be not only stable but also able to disassemle
and reassemble in a dynamic nonequilibrium steady-state. Functional molecules are able to
couple their internal reactive modes to external mechanical or chemical dissipative forces,
thus breaking detailed balance in speci�c reaction coordinates that are coupled to their
output work. Thus, optimizing self-assembly for optimizing the probability ux in and out of
a target structure is the path to designing functional materials. Previous work on optimizing
the reactivity of self-assembled nanoclusters have used equilibrium approximations to look at
single transient realizations of reactive barrier crossing [222, 162], however, the design of long-
lived probability uxes and currents in and out of functional structures in nonequilibrium
steady-states remain unexplored.

In this section, we use our variational algorithm to optimize reactive uxes and currents
owing between 6-particle clusters of C2v and Oh geometries in a sheared steady-state of
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Figure 3.10: Optimal design principles for high reactive uxes and currents. (a) shows the
three major states the sheared colloids go through to manifest high uxes and currents.
(b) and (c) are optimized D ij alphabets for high reactive uxes between C2v and Oh, and
for high reactive current from C2v to Oh respectively. d) Integrated reactive displacement
corresponding to the high-current solution, at zero and nonzero shear ow rate. (e) and (f)
are the steady-state averaged time-dependent reactive uxes in both directions for the high
ux and high current solutions respectively, at zero (dashed blue and red lines) and nonzero
(blue and red symbols) shear ow rates. The vertical dashed black lines denote the delay�t
used in the optimization.

N = 6 particles. Our ux observable is de�ned as

QC2v ! Oh
�t =

1
�

Z �

0
1C2v (t)1Oh (t + �t )dt (3.28)

for a �xed delay time �t . Similarly, we de�ne the reverse uxQOh ! C2v
�t , and currentsJ C2v ! Oh

�t
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and J Oh ! C2v
�t as the di�erences of the uxes,

J C2v ! Oh
�t = QC2v ! Oh

�t � QOh ! C2v
�t (3.29)

The delay-time is chosen to be comparable to the typical transition path time needed for
individual reactive events to happen, as observed from pre-optimization simulations. This
de�nition of probability current is associated with a nonzero entropy production and is
nonzero on average only in a nonequilibrium steady-state. Directly optimizing such proba-
bility currents will design the system to couple the speci�ed reaction coordinate maximally
to the ambient mechanical dissipatively driven mode.

We choose the same parameters for overdamped Langevin dynamics simulations and op-
timization as we had chosen in Section 3.2. We have chosen the time delay to be�t = 0:025t0,
comparable to observed transition path timescales from a nonspeci�c alphabet simulation of
D ij = 5kBT for all pairwise attractions, at equilibrium. We �nd that both the unidirectional
uxes and the currents are maximized when the shear ow rate is the largest we allow,
f = 50kBT=� 2. Designing the system for high uxes and currents lead to the prevalence
of three major states as shown in Fig. 3.10(a). The high ux optimization runs on either
direction yield the same optimal alphabet, Fig, 3.10(b), that is an intermediate between the
respective maximal alphabet solutions for C2v and Oh. However, the optimal alphabet for
high currents from C2v to Oh resemble neither of those two, but codes for the octahedral
cluster to sometimes unfold into the nonrigid C2h cluster shown in sub�gure (a), and, keeping
the correct order of bonds, refold into a C2v cluster. These irreversible hops are what causes
the symmetry of the bidirectional reactive uxes to break and contributes to positive current
round the loop. We have shown in Fig. 3.10(d) the total displacement due to this current,

R[X (t)] =
Z t

0
J C2v ! Oh

�t (t)dt (3.30)

that increases to nonzero values with time at the driven nonequilibrium steady-state, as
opposed to an equilibrium system having the same conservative forces as the optimized
alphabet. These nonzero displacements are used in enzymes and molecular motors to denote
the amount of irreversible work done and the emergence of these currents denotes that the
molecule has been successfully designed to harvest mechanical nonequilibrium driving to
produce usable work [223]. In contrast, optimization runs for the reverse currentJ Oh ! C2v

�t
were unsuccessful to �nd any set of forces that led to any positive value. The optimal value of
the reverse current was found to be zero arising from either maintenance of the bidirectional
reactive ux symmetry or from the nonequilibrium driving being too small to generate any
uxes at all. This selectivity in the ability of only speci�c reaction coordinates to positively
couple to the shear driving is remarkable and could arise from the comparative mechanical
deformation modes and radii of gyration of the C2v and Oh clusters, as that is how they
couple to a shear ow.

We have explicitly shown the steady-state averaged time-dependent reactive uxes in the
optimized solutions for high ux and high current in Figures 3.10(e) and (f) respectively The
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vertical black dashed line denotes the choice of�t , and we see that the side-side correlation
functions there have gone into the linear regimes but haven't started saturating yet. The
correlation functions in both cases have periodic oscillations corresponding to the fast tum-
bling motion of the cluster in the sheared steady-state. At the long time limitt ! 1 , the
reactive uxes in both directions become identical and time-independent due to the loss of
correlation. In sub�gure (e), we see that the reactive ux has been maximized in both direc-
tions while approximately preserving their symmetry. The shear ow has an active role in
this high ux, as clear from the same correlation functions with the same optimized alphabet
but at f = 0. Sub�gure (f) similarly shows the reactive uxes for the optimized high-current
forces. Here we see that the algorithm has found a way to maximally break the symmetry
between the two reactive uxes at the given value of�t , by delaying the reverse reactive ux
compared to the forward. This breakdown of detailed balance in this prespeci�ed reaction
coordinate is evidently achieved by the only nonconservative force in the system, the shear
ow, as demonstrated by the restoration of the symmetry by putting the shear ow rate to
0 even with the optimized pairwise forces.

We have thus shown that the variational algorithm can be used to tune reactive uxes
and currents in a nonequilibrium steady-state. In a sheared system this amounts to max-
imizing the coupling between mechanical driving and chemical degrees of freedom for the
colloids, thus harvesting the dissipative driving to break detailed balance in select modes.
The optimizability of the currents itself depends on the ability of the custers in the relevant
direction to be mechanically a�ected by a shear ow. This approach opens a promising av-
enue for application of the variational algorithm to directly design functional materials which
may convert dissipation into usable work. In the next section we look at such a molecular
machine and directly optimize observables related to its performance.

3.6 Optimal design principles for molecular machines

Molecular machines are functional molecules that consume chemical energy at a nonequilib-
rium steady-state to perform useful mechanical or chemical work. The operation of molecular
machines far from thermal equilibrium enables them to overcome thermodynamic bounds
on performance as well as produce a �nite power. The operation of molecular machines to
produce desired levels of power at high e�ciency has been extensively studied with the tools
of stochastic thermodynamics and uctuation theorems[19], with geometric near-equilibrium
response theory [201, 224] and with large deviation theory for e�ciency uctuations [225].
The nonequilibrium operation of molecular machines have been analyzed in the framework
of free energy and information transduction between multiple nonequilibrium reservoirs and
the role of tight internal coupling for e�cient operation of molecular machines has been
recognized [226]. Nevertheless, most design approaches for molecular dynamics models of
machines use phenomenological surveys to �nd high power and high e�ciency solutions,
instead of an automated method that can discover novel solutions. In this section we ex-
tend our variational algorithm for the discovery of high power and high e�ciency regimes
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Figure 3.11: Optimal design principles for a model for ATP synthase. a) A schematic rep-
resentation of the two-particle system, where theF0 particle (blue) climbs down a potential
ramp driven by � H + , and the coupledF1 particle is pulled up a ramp doing work against
� ATP . b) Representative statistical realization of the two-dimensional trajectories for a pre-
optimization starting point (red), at a set of parameters with maximum e�ciency but not
high power (black), and a set of parameters with both maximum power and e�ciency (or-
ange). (c) and (d) are the optimization landscapes for power and e�ciency respectively.
Black lines are the trajectories taken by the variational algorithm through the parameter
space in either of the two cases. The square, triangle and circle denote the set of parameters
corresponding to (b).

that have been previously phenomenologically studied, in a coarde-grained model for the
molecular motor ATP synthase.

The F0 � F1 ATP synthase is vital towards most of the ATP production from aerobic
respiration in mitochondria. This motor resides across membranes in mitochondria and
transforms cross-membrane proton motive force into energetic phosphate bonds to make
ATP. The motor consists of two subunitsF0 and F1 each having a three-fold symmetry. The
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F0 subunit is rotated by protons moving across the membrane due to proton motive force
� H + , which in turn drives the F1 subunit to rotate and produce� ATP , a chemical potential
leading to ATP synthesis from ADP and inorganic phosphate. We model the rotation of
the F0 and F1 subunits as overdamped Langevin dynamics of two coupled particles in one-
dimensional periodic cosine potentials [227]. This model is schematically illustrated in Fig.
3.11(a). The coordinates of the particles,� 0 and � 1, di�use in the potential energy landscape

V(� 0; � 1) = �
1
2

E0 cosno(� 0 � � ) �
1
2

E1 cosn1� 1 �
1
2

Ecouple cos(� 0 � � 1) (3.31)

where E0 and E1 are barrier heights in the periodic potential,� is a phase o�set between
� 0 and � 1 and Ecouple is the coupling energy of the two particles. We allow� 0 and � 1 to
be in the range [0; 2� ] with periodic boundaries. Aside from the conservative forces, theF0

particle is driven by a constant external force� H + and the F1 particle by a constant force
� ATP . Choice of these two driving forces as� H + > 0, � ATP < 0 and j� H + j > j� ATP j pushes
the system out of equilibrium and allows the machine to do work against� ATP . Similar to
Ref. [227], we choosen0 = n1 = 3 and E0 = E1. With this model, the input and output
powers and the e�ciency associated with each trajectory are de�ned by

PH + [X (t)] =
2�� H +

�

Z �

0

_� 0dt (3.32)

PATP [X (t)] = �
2�� ATP

�

Z �

0

_� 1dt (3.33)

� =
PATP

PH +
(3.34)

with the e�ciency being bounded by � � ATP =� H + . The parameter regimes for optimal per-
formance in terms of these metrics in this model has been studied in detail in Ref. [227].

We use our variational algorithm to �nd optimal choice of the parameters used in Eq.
3.31 for independently maximizing power and e�ciency. For a cost-function, we retain only
the �rst term in Eq. 3.13 with the power or e�ciency as observables, the choice ofs thus
being rendered to that of the learning rate. Optimization of a trajectory-averaged output
power is exactly similar to the approach used for yields and reactive uxes, and for gradients
of trajectory averaged e�ciency with respect to variational parametersf cg, we use the chain
rule

@�
@c

=
PH + @cPATP � P ATP @cPH +

P2
H +

(3.35)

We hold constant E0 = E1 = 2kBT, � H + = 4kBT and � ATP = 2kBT to avoid trivial
optimization of power with increased chemical potentials and decreasing barrier heights and
that of e�ciency with changing ratio of chemical potentials. Our variational parameters�
and Ecouple are allowed to vary in [� �; � ] and [5kBT;20kBT] respectively. For simulating the
dynamics at each optimization step and estimating gradients, we use a timestep of 10� 5, an
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integration time � t for Malliavin weights as 10, and a trajectory length of 500, all in units of
the natural di�usive timescale of the system with friction coe�cients and di�usion constant
both being unity.

We initialize the power and e�ciency optimization runs from � = 0; Ecouple = 10kBT
and had to lower learning rates in two steps to anneal to the solution well. The results
of the optimization runs through the two-dimensional parameter landscape for power and
e�ciency are shown in Fig. 3.11(c) and (d) respectively, with single statistical realizations
of equal durations of unoptimized, high-e�ciency and high-power trajectories shown in Fig.
3.11(b). We see that unoptimized trajectories have generally correlated motion between
� 0 and � 1 albeit with sudden failure modes that lead to loss of power and e�ciency. In
contrast, high power is uniquely achieved at a high value ofEcouple around a phase shift
of � 2:2, which is similar to results in Ref. [227]. The high power trajectories also have
high e�ciency, as shown by the highly correlated motion of� 1 versus� 0 with a high slope.
There is however a large near-degenerate regime of parameters, at highEcouple, where near-
maximum e�ciency close to the theoretical bound is achieved irrespective of the phase shift.
This is the regime of tight coupling between input and output coordinates where any energy
leakage is minimal. The algorithm �nds this degenerate solution basin and di�uses out in
it, as the noise in the stochastically evaluated gradients becomes comparable in magnitude
to the gradient of the e�ciency landscape. There is therefore a class of solutions at high
coupling strength and positive phase shift that have high e�ciency but low output power.
One such statistical realization is shown in Fig. 3.11(b), where the two coordinates have
tightly e�cient correlations but the total amount of displacement for the same amount of
elapsed time is less than the high-power solution. Further analysis in terms of the exact
mechanism of successful and failed energy transduction segments in these trajectories is
required in order to generalize these design principles to machines with more degrees of
freedom that can dissipate and reroute energy.

3.7 Conclusion

We have developed an inverse design algorithm for the self-assembly of colloidal clusters in a
nonequilibrium steady-state. The formalism exploits a variational structure originating from
large deviation techniques for importance sampling in trajectory ensembles. The algorithm
optimizes the yield of clusters of arbitrary shapes, sizes and geometry by tuning control forces
within an arbitrarily chosen ansatz, with statistically estimated explicit gradients. We have
demonstrated the performance of the algorithm using an ansatz of DNA-labeled colloidal
clusters self-assembled in a shear ow, and have obtained design rules for di�erent families
of rigid and nonrigid clusters. This algorithm scales linearly both in system size and in the
number of optimizable parameters in the force ansatz, but its performance is independent of
the speci�c order parameter chosen for the self-assembly process. For example, the choice of
a locally de�ned structural order parameter such as the density or the degree of crystallinity
as the optimized observable can produce design principles for the assembly of extended
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dispersed or periodic structures out of equilibrium. Similarly, dynamical order parameters
like the instantaneous ux between two stable states and performance metrics of molecular
machines like output power and e�ciency can also be optimized using the same variational
procedure in a suitable trajectory ensemble. Hence this algorithm can be used to tune both
structural and dynamical properties of clusters in a nonequilibrium steady-state to produce
dynamical phases having no equilibrium analogs.

This variational algorithm di�ers from other available inverse design algorithms for soft
matter in and out of equilibrium. The equivalent variational structure in con�guration space
for systems in thermal equilibrium, where the potential energy function is optimizable and
explicit gradients can be statistically estimated by autodi�erentiation, has been used exten-
sively as the basis of both importance sampling and inverse design algorithms [71, 156, 228].
This con�guration space approach with explicit gradients is not feasible in nonequilibrium
systems due to the probability measure being non-Boltzmann. Out of equilibrium, there
have been theoretical approaches to rationalizing design principles in one or two component
systems [22, 229, 21].

In the absence of a closed form expression for the con�guration space measure, machine
learning algorithms have been previously used to identity optimal design principles by track-
ing an order parameter during or at the end of �nite-duration trajectories [230, 231, 232, 233].
Machine learning or neuroevolution based approaches are equivalent to estimating numerical
gradients in the design space using �nite-di�erence methods, and have similar convergence
properties as explicit gradient based methods in the limit of small optimization steps [234].
However, since our multidimensional statistical gradient estimates are obtained using in-
formation from the same trajectory, our explicit gradient based method is expected to be
advantageous in a high-dimensional design space as typically encountered in the bottom-up
design of soft materials.

Finally, a class of design algorithms employ a trajectory ensemble based approach to sta-
tistically estimate explicit gradients of the dynamical response in colloidal systems [162, 222]
and are formally closest to our approach. These algorithms probe the transient dynamical
response of self-assembly trajectories, which however do not predict the long-time properties
of the self-assembled cluster in a nonequilibrium steady-state. In our algorithm, we have
explicitly evaluated the long-time steady-state limit and arrived at the novel uctuation-
dissipation relation in design space in Eq. 3.14. This will enable our explicit-gradient based
method to be directly used to optimize both structural and dynamic properties of driven
phases of soft matter, and automate the discovery of new functional materials.

Data Availability

The data that support the �ndings of this study are openly available in Zenodo at
https://doi.org/10.5281/zenodo.4289235 [235].
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Chapter 4

Reinforcement Learning of rare
di�usive dynamics

We have so far developed an optimization technique based on stochastic gradient descent to
optimize control forces to sample and design rare but important trajectories. The perfor-
mance of our variational algorithm relies on getting a low-variance estimate of the explicit
gradients of the cost function in parameter space. In the steady-state problems we have
studied, we have seen a large improvement in statistical e�ciency of sampling compared to
direct population dynamics approaches, allowing us to probe novel regimes of rare uctua-
tions. However, the accelerated gradient descent method only incorporates memory through
an inertia vector, while discarding prior information about the parts of the cost-function
landscape that it visited before. Additionally, generalization of the optimization algorithm
to �nite duration trajectories ampli�es the problem of noisy gradients, as in �nite duration
the gradients have to explicitly computed by a temporal double integral of a correlation
function, instead of a single steady-state integral. This necessitates development of more
advanced learning algorithms where auxiliary functions can reduce the variance of gradi-
ents and store memory of the cost-function landscape. In this chapter, borrowing notions
from reinforcement learning [236], we have developed a method to generate rare dynamical
trajectories directly through the optimization of an auxiliary dynamics that generates an
ensemble of trajectories with the correct relative statistical weights. Within this ensemble
of trajectories, a variational estimate of the likelihood of the rare event is obtainable from a
simple expectation value. We have built on the work in Refs. [117, 125] and past literature
on reinforcement learning for continuous time processes [237, 238, 239, 240, 241, 242, 243,
244].

The techniques of reinforcement learning aim to learn the best decisions to make in each
state in order to achieve some goal. Algorithms developed in this context have led to many
signi�cant advancements in recent years across tasks requiring an intelligent agent to interact
with an environment, such as in gameplay [245, 246, 247] and robotics [248, 249, 250], with
a variety of recent applications in physics [251, 252, 253, 254, 255, 256, 257, 258]. However,
many of these situations are framed as discrete time problems, with relatively little work
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done in stochastic continuous time control [237, 238]. For di�usive processes and importance
sampling molecular dynamics, we formulate a reinforcement learning procedure to learn the
correct force to inuence the probability of choosing each next state. From this perspective,
we take a policy gradient based approach [259, 260, 238, 248, 249], learning a generative
model for the evolution of the state. The optimized force found is such that rare events are
made typical while staying close to the original force, providing a dynamics that can aid in
e�ciently sampling the targeted trajectory ensemble.

A key advantage of the reinforcement learning techniques we develop is the use of an
additional learning process for a function which guides the optimization of the dynamics, a
so-called value function [261], which describes how relevant each state is to the rare events of
interest. This value function substantially reduces the variance in estimates of the gradient of
the parameters specifying a force, allowing for the use of less data in each optimization step
and subsequently more complex approximations to the auxiliary dynamics. We show how
this approach can be successfully applied to both �nite time problems in which the dynamics
is constrained to guarantee the occurrence of some rare transition like a barrier crossing, and
to time-homogeneous problems where we are interested in the statistics of time-integrated
observables in the long time limit as characterized by its large deviation function.1

4.1 Trajectory ensemble Formalism

We consider systems evolving with a di�usive dynamics over timet of a con�guration x.
These con�gurations evolve according to a force vectorF(x; t) and noise vector of equal
dimensionW with associated constant noise matrixG invertible within the stochastically
evolving subspace, represented by the stochastic di�erential equation (SDE)

dx = F(x; t)dt + G � dW ; (4.1)

where the noiseW follows a Wiener process, with incrementsdW drawn from a Gaussian
with zero mean anddt variance.Throughout we will work in dimensionless variables that
imply unit energy scales and mobilities. The requirement ofG being invertible within the
stochastic subspace may in principle be relaxed, however in that case there may be multiple
noise vectors corresponding to the same change of state, making the evaluation of transi-
tion probabilities necessary for our optimization approach di�cult. We will follow the Ito
convention for ease of notation and implementation with standard numerical integrators.
Throughout, we do not assume in Eq. 4.1 that the force is gradient or that the noise obeys
a detailed balance, and thus our approach is generally applicable to equilibrium as well as
nonequilibrium dynamics.

We aim to probe rare uctuations in trajectory observables. Here we consider trajectories,
X 0;T , de�ned as the sequence of con�gurations over an observation timeT, though gener-
alizations of uctuating observation times are possible [263] . Generally, we will consider

1Most of the content of this chapter was originally part of the publication [262].
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observables that are functions of time-integrated variables over the trajectory,

O [X 0;T ] =
Z T

0
dt A[x t ; t] + B [x t ; t] � _x(t); (4.2)

where the �rst term is a state dependent observable, while the second term depends on a
stochastic increment, with both A[x t ; t] and B [x t ; t] being state dependent. However, we
will also consider cases in whichA[x t ; t] is a function of a single time in order to impose end
point conditioning. Expectations of functions of such observables are de�ned through path
integrals of the form

hf (O [X t;t 0])i p =
Z

DX t;t 0dx t P [X t;t 0] f (O [X t;t 0]) ; (4.3)

whereP [X t;t 0] is the total probability of a trajectory decomposable intoP [X t;t 0] = p[X t;t 0jx t ]
� (x t ) where p[X t;t 0jx t ] is the transition probability conditioned on starting in con�guration
x t with initial probability � (x t ).

Probabilities for trajectories between timest and t0 starting at x t are de�ned by

p[X t;t 0jx t ] / exp
n

� 1
2

Rt0

t dt00jG� 1 � ( _x � F)j2
o

(4.4)

where we suppressed the arguments ofx t and F[x t ; t] for shorthand. This is the standard
Onsager-Machlup form for the di�usive dynamics considered here [264]. The measure over
paths between timest and t0 starting from position x t is de�ned such that

Z
DX t;t 0p[X t;t 0jx t ] = 1 (4.5)

where the transition probability is normalized when integrated over all trajectories. These
path probabilities satisfy

p[X t;t 00jx t ] = p[X t0;t 00jx t0] p[X t;t 0jx t ] (4.6)

and
DX t;t 00 = DX t0;t 00DX t;t 0 (4.7)

due to the Markovian noise in Eq. 4.1.
Trajectories sampled with P [X 0;T ] will be dominated by the most typical values of

O [X 0;T ]. We will encode the rare trajectories with atypical values ofO [X 0;T ] by reweighting
the original trajectory ensemble de�ned by Eq. 4.4, multiplying each trajectory by an observ-
able dependent factor. Such reweightings occur naturally in statistical studies of rare events
and are isomorphic to extended ensemble approaches in equilibrium con�gurational prob-
lems. The ensemble of events we are interested in is constructed by weighting the probability
of trajectories in the original dynamics by an exponentially positive number,

Ps [X 0;T ] = e� sO[X 0;T ]� � (s;T )P [X 0;T ] ; (4.8)
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where Ps [X 0;T ] is denoted as a tilted path ensemble, biased by a statistical �elds in such
a way to promote rare uctuations in O [X 0;T ]. The quantity � (s; T) normalizes the tilted
distribution, and is identi�able as a cumulant generating function (CGF)

� (s; T) = ln Z (s; T) = ln
D

e� sO[X 0;T ]
E

p
; (4.9)

and equal to the logarithm of the tilted path partition function Z(s; T). The reweighted path
ensemble generally de�nes a new transition probabilityps [X t;t 0jx t ] and initial condition. The
evaluation of � (s; T) is a common objective in studies of di�usive systems as it describes
the statistics of O [X 0;T ]. Contributions to � (s; T) or Ps [X 0;T ] are dominated by trajectories
with large or small values ofO [X 0;T ], depending on the sign ofs. The exponential bias,
exp(� sO[X 0;T ]), can also be constructed to function as a �lter based on ful�lling speci�c
criteria. In such casesPs [X 0;T ] is identi�ed as the probability that a trajectory ful�lls a
speci�c conditioning, and its ensemble a corresponding conditioned path ensemble. Common
examples are Brownian bridges [109, 265, 266], where trajectories are conditioned to end at
xT = x0, in which O [X 0;T ] is 1 if xT = x0 and is 0 otherwise, ands is taken su�ciently
negative that only those trajectories for which the constraint is satis�ed have signi�cant
weight.

4.2 Gradient optimization for �nite time constrained
dynamics

Our aim is to �nd a dynamics which generates trajectories with probability as close to the
reweighted trajectories ensemble as possible. For the di�usive dynamics considered here, this
is exactly achievable in principle through a so-called generalized Doob transformation [267,
142, 51, 63, 110, 268]. The generalized Doob transformation de�nes a modi�ed dynamics
with an added drift force that is generally time dependent but with an identical noise as in
the original SDE. However, constructing this transformation is often not possible in practice,
as it requires diagonalizing a modi�ed Fokker-Planck operator which in interacting systems
is exponentially complex [269]. Here we aim to parametrize a drift force with tunable param-
eters � to approximate the generalized Doob transform. With the modi�ed force,F � (x; t),
we have a modi�ed SDE

dx = F � (x; t)dt + G dW ; (4.10)

with corresponding trajectory probabilities

p� [X t;t 0jx t ] / exp
n

� 1
2

Rt0

t dt00jG� 1 � ( _x � F � )j
2
o

(4.11)

which still satisfy the Markovian properties of the original dynamics and the same normal-
ization constant. See Ref. [125] for a discussion of problems in which the optimal dynamics
is required to be non-Markovian, in the context of discrete time Markov processes.
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We seek to learn a set of parameters� to minimize the Kullback-Leibler (KL) divergence
between the modi�ed dynamics and the reweighted trajectory ensemble de�ned by Eq. 4.8.
The KL divergence is de�ned as

DKL (p� jps) =
�

ln
�

p� [X 0;T jx 0]� (x 0 )

ps [X 0;T jx 0]� (x 0 )

��

p�

; (4.12)

where the expectation is taken with respect to the parametrized dynamics. This quantity
is a measure of the similarity between the modi�ed and reweighted trajectory ensembles.
Achieving a zero value whenp� is given by the generalized Doob transform, the KL divergence
has a unique minimum when this Doob transformed dynamics is contained within the space
of parametrized dynamics, providing a variational estimate of the CGF. We note that this
de�nition of the KL divergence di�ers from much of the literature considering optimization
of a parametrized di�usive dynamics [270, 271, 272, 273], where the parametrized dynamics
p� and target dynamicsps appear in an opposite way. In principle the initial distribution
should also be parametrized, as it will be modi�ed by the reweighting, however depending
on the space of distributions chosen these can be hard to sample. We drop this modi�cation
for simplicity.

Low variance gradient estimation

In order to optimize the force,F � , we follow techniques introduced in the reinforcement learn-
ing literature [236, 274, 275, 276, 248, 277]. Substituting the parametrized and reweighted
trajectory probabilities into the KL divergence, we may rewrite it as an average over a
parameter dependent time-integrated observable

DKL (p� jps) = � h R [X 0;T ]i p�
+ � (s; T) (4.13)

where in the language of reinforcement learning we de�ne a return,R [X 0;T ], as

R [X 0;T ] = � sO[X 0;T ] � ln
�

p� [X 0;T jx0]
p[X 0;T jx0]

�

(4.14)

with the negative of the average of the second term measuring the KL divergence,DKL (p� jp),
between the parametrized dynamics and the original dynamics. This return is analogous to a
regularized form of reinforcement learning [275, 277] similar to that considered in maximum-
entropy reinforcement learning [248, 249, 276]. When evaluated at the generalized Doob
transform the KL divergence vanishes and the return evaluates to the CGF. Away from
the Doob transform, the positivity of the KL divergence results in the return variationally
bounding the CGF from below [111].

We aim to minimize the KL divergence through stochastic gradient descent in the pa-
rameter space. For this we need the gradient ofDKL (p� jps) with respect to � ,

r � DKL (p� jps) = � h R [X 0;T ] r � ln p� [X 0;T jx0]i p�

(4.15)
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where we note
hr � R [X 0;T ]i p�

= 0 (4.16)

due to conservation of probability [125]. The factor multiplying the return is commonly
referred to as the Malliavin weight in the stochastic analysis literature [122], and corresponds
to a particular case of the eligibility traces found in reinforcement learning [261, 236, 278,
279, 280], which we denote asy� (T) = r � ln p� [X 0;T jx0]. It can be rewritten by substituting
the path probability,

y� (t00) � y� (t0) =
Z t00

t0
dt _y� (t); (4.17)

where

_y� (t) =
�
G� 1 � ( _x(t) � F � (t))

�
�
�
G� 1 � r � F � (t)

�
(4.18)

is the integrand of the Malliavin weight.
Were we to stop at Eq. 4.15, we would proceed to optimize a generative model (the

di�usive dynamics with our parameterized force) of the trajectories using a score-function
based approach, similar to standard unsupervised learning. However, following the methods
of reinforcement learning, we can use a combination of the Markovianity of the generative
model and other variance reduction techniques to produce a gradient estimator which is
much more e�cient to estimate. To begin with, we can simplify Eq. 4.15 by noting that due
to Markovianity, the Malliavin weight only correlates with the return in the future, and we
can rewrite the gradient as

r � DKL (p� jps) = �
� Z T

0
dtR [X t � ;T ] _y� (t)

�

p�

= � MCR (�; T ); (4.19)

where we usedt � as a shorthand fort � � for some small positive� . We refer to the
optimization of the modi�ed dynamics using this formulation of the gradient as� MCR , as it
is analogous to the Monte-Carlo returns (MCR), or REINFORCE [281, 282] policy gradient
algorithm in reinforcement learning. In the long observation time limit, employing this
gradient in stochastic optimization reduces to previous variational Monte Carlo procedures
[117].

This estimator of the gradient is non-optimal for two reasons. First, it requires evaluation
of a two time correlation function. In steady state, stationarity can be invoked to eliminate
one of those integrals, however under �nite time conditioning this simpli�cation is not pos-
sible. Second, it has a high variance and requires signi�cant averaging to converge accurate
gradients. This is because both the Malliavin weight and the return undergo a random walk
with linearly increasing variance [122]. Building on the analogies with the reinforcement
learning formalism we de�ne a value function as a path average of the return,

V(x; t) = hR [X t;T ]i p� ;x : (4.20)
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conditioned on starting at the position and time,x t = x. Introduced into the gradients of
DKL (p� jps) in distinct ways, the value functions can be used to tame both problems of the
naive MCR gradient estimate.

First, we introduce a value function as a baseline that depends only on the state at the
time t in order to reduce the variance of the gradient. We note that _y� (t) is linear in the
noise and thus averages to zero when multiplied by a function of the state at or beforet.
De�ning a temporal di�erence error

� [X t � ;T ; t] = R [X t � ;T ] � V (x t ; t) ; (4.21)

we write the dynamical gradient as

r � DKL (p� jps) = �
� Z T

0
dt� [X t � ;T ; t] _y� (t)

�

p�

= � MCVB (�; T ) (4.22)

where we have formally subtracted zero. We refer to this gradient estimator as� MCVB , for
Monte Carlo Value Baseline (MCVB) [236]. The subtraction of the state point dependent
value function reduces the variance of the gradient by accounting for the mean uncorrelated
part of each return betweent � and T with _y� (t), focusing on how this return di�ers from
the average behaviour encoded by the value function.

Second, we introduce a value function that encodes an estimate of the return in the future
in order to further reduce the variance and also the complications associated with estimating
the two-time correlation function. We can replace part of the return by a value function that
is conditioned at some� , such that t � < � < T ,

hR [X t � ;T ] _y� (t)i = hV (x t+ � ; t + � ) _y� (t)i

+ hR [X t � ;t+ � ] _y� (t)i (4.23)

where we set the value function to zero forV(x; t) with t > T . Combining this value
function form of the kernel of the gradient with the value baseline, we de�ne another temporal
di�erence error

� 0[X t � ;t+ � ; t] (4.24)

= V (x t+ � ; t + � ) + R [X t � ;t+ � ] � V (x t ; t) ;

and we arrive at a distinct formulation of the gradient

r � DKL (p� jps) = �
� Z T

0
dt � 0[X t � ;t+ � ; t] _y� (t)

�

p�

= � AC (�; T ) (4.25)

which we denote� AC (�; T ) for actor-critic gradient (AC) estimator, for the analogous algo-
rithm in reinforcement learning [236, 248]. Here the value function is seen as criticizing the
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transitions generated by the dynamics, i.e. the actor. Variance reduction of gradient esti-
mates is therefore achieved by replacing potentially noisy return samples with the average
behaviour expected in the future of thex t+ � state. In Sec. 4.4, we will compare the accuracy
and statistical e�ciency of these three gradient estimators: MCR, MCVB, and AC. Before
that we discuss how the value functions are simultaneously parametrized and learnt along
side the modi�ed force.

Parametrizing value functions

While the gradient expressions are exact and the use of value functions expected to facilitate
their convergence, using them requires knowledge of the exact value function for the modi�ed
dynamics, a formidable task in complex problems. In order to make their use tractable, we
optimize a representation of the value function in addition to the modi�ed force. Speci�-
cally, we introduce a parametrization of the value function denotedV . To optimize this
approximation we note that the value functions satisfy a self-consistency equation called the
Bellman equation [283]

V(x; t) = hV (x t+ � ; t + � ) + R [X t;t + � ]i p� ;x ; (4.26)

which has a unique solution for a given dynamics and return (as de�ned by the tilting
observable and the dynamics via Eq. 4.14). We aim to minimize the error in this equation,
thus optimizing our parametrized value towards this unique solution. Our approach is to
minimize the squared di�erence between the two sides of Eq. 4.26 with the true value function
replaced by the parametrized value function, and apply gradient descent to it. Such an
approach is the subject of gradient temporal di�erence methods [284, 285, 286], but produces
a gradient estimate which is di�cult to evaluate, containing products of expectations which
require independent samples. A part of the resultant gradient is however simpler to compute.
We derive it by substituting only the right hand side of Eq. 4.26 with our parametrized value
function to provide a �xed target for the left and de�ning a corresponding error function
based on the squared di�erence. To construct a loss, we integrate these errors along each
trajectory, and average them over the trajectory ensemble. This results in a loss function
L( ;  i ), that we take as a function of two weights, and  i ,

L( ;  i ) =

1
2

* Z T

0
dt

n
hV i (x t+ � ; t + � ) + R [X t;t + � ]i p� ;x

� V (x t ; t)
o2

+

p�

; (4.27)

where the weight i is the weights after updatei , used to provide the �xed target estimate
towards which we want to move the functional of . The derivative is then taken with respect
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to  , before setting =  i to �nd the gradient of this loss for the current parameters. Such
an approach is referred to as semi-gradient in the reinforcement learning literature,[236] used
to achieve the majority of state-of-the-art reinforcement learning results, and proves stable
provided the data used to estimate the gradient is sampled using a dynamics which is close to
p� as we intend to do. As mentioned above, alternative methods which additionally consider
the variation of the target with  can be found in the RL literature, allowing for the use
of data sampled from an alternative dynamics, utilized via importance sampling [284, 285,
286].

Writing an approximate temporal di�erence for the value function parametrization, within
MCVB

�  [X t � ;T ; t] = R [X t � ;T ] � V (x t ; t) ; (4.28)

or for AC

� 0
 [X t � ;t+ � ; t]

= V (x t+ � ; t + � ) + R [X t � ;t+ � ] � V (x t ; t) ; (4.29)

we have gradients of the form

r  L( ;  i )j  =  i

= �

* Z T

0
dt �  i [X t � ;T ; t] r  V (x t ; t)j  =  i

+

p�

; (4.30)

for the loss function from the value function parametrization, where for the AC algorithm
�  i is replaced with � 0

 i
. Given this value function approximation, we can approximate the

gradient of the KL divergence by replacing the exact temporal di�erence with these ap-
proximate temporal di�erences. We then use the same trajectories to estimate the force
and value function gradients and simultaneously learn both. For the MCVB algorithm, an
approximate value function does not bias the gradients as the future return that correlates
with the Malliavin weight stays intact and the expectation of the Malliavin weight is identi-
cally 0. However, for the AC algorithm, an approximate value function can introduce a bias
into gradients as it replaces the average of the future return, which it may not accurately
represent.

Employing gradients with or without value functions, we can construct a stochastic de-
scent algorithm to optimize the modi�ed forces which can be used to estimate the likelihoods
of rare events and the trajectories by which they emerge. The algorithms require the evalu-
ation of the forces, value function, their parametric gradients and noises over the course of
simulating trajectories. Ensembles of trajectories can then be used to construct an empirical
estimate of the gradient via computing the Malliavin weights, returns, and the temporal
di�erence. These empirical estimates then iterate the two weights with respective learning
rates � � and �  for the force and value function respectively. The resultant algorithm is
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outlined in pseudocode below in Alg. 2. Detailed versions of the individual algorithms with
computationally e�cient on-the-y implementations for simulating trajectories with discrete
timesteps are presented in the next section.

Algorithm 2 Gradient optimization using �nite time trajectories
1: inputs dynamical approximation F� (x; t), value approximation V (x; t)
2: parameters learning rates� � , �  ; total optimization steps I ; trajectory length T con-

sisting of J timesteps of duration � t each; number of trajectoriesN
3: initialize choose initial weights� and  , de�ne iteration variables i and j , force and

value function gradients� P , � V , temporal di�erence � (can be R [X t � ;T ] or �  [X t � ;T ; t]
or �

0

 [X t � ;t+ � ; t] for MCR/MCVB/AC)
4: i  0
5: repeat
6: Using chosen method to generate trajectoriesX 0;T with con�gurations, times and

temporal di�erences denoted byx j ; t j and � j respectively.
7: j  0
8: � P  0
9: � V  0

10: repeat
11: � P  � P + � j _y� (t j )� t
12: � V  � V + � j r  V (x j ; t j )� t
13: j  j + 1
14: until j = J
15: average� P ,� V over N trajectories to get � P , � V

16: �  � + � � � P

17:    + �  � V

18: i  i + 1
19: until i = I

4.3 Discrete timestep implementations of �nite time
algorithms

We now describe how the time-continuous equations of the reinforcement learning algorithm
are e�ciently implemented in simulations with a �xed discrete timestep � t, though variable
timesteps may be easily used. We use an Euler propagator to integrate the SDE in Equation
(4.10) as

x t+� t = x t + � tF � (x t ; t) + G� W t (4.31)
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where � W is a Gaussian random variable with mean 0 and variance �t. The trajectory
probability from Eq. (4.11) is now given by products of stepwise probabilities

p� [X t;t +� t jx t ]

=
exp

n
� 1

2� t jG� 1 (x t+� t � x t � � tF � (x t ; t)) j2
o

2� � t det(G)
(4.32)

Next we discretize the gradient of the logarithm of trajectory probabilities using the Ito
convention. We propagate the Malliavin weights from Eq. (4.18) as

y� (t + � t) = y� (t)+
�
G� 1 (x t+� t � x t � � tF � (x t ; t))

�

�
�
G� 1r � F � (t)

�
(4.33)

We also write the full return (4.14) through a sum of stepwise rewards as

R [x t � ;t+ � ] =
X

j :j � t<�

r (x j +1 ; x j ; t + j � t) (4.34)

where the timestep indexj starts from -1 in this sum, with the notation t � accounting for
the timestep before the current one, and the subscriptj refers to the time t + j � t. The
reward at each step is de�ned as

r (x j +1 ; x j ; t + j � t)

= � s (A j � t + B j � (x j +1 � x j ) + A(x j +1 )� jn )

+
[G� 1(x j +1 � x j � � tF � (x j ; t j ))]

2

2

�
[G� 1(x j +1 � x j � � tF(x j ; t j ))]

2

2
; (4.35)

using the de�nition of the observable from Eq. (4.2) and accounting for an additional singular
reward at the end of the trajectory after the last timestepn. Here the �rst three terms come
from the observable and the last two terms represent the KL divergence between the original
and optimized dynamics.

Now we combine the rewards, Malliavin weights and value functions in multiple ways to
produce the gradients in the di�erent algorithms. The pseudocodes of e�cient implementa-
tions of these are presented below.
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Monte-Carlo returns

The gradient in the Monte Carlo returns algorithm can be rewritten from Equation (4.19)
as

� MCR (�; T ) = �
� Z T

0
dt R [X t � ;T ] _y� (t)

�

p�

= �
� Z T

0
dt _y� (t)

Z T

t �
dt

0 _R(t
0
)
�

p�

= �

* Z T

0
dt _R(t)

Z t+

0
dt

0
_y� (t

0
)

+

p�

= �
� Z T

0
dt _R(t)y� (t+ )

�

p�

(4.36)

where the return has been written as a time integral of its di�erential changes, andt+ is
shorthand for t + � for some small positive� . This has converted the double time integral into
a single time integral, which is then evaluated on-the-y while propagating the trajectory.
An implementation of this algorithm with a �xed timestep � t is described in the pseudocode
in Alg. 3.
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Algorithm 3 Finite time MCR
1: inputs dynamical approximation F � (x; t)
2: parameters learning rate � � ; total optimization steps I ; trajectory length T consisting

of J timesteps of duration � t each; number of trajectoriesN
3: initialize choose initial weights� , de�ne iteration variables i and j , force gradient� P ,

stepwise rewardsr representing the increments in return
4: i  0
5: repeat
6: Using chosen method to generate trajectoriesX 0;T with con�gurations, times, noises,

Malliavin weights and rewards denoted byx j ; t j ; � W j ; y� (t j ) and r (x j +1 ; x j ; t j ) = r j

respectively
7: j  0
8: � P  0
9: y� (t0)  0

10: repeat
11: y� (t j +1 )  y� (t j ) + � W j � [G� 1r � F � (x j ; t j )]
12: � P  � P + r j y� (t j +1 )
13: j  j + 1
14: until j = J
15: average� P over N trajectories to get � P

16: �  � + � � � P

17: i  i + 1
18: until i = I

Monte-Carlo returns with a value baseline

We use a similar technique to rewrite the double time integral for the gradient in the Monte
Carlo value baseline algorithm, Equation (4.22), using a single time integral as

� MCVB (�; T )

= �
� Z T

0
dt f R [X t � ;T ] � V (x t ; t)g _y� (t)

�

p� ; =  i

= �
� Z T

0
dt

n
_R(t)y� (t+ ) � V (x t ; t) _y� (t)

o �

p� ; =  i

: (4.37)
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We rewrite the gradient of the value error in Eq. (4.30) similarly as

r  L( ;  i )

�
�
�
�
 =  i

= �

* Z T

0
dt

�
_R(t)

 Z t+

0
dt

0
r  V (t

0
)

!

� V (t)r  V (t)
� +

p� ; =  i

= �

* Z T

0
dt

�
_R(t)z (t+ ) � V (t) _z (t)

� +

p� ; =  i

; (4.38)

where the arguments of the value functionV (x t ; t) have been suppressed asV (t) and the
integral of the gradient of the value function upto and including current time has been
denoted asz (t+ ). We explicitly set the V(x t ; t) to 0 for any t � T, i.e., after the last
timestep, in these expressions. The single time integral is then evaluated on-the-y as the
trajectory is propagated. If the force and the value function approximations use the same
set of basis functions as we do with a �xed grid of Gaussians, the MCVB algorithm incurs no
additional computational cost over the MCR algorithm. An implementation of this algorithm
with a �xed timestep � t is described in the pseudocode in Alg. 4.

Actor-critic

We rewrite the gradient in the Actor-critic algorithm from Equation (4.25) using a shift in
time origin as

� AC (�; T )

= �
� Z T

0
dt �

0
[X t � ;t+ � ; t] _y� (t)

�

p� ; =  i

= �
� Z T + �

�
dt �

0
[X t � � �;t ; t � � ] _y� (t � � )

�

p� ; =  i

(4.39)

where the change in return and the value function fort � T is explicitly set to 0. We
similarly write the gradient of the value error from Eq. (4.30) as

r  L( ;  i )

�
�
�
�
 =  i

= �

* Z T + �

�
dt �

0
[X t � � �;t ; t � � ]

r  V (x t � � ; t � � )

+

p� ; =  i

(4.40)
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Algorithm 4 Finite time MCVB
1: inputs dynamical approximation F � (x; t), value approximation V (x; t)
2: parameters learning rates� � , �  ; total optimization steps I ; trajectory length T con-

sisting of J timesteps of duration � t each; number of trajectoriesN
3: initialize choose initial weights� and  , de�ne iteration variables i and j , force and

value function gradients� P , � V , stepwise rewardsr representing the increments in return
4: i  0
5: repeat
6: Using chosen method to generate trajectoriesX 0;T with con�gurations, times,

noises, Malliavin weights, integral of value function gradients, and rewards denoted by
x j ; t j ; � W j ; y� (t j ); z (t j ) and r (x j +1 ; x j ; t j ) = r j respectively

7: j  0
8: � P  0
9: � V  0

10: y� (t0)  0
11: z (t0  0)
12: repeat
13: _y� (t j )  � W j � [G� 1r � F � (x j ; t j )]=� t
14: y� (t j +1 )  y� (t j ) + � t _y� (t j )
15: _z (t j )  r  V (x j ; t j )
16: z (t j +1 )  z (t j ) + � t _z (t j )
17: � P  � P + r j y� (t j +1 ) � V (x j ; t j ) _y� (t j ))
18: � V  � V + r j z (t j +1 ) � V (x j ; t j ) _z (t j )
19: j  j + 1
20: until j = J
21: average� P ,� V over N trajectories to get � P , � V

22: �  � + � � � P

23:    + �  � V

24: i  i + 1
25: until i = I
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These integrals are then evaluated on-the-y along with trajectory propagation. Since the
gradients involve correlations of the di�erential returnr with the di�erential Malliavin weight
_y� and the value function gradient _z = r  V from � time in the past, this makes it
necessary to store and use this history, along with the reward and the value function, for the
past �=� t timesteps. Aside from this additional memory requirement, given a delay time�
which is much smaller than the trajectory duration, the Actor-critic algorithm has similar
computational cost comparable to the MCR and MCVB algorithms. This implementation
of the algorithm is described in the pseudocode in Alg. 5.
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Algorithm 5 Finite time AC
1: inputs dynamical approximation F � (x; t), value approximation V (x; t)
2: parameters learning rates� � , �  ; total optimization steps I ; trajectory length T con-

sisting of J timesteps of duration � t each; temporal delayM = �=� t; number of tra-
jectoriesN

3: initialize choose initial weights� and  , de�ne iteration variables i and j , force and
value function gradients� P , � V , stepwise rewardsr representing the increments in return

4: i  0
5: repeat
6: Using chosen method to generate trajectoriesX 0;T with con�gurations, times, noises,

changes in Malliavin weights, value function gradients, temporal di�erence, rewards and
cumulative rewards denoted byx j ; t j ; � W j ; � y� (t j ); _z (t j ); �

0

j , r (x j +1 ; x j ; t j ) = r j and
R

�
X t j � �;t j

�
= Rj � M;j respectively, andr j = V(x; t j ) = 0 whenever j < 0 or j � J

7: j  0
8: � P  0
9: � V  0

10: R� M; 0  0
11: repeat
12: Rj � M;j  Rj � M � 1;j � 1 + r j � r j � M

13: if j < J then
14: � y� (t j )  � W j � [G� 1r � F � (x j ; t j )]
15: _z (t j )  r  V (x j ; t j )
16: end if
17: if j � M then
18: �

0

j  V (x j ; t j ) + Rj � M;j � V (x j � M ; t j � M )
19: � P  � P + �

0

j � y� (t j � M )
20: � V  � V + �

0

j _z (t j � M )
21: end if
22: j  j + 1
23: until j = J + M
24: average� P ,� V over N trajectories to get � P , � V

25: �  � + � � � P

26:    + �  � V

27: i  i + 1
28: until i = I

4.4 Rare uctuations in �nite time

We have used the algorithms discussed above to examine rare uctuations of trajectories of
�xed duration, starting from a �xed point in con�guration space. The speci�c observable we
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have investigated is an indicator function for reaching a desired region, �, in con�guration
space,O[X 0;T ] = h� [xT ], where

h� [xT ] =
�

1 xT 2 �
0 otherwise

;

at the �nal time T. Rare trajectories reaching a target basin in con�guration space are
often of interest as transition paths for reactive events, and signi�cant development has
been undertaken to e�ciently generate them [70, 287, 288, 289, 105]. Computing optimal
drift forces for generating these rare trajectories enables the study of reactive dynamics in
a direct manner. We expect these algorithms to �nd use in the study of di�usive dynamics
where Monte Carlo approaches have di�culty sampling [82, 290, 291, 292]. Further, as
the modi�ed force is used with the original noise from the SDE, we have access to the full
reactive trajectory ensemble allowing the interrogation of the statistics of the reactive events
in a way that other direct path methods like nudged elastic band and zero temperature
string methods do not, as they represent only the dominant path [293, 294, 295, 296]. As a
consequence, we expect out method will �nd use when there is a large path space entropy.

The CGF for an indicator variable is given by

� (s; T) = ln


e� sh� [x T ]

�
p

(4.41)

as an average in the original reference dynamics. From Eq. (4.13), the KL divergence being
nonnegative implies the average return is bounded above by the value of the CGF� (s; T).
The bound can be saturated only by the unique optimal drift force. We compare the value
of the optimized return to numerically exact estimates of the CGF given as

� (s; T) = ln
�

1 + ( e� s � 1)
Z

�
dx � (x; T)

�
; (4.42)

where the de�nition of the indicator function and the �nal time distribution � (x; T) evolved
from a speci�c initial condition has been used. This form demonstrates the statistics of a
single-time indicator observable is described solely by its mean,

hh� i p =
Z

�
dx � (x; T) : (4.43)

For a rare uctuation such that hh� i p < 0:5, this form indicates that there are two distinct
regimes in the biased ensemble withs < 0. For a small magnitude of the bias, the indicator
function stays close to the unbiased value. Below a critical value ofs� = � ln[hh� i p=(1 �
hh� i p)] the indicator crosses over to being close to 1. For all of our calculations, we choose a
�xed value of s estimated to be smaller then the threshold. With this value ofs, we compute
the right side of Eq. (4.42) using an eigen-expansion of the propagator of the Fokker-Planck
equation of the original dynamics, and compare with the value of the average return from
the gradient descent algorithms having the same value ofs. Details of this calculation and
comparison to an approximate Kramers escape rate are in Section 4.5.
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Figure 4.1: Softened Brownian bridges: (Left column) Smoothened learning curves
showing running estimates of the CGF (a), average value of the indicator observable with
the optimized dynamics (b), and the average cost function (c), as functions of optimization
steps i , with the MCR(`A', yellow), MCVB(`B', green) and AC(`C',blue) algorithms. The
horizontal dashed grey lines denote the numerically exact values. (Middle column) 100
trajectories obtained with the �nal converged dynamics from the three di�erent algorithms
but with the same noise history.(Right column) (g) and (h) show the smoothened convergence
of a time-slice of the force parameters, as a function of optimization stepsi , in the absence
(MCR) and presence (MCVB) of a value function. (i) shows the convergence of the KL
divergence cost with �ner basis sets optimized with the MCVB algorithm. Green (31x � 21t),
black (31x� 41t), orange (31x� 81t) and brown (41x� 201t) curves show that in the increasing
basis limit, the cost-function estimate approaches the value expected from the numerically
exact CGF.

Softened Brownian bridges

The �rst example we consider is a softened version of a so-called Brownian bridge [297, 109],
in which a one-dimensional Brownian motion starting from the origin is biased to end near
a particular point. The reference dynamics is simply given by free di�usion,

dx =
p

2dW (4.44)

where comparing to Eq. 4.1 we haveG =
p

2. We consider the target well, �(x), to be
de�ned as f 1 � � � x � 1 + � g with � = 0:1. The dynamics is simulated with a discrete
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timestep of 0.001. We use a tilting parameters = � 100 to bias the original ensemble towards
higher occurrence of the rare event.

We optimize a force and value function parametrized by linear combinations of Gaussian
distributions with �xed variance and mean. Given a set of meansf (xm ; tm )gM

m=0 and variances
f � mgM

m=0 , the force and value function of a positionx at time t are given by the coe�cients
f � mgM

m=0 and f  mgM
m=0 as

F� (x; t ) = F (x) +
MX

m=0

� me� ( x � x m ) 2+( t � t m ) 2

2� m

V (x; t ) =
MX

m=0

 me� ( x � x m ) 2+( t � t m ) 2

2� m ; (4.45)

where initially the basis sets are a grid of 31� 21 Gaussians in thex-t space. The Gaussians
in time are spaced uniformly betweent 2 [0; T), with standard deviations equal to half the
grid-spacing. A third of the Gaussians in space are placed betweenx 2 [� 4; � 0:5], a third
in x 2 (� 0:5; 1:5) and a third in x 2 [1:5; 5]. These three families of Gaussians each have
standard deviations half of the corresponding grid spacings. We initialize all� m =  m = 0.

We consider the performance of the three algorithms di�ering in the gradient used to
optimize them. These include an algorithm that uses no value function (MCR), one that
uses a value baseline (MCVB), and one that uses a value function for future returns with
� = 0:1 (AC). We evaluate the e�ciency of the algorithms by comparing learning curves,
convergence with respect to basis, and properties of the learnt dynamics, shown in Fig 4.1.
All �gures comparing di�erent algorithms use the same noise history and the same amount
of statistics, such that the di�erences are solely ascribed to the learned dynamics. The
MCR algorithm uses a learning rate of� � = 0:4. The MCVB algorithm learning rates
� � = 0:4; �  = 50, and the AC algorithm learning rates� � = 1; �  = 0:05.

In Figs. 4.1(a-c), we show learning curves for the total return, the average of the indicator
observable, and the KL divergence, generated with 12 trajectories at each optimization step
for each of the three algorithms. We have compared the results obtained with this �nite
basis to the numerically exact value of the optimal return and the corresponding observable
average and KL divergence, obtained from Eq. 4.42 where for free di�usion the distribution
is known. We �nd that while all three algorithms quickly achieve a dynamics which mostly
ful�lls the indicator function conditioning, the MCR algorithm struggles to optimize the KL
divergence cost, while the MCVB and AC algorithm achieve converged values e�cienctly.
As expected, each algorithm provides a variational estimate to the CGF with the MCVB
and AC outperforming MCR. Trajectories with the �nal learned dynamics for the three
algorithms are plotted in Fig. 4.1(d-f). The MCR algorithm �nds forces that constrain
the bridge trajectories too excessively, which results in the suboptimal estimate of the KL
divergence. The AC trajectories are closest to the optimal bridge trajectories [109] while
the MCVB trajectories lie in between. The main reason for the di�erence in performance
in the three algorithms is the resultant suppression in the statistical errors in the gradient
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estimate. This is illustrated in Figs. 4.1(g-h) where the convergence of the gradients of the
31 Gaussian coe�cients at a time slice oft = 0:7 is shown for both MCR and MCVB. Since
the � � learning rate is same in both algorithms, the large suppression of uctuations in the
MCVB learning curves results from a more statistically converged gradient estimate using
a value function. This suppression of gradient errors at limited statistics in the MCVB and
AC algorithms is directly illustrated in Section 4.6.

We have studied the convergence of the KL divergence estimate towards the optimal value
extracted from the numerically exact CGF, using the MCVB algorithm with an increasing
position and time basis. We increased the number of time Gaussians, from 21 to 41 to 81,
to observe the KL divergence cost shrinking as the �ner grained force can better support
the singular indicator function condition at the end of the trajectory. We also ran the
optimization with a much bigger basis of 41x � 201t Gaussians, and used 248 trajectories
at every optimization step and learning rates� � = 5; �  = 1000. The Gaussians inx have
standard deviations equal to half the grid spacing, while the Gaussians int have standard
deviations equal to a third of the grid spacing. While the estimate increased, in this particular
problem, obtaining the numerically exact KL divergence would require use of still �ner-
grained Gaussians in space and time in order to represent the singularities of the edges of
the target region and of the last timestep.

Barrier crossing with multiple reaction pathways

We now investigate the ability of the three algorithms to �nd the optimal dynamics in two-
dimensional barrier-crossing problems, the �rst involving a potential allowing for multiple
reaction pathways. The two-dimensional potentialU(x) we consider2 has two minima and
two degenerate reaction pathways involving the upper and lower halves of thex = ( x; y)
plane as illustrated in Fig. 4.2. Barrier-crossing from one well to another is a rare event
occurring with one randomly chosen pathway [72]. Without prior knowledge of the possibility
of multiple reaction paths, path sampling algorithms typically need special techniques to
discover them [298]. We use our reinforcement learning algorithms to compute an optimal
force F� (x; t) that reproduces unbiased and uncorrelated reaction paths.

The reference equation of motion we consider is

dx = �r U(x) +
p

2dW (4.46)

where the matrix G is proportional to the identity. We use a discretization timestep of
0.001. The trajectories start from the minimum of the left well, at (x; y) = ( � 1:11; 0), and are
allowed to run for a duration ofT = 1:5 and checked for reaching the right target well de�ned
asx > 0; U(x; y) < 0. This small region centered around (1.11,0) is used as � for de�ning the
indicator function observable. The value ofT has been chosen to be slightly greater than the
typical transition path timescale, such that the optimized force should reproduce trajectories
that follow the natural steady-state uctuations of the system. As long as the choice of

2The potential we use isU(x; y) = 4 =3[4(1� x2 � y2)2 + 2( x2 � 2)2 + (( x + y)2 � 1)2 � ((x � y)2 � 1)2 � 2]
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