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Extensive Form Games in Continnous Time.
Part 1: Pure Strategies.*

Leo K. Simon
Maxwell Stinchcombe

July, 1986

Department of Economics
University of California
Berkeley, Ca., 94720

ABSTRACT

This paper develops a new framework for modelling games in continuous time., We
view continuous time as "discrete time, but with a grid that is arbitrarily fine,” We define a
class of continuous-time strategies and restrict them to an arbitrary, increasingly fine
sequence of discrete-time grids. Our assumptions guarantee that this process generates a
convergent sequence of outcomes, whose limit is independent of the sequence of grids. Our
outcome function maps each strategy profile to its associated limit outcome.

We compare the perfect equilibria of our model to the approximate equilibria of
"nearby” discrete-time games. If the restrictions to discrete-time grids of our continuous-
time strategies are approximate equilibria, then the strategies themselves are exact equili-
bria. Moreover, under weak conditions, any perfect equilibrium of our model is close to an
approximate perfect equilibrium for any "nearby” discrete-time game.

* This research was originally motivated by Fudenberg-Tirole [2]. The authors have
benefited greatly from discussions with numerous colleagues, but especially Robert Ander-
son, Karl Iorio, Ariel Rubenstein and Bill Zame.






1. Introduction.

How to model time is an important question in game theory. The topic has arisen in
recent years in many areas of economics, including bargaining theory, price-setting oligopoly
models, patent-, innovation- and R&D-races, and models of capital augmentation. In such
contexts, there are serious modelling problems both with the conventional discrete-time

framework and also with existing continuous-time frameworks..

The probiems with discrete time game theory are very familiar. In many games, the set
of equilibria is extremely large. In others, backward induction plays a destructive role: intui-
tively appealing outcomes cannot be implemented as Nash or subgame perfect equilibria,
even when tl;e time horizon is infinite.] In still other games, discrete-time models yield strik-
ing results, but these are very sensitive to the particular specification of the time structure.
For example, Rubinstein’s [13] striking result in bargaining theory depends crucially on the
particular, exogenous res;rictions he imposes on the set of times at which agents .can move.

In addition to these problems, discrete-time game theory has a particular bias: an agent

2 The implications of

can always obtain a one-period advantage by preempting other players.
this bias are pervasive. It is instructive, therefore, to explore the consequences of relaxing it.
In our continuous-time seiting, agents can react instantaneously to the actions taken by oth-

ers. In some contexts, this difference has striking implications.

At present, there are two established frameworks for modelling games in continuous
time: differential games and "c.d.f. games.” In a differential game, an agent specifies a rate of
change of a state variable, as a function of time and the current value of this variable.’ This
class of strategies is very restrictive: in particular, agents cannot induce discontinuous changes

in the state variables. In many contexts, however, it is precisely these kinds of changes that

1 Fudenberg-Tirole [2}, Gul-Sonnenschein [5] and Gul-Sonnenschein-Wilson [6], and all discuss infinite
horizon games in which the role of backward induction is disturbing.

2 For a discussion of the importance of this issue, see Anderson [1].

3 Two interesting examples of this approach are Judd [8] and Fershiman and Kamien [4].
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one wishes to model (for exampile, in games of timing).

"C.d.f." games are better suited to such contexts. In a c.d.f. game, a strategy is 2 cumu-
lative distribution function, that is, a right continuous, nondecreasing function, F;, of time:
F;(t) is the cumulative probability that agent / will have moved by time ¢. This framework
works well for certain kinds of timing games (when agents would rather follow than lead), but
not for others (when they would rather lead than fOHOW).4 In the latter kind of game, there

are intuitively natural outcomes that cannot be implemented by c.d.f. stratc:gies.5

This paper is the first in a series that develops a new framework for modelling games in

continuous time.6

A problem arises at the outset: in continuous-time, there is no canonical
way to associate outcomes to strategies (see section III below). Our response to this problem
is to view continuous time as "discrete time, but with a grid that is arbirrarily fine.” To for-
malize this idea, we specify a restricted class of continuous-time strategies. Formally, these
strategies are functions deﬁﬁed on a large function space. They have, however, a simple
heuristic interpretation as "master plans,” instructing agents how to play the game on every
conceivable discrete-time grid. Specifically, the restriction of 2 master plan to a finite grid is a
well-defined discrete-time strategy. Thus any profile of master plans generates a well-defined
discrete time outcome for every discrete-time grid. The condit_ions we impose on strategies
guarantee that for every profile, there exists an outcome that is the limit of the outcomes gen-
erated by playing the profile on any sequence of increasingly fine grids. For this class of stra-
tegies, there is an natural way to define the outcome function: each strategy profile is mapped

to its corresponding, uniquely defined limit outcome. Thus, there is a literal sense in which

our continuous-time games are the limits of sequences of corresponding discrete-time games.

4 Wilson and Hendriks [14] study the c.d.f. equilibria of concession games. In this context, these stra-
tegies seem perfectly natural. On the other hand, Pitchik [13] shows that symmetric duels often have no
equilibria, when strategies are c.d.f’s.

5 See Fudenberg and Tirole [2] for a thought-provoking discussion of these issues.

6 In this paper, we consider only pure strategies. The model is extended to incorporate mixed-strategies
in Part II. In Part I1i, we focus on applications.
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The design of our model facilitates comparison between discrete- and continuous-time
games. In particular, we can compare our continuous-time subgame perfect equilibria to the

approximate equilibria of the corresponding discrete-time games.7

There are sequences of
discrete-time equilibria that have no analog in continuous time {e.g., equilibria in which
agents move in alternate periods). However, under weak conditions on payoffs, if the restric-

tions of a given continuous-time profile to some sequence of grids are ¢" -equilibria, with

¢ — 0 as the grids become finer, then the original profile will be an exact equilibrium for our
n

model. On the other hand, under slightly stronger conditions, given any perfect equilibrium
for our continuous-time mode!, there exists a sequence of approximate, discrete-time equili-
bria, implementing outcomes that become arbitrarily close to the original continuous-time

equilibrium outcomes.

The paper is organized as follows. In section II, we specify the class of discrete-time

" games whose structure we mimic in continuous time. Section III shows why it is difficult to

define an outcome function in continuous time. Section IV sets out the formal model. We
specify a simple inductive procedure for computing continuous time outcomes, and verify
that the outcomes defined in this way are indeed the limits of the corresponding discrete-time
outcomes. In Section V, we present some examples. Our main example is an “irreversible”
version of the repeated prisoners’ dilemma: we show that the cooperative outcome can be
implemented as a subgame perfect equilibrium, even though the time horizon is finite. More-
over, in this simple context, cooperation is the unmigue equilibrium that survives iterated
elimination of dominated strategies. Section VI contains our results relating discrete- and

continuous-time equilibria. The proofs are gathered together in the Appendix.

7 Qur comparison parallels that of Fudenberg and Levine [3]. They compare the approximate perfect
equilibria of finite-horizon discrete-lime games with the exact equilibria of infinite-horizon games.
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I1II.  From Discrete- to Continnous-Time .

>

We will construct the continucus-time analog of the following class of discrete-time,
extensive-form games. Agents move simultaneously and information is complete. Let A,

denote a finite set of actions for agent i and let 4 = J] 4; denote the set of action profiles.
iel

Let R be a finite subset of [0, 1], containing 0 and 1. R represents the set of times at which

agents can act. The sets 4 and R define a game form, whose structure is described below.

For re{0,1], let {r}® denote the lérgest s e€R strictly less than r. A

history of the system up to time r is a list of action profiles, & = (@, ..., al’fk), one for

each point in R before r. A decision node is a point in time, r € R, paired with a history of
the system up to time r. (There is, in addition, a distinguished node, (0, &), representing the

start of the game.) A pure strategy for i is a function mapping decision nodes to points in

A;. A complete history is a list, {e(0), " .., (1)), of action profiles, one for each time node

in R. The subform beginning at (r, o) is the game form induced by starting the game at

(r, @). The outcome function maps each subform (i.e., decision node), paired with a pure-

strategy profile, to some complete history. This function is constructed in the obvious way by

induction on R.

An extensive form game is a game-form, paired with a valuation function that assigns a

vector of payoffs to each complete history of the game. The standard solution concepts for

such games are Nash equilibrium (Nash [11]) and subgame perfect equilibrium (Selten [13]).

To construct a continuous-time analog of this class of games, we replace the finite set of
times R by the interval [0, 1. With this change, the decision node is a pair (0, @) or (¢, 4),
where 7 € (0, 1] and £ is a function from [0, ¢) to A, representing the history of the game up
t§ time t. A continuous-time strategy is now a function defined on the space of decision
nodes. Since time is no longer well-ordered (with the conventional ordering), it is no longer
possible to define the outcome function inductively. Indeed, we will show that for some

seemingly well-behaved strategy profiles, there can be no sensible cutcome whatsoever.

L3




III. The Technical Issues.

In this section, we illustrate some difficulties that arise in attempting to define a sen-
sible outcome function in continuous time. The first example motivates our idea of viewing
strategies as master-plans. The others show that this approach works well only for a restricted

class of strategies,

We say that a history is a history is consistent with a strategy profile if there is no open
interval on which the history is constant, but some agent’s strategy calls for a change in the -
status quo.8 A minimal property that an outcome function should satisfy is that is shouid
map each strategy profiles to a history that is consistent with that profile. Our first example
shows that in continuous time, a unique, consistent outcome cannot be identified by induc-
tion.” The problem arises because the continuum is not well-ordered: for ¢ > 0, there is, sim-

ply, no “last 5 before z.”

Consider the following strategy, for a game played by one player with two choices, left

and right.

play left ift =0

play left if t > 0 and /eft was played at eachs < ¢ Example HL1

play right  otherwise
In discrete-time, this strategy generates the outcome: play leff at every time node. In continu-
ous time, there is a continuum of outcomes that are consistent with this strategy: for any
>0, play left on [0, 7] and right thereafter. In this example, there is a patural way to
resolve the nonuniqueness problem: define the outcome to be the limit of the outcomes gen-
erated by playing the strategy on discrete grids. The unique limit, obviously, is: choose left at

every ¢. This outcome is certainly consistent with the strategy.

8 An alternative statement of this condition is: there is a dense set of time nodes on which the strategy
profile agrees with the history. Note that this is an extremely weak requirement.

9 A similar exampie appears in Anderson f1].
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Our second example shows that for many strategies, the discrete-time outcomes may
have no sensible limit. Accordingly, we must impose cénditions on strategies that guarantee
that a limit exists, The following example illustrates the kinds of strategies that we will ex-
clude. It is a modification of a2 game discussed by Krishna [9).1% For i = (1,2}, let
A; = {x,y). The functions f and f, below are well-defined maps from the continuous-time

decision nodes to 4;. For any history 2 = (A, A)), let & 1; denote the restriction of A to

[0, t). Now define f; by:

x ift=0
filt b)) = {x 36> 0sz by (1 ~ 8, 1)) =x
¥  otherwise
’x ift =0 Example IIL.2
folt b)) = ix if28> 082 by - 8,0) =y
’ ¥  otherwise

- When played on any discrete-time grid, this profile generates the cycle:

(xx, xy, ¥y, ¥X, xx,- -+ ). It can be shown that there is no Hausdorff topology on outcomes

such that this cyclic outcome converges.

In our last example, there is a well-defined limit of the discrete-time outcomes, but it is
inconsistent with the original strategy profile. Once again, let 4; = (x, ), for { = {1, 2}.

Define f, and /> by:

x ift <

y ift e[t %)
St ki) = 1y ifr > % and if discontinuity points of k, ¢ and hy|, agree

LJc otherwise

x ifr=0 Example 1113
fAt, b)) = {x  ifr>0and3dsr hy(t -8, 1) = x

Y otherwise

10 This example was brought to our attention by Karl lorio.
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If these strategies are played on any (fine enough) discrete-time grid, player 1 jumps at the
.first grid point after ¢ = %, and 2 follows suit at the next grid p;oint. At t = %, since the
players’ discontinuity points do not agree before %, player 1 switches back to x and 2 follows
suit. The limit of these outcomes is that both 1 and 2 jump simultaneously from x to y ex-
actly at Y%, and back again at simultaneously at %. But this outcome is inconsistent with
player 1’s strategy: at any time ¢ > %, 1 should be playing y at ¢, since the discontinuity

points of agents’ individual histories agree!

IV. The Model.
Agents and Actions.

Our continuous-time game will be played on the unit imterval, [0, 1]. Let
IF=(1,..., ..., i} denote the set of agents. For each i, let 4; denote the agent’s

action set and let 4 = HAf. An element ¢ = (g;);os Will be called an action_profile. An ac-
ief .

tion profile a € 4 will frequently be written as the pair (a;, a_;), where a_; = (a;);jx. Play
proceeds as follows. Each agent chooses an action at time ¢ = 0. An agent can change his ac-
tion at (essentially) any subsequent time in {0, 1}, either unilaterally or in response 1o a
change in another agent’s action. (In fact, our restrictions will guarantee that an agent

changes his action only finitely often.)

Formally, our agents’ action sets are independent of time and the past history of the sys-
tem. In some games, this is an inappropriate assumption. For example, in simple games of
timing,' if an agent once "moves™ (say, fires his one bullet), he cannot ever move again, We
can, however, incorporate such restrictions into our framework by a suitable choice of payoff
function: we simply assign a prohibitively low payoff to any history that has an inadmissible

string of moves.




Histories.

A history is a function from [0, 1] to 4. The role of histories in our model parallels
their role in the conventional discrete-time model. At each point in time, agents can condi-
tion their actions on the history of the system up to that time. Qur outcome function then as-

signs a unique history to each profile of pure-strategies.

The universe of possible histories is unmanageably large. Accordingly, we restrict atten-

tion to a small subset of admissible histories, the set of step functions that are right-

continuous on (0, 1}.“ Let H denote the set of admissible histories:!2

H = {h e A% Y €(0, 1), h(t+) = h(t); h has a finite number of discontinuity points }
where A(1+) = }sﬁ% h{t + 5).13 By restricting attention to step functions, we are implicitly as-

suming that agents make only a finite number of moves. For AeH, let

h=(hy ..., ki ..., hy). We shall say that 4; is agent i’s individual history. .

- EPS
We endow H with a topology we call the EPS-togologz.M In this topology, A" — h iff
n

for sufficiently large n, (a) A" and h differ on a set of small measure; and, for all i, (b) A/
and A; have the same number of discontinuity points; (c) if t* and ¢ are corresponding
discontinuity points of 47 and A;, then A(t" +) = h;(t+). We now define a metric for the EPS

topology.

11 We will explain why we treat zero specially after we have defined a metric on histories.

12 Qur restriction to this class of functions is a little arbitrary. Indeed, for two person games, a compel-
ling case can be made for allowing left-continucus functions also. Since this argument is loses its validity
when { > 2, we have chosen to work with the smaller, simpler space.

I3 The symbol "§{" means converging strictly from above.

14 The EPS topology is Essentially the Product Skorohod topology on the right continuous functions
mapping [-1, 2] to A. {Maisonneuve [10]). Precisely, we idemify & ¢ H with 87:1-1, 2] - 4 as follows:
h{0) ift <G
h(0+) ifr=0 L .
gr(ry = hit) i1 e 1y Now k" — h iff 68" — #" in the product Skorohod topology.

k(1) ifrz1
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We first need some notation. Let 8 be a step function mapping some convex subset of

[0, 1] to some finite set. Let D{(6) denote the set of discontinuity points of # and let

. s"Og)  ifn@ >0
n(6) = #D(6). Define 5(6) = 1|, otherwise

If n(6) >0, let s} < -+ <s(6)
be an enumeration of D(#).

A metric for the EPS-topology is given by 4% = mgxd,-”, where df: H x H - R is
I

defined as follows:

n(h;) = n(hi),
A{z: bty = Bi()Y)  if {A(0) = hi(O)and
Ri(s¥(h:)}+) = Bi(s*(h))+), V1 £ k < n(h;)

1 otherwise

dIH(h s h’) =

where A denotes Lebesgue measure on [0, 1].

The example below illustrates some of the properties of d¥. let I =1{(1,2) and

A; = {x,y). Define i, h" and 7" by:

XX ift <2
XX ift <¥ . n+l
xx ift <42 . ) 12 nal ] yx if t € [, 2n)
Ty frow s MO = px if 7 € [, -27) ; n{) = - ifze["+1 n+2)
i£r > n+1 2n’ 2n
Yy ift =
2n . n+2
_ yy ift = n
. L L

In the EPS topology, the sequence (2") converges {o 7 but (7") does not. On the other hand,

(1) does converge in measure to h.

In all of the applications we consider, we assume that agents’ payoffs are continuous
w.rt. d¥. Had we chosen a coarser topology (say, convergence in measure), there would be

many games (duels, etc) in which payoffs would not be continuous.
We now explain by example why we do not require that histories are right continuous at

xx ift <

zero. Define the sequence (A™) by: A"(t) = it is important that se-

x| 3|

yy ift =
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quences like this have limits in H. Moreover, it is important that this limit preserves the in-
formation that agents have played "x.” In the EPS topology, (#") converges to

- xx ift =0
a{t) = [yy if1>0° which is an element of H, and indeed contains this information.

We conclude this section with some definitions that will be used later in the paper. We

first define a truncation operation on histories. Given heH and 1e(0,1], let A, e H

denote the truncation of A before ¢, defined by:

h(s) ifs <t
his) = h(t-) ifszt

where A(t-) = %i‘%h(r — §8). The truncation of agent i’s individual history, A;,, is defined
similarly.

Next, given (h,a,t)e H x A x [0, 1], we define A%' as follows: if t = 0, then A%
agrees with A at zero, and equals g, for positive 1, Otherwise, 2% agrees with # up to ¢, and

is constant at ¢ from ¢ on; Summarizing;

io hs)  ifs=0 . [ae)  ifoss<:
REs) = g ifs>e A7) = o ifs >

Finally, for a € 4, let 4% denote the history that is constant at a.

Decision Nodes.

There is a distinguished node, called the initial decision node. This node is denoted

(0, ©) and represents the start of the game. A regular decision node is a time ¢ > 0, paired

with some history whose last discontinuity point is strictly less than t.15 Note that, for all £,

(t, h|;) is a regular decision node. Let DN denote the set of all decision nodes:

DN = U{t,h):t>sh) U0, D)) = ((t, 2,2 heH, >0} U {(0, )}
heH .

15 This definition departs slightly from the conventions of discrete-time game theory (see p. 4). In
discrete-time, a decision node is a point in time, paired with a history of the system up to time 7. Our
definition is effectively equivalent to this one and, for our purposes, notationaily more efficient.
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We denote the generic element of DN by (¢, #). The reader should be aware that whenever

we write (¢, k) ¢ DN, we are implicitly asserting that either t > s(h) or (¢, k) = (0, ),

For 7 <1 and h € H, we will frequently refer to the subset, (Z, #,),,;, of DN as a

branch of the decision tree. Branches of the form (, )55y Will be particularly important.

We will also use DN to represent the set of subforms. Our outcome function will map

each profile of strategies, paired with an element of DN, to some history in H.

Pure Strategies.

A pure strategy for i is a function f; from DN to 4;, satisfying the four restrictions set

out below. Before proceeding, we alert the reader that we will treat zero in a very special
way. If the following heuristic interpretation of our game is adopted, however, our treatment
will seem quite natural: Imagine that agents’ initial actions are "actually” implemented before
the start of the game, say, at ¢ = —1. (Think of athletes taking their positions before the start
of the race.) Also, suppose that "in fact,” the "real” game does not begin until immediately
after zero. (The starting pistol is fired exactly at zero, and the race begins immediately after

the pistol shot).'®

F1  Step functions with respect 1o time.

We require that strategies are step functions with respect to time. That is, along any
branch, (¢, h|;)>0, of the decision tree an agent can change his action only finitely many

times. Formally,

for each f;, the function of time, fi(:, h|.), induced by restricting fi

to the branch, (¢, h )0, has a finite number of discontinuity points. (F1)

The foliowing examples for 2 one-person game illustrate the kinds of strategies that satis-

16 This story is clearly consistent with our idemtification of the EPS topology on [0, 1] with the Product
Skorohod on {~1, 2]. Specifically, in footnote 14, we identified the point zero with the interval [- 1, 0).
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fy this condition. Let/ = {1} and let 4; = {x, y}. Compare the two strategies, /', and g:

ift =0

ifh =h*andt #%

ifh =h*andt =%’ gilr, h) =
otherwise

ifr=0
ifh=h%andt <%
ifh=hYandt > %
otherwise

Fit, h) = Example IV.1

-
W o R OR

(Recall that A* is the history that is constant at x.) Strategy f, has the. following interpreta-
tion: starting from an§ subgame (t, #°), t < ¥, player | continues to play "x" until ¢ = ¥,
and then jumps to "y" at exactly ¢ = ¥; if, however, play starts from a subgame (¢, #¥),
t > Y%, [ continues to play "x" for the rest of the game. Strategy g; has player 1 waiting until
immediately after t = ', before moving for the first time. If either strategy is played from the

X ift <

initial subgame, (0, @), the outcome is the same: it is the history hy = y ifr=w -

Restriction (F1) is not sufficient to guarantee that the outcomes generated by our stra-
tegies will have only finitely many discontinuity points. For exampie, consider a profile of
strategies satisfying the following conditions: agent 1 initiates the first jump at ¢ = % and

for i, j = 1, 2, if the »n’th jump in agent j’s history

occurs at 7, then / jumps at ¢ + 5"172 Example IV.2

Any history consistent with this profile must have an infinite number of discontinuity points
between Y% and %, i.e., at {1/4, 3/8,1/2,9/16, ..., ). {(Note that the strategies do satisfy
(F1): each & € H has finitely many discontinuity points, and f;(-, #|.) can have at most one
more discontinuity point than #;.) To exclude strategies such as these, we will require that

there be a uniform upper bound to the number of jumps that an agent can initiate.
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F2  Uniformly Bounded Number of Jumps initiated by i.

We will say that f; "initiates a jump at (¢, k|,)" along the branch (s, £ )ss0 if the fol-
lowing conditions are satisfied: (a) /. is continuous at ¢; f; specifies that (b) i/ should main-
tain the status quo until £; (c) change his action either at or immediately after . Formally, f;

initiates a jump at (¢, A |,)if

li - &) = lim f;{t - _3) = hi(0);
ﬁgh(t %) sl‘?gf,(t 8, hys) = hit);

fi(-, k|.) is discontinuous at 7;
This definition distinguishes between jumps that / initiates and instantaneous reactions to
other agents’ jumps. For example, both £, and g, in Example IV.1 above initiate jumps at
¢ = 1. On the other hand, the strategy below--play the action you have just been playing--has

many discontinuities, but initiates no jumps at all:t’

x ift =0
fit. h) = {x ift > 0and A;{t) = x
y ift >0and Ai(t) =y

To see this, consider, say, a history h that jumps from x to p att = A, f; satisfies conditions
(b) and (c) above, since }51‘1‘% f (-8, h |¢-3) = x and f' 0 h |) is discontinuous at ¢. However,
condition {a) is not satisfied, since g?g ﬁ,-(t - 08) # 5,-(:). Therefore, this jump in h; was not
initiated by i.

We can now state our second restriction:

for each f;, 3k s.t. along any branch (1, b\ )0 -
of the decision tree, f; initiates at most k jumps. (F2)

This restriction clearly eliminates Example IV.2 above.

7 Along any branch with & discontinuities in h;, however, f;(-, &) has k discontinuity points.
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F3  Positive Ref}acrory Time.

Our third restriction prevents agents from making several jumps in instantaneous suc-
cession. In particular, agent [ is not permitted to react instantaneously to other agents’ in-
sténta;neous reactions to i’s own jumps. (In applications, we will endogenize this and the pre-
vious restriction by assuming that it is prohibitively costly for agents to make several jumps
in rapid succession (see assumption V2, section VI below)). Condition (F3) is neeeded to ex-
clude strategies such as

X ift =0
fit, hy=1{y ift >0and Ai(t) = x. Example IV.3
X ift >0and Ai{(t) =y
fi requires that { jump from x to y and back again, arbitrarily rapidly.ls As we have ob-

served above {p. 6), there is no simple way to assign an outcome to such a strategy.

We now explain how we formalize this restriction. Fix a decision node (¢, ), such that
¢t > 0. Suppose that i either initiates a jump to a; at (z, & |} or jumps to 4; as an instantane-
ous response to jump(s) by other agent(s). Condition (F3) below requires that in either case,
must play a; for an instant after ¢, in response to any history k' that agrees with & before ¢,
and has [ playing g; at ¢t. Formally,

for alls € H and all7 € (0, 1}, for alla; # A;(t-), if

either fi(t,h|;)=a;

or g&%fi(t +8, R0 =g F3)

then Ya_; e A_;, Iﬁi’l}&f,(f + &, h(ai’a'i)’t) = g;.

Example IV.3 above clearly violates (F3). A more subtle kind of failure is illustrated by

X ift <%

Example II1.2 (p. 6). Consider the history, &, defined by: A(t) = [xx if; > 1, - When

player 1 switches from y to x, player 2 is imstructed to switch from x to y, (ie,

8 Note that f, satisfies restrictions F1 and F2.
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iﬁ% [a(a + 8, h |hed) = V) Condition (F3) therefore requires that whatever 1 does in
response 10 2°s jump, 2 should continue to play y for an instant afier %. This condition is
violated, however, since (%2 + 8, A7) = x.

An analogous condition is required at ¢ = O:

for allh e H and all a; # h;{0), if
E%f:(& hys) = a (F3)

MQ1Vm4eAnhg%fK&h““4“)=ap

F4  Box Measurability with respect to h.

Our final condition restricts the way agents can condition their actions on histories.
Given any f;, there is a partition of the branches of the decision tree into a countable collec-
tion of boxes, with the following property: along any two branches in the same box, an agent

reacts in the same way.

For h, ¥ € H, we will write # > h if for each i, the first n(#;) discontinuity points of

h! weakly exceed the corresponding discontinuity points of 4;. Formally,
Wor RV, Y1 <k < n(h), s5(h) = s¥(h).

We now require that for every %, there exists a positive 8 such that if # is within 6 of h and
K > h, then along the two branches (¢, /#)>5() @0d (7, H )55y of the decision tree, i’s deci-

sions are identical .\° Formally, we say that a strategy f; is box_measurable w.r.t. h if

YheH,J6>0st ifd¥(W,h)<dand i  k, then (F4)
f,'(S,h) =fi(ss h’)a Vs >£(h’)

This assumption is significantly more restrictive than the others. However, it plays two

essential roles. Without it, a unique limit of the discrete-time outcomes may not exist.

19 Qur outcome function will still be well-defined for strategies that satisfy a weaker condition: replace
-identical’ with "close.” Moreover, strategy profiles satisfying this weaker condition are close, in a strong
sense. 10 box measurable strategies. Details will be reported in the sequel to this paper.
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Second, even if such a limit does exist, it may not be consistent with the limit strategy profile.
The latter problem is illustrated by Example II1.3 (p. 6). Player I's strategy in that example
violates condition (F4), since at (¢, #), t 2 %, his decision depends critically on whether or

not the previous discontinuity points of », and £, agree exactly.

Let F; denote the set of pure strategies for / satisfying (Fl)—(F4).- Let F = ]_'_[F,-. An
iel

vector f ={fy, ..., fi..... f;)in F is called a pure strategy profile.

Discrete-Time Game Forms.

Every discrete-time game form has an equivalent representation in our framework. The
only distinction between our representation and the conventional one (e.g. Fudenberg-Levine
([3]), described above [p. 41) is that our histories are step functions, measurable with respect
to the given discrete-time grid, rather than finite lists of action profiles. This difference is

purely formal.

Let X be a finite subset of [0, 1]. For each ¢ € (0, 1], we let |¢|* denote the predecessor
of ¢ in X, that is, [t)* = max{s e X:s <t}. Similarly, for t €{0, 1), [¢]* denotes the

successor of 7 in X: [t]* = min{s € X:s > ¢).

We will say that a finite set R C [0, 1] is a finite approximation to [0, 1] if R contains

0 and 1. Let R denote the set of all finite approximations to {0, 1]. For each R e R, we

define an R-segment of [0, 1] to be an interval of the form [r, [r}®), where 7 ¢ R, 7 < 1.

Let 5(R) denote the length of the largest R-segment of R, i.e., 8(R) = mjaRx(fr}R -r).
FE.

r<l

A history will be calied R-measurable if it is constant on every R-segment of [0, 1].
Define HX by: HR = {h € H: k is R -measurable}. A regular decision node, (t,, k), will
be called R-measurable if r € R and h-e HR. By convention, the initial decision node,
(0, @), is taken be to R-measurable, for all R. Let DNR denote the set of R-measurable deci-
sion nodes. For any R € R, H® and hence DN® are finite sets. We will sometimes refer to

an element of DN® as an R-measurable subform.
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A strategy for i defined on DNR is a function from DN® to 4;. Let FR denote the
strategies for i defined on DN® and F® the set of strategy profiles defined on DNR_ Since no
a priori restrictions are imposed on discrete-time strategies, the restriction to DNE of any

pure strategy in F; is a well-defined pure strategy on DNZR,

The discrete-time outcome function, o(R, -, -, *) FR x DNR —» HR, maps each stra-

tegy profile on DNR and R-measurable subform to some R-measurable history. This history
is defined by induction in exactly the conventional way. That is, for geF R and
(F, 7)€ DN®, o(R, g, 7, k) is the unique history, h ¢ H R that satisfies:

h(t) ift <7

Rty = 8{t, A1) iftzFandteR.
R(121%) ifr>=randz ¢R

Continuous Time Qutcomes as the limits of Discrete Time Outcomes.

Our continuous time outcome function, o({0, 1},-, -, ‘3 F X DN -» H, maps each
pair, (f, (¢, k), to the limit of the discrete-time outcomes generated by playing ffrom the
subgame beginning at (¢, #). To “play” a profile, f on a particular grid, R, we first modify f
to take account of the particular structure of R, then restrict the modified profile to DNR,
(To see why the first step is necessary, recall Example IV.]1 on p. 12 above. Unless fiis
modified to take account of R, the discrete-time outcome, o(R, f 1| DN®> 0, @), will be very

different, depending on whether or not 2 € RY)

We now explain how f is modified. For each f; € F;, we define a family of discrete-
time strategies, (fM)rr. For each R, R, k) is a function defined oo R N {s(h), 1] that
"shifts to the right” the discontinuity points of f;(*, &) in the following way: if the open inter-
val between r and its predecessor in R contains one or more discontinuity points of f;(-, h),
then fR(r, k) is equated to the value of f(-, ) at Tk Uit B the 1ast discontinuity point be-
fore r. Otherwise, fR(r, k)= f{r, h). Note that for each R and he HR if 8(R) is

sufficiently small, then fR(-, ) will have essentially the same graph as f;(*, #). Formally, the
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graph preserving restriction of f; to DNR, ff: DN® — 4; is defined By, for (r, h) e DN, '

i flriPYCP Ry i PP e ()R,
Fit B = 1, b otherwise

For example, let I = {1,2}, 4; = {x, y} and let % be some constant history. Let f; bea

strategy satisfying:

- X iftle(O, 1/3]U{2/3} - X ift (0, 1/3)U {2/3}
i, h) = [y otherwise s Sae, k) = [y otherwise.

Let R = {0,1/5,..., 4/5, 1). In this case, 7 is defined as follows:

_x ifrequss, 2/, 4/5) _x ifreqss, a5
fRer. k) = {y otherwise » SEC.h) = {y otherwise.

Observe how the construction distinguishes between discontinuities from the left and from
the right (e.g., compare f; and fyat? = 1/3).

We can now state more precisely the relationship between our continuous-time outcome
function and the discrete-time outcomes generated by ' f. For each feF and each
(1, k) € DN, there exists a unique 7 € H with the following property: if for n sufficiently large,

(1, h) is R"-measurable, and if (R”") satisfies 5(R")} — 0, then the sequence of outcomes gen-
" n

erated by the FR"'s from (z, h) converges to 1.

The following three examples illustrate the comstruction. Let [ = (1,2}, 4; = {x, ¥}

and fix R e R such that 8(R) is small. First, consider the strategy profile 7 defined by:

X ift =0 _ X ift =0
fit, ) = ix iftr <2 folt,h) = ix ifhrl)=xx
y iftz% ¥ if A1) # xx

The outcome o{R, f ¥, 0, @) is that player 1 jumps at the first grid point weakly greater than
2 and player 2 follows suit at the next grid point in R. Now let 7 be identical to f, except

= =R
that / has player 1 playing x rather than y at 1 = Y. The outcome o(R, f , 0, @) has player




-19.

{ jumping at the second grid point (weakly) greater than %2 and player 2 following suit at the

next opportunity. Finally, consider f , defined by:

ift =0 '

ift =%and h(t) = x . x ift =0

ift % and A1) = x° fot,h) = {y  ift>‘hand A(t) = xx
i h(1) =y x otherwise

.fl(ts h) =

oM O M

The outcome o(R, f R -0, ) is.that player 1 jumps at the first grid point weakly greater than
12, while player 2 pever jumps. Notice that in all three cases, the outcome is independent of

whether or not 2 ¢ R.

In each of the above examples, there is a well-defined limit history. In each case, player
1 jumps exactly at %:. In the first two cases, player 2 also jumps at %; in the third, he never
jumps. In the following section, we show how to compute the limit outcome directly from the

limit profile.

The Continuous Time Outcome Function: a Explicit Construction.

There is an inductive procedure for calculating continuous-time outcomes directly. This
procedure is considerably simpler than the explicit construction of a sequence of discrete-time
outcomes. Fix a profile f and a regular decision node (7, #). Letn = o(T, £, 2, k). We will
explain how to construct 5. If f (5, 5 Yy = A(1), for all 5 > z, then set n = h. Otherwise, set
r = inf(s 2 12 £(s, &) # A1)}, i.e., r is the earliest time along the branch (s, &),,; that some
i chooses an action other than the status quo, /;(1). Now set 1 = & on [0, 7). We will explain
informally how to determine #{r). For any a; € 4;, n;(r) will be equal to g; iff one of the fol-
lowing conditions is satisfied: (a) player i selects g; at r; (b) all agents (including i} select
h(r-) at r and i selects g; immediately after r; (¢) other agents jump to a_; either at or im-
mediately after r, and, immediately afterwards, / jumps to a; in response. Having deter-
mined n(r) in this way, we are now guaranteed by condition (F3)-agents cannot move im-

mediately after they have just moved--that n('-) will be constant at »{7) on some open interval
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after . Now proceed to inf{s = : f(s, A™Ty £ n(1)}, and compute the next value of » in the

same way.

Condition (c) above is clearly rather intricate. Player { may end up choosing g; after a
chain of instantaneous reactions to instantaneous reactions. To keep track of such chains, we
introduce the idea of an “instantaneous response chain.” For f € F and each (¢, ) € DN,

the chain generated by f at (¢, h) is an (7 x i+1)-matrix, 8(f, ¢, k), of action profiles,

defined inductively as follows:

fit, h) ift<landr =20
lim /6, (4O 000 ifr < Oand1sr ST
FULR = limrq +ape 70 enty  ifo<r<tandisr<i
(Is h) iff = 1

(Recall that (%)% is the history that is "a” at zero, and "@'" thereafter.) Note that for all
(¢, k), if ¢ is strictly less than inf{s = s{h): f(s, ) # h(1)), then B8°(f, ¢, k) is the constant
chain, (h{(¢), ..., A(t).

To illustrate the construction of B, we return to the three profiles defined above
(pp. 18-19). We have: B, Y, ) = (¥x, ¥y, y¥), B(_f=', Y, h¥) = {(xx, yx,yy) and
B, %, B) = (yx, yx, px).

The relevant properties of the 8 matrix are set out in Lemma | below. These properties
are: (a) for r = 1, if the r’th column of 8 agrees with the preceding column, then all subse-
quent columns agree with the r’th; (b) the i'th row of e (3 R B?(f , 1, h)) can have
at most two distinct values; (¢} unless some agent changes the status quo either at or im-
mediately after ¢, all columns of the matrix agree with the "status quo” (that is, with /(0, &),
if 1 = 0; otherwise, with a(1)); (d) if 5’1{ , t, h) differs from the status quo, then all agents

play ,6?([ , t, h) for an instant after 7. Formally,

. 0,2 ift=0
Lemmal. FixfeF,{t,h)eDN st t<landleta = h(t) Fr>0 Then
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Yi<r<i,B,t,hy=8"Nf.t, h)implies 8" (f, t, h) =B (. ¢, h), Y7 =21 (a)'

i, 1, h) ifrzr

. - r r-1 . . 7 = N
Vi, V1 <r<i, 8,1, h)#B87'(f, 1, h) implies B{(f, £, h) = 1 ify <r'®
g, ;,h)_—.a”iﬁ'}si‘?%f(t + 8, k)= f(t,h) =3, ©
if 6, 1, ) # 7 then T8 > O st. f(s, B0y = 1(f, 1, h), Vs e(t, ¢ +9). @

We can now give a simple, explicit definition of the continuous time outcome function,

0([0, 11,-,,’). For feF and a subgame (f, &) € DN, the outcome 0([0, 1}, /, I, k), is the

history n € H defined by:

hen T = O ~ ffO,@) ift=0
whent =00 90 = g emy >0

. k(1) ifr <t @1
when t > O: n(t) = Bt ) ifrz1r

The following proposition verifies that the outcome function is well-defined. Moreover, we

show that outcomes satisfy the minimal consistency property described on p. 5

Proposition I:  For each f ¢ F and subgame (z, i) e DN, there exists a unique 7€ H

satisfying (4.1). Moreover, 7 is consistent with f beyond 7, in the following sense:
for all7 <t <7 < 1], % is constant on (¢, 7) iff £, %) =) on (1, £).
We can now state formally the main resuit of this section: the history » defined by f

from (7, &) is the d7-limit of the histories geperated by playing the graph-perturbed restric-

tions of / from (7, &) on any sequence of increasingly fine grids.

Theorem II: Fix f € F and a subgame (1, k) e DN. Then

We> 0,36 > 0s.t. VR e R, if (¢, ) e DNF and 5(R) < & then
d?(o(R, fR, 1, B, 000, 1), f. 5, ) <«
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Payoff and Valuation Functions.

The valuation function, ¥: # — R¥, assigns a payoff vector to each history. In most

of the applications we consider, we will assume:
¥; is uniformly continuous with respect to d¥; vi)

For example, in many games, the valuation function is obtained by integrating some

instantaneous flow payoff matrix, u: 4 x [0, 1] = R¥, with respect to ¢, i.e., for each i,

Vih) = jm u;(s, k(s))dNs).

(recall that A denotes Lebesgue measure on [0, 1].) Whenever u; is integrable, the ¥;'s satisfy

(Vl).' Continuous-time repeated games are special cases of this class of games. In a repeated

game, u is independent of time.

We will devote considerable attention to a simple but rich class of games called

termination games. In a termination game, each agent has two strategies: CONTINUE (C)

and TERMINATE (T). if an apent once plays T, he must play T for the remainder of the

game, For such games, the valuation function is defined by:20

f[onu,-(s, R(sDdMs)  if Ve, b;(t) = T implies h;(fz, 1D = T

Vith) = v-1 otherwise

where v = inf V;(h).
= heH

The continuous-time pavoff function, P: F x DN — R¥, assigns a payoff vector to

each strategy profile and subgame. P;(f,?, k) is player i’s payoff if agents play f from the
subgame beginning at (¢, £). In most of our applications, the payoff function will be defined

directly from ¥, ie., for f € F,

Pi(f! Z, k) = K(O([O, I],f, t, h))'

20 Note that these payoffs would not be continuous, if our topology on histories had been convergence
in measure.
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In general, however, the relationship between P and ¥ may be less simple. For example, we
will consider the effect on the model of introducing various kinds of costs, such as "reaction”
and “implementation” costs. To model these effects, we will add terms to the P;’s, capturing

the idea, say, that extremely fast reactions to moves by other players are extremely costly.

For discrete-time games, payoffs are defined in the obvious way. Given a grid, R e R,

we define the R -measurable payoff function, PR: FR x DN® = R¥, by, for g ¢ FX:

PRg,t, k)= Vi(o(R, g, 1, h))

PR assigns 1o each discrete-time strategy profile and R-measurable subgame the payoffs gen-

erated by playing the given profile on the discrete-time grid R.

Egquilibrium Notions.”!

Given a subgame (¢,h)eDN, we will say that profle feF 1is a

ebest reply from (¢, k) if for all i, and all f € F},

Pi(.f! £, h) 2 Px((f:, f—i)a t.a h) - &

A profile f e F is an esubgame perfect equilibrium (e-SGP equilibrium) if it is an ¢ best re-

ply from every subgame. Finally, f is a subgame perfect equilibrium if it is an «SGP

equilibrium, for every ¢ > 0.

For certain kinds of games, the set of SGP equilibria may be extremely large. In some
instances, this set can be reduced considerably by iterative elimination of dominated stra-
tegies. To formalize this idea, we define the notion of an IU-e:c;uilibrium.22 Fori eI, set

FO=F and F% = J] F?. For k € N, we will say that f; e F; is k-th order dominated if
jr

there exists f! € F¥~! and (¢, ) ¢ DN such that

21 While definitions are specified in terms of continuous-lime payoffs, they apply equally well to
discrete-time payoffs.

22 JUJ stands for Iteratively Undominated.




- 24-

Vf_,‘EFIEF!, V(f, h)EDN! Pi((.f;,f-i)ﬁI,h)ZPi((ff:f—f)! z,h);
Ef—i € Flil_i and (Is h) € DN s.t. Pi((.f;!f-’i)& t, h) > Pf((.fi,f-i')s t, k)

For k € IN, define F¥ by:

FF = FF-' — (f; e FF-': f; is k-th order dominated).

and define F*; = [ F }‘. We now define a profile f to be an IU equilibrium if / is SGP and
i

ifforall i, f; e {1 Fk.
k=0

V.  Examples.

We provide two examples, illustrating the solution concepts defined in the previous sec-
tion. A more extensive discussion of applications is deferred to the third part of this paper.
Both examples are two-person termination games. In each case, payoffs are determined by an
insténtaneous payoff matrix, ¥”. For « & {1, 2}, the valuation function, ¥7?, is then defined

by:

[[ oy LT AGNds i hi(e) = T implies ki((z, 1) = T

vith) = ¥ -1 otherwise

We call our first example the "irreversible prisoners’ dilemma.” The instantaneous

payoff matrix, ¥/, is defined by:
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Example V.1: The Irreversible Prisoners’ Dilemma: u’

C T
o (1, 1) (-2, 2)
T (23 '2) ( 0, 0)

In discrete time, the unique Nash, and hence SGP, equilibrium is that agents play T at
every time node. In continuous time, there is a one-dimensional family of SGP equilibria.
For 7 € [0, 1] U oo, the profile f7 geﬁerates the outcome: cooperate until time r, and then de-

fect (read "7 = co” as "never terminate”):

C if (1, h) = (0, 9)
fift, hy = 1C ift e(0,7) and h = A€
T otherwise
In this example, only the (payoff equivalent) equilibria, f* and f', survive iterated elim-
ination of dominated strategies. The unigue IU equilibrium outcome for this game is:
cooperate throughout the game. This outcome is implemented by the _payoﬁ‘-equivalent
profiles, f= and f!. To see that all other SGP profiles are eliminated, observe that once one
player has terminated, the other player’s best action is to terminate immediatcly; We can,
therefore, eliminate any strategy that involves waiting a finite time before terminating, once
the other player has terminated. The set of strategies that remains after this round of elimi-
nation is just; {f": 7 € [0, 1] U o0}. We now argue that for each { and 7 < 1, the strategy f/" is
dominated by f. If player j plays f}, for some s < 7, it makes no difference whether i
plays f;7 or f°: in either case, the resulting outcome has both players terminating simuitane-
ously at s. Now suppose j plays f/, for some s > r. If i plays f/, both players will terminate

exactly at 7 if he plays f,®, they will cooperate until s, and {'s payoff will be higher. Thus,
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the only profiles that survive two rounds of elimination of dominated strategies are f;' and
&

Qur second example illustrates the flexibility of our model. In this game, player 1 wants
player 2 to terminate. If player 2 continues until ¢ = ', however, #1 will then choose to ter-
minate unilaterally, provided 2 does not intend to follow suit. Player 2 prefers that both
players continue, but would rather be the first than the second to terminate. The instantane-

ous payoff matrix, u?, is defined by:

Example V.2: Instantaneous Payoff matrix: u?

C ' T

c - 0, 0 (1,-1)

T (4t - 2,-2) (-4, -4)

The profile f below is the unique SGP-equilibrium for this game:

ift > % and h(t) = CC
ifh(ty=T
otherwise

fl(ts h)

ift = Y2 and h(¥R) = CC
ifht}y=T
otherwise

fl(tah)

GEERGEE)

The outcome generated by this profile is that player 2 jumps at ¢ = %, while the player | nev-
er jumps. Player 1's payoff is Y, while 2’s is —%2. We now argue that f is an equilibrium.
Note that player 1 clearly has no incentive to preempt player 2. Also, player 2’s best response
to f is to wait until "the last moment" before 1 would terminate (i.e., %2} and then preempt.
This shows that f is a Nash equilibrium. The only nontrivial subgames are the family
(¢, RS, Since player 2 does not plan to move along this branch, player 1's best action is

certainly to terminate immediately. Since player 2 cannot preempt 1 in any such subgame,
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his best response is to play "continue” until the end of the game. This verifies that f is

indeed an SGP-equilibrium.

V1. Eguilibria of Discrete- and Continuous Time Games.

In this section, we investigate the continuity properties of the SGP equilibrium
correspondence. Our first result is a weak upper-hemi-continuvity property: for f e F, if
agents’ valuation functions are 4% -continuous and if the graph-preserving restrictions of f to

some sequence of grids are €"-equilibria, with " — 0 as the grids become finer, then f will be
n

an exact equilibrium in continuous time. A natural conjecture is the converse result: if f is a
SGP equilibrium in continuous time and R is a very fine grid, then f® will be an approxi-
mate equilibrium for the cdrresponding' game on R. This conjecture is faise, but a slightly
weaker statement is true: if / is an SGP equilibrium, and R is a very fine grid, there exists an
approximate equilibrium, g, for the corresponding game on R such that that from every
subgame, the outcome generated by g is close to the outcome generated by f R from a nearby

subgame.

Restated formally, our first result is:

Theorem III:  Assume that agents’ valuation functions are d”-continuous. Fix f € F,

and a sequence (R") in R such that 3(R") — 0. Suppose that there exists a sequence (¢"),
f

¢" — 0, such that for all n sufficiently large, f®" is an ¢"-SGP equilibrium for the game

played on R. Then f is an SGP-equilibrium for the continuous-time game.

The following example shows that the converse of this Theorem is false. The example is

a two-person termination game defined by the following instantaneous payoff matrix.




-28 .

Example VL1: Instantaneous Payoff matrix.

CONTINUE | TERMINATE

CONTINUE ©, 0) 0, 4-2)

TERMINATE (1, 4r-3) -1, 0)

The profile / defined below is an SGP equilibrium for this game.

. C  ifr=0

¢ ifr=0 C ift <wandh{t) = CC

N k) =€ i) =C5 SA6R) = Yo e 2 v and k() = TC
T ifhty=T T otherwise

The outcome generated by this profile is that player #2 jumps at t = Y2, while player #! never

jumps. Player #1°s payoff is zero, while #2’s is %.

Player #1 is deterred from terminating before 2 by #2’s (credible) threat to follow suit
immediately afterwards. For any R, however, f® is not even an approximate equilibrium for
the corresponding game played on R. Player #] has a substantially better response than f§
against f5: he can terminate at the last grid point in R strictly before Y. Player #2 has no op-
portunity to react to this deviation before Y%, at ¢t = %, however, /¥ instructs him to contin-

ue. The defection thus yields #1 a payoff slightly exceeding %.

The above example shows that when a continvous-time profile is restricted to a
discrete-time grid, the strategic opportunities available to agents may be significantly altered.
Given any grid, R, however, there exists a profile, g, on DN®, that does preserve the basic
. “strategic flavor” of f. From every R-measurable subgame, g generates an outcome that is
close to the outcome generated by / from some nearby subgame. Moreover, if R is a very
fine grid, g will be an approximate equilibrium for the game plaved on R. The key to the

construction of g is: if either agent deviates from the equilibrium path (which has #2 ter-
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minating at '2), the other player follows the path that he would have been following , had the
deviation occured in the continuous time game. In particular, suppose that when the game is
played on R, player #1 terminates at some time r < '»; in continuous-time, #2 would have
responded immediately; therefore, g, instructs him to play T at [r]® (even if [r1® > ). If
R is a very fine grid, the cost to #2 of modifying his strategy in this way will be negligible: at
r = Y%, he is nearly indifferent between continuing and terminating. Precisely, the profile g
on DN® | defined below is an «SGP for the game played on R, where ¢ = f[ ;13(45 - 3)ds:

ifr = 0-

ifr <Viand k{(r)= CC

if r = [%)X and A(r) = TC
otherwise :

C ifr=20
gt h) = {C ifhiry=C; glty, ) =
T 1fhg(f')=T

NGO 0On0

If agents’ valuation functions satisfy assumption, (V1) above, and two additional as-
sumptions specified below, the technique just described can be generalized to obtain the fol-
lowing lower-hemi-continuity result. Given such a game, suppose that f eF is an SGP-
equilibrium in continuous time. For every positive ¢, there exists § such that if §(R) < §, an
«SGP equilibrium, g, can be constructed for the'game played on R such that from evefy
R -measurable subgame, the outcome generated by g is within e of the outcome generated by

f from a "nearby subgame.”
Formally, for f e Fandge F R2 we will say that g e-approximates f if:

d"(0(R, £,0,0),0(0,1}, f,0,0)) <¢ and

[t =r| <¢
Yi(t,, k.)€ DNR ~ ((0, @)}, 3({, n) € DN s.t. {d"(h,n) < eand .
d?(0(R, g, 1, h), 0([0, 1}, f, £, m)) < ¢

We can now state the result:
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Theorem IV:  Suppose that for all i, V; satisfies V1, and V2 and V3 specified below.
Let f be a continuous-time SGP equilibrium. Then
We> 0, 38> 0s.t. if 5(R) < 5, 3g e FR st

g is an «SGP equilibrium for the game played on R and

g e—approximates f.

We now specify the additional restrictions on valuation functions. The first of these,
(V2), endogenizes restrictions F2 and F3 on strategies. We assume that it is prohibitively
costly for agents to make twd o;' more jixmps in rapid succession. We first define the function
pis H x [0, 1) > R, as follows: p;(h,s) is the smallest distance between two successive

discontinuity points of A;, at least one of which occurs after 5. Formally,

min{(z — £):t,7 e D)t <f andf els, 1]} if#D(A) N [s, 1] = 1
Pi(hs S) = 1

otherwise

We can now state (V2):

AdR (0, 1) s.t. Vi, Y(h,s)e H x [0, 1),

(V2}
pi(h, 5) < &R implies Vi(h) < Vi(h;s, B_y) = L -

('IR" stands for “individually rational.”) For example, the following valuation function fails
(V2): Vi(h) = #D(k;). (This function is uniformly continuous w.r.t. d®)) On the other hand,
fet ¥; be any bounded function from H to R. The following function W;, defined from ¥;,

satisfies the condition. For # € H,

nik;)
1 .
Vi(h) .— z}z ) = ) ifnh)>1
Wih) =y if n(h) <1

(Recall that s”(#) is the n’th discontinuity point of /.)

(V3) states that agents’ payoffs are not too sensitive to other agents’ actions at the very

end of the game. Formally,

Li‘%sup{ | Vith) = Vi)Yt hy = hiand h 5= hiips ) =0 (V3)
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If V; is determined by integrating an instantaneous flow payoff matrix, (V3) will clearly be
satisfied. More generally, however, the assumption is nontrivial. For example, consider a
timing game that determines the parameters for a second game, to be played at time 1. In

this case, the terminal state of the system could be crucial, and (V3) would be very restrictive,

To see why some such condition is needed, suppose that (V3) is violated in a game with
more than 2 players. In continuous time, / might be deterred from initiating a jump just be-
fore the end of the game, because of the chain of instantaneous reactions that would follow. 7
If this chain were to be truncated, say, before the k’th link, might havé an incentive to devi-
ate. In discrete time, if / initiates his jump k& — | grid points before the end of the game, the
k’th link in the chain of reactions to reactions will never be reached. A continuous time

equilibrium might, therefore, have no discrete-time analog.
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APPENDIX.

Proof of Lemma 1.

Part f{a) Suppose B'(f,t,h)=pB"Nf,t,h), for 1<r< i. Therefore,
ROV B o g8 LM oo that 87N, t, ) = B'(f, t, ). Now proceed by induction in
the obvious way.

Part (b). This follows immediately from condition F4 (positive refractory time).

Part () The " if " part follows immediately from Part (a) and the " only if " part from
Part (b).

Part (d) By Part (b), the i'th component of the matrix B, h), ..., BTU , R
can take at most 2 different values. Therefore, if every element of
@, 1, k), ..., B(f, 1, h)) is different, then for each i, 8Xf, ¢, h) # BYf, ¢, k). In this

- case, by (F3)

gﬁ%f(t + 8, hEU LIy = B(f 1, h),

Suppose now that for some r < I8 (f,t, h) = 8Yf,t, h). If this equality holds for r = i,

we are done, since

i , =1 5 hﬂ""(f,r,h),t T Bt R ]
g, h) }sﬁgf(w ) gxggf(rw,h )

If it holds for r < i, then by Part (a), it also holds for r = [. g

Proof of Proposition I:

We first construct the unique outcome 7 that satisfies condition (4.1). We then verify
that it is consistent with /. Fix k € IN, such that for all i and all &, f;(-, k,.) has no more

k

]

than = discontinuity points. Such a k exists, by condition (F3). If (z, #) = (0, @), set

20 = h/© D Otherwise, define n° = . Define +! by
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o0 if f(s, 2 = 2%), Vs ez, 1)

o= if (s >1: f(s, ) =°0)) = @
inf{s = 7 f(s, 1% % n°%()) otherwise
If r! = oo, define 5 = 3°. Otherwise, define p! = (no)ﬂr(f' ™9%' Note that ' € H, since it is
right continuous on (0, 1) and has a finite number of discontinuity points. If 7! = 1, define
7=
Now fix 1 <k <k, assume that 7¥ = inf{s = 7L f(s, """ ) 2 v 1#* )} < 1 and
that 7 = ("D e B Let |

ket _ % if f(s, 7*) = v () ¥s e 5, 1]

T inf{s = 7%: f(s, 1) # »* (%)) otherwise

By definition of ¥, either f(r*, n*~1) # 7~ 1(=%) or I&i;l;% F&F + 8, 7571 % n*1(=%). By part (c)

of Lemma 1, therefore 8(f, 7%, n*~1) # n*~!(«*). By part (d) of Lemma 1, there exists > 0

such that Vs e (7%, 7 + 3), -

Fs,75) = (s, NP F Ry 2 g, o, gkl = g (R,

Therefore, %*!> 7%, If 121, define 7=q*L Otherwise,  define

75 = (RPN Once again, n¥*! e H, since it is right continuous on {0, 1) and has

exactly one more discontinuity point than »* € H. If 7* = 1, define 7 = n*.

Now suppose that * <. By the way the 7%’s are defined, for each k, r* must be a

discontinuity point of f;(-, nf.), for some i. By our choice of k, therefore, each f;(-, nf.)

must have exactly —lé discontinuity points. Therefore, for each i, f;(-, nf.) must be constant
i

on {‘rE, 1]. Setq = nE-
We now establish that 7 satisfies condition (4.1). ‘Pick ¢, 7 elr, 1,z <7. Ift =0, set

k = 0, otherwise let r* be the last discontinuity point of 7 before t. By our construction of 7,

k+1 k+1

71s constant on (¢, f) if 7 =+ Suppose 7 <1 By definition of the r's, we have
f(, 7%) = n*(+*) on (1, ). Also, by our construction of n*, n¥(-) = #*(+%) on (+*, #**!). Fi-

nally, 7., 7-and #* agree on (r¥, r**!). Therefore, substituting in the expression above, we
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have: f (-, 7ys) = 7() on (1, 7). If £ > 7**], then by definition of *+1, f(-, 7);) is not con-

stant on (£, 7). a

Proof of Theorem II:

The proof is by induction. Let % = 0([0, 1}, f, 7, #) and let 7 = #(D(H N (T, 1]), the
number of discontinuity points of  weakly larger than r. If /i = 0, the result is trivial, As-

sume, therefore, that i > 0. Enumerate ruDb@mn, 1] as

(O <r<---<rk<---<rf). Pick ie(0,1) and 5 (0, ._2(—_51—-) small enough that
(7 +

)

+# % | implies 7% < 1 - [ and:
£, 7) is constant on (OV(f - &), HU (L - §, 1); (A.la)
and, for | <k <7 andaed,

F(-, 7™} is constant on (=¥, 7% + 87 + 1)I%); (A.1b)
Wi 2 sr dE(, ) < A+ s e UL 1L fG ) = f5, 7). . (Ado)

Such a & exists, by assumption (F2), part (d) of Lemma | and assumption (F4). An implica-

tion of (A.lc) is that for | < k < 7, 7% > +5~1 4+ s(A+1)i%.

Pick R € R such that 8(R) <3 and (7, k) e DNR. Let A = o(R, fR,1,h). We will

_ , . - 0,2) ifr=0
show that d7(h, 7)<t  Define -1, = -gt-) ! if7 >0 and

Now,fori <k <fand0=<r < i, define:

oF RO il
=k ifrl>0"
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Kyl = (k,r+1) ifr<§
k)l = k41,0 ifr=17
" (k.,r-1) ifr>0
=1 = lge-1,9 ifr =0
* ifr=0and7*eR
@ [+%]® ifr=0and 7 ¢ R
P2 pen-nR if r > 0 and [r*N-M% <1
1 ifr >0and [t%-1R =
S0, @) if ¥ =0andr =0
o f(r",?;],k) if0<r* <landr =0
g = ] LT -
g%f(r"-i—é,ﬁﬁr Yrts B ) ifrf <land1<r<i
S0 if r* =1

n(k.r) _ ;?a’” ,fk_

(1,0) ifr' =0

We first prove that for (k,r} = 0.0 ifrl>0"

(%) = g5,

};Er(k.r)ﬂ = ﬂ(k’r).
If (k,r) = (1,0), then 7! = 0. We have: & it = h R = /0.2 Also 5@ = @9 There-
fore, both conditions are satisfied by definition. If (k,r) = (0,7), then A(z®Y) = h(7) = gOD,

Also £ |0 = i | 10 = h = 7% The second equality holds because by definition of 7!,

f(, i) is constant on [7, !), so that, by definition of ¥, f&(-, k) is constant on [z, t19),

Once again, therefore, both conditions are satisfied.
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The Inductive Step:  Fix (i,)) = (k Ly - ifr =0
e Inductive Step: ix (i) = (k) 2 (1,0) fr150 Suppose that

h(ren7) = gL (@
il- Tl z 'ﬂ(k’r)-l; (b)
dH(* Nk wn) < ST + 1 - 1), (c)
Then
A(*n) = &, ' ®
f; [ 1k 2 n(k,r}; (ll)
dH (%0, B | o) < SI(KT + 1), (iif)

(If 1% = 1, o1 (k,r) = (A,D), set h unet = )
] f

Since ™ =3, i [0 = h , and &(7 +1)i* <, once we have proved the inductive step

we have proved that d¥ (£, 7) < ¢ and so proved the theorem.

Proof of the Inductive Step:  We first verify conclusion (i) of the inductive step. We have

1, 7)) = %, A&-1Dy = (%0, ];“m) = FR@%D o) ifr=0
gr;%f (=% + &, gt = f®N, A n) = SR *n i jn)  ifr >0’

B(k,r) =

If r = 0, the first equality follows from the definition of §; the second from observation (A.)
and the fact that % is consistent with f (Proposition I); the third from (A.1c) and premises (b)
and (c); the last from (A.1b) and the definition of f R If r > 0, the explanations are similar.
By the definition of £, therefore, A(z®") = g%, This completes the verification of conclu-

sion (i).

We now show that
E([t(k,r)’ I(k,r)+l)) = B(k,r). (A.Z)

If r < T, then 1%+ = [(%NMR 5o that (A.2) follows trivially from the R-measurability of h.

Suppose mow that r =i. It follows from Proposition I that f (-, n% = g5 on
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[Jt%1R, 7k+1). Therefore, using premises (b), (c), (F4) and (A.lc), we have, for all

te [rtk.f}R’ Tk+1) nR,
R(t) = fRQ, b en) = £(, B o) = £(2, 7%0) = g&0,
We have verified, therefore, that (A.2) is true forall0 < r <17

Finally, we verify conclusions (ii) and (iii)} of the inductive step. Now fix ieZ. If
ﬁi(kv’) = g1 then, by (A.2), E([r"‘-”, plerielyy = Ei(t(k’r)-), so that il'”,(k.rm = 5”,(1:;). Simi-

larly, nf%r) = pf&1-1 In this case, it follows immediately that conclusions (ii) and (iii) hold

for the i’th components of 4 skt and 7%,

Now suppose that 8%7 s g®n-1 If r >0, then by part (b) of Lemma 1,

f0,@  ifrk=0

(k.ry=-1 _
! ﬁ”,k('rk) ifrf >0

= B¥%-L0} Forall r, therefore, 8" # gf%r-1 implies

k-1 _ glk-1D), ' (A.3)

Combining (A.3) with premises (b) and (c), we have

hi 10 2 ﬂ(k-!’i-); (b’)
B ® 1D, | iy wm) < TG + 7 = 1), ©)

To complete the proof of the inductive step, we need to show that

hi | g > ﬂ.l(k,r); (iis)

dH(ﬂ;(k‘r), };‘ it(k,r)«vl) < él_(kl_ + r). (iii,)

By (A.2), i;,- | ko1 has exactly one more discontinuity point than l;,- . Also 7% has exact-

ly one more discontinuity point than n% 19,

Conclusions (ii) and (iii) now follow, because
0 < % - +* < 57 and, by conclusion (i), 7/ and A; | tesier) agree on the last of their constant

segments. This completes the proof of the inductive step and hence the theorem. O
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Proof of Theorem III.

- - ! iffeR
For R e R and ¢ € [0, 1], define [¢]? = [

\s + Ribar ifTéR " The theorem is an im-

mediate corollary of the following:

Lemma: Ye>0,Yf eF,V(t,h)eDN,35>0st V¥ e H and R R,
K:zh
if 1d(K, k) <3, then d¥(0(I0, 1], £, 1, h), o(R, fR, 1R, YY) < e.
{R)<éo :
It follows immediately from assumption (F4) and the definition of o([0, 1},-,-,) that if §

is sufficiently small, if ¥ > & and d(¥, k) < 5, then
df(o([0, 11, f, 1, B), 0([0, 1), f, 1, K} = d¥(k, k).
To prove the Lemma, therefore, we need only prove that:

Ye>0,Vf eF,Y(,h)e DN,33> 05t YR e R, if 5R) < 4, then (A.4)
d¥ (o0, 1, f, £, h), o(R, fR, (117, B < e

If [1]® =1, there is, obviously, nothing to prove. Also, if inf{s = r: f (.;', k) # h(1)} > 1, then

the proof of (A.4) is identical to the proof of Theorem III. Assume, therefore, that

inf(s 21: f(s, k) # A1)} =t and that [r}® >¢. (Since Oe R, we have 7 >0) Let

7=0(0,1), f, 2, k) and h = o(R, fR, [1]%, B)). Pick R e R and let 7* = [[1}*}%, ([[r]K1R

is the successor in R of the successor in R of 1.) Observc.that by definition of £, if 5(R) is

sufficiently small, then
WD = o, SR B

But we can now proceed to the inductive step of Theorem III. since, in the terminology of

that theorem, we have established that for (k,r) = (1,0),

h(*7) = g7

h |r(k.r}+] =7 k'r).

This completes the proof of the Lemma.
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Now assume that all the conditions of the Theorem are satisfied, but for some

(t, k) e DN, there exists f] € F;, such that
P, 1, ) < PAUL fo) b, ) - 2%

A contradiction now follows immediately from the Lemma above. Pick » large enough that
" < eand let R = R". Since payoffs are 47 -continuous, there is a positive §, and an /¥ € H R

such that: 8(R) < 8, ¥ > k and d¥(h, i) < & implies
PRUFR IR, ) < PRUR AL IR ) - <

Therefore, f® cannot be an € -equilibrium for the game played on R. O

Proof of Theorem III.
We begin with a Lemma.

Lemma AIIL2: Suppose that V; satisfies assumptions V1 and V3. Then

Ye>0,36>0st. Ve, e(l -6,1},Yh,H e H,
if d” ((By, h_i ), (B i) < 8, then | Vi(h) = Vill)] <«

Proof of Lemma AIIL2: Pick e> 0. By assumption V1, there exists §' > 0 such that ¥
h W eH,if d2{(h, ) < §!, then | V;(h) - V()| < % By assumption V3, there exists
52>0 such that Vh,h eH, Vie(l-41), if h=F and h_y, =h2y, then
{Vi(h) - Vi(H)| < -§— Set & = 8'/\¢* and pick , 7, h and /' satisfying the assumptions of

the Lemma. Then:

| Vilhi, hoy) = Vikhy, h_iy ) | <—§— since § < &%
Vilhi, h_iye) = Vilhy  hie)] <= since § < 8%
} ! 3

| Vilhy, b2 l{) - Vil RhLY| < '§" since § < 8%

Therefore,

| Vilhyy i) = Vilhy hop) = [ Vi) - Vi) | <35 =« o

£
3
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Fix ex > 0. Assume w.lo0.g. that ex < %2 Now choose 8"! and 5274 such that

o

Yh, i e H,ifd¥(h, ') <", then Vi, | Vi(h) - Vi(H)] < 3

v, r e(l - 842 1), YA, K e H, Vi,
if @ (i, hoiye), (b Bzage) < 8472, then | Vih) - Vitk)| < 5

§elR

-~ I . We will
3% + 1)(-Eﬁ +1)

Set § = "1 A L2 A ex, Now choose R € R such that 5(R) <

now define 6% = s%(R, f) > 0.
Define Si: 27 — 27 by:
SMBY=B UK eH: I = limo((0, 1], 7. s, hot) where
5

heB,te(DBYUR)~{l}andaed}
Uh' e H: i = o(0, 1, f, 2, h)where h e B, t € R).

Inductively define the k-fold composition of S§ by:

SA(B) = S(SENBY)

If B is a finite set and f is an SGP strategy profile of a game in which payoffs satisfy as-

sumption V2, then

Wk > = g + D+ 5+ 1, SKB) = SK(B)

Weset S = SE(HR)S = {(t, A {:):t € D(S)and h e §}. We will now define o = é%(S) > 0.

First choose § > { such that the three conditions below hold:

(i) YU, heSsti<l,V0<bé<¥ VYaed,
o(0, 11, f.t + 8, h%") = ?ﬁ?o([o’ i}, f, 5, k®)on (¢ + &, 1]
(i) YheS,YteD(S),ifd¥h, #)<&and i 2k, then
o0, 11, F, £, ) = 0(f0, 1], 7, 2, H') on (s (A )\, 1]
fils, BY = fi(s, H), s > s(K).
(iii) & <min{|s -17]|:5,¢ eD(S‘)_ands # 1}

We can pick & to satisfy:
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(i) by the finiteness of S, assumptions F1 and F3 on strategies;
(ii) by Assumption F3 and the finiteness of S and the obvious inductive argument;
(iii) by finiteness of S and the fact that each # € § has only finitely many discontinui-

ties.

Now define é% by:

5
377 + 1)(;;17 +1)

o% =

We now specify an algorithm that associates to the SGP profile f an R-measurable stra-
tegy f that e.*-approximates f on DN® and is an ex-SGP equilibrium for the game played on
B. The reader will notice that the verbal description of the steps in the algorithm often deal
with fewer special cases than the numbered steps. This discrepancy arises because the point
1 € [0, 1] is handled anomalously. The numbered steps deal with 1 as a spécial case, but

these details are omitted from the written descriptions.

We first define two operations on discrete-time decision nodes, "succ” and "pred.” For

R=(0=t,ts...,t5,1;=1)eRand (t, h|,) e DN®, we define:

71

succ(t,, h |t,) = {{t;+1, h'}t,ﬂ): h'|:, = h )
pIEd(fH-h h’|t,+1) = (tra h |r,)

Also, for each i € I and (¢, h) e DN, define 7_;{z, h) = inf{s = ¢: f_;(s, A) # h_;(1)}.

We begin by calculating 7 = 0(f0, 1], f, 0, ). We then construct an R-measurable
history h € HR that is d” -close to » and "build" fsothath = o(R, f , 0, @). To do this, we
define r = {r! <--- <7/ < - <™} to be the set of discontinuity points of 5 (i.e., D(n))
union (0, 1}. Step 1 (lines 60-120) and step 2 (lines 200-250) are a two-stage procedure to lo-

cate an £ e HX very close to 5.
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In the first step, we define 2 mapping G from R to [0, 1], with the interpretation that
for t € [0, 1], G™Y(¢) is the set of discrete-time nodes in R corresponding to the continuous-
time node ¢. If t = +/, for some #/ e 7, then G~! associates (i + 1) distinct discrete-time

nodes to I otherwise, G~!(¢) is a singleton set.

Next, h is defined by induction. We first "expand” the chain generated by f at
(G IO ) 8, L, 7|,1), as follows: let 8 denote the r’th entry in this matrix and set 2 equal
to 8 between the r'th and r+1'th time nodes in G~'(s'). (This technique is used
throughout the algorithm: a chain of actions and reactions that follow each other instantane-
ously in continuous time is "stretched out” into a matching "cascade” of discrete-time actions
and reactions, that follow each other as quickly as the discrete-time grid permits.) Next, set

h = gW between G~'(r') and G-!(r%). Now proceed inductively from 7* to 7@, Since the
grid is extremely fine and 5 can have at most T(GILR + 1) discontinuity points (otherwise, if

payoffs satisfy assumption V2, [ could not be an SGP), it will be straightforward to verify

that n = A (see below).

Step 3 of the algorithm (lines 300-370) simultaneously builds a map "m " from DNR
to DN, and the discrete-time profile, f. Foreachtp e R, m(t, h 1) is 2 continuous-time de-
cision node that is very close to (&, #,,). Specifically, if 4 is the r’th elemént of G~Y(+/), for
r 21, then m(ty, hyp) = (7 + bx, #777); otherwise, m(ty, h 1) = (ks myg). Also, for each
ty €R, we set f (te, Byy) = A (L) Clearly, for all I, eR,
h=0oR,f tx,h,)=0(R,f,0,@). Also, by the definition of &%, we have, for all i:

df (s, ([0, 1], fom@, b 1.)) < 6% (recall that 9 = o([0, 1], f,0,0). Since n and h differ on
at most i{i + 1)(?—11-!;- + 1) grid points of R, f is indeed a good approximation to f at each

(Ikr h | Ik)'

The Algorithm: defining G, h, f and m.
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Steps 1 and 2 use temporary constructions that will be used to define f and m. In

the later, inductive steps of the algorithm, G and 4 will be redefined, relative to new n's.

05{-J: [0, 1] ~ R is defined by: [t]:= min{r e Rz £ < r}.

107 2 0([0, 11, f, 0, @).

20 Temporarily define {r! <--- <+ <--- < 7%} by:
O=rl<c < < <™ =1} =DmU{O, 1)

8(f,0,0) ifr/ =0

<i < i A -
30For0<r<iand!<j<last, ' ¢ [B’(f-‘r",ﬂ;#) otherwise

5520 | e counts branches;
56420 | ¥ counts Devi¥;
570320 | & counts Dev, ~ Devl®;

Step 1: Defining G (this is a temporary construction). G will define a correspondence
from R to [0, 1]. It will be defined by doing an induction through R. For all z, < 1, G{(#)
will be a singleton set. At various steps in the construction, ¢, will denote the point in R

from which the construction of G will proceed in later steps.

60k 21
705 21 | j is a counter in the definition of G;
MG 0

80If +/ = 1, then
(i) Gty £ Gt U ()
(iiy go 10 200 .

When the algorithm goes to 200, the process of defining G will be done.

83If « + i 2 5, then
(Yfork <k <p, G(t)2+;
(i) Gty 2 Glrp) U (/3
(ifiYk 2 by
{ivigoto 110,
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851f x + [ < p, then

() Gt tast -+ s T 270,

(i k2x+i+L

90If+ < land (t,.;, "*)NR =@, goto 110.

100

110
120

200

205

210

215

220

240
250

If ¥ <land(t,, 7*YNR # O, then
(iYfort, €ty P*YNR, GG 21, -
(if) temporarily define x by: t, 2 [+/*!]
i+l

Go to 80.

Step 2: Defining h (another temporary construction).
jat
Let the temporary indices kK, k + 1,..., k + n be defined by:
Gbl{"j} = (T teats - - s ! Lisn }-
Ifk + i >p, then
(iYfor integer r st. k <k +r <5, h([thurs tkara))) 2 875
(if) h(tp) 2 B
(iii} go to 300

Ifk +7 <75, then for integerr s.t. k <k +r <k + 1, A{ltiers lears1)) & 875

If G-\, +/*Y) # @, then

(i} define the temporary indices k, k + 1,..., k + n by:
G, Py =tk tear o Bean )

@) hlltes teana)) 2 675

jerj+1
Go to 205
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Step 3: Defining f and m.

300 jl
305 Let the temporary indices k, k + L, ..., k +r, ..., k + n be defined by:
G HHY = {ty teats + - o Towrs - oo tewn )

330 If t; =0, then

(i) m{t, @) := (0, @) and f(k, @) := h(0) = 7(0) = fimt, @).

(iiYfor fy <lisr S lpun,

M(lars Byy) = (7 + b, 7777
and f(tieers A1) 1= Bllear) = T(M s, Byg ) = 87
(iii ) go to 360

340 If 0 <t <lgun <1;(= 1), then
() mt, b o) o= (7, n)0) and Flti, b)) = k() = F(me, b)) = #°
fort; < tisr < lgans
() Mteer, By, ) = (07 + B, 7277y
and f(tears hys,.) o= Altksr) = FMUiirs By 0 = 87
(iii) go to 360

350 If 0 <ty <ifryn =t;(=1) then
() mte, Byy) = (e, n, ) and f(te, b)) o= Blae) = T(m(t, b)) = B7°
(ii) for tp < ty.r <I3
M (tear, By, ) i= (0 + 6k, 7¥777) and
Fltears hin,) = hltear) = FmQear, By, ) = B
iy m(ts, by ) = (o + 8%, 0P ") and f(1, b y0) 1= A1)
(h(t;) not neccesarily = f(m(t;, k1))

(iv) go to 394

355 If 0 <1ty = tgun = t;(=1)and j > 1, then
(i) mtz b)) i= (7, 7)) and
Fits, b)) 1= B(t) = B (not mecessarily= f(m(t;, 1)
(ii) go to 394
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356 If 0 <t = tgen = t;(= D)and j = 1, then
(i) m(tz h o) was defined on either line 1310 or 1530 and
f (t5 i) 1= R(p) = glast¥ (not necessarily = f(m (tz 1))
(if) go t0 394

360 If G+, Py = @, then
Hjej+1
(ii) go to 305

370 If G-/, 7/*") # @, then for all t, € G~'(¢/, 7/*D),
(Y m(@,, Byy) = (G ny6) = (s 1100
(i) flt, Byp) o= h(L) = F(mit, b))

380 jrji+1
390 Go to 310.

So far, we have defined f on only a small subset of DNR the branch
BRy = (L, B )y er. We now expand the domain of definition of f inductively. We first
(lines 1000-1020) consider the set of discrete-time decision nodes, Dev,, that are "one step re-
moved” from BR, that is, the set of nodes (t, hy,) such  that
pred(ti, b i) = (k-1 By ) € BRo. We divide these nodes into two subsets. The first sub-
set, called DevHT, contains nodes reached either by a simultaneous deviation by two or more
agents from f along BRy, or by some agent moving twice in succession at an individually ir-
rational rate (ie., faster than €R). Anmy (t,, i) e Devl" is "treated literally,” ie., we set

m(t,, h) = (1,, h). For each such node, we repeat the procedure described above, i.e., Steps

1-3 (see lines 1040 and 1280-1350).

For the second subset, we proceed in a more delicate fashion. The basic procedure is

similar 1o the one described above: we map each (z,, k|, ) to a close continuous-time node
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mt,, b ) set 1 = o([0, 1}, £, m(t,, b)), define r and the 8’s as above; proceed to generate
an h close to n and specify that f "follow™ h as above. The delicate step is the choice of
m(t,, k|, ). We distinguish between two kinds of deviations, "passive” (line 1525) and "all

others” (line 1530).

Consider a node (&, /), reached from pred(t, h ) = (tk-y, k|, ) € BRg, in the
following way: at (tx_y, Ay ) f called for i and no other agent to jump and (&, & |2,) was
reached because no agent moved. We call this a "passive” deviation by agent /. To define
m(t, h ), we define (£, 7 = m{te_y, A |s,.,) and calculate what would have happened in con-
tinuous time, had agent i failed fo jump at any point in [f, 1, ]. If no other agent moves in
this interval (i.e., if -r_,-(f , ) Z &, then we set m(l, h|,) = (&, 7). Otherwise,

(il 7) < &), we set m(ty, k() = (-i(F, %), 7).

All other non-literal deviations are handled on line 1530. These involve agent i
jumping at #;.;, when f ; specified either that / not jump, or jump to some other action. In
these instances, m(t, k|, ) is chosen to ensure that when n = o(f0, 1], Famite, h 1)) is cal-
culated, it is as if all the agents reacted instantaneously to "the corresponding” deviation in
continuous time at (7, 5) = m{ti_y, A 14.,)- (For details, see line 1530; to understand why we

can use ! + bx, see lines (i) and (ii) above when we chose &x.)

We define BR,| denote the set of decision nodes for which f has been defined so far.
Having defined 7 on BR,_,, we can then define it as above on BR,, the set of nodes reached

by single step deviations from BR,.;. This completes the algorithm.

The Algorithm: the inductive step.
Lines 394-399 define counters that control the process of working through Dev,, and later

Dev ,, as just described.




394
395
396
398
399

1000

1010
1020

1030
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- If ¥y = 0 then go to 1000 .

If0 <y <, thengo to 1300.
If v = ¥, then go to 1500 .
If0 <e¢ <7, thengoto 1515,
If ¢ = 7, then go to 1000 .

Bro:={(t, h ) € DNZE: f' (tk, hy4,) has been defined so far in the construction].

ata+l

Dev,, := succ(Br,.;) ~ Bra_1

If Dev, = @, then go to 2000

When the algorithm goes to 2000, the construction will be complete.

1040  Devi® = {(, h i) € DNR: either (i) or (ii) below hold:

1050

1280
1290

1300
1315
1310

1320

1330

1335
1340
1350
1500
1510

() #{i e I: fillioy, by ) # Bilteon)) > 1

(i) 3i e I st 1y € D(h;,) and the distance between the last two jumps of Biyy < €R}

DevPesid .= (5, hy,) € Dev, ~ Devg®: both (i) and (if) below hold:

) foiltiors b)) = Roiltis) = hoi(a);
() Filtiots Byg_ ) # Bilticor) = hi(te-2)).

¥20

Enumerate Devi" as {(tr, By ) oo os (s BTy ) U RN
This temporarily defines %.

yiy+1

KiTy

m((tr.ry hTI,T)) = (tr,’ h Ttn’)
7= O([O, 1]9 f_’ tr.,: h.{t,_r))

If , < 1, then teroporarily define (rl< -1l < - - 78y by:
(g =7t <ol < = 1) 2 (DWW U (g, D) N

Ifty, =1, then rhaghast s
ForOsr<iand!<j<last, /" 2 ﬁ’(f“',rf,nw)
Go to 70.

20

Enumerate Dev, ~ Devi! as {(1,, h {,,i), oo, (e, BT
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This temporarily defines @.

1515 oo +1
1520  Let (7, 7) denote m(pred(t,, k%, ) | notethat§ = 7 ;.

1521 «k?dr,
1525 If3ielst.(,h],)e Devlessi
() mit,, b1, = Goill, DI, 9)
i) n 200, 13, f, ms,, kY,
(iii) if 7_;(, A)/\t,, < 1, then temporarily define {r' < - -+ 7/ < -~ 7%} by:
(rod, NG, = rl < et < TS = 1) 2 (D@ U (o, DG, 1)) A [r_ilt, DAL, 1]
{iv) go to 1555

1530 Otherwise

@) mty, hY, ) o= (0 + bx, F D oo
i) 200,11, f, mt, AT, 0%
(iif) if t, < 1, then temporarily define {r' < -+ ¢/ < -~ i85t py:

(fvo=rlac - rd< - =1} 2 (DU +61))N{F+51)

(iv) go to 1555

1555 Ift, =1, thens! 27 24

1560 ForO<r<iandl<jslast, " ¢ #(,7,n)

1570  Go to 70.

2000 The construction is compiete.

The following lemma establishes that the f just constructed is in fact an e*-approximation to

f.
Lemma AIILl: Forall (¢, h,)e DN%,

dP((tk, b i), mte, Byy)) < ex (i)
dH (R, [, tr, Biy) 000, 1], F, m{te, b)) < ex (i)

It will follow immediately from the proof of this Lemma and our choice of 3 that for all { and

for all (4, ) € DNR, [ Vi(0(R, f ti, by, = Vilo(10, 11, 7, mlaes )| < 5
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Proof of Lemma AIIl.l: Fix b € HR. We will show that for all # € R, inequalities (i) and
(if) hold for the decision node (4, #,,). Since 2 was chosen arbitrarily, this will be sufficient

to establish the Lemma.

We first need another construction, one that will be used again in the proof that f is an
ex-equilibrium. For each (s By let (e, M) = m{te, by Set

G(1,) = max{s < I;: 5 € D(S)).
We now prove that G just defined have a useful property. Define

B = {{zk eR:m(te, hy,) # e, Ky ) N D(R) ' and
B = { U {G"(s): #G U s)> 1NU 1Y U {8 m(te, h) was defined on 1525 }|. We will

se(0,1]

show that
BCFE (1)

To establish (1), pick tx € B. Since m(zy, hlt:;) # (ty, h|y), we know that m(ty, h,) was
defined on one of the following lines: 330, 340, 350, 355, 356, 370, 1525 and 1530. If

m(ty, h,) was defined on one of lines 350, 355 or 356, then either & = lorfy € G~\s), for

| b
some s such that #G~'(s) > 1. In each of the remaining cases except 1525, line (iii) in the
definition of d% implies that 7 € C;’"(s), for some 5 < | such that #G~!(s)> 1. This estab-

lishes {1).

Now, it follows immediately from line 1530, the definition of Devi™ and
i7 + 1DS(R) < €® that Vs, #G (s) < i(i + 1). Also, at each line of the algorithm at which
m is defined (lines 330, 340, 350, 355, 356, 370, 1310, 1525 and 1530), A; |, and 7, have the
same sequence of jumps. Thus, by definition of 4%, to show that
af (., h 1t): M {tk, B |,)) < e, we must show that for all i, the set of times at which A, |,

and 7, disagree has Lebesgue measure iess than ex.




-A20-

Let # = max{t, e R: 1, <y and m{t, hy,) = (4, hi.)). Since m(0, ©) = (0,9)
(ine 330 (), # is well-defined and nonnegative.  First, if i =1, then
dP¥((te, k1), m(tx, 1)) = O < ex. Now suppose that f < 1. Observe that (a) #;y,, and

#x agree on [0,%); (b) by definition of Devt™, h|, has at most
(1 - ‘H)"—('Ell?' + 1= tk?-(—g% + 1) discontinuity points on [#, &); and (c), each one of these
discontinuity points, f,, is either contained in a set of the form #G~'(s), or else m(t,, h 1)

was defined on 1525. It can be shown that .if m(t,, ) was defined on 1525, then

t, - f, < i(i + 1)6(R). Moreover, as argued above, each such set has a length less than

i + DAR). Therefore, dP((ty, k) mlte, b)) < @, where
0= Ik?(?*lr + DI(f + D5(R). Because we chose &(R) sufficiently small, we have
Q < 3 < ex, thus establishing (i).

Finally, recall from the conmstruction of f that between fk and 1, the outcome

h = o(R, f', By by differs from n = of[0, 1], fomite, h 1)) at most

(=B + DE+ DS -t (g + DE+ D+ TE +1) nodes of R, Set
€ €

O = [ = 1) (e + DF + 1)+ 7T + DI(R). Since @ + @ <b<ex, it follows that
€
df (R, [, te, hy), 000, 1], J.m(, b)) < ex, thus establishing (ii). Since s<sv it

also follows that |P,-(f, mit,, hy) - P,R(f, ty )| < _e_g_

We will now show that if f is not an e*-SGP for the game played on R then fisnota
SGP equilibrium for the continuous time game. Suppose that f is not an ex-SGP equilibri-
um. Then  there  exists (4, k) DN® and g eFR such  that
PRUG:, f oty B 1) > PR, tr b)) + ek We can assume w.lo.g. that
Gty b)) # filty, B ;) and that for all (4, K) e DNR, i <4, &, ) = filt, ¥). Define
h = o{R, (§,~,f_,-), 1, hy,) and, for 1 € R, define (fk, 7x) by: (s 7)) = m{t, E}. We now

define a continuous time strategy, gi» such that
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| Pil(Ziy Foi)s mte, By ) = Pil(@ f-h it by ) < % Since by Lemma AIILI,

1P, m(t,, hyy) - PR(, t,, h|,)}] < =, this contradicts the assumption that f is a SGP

equilibrium.

Case 1: If t, 2 £;_77.1)-1» then we can construct g; very simply. For all (¢, ) e DN such that

t<i, set  E(t, h)=Jdt,h),  otherwise, set  Elr, h) = A(zp. Define
E = o(0, 1), G, F-), ts 7). The following three statements imply | V;(h) - Vi(h)| < E_;‘—

which establishes a contradiction:

dB(h;, hi) < 28R)P( + 1)(33 + 1) < gfemma, 1)
dH (R 0 By < SR)PG + Do JR + 1) < glemma, 2)
f<tandl -1 <R + = e’ﬂ + 1) < dlemma, 3)

2) and 3) follow from the definition of 8(R) and Lemma AIILI, which established that for all
(ty, h(,) e DNR, dPV((t,, hy,), mt, B ),)) < 8(R YA + 1= JR +1). 1) follows from the

same calculations and the fact that £, 2 7 77, 1-4-

Case 2: If f, <5 p7,y-1» then we define 2 mductively. First, let G; be defined as in

Lemma AIILL, that is, G (1) = max{s < f.:s € D(S)). Let
[S1<-"* <Sp < -+ <S8z} = Gt ... o fEs1y-10) and let
Sm = {Sm.]: S, - - s Sm,n{m)} = G-l(sm)_

Define g° by:

fie, by ifr <G

9 = i~ >
&, h) = hi(rﬁ)' ift = G(1,)

Now assume that for m < 77, assume that g™~ ! has been defined. Define g™ by
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em-1e By i < sy
Bi(Sm.1) if1 = 5

gre, 1) = {Ai(sma) if 1 > sy, and either s, € Di(h) or Sy N Di{kR) = @
Bi(Sm i) if £ > Sy (Smx) = Di(A) N Sy, and A(2) = A(Sm k-1)
Lii,‘(s,,,,l) i1 > Smy (Sma) = Di(R) N Sy and k(1) # Alsmp-1)

Finally, define

gP, k) ift <55

&R = i, if 7> 55

Set 7 = o([0, 1], (Z;, 7o), mit,, h 1,))- Before we can state the claim that will complete the

.. G+ .
proof, we need one more definition. Iet A = ‘ le A". We define a mapping, b, from a sub-
n=1

set of A to 47!, We represent each matrix M e A as

M=(Mg) o =My, my ..., My
1sysn

where each m.; € A is a column vector. Define dom(k) by:
dom(b) = {M € A: VYo, m,y # m, implies My, = m,,, VY Sy <n}

For M = m,,edom(b) and 1 £k < i + 1, define v(k) inductively as follows: set (1) = 1;
For 1<k <i, given that (k) has been defined, define

Tk + 1) = {v(k) <y <7 + 1: m., # m.q). Now define

min{y e T(k + 1) ifTtk + N2 D
vk +1) = (k) otherwise

Now define b(M) = (M1, Moy - - - Moy7eyy)- WeDOW establish claims (i)-(iv} below:

“BUEi, S i) Brs 50y = BEAES))); (i)

For m = 2, B(Zi» fi)s (Sm» T5,)) = D(ASH)); (ii)

B((Z;, f-:), - 7).) is constant on (¢, §2); (iit)

For m 2 2, B((Z;, /i), » 7|.) is constant on (Sy, Sm1); (iv)

Having established (i-(iv), we will then argue that dfi(h;, %) <8""? and
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A7 (A oz » Ti)55) < 882 Since (1 - s5,) and (1 - 55) are both less than 5572, we can

then conclude that | V(&) - V;(ﬁ )| < —%"— This will establish a contradiction and complete

the proof.

To see that d7(h;, 7;) < 8~"-2, note that:

{(a) claims (i)-(iv) guarantee that l;,- and n; have the same sequence of jumps;

(b) before 1,, fi,- and 7; can differ on at most a set of time nodes with measure less than
LT+ x)(-e% + 1)3(R).

{c) after f,, 5,- and 3; can differ on at most a set of time nodes with measure léss than

(1 - L)yI(F + 1)(?1}2— + 1)(B(R) + 5%) + I + D3(R).

{b) was established \#hen we proved that f was an «*-approximation to f . To establish {(c),
make the same arguments again, but include the extra fact that when fk # 1, we have
|# - G(t)| <iox. By the definitions of 5R) and b, we can conclude that
dF(h;, 7)) < 8 < $HIE2, |

To establish that d%(4_;, szp T-i1s5) < 872, proceed as in the previous paragraph, sub-
stituting /_; . for A; and 7_;|,_) for ;. [in the analog to (b), the addition of I(i + 1)¥(R) is
not needed].

We will now prove (i) and (iii) above. The proofs of (ii) and (iv) are virtually identical.

We begin with a claim.

Claim: Fort, < & < t5 5Gupy-10 & € D(i;,-) implies #G-“I(G(zk)) >0

Proof of the Claim: Pick ¢, € D(ﬁ,-). There are three cases to consider:
Case (2): g and f; call for the same jumps at (¢, & L)
Case (b): £; and f ; call for different jumps at (5, A, ).

Case (c): £; calls for a jump at (4, &, ) that f; does not call for.

Since we know that | P;(f, m(s,, h 1) —'P,»R(f, oh )< % and we are assuming
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that P;((g;, f‘ wih by By ) > Pf(f y by B |;) + ¢, we can invoke assumption V2 to conclude that

there is at most one jump in 4; on the interval (4, & + ¢%). This interval contains at least

T + 1)(;}? + 1)

; grid points. From this an the assumption that each j # i is playing f s

we can conclude that (7, ! |;,) is not handled literally (i.e., on line 1310} by the algorithm.
Therefore, examining lines 1530, 85, 215, 340 and (iii) in the definition of &x ( cases (b) and
(c)) or lines 85, 215, 340 and line (iii) in the definition of % ( case (a)), we conclude that
#G (G (t)) > 0.

We now establish (i) and (iii). There are eight cases to consider, depending on whether
or not

a) m{t,, h |, ) was defined on line 1525 (written (z,, b |,) € 1525);

b) #S, =1

c)s) < .

(tr b |,) € 1525) and 5y < I, (Cases 1 and 2)

This cannot happen since by line 1525, (iii) in the definition of 5% and the definition of sy,

(t,, h|,) € 1525) implies 5; = 7.

{t;, b)) € 1525), #S,, = 1 and 5y = 4. (Case 3)

Using the last claim, we see that there is only one sequence of moves at (¢, h,.) by f i

and g; that is compatible with this case: f_; calls for at least one j # i to move at 1, £ calls
for no agent to respond with a move and g calls for ¢ not to move, that is
{tri1s h |,,.,) € 1525, This f will happen only if in continuous time, 7 _; calls for a right con-

tinuous jump at t, =t (m(pred(t,, i 1, DL The construction of g; now guarantees that
BE, - m(te, ) = (Bie), Foitr™ 8 o)

which is in fact egqual to b(ff(Sl)). Conclusion (iii} is an immediate consequence of

(trors By, ) € 1525.
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(t,, h),) ¢ 1525), #S, = 1 and 5, = i. (Case 4)
Since #5; = 1, the Claim above lets us conclude that 7, ¢ D(h;). Therefore,
gi(tr’ i; ll,) = il.,'(lr_;) # .fi(trs }; |J‘,)’

so that either (.1, ;.)€ 1525 or (tyy, Byy,) € 1530 X (fruy, £ yy,) € 1525, then
f _i(t, h )= i;_,-(t,_;) and }'-_,- and Z_; call for no jumps on {f,, $5), giving us conclusions (i)
and (iii) above. If (t,4, /1 ,,,) € 1530, then we know f_;(t,, k|,) # h_i(f,-1). This and the
fact that #5, = | implies that the discontinuity was induced by a right continuous jump by
F.;at m(t,, h 1), that no j # i responds instantaneously to this jump and that g; deviates
passively. at (&g, h i1,.,)- By the definition of %, this establishes that for 0 <r <,
8 (&, [-i), mlt,, R 1)) = (@), Foi(z™E, 7). which establishes conclusion {i). Conclusion
(iii) now follows immediately from line 1525, and the definitions of 7! and g;.

(t;, h|,) € 1525), #S, = 1 and 5; < I,. (Case 5)

We show that this case cannot happen, by exhaustively searching the algorithm at the places

where m(t,, h ) was defined.
(t,, h|.) ¢ 350, 355, 356, since &, < t;_57,1)-1-
(1,, h|,) ¢ 330, 340, since s, < 7, would then imply that #S, > 1.
(I, b (1) ¢ 360, 1310, since 5, < £,.
(t,, by, ) ¢ 1530, since #5) = 1.
In all of the remaining cases — 6, 7, and 8 ~ #S, > 1. The proofs of conclusions (i) and

(iii) are virtually identical: use lines 1530 1525, 330 and 340, (i) and (ii) in the definition of

dx. O
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