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Abstract

Expert mathematicians make discoveries about entirely ab-
stract entities. Where do these insights come from? Accord-
ing to a variety of classic accounts, creativity is a multi-stage
process that involves combining ideas in novel ways. Most
of the evidence for these accounts, however, is drawn from
artificial lab-based settings or is zoomed out from the messy,
moment-to-moment details of discovery. Here, we take ad-
vantage of a video corpus of expert mathematicians generat-
ing proofs in their natural habitat: at the blackboard, chalk
in hand. These mathematicians experienced spontaneous in-
sights as they worked on proofs. We find that mathematicians
begin by creating a variety of inscriptions, filling the black-
board with equations and diagrams. They then interact with
these inscriptions through gaze, speech, gesture, and writing.
When they experience an insight, however, their interactions
become unpredictable, and they begin to connect inscriptions
in novel ways (quantified by an information-theoretic measure,
surprisal). Expert mathematical discovery, we conclude, ex-
hibits the stages and combinatorial processing that have been
proposed to characterize creativity. Even at the pinnacle of ab-
straction, at the highest levels of expertise, new ideas are born
when the body discovers unexpected affinities among ideas.

Keywords: mathematical insight; expert mathematicians;
combinatorial creativity; stage-based models of creativity;
mathematical inscriptions; situated reasoning

Introduction
Many discoveries involve perceiving the right thing in the
right way. An ornithologist might observe a heretofore un-
known bird, or an astrophysicist might use data to infer the
shape of a black hole. But other discoveries occur in the ab-
sence of new empirical evidence. Mathematics, for instance,
involves reasoning about entirely abstract entities, from in-
finity sets to functions that are impossible to visualize. And
yet mathematical practice is replete with moments of sudden
insight. Where do these insights come from?

Creativity is at the core of expert mathematics. Mathemat-
ics is more than just a static collection of established theorems
and techniques. Mathematicians continue to make new dis-
coveries (Davis, Hersh, & Marchisotto, 2012; Mann, 2006;
Sriraman, 2004; Sternberg & Ben-Zeev, 1996). To do so,
they scribble, draw, erase, sketch. They get stuck. They may
give up. But sometimes, they suddenly have an insight that
allows them to make progress (Poincaré, 1913; Hadamard,

1954). Given the abstraction and complexity of mathematics,
this stands as a paragon of human creativity. How does this
happen? What is the process by which expert mathematicians
have insights?

Insight as multi-stage and combinatorial

Creative insight has been described as a multi-stage process.
One popular model, proposed by Wallas (1926), suggests
four stages: preparation, incubation, illumination, and veri-
fication. In the preparation phase, individuals begin to un-
derstand the problem. In the incubation phase, they uncon-
sciously search for solutions. In the illumination phase, they
experience an “aha!” moment that signifies the discovery of
a potential solution. And in the verification stage, individuals
actively test the solution to confirm its viability. Other stage-
based accounts have been proposed (Guilford, 1967; Camp-
bell, 1960; Lubart, 2001).

When a creative insight arrives, it often appears to com-
bine old ideas in new ways. In the lead-up to insight, many
potential combinations may need to be considered before a
successful combination is discovered (Hadamard, 1954; Si-
monton, 2009, 2012, 2021). Most of these combinations are
common and therefore uninformative or of no use. However,
a rare combination may turn out to be highly informative,
revealing connections between concepts previously thought
unrelated. These new connections can even give rise to a
change in how one thinks about or represents the problem
(Duncker, 1945; Hélie & Sun, 2010; Knoblich, Öllinger, &
Spivey, 2005; Ohlsson, 1992). Such combinations thus pro-
vide novel and fruitful insights. For example, Koestler (1964)
defined creativity not as creating something out of nothing,
but as a process that “uncovers, selects, re-shuffles, combines,
synthesizes already existing facts, ideas, faculties, skills” (p.
323).

We illustrate this process in the top panels of Figure 1. Be-
fore an insight, a reasoner might explore a variety of connec-
tions (edges) between ideas (nodes) (Fig. 1A). The moment
of insight arrives when two previously disconnected ideas
are recognized as related, indicated here by the blue edges
(Fig. 1B).
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This combinatorial vision of creativity has been widely in-
voked (Hummel & Holyoak, 2002; Simonton, 2009; Thagard
& Stewart, 2011). Fauconnier and Turner (2002), for in-
stance, coined the term “conceptual blending” to refer to the
general cognitive ability that allows humans to integrate ideas
from different domains to create new concepts and meanings.
They considered innovation and creativity as one manifesta-
tion of conceptual blending. In yet another account, Mednick
(1962) described creativity as “the forming of associative el-
ements into new combinations which either meet specified
requirements or are in some way useful” (p. 221). In a sim-
ilar vein, studies of analogical reasoning provide evidence
that discovering connections between remote concepts can
prompt creative insights (Dunbar, 1995; English, 2004; Gick
& Holyoak, 1980; Holyoak & Thagard, 1996; Pólya, 1990).
Finally, in the mathematician Poincaré’s poetic description
(1913), creativity involves recognizing an “unsuspected kin-
ship between other facts, long known, but wrongly believed to
be strangers to one another” (p. 386). In other words, creative
insight doesn’t necessarily require a new fact. Instead, ideas
that were previously treated separately are suddenly brought
into conversation, combined, seen as connected.

But what about genuine mathematical discovery?
As evident from the brief review above, many scholars —
and self-reflective creative individuals such as Poincaré —
have pointed to the multi-stage and combinatorial nature of
insight. Empirical evidence for these proposals has typi-
cally come from simple tasks in artificial, lab-based settings
(Stephen, Boncoddo, Magnuson, & Dixon, 2009; Duncker,
1945; Knoblich, Ohlsson, Haider, & Rhenius, 1999; Chese-
brough, 2021; Bieth et al., 2021). This raises the question of
whether this account actually extends to more complex, real-
world feats of discovery.

When scholars have examined insight among scientific and
mathematical experts, they have mostly relied on anecdote
(Poincaré, 1913), self-report (Hadamard, 1954), or a zoomed
out analysis of the long sweep of history (Simonton, 2021,
1999).

The moment-to-moment work of mathematics is material
and messy. Mathematicians write, scribble, draw, sketch.
Then they elaborate, erase, gesture toward, and interpret
those inscriptions (Barany & MacKenzie, 2014; Greiffen-
hagen, 2014; Marghetis, Samson, & Landy, 2019; Goldstone,
Marghetis, Weitnauer, Ottmar, & Landy, 2017). This embod-
ied activity—in which mathematicians literally use their bod-
ies to advance their thinking—is a core part of doing mathe-
matics at the highest levels. In a study of mathematical prac-
tice, one mathematician described a near-total dependence on
paper and pen: “Of course you could train yourself to do it
mentally [...] but this is not how you work. This is not how I
work. When I work, I write things down on a piece of paper”
(Johansen & Misfeldt, 2020, p. 3726). Another dismissed en-
tirely the possibility of solving problems in his mind alone:
“No, no. You write. . . You write. . . You write” (p. 3726).
For the working mathematician, therefore, writing is integral

Figure 1: Insight as a combinatorial process. (A, B)
Schematic illustration of combinatorial insight. Nodes rep-
resent ideas. Edges represent directed connections among
ideas, with edge width indicating how frequently the connec-
tion is made, and shading indicating the direction of the con-
nection (from light to dark). Prior to the insight (left panel),
the same connections are explored, while others are not con-
sidered at all. After the insight (right panel), a novel connec-
tion is discovered (blue edges), and this productive combina-
tion of ideas is explored while older combinations are aban-
doned. (C, D) Combinatorial insight by a mathematician in
the video corpus. Nodes represent inscriptions on the black-
board. Edges indicate shifts of attention between inscriptions,
with edge width indicating empirical frequency. Prior to the
insight (left panel), some inscriptions were never connected
by the mathematician. After the mathematician experienced
an insight (right panel), they more frequently linked inscrip-
tions that before were only weakly connected (e.g., 2 and 3),
and created new links between inscriptions that had been to-
tally disconnected.

to the process of discovery.
So, what does discovery look like in the moment-to-

moment dynamics of the mathematicians’ struggle at the
blackboard?

The present study
To study the process of creative insight in expert mathemati-
cians, we relied on the centrality of inscription in mathemati-
cal practice. Expert mathematicians write extensively, some-
times with pen or pencil, but often with chalk at a blackboard
(Barany & MacKenzie, 2014; Greiffenhagen, 2014; Wynne,
2021).

We examined spontaneous insights experienced by expert
mathematicians as they worked on non-trivial problems in
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their natural habitat—that is, with chalk in hand at the black-
board. We identified moments of insight expressed by the
mathematicians (e.g., a mathematician exclaims, “Aha!”). We
also tracked where they were attending as they worked, based
on their gaze, gesture, writing, and speech. We could thus
examine how mathematicians changed their interactions with
their inscriptions around the moment of insight. This design
allows us to investigate expert mathematical creativity as it
occurs in an ecologically valid setting.

If multi-stage models of creativity are correct, mathemati-
cians should engage in different patterns of activity. Dur-
ing the early “preparation” stage, mathematicians might cre-
ate new inscriptions, externalizing their ideas and creating
an “ecosystem” of blackboard inscriptions (Marghetis et al.,
2019). If the “insight” stage involves the discovery of novel
combinations, mathematicians experiencing an insight might
shift their pattern of interactions, the way they shift their
attention among inscriptions (Fig. 1, A and B). Previously
unrelated inscriptions might suddenly become linked for the
mathematician, with attention shifting back and forth. Previ-
ously linked inscriptions might no longer seem related at all.
A period of insight, therefore, might manifest in the mathe-
maticians’ embodied1 activity at the blackboard.

Methods
Video Corpus
We used a subset of a video corpus of PhD-level mathemat-
ical experts working on non-trivial problems. This corpus
(total corpus length: 4 hours and 40 minutes) was collected
by Marghetis et al. (2019) to study mathematical reasoning
as it occurs in its natural context: in the Math department,
working at a blackboard. Participants (hereafter, “mathemati-
cians”) were completing their PhD in mathematics at an R1
research university, were recruited via email, and were com-
pensated for their participation.

They were presented with up to three conjectures that they
were asked to prove. The conjectures were selected from
William Lowell Putnam Mathematics competition and in-
cluded various topics, such as set theory, geometry, and anal-
ysis:

1. Find an uncountable subset, S, of the power set of a count-
able set, such that the intersection of each pair of elements
in S is finite.

2. Let f : R2→R be a function such that f(x, y) + f(y, z) +
f(z, x) = 0 for all real numbers x, y, and z. Prove that there
exists a function g: R→R such that f(x, y) = g(x) - g(y) for
all real numbers x and y.

3. Let d1, d2, . . . d12 be real numbers in the interval (1, 12).
Show that there exist distinct indices i, j, k such that di, dj,
dk are the side lengths of an acute triangle.

1Here, we use the word “embodied” to refer to the actual use
of the body—to gesture, write, etc.—rather than to the activation of
sensorimotor brain areas.

These were chosen to be non-trivial but approachable for
PhD-level mathematical experts. The mathematicians were
encouraged to verbalize their reasoning while working on the
proof, but otherwise were left to their own devices. Each
mathematician worked for up to an hour, moving on to a new
conjecture when they either felt they had proved the current
conjecture or did not know how to make further progress.

For the analyses here, we included only those mathemati-
cians who attempted both conjectures 2 and 3 (N = 6). This
subset of the corpus consisted of twelve proof sessions lasting
a total of 4 hours and 5 minutes.

Video Analysis
One researcher, blind to our hypotheses about mathematical
insight, coded every time a mathematician directed their at-
tention toward a blackboard inscription, whether by creating
a new inscription or by shifting their attention to an existing
inscription. Shifts of attention were inferred from mathemati-
cians’ gaze,2 gesture, speech, writing, or the act of erasing
an inscription (Fig. 2, A and B). This generated a time se-
ries of “events” in which mathematicians shifted their atten-
tion among inscriptions. Distinct inscriptions were identified
based on two criteria: semantic relatedness and spatial prox-
imity. For example, the different parts of a graph—e.g., two
axes, axes labels, the line representing the function—would
be treated as a single inscription.

A second coder identified, from the video, every time that
a mathematician verbally expressed that they were having an
insight (e.g., saying “aha!” or “ohhhhhh, I see”). We identi-
fied a total of 24 insights in the corpus.

Previous work has suggested that the insight process can
begin prior to its verbal expression (the “flash” of insight)
and can continue for some time after (Wallas, 1926; Sadler-
Smith, 2015). We, therefore, analyzed the periods immedi-
ately before and after the moment of the verbal expression
of the insight. Inspection of the video corpus suggested that
one-minute periods (before and after) would capture the pace
at which mathematicians progressed through their reasoning.
A sensitivity analysis confirmed that our results do not de-
pend on the choice of this specific duration.

Quantifying novelty of connections
When mathematicians shifted their attention from one in-
scription to another, this event could range in novelty. Mun-
dane events involved shifts of attention between inscriptions
that had been connected previously. Novel events connected
inscriptions that had not previously been connected. To quan-
tify the novelty of these connections, we used a measure from
information theory, surprisal, that quantifies how unexpected
or informative an event is.

We calculated the surprisal of each shift of attention rel-
ative to the shifts that had occurred previously in the proof

2Shifts of attention through gaze were inferred by the coder from
the video. To maximize ecological validity, we did not use eye track-
ing technology.
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Figure 2: Illustration of mathematicians’ inscription-
making behavior and shifts of attention across inscrip-
tions. (A) Screen capture of a mathematician working at the
blackboard. Inscriptions are identified by numbered squares.
As the mathematician worked on the proof, he created new
inscriptions and shifted his attention between existing ones.
(B) Two pictures are blended to illustrate the mathemati-
cians’ shift of attention from one inscription to the next. The
shifts of attention were identified based on mathematicians’
inscription-making behavior, gesture, gaze, and speech.

session.3 For the i-th shift of attention, si, we calculated the
probability transition matrix, Pi, of all shifts of attention that
had occurred up to and including that moment. We then cal-
culated the surprisal, h, of the shift of attention si:

h(si) =− log2 Pi(si) (1)

Surprisal thus ranges from 0 to ∞, with 0 indicating that the
current shift of attention was identical to all previous shifts,
and greater values indicating that the shift was unlikely given
all previous shifts.

Results
Decreased introduction of new inscriptions before
the flash of insight
Mathematicians were most likely to introduce new inscrip-
tions when they were not experiencing an insight (Fig. 3).
We calculated the probability that a blackboard interaction in-
volved the introduction of a new inscription (rather than, say,
a shift of attention to an existing inscription). The probability
was lowest in the one-minute period before a flash of insight
(M = .035, SE = .011), and highest when they were not near
an insight at all (i.e., not in the one-minute periods before or
after a flash of insight; M = .074, SE = .009).

We constructed a mixed effects logistic model of whether
each blackboard interaction event involved the creation of a
new inscription. The model included a fixed effect for time in
minutes. It also included fixed effects for whether the event
was in the period immediately before the flash of insight, an-
other for whether the event was in the period immediately
after the flash of insight. These fixed effects thus compare
the periods immediately before or after the flash of insight,

3This approach is similar to analyses of language in which the
surprisal of words or phrases is calculated relative to the preceding
discourse context (Levy, 2008; Hale, 2003; Kuznetsova, Chen, &
Choi, 2013).

Figure 3: The probability of creating a new inscription
when interacting at the blackboard was lowest in the pe-
riod immediately before a flash of insight. The vertical axis
represents the proportion of blackboard interactions that in-
troduced a new inscription. Non-insight events, in red, did
not occur near a flash of insight. Insight, in teal, was divided
into pre-insight (the period immediately before the flash of
insight) and post-insight (the period immediately after). Dots
indicate means; error bars indicate SEM. (* = p < .05)

to all other times during the session. Finally, we included an
interaction between these two to account for events that were
sandwiched between two back-to-back flashes of insight.4 To
account for variability among individuals and conjectures, we
included random intercepts for sessions.

Mathematicians were significantly less likely to create new
inscriptions as the session continued (b = −.053± .009 SE,
Z = −5.437, p < .001). Critically, they were also less likely
to create new inscriptions in the one-minute period before the
flash of insight, compared to periods away from the insight
(b = −0.73 ± 0.298 SE, Z = −2.44, p = .014). New in-
scriptions were numerically but not significantly less likely
to occur in the one-minute period after the flash of insight
(b =−0.23±0.24 SE, Z =−0.94, p = .34). The interaction
was not significant (b = 0.33± 0.64 SE, Z = .52, p = .60).
These results were robust to different choices of the duration
of the window before and after the flash of insight, ranging
from 45 seconds to 75 seconds. The production of new in-
scriptions, therefore, dropped off significantly in the period
leading up to a flash of insight.

Increased surprisal of connections during insight
Mathematicians made significantly more novel connections
during periods of insight, both immediately before and af-
ter expressing the flash of insight (Fig. 4). This is illustrated
in the bottom panels of Figure 1. Here we see the way an
actual mathematician in the corpus shifted their attention be-
tween inscriptions both before and during an insight. The
right panel, (D), shows the mathematician’s activity in a two-
minute period centered around a flash of insight. The left
panel, (C), shows the two-minute period before that. Notice

4This interaction term thus accounted for cases where mathe-
maticians experienced two insights within a brief period of time,
such that the one-minute period after the first insight would overlap
with the one-minute period before the second.
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that, during the insight, some old connections (edges) that
were infrequent (thin) are now more frequent (thick), and they
are even new connections that did not exist previously (blue
edges). In this case, therefore, the flash of insight was accom-
panied by a period of novel, unexpected connections between
inscriptions.

This was true in general. Mathematicians’ shifts of atten-
tion between inscriptions were most predictable when they
were not experiencing an insight (surprisal: M = 1.98, SE =
.09). By contrast, in the one-minute periods both before
and after the flash of insight, they made shifts of attention
between inscriptions that were more unexpected (Mbe f ore =
2.14, SE = 0.12; Ma f ter = 2.19, SE = .09).

We constructed a linear mixed effects model of the sur-
prisal of each shift of attention. Like the model of new in-
scriptions described above, this model included fixed effects
for time, for whether the event was in the period before the
flash of insight, for whether the event was in the period af-
ter the flash of insight, and for the interaction between these
latter two. We added a fixed effect for whether the event in-
volved introducing an entirely new inscription, since these
would have higher surprisal by definition. Once again, we
included random intercepts for sessions.

Surprisal increased over the course of the session, with
a .06 increase in surprisal for every passing minute (b =
.06± .003 SE, t = 19.6, p < .01). Unsurprisingly, shifts of
attention to entirely new inscriptions had significantly higher
surprisal (b = .67± .08 SE, t = 7.89, p < .01). Critically, sur-
prisal was significantly greater in the one-minute periods both
immediately before the flash of insight (b = .19 ± .08 SE,
t = 2.34, p = .02) and immediately after the flash of insight
(b = .23± .08 SE, t = 2.89, p < .01). The interaction was not
significant (b = −.27± .18 SE, t = −1.54, p = .12). These
results were robust to different choices of the duration of the
window before and after the flash of insight, ranging from
45 seconds to 75 seconds. Mathematical insight, therefore,
was associated with making more novel connections among
inscriptions.

Discussion
In an analysis of a video corpus of expert mathematicians, we
found evidence that preparation and insight were associated
with different patterns of blackboard interaction. Mathemati-
cians introduced fewer new inscriptions in the moments be-
fore a flash of insight. Insights were associated with shifts
of attention between blackboard inscriptions that were more
unpredictable, as measured by surprisal. These results are in
line with multi-stage and combinatorial models of creativity,
in which reasoners initially prepare for insight by introducing
elements that might be useful, and then arrive at insights by
making novel connections between those elements.

While early accounts of mathematical insight were founda-
tional for the scholarly study of creativity, subsequent empiri-
cal work on creativity has tended to focus on artificial lab set-
tings (Stephen, Boncoddo, et al., 2009) or zoomed out analy-

Figure 4: Mathematicians made more unexpected connec-
tions during an insight. The vertical axis represents the sur-
prisal of shifts of attention between inscriptions. Non-insight
shifts of attention, in red, did not occur near a flash of in-
sight. Insight, in teal, was divided into pre-insight (the period
immediately before the flash of insight) and post-insight (the
period immediately after). Dots indicate means; error bars
indicate SEM.(* = p < .05, ** = p < .01)

ses of the products of expert inquiry (Simonton, 2021). Here,
we leveraged a naturalistic corpus to study insight as it occurs
in the chalky, material, furniture-cluttered world of mathe-
matical activity. We see this work as a complement to—and
extension of—the anecdotes and introspection of mathemati-
cians (Poincaré, 1913; Hadamard, 1954).

Stage-based theories of insight

Our results provide evidence for stage-based theories of cre-
ativity. On one influential account, creativity involves four
stages: preparation, incubation, illumination, and verification
(Wallas, 1926). The illumination stage, in particular, often
gets the most attention, since it is associated with the “aha!”
moment itself. When mathematicians in our corpus expressed
verbally that they’d had an insight, this general period pre-
sumably corresponded to their “illumination” stage. Some
have argued that illumination begins even before we become
aware of it (Sadler-Smith, 2015; Wallas, 1926), and this was
borne out in our data: Mathematicians began making more
novel connections even before they expressed their insight
verbally.

Illumination is supposed to follow preparation and incuba-
tion, and precede verification. While our data do not allow
us to distinguish these stages in the mathematicians’ activity,
we presume that preparation and incubation corresponded to
the period before they began to experience illumination. This
is given credence by the pattern of inscription creation. In
general, more inscriptions were created toward the start of
the session, and there was a drop in new inscriptions right
before the flash of insight. This suggests that mathemati-
cians front loaded their inscription-making as they familiar-
ized themselves with the conjecture, thus preparing them-
selves for insight by crafting a “notational niche” conducive
to their proof-making efforts (Marghetis et al., 2019; Menary,
2015).
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Inside the skull, or out in the world?

Writing is at the core of mathematical practice. This was im-
possible to ignore in the ecologically valid setting we inves-
tigated here, where the creation and manipulation of inscrip-
tions were ubiquitous. All six mathematicians made abundant
inscriptions during proof generation, and their insights were
associated with changing interactions with those inscriptions.
How should we think of the relationship between these inter-
actions and the insight process itself?

One approach is to consider mathematicians’ external in-
teractions with inscriptions as merely a proxy for their brain-
based mathematical reasoning. On this account, creative in-
sights occur within the skull and are only later projected onto
the blackboard. This approach is in line with accounts that at-
tribute creative insight primarily to the unconscious mind—
where, perhaps, mathematical concepts bounce around like
atoms, in hope of finding a useful connection (Poincaré,
1913).

On the other hand, creating and interacting with inscrip-
tions might be a constitutive part of the reasoning process
(Clark, 2008; Goldstone et al., 2017; Hutchins, 1995, 2005;
Johansen & Misfeldt, 2020; Marghetis et al., 2019; Menary,
2007). Interactions with the external world of inscriptions
might actively contribute to the discovery of new connections.

Our observational data cannot decide between these ap-
proaches. But we find the latter, embodied approach more
plausible, more fruitful, and a more natural fit to the fleshy,
chalky activity that we observe. Past work has found that,
when participants are trying to solve a simple lab-based puz-
zle, the moment of insight is preceded by changes in the en-
tropy of eye movements and gestures (Stephen, Boncoddo,
et al., 2009; Stephen, Dixon, & Isenhower, 2009), as if the
process of discovery is reflected in the entire embodied or-
ganism, not just confined to the brain. Other work has found
that even slight modifications of inscriptions can affect math-
ematical perception, performance, and reasoning, as if the in-
scriptions themselves were playing an active role (Goldstone,
Landy, & Son, 2010; Goldstone et al., 2017; Landy & Gold-
stone, 2010). In addition, previous research has established
a link between embodied mathematical practice and more ef-
fective teaching and learning of mathematics (Abrahamson,
Dutton, & Bakker, 2022; Abrahamson et al., 2020; Al-
ibali & Nathan, 2012; Cook & Goldin-Meadow, 2006; Ed-
wards, 2009; Flood, Shvarts, & Abrahamson, 2020; Goldin-
Meadow, Cook, & Mitchell, 2009; Hall & Nemirovsky, 2011;
Lakoff & Núñez, 2000; Nemirovsky & Ferrara, 2009; No-
vack, Congdon, Hemani-Lopez, & Goldin-Meadow, 2014;
Núñez, 2008; Núñez, Edwards, & Matos, 1999; Richland,
Zur, & Holyoak, 2007). Here, we showed that mathematical
creativity is reflected in the interactions between the mathe-
matician’s body and the external world, in line with embodied
accounts of mathematical cognition.

Indeed, shifts of attention among external inscriptions may
be the cause, not the effect, of insight. While ideas in mem-
ory fade when not under the spotlight of attention, ideas on

the blackboard retain their luster even if they’ve been for-
gotten temporarily by the mathematician. Once external-
ized, ideas are easy to connect—not by laboriously bringing
them together in working memory—but by linking them in
the external world with gestures or movements of the eyes
(Goldin-Meadow, Nusbaum, Kelly, & Wagner, 2001; Goldin-
Meadow, 2004; Cook, Friedman, Duggan, Cui, & Popescu,
2017). Old ideas can be rediscovered with a single glance.
New connections can be discovered by accident (Kirsh, 2014)
as one’s hands and eyes are drawn across the blackboard. And
with ideas strewn across the blackboard, it becomes easier for
the mathematician to connect a new thought—not yet exter-
nalized as an inscription—to the stable external record of all
the other ideas currently in play. It’s easier to hold a single
idea in working memory, after all, than to hold two while
trying to discern their kinship. The web of relations among
brain, body, and the broader material world invites an account
of mathematical creativity that does not restrict insight to the
confines of the mathematician’s skull.

Conclusion
More than a century ago, the mathematician Henri Poincaré
(1913) proposed an analogy between insight and a cloud of
atoms. Just as the atoms dance around, meeting and joining
to create new compounds, mathematical facts bounce around
in our minds, combined in a variety of ways, until eventu-
ally a connection is made that is both novel and illuminat-
ing. An evocative metaphor, certainly. But since then, data
on the actual process of expert mathematical creativity has
been sorely lacking. Here, we studied insight as it emerges
from the moment-to-moment activity of expert mathemati-
cians in their natural habitat: generating proofs in their office
or a seminar room, using chalk and blackboard. As predicted,
the mathematicians’ insights were multi-stage and combina-
torial. They prepared by adding inscriptions to the black-
board. And then the insight itself involved novel, unexpected
connections between inscriptions. Even at the pinnacle of ab-
straction, at the highest levels of expertise, new ideas emerge
when the body discovers “unsuspected kinship” among ideas
(Poincaré, 1913).
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