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ABSTRACT OF THE DISSERTATION

Data-Driven Analysis and Dynamic Modeling of Inverter-Based Resources Under Grid
Disturbances Enabled by Automated Event Region Identification

by

Palberz Khaledian

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, June 2022
Dr. Hamed Mohsenian-Rad, Chairperson

The increasing penetration of solar power generation continues to pose new chal-

lenges to the power grid; with respect to planning studies, power quality, system control, and

operation. In an effort to address some of these challenges, this doctoral thesis focuses of

two aspects: 1) improving the self aware capabilities of smart inverters in solar farms, and 2)

analysis of solar farm’s behavior and modeling its dynamic response to the grid disturbances.

Research is done in three main stages to accomplish these objectives.

First, we capture power system events at solar farms, benefiting from the diagnostic

application of distribution phasor measurement units (micro-PMUs) installed in the feeder

head of a behind-the-meter solar farm. We determine the source region for each event,

and analyze different types of events. According to the event’s region, we either examine

the impact of solar production level and other significant parameters to make statistical

conclusions or we characterize the response of the solar farm. Our results reveal the smart

inverter behavior by revealing the dynamics to the control system of the solar distribution

feeder.

vii



Second, we locate the region of the events with automatic approaches and build

a foundation for event-based situational awareness and its data-driven applications. This

provides knowledge of the system for not only the grid operators but also for the smart

inverters to help with their self awareness to understand the impact of their operation on

the power grid. Several examples of the applications of our methodology is presented.

Third, during and after grid disturbances, we model the dynamic response of the

solar farm to the events that occur in the power grid. Accordingly, we predict the impact of

the grid disturbance on the real and reactive power injections of smart inverters.
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Chapter 1

Introduction

1.1 Background and Motivation

Due to the increase in behind-the-meter solar farms deployment in recent years [3] [4],

situational awareness in solar farms through distribution-level synchrophasors measurements

is of significant importance [2].

1.1.1 Behind-the-Meter Solar Farms

The term “behind-the-meter solar farms” refers to solar farm energy resources that

are located behind the utility’s revenue meter; thus, they are not operated by the utility. As

shown in Fig. 1.1 in the highlighted area. There is an increasing trend of “behind-the-meter

solar farms” integration to the utility grid in California and elsewhere. For example, three

large behind-the-meter solar farms are currently operating in Riverside, CA, ranging from
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Figure 1.1: A behind-the-meter solar farm highlighted in the blue color.

3.2 MW to 7.3 MW [4]. Due to the more restricted environmental requirements, we even

expect more deployment of “behind-the-meter solar farms” in future.

1.1.2 Situational Awareness in Solar Farms

Situational awareness in behind-the-meter solar farms is attaining sufficient knowl-

edge about the behavior of the soar farm in different operational conditions and grid

situations. This is an essential and challenging task in power systems [5]. If it is done

right, the resultant awareness can be highly beneficial to both the utility and the operators

of the behind-the-meter energy resources [6]. Of course gaining this knowledge requires

to first have proper monitoring of these inverter-based distributed and renewable energy

resources, which is possible through high resolution measurements that will be discussed in

the next subsection. The situational awareness and its applications is strongly interlinked to

the availability of measurements and the observability of the power distribution system [7].

Operators should be provided with the data that they need to comprehend the state of the

system and expect the system’s future behavior [8]. It is critical to understand solar farms

influence on electrical system in order to recognize critical interaction and junction point of

the system [9]. Similarly the power system has a direct impact on the solar farm real and

reactive power injection to the system.
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1.1.3 Distribution-Level Synchrophasors at Solar Farms

Phasor measurement units (PMUs) that are used for distribution systems are

distribution-level synchrophasors. These meters are also called D-PMUs and micro-PMUs

(µPMUs). The high reporting rates of micro-PMUs are sufficient to capture the high dynamics

of power distribution systems, which are due to the intermittent resources integration to the

system [10]. These high resolution measurements created a broad range of new applications in

power distribution systems. For example, synchronized measurements of voltage and current

phasors at a high resolution are now possible with micro-PMUs. One common measuring

rate of micro-PMUs is 120 phasor readings per second [11,12]. This level of reporting rate

requires much higher reporting rate; micro-PMUs have a sampling rate of 512 samples per

cycle [13]. Obtaining both magnitude and phase angle in high resolution by micro-PMUs,

our ability to analyze and scrutinize events and disturbances in the distribution system is

sharpened more than ever [14]. One example of micro-PMUs measurements is shown in

Fig. 1.2. In sub-figure (a) the measurements include normal fluctuations of the solar farm

production due to the variation in the irradiation caused by the cloud passing. In sub-figure

(b), the event in Part(a) is magnified. Such events with fast dynamic are very common in

distribution system and can only be captured by the micro-PMUs. Subsequently, they can

be analyzed and the states of the system can be inferred, the health of the equipment can

be recognized, and the disturbances can be detected and classified [15,16]. As we discussed

in the previous subsection, micro-PMUs significantly improved the ability of achieving

situational awareness in power distribution systems [17–21].

3



Figure 1.2: The voltage measurements during a cloudy day that are captured by a micro-PMU on a behind-

the-meter solar farm: (a) behind-the-meter solar farm production with irradiation fluctuation and a single

event; (b) the magnified high resolution version of the event in Part (a).

1.2 Related Literature

1.2.1 Methods for Event Region Identification

The massive investment in power distribution systems and the increased integration

of renewable energy resources with their associated equipment’s have influenced the power

quality, grid reliability, stability, and safety issues [22]. The source of power disturbances is

mostly electromagnetic transients, that are caused by lightning strokes, switching actions,

self-clearing faults, and switching of end-user equipment’s [23]. Hence a power system that

incorporates the renewable energy sources into the utility networks is involved in challenges

concerning the power disturbances [24]. Therefore, there should be intelligent approaches to

detect the power quality disturbances and identify their sources in order to determine the

foundations of these disturbances before any mitigation actions are engaged [25]. There are

several approaches for characterizing detected events, such as techniques in [26], [27] [28], [29].

There are also some studies that address event region location identification by micro-PMUs

measurements such as [30], [31]. Fault location identification based on high-impedance is

studied in [32]. In [33], a stochastic high impedance fault monitoring and location scheme
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using synchronized micro-PMUs data is proposed for distribution network protection. A

considerable number of research is done on event source location identification; however,

most of them are not related to micro-PMUs. The main methodologies are impedance-based

methods, which work based on calculating the event impedance between the location of the

event and the sensor location, which are mostly suitable to locate permanent faults [34], [35].

Wide-area monitoring is another group of applied methods that work by using data from

several sensors across the distribution system. These methods, such as [36], [37], are mostly

concerned with fault events. The wide-area methods are also employed to recognize the

operation status for distributed resources, e.g., in [38] and [39], or identify the event region

for major power quality events, such as in [40], and to identify islanding [41].

Various methods have considered data-driven frameworks with accurate micro-PMU

measurements, such as the works in [42] and [43] that utilized an unsupervised machine

learning approach for event detection and clustering. In [44] and [45], signal processing

is used for detection and localization of multiple events. These studies, [42] [43] [44] [45],

focus on an exhaustive training process with several micro-PMUs measurement to achieve

situational awareness.

Another option in identifying the location of events based on micro-PMU mea-

surements is the visual inspection. Even though, this option has not been discussed as an

actual methodology in a formal setting, some papers occasionally utilize visual inspection

method. In [12], the measurements from two micro-PMUs are used for cross-comparison to

identify the local events for each micro-PMU. Further, visual inspection is used in [1, 29, 46]

5



to investigate the simultaneous impact of specific events on various components of a power

distribution network, such as solar power inverters.

1.2.2 Methods for Dynamic Response Modeling

There are several approaches for dynamic response modeling. Two common

techniques are equivalent physical model and precise physical model to represent the system

dynamic characteristics [47] [48]. However, due to the high-order non-linearity of the PV

stations including many internal states [49], the modeling cost is significant. Precise models

makes the mathematical computation extremely complex. Thus, the equivalent models are

introduced to reduce the complexity of the system and the cost of simulation, But, the

equivalent might not reflect the dynamic characteristics accurately if the model ignores too

many internal states. To correct the difference between the precise and equivalent models the

data-driven model can be utilized. This is because the data of the dynamic process reflects

the system dynamic characteristics. Nowadays, literature mainly focus on the following

models: DC-DC converter [50] [51] [52], DC-AC inverter [53], static model [54], daily average

power generation of PV station [55], PV array models [56] [57].

Next widely researched area is the equivalence modeling of the system dynamic

process that contains PV stations. In [58], a single PV station was made to be the equivalent

of a large-scale distributed PV stations. But due to the difference of the control parameters

that was not considered in this model, the accuracy was not satisfactory. A simplified

version of a boost converter, a two-staged PV station model, was proposed in [54], the

precision was sufficient but the model ignored its grid-connected dynamic characteristics.

In [59] and [60], the distributed PV stations were clustered based on the dynamic affinity

6



propagation. They introduced long short-term memory neural network to improve the

model accuracy. Literature such as [61] [62] proposed similar dynamic model to a wind

farm dynamic modeling. They built a multi equivalent model through clustering PV station

by K-means algorithm. Many studies have been conducted int this area, equivalent model

combined with the data-driven model, but pure data-driven modeling in solar farms is still

in its infancy. Recently, the Western Electricity Coordinating Council (WECC) presented

DER A model specific to distribution-level solar farms, a positive sequence model to represent

aggregated performance of DERs [63]. The WECC model parameters detailed definitions

is presented in [64] and its mathematical state-space representations are presented in [65].

In [66], the DER A model is used as distributed generator model in composite load modeling

and parameter identification by deep reinforcement learning. In [67], characterization of

DER A model is done considering voltage ride through and dynamic voltage support.

7



1.3 Summary of Contributions

The contributions of doctoral research are as follows:

1. Using micro-PMU measurements, an event-based analysis is conducted at a solar

distribution feeder that classifies the events according to their origin. This determines

whether the events are locally-induced by the solar farm itself; or they are grid-induced.

Several insightful observations are made; 1) most locally-induced events happen during

the low solar production periods, 2) these events demonstrate more significant changes

in power factor, 3) the response of the solar distribution feeder to grid-induced events

are examined through comparing them to the response of a neighboring feeder to the

exact same events, and 4) the event dynamics are characterized based on the control

system mechanisms of the solar distribution feeder.

2. By formulating the event region identification for the behind-the-meter solar farms

and employing it on real-world data, the major shortcomings of the conventional

impedance-based method are identified (limited applicability, poor performance, and

high sensitivity) and to address these shortcomings, a comprehensive study is conducted

on a wide range of customized data-driven methods to solve the automated event region

identification problem. Both statistical and machine learning methods are developed

and examined on a multitude of extracted features. As a result the fundamental

strengths and weaknesses in each class methods in solving the event region identification

problem is identified.

8



3. From the learned lessons through the comprehensive analysis explained in the previous

point, a new region identification method is proposed to make the best use of these var-

ious data-driven methods to significantly improve the applicability and performance of

the automated event region identification in behind-the-meter solar farms. The results

of the employment of the proposed model on real-world micro-PMU measurements

demonstrates a significant performance improvement.

4. The outcome of the automated event region identification is utilized to build the

foundation for event-based situational awareness and data-driven applications in

behind-the-meter solar farms to unmask the practical value of our analysis. Moreover,

for each identified region as grid-induced and locally-induced events, specific practical

applications are proposed.

5. For the grid disturbances (grid-induced events), a data-driven event-based technique is

developed to model IBRs’ dynamic response; which is of interest for modeling dynamic

response of the previously installed IBRs to provide insight of these systems to the

utility; also it is critical in planning and feasibility study of solar farm -related projects.

6. The proposed methods makes use of the measurement devices that are previously

installed for other purposes, e.g., micro-PMU data, instead of new sensors installation

for inverters. Thus, the modeling of the dynamic response is done with limited input

data of the plant and minimal extra asset.

7. A comprehensive active-learner library of models is build that constantly evolves

through events that cannot be accurately estimated by the available models; a new

9



model will be build and add to the library for any new and unknown event. By this

comprehensive active-learner library, accurate estimation of the dynamic response

output in the post-event period is achieved. To achieve the best dynamic modeling,

the best model is selected based on two different similarity measures, dynamic time

warping and Pearson correlation. This makes sure of singling out the most accurate

model in the library.

8. The active learning library will grow really fast. So, a dimension reduction technique

is used to always keep the library in a reasonable size by classifying the models and

choosing the best model in each class to represent the whole class.

9. The proposed dynamic modeling has several extra degrees of freedom compare to

most of the data-driven approaches: 1) the lengths events can be different without

impacting the accuracy or the process timing, 2) the estimation window is based on

the occurrence time of the event so it is automatic and dynamic, 3) the parameter

classification are also self-regulating according to the distribution of the parameters

values, and 4) the estimation of the real and reactive powers are independent which

creates a flexibility in the model selection process that leads to better estimation for

each signal separately.

10



1.4 Thesis Outline

This dissertation is structured as follows:

Chapter 2 provides an in-detail analysis of the events related to the a real-world

solar farm. These events are either resulted withing the solar farm, so their impact of the

grid parameters are studied, or the events occur somewhere in the grid, so the response of

the solar farm to these kind of events are studied. Also, the dynamic steps of the solar farm

responses are revealed and related to the smart inverters control strategies.

In Chapter 3, several automatic approaches are developed to locate the region of

the events which builds a foundation for event-based situational awareness. The performance

of the proposed approaches are compared in details. The data-driven applications of the

automated region identification are explained and several examples of the applications of

our methodology is presented.

Chapter 4 introduced dynamic response modeling of the solar farms using single

model, multi models, their combination, and the reduced models. The dynamic outputs

of the models, real and reactive powers, are estimated and compared against the actual

dynamic responses. The performance of each method is evaluated and the evolution of the

models are presented.

In Chapter 5, the summary of the works in this doctoral research and the potential

future works are presented.

11



Chapter 2

Event-Based Analysis of Solar

Power Distribution Feeder Using

Micro-PMU Measurements

2.1 Introduction

As the penetration of solar power generation continues to grow, system operators

confront new challenges. Some of these challenges are introduced either by the power system

events which have impact on solar farms; or by locally generated events that cause power

quality issues due to the sharp drop and spike in solar power production [68].

To recognize these events and analyze their signatures and impacts, micro-PMU

measurements can be of great value; given their high reporting rate of 120 phasor measure-
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ments per second; and their synchronization capability. Availability of such data has enabled

high-resolution event analysis by using data mining and machine learning techniques [43,69].

2.1.1 Approach and Scope of Analysis

The study in this chapter is about a real-world solar distribution feeder that is

integrated into a distribution substation. This solar distribution feeder is a large behind-the-

meter solar farm, which is monitored by a micro-PMU at the distribution substation. We

conduct an event-based analysis of the micro-PMU measurements and report and discuss

our discoveries.

The events are first detected by an unsupervised machine learning method. Next,

we conduct the following analysis:

1. For each captured event, we seek to first answer the following fundamental question:

is the event caused by the solar farm, i.e., is it locally-induced? or is it initiated in the

grid, which consequently caused a response by the solar farm, i.e., is it grid-induced?

Our answer to this question is based on an impedance-based method that is applied to

the differential phasor representation of each event, coupled with a signature inspection

method.

2. Regarding the locally-induced events, we seek to understand their engineering impli-

cations. We observe that the majority of the locally-induced events happen during

the low production periods of the solar farm. Furthermore, the events during the low

production periods demonstrate more significant change in power factor.
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3. Regarding the grid-induced events, we characterize the response of the solar distribution

feeder to such events. We also make comparisons with the response of an auxiliary

neighboring feeder to the same events.

4. We scrutinize multiple specific events that are particularly informative; such as by

revealing the control system dynamics of the solar distribution feeder. The behavior

of the solar farm is explained by the smart inverter control levels via dissecting two

use cases.

The results in this study are insightful to utilities and solar power industry. They

also provide new insight on the application of micro-PMU measurements in the study of

behind-the-meter solar distribution feeders.

2.1.2 Literature Review

Power quality events that are associated with PV inverters in power distribution

systems have been previously studied, such as in [22,70–72]. Some studies, such as in [70], use

real-world measurements, while some others, such as in [22], use computer simulations. More

importantly, all these prior studies have focused on typical load-serving feeders, with varying

PV penetration levels. In fact, to the best of our knowledge, this study is the first data-driven

event-based study of solar distribution feeders by using micro-PMU measurements.

In terms of the relevant data-driven methodologies, machine learning techniques

have been already used in [69, 73–75] in order to detect power quality events in power

distribution feeders. However, the previous studies have been concerned with load-serving

distribution feeders. Therefore, while we used the same deep learning architecture as in [69]
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for event detection in this study; we had to train the model with different data from a

real-world solar distribution feeder.

Several studies have discussed identifying the source location of events in power

distribution systems, e.g., in [76–78]. Here, our concern is only on whether the source of the

event is the solar farm itself; or the source of the event is the grid. In case of the latter, the

solar farm still responds to the event.

2.2 Background and Methodology

The test site in this study is a solar distribution feeder that is dedicated to integrate

about 200 PV inverters in a 4 MW solar farm into a distribution substation. The solar

farm is behind-the-meter; however, a micro-PMU is available at the feeder-head at the

distribution substation that provides us the voltage and current phasor measurements of

this solar distribution feeder. This feeder does not have any load and all its solar power

production is injected into the distribution substation.

There is another micro-PMU that monitors a nearby feeder that contains a mix of

major PV generation and major load. This auxiliary neighboring feeder is sometimes a net

load and sometimes a net generator during the period of our analysis. Our focus in this

study is not on this auxiliary neighboring feeder. However, in one part of our study, we use

the synchronized micro-PMU measurements at this auxiliary feeder to better understand

the behavior of the solar distribution feeder.

Next, we briefly overview the three key methodologies that we plan to use for our

various analysis in this study.
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2.2.1 Event Detection

The first step in our analysis is to detect the events from the micro-PMU mea-

surements. This is a challenging task because events are inherently infrequent, unscheduled,

and unknown. Hence, there is no prior knowledge about their types and time of occurrence.

Accordingly, in our study, we used an unsupervised deep learning model from our previous

work in [69], which implements Generative Adversarial Network (GAN) models. There are

two main components in the event detection model; namely the generator and and the

discriminator ; which play a min-max game over the following function:

V (G,D) =Ex ∼ pdata(x)[log(D(x))]+

Ex ∼ pz(z)[log(1−D(G(z)))],

(2.1)

where V is the objective function, G is the generator, D is the discriminator, pdata(x) is teh

distribution of the real samples, and pz(z) is the noise probability distribution function.

For the GAN model, the optimal value of the min-max game over V (G,D) in (2.1)

must satisfy the following two conditions:

• C1: For any fixed G, the optimal discriminator D∗ is:

D∗
G(x) =

pdata(x)

pdata(x) + pg(x)
. (2.2)

• C2: There exists a global solution such that:

min(max
D

(V (G,D))) ⇐⇒ pg(x) = pdata(x). (2.3)

where pg(x) is the distribution of the generated sample by the generator and D∗
G is the

optimal value for the output of the discriminator.
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The model in [69] was trained for load monitoring; therefore, we used the micro-

PMU measurements from the solar distribution feeder to train new GAN models for the

purpose of event detection at the solar distribution farm. See [69] for more detail.

The dataset under study consists of measurements from both PMUs for a period of

ten days. A total of 229 events are detected at the solar distribution feeder; out of which 88

events are of interest because they happened during solar production. A total of 215 events

are detected at the auxiliary neighboring feeder, which 87 of them happened during solar

production of the solar distribution feeder.

2.2.2 Event Region Identification

In reference to the location of the micro-PMU, an event occurs either in the

upstream or in the downstream of the micro-PMU. The former is a locally-induced event;

while the latter is a grid-induced event. To determine the source region of the event, we

apply the following two different methods:

Impedance-based Method

For each event, we can calculate the equivalent impedance, denoted by Z, that is

seen in the differential mode in the upstream of the micro-PMU:

Z =
∆V

∆I
=

V post − V pre

Ipost − Ipre
(2.4)

where Ipre and V pre are the current and voltage phasors that are seen in the steady-state

condition right before the event starts; and Ipost and V post are the current and voltage

phasors that are seen during the steady state condition right after the event settles down.
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Both ∆V and ∆I are differential phasors [78, 79]. Our focus is on the resistive component

of the Z. In particular, the event is considered to be locally-induced if

Real{Z} > 0; (2.5)

otherwise, the event is considered to be grid-induced [78]. We will use the impedance-based

method in Section 2.3.

Comparison with Auxiliary Measurements

This method takes advantage of the synchronized micro-PMU measurements from

the auxiliary neighboring feeder. By comparing the signatures of an event on both feeders,

i.e., the solar distribution feeder and the auxiliary neighboring feeder, we can determine

that the event is grid-induced if it creates similar signatures on the voltage measurements

on both feeders. If the event is seen only on one feeder and there is no major signature on

the other feeder, then it is a locally-induced event [12]. We will use the combination of the

two methods in Section 2.4.

2.2.3 Event Dynamic

Some of the events that are captured in this study can reveal the dynamic behavior

of the solar farm’s control system. The control systems of the inverters on a solar distribution

feeder are highly convoluted. To dissect the event dynamics, we use the following four

general control components [80]:

• Current regulation loop is the fastest loop that controls the injected currant by each

inverter to the grid.
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• Voltage regulation loop is slower than the current regulation loop. It provides the

setpoint for the current regulation loop; upon changes in inverter terminal voltage.

• Maximum Power Point Tracking (MPPT) optimizes the utilization of input power for

maximum power output. For an individual inverter, this is the slowest controller.

• Plant-level controller maintains the scheduled voltage and power factor (PF) of the

system by coordinating the set points of individual inverter voltage or reactive power.

Plant-level control speed is coordinated with the controls of individual inverters and is

normally slower.

During an event, the major disturbances are mostly controlled by faster controls;

while minor disturbances are mainly controlled by the plant-level controller response. Based

on the above control components, two use cases are scrutinized in Section 2.5.

2.3 Analysis of Locally-Induced Events

In this section, we study locally-induced events, make statistical conclusions, and

discuss representative example events.

2.3.1 Event Correlation with PV Production Level

Our analysis of the captured locally-induced events reveals a relationship between

event occurrence and the solar production level. In particular, we have observed that the

majority of the locally-induced events occur during low production period.

It is worth clarifying that what we refer to as event in the micro-PMU data is

very different from the regular fluctuations in the solar production level that are due to the
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changes in solar irradiance. This point is explained in Fig. 1. Here, we show two example

events, denoted by Event 1 in Fig. 1(a) and Event 2 in Fig. 1(b). These two events are much

smaller in magnitude and much shorter in duration compared to the typical fluctuation in

solar production level. These kinds of events are captured only by the installed micro-PMU.

They cannot be captured by regular meters. The solar production level is 9.2% during Event

1 and 14.8% during Event 2.

Fig. 2.2 shows the scatter plot for all the captured events that are identified as

locally-induced. Here the focus is on the events with Real{Z} > 0, see the methodology in

Section 2.2.2. There is an inverse correlation between the production level and the number

of events, which can be expressed as an exponential decay function, as presented in (2.6)

and Fig. 2.2(a).

y = a.xb + c, (2.6)

where x and y are the production level and the real part of the impedance Z that we defined

in (2.4). Parameters a, b, and c are obtained through curve fitting as 850, −1, and 50,

respectively.

As shown in Fig. 2.2(b), about 70% of the locally-induced events happened when

the solar production was at %30 or less. That means, either more control actions took place

at the solar farm during low production periods; or the control actions are more impactful

during such periods and therefore their signatures are more visible. In either case, these
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Figure 2.1: Two sample locally-induced events: (a) Event 1 shortly after production starts; (b) Event 2

occurs around noon on a cloudy day.

Figure 2.2: Locally-induced events on the solar distribution feeder: (a) exponential decay relation between

production level and number of events; (b) inverse correlation between the PV production level and the

number of events.

results highlight the importance of monitoring the operation of the solar distribution feeder

during low production periods.

A closer look of Events 1 and 2 is provided in Fig. 2.3. For Event 1 in Fig. 2.3(a),

we can obtain ∆V = 238.6 + 1789.5j and ∆I = −1.835 − 1.934j. From (2.4), we have:

Real{Z} = 425.37. Therefore, from (2.5), we can conclude that Event 1 is a locally-induced

event. For Event 2 in Fig. 2.3(b), we can obtain ∆V = 2.8−29.5j and ∆I = −0.363−1.561j.
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Figure 2.3: High resolution event signatures: (a) Event 1; and (b) Event 2.

From (2.4), we have: Real{Z} = 17.57. Thus, from (2.5), we can conclude that Event 2 is

also a locally-induced event.

2.3.2 Changes in Power Factor

We further observed that, not only the majority of the locally-induced events

occurred during low production periods, but also the events that occurred during low

production periods demonstrated more significant changes in power factor (PF). In Fig. 2.4(a),

we can see the change in the phase angle difference between voltage and current phasors

that are caused by the locally-induced events versus the production level.

Note that, the cosine of the quantity in the y-axis provides the change in power

factor. Here, θV and θI denote the phase angle measurements in voltage and in current,

respectively. The changes that caused by the events in the phase angle differences declines

exponentially with the increase in production level. See the formulation in (2.7) and

Fig. 2.4(a).

y = d.xe (2.7)
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Figure 2.4: (a) Relationship between disturbance in phase-angle differences and production level; (b) small

change in PF in Event 3 during low production; and (c) almost no change in PF in Event 4 during high

production.

where parameters d and e are obtained through curve fitting. Parameter d is 4.5 and −4.5

for the exponential analysis and its inverse, respectively. Parameter e is obtained as −1.

Next, we look at two events which took place at different production levels and

led to different changes in phase angle differences, and accordingly in PF. In Fig. 2.4(b),

Event 3 happened at a low production level and caused a major change in PF, however in

Fig. 2.4(c), Event 4 happened at a higher production level and resulted in an insignificant

PF agitation.

The critical low production periods are the loss of voltage support at sunset,

particularly at large PV penetration, during startup and shutdown of the inverters. Events

during these periods are impacting the power system more, by affecting the phase angle and

consequently the power factor of the system.
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2.4 Analysis of the Response

to Grid-Induced Events

Since we have access to the synchronized micro-PMU measurements at the auxil-

iary neighboring feeder, we can also apply the signature inspection method, described in

Section 2.2.2, to see if a grid-induced event also creates a signature on the voltage phasor

measurements at the auxiliary neighboring feeder.

Among all 88 events associated with the solar distribution feeder, only 8 events are

recognized as grid induced events based on the Real{Z} < 0 criteria. Interestingly, all these

eight events create signature also on the auxiliary neighboring feeder. Therefore, they are

confirmed with both methods to be grid-induced events. Moreover, these observations verify

the reliability of the impedance-based method.

The response of the two feeders to an example grid-induced event is shown in

Fig. 2.5. Let us refer to this event as Event 5. Notice how the voltage suddenly increases

on both set of measurements. The two responses have major differences. In particular,

the event causes only a very minor transient change in the power factor in Fig. 2.5(a).

However, the same event causes a major steady change in the power factor in Fig. 2.5(b).

The change in the magnitude of current are also in the opposite directions in Figs. 2.5(a)

and (b). It should be noted that the auxiliary neighboring feeder is a net load during this

event. The behavior of the solar distribution feeder can be potentially attributed to the

MPPT behavior of the PV inverters. As for the auxiliary neighboring feeder, it appears to

act as a constant-impedance load; while its power factor is also affected.
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Figure 2.5: Response of the two feeders to grid-induced event: (a) response of the solar distribution feeder;

(b) response of the auxiliary neighboring feeder.

2.5 Analysis of Event Dynamics

with PV Inverters Operation

As discussed in Section 2.2.3, the control system in a solar distribution feeder has

multiple control loops. Therefore, the dynamic response of the solar distribution feeder to a

grid-induced event can constitute various stages.

In this section, we examine the dynamic response of the solar distribution feeder to

two distinct grid-induced events; as shown in Fig. 2.6(a) and Fig. 2.6(b). We refer to these

events as Event 6 and Event 7, respectively. The response of the solar distribution feeder to

each event is broken down into five stages that are marked from 1 through 5 on each graph.

In Stage 1, the event occurs. Event 6 is a sudden rise voltage; see Fig. 2.6(a). is a

sudden drop in voltage; see Fig. 2.6(b); thus, triggering a response by the PV control system

due to detecting the changes at the inverter voltage terminals. In Stage 2, the immediate

reaction of the system is to keep the output power stable; this causes a prompt current drop

in Fig. 2.6(a) to decrease the dc-bus voltage; and a prompt current rise in Fig. 2.6(b) to
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Figure 2.6: Comparing and characterizing the dynamic response of the solar distribution feeder to two

different grid-induced events: (a) Event 6, which is a step-up change in voltage; and (b) Event 7; which is a

step-down in voltage.

increase the dc-bus voltage. In Stage 3, the new dc-bus voltage level modifies the MPPT

output; which is the input to the voltage regulation loop. Subsequently, the reference is

fine-tuned for the current regulation loop. As a result, current increases in Event 6 and

decreases in Event 7. Thus, the dc-bus voltage goes back to its pre-disturbance value. In

Stage 4, after passing the initial transient conditions, the plant level control regulates the

process and applies the ramp rate limitation. This results in a momentary decrease of

the current on both events. Finally, in Stage 5, by a moderate ramp rate, the plant level

controller brings back the current to the regulated set point.
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Chapter 3

Automated Event Region

Identification and its Data-Driven

Applications in Behind-the-Meter

Solar Farms Based on Micro-PMU

Measurements

3.1 Introduction

Proper monitoring of behind-the-meter inverter-based distributed and renewable

energy resources is an essential and challenging task in power systems [5]. If it is done
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right, the results can be highly beneficial to both the utility and the operators of the

behind-the-meter energy resources [6].

In this study, our focus is on monitoring behind-the-meter solar farms, which are

being increasingly deployed in California and elsewhere in recent years. For example, three

large behind-the-meter solar farms are currently operating in Riverside, CA, ranging from 3.2

MW to 7.3 MW [4]. As suggested by the term “behind-the-meter”, the energy resources in

such solar farms are located behind the utility’s revenue meter; thus, they are not operated

by the utility.

3.1.1 Motivation

We are interested in monitoring and scrutinizing the events in such systems, which

are captured using distribution-level phasor measurement units (PMUs), a.k.a., micro-

PMUs [12].

These events are very different from the typical fluctuations in the production

level of solar generators that are due to the intermittency in solar irradiance. For example,

consider the power generation level at a behind-the-meter solar farm in Fig. 3.1(a). Except

for one instance, all the fluctuations in this figure are due to the intermittency in solar

generation. However, the singleton drop that is encircled is not related to solar generation

intermittency. It is instead an event that is more relevant to the operation of the inverters

at the solar generator. The magnified view of this event is shown in Fig. 3.1(b). This event

takes only a few hundred milliseconds. The reporting rate of the micro-PMU measurements

in this figure is 120 readings per second.
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Figure 3.1: Comparing normal fluctuation in solar power generation versus the type of events that are of

concern in this study: (a) solar production over a period of 10 minutes; (b) the magnified version of the event

in Part (a).

Events at a behind-the-meter solar farm can be divided into two types, the events

that are caused by the solar farm, i.e. locally-induced events, and the events that are caused

by something else somewhere on the grid, i.e. grid-induced events. The first type shows the

internal issues that may occur in the behind-the-meter solar farm. The second type shows

how the solar farm responded to external disturbances. Depending on the type of an event,

i.e., whether it is locally-induced or grid-induced, remedial actions might be needed.

3.1.2 Technical Contributions

It is crucial to distinguish the above two different types of events correctly. It is

important also to develop practical use cases to take advantage of the situational awareness

that we can gain from analyzing both types of events.

Addressing the above open problems is the focus of this study. Our study is based

on an extensive analysis of real-world micro-PMU measurements at a 4.3 MW behind-the-

meter solar farm in Riverside, CA; see Fig. 3.2. Two micro-PMUs are used in this study:

µPMUPV and µPMUOther; both are installed outside the premises of the behind-the-meter

solar farm to be monitored by the utility. A locally-induced event has a root cause in the

region on the left side of µPMUPV; while a grid-induced event has a root cause in the
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Figure 3.2: The real-world test-bed in this study: µPMUPV is installed at the point-of-common coupling

(PCC) of a 4.3 MW behind-the-meter solar farm in Riverside, CA; µPMUOther is installed at the other side

of the substation on another feeder to serve as a reference for certain analysis.

region on the right side of µPMUPV. The main technical contributions in this study can be

summarized as follows:

• The event region identification problem is introduced and formulated in the emerging

practical context of behind-the-meter solar farms. By analyzing real-world data, we

show that the conventional impedance-based method does not work well; as it has three

major shortcomings: limited applicability, poor performance, and high sensitivity.

• To address the above shortcomings, and inspired by visual inspection and domain

expert knowledge, a comprehensive analysis is conducted on a wide range of data-

driven methods that are customized to solve the automated event region identification

problem. Both statistical and machine learning methods (supervised and unsupervised)

are examined on a multitude of extracted features. The most capable methods are

identified. Importantly, this comprehensive analysis also identifies the fundamental

strengths and weaknesses in each class of these methods in solving the event region

identification problem.

• Built upon the lessons learned from the comprehensive analysis in the previous

bullet point, a new method is proposed to make the best use of the complementary

characteristics of these various data-driven methods to significantly enhance the
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applicability and performance of the automated event region identification in behind-

the-meter solar farms. After applying the proposed mixed-integrated algorithm to real-

world micro-PMU measurements, the performance metrics are significantly improved.

• To unmask the practical value of our analysis, the outcome of the automated event

region identification is utilized to build the foundation for event-based situational

awareness and data-driven applications in behind-the-meter solar farms. Specific

applications are proposed for the identified grid-induced and locally-induced events.

3.1.3 Literature Review

Event-based analysis of micro-PMU measurements has received increasing attention

in recent years. The majority of the work in this area has focused on monitoring the utility

equipment [81], load modeling [82], cybersecurity [83], state estimation [84], and stability

analysis [85]. A few studies have also focused on analyzing events in solar generation units

and distributed energy resources. In [86], events in micro-PMU measurements are examined

to detect irregularity in the operation of PV resources. In [80], recommendations are made

to utilize event data to conduct disturbance-based model verification for inverter-based

resources.

Some studies are concerned with identifying the location (region) of the events

that are observed in micro-PMU data. Many of the methods that are developed in this

area can be broadly categorized as impedance-based methods; e.g., see [12, 32]. However,

as we will see later in this chapter, impedance-based methods are not suitable to identify

the region of events in behind-the-meter solar farms. As an alternative to impedance-based
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methods, data-driven approaches have also received increasing attention in recent years, e.g.,

see [87–89]. Most of these methods focus on localizing different types of faults, with no or

little concern about other power system disturbances. Many of these methods are also not

related to power distribution systems. In [87], a combined impedance-based and data-driven

method is proposed to locate faults in a power plant. In [88], an event location identification

method is discussed based on k-means clustering in transmission systems. We will examine

the above and other data-driven methods in the context of the event location identification

problem and we will explore their weaknesses and strengths.

Visual inspection is another option in identifying the location of events based

on micro-PMU measurements. However, this option has not been discussed in a formal

setting or as an actual methodology. Nevertheless, few papers occasionally bring up visual

inspection on specific examples. In [12], visual inspection is used to cross-compare the

measurements from micro-PMUs on two different load feeders to identify the local events for

each feeder. In [1,29,46], visual inspection is used to investigate the simultaneous impact

of specific events, such as lightning strikes, on various components of a power distribution

network, such as solar power inverters. For example, they visually verified the results from

impedance-based event region identification methods.

We shall emphasize that, under the hypothetical scenario that the utility does

have access to inside the premises of the behind-the-meter solar farm in order to install

additional sensors, we could solve the event region identification problem by using some

existing methods in the literature, either by analyzing phasor measurements as in [78] or by

analyzing the waveform measurements as in [90]. However, such hypothetical scenario often
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does not take place in practice; because of the nature of these behind-the-meter solar farms.

In fact, not having any such access is one of the main challenges in the problem that we

seek to address in this study.

Finally, some studies assume that the location of the event is already known;

therefore, they rather focus on the applications of analyzing events with known locations.

Some of the applications in this regard include power system stability [91], Volt-Var control

[92], and monitoring equipment operation and state of health [93]. While these studies are

not specific to behind-the-meter solar farms, they do inspire us in some of the applications

that we will use in this study for our proposed automated event location identification

method.

3.2 Limitations of the Conventional Impedance-Based Solu-

tion

This section briefly discusses the conventional impedance-based method [1,78] to

solve the event region identification problem. We apply this method to micro-PMU data from

the 4.3 MW behind-the-meter PV farm in Section 3.1 to demonstrate the severe limitations

of such impedance-based method.

3.2.1 Conventional Impedance-Based Method

In the impedance-based method, we examine the event impedance that is seen by

µPMUPV to decide the region of the cause of the event. For each event, we calculate the

equivalent impedance, denoted by Z, that is seen by µPMUPV in the differential mode in the
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Figure 3.3: The performance of the impedance-based method on sustained events: (a) scatter plot for

Real{ZEvent} for all sustained events during one week; the colors show the correct vs. incorrect identification;

the markers show the grid vs. local identification; (b) the daily summary of the results for grid-induced

events; (c) the daily summary of the results for locally-induced events.

upstream of µPMUPV:

ZEvent =
∆V

∆I
=

V post − V pre

Ipost − Ipre
, (3.1)

where Ipre and V pre are the current phasors and the voltage phasors that are seen by

µPMUPV in the steady-state condition right before the event starts; and Ipost and V post are

the current phasors and the voltage phasors that are seen by by µPMUPV at the steady-state

condition right after the event settles down.

Once the event impedance is obtained as in (3.1), one can use its resistive component

to identify the source of the event. In particular, the event is deemed to be locally-induced if

Real{ZEvent} > 0; (3.2)

otherwise, the event is deemed to be grid-induced [78].
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Table 3.1: Performance Summary of the Impedance-Based Method in Region Identification of Sustained

Events

Grid Local
Precision

%

Recall

%

F1 − Score

%

Grid 53 510 83 9 16
Reality

Local 11 59 10 84 18

3.2.2 Shortcomings in Impedance-Based Method

Limited Applicability

By construction, the impedance-based method only works on sustained events,

i.e., the events that create steady-state impact in the system. This method does not work

on transient events, i.e., the events that are momentary; where the system returns to its

pre-event steady-state conditions. The reason is that we cannot define ZEvent for a transient

event; because ∆V and ∆I are both almost zero for a transient event. This fundamental

shortcoming is problematic in achieving situational awareness; specially if the transient event

is locally-induced and it is caused by an abnormality in the operation of the behind-the-meter

PV farm.

Poor Performance

Even for the sustained events, where the impedance-based method is applicable,

its performance is sometimes poor in practice. For example, consider the real-world results

in Fig. 3.3. The impedance-based method leads to incorrect region identification for a large

portion of events.
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The performance summary of the impedance-based method for the results in Fig. 3.3

is given in Table 3.1. Precision is the ratio of the true positive to the sum of true positive

and false positive. Recall is the ratio of the true positive to the sum of true positive and

false negative. Accordingly, we can calculate the F1-Scores for the impedance-based method

as [94]:

F1-Score(Grid) = 2× 0.83× 0.09

0.83 + 0.09
= 0.16, (3.3a)

F1-Score(Local) = 2× 0.1× 0.84

0.1 + 0.84
= 0.18. : (a) (3.3b)

High Sensitivity

One reason for the poor performance of the impedance-based method is the difficulty

in deciding when is the right moment to be considered as after. This is particularly an issue

when we work with real-world measurements. If we select a moment too early, then the

event may not have settled down yet. If we select a moment too late, then we may capture

not only the impact of the event in question, but also the other changing factors in the

system. This can affect calculating ZEvent; and the result of event region identification.

An example is shown in Fig. 3.4. This example is a grid-induced event, as shown in

Fig. 3.4(a). From Section 3.2.1, such grid-induced event is supposed to have Real{ZEvent} < 0.

That is the case during the time instances that are marked in green. However, for most

time instances, we have Real{ZEvent} > 0; as shown in the red areas. The outcome of the

impedance-based method would be wrong in all those red areas.
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Figure 3.4: High-sensitivity of the impedance-based method: (a) the event signature is in voltage measurements

for a sustained grid-induced event; (b) the value of Real{ZEvent} is calculated according to various choices of

the after time instance. The sign of Real{ZEvent} fluctuates between indicating locally-induced and indicating

grid-induced events.

3.3 Automatic Region Identification: Statistical and Machine

Learning Methods

3.3.1 Solution Based on Human Visual Inspection

One can resolve the shortcomings of the impedance-based method by visually

inspecting the event signature that is captured by µPMUPV; and then comparing it with

the signature of the same event that is captured by µPMUOther. Recall from Section 3.1

that µPMUOther is another micro-PMU that is installed at a nearby feeder. It can serve as

a point of reference.

Four examples are shown in Fig. 3.5. Event 1 (sustained) and Event 3 (transient)

created clear signatures at µPMUPV. But they did not create noticeable signatures at

µPMUOther. Thus, they must be locally-induced. Event 2 (sustained) and Event 4 (transient)

created clear signatures not only at µPMUPV but also at µPMUOther. Thus, they must be

grid-induced. We observe that, in general, locally-induced events only create a signature

on µPMUPV; and they do not create any noticeable signature on µPMUOther. Of course,

if the locally-induced event is very severe, such as in the case of a major fault in the

solar farm, then it could be possible that such event creates a noticeable signature also on
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µPMUOther. Nevertheless, the signature at µPMUOther would be significantly less severe

than the signature at µPMUPV. We shall add that we did not observe any such severe

locally-induced event in our data set.

Other examples of visual inspection are discussed in the literature, e.g., in [1,12,46].

However, the problem with this approach is the need for constant and real-time human

supervision of the micro-PMU measurements, which is cost-prohibitive. Besides, many

transient events last for only a few seconds, making it practically impossible for human eyes

to reason and react accordingly. Human error is another issue.

For the rest of Section 3.3, we seek to replace human visual inspection with

automated data-driven methods.

3.3.2 Features to Assess Signature Similarity

Let vector XPV denote the time series of the measurements that are obtained by

µPMUPV during an event. For example, for the case of an event that creates a signature

in voltage, vector XPV may include the time series of the voltage measurements that are

obtained by µPMUPV during a time window that starts a few milliseconds before and ends

a few milliseconds after the event occurs. The event can be detected and captured by using

the existing methods in the literature, such as by using the methods in [95]. Furthermore, let

vector XOther denote the time series of the measurements that are simultaneously obtained

by µPMUOther during the same time window as of the event that is captured by µPMUPV

in vector XPV.

38



0 200 400
7180

7200

7220

7240

Vo
lta

ge
 (V

)

(a) Event 1

PMUPV

7260

7270

7280

7290

PMUOther

0 200 40040.50

40.75

41.00

41.25

41.50

Cu
rre

nt
 (A

)

32.0

32.5

33.0

33.5

34.0

0 200 4007160

7170

7180

7190

7200
(b) Event 2

PMUPV

7200

7220

7240

7260

PMUOther

0 200 40042.6

42.8

43.0

43.2

35.0

35.5

36.0

36.5

37.0

0 100 200 300 400 5007140

7145

7150

7155

Vo
lta

ge
 (V

)

(c) Event 3

7180

7185

7190

7195

0 100 200 300 400 5007170

7175

7180

7185

7190
(d) Event 4

7208

7210

7212

7214

0 100 200 300 400 500
Time (msec)

80.8

80.9

81.0

81.1

Cu
rre

nt
 (A

)

66

67

68

69

0 100 200 300 400 500
Time (msec)

8.40
8.42
8.44
8.46
8.48
8.50

26.50

26.75

27.00

27.25

27.50

Figure 3.5: Visual inspection: (a) a local sustained event captured by µPMUPV with no signature at

µPMUOther; (b) a grid-induced sustained event captured by µPMUPV with similar signature at µPMUOther;

(c) a local transient event captured by µPMUPV with no signature at µPMUOther; (d) a grid-induced transient

event captured by µPMUPV with similar signature at µPMUOther.

In this section, we seek to examine the similarity between the two event signatures

that are simultaneously captured by µPMUPV and µPMUOther. To achieve this objective,

we need to use proper features that can quantify the similarity of the event signatures in

the time-series in XPV and XOther. For notational simplicity, for the rest of this section, we

assume that

X = XPV and Y = XOther. (3.4)

1) The root mean square (RMS) similarity is defined as [96]:
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rtSim(X,Y) =

√√√√ 1

n

n∑
i=1

[
1− |xi − yi|

|xi|+ |yi|

]2
, (3.5)

where xi is row i X, yi is row i in Y, and n is the length of the time window during which

X and Y are obtained. Higher values for rtSim means higher similarities between X and Y.

2) We can also use the cosine of the angle between the two vectors X and Y as

another similarity feature [96]:

cos(βX,Y) =
XT Y

∥X∥ ∥Y∥
=

∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

. (3.6)

3) The similarity features in (3.6) and (3.5) require the same lengths for X and

Y. However, due to missing data or other reasons, X and Y may have different lengths.

Suppose n and m denote the lengths of X and Y, respectively. The Longest Common

Sub-Sequence (LCSS) distance is defined as [96]:

LCSS(X,Y) =
n+m+ 2 Φ(X,Y)

n+m
, (3.7)

where Φ(X,Y) is the relaxed LCSS recurrence function between X ,Y; as defined in [96].

Higher values for LCSS indicate less similarities between the time-series in X and Y.

4) The Dynamic Time Warping (DTW) feature is an elastic similarity measure

that optimally aligns (or warps) the time series in X and Y in the temporal domain such

that the accumulated cost of alignment is minimal. This accumulated cost can be obtained

by dynamic programming [95]:

D(X,Y) = Dn,m, (3.8)

where we recursively apply the following:

Di,j = (xi − yj)
2 +min{Di,j−1, Di−1,j , Di−1,j−1}. (3.9)
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As in (3.7), parameters n and m are the lengths of vectors X and Y, Di,j is the similarity

between the entry i of X and the entry j of Y. The initial condition is D1,1 = (x1 − y1)
2.

5) Another similarity feature is the Pearson correlation [96]:

pX,Y =

∑n
i=1(xi −X)(yi −Y)√∑n
i=1(xi −Y)2(yi −Y)2

, (3.10)

where X and Y denote the mean over the entries of vectors X and Y, respectively. A key

property of Pearson correlation is that it is invariant under separate changes in location of

the entries and the scales of the two time series. This property is critical for our purpose

due to the differences in the variation and amplitude of the measurements from µPMUPV

and µPMUOther. The Pearson correlation is a number between −1 to 1; but here we use its

absolute value.

6) The Pearson correlation between two ranked vectors is defined as their Spearman

correlation coefficient [97]:

sX,Y = prX,rY , (3.11)

where rX and rY are the ranked versions of vectors X and Y, respectively. Here, the entries

of each vector are ranked, either both in a descending order or both in an ascending order.

7) The Kendall rank correlation measures the strength of the similarity between

the entries of two vectors X and Y [98]:

τX,Y =
2

n2 − n

n∑
i=1

n∑
j=i+1

I ((xi − yi)(xj − yj)) , (3.12)

where I(·) is an indicator function; If (xi − yi)(xj − yj) ≥ 0, then I(·) = 1; and if (xi −

yi)(xj − yj) < 0, then I(·) = −1.

41



The performances of the above similarity features are summarized in Fig. 3.6. Here,

we apply each similarity feature to several labeled event signatures that are already visually

inspected and are accordingly identified as locally-induced events or grid-induced events.

Using this box-plot representation, we assess and compare how each similarity feature can

differentiate between the locally-induced events and grid-induced events. Note that the

Pearson correlation is obtained in two different ways. Pearson I is the correlation coefficient

between the event’s signature on voltage measured by µPMUPV and the event’s signature

on voltage measured by µPMUOther. Pearson II is the correlation coefficient between the

event’s signature on voltage measured by µPMUPV and the event’s signature on current

measured by µPMUPV.

We can see that Pearson II and the cosine similarity show the best performance

due to their minimal overlap between the two box-plots. They clearly differentiate between

the locally-induced events and grid-induced events. For Pearson correlation, the good

performance could be due to the fact that Pearson correlation is invariant under separate

changes in the locations and the scales of the entries in the two vectors. This results in

higher correlation between the voltage vectors at µPMUPV and µPMUOther for grid-induced

events; because of their relatively more similar signatures; while it leads to lower correlation

for locally-induced events; because they have relatively more dissimilar signatures. As for the

cosine, the similarity is measured irrespective of the of magnitude of the two vectors. The

similarity is evaluated rather based on the orientation of the two vectors. On the contrary,

some other features, such as the DTW similarity, show major overlap; which means they
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Figure 3.6: The distribution of various similarity features for locally-induced events and for grid-induced

events: (a)-(h) the similarity features in (3.5)-(3.12).

cannot perform well in differentiating between the locally-induced events and grid-induced

events.

To clarify the above discussion on the implications of the results in Fig. 3.6, each

box indicates where the majority of the given features appear for each class of the events.

The two classes are best separable by a given feature in each sub-figure if the two boxes

have minimal overlap, i.e., the given feature takes a range of values for the first class that

are different from the range of values for the second class.

It should be noted that, the type of measurements that are placed in vectors X

and Y depends on the characteristics of the event that is captured by µPMUPV. One

option is to use the measurements with the most dominant signature for the purpose of

similarity analysis. For example, if an event has its most dominant signature in the voltage

measurements, then we can construct X and Y based on the voltage measurements.

3.3.3 Statistical Method

One option to automatically solve the event region identification problem is to

conduct a statistical analysis based on the similarity features that we discussed in Section 3.3.2.

Consider the event signatures in the time-series of the raw measurements in X = XPV and

Y = XOther. Suppose fu(X,Y) is a similarity feature, such as in (3.5), (3.6), or (3.12),
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for u = 1, . . . , U , where U is the number of similarity features. We identify an event as a

grid-induced event if the following condition holds:

fu(X,Y) ≥ fu,Threshold; (3.13)

otherwise, the event is identified as a locally-induced event. Here, fu,Threshold is a threshold

parameter to indicate the minimum similarity that is required between the event signature

that is captured at µPMUPV and the event signature that is simultaneously captured at

µPMUOther, such that the event can be identified as grid-induced. Of course, the threshold

should be defined separately for each similarity feature; because different similarity features

may require different thresholds.

The main challenge in using the condition in (3.13) is to properly select the threshold

parameter fu,Threshold for each similarity feature fu(X,Y). This can be done by solving an

optimization problem, such as the following:

max
fu,Threshold

P {Grid-Induced | fu(X,Y) ≥ fu,Threshold}

s.t. fmin
u,Threshold ≤ fu,Threshold ≤ fmax

u,Threshold,

(3.14)

where fu,Threshold is the optimization variable. The objective in (3.14) is to maximize the

accuracy of the event region identification solution, i.e., the probability that the event is

indeed a grid-induced event; subject to the condition that the inequality in (3.13) holds.

The maximization is done between fmin
u,Threshold and fmax

u,Threshold; which are the lowest and

the highest acceptable values for fu,Threshold, respectively. Of course, the objective function

could be equivalently expressed as:

P {Locally-Induced | fu(X,Y) < fu,Thrfeshold} . (3.15)
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Other objective functions can also be considered, such as maximizing the F1-Score

or maximizing the recall.

An example is shown in Fig. 3.7. Here, the similarity feature is the Pearson

correlation between voltage at µPMUPV and voltage at µPMUOther. Therefore, in this

example, we have:

fmin
u,Threshold = 0 and fmax

u,Threshold = 1. (3.16)

Two curves are shown in Fig. 3.7(a). They show the values of the accuracy and F1-Score,

both as a function of fu,Threshold. Importantly, these two curves are obtained based on

the training data set, i.e., a portion of the captured and labeled events that are used to

solve the optimization problem in (3.14). The peak in each curve is the optimal choice for

fu,Threshold; as far as the specific objective function associated with the curve is considered.

In this example, the optimal choice for fu,Threshold corresponding to the maximization of

the accuracy is 0.43, and the F1-Score is 0.37. They result in 81.72% accuracy and 78.19%

F1-Score, respectively.

It should be noted that, the data set that is used in order to obtain Table 3.2 is the

same data set that was used in Section 3.2.1 to obtain Table 3.1. Of course, here we needed

to dedicate a portion of the data set for training and the rest of the data set for testing;

because unlike the impedance-based method, the statistical method requires training. Out

of the one week of data, the data in five days are selected for training and the data in the

other two days are selected for testing. This is done carefully, such that we can observe

the most challenging cases in order to best identify the weaknesses and the strengths of the

proposed methods. The test data set includes the event data from one weekday and one
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Figure 3.7: An example for training and then testing the statistical method: (a) the optimal choice of the

threshold parameter based on the training data and when two different objective functions are used; (b) the

results of using the obtained optimal threshold parameter in Part (a) in the condition in (3.13) to conduct

automated event region identification for the test data set.

weekend. Accordingly, the training data set includes the event data from both weekdays and

a weekend. To assure consistency in the analysis, we will continue to use the same training

data set and the same test data set in Sections III-D, IV-A, IV-B, and IV-C.

The application of the obtained optimal threshold parameter is shown in Fig. 3.7(b).

Here, we use fu,Threshold = 0.37 to decide which events are grid-induced and which events

are locally-induced, i.e., by using the condition in (3.13).

The performance metrics of the statistical method are shown in Table 3.2. Note

that, there are fewer sustained events in Table 3.2 than in Table 3.1; because as we mentioned

earlier, the statistical method requires a training data set. While, the results in Table 3.1

include all the sustained events, the results for the sustained events in Table 3.2 include

only the sustained events that are part of the test data set.

It is clear that the statistical method overcomes the three fundamental limitations

of the impedance-based method.

3.3.4 Machine Learning Methods

Another option to automatically solve the event region identification problem is to

use machine learning based on the same similarity features that we discussed in Section 3.3.2.
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Table 3.2: The Performance Summary of the Statistical Method

Grid Local
Precision

%

Recall

%

F1 − Score

%

Grid
97 72 96 57 72

S
u
st
a
in
ed

Local
5 14 16 74 27

Grid
248 188 65 57 61

R
ea
li
ty

T
ra
n
si
en
t

Local
132 733 80 85 82

Importantly, machine learning methods can resolve some of the weaknesses of the

statistical methods that we previously identified at the end of Section 3.3.3. While this is

promising, the machine learning methods, too, have their own weaknesses.

In this section, we examine six different machine learning methods. The first four

methods are based on supervised learning. They require prior labeling of several events. This

is done by conducting visual inspection of the event signatures at µPMUPV and µPMUOther

to label each event as either grid-induced or locally-induced. The last two methods are based

on unsupervised learning and do not require prior labels. They rather cluster the events into

two groups, to separate grid-induced events from locally-induced events.

1) Gradient Boosting Model (GBM): This is a supervised machine learning technique

that builds a single estimator from a collection of weak learners, i.e., decision trees. The

learning objective is to minimize a loss function based on the similarity features such that

the model can correctly decide whether an event is grid-induced or locally-induced [99].
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2) Multi-Layer Perception (MLP): This supervised learning method is based on

an artificial neural network (ANN) with similarity features as neurons in the input layer,

two hidden layers of five and three neurons, and event regions as the two neurons of the

output layer, representing the locally-induced and grid-induced events. These neurons are

interconnected via a respective weighted sum of the similarity features and a bias to form an

affine function. The weight vector and the affine function are updated using back-propagation

until the target results of event region identification are achieved [100].

3) Support-Vector machines (SVMs): This supervised machine learning method

separates the events into two classes, grid-induced events and locally-induced events. This is

done by obtaining proper separating hyperplanes that are calculated based on the similarity

features for the two classes of events. The SVM runs an optimization problem to maximize

the distance between the separation hyperplanes. [101].

4) Kernel SVM (KSVM): This supervised learning method is an extension of the

standard SVM, in which we use kernels, i.e., non-linear boundaries for separation. This is

done by mapping the input features into high-dimensional feature spaces [102]. In this study,

we use the radial basis function (rbf) kernel; because it shows the best results among other

kernels.

5) K-Means Clustering: This unsupervised learning method separates the events

into two clusters. Clustering is done based on the similarity features in Section 3.3.2. The

objective is to put the events for which the similarities are high between the measurements

at µPMUPV and µPMUOther in one cluster; and the events for which the similarities are

low between the measurements at µPMUPV and µPMUOther in another cluster. First, we
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Figure 3.8: Performance comparison of different data-driven methods: (a) based on F1-Score; (b) based on

ROC curves with their respected AUC.

randomly initialize the centroids of the two clusters. Next, we recurrently assign each event

to its closest centroid and update the centroid for each cluster until we reach a point that

the positions of the two centroids do not change [103].

6) Ordering Points to Identify the Clustering Structure (OPTICS): This unsu-

pervised learning method is an algorithm for finding density-based clusters. Two clusters

represent grid-induced and locally-induced events. The clustering is done based on the

similarity features. The points in the training data set are linearly ordered such that spatially

closest events (as far as their similarity features are concerned) become neighbors in the

ordering. Additionally, a special distance is stored for each event that represents the density

that must be accepted for a cluster to enhance clustering accuracy [104].

The summary comparison of the performance of the above various machine learning

methods is given in Fig. 3.8(a). We observe that the supervised learning methods perform

better than the unsupervised learning methods. Among the supervised learning methods,

GBM has a slightly better performance and more consistent results. This is better illustrated

in Fig. 3.8(b). This figure shows the Receiver Operating Characteristic (ROC) curves for

the four supervised learning methods. For each curve, the Area Under Curve (AUC) is also

shown in the legend [105]. AUC provides an aggregate measure of performance across all
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Table 3.3: The Performance Summary of the GBM Method, which has the Best Performance among Machine

Learning Methods

Grid Local
Precision

%

Recall

%

F1 − Score

%

Grid
165 4 94 98 96

S
u
st
ai
n
ed

Local
10 9 69 47 56

Grid
250 186 86 57 69

R
ea
li
ty

T
ra
n
si
en
t

Local
42 823 82 95 88

possible classification thresholds. The highest AUC for GBM means that the probability of

correctly identifying the region of a random event is the highest for GBM.

Given that the GBM method demonstrated the best relative performance among

the machine learning methods, we select GBM as the representative machine learning method

to tackle the problem of event region identification.

The performance of the GBM method is summarized in Table 3.3. We can see

that the machine learning method too can highly improve the performance compared to

the impedance-based method. It appears to also improve the performance compared to the

statistical method; although there is a caveat here that we will explain in the next section.
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3.4 Improving Performance with a New Mixed-Integrated

Method

In this section, we make the case that the statistical and the machine learning

methods have complementary strengths and weaknesses. Therefore, we propose to identify

and accordingly utilize their strengths and weaknesses, such that we can achieve a new mixed

method that takes advantage of the strengths of both classes of the data-driven methods.

3.4.1 Strengths and Weaknesses of the Statistical Method

While the results in Table 3.2 in Section 3.3.3 provide the overall summary of

the performance of the statistical method, one can further scrutinize the cases where the

statistical method was successful as well as the cases where the statistical method was not

successful, in order to identify the strengths and weaknesses of the statistical method, as we

explain next.

Strengths

First, the statistical method is particularly strong in identifying the transient

grid-induced events that are captured by their voltage signature as the dominant signature

and the similarity among voltage measurements is high, i.e., the condition in (3.13) holds.

In such cases, the statistical method indicates that the transient event is grid-induced; which

is often correct under these circumstances. An example is shown in Fig. 3.9(a), where the

statistical method works better than the machine learning method. That is, the statistical

method identifies the event correctly but the machine learning method does not identify
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the event correctly. The statistical method shows good results also when the transient

locally-induced events are captured by their current signature as the dominant signature and

the similarity among voltage measurements is low, i.e., condition (3.13) does not hold. In

such cases, the statistical method indicates that the transient event is locally-induced, which

is often correct under these circumstances. An example is shown in Fig. 3.9(b), where the

statistical method works better than the machine learning method. That is, the statistical

method identifies the event correctly but the machine learning method does not identify the

event correctly.

While the above conclusions are data-driven, one can also comment on the likely

rational for these observations. The statistical method, which works by optimizing the value

of the similarity features that separate the two classes of events, tends to properly capture

the sufficient condition for the event to be grid-induced, when the dominant signature is in

voltage and the voltage similarity is high. This method also tends to properly capture the

sufficient condition for the event to be locally-induced, when the dominant signature is in

current and the voltage similarity is low.

Another overall advantage of the statistical method is that it is easy to imple-

ment and it is computationally efficient. Once the threshold is obtained, the event region

identification becomes as simple as checking the inequality in (3.13).

Weaknesses

First, while the statistical method outperforms the impedance-based method, its

ability to correctly identify sustained events is not as good as the machine learning method.

It particularly often fails to correctly identify the region of locally-induced sustained events.
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Figure 3.9: Two examples for transient events that are correctly identified by the statistical method but are

not correctly identified by the machine learning method: (a) a grid-induced event; (b) a locally-induced event.
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Figure 3.10: Two examples for transient events that are correctly identified by the machine learning method

but are not correctly identified by the statistical method: (a) a grid-induced event; (b) a locally-induced

event.

Second, the statistical method often cannot identify the correct event region for the locally-

induced transient events that are captured by the signature in current while the similarity

among voltage measurements is high; and also when a grid-induced transient event is

captured by its voltage signature while the similarity among voltage measurements is low.

Third, the performance of the statistical method is often poor for the grid-induced events

that have low voltage similarities.
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3.4.2 Strengths and Weaknesses of the Machine Learning Method

Recall from Section 3.3.4 that the GBM method performed better than the rest

of the machine learning methods that we examined. Therefore, we took the GBM method

as the representative machine learning method. While the results in Table 3.3 provide

the overall summary of the performance of this machine learning method, one can further

scrutinize the cases where this machine learning method was successful and the cases where

it was not successful in order to identify the strengths and weaknesses of this method, as

follows. First, this method, too, can overcome all the three fundamental limitations of

impedance-based method. Second, it performs better than the statistical method when it

comes to identifying the sustained events. Third, the machine learning method is particularly

strong in identifying the transient grid-induced events that are captured by their voltage

signature as the dominant signature while the similarity among voltage measurements is low.

An example is shown in Fig. 3.10(a), where the machine learning method works better than

the statistical method. This transient event is a grid-induced event. It is identified correctly

by the machine learning method but it is not identified correctly by the statistical method.

The machine learning method shows good results also when locally-induced transient

events are captured by their current signature as the dominant signature while the similarity

among the voltage measurements is high. An example is shown in Fig. 3.10(b), where

the machine learning method works better than the statistical method. This event is a

locally-induced event. It is identified correctly by the machine learning method but it is not

identified correctly by the statistical method.

While the above conclusions are data-driven, one can also comment on the likely

rational for these observations. In this regard, we note that, the machine learning method
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learns the trend of the events and examines the overall relationships between all the event

features, rather than using a single dominant similarity feature as the only factor. For the

events that are captured in voltage but have low similarity, the trends and the relationships

between the features are still noticeable, hence the machine learning can identify the right

region. The events that are captured in current are often locally-induced, but there can

still be high similarity in voltage; because there may not be major agitation created on

the voltage as the result of a locally-induced event. This could be missed by the statistical

method, because it uses only one feature to make the classification. On the contrary, the

combined impact of the similarity features in the machine learning method tends to provide

the correct result in such cases.

Weaknesses

First, for those transient grid-induced events where the most dominant signature

is in voltage measurements and the similarity between the voltage at µPMUPV and the

voltage at µPMUOther is high, the machine learning method does not perform as good as

the statistical method. Second, for those transient locally-induced events where the most

dominant signature is in current measurements and the similarity between the voltage at

µPMUPV and the voltage at µPMUOther is low, the machine learning method is again not

as good as the statistical method.
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3.4.3 Mixed-Integrated Algorithm

Based on the analysis in Sections 3.4.1 and 3.4.2, we are now ready to propose a

new algorithm that can take advantage of the identified strengths in both statistical and

machine learning methods. The algorithm is given in Algorithm 1.

Algorithm 1 : Mixed-integrated Event Region Identification

Input: Captured event at µPMUPV and µPMUOther.

Output: Identified region of the event.

1: if the event is transient then

2: if the dominant signature is in voltage then

3: if the similarity check in (3.13) holds then

4: Use statistical method

5: else

6: Use machine learning method

7: end if

8: end if

9: if the dominant signature is in current then

10: if the similarity check in (3.13) does not hold then

11: Use statistical method

12: else

13: Use machine learning method

14: end if

15: end if

16: else

17: Use machine learning method

18: end if

The performance summary of Algorithm 1 is given in Table 3.4. This table is

comparable with Tables II and III. We can see that the shortcomings of the statistical method

and the machine learning method are now resolved by their complementary strengths. As a

result, the proposed method is very accurate in correctly identifying the region of the event;

both for sustained events and also for transient events.
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Table 3.4: The Performance Summary of the Mixed-integrated Method

Grid Local
Precision

%

Recall

%

F1 − Score

%

Grid 165 4 94 98 96

S
u
st
ai
n
ed

Local 10 9 69 47 56

Grid 403 33 91 92 92R
ea
li
ty

T
ra
n
si
en
t

Local 41 824 96 95 96

The results in Tables 3.2, 3.3, and 3.4 can be summarized in terms of their overall

performance with respect to grid-induced events and their overall performance with respect

to locally-induced events. While the F1-Score in identifying the grid-induced events is 67%

for the statistical method and 79% for the machine learning method, it is much higher

at 93% for the mixed-integrated method. Similarly, while the F1-Score in identifying the

locally-induced events is 80% for the statistical method and 88% for the machine learning

method, it is considerably higher at 95% for the mixed-integrated method.
3.4.4 Case Study: New Data Set

To further examine the performance of the proposed mixed-integrated method,

in this section, we apply Algorithm 1 to a completely new data set, i.e., a data set that is

different from the data set that we previously used in Sections 3.2, 3.3, 3.4.1, 3.4.2, and 3.4.3

to develop Algorithm 1. The new data set is from the same behind-the-meter solar farm.

However, it is for a different period of time, i.e., one week later. The new data set is for the

period of one week and it includes a total of 3874 events; all of which are new events.

Importantly, we do not update the training of the proposed method in this new

case study. In other words, the entire new data set in this section is used only as a test
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data set. Furthermore, while the test data set in Sections 3.2, 3.3, 3.4.1, 3.4.2, and 3.4.3

was smaller than the training data set, which is common in data-driven analysis, the test

data set in the case study in this section is much larger, even larger than the training data

set in Sections 3.2, 3.3, 3.4.1, 3.4.2, and 3.4.3. Therefore, conducting the automated event

region identification task based on this new data set is challenging, which makes this data

set suitable for our performance evaluation in this section.

The results for the aforementioned new data set are summarized in Fig. 3.11. Here

we compare the performance of all the three data-driven methods that we discussed in this

study, i.e., the statistical method that was designed in Section 3.3.3, the machine learning

method that was designed in Section 3.3.4, and the mixed-integrated method that was

proposed in Section 3.4.3. We use the F1-Score in percentage as the performance metric,

and we calculate it separately for the grid-induced events and for the locally-induced events.

We can make three observations. First, the mixed-integrated method shows the

best performance in identifying the correct event region, both for grid-induced events and

for locally-induced events. In particular, while the F1-Score in identifying the grid-induced

events is 72% for the statistical method and 73% for the machine learning method, the

F1-Score for the mixed-integrated method is 83%; which is significantly higher. Similarly,

while the F1-Score in identifying the locally-induced events is 82% for the statistical method

and 82% for the machine learning method, the F1-Score for the mixed-integrated method is

89%; which is again significantly higher.

Second, the F1-Scores for all the three methods are slightly lower compared to

their corresponding F1-Scores that we saw at the end of Section IV-C. This is because
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Figure 3.11: Comparing the F1-Score for all three data-driven methods that are discussed in this study, for

grid-induced events and locally-induced events.

the case study in this section uses a long and entirely new data set without conducting

any new training. Nevertheless, the F1-Scores here are still high for the mixed-integrated

method. More importantly, the exact same patterns in terms of the advantages of the

mixed-integrated method are again observed here, despite using a completely new data set.

This can confirm the robustness of the proposed mixed-integrated method.

Third, the mixed-integrated method closes the gap between the results in identifying

the grid-induced events versus in identifying the locally-induced events. While there is 14%

and 12% gap between the F1-Scores in identifying the grid-induced events versus locally-

induced events for the statistical method and for the machine learning method, respectively,

such gap is only 7% for the mixed-integrated method.

3.5 Event-Actuated Applications

Automated event region identification builds the foundation for event-based situa-

tional awareness and event-actuated operation in the understudy behind-the-meter solar

farm. In this section, we discuss multiple representative applications that use the results

from automated event region identification.
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3.5.1 Applications of Analyzing Grid-Induced Events

Adaptive Volt-Var Control

One application of identifying grid-induced events is in fine-tuning Volt-Var control

(VVC) at PV inverters. This is particularly important for large behind-the-meter solar farm.

PV inverters can automatically absorb or inject reactive power to regulate voltage in power

distribution systems. The common approach in inverter-based VVC is to use piece-wise

linear control curves [92,106].

Consider the adaptive VVC method that is proposed in [107] and shown in Fig. 3.12.

Parameters qmax and qmin denote the inverter’s maximum reactive power limits, and µ is

the reference voltage set point. Reactive power is injected to (absorbed from) the power

grid in the capacitive (inductive) zone. Based upon the system conditions during external

disturbances, the adaptive VVC method in [107] either shifts the VVC curve to left or right;

or rotates the VVC curve clock-wise or counter-clockwise. The former is referred to as error

adjustment, and it is done by changing parameter q, as shown in Fig. 3.12(a). The latter

is referred to as slope adjustment and it is done by changing parameter m, as shown in

Fig. 3.12(b).

A key step in both of the above adaptive VVC methods is to first identify the

external events. Therefore, we can conduct adaptive VVC by examining the sustained

grid-induced events with dominant signature in voltage that are identified by the proposed

automated event region identification method in this study. For any such event, we obtain

the steady state error (SSE) and the voltage flicker (VF) as follows [107]:
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Figure 3.12: The adaptive VVC according to the sustained grid-induced voltage events: (a) VVC error

adjustment; (b) VVC slope adjustment.

SSE =

T∑
t=1

(Vt − µ)/T, (3.17a)

VF =
T∑
t=1

(Vt − Vt−1)/Vt

T
× 100, (3.17b)

where Vt is the measured voltage and T is the period over which we measure the impact

of the event. If |SSE| < ϵ, then we do not change q. Otherwise, we do change q by the

amount of −κ SSE. Parameters ϵ and κ are determined by either the utility or the solar

farm operator [107]. The results for changing VVC parameter q in the case of 20 examples

of sustained grid-induced voltage events are shown in Fig. 3.13(a).

As for the slope adjustment method, it uses two thresholds on the value of VF, per

the IEEE 141 standard [108]. If |VF| < ζ, then we may choose to make no change in m.

If |VF| ≥ ζ but |VF| < ξ, then a relatively small change is made in m. If |VF| > ξ, then

a relatively large change is made in m. The results for changing VVC parameter m in 20

examples of sustained grid-induced voltage events are shown in Fig. 3.13(b).
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Figure 3.13: Adaptive VVC based on 20 examples of the sustained grid-induced voltage events: (a) the

changes in q based on the calculation of SSE at each event; (b) the changes in m based on the calculation of

VF at each event.

Dynamic Response

Another application of identifying grid-induced events is in analyzing the dynamic

response of the PV inverters in the solar farm to external disturbances. Two examples are

shown in Fig. 3.14(a)-(b) and Fig. 3.14(c)-(d).

The grid-induced event in the first example is a step-change in voltage, as shown in

Fig. 3.14(a). The dynamic response of the behind-the-meter solar farm to this grid-induced

disturbance is shown in Fig. 3.14(b). It includes multiple stages, marked from 1 to 5, which

are due to the operation of different control loops of the solar farm [1]. Stage 1 is when

the event occurrence, which changes the inverter voltage and triggers a response by the

solar farm’s control system. Stage 2 is the immediate reaction of the system to keep the

output power stable; this causes a prompt drop in current to decrease the DC-bus voltage.

In Stage 3, the new DC-bus voltage level modifies the output of the Maximum Power Point

Tracker (MPPT); and it fine-tunes the reference for the current regulation loop. This causes

an increase in the current and sets the DC-bus voltage back to its pre-disturbance value.

In Stage 4, after passing the initial transient conditions, the plant level control applies the

ramp rate limitation. This results in a momentary decrease in the current. In Stage 5, at a
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Figure 3.14: Dynamic response of the solar farm to two grid-induced events: (a) a sustained step change in

voltage; (b) the dynamic response of the solar farm (and its various stages) to such sustained step change;

(c) a temporary voltage sag with subsequent momentary oscillations that stabilize quickly; (d) the dynamic

response of the solar farm to such temporary voltage sag; the oscillations in the dynamic response last longer

and stabilize rather slowly.

moderate ramp rate, the plant-level controller brings the current back to the regulated set

point.

The grid-induced disturbance in the second example is a major but temporary

voltage sag, followed by some momentary damping oscillations, as shown in Fig. 3.14(c).

Notice that the voltage is stabilized quickly, within two seconds after the event occurred.

However, this disturbance creates a major dynamic response in the solar farm that lasts much

longer to stabilize. It took over 10 seconds before the current at the solar farm gradually

reaches stability, i.e., its oscillations damp down, until it finally reaches a stage at which the

level of fluctuations is comparable to the pre-disturbance conditions, see Fig. 3.14(d).

Similar analysis can be done for all major grid-induced events to capture the

dynamic response of the solar farm to various disturbances. The results can be used in

dynamic modeling of the inverters [109], and to evaluate the compliance of the inverters

with the inter-connection rules [110].

63



10
0

10
1

10
2

10
3

Event Duration (ms)

70
80
90
98
99

100
110
120
140
160

V
ol

ta
ge

 (%
)

(a)

0 200 400 600 800
Event instances sorted based on the production level

0.4

0.2

0.0

0.2

0.4

(
V

I) 
(d

eg
re

es
)

(b)

0.04

0.02

0.00

0.02

0.04
0 2 4 6 8 10

Transient
Sustained

3m
s

20
m

s

50
0m

s

Figure 3.15: Applications of analyzing locally-induced events: (a) voltage magnitude and duration for

the locally-induced transient events enveloped in the ITIC curve. Mitigation actions must be done if the

event exceed the green area; (b) identifying the relationship between the occurrence and significance of the

locally-induced events and the production-level of the solar farm.

3.5.2 Applications of Analyzing Locally-Induced Events

Compliance with Equipment Requirements

One of the applications of identifying locally-induced events is to examine the

compliance of the behind-the-meter solar farm with the Information Technology Industry

Council (ITIC) performance curve [93]. This is done by examining the amplitude and

duration of the major locally-induced transient events. Of course, a key step here is to first

identify such local events.

The amplitude and duration of the locally-induced transient events during one

example day are shown in Fig. 3.15(a). All events fall in the ITIC tolerance envelope that is

shown in green. This curve is the limitation of the safe operation zone, beyond which, the

corrective actions are mandatory.

Analysis of Trends and Relationships

The analysis of the locally-induced events may reveal various trends regarding

the internal operation of the behind-the-meter solar farm. For example, it may reveal a

relationship between the occurrence of the locally-induced events and the production level of

the solar farm, as shown in Fig. 3.15(b). We can see that most of the locally-induced events,
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especially the transient locally-induced events, occurred during the low production periods.

Also, the events that occurred during low production periods demonstrated more significant

changes in power factor, as shown here in terms of the change in the phase angle difference

between the voltage phasors and the current phasors at each event, see Fig. 3.15(b). Here,

θV and θI denote the phase angle measurements in voltage and in current, respectively.

Understanding these and other trends can help with achieving situational awareness and

identifying potential issues in the operation of the under-study behind-the-meter solar

farm [111].
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Chapter 4

Distribution Solar Farm Dynamic

Response Modeling Under Grid

Events

4.1 Introduction

Environmental issues are rapidly evolving and the grid is changing rapidly than

ever before [112]; ; the time between interconnection request and the service operation

has shortens more than ever before and plants, specifically solar PV farms and Battery

Energy Storage System (BESS), are coming online so fast. Solar farms integration to the

distribution system are increasingly due to the trend in the green energy requirements. As

the penetration of solar power generation continues to grow, new challenges emerge and new

modeling techniques are required [113].

One major challenge is to determine how the solar farm will behave in case of

disturbances on the grid and how this response is going to impact the grid as a result. We

need to clarify that grid disturbances are those disturbances that are due to events occurring

in the grid beyond the micro-PMU on the solar farm. These events are called grid-induced
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events and are studied in great details and are identified with multiple methodologies in our

previous works [1] and [2]. When solar farm injects power to the grid as the response to

a grid-induced event, the resultant agitations will impact the power system [114]. Having

knowledge of the dynamic of this agitation is significantly important in proper planing and

designing of the system. Thus, accurate dynamic modelling is a need for both utilities and

ISO. Also, the compliance with the utility checklist requirements, e.g. rule 21, UL1741,

IEEE1547. Utilities such as SDG&E and California ISO have requirements to understand

the dynamics of solar farm interconnection to the power grid. These recent rules is the

motivation to understand the dynamics of interconnected large inverter-based resources

(IBRs). However, currently there are several IBRs that are not following these rules because

they were installed in prior to the rule establishment. There are two solutions to address

this challenge; first installing individual measurement devices in each input/output of the

inverters; second is the utilization of the data-driven methods with limited inputs that we

suggest. Moreover, in case of any new modification in the system, such as adding a new

section to the solar and add or remove a bulk load, a model is required to predict the model,

so we have understanding of the feasibility of the intended modification and its impact on

the system.

The main question that we want to answer is that how to model the dynamic

response of IBRs using data-driven techniques with limited measurements data? Later we

propose an event-based methodology by developing an algorithm that analyzes the dynamic

response in presence of wide area disturbances ( grid events). The main output of the work
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is a tool (based on an algorithm) that provides the characteristics of the post-event dynamic

in solar farms.

4.1.1 Approach and Scope of Analysis

This chapter is about dynamic response of a real-world solar farm that is integrated

into a distribution network as shown in Fig. 4.1. This solar distribution feeder is a large

behind-the-meter solar farm, which is monitored by a micro-PMU at the distribution

substation. We construct dynamic models of this solar farm under different grid events

reported by the micro-PMU measurements and then estimate the dynamic response of the

solar farm to these events and evaluate the performance. The raw data has high frequency

noise on top of the actual dynamic and trend of the signals, as shown in Fig. 4.2. These

noise will confuse the modeling algorithms and introduce uncertainties to the parameter

estimations of the models. Therefore we will use some pre-processing techniques, such

as low-pass filtering and scaling to not only do noise cancellation but also bring all the

agitations of the input and output signals to the range of 0 to 1, which is called normalized

signals.

As shown in Fig. 4.3 and equations (4.1), in the training stage, the inputs to the

system are full size of the voltage and frequency of the events and the outputs of the system

are full size of the real and reactive powers of the solar farm during of the events. Note that

Figure 4.1: The distribution solar farm under study.
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Figure 4.2: An example event with two inputs and two dynamic outputs in the test stage. The raw data

with noise and actual range is presented.

the signals are first filtered to remove the high frequency noises and then the agitations are

scaled to be between 0 and 1. The training events are denoted by R and the testing events

are denoted by E.

In the testing stage, as described in (4.2), the inputs to the system are full size of

the voltage, full size of the frequency, and the pre-event period, that is specified by K, of

the real and reactive power. The current input is also used as an auxiliary input, which is

slightly improving the output estimation results, specially the real power estimation. The

outputs of the system are the post-event period of the real and reactive powers of the solar

farm.
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Figure 4.3: An example event with two inputs and two dynamic outputs in the test stage: the pre-event is

the initialization and the post-event is the dynamic response period that is estimated.

Training

Inputs Outputs

event R1 :
[v11, · · · , v1L1 ]

[f11, · · · , f1L1 ]

→
[P11, · · · , P1L1 ]

[Q11, · · · , Q1L1 ]

...

event RN :
[vN1, · · · , vNLN

]

[fN1, · · · , fNLN
]

→
[PN1, · · · , PNLN

]

[QN1, · · · , QNLN
]

(4.1)

where Li is the length of the event i and vij , fij , Pij , and Qij are the voltage, frequency, real

power, and the reactive power of the event i at timestamp j, respectively.
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Testing

Inputs Initializing Outputs

event E1 :
[v11, · · · , v1L1 ]

[f11, · · · , f1L1 ]

[P11, · · · , P1K1 ]

[Q11, · · · , Q1K1 ]

→
[P1K1+1, · · · , P1L1 ]

[Q1K1+1, · · · , Q1L1 ]

...

event EM :
[vM1, · · · , vMLM

]

[fM1, · · · , fMLM
]

[PM1, · · · , PMKM
]

[QM1, · · · , QMKM
]

→
[PMKM+1, · · · , PMLM

]

[QMKM+1, · · · , QMLM
]

(4.2)

The events are first detected by any available detection method, then using the

techniques in our paper in [2], we identify the sustained events that occur somewhere in the

grid and divide them into the train and test events’ datasets. Both train and test datasets

include two input signals (voltage and frequency) and two output signals ( real and reactive

powers) as described in (1) and (2). Then, we conduct the following:

1. For the training events, we build single model and multiple models. The single model

treats all the train events as a single time series and then accordingly constructs

a model. In the second case, we treat each event as a single time series and fit a

corresponding model model. This results in a library of model that has one model per

each training event.

2. Also, for the train dataset, we build linear models to estimate the output of the models.

These models are added to the library of models for more flexibility in case of very

harsh dynamic response.

3. An augmented library is developed that consists of both multiple and single models

that are constructed using linear fittings.
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4. For each event in the test dataset, we first find the most similar event in the train

dataset using the two different similarity measures, Dynamic Time Wrapping (DTW)

and Pearson Correlation. Then, the related model to the most similar event is used to

estimate the dynamic response output of the model to the test event.

5. For each step of the model development, we provide the results and show the evolution

of our models and the improvement of estimation of the dynamic response of the

models to the events.

The list of contributions in this study are provided as following:

• This study provides a data-driven event-based technique to model IBRs’ dynamic

response; which is of interest to 1) modeling dynamic response of the previously

installed IBRs to provide insight of these systems to the utility; 2) planning and

feasibility study of solar farm projects. Furthermore, the data use is from a real-world

solar farm which makes the results applicable to other practical studies in the field.

• The proposed method uses the measurement devices that are installed for other

purposes, e.g., micro-PMU data, instead of installing asset sensors for inverters.

• The modeling of the dynamic response is done with limited input data of the plant.

• A comprehensive library of linear models are build that is also involved in an active

learning process. For events that the models in the library cannot estimate a reasonable

outputs, a new model will be build and add to the library.

• Accurate estimation of the dynamic response output in the post-event period. This is

due to the availability of comprehensive single and multi build models.
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• The selection of the best models are based on two different similarity measures, DTW

and Pearson correlation, that makes sure of find the most comparable event and model

in the library.

• The active learning library will grow really fast. So, a dimension reduction technique

is use to always keep the library in a reasonable size by classifying the models and

choosing the best model in each class to represent the whole class.

• The approach in this study has three more level of flexibility compare to most of the

data-driven approaches; the lengths events can be different, the estimation window is

dynamic and is automatically chosen based on the occurrence time of the event, and

the parameter classification are also self-regulating according to the distribution of the

parameters values.

• The estimation of the real and reactive powers are independent. This creates a

flexibility in the model selection process that leads to better estimation for each signal

separately.

4.1.2 Literature Review

Planing and feasibility study, and dynamic modeling

Single modeling

Library of models

4.2 Single Dynamic Modeling

In this section, as described in (4.3). all the events in the training dataset are

considered as one continuous time series that leads to building a single comprehensive model.
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Figure 4.4: The ARMAX model structure.

This single model is then used to estimate the dynamic output of the solar farm in response

to each and all events in the test deadset.

Training

Inputs Outputs

event 1−N :
[v11, · · · , vNL]

[f11, · · · , fNL]

→
[P11, · · · , PNL]

[Q11, · · · , QNL]

(4.3)

To construct this single model, we employ two different ways based on the event

time series and linear methods. These models are explained in the following two subsections.

In this study, we focus on the linear models for the parameter estimation due to

challenges related to overfitting in the nonlinear models and their significantly bigger number

of parameters.

In the linear model, the number of parameters that are estimated for the model

are very limited and the fitted model is a rough estimation of the real and reactive powers.

Here, the error of the fitting model is not negligible. In this study, we employ Autoregressive

Moving Average eXogenous (ARMAX). The structure of the ARMAX model is shwon in

Fig. 4.4

The parameters of ARMAX models are estimated using the prediction-error method

and the polynomial orders specified in [na nb nc nk] in (4.4). The model properties include
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estimation covariances (parameter uncertainties) and goodness of fit between the estimated

and the measured data.

A(q−1)y(k) = B(q−1)u(k) + C(q−1)e(k), (4.4a)

A(q−1) = 1 + a1q
−1 + · · ·+ anaq

−na, (4.4b)

B(q−1) = b1q
−1 + · · ·+ bnbq

−nb, (4.4c)

C(q−1) = 1 + c1q
−1 + · · ·+ cncq

−nc, (4.4d)

y(k) + a1y(k − 1) + · · ·+ anay(k − na) = b1u(k − 1) + · · ·

+bnbu(k − nb) + e(k) + c1e(k − 1) + · · ·+ cnce(k − nc).

(4.4e)

For an ARMAX model with Ny outputs and Nu inputs: na is the order of the

polynomial A(q), specified as an Ny-by-Ny matrix of non-negative integers; nb is the order

of the polynomial B(q) + 1, specified as an Ny-by-Nu matrix of non-negative integers; nc is

the order of the polynomial C(q), specified as a column vector of non-negative integers of

length Ny; nk is the input-output delay, specified as an Ny-by-Nu matrix of non-negative

integers.

Using this linear model to estimate the real and reactive powers of 50 test events,

the accuracy of he model is shown in Fig. 4.5

4.3 Multiple Dynamic Modeling

In this section, we build one model per event and construct a library of events

equal to the number of the events in the training dataset. In the testing stage, first, we
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Figure 4.5: The estimation errors of the single model for the test events: (a) the real power estimation errors;

(b) the reactive power estimation errors.

find the similarity of the events to the events in the training set, then, the model of the

chosen training event is used to estimate the real and reactive power output of the solar

farm resulting from the test event.

The two similarity measures, that are used cooperatively, are listed below:

1) First the Dynamic Time Warping (DTW) feature which is an elastic similarity

measure that optimally warps the time series in the test event (we denote it by E) and

the train events (we denote each of them by R) in the temporal domain in a way that the

accumulated error of alignments is minimized. This accumulated error (cost) is obtained by

a dynamic programming [95]:

D(E,R) = Dm,n, (4.5)

where we recursively apply the following:

DjE ,jR =

(EjE −RjR)
2 +min{DjE ,jR−1, DjE−1,jR , DjE−1,jR−1}. (4.6)

Parameters m and n are the lengths of vectors E and R, DjE ,jR is the similarity between

the entry jE of E and the entry jR of R. The initial condition is D1,1 = (E1 −R1)
2.
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Algorithm 2 :Best Model Selection for P and Q, Individually.

Input: Test event E from the test dataset and events Rs

from the train dataset.

Output: M∗
P and M∗

Q, the best model for estimating P

and Q, respectively.

1: for each event R in train dataset do

2: Find D(E,R) from (4.5).

3: Find pE,R from (4.7).

4: Store D and p.

5: end for

6: Find Dmax and pmin and their related models MDmax , and Mpmin .

7: if MDmax ≡ Mpmin then

8: M∗
P and M∗

Q = MDmax .

9: else

10: Estimate P and Q using MDmax , and Mpmin .

11: M∗
P = model with the closes range of P to 0 and 1.

12: M∗
Q = model with the closes range of Q to 0 and 1.

13: end if

2) The other similarity feature is the Pearson correlation [96]:

pE,R =

∑m
i=1(Ei −E)(Ri −R)√∑m
i=1(Ei −R)2(Ri −R)2

, (4.7)

where E and R denote the mean over the entries of vectors E and R, respectively. An

important feature of Pearson correlation is that it is invariant under separate changes in

location of the entries and the scales of the two time series. This feature is critical for this

study due to the differences in the variation and amplitude of the measurements. Using

Algorithm 2, these similarity measures are used to find an event among the events in the

train dataset that is most similar to the event under study in the test dataset.

The independent estimation of the real and reactive powers creates a flexibility in

the model selection process that leads to better estimation for each both signals. Once, that
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Algorithm 3 : Multi Model Parameter Identification

Input: Voltage, frequency, and current of during the

captured event.

Output: Real and reactive powers injection the dynamic

response of the solar farm.

1: Construct one model per event

2: Form a library of the multi models

3: for each event E in test dataset do

4: Select the best model using Algorithm 2.

5: Estimate the dynamic response using this model

6: Evaluate the performance

7: if performance metrics less than required then

8: Build a new model and add to the library

9: end if

10: end for

Figure 4.6: The estimation errors of the multi models for the test events: (a) the real power estimation errors;

(b) the reactive power estimation errors.

the process of selecting the best model based on the similarity of the events is done, the

multi model algorithm can be formed. The process of the multi model construction and

testing is shown in Flowchart 3.

We apply Algorithm 3 and observe the estimation errors for the test dataset. As

shown in Fig. 4.6, the errors of estimations is much smaller than the single model.

The improvement for the estimation of the real power is 11.62 % and the improve-

ment on the reactive power estimation is 37.58 %. In the Single-Model case, the errors of
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the real power estimation are more focused around the mean except for a few cases that

are calculated to be around upper limit of 1. While, the distribution of the reactive power

estimation error is scattered almost evenly across the range from 0 to 1. Therefore, when

using the Multi-Model, due to the bigger reduction in the bigger errors of the reactive power

estimation, the overall improvement is much larger. Moreover, the overall better estimation

of the reactive power is due to the strong channel from the voltage profile of the network

to the reactive power exchange from the IBRs; the Volt-Var control strategy of the smart

inverters are directly related to this interconnection of voltage of the grid and the reactive

power of the solar farm. In other words, the voltage magnitude is more influential factor in

the reactive power.

4.4 Library of Single and Multiple Models

The single model performance is not significantly high, however for all type of

events, its estimation results are in acceptable range. The multi models performance results

are high for most of the events but for some types of events they diverge and the estimation

result becomes unreliable. Thus, we combine them to benefit from the reliability of the

single model and the accuracy of the multi models. During our study on the single and

multi models, we realized that in some cases the single model provided better estimation of

the dynamic response of the solar farm. For example, the single model estimation of real

power for event 430, in Fig. 4.5(a), is much better than the multi model estimation of real

power for event 430, in Fig. 4.6(a). Similarly, the single model estimation of reactive power

for event 442, in Fig. 4.5(b), is much better than the multi model estimation of real power

for event 442, in Fig. 4.6(b).
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Figure 4.7: The estimation errors of the multi-single models for the test events: (a) the real power estimation

errors; (b) the reactive power estimation errors.

Thus, in this section we use the collection of the multi models and the single model

as our new library of models. Then, we seek the best fitted model from this new library.

Here the error of the estimation is even smaller than the multi model for both real and

reactive power dynamic estimations, as shown in Fig. 4.7.

4.5 Models Library Reduction

As the number of training events increase, the number of related models increase

and consequently complication, computation time and cost increases. Therefore, to handle

the challenge of library size expansion we reduce the size of the library by clustering the

models and select the best model in each cluster. Then, the selected models form a new

library and will be used as reference for dynamic response estimation of the test events. The

process of library reduction is shown in Algorithm 4.

By library reduction and the fact that we can cluster the models in small groups,

not only we reduce the computation cost, but also we gain very important insight and

perspective of the solar farm; we understand that even though each event’s data leads to
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Algorithm 4 : Models Library Dimensional Reduction

Input: Constructed models MOriginal and target number

of models, T.

Output: Target representative models, MReduced.

1: for each parameter in MOriginal do

2: Cluster the models into T groups using K-Means.

3: Find distances between cluster centers.

4: end for

5: Find the best parameter that creates the maximum clusters distance, as in Fig. 4.8.

6: Cluster the models using the best parameter.

7: Create a new model library, MReduced.

8: for each cluster do

9: Find the model with the closest parameter to the

10: cluster’s median.

11: Append the selected model to MReduced.

12: end for

Figure 4.8: The best parameter selection as the classifier feature.

a separate model, deep down, the models have very similar parameters and also the solar

farm has specific performance and dynamic response to these events.

The best parameter is used as the feature that classifies models into T groups. The

resultant clusters are shown in Fig. 4.10.

Using the reduced models, the results are as shown in Fig. 4.10. We can see that

the estimation error is slightly increased compare to the library with all models. However,

the results are still much better than the multi and the single model.
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Figure 4.9: The resultant classes of employing the best selected parameter.

Figure 4.10: The estimation errors of the multi-single models with the reduced library for the test events: (a)

the real power estimation errors; (b) the reactive power estimation errors.

4.6 DER A: A Grey Box Model-Based Approach

To model aggregated solar farm using model-based techniques, mostly the Western

Electricity Coordinating Council (WECC) generic model is recommended. However, the

generic model is intended for utility scale PV plants (Prated > 10MW ) which are connected

to transmission systems (Vrated > 60KV ) [115]. WECC suggests a simplified version of

the generic model, called DER A, to be used for distribution and commercial level PV

plants [116].

The DER A model stands for the Distributed Energy Resource Model Version A

and is a model used for modeling the positive-sequence dynamic behavior of aggregated

distributed solar PV plants. This model is derived from the large-scale generic PV model.
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The large-scale PV model contains 121 parameters and 16 states, thus is too complex for

representation of aggregated solar PV plants. Moreover, this model was developed to depict

the behavior of a single large renewable plant and thus may not be easily adaptable to

incorporate the aggregation of distributed generators. Therefore, the DER A model was

developed to provide a straightforward approach to modeling the aggregation of distributed

solar PV plants, and also a reduction in parameters and states was established without

diminishing the core functionalities to adequately represent the dynamic behavior.

Identifying the unknown parameters comes down to finding optimal parameters by

reducing the estimation residual in (4.8) [117]:

minΘℓ(Y,Θ, V ) = minΘ
1

2
(∥Y − f(Θ, V )∥22), (4.8)

where Y denotes active and reactive power measurement vector, θ represents the vector of

parameters to be identified, V denotes voltage measurement vector, ℓ represents calculating

the estimation residual, and ∥.∥ is the ℓ 2-norm [65]. The process of residual minimization

and DER A model tuning and testing is shown in Fig. 4.11.

83



Figure 4.11: The Process of DER A model tuning.
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Chapter 5

Conclusions and Future Works

5.1 Summary of the Conclusions

In this dissertation, we conducted a comprehensive analysis of events and distur-

bances at a real-world solar distribution feeder and propose novel and automated identification

methods of the events regions using real-world micro-PMU measurements. Having the events

regions automatically identified, we also modeled the dynamic response of the inverter-based

resources under grid disturbances, i.e., the events in the grid region.

In chapter 2, an event-based analysis is conducted based on real-world micro-PMU

measurements at a solar distribution feeder. After detecting all the events by training an

unsupervised deep learning model, the events are classified based on their origin; either

locally-induced by the solar farm itself; or they are grid-induced. It was observed that 70%

of the events happen when the solar production is at %30 or less. Furthermore, the events

during the low solar production periods demonstrate more significant changes in power factor.

In low production, the range of the phase angle change is ±3◦, while in high production,

it is mostly around 0◦. Among the 88 events that were detected at the solar distribution

feeder, only 8 events were recognized as grid-induced. We also examined the response
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of the solar distribution feeder to all these grid-induced events; and compared it to the

response of a neighboring feeder to the exact same events. Finally, we characterized the event

dynamics into 5 steps based on the control system mechanisms of the solar distribution feeder.

The analysis in this chapter provides awareness about the operation of solar distribution

feeders. This study is also beneficial in monitoring the health of equipment in the solar farm.

Therefore, it is of economic value to the utility due to providing with insight on the state of

the health of the inaccessible behind-the-meter solar farm equipment. Importantly, this type

of study is also essential to address the cascading effect of ongoing solar energy increment

on the stability and operation of the distribution systems.

In chapter 3, we automated the process of event region identification in behind-

the-meter solar farms by establishing a novel mixed-integrated data-driven approach that

combines the strengths of both statistical and machine learning methods. This method

overcame the deficiencies of the conventional impedance-based method and the human

visual inspection. Very high performance is demonstrated by using real-world micro-PMU

measurements from a behind-the-meter solar farm in Riverside, CA. Multiple practical appli-

cations are discussed for both locally-induced events and grid-induced events, contributing

to the behind-the-meter solar farm’s situational awareness, control, and operation. For

events that are identified as grid-induced, we performed adaptive Volt-Var control as well as

dynamic response analysis. For events that are identified as locally-induced, we performed

compliance analysis for equipment requirements and the analysis of trends and relationships.

These applications help with achieving situational awareness and efficient operation of the

behind-the-meter solar farms.
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In Chapter 4, the dynamic behavior of a real-world solar farm, as an IBR, in

response to grid disturbances is modeled using data-driven techniques. The modeling of the

dynamic response is done with limited input data of the plant which replicates the level of

IBR’s information that utilities access. A comprehensive library of linear models are build

that is also involved in an active learning process so the library size grows really fast. To

avoid the library size expansion, a reduction technique is used based on K-Means clustering

and representative model selection. Two different similarity measures, DTW and Pearson

correlation are jointly used for model selection to ensure of finding the most comparable

event and model in the library. The modeling in our approach is flexible to the lengths events,

the estimation window, and the parameter classification. Further, the estimation of the real

and reactive powers are independent to provide better estimation for each signal separately.

The estimation of the dynamic response output in the post-event period is improved by 20%

for the dynamic estimation of the real power and 40% the dynamic estimation of the reactive

power. This is due to the availability of comprehensive single and multi build models.

5.2 Future Works

In the future, the results and findings in Chapter 2 can be used in signature

mapping for the purpose of diagnostics and prognostics application in higher-penetration

solar distribution feeders. The analysis in Chapter 3 can be extended in several directions.

First, one can further explore the other applications of the proposed automated event region

identification problem. For example, the outcome of the event region identification method

can be used for dynamic modeling of the solar farms, as we have done it in Chapter 4. This

will be done based on examining the response of the solar farm to the grid-induced events
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and it would involve event-based parameter estimation and model training. Of course, this

task requires to first identify and separate such events, which can be done by using the

method that was proposed in Chapter 3. Second, the automated region identification process

can be used in an online mode on the micro-PMU data for the purpose of event classification.

For example, one can try to further identify the sub-classes of the locally-induced events

to help even more when it comes to taking remedial actions. Third, if proper data will be

available, one can extend the proposed method to identify the region of the short sub-cycle

events or even some harmonic issues that are only visible in waveform measurements and

are not visible to phasor measurements. This would require expanding the analysis from the

phasor domain to the waveform domain. The IBRs’ dynamic response modeling, that is

done in Chapter 4, is of interest for dynamic response modeling of the previously installed

IBRs to obtain insight of these systems to the utility. Also, it is essential for planning

and feasibility study of solar farm projects. These results are practical for effective IBRs

model development by the interconnection customers and facilitates dynamic behaviour

estimation for the transmission planners to ensure the inverter-based generators meet various

interconnection requirements.
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