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SEMISIMPLE WEAKLY SYMMETRIC PSEUDO–RIEMANNIAN MANIFOLDS

ZHIQI CHEN AND JOSEPH A. WOLF

Abstract. We develop the classification of weakly symmetric pseudo–riemannian manifolds G/H where

G is a semisimple Lie group and H is a reductive subgroup. We derive the classification from the cases
where G is compact, and then we discuss the (isotropy) representation of H on the tangent space of G/H

and the signature of the invariant pseudo–riemannian metric. As a consequence we obtain the classification

of semisimple weakly symmetric manifolds of Lorentz signature (n − 1, 1) and trans–lorentzian signature
(n− 2, 2).

1. Introduction

There have been a number of important extensions of the theory of riemannian symmetric spaces. Weakly
symmetric spaces, introduced by A. Selberg [9], play key roles in number theory, riemannian geometry and
harmonic analysis. See [12]. Pseudo–riemannian symmetric spaces, including semisimple symmetric spaces,
play central but complementary roles in number theory, differential geometry and relativity, Lie group
representation theory and harmonic analysis. Much of the activity there has been on the Lorentz cases,
which are of particular interest in physics. Here we work out the classification of weakly symmetric pseudo–
riemannian manifolds G/H where G is a semisimple Lie group and H is a reductive subgroup. We do this in
a way that allows us to derive the signatures of all invariant pseudo–riemannian metrics. (All such metrics
are necessarily weakly symmetric.) In particular we obtain explicit listings for invariant pseudo–riemannian
metrics of riemannian (Table 5.1), lorentzian (Table 5.2) and trans–lorentzian (Table 5.3) signature.

This treatment of weakly symmetric pseudo–riemannian manifolds is a major extension of the classical
paper of M. Berger [1]. Even in the riemannian case it adds new information: the signatures of invariant
metrics that may be non–riemannian. The lorentzian case is of course of physical interest. And the trans–
lorentzian case is related to conformal and other parabolic structures as described in [3].

Our analysis in the weakly symmetric setting uses the classifications of Krämer [7], Brion [2], Mikityuk
[8] and Yakimova [17, 18] for the weakly symmetric riemannian manifolds. We pass from these weakly
symmetric riemannian cases to our weakly symmetric pseudo–riemannian classification by a combination of
semisimple Lie group methods and ideas extending those of Gray and Wolf [13, 14].

To start, we show how a weakly symmetric pseudo–riemannian manifold (M,ds2), M = G/H with
G semisimple and H reductive in G, belongs to a family of such spaces associated to a compact weakly
symmetric riemannian manifold Mu = Gu/Hu . There Gu and Hu are compact real forms of the complex
Lie groups GC and HC . More generally, whenever Gu is a compact connected semisimple Lie group and Hu

is a closed connected subgroup, we have the complexification (Gu)C/(Hu)C of Gu/Hu .

Definition 1.1. The real form family of Gu/Hu consists of (Gu)C/(Hu)C and all G0/H0 with the same
complexification (Gu)C/(Hu)C. ♦

If G0/H0 is in the real form family of Gu/Hu , we have a Cartan involution θ of G0 that preserves H0 and
(Gu, Hu) is the corresponding compact real form of (G0, H0). But the point here is that this is reversible:

Lemma 1.2. Let Gu be a compact connected semisimple Lie group and Hu a closed connected subgroup. Let
σ be an involutive automorphism of Gu that preserves Hu. Then there is a unique G0/H0 in the real form
family of Gu/Hu such that G0 is simply connected, H0 is connected, and σ = θ|Gu

where θ is the holomorphic
1
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extension to (Gu)C of a Cartan involution of G0 that preserves H0 . Up to covering, every space G0/H0 in
the real form family of Gu/Hu is obtained in this way.

In Section 2 we recall Krämer’s classification [7] of the spaces Mu = Gu/Hu for the cases where Mu is
not symmetric but is weakly symmetric with Gu simple. See (2.1). Note that in all but two cases there is
an “intermediate” subgroup Ku , where Hu $ Ku $ Gu with both Gu/Ku and Ku/Hu symmetric. In the
cases where an intermediate group Ku is present we work out the real form families in steps, from Hu to Ku

to Gu , using commuting involution methods of Cartan, Berger, and Wolf and Grey. When no intermediate
group Ku is available we manage the calculation with some basic information on G2 , Spin(7) and Spin(8).

In Section 3 we calculate the H–irreducible subspaces of the real tangent space of spaces M = G/H found
in Section 2, and in each of the twelve cases there we work out the possible signatures of the G–invariant
pseudo–riemannian metrics. The results are gathered in Table 3.6.

In Section 4 we recall the Brion–Mikityuk classification [2, 8] as formulated by Yakimova [17, 18]. See (4.1)
below. The exposition is taken from [12]. Those are the cases where Mu is weakly symmetric and irreducible,
Gu is semisimple but not simple, and Gu/Hu is principal. In this context, Gu semisimple, “principal” just
means that the center ZHC of HC is the product of its intersection with the complexifications of the centers
of the simple factors of GC. For the first eight of the nine cases of (4.1) we work out the resulting spaces
M = G/H of the real form family, the H–irreducible subspaces of the real tangent space, and the resulting
contributions to the signatures of the G–invariant pseudo–riemannian metrics. The results are gathered
in Table 4.12. The ninth case of (4.1) is a pattern rather than a formula; there we obtain the signature
information by applying our notion of “riemannian unfolding” to the information contained in Tables 3.6
and 4.12.

Finally, in Section 5 we extract some signature information from Berger’s [1, §50, Table II on page 157],
and combine it with certain cases from our Tables 3.6 and 4.2, to classify the semisimple pseudo–riemannian
weakly symmetric spaces of riemannian signature (n, 0), lorentzian signature (n− 1, 1) and trans–lorentzian
signature (n − 2, 2). It is interesting to note the prevalence of riemannian signature here. The examples of
signature (n− 2, 2) are also quite interesting: they are related to conformal and other parabolic geometries
([3]). This data is collected in Tables 5.1, 5.2 and 5.3.

Some of the methods here extend classifications of Gray and Wolf [13, 14], concerning the isotropy rep-
resentation of H0 on g0/h0 where h0 is the fixed point set of a semisimple automorphism of a semisimple
algebra g0. Those papers, however, are only peripherally concerned with signatures of invariant metrics.
There also is a small overlap with the papers [5, 6] of Knop, Krötz, Pecher and Schlichtkrull on reductive
real spherical pairs, which are oriented toward algebraic geometry and not concerned with signatures of
invariant metrics; we learned of those papers when most of this paper was completed.

2. Real Form Families for Gu Simple.

For the cases where Mu is a riemannian symmetric space we have the classification of Élie Cartan and its
extension by Marcel Berger [1], which we need not repeat here.
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For the cases whereMu is not symmetric but is weakly symmetric withGu simple, the Krämer classification
is given by

(2.1)

Weakly Symmetric Coset Spaces of a Compact Connected Simple Lie Group
Mu = Gu/Hu weakly symmetric Gu/Ku symmetric

Gu Hu conditions Ku with Hu ⊂ Ku ⊂ Gu
riemannian symmetric spaces with symmetry s (Hu = Ku)

circle bundles over hermitian symmetric spaces dual to a non–tube domain:
(1) SU(m+ n) SU(m)× SU(n) m > n = 1 S[U(m)× U(n)]
(2) SO(2n) SU(n) n odd, n = 5 U(n)
(3) E6 Spin(10) Spin(10)× Spin(2)

(4) SU(2n+ 1) Sp(n) n = 2 U(2n) = S[U(2n)× U(1)]
(5) SU(2n+ 1) Sp(n)× U(1) n = 2 U(2n) = S[U(2n)× U(1)]

constant positive curvature spheres:
(6) Spin(7) G2 (there is none)
(7) G2 SU(3) (there is none)

weakly symmetric spaces of Cayley type:
(8) SO(10) Spin(7)× SO(2) SO(8)× SO(2)
(9) SO(9) Spin(7) SO(8)

(10) Spin(8) G2 Spin(7)

(11) SO(2n+ 1) U(n) n = 2 SO(2n)
(12) Sp(n) Sp(n− 1)× U(1) n = 3 Sp(n− 1)× Sp(1)

In order to deal with entries other than (6) and (7) we rely on

Lemma 2.2. Let Mu = Gu/Hu be one of the entries in (2.1) excluding entries (6) and (7), so we have the
corresponding symmetric space Gu/Ku where Hu ⊂ Ku ⊂ Gu . Let σ be an automorphism of hu that extends
to gu . Then σ(ku) = ku . Further, in the riemannian metric on Mu defined by the negative of the Killing
form of gu , Ku/Hu is a totally geodesic submanifold of Mu and itself is a riemannian symmetric space.

Proof. For entries (1), (2) and (3) of (2.1), ku = hu + zgu
(hu), so it is preserved by σ. For the other entries

(4), (5), (8), (9), (10), (11) and (12), with gu acting as usual on a real vector space V , we proceed as follows:
dimV = 4n+ 2, 4 + 2, 10, 9, 8, 2n+ 1 or 4n, respectively, for entries (4), (5), (8), (9), (10), (11) and (12). Let
W be the subspace of V on which [hu, hu] acts trivially. The action of Hu on W⊥ is (R2, {1}), (R2.U(1)),
(R2, SO(2)), (R, {1}), (R, {1}), (R, {1}) or (R4, T ), respectively, where T is a circle subgroup of Sp(1). W⊥

is Hu–invariant and Ku is its Gu–stabilizer. Thus σ(ku) = ku .

For the last statement note that Ku/Hu is a circle S1 for entries (1), (2) and (3); S1×SU(2n)/Sp(n) for
entry (4); SU(2n)/Sp(n) for entry (5); the sphere S7 for entries (8), (9) and (10); SO(2n)/U(n) for entry
(11); and the sphere S2 for entry (12). �

We’ll run through the cases of (2.1). When there is an “intermediate” group Ku , we make use of Berger’s
work [1]. In the other two cases the situation is less complicated and we can work directly. Afterwards we
will collect the classification of real form families as the first column in Table 3.6 below.

Case (1): Mu = SU(m+ n)/[SU(m)× SU(n)], m > n = 1. Then M̃u = SU(m+ n)/S[U(m)× U(n)] is
a Grassmann manifold. We start with Berger’s classification [1, §50] (Table 2 on page 157). There we need

only consider the cases M̃ = G/K where either (1) G = SL(m+ n;C) and K = S[GL(m;C)×GL(n;C)] or
(2) G is a real form of SL(m + n;C), K is a real form of S[GL(m;C) × GL(n;C)], and K ⊂ G. In these
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cases K is not semisimple. The possibilities are

(2.3)

(i) M̃ = SL(m+ n;C)/S[GL(m;C)×GL(n;C)] and M = SL(m+ n;C)/[SL(m;C)× SL(n;C)]

(ii) M̃ = SL(m+ n;R)/S[GL(m;R)×GL(n;R)] and M = SL(m+ n;R)/[SL(m;R)× SL(n;R)]

(iii) M̃ = SL(m′ + n′;H)/S[GL(m′;H)×GL(n′;H)] where m = 2m′ and n = 2n′; and

M = SL(m′ + n′;H)/[SL(m′;H)× SL(n′;H)]

(iv) M̃ = SU(m− k + `, n− `+ k)/S[U(m− k, k)× U(n− `, `)] for k 5 m and ` 5 n; and

M = SU(m− k + `, n− `+ k)/[SU(m− k, k)× SU(`, n− `)]

where GL(k;H) := SL(k;H)× R+.

Case (2): Mu = SO(2n)/SU(n), n odd, n = 5. Then M̃u = SO(2n)/U(n). In Berger’s classification [1,

§50] (Table 2 on page 157) we need only consider the cases M̃ = G/K where either (1) G = SO(2n;C) and
K = GL(n;C) or (2) G is a real form of SO(2n;C), K is a real form of GL(n;C), and K ⊂ G. As K is not
semisimple the possibilities are

(2.4)

(i) M̃ = SO(2n;C)/GL(n;C) and M = SO(2n;C)/SL(n;C)

(ii) M̃ = SO∗(2n)/U(k, `) where k + ` = n and M = SO∗(2n)/SU(k, `)

(iii) M̃ = SO(2k, 2`)/U(k, `) where k + ` = n and M = SO(2k, 2`)/SU(k, `)

(iv) M̃ = SO(n, n)/GL(n;R) and M = SO(n, n)/SL(n;R)

Case (3): Mu = E6/Spin(10). Then M̃u = E6/[Spin(10) × Spin(2)]. Again, in [1, §50] we need

only consider the cases M̃ = G/K where either (1) G = E6,C and K = Spin(10;C) × Spin(2;C) or
(2) G is a real form of E6,C , K is a real form of Spin(10;C) × Spin(2;C), and K ⊂ G. Berger writes
E1

6 for E6,C4
= E6(6) , E

2
6 for E6,A5A1

= E6(2) , E
3
6 for E6,D5T1

= E6(14) and E4
6 for E6,F4

= E6(−26) . The
possibilities are

(2.5)

(i) M̃ = E6,C/[Spin(10;C)× Spin(2;C)] and M = E6,C/Spin(10;C)

(ii) M̃ = E6/[Spin(10)× Spin(2)] and M = E6/Spin(10)

(iii) M̃ = E6,C4/[Spin(5, 5)× Spin(1, 1)] and M = E6,C4/Spin(5, 5)

(iv) M̃ = E6,A5A1/[SO
∗(10)× SO(2)] and M = E6,A5A1/SO

∗(10)

(v) M̃ = E6,A5A1/[Spin(4, 6)× Spin(2)] and M = E6,A5A1/Spin(4, 6)

(vi) M̃ = E6,D5T1/[Spin(10)× Spin(2)] and M = E6,D5T1/Spin(10)

(vii) M̃ = E6,D5T1
/[Spin(2, 8)× Spin(2)] and M = E6,D5T1

/Spin(2, 8)

(viii) M̃ = E6,D5T1
/[SO∗(10)× SO(2)] and M = E6,D5T1

/SO∗(10)

(ix) M̃ = E6,F4
/[Spin(1, 9)× Spin(1, 1)] and M = E6,F4

/Spin(1, 9)

Case (4): Mu = SU(2n+1)/Sp(n). Then M̃u is the complex projective space SU(2n+1)/S[U(2n)×U(1)],

and Ku/Hu = U(2n)/Sp(n). In [1, §50] we need only consider the cases M̃ = G/K where either (1)
G = SL(2n+1;C) and K = GL(2n;C), or (2) G is a real form of SL(2n+1;C) , K is a real form of GL(2n;C),
and K ⊂ G; and the cases (3) K = GL(2n;C) and H = Sp(n;C), or (4) K is a real form of GL(2n;C), H

is a real form of Sp(n;C), and H ⊂ K. The possibilities for M̃ are SL(2n+ 1;C)/S[GL(2n;C)×GL(1;C)],
SL(2n + 1;R)/S[GL(2n;R) × GL(1;R)], and SU(2n + 1 − k, k)/S[U(2n − k, k) × U(1)]. The possibilities
for K/H are GL(2n;C)/Sp(n;C) = [SL(2n;C)/Sp(n;C)] × C∗, [SU∗(2n)/Sp(k, `)] × U(1) (k + ` = n),



SEMISIMPLE WEAKLY SYMMETRIC PSEUDO–RIEMANNIAN MANIFOLDS 5

GL(2n;R)/Sp(n;R), U(n, n)/Sp(n;R), and U(2k, 2`)/Sp(k, `) (k + ` = n). Fitting these together, the
real form family of Mu = SU(2n+ 1)/Sp(n) consists of

(2.6)

(i) M = SL(2n+ 1;C)/Sp(n;C)

(ii) M = SL(2n+ 1;R)/Sp(n;R)

(iii) M = SU(n+ 1, n)/Sp(n;R)

(iv) M = SU(2n+ 1− 2`, 2`)/Sp(n− `, `)

Case (5): Mu = SU(2n+1)/[Sp(n)×U(1)]. Then M̃u = SU(2n+1)/S[U(2n)×U(1)], complex projective

space, and Ku/Hu = SU(2n)/Sp(n). As before the cases of M̃ are

SL(2n+ 1;C)/S[GL(2n;C)×GL(1;C)], SL(2n+ 1;R)/S[GL(2n;R)×GL(1;R)]

SU(2n+ 1− k, k)/S[U(2n− k, k)× U(1)]

The possibilities for K/H are

GL(2n;C)/[Sp(n;C)× C∗], GL(2n+ 1;R)/[Sp(n;R)× R∗], U(2n+ 1− 2`, 2`)/[Sp(n− `, `)× U(1)]

Fitting these together, the real form family of Mu = SU(2n+ 1)/[Sp(n)× U(1)] consists of

(2.7)

(i) M = SL(2n+ 1;C)/[Sp(n;C)× C∗]
(ii) M = SL(2n+ 1;R)/[Sp(n;R)× R+]

(iii) M = SU(n+ 1, n)/[Sp(n;R)× R+]

(iv) M = SU(2n+ 1− 2`, 2`)/[Sp(n− `, `)]× U(1)]

Case (6): Mu = Spin(7)/G2. Neither G2 nor Spin(7) has an outer automorphism. Further, G2 is a
non–symmetric maximal subgroup of Spin(7), so any involutive automorphism of Spin(7) that is the identity
on G2 is itself the identity. Thus the involutive automorphisms of Spin(7) that preserve G2 have form Ad(s)
with s ∈ G2 . Now the real form family of Mu = Spin(7)/G2 consists of

(2.8)

(i) M = Spin(7;C)/G2,C

(ii) M = Spin(7)/G2

(iii) M = Spin(3, 4)/G2,A1A1

Case (7): Mu = G2/SU(3). SU(3) is a non–symmetric maximal subgroup of G2 , so any involutive
automorphism of G2 that is the identity on SU(3) is itself the identity. Thus the involutive automorphisms
of G2 that preserve SU(3) either have form Ad(s) with s ∈ SU(3) or act by z 7→ z−1 on the center
ZSU(3)(∼= Z3). Further, G2,A1A1

is the only noncompact real form of G2,C . Now the real form family of
Mu = G2/SU(3) consists of

(2.9)

(i) M = G2,C/SL(3;C)

(ii) M = G2/SU(3)

(iii) M = G2,A1A1/SU(1, 2)

(iv) M = G2,A1A1
/SL(3;R)

Case (8): Mu = SO(10)/[Spin(7) × SO(2)]. Here M̃u is the Grassmann manifold SO(10)/[SO(8) ×
SO(2)], and Ku/Hu = [SO(8)× SO(2)]/[Spin(7)× SO(2)]. The possibilities for M̃ , as described by Berger
[1, §50] (Table 2 on page 157) are

SO(10;C)/[SO(8;C)× SO(2;C)]

SO(9− a, a+ 1)/[SO(8− a, a)× SO(1, 1)], SO(8− a, a+ 2)/[SO(8− a, a)× SO(0, 2)]

SO(10− a, a)/[SO(8− a, a)× SO(2, 0)], and SO∗(10)/[SO∗(8)× SO(2)].
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To see the possibilities for K/H we must first look carefully at SO(8)/Spin(7). Label the Dynkin diagram

and simple roots of Spin(8) by aψ1 aϕ
HH aψ3
��

aψ2
. Let t be the Cartan subalgebra of spin(8) implicit in that diagram,

and define three 3–dimensional subalgebras

t1 : ψ2 = ψ3 , t2 : ψ3 = ψ1 , t3 : ψ1 = ψ2 .

They are the respective Cartan subalgebras of three spin(7) subalgebras

s1 := spin(7)1 , s2 := spin(7)2 and s3 := spin(7)3 .

Spin(8) has center ZSpin(8) = {1, a1, a2, a3} ∼= Z2 × Z2 , numbered so that the analytic subgroups Si for the
si have centers ZSi

= {1, ai} ∼= Z2 . In terms of the Clifford algebra construction of the spin groups and an
orthonormal basis {ej} of R8 we may take a1 = −1, a2 = e1e2 . . . e8 and a3 = a1a2 = −e1e2 . . . e8 . Thus
ZS1 is the kernel of the universal covering group projection π : Spin(8)→ SO(8). Note that

π(S1) = SO(7) and π : Si → SO(8) is an isomorphism onto a Spin(7)–subgroup πSi for i = 2, 3.

The outer automorphism group of Spin(8) is given by the permutations of {ψ1, ψ2, ψ3}. It is generated
by the triality automorphism τ : ψ1 → ψ2 → ψ3 → ψ1 , equivalently τ : S1 → S2 → S3 → S1 , equivalently

τ : a1 → a2 → a3 → a1 . It follows that the outer automorphism group of SO(8) is given by a a
HH a�� a
l ,

and the SO(8)–conjugacy classes of Spin(7)–subgroups of SO(8) are represented by πS2 and πS3 . It follows
that no Spin(7)–subgroup of SO(8) can be invariant under an outer automorphism of SO(8). See [10] for a
detailed exposition.

Let σ be an involutive automorphism of SO(8) that preserves the Spin(7)–subgroup πS2 . As noted just
above, σ is inner on SO(8). σ is nontrivial on πS2 because πS2 is a non–symmetric maximal connected
subgroup. As πS2 is simply connected it follows that the fixed point set of σ|πS2

is connected. Express
σ = Ad(s). Then s2 = ±I, and s ∈ πS2 because πS2 is its own normalizer in SO(8).

We may assume s ∈ T where T is the maximal torus of SO(8) with Lie algebra t. Let t ∈ T with
det t = −1. Then Ad(t) is an outer automorphism of SO(8) so πS′3 := Ad(t)(πS2) is conjugate of πS3 .
Compute σ(πS′3) = Ad(st)(πS2) = Ad(ts)(πS2) = Ad(t)(πS2) = πS′3 , so s ∈ πS′3 as above. According to
[10, Theorem 4] (πS2 ∩ πS′3) = {±I}G2 , so now s ∈ {±I}G2 . As −I /∈ G2 we conclude s2 = I.

We can replace s by −s if necessary and assume that s ∈ G2 . The group G2 has only one conjugacy class
of nontrivial automorphisms. If σG2 is the identity then σπS2 is the identity, because G2 is a non–symmetric
maximal connected subgroup of πS2 . But then σ is the identity because πS2 is a non–symmetric maximal
connected subgroup of SO(8).

Now suppose that σ|G2
is not the identity. Then σ leads to real forms G2,A1A1

of G2,C and Spin(3, 4) of

Spin(7;C). Thus we may assume that s =
(
+I4 0
0 −I4

)
∈ T . In Clifford algebra terms, a unit vector e acts

on R8 by reflection in the hyperplane e⊥. Thus the π−1–image of s is {±e5e6e7e8}, and σ leads to the real
form SO(4, 4) of SO(8;C).

Now we look at the possibilities for K/H. Recall Ku/Hu = [SO(8)×SO(2)]/[Spin(7)×SO(2)]. So K/H
must be one of

[SO(8;C)× SO(2;C)]/[Spin(7;C)× SO(2;C)],

[SO(8)× SO(2)]/[Spin(7)× SO(2)], [SO(8)× SO(1, 1)]/[Spin(7)× SO(1, 1)],

[SO(4, 4)× SO(2)]/[Spin(3, 4)× SO(2)], [SO(4, 4)× SO(1, 1)]/[Spin(3, 4)× SO(1, 1)].
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We conclude that the real form family of SO(10)/[Spin(7)× SO(2)] consists of

(2.10)

(i) M = SO(10;C)/[Spin(7;C)× SO(2;C)]

(ii) M = SO(10)/[Spin(7)× SO(2)]

(iii) M = SO(9, 1)/[Spin(7, 0)× SO(1, 1)]

(iv) M = SO(8, 2)/[Spin(7, 0)× SO(0, 2)]

(v) M = SO(6, 4)/[Spin(4, 3)× SO(2, 0)]

(vi) M = SO(5, 5)/[Spin(3, 4)× SO(1, 1)]

Case (9): Mu = SO(9)/Spin(7). Then M̃u is the sphere SO(9)/SO(8) and Ku/Hu = SO(8)/Spin(7).

From the considerations of the case Mu = SO(10)/[Spin(7)× SO(2)] we see that here, M̃ must be one of

SO(9;C)/SO(8;C), SO(8− a, a+ 1)/SO(8− a, a), or SO(9− a, a)/SO(8− a, a)

while K/H must be one of

SO(8;C)/Spin(7;C), SO(8)/Spin(7), or SO(4, 4)/Spin(3, 4).

Thus the real form family of Mu = SO(9)/Spin(7) consists of

(2.11)

(i) M = SO(9;C)/Spin(7;C)

(ii) M = SO(9)/Spin(7)

(iii) M = SO(8, 1)/Spin(7)

(iv) M = SO(5, 4)/Spin(3, 4)

Case (10): Mu = Spin(8)/G2 . Topologically, Mu = S7×S7, and M̃u = Spin(8)/Spin(7) = SO(8)/SO(7) =

S7 andKu/Hu = SO(7)/G2 = S7. The possibilities for M̃ are Spin(8;C)/Spin(7;C), Spin(8−a, a)/Spin(7−
a, a) for 0 5 a 5 7 and Spin(8− a, a)/Spin(8− a, a− 1) for 1 5 a 5 8, and for K/H are Spin(7;C)/G2,C ,
SO(7)/G2 and Spin(3, 4)/G2,A1A1 . Now the real form family of Mu consists of

(2.12)

(i) M = Spin(8;C)/G2,C

(ii) M = Spin(8)/G2

(iii) M = Spin(7, 1)/G2

(iv) M = Spin(4, 4)/G2,A1A1

(v) M = Spin(3, 5)/G2,A1A1

Case (11): Mu = SO(2n + 1)/U(n). Then M̃u = SO(2n + 1)/SO(2n) and Ku/Hu = SO(2n)/U(n).

The possibilities for M̃ are

SO(2n+ 1;C)/SO(2n;C), SO(n, n+ 1)/SO∗(2n)

SO(2n+ 1;C)/SO(2n− k, k) for 0 5 k 5 2n, SO(2n+ 1− k, k)/SO(2n− k, k) for 0 5 k 5 2n

SO(2n− k, k + 1)/SO(2n− k, k) for 0 5 k 5 2n

The possibilities for K/H are

SO(2n;C)/GL(n;C), SO(2n− 2k, 2k)/U(n− k, k) for 0 5 k 5 n

SO∗(2n)/U(n), SO∗(2n)/GL(n/2;H) for n even, SO(n, n)/GL(n;R)

Putting these together, the real form family of Mu consists of

(2.13)

(i) M = SO(2n+ 1;C)/GL(n;C)

(ii) M = SO(2n+ 1− 2k, 2k)/U(n− k, k) for 0 5 k 5 n

(iii) M = SO(2n− 2k, 2k + 1)/U(n− k, k) for 0 5 k 5 n

(iv) M = SO(n, n+ 1)/GL(n;R)
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Case (12): Mu = Sp(n)/[Sp(n−1)×U(1)]. Here M̃u is the quaternionic projective space Sp(n)/[Sp(n−
1)× Sp(1)] and Ku/Hu is [Sp(n− 1)× Sp(1)]/[Sp(n− 1)× U(1)] = S2. The possibilities for M̃ are

Sp(n;C)/[Sp(n− 1;C)× Sp(1;C)], Sp(n;R)/[Sp(n− 1;R)× Sp(1;R)]

Sp(n− k, k)/[Sp(n− 1− k, k)× Sp(1, 0)] for 0 5 k 5 n− 1

Sp(n− k, k)/[Sp(n− k, k − 1)× Sp(0, 1)] for 1 5 k 5 n

The possibilities for K/H are

[Sp(n− 1;C)× Sp(1;C)]/[Sp(n− 1;C)×GL(1;C)]

[Sp(n− 1− k, k)× Sp(1, 0)]/[Sp(n− 1− k, k)× U(1, 0)] for 0 5 k 5 n− 1

[Sp(n− k, k − 1)× Sp(0, 1)]/[Sp(n− k, k − 1)× U(0, 1)] for 1 5 k 5 n

[Sp(n− 1;R)× Sp(1;R)]/[Sp(n− 1;R)×GL(1;R)]

[Sp(n− 1;R)× Sp(1;R)]/[Sp(n− 1;R)× U(1)]

Now the real form family of Mu consists of

(2.14)

(i) M = Sp(n;C)/[Sp(n− 1;C)×GL(1;C)]

(ii) M = Sp(n− k, k)/[Sp(n− 1− k, k)× U(1, 0)] for 0 5 k 5 n− 1

(iii) M = Sp(n− k, k)/[Sp(n− k, k − 1)× U(0, 1)] for 1 5 k 5 n

(iv) M = Sp(n;R)/[Sp(n− 1;R)×GL(1;R)]

(v) M = Sp(n;R)/[Sp(n− 1;R)× U(1)]

As mentioned earlier, all the real form family classification results of Section 2 are tabulated as the first
column in Table 3.6 below.

3. Isotropy Representations and Signature

We will describe the isotropy representations for the weakly symmetric spaces M = G/H of Section 2
using the Bourbaki order for the simple root system Ψ = ΨG = {ψ1, . . . , ψ`} of G. The result will appear in
the twelve sub-headers on Table 3.6, the consequence for the decomposition of the tangent space will appear
in the second column of Table 3.6, and the resulting possible signatures of G–invariant riemannian metric
will be in the third column. The Bourbaki order of the simple roots is

(3.1)

b
ψ1

b
ψ2

p p p b
ψ` (A` , ` = 1) b

ψ1

b
ψ2

p p p b
ψ`−1

r
ψ` (B` , ` = 2)

r
ψ1

r
ψ2

p p p r
ψ`−1

b
ψ`

(C` , ` = 3) b
ψ1

b
ψ2

p p p b
ψ`−2HH bψ`−1
��

b
ψ`

(D` , ` = 4)

r
ψ1

b
ψ2

(G2) b
ψ1

b
ψ2

r
ψ3

r
ψ4

(F4)

bψ1 bψ3 bψ4 bψ5 bψ6

bψ2

(E6)

bψ1 bψ3 bψ4 bψ5 bψ6 bψ7

bψ2

(E7)

bψ1 bψ3 bψ4 bψ5 bψ6 bψ7 bψ8

bψ2

(E8)
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where, if there are two root lengths, the black dots indicate the short roots. We will use the notation

(3.2)

ξi : fundamental highest weight,
2〈ξi,ψj〉
〈ψj ,ψj〉 = δi,j

πλ : irreducible representation of g of highest weight λ

νλ : irreducible representation of k of highest weight λ

τλ : irreducible representation of h of highest weight λ

πλ,R, νλ,R, τλ,R : corresponding real representations

Here, if πλ(g) preserves a real form of the representation space of πλ then πλ,R is the representation on that
real form. Otherwise, (πλ⊕πλ∗)R is the representation on the invariant real form of the representation space
of πλ ⊕ πλ∗ , where πλ∗ is the complex conjugate of πλ ; νλ,R and τλ,R, etc., are defined similarly. Thus,
for example, the isotropy (tangent space) representations νG/K of the compact irreducible symmetric spaces
G/K that correspond to non–tube bounded symmetric domains are

(3.3)

G/K conditions weights νG/K = (νλ ⊕ νλ)R
SU(m+n)

S(U(m)×U(n))
m > n = 1 λ = ξm−1 + ξm + ξm+1 ( b b b b b b b b⊗×⊗1 1 1 )⊕ ( b b b b b b b b⊗×⊗1 −1 1)

SO(2n)
U(n)

n odd, n = 3 λ = ξ2 + ξn ( b b b b b⊗×11 )⊕
( c c c c c⊗×1 −1

)
E6

Spin(10)×Spin(2) λ = ξ5 + ξ6

 c c c cc ⊗×
11

⊕

 c c c cc ⊗×
−1

1


Here the × corresponds to the (1–dimensional) center of k, and with a over the × we have the unitary
character ζa which is the ath power of a basic character ζ on that center. We note that

Lemma 3.4. Let Gu/Hu be a circle bundle over an irreducible hermitian symmetric space Gu/Ku dual to a
non–tube domain, in other words one of the spaces (1), (2) or (3) of (2.1). Let νG/K denote the representation
of Ku on the real tangent space gu/ku , from (3.3). Then νG/K |Hu

is irreducible.

Proof. In view of the conditions from (3.3), νλ|Hu 6= νλ|Hu with the one exception of SU(3)/SU(2). It
follows, with that exception, that νG/K |Hu is irreducible and τG/H = νG/K |Hu ⊕ τ0,R. In the case of
SU(3)/SU(2), dim g/k = 4 while τλ cannot have a trivial summand in g/k. If τλ reduces on g/k it is the
sum of two 2–dimensional real representations. But SU(2) does not have a nontrivial 2–dimensional real
representation: the 2–dimensional complex representation of SU(2) is quaternionic, not real. Thus, in the
case of SU(3)/SU(2), again νG/K |Hu

is irreducible and τG/H = νG/K |Hu
⊕ τ0,R . �

Now, in the cases of (3.3) and Lemma 3.4, the isotropy representations of the corresponding weakly
symmetric spaces involve suppressing the × and adding a trivial representation, as follows.

(3.5)

G/H weights τG/H = (τλ ⊕ τλ)R ⊕ τ0,R
SU(m+n)

SU(m)×SU(n))
λ = ξm−1 + ξm+1 ( b b b b b b b b⊗1 1 )⊕ ( b b b b b b b b⊗1 1)⊕ ( b b b b b b b b⊗ )

SO(2n)
SU(n)

λ = ξ2 ( b b b b b1 )⊕
( c c c c c1

)
⊕
( c c c c c)

E6
Spin(10)

λ = ξ5

 c c c cc 1

⊕

 c c c cc1
⊕

 c c c cc


Now we run through the cases of Section 2.

Case (1): Mu = SU(m + n)/[SU(m) × SU(n)], m > n = 1. Consider the spaces listed in (2.3). The
first three have form SL(m + n;F)/[SL(m;F) × SL(n;F)]. In block form matrices

(
a b
c d

)
, the real tangent

space of G/H is given by b, c and the (real, complex, real) scalar matrices in the places of a and d. This
says that the irreducible summands of the real isotropy representation have dimensions mn, mn and 1 for
F = R; 2mn, 2mn, 1 and 1 for F = C; and 4mn, 4mn and 1 for F = H. Each Ad(H)–invariant space
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( 0 b
0 0 ) and ( 0 0

c 0 ) is null for the Killing form of g, but they are paired, so together they contribute signature
(mnd,mnd) to any invariant pseudo–riemannian metric on G/H. Thus the possibilities for signature of
invariant pseudo–riemannian metrics here are

SL(m+ n;R)/[SL(m;R)× SL(n;R)] : (mn+ 1,mn) , (mn,mn+ 1)

SL(m+ n;C)/[SL(m;C)× SL(n;C)] : (2mn+ 1, 2mn+ 1) , (2mn, 2mn+ 2) , (2mn+ 2, 2mn)

SL(m+ n;H)/[SL(m;H)× SL(n;H)] : (4mn+ 1, 4mn) , (4mn, 4mn+ 1).

Now consider the fourth space, G/H = SU(m − k + `, n − ` + k)/[SU(m − k, k) × SU(`, n − `)]. In
the notation of (3.2) and (3.5), the complex tangent space of G/K is the sum of ad (h)–invariant subspaces
s+ and s−, the holomorphic and antiholomorphic tangent spaces of G/K, where h acts irreducibly on s+
by τξ1 ⊗ τξm+n−1

and on s− by τξm−1
⊗ τξm+1

. The Killing form κC of gC is null on s+ and on s− but
pairs them, and the Killing form κ of g is the real part of κC . Now the irreducible summands of the
isotropy representation of H on the real tangent space of G/H have dimensions 2mn and 1. Note the signs
of certain inner products: Cx,y ⊗ Cz,w = Cxz+yw,xw+yz. Thus summand of dimension 2mn contributes
(2(m − k)(n − `) + 2k`, 2(m − k)` + 2(n − `)k) or (2(m − k)` + 2(n − `)k, 2(m − k)(n − `) + 2k`) to the
signature of any invariant pseudo–riemannian metric on G/H. Now the possibilities for the signature of
invariant pseudo–riemannian metrics here are

(2(mn−m`− nk + 2k`) + 1, 2(m`+ nk − 2k`)) , (2(mn−m`− nk + 2k`), 2(m`+ nk − 2k`) + 1) ,

(2(m`+ nk − 2k`) + 1, 2(mn−m`− nk + 2k`)) , (2(m`+ nk − 2k`), 2(mn−m`− nk + 2k`) + 1).

Case (2): Mu = SO(2n)/SU(n). We now consider the spaces listed in (2.4). In the first and fourth cases
H has form SL(n;F). For (i), g consists of all

(
a b
c d

)
with a+ at = 0 = d+ dt and c = bt. The symmetry of g

over k is Ad(J) where J =
(

0 I
−I 0

)
as above, and the (−1)–eigenspace s of Ad(J) on g consists of all

(
a b
b −a

)
with a antisymmetric and b symmetric. Thus the contribution of s to the Killing form of g has signature
(n(n− 1), n(n− 1)) from real a and pure imaginary a. For (iv), the matrices are real, so the contribution of

s to the Killing form of g has signature
(n(n−1)

2 , n(n−1)2

)
. Thus the possibilities for the signature of invariant

pseudo–riemannian metrics here are

SO(2n;C)/SL(n;C) : (n(n− 1) + 2, n(n− 1)) , (n(n− 1) + 1, n(n− 1) + 1) , (n(n− 1), n(n− 1) + 2);

SO(n, n)/SL(n;R) :
(
1
2n(n− 1) + 1 , 1

2n(n− 1)
)
,
(
1
2n(n− 1), 12n(n− 1) + 1

)
.

In cases (ii) and (iii) of (2.4) we argue as above for the last case of (2.3). Note the signs of the inner
products: Λ2(Ck,`) = Ca,b where a = 1

2 (k(k − 1) + `(` − 1)) and b = k`. Thus the possibilities for the
signature of invariant pseudo–riemannian metrics here are

SO∗(2n)/SU(k, `) : (k(k − 1) + `(`− 1) + 1, 2k`), (k(k − 1) + `(`− 1), 2k`+ 1),

(2k`+ 1, k(k − 1) + `(`− 1)), (2k`, k(k − 1) + `(`− 1) + 1);

SO(2k, 2`)/SU(k, `) : (k(k − 1) + `(`− 1)) + 1, 2k`), (k(k − 1) + `(`− 1)), 2k`+ 1),

(2k`+ 1, k(k − 1) + `(`− 1)), (2k`, k(k − 1) + `(`− 1) + 1).

Case (3): Mu = E6/Spin(10). We now consider the spaces M = G/H listed in (2.5). The representation
of h on the complexified tangent space of M is the sum of its two half spin representations, whose spaces s±
are null under the Killing form but are paired. In case (i) this means that the contribution of s = s+ + s−
to the (real) Killing form is (32, 32). In the riemannian cases where H = Spin(10) the contribution is (32, 0)
or (0, 32). In the other four cases for which H has form Spin(a, b) the contribution is (16, 16), because
those half spin representations of H are real. Finally, in the two cases where H = SO∗(10), each half
spin representation restricts on the maximal compact subgroup Gu ∩ H ∼= U(5) of H to the sum of three
irreducible representations, ( a a a a×a1 ) ⊕ ( a a a a×b1 ) ⊕ ( a a a a×c ) with a = 3, b = 1 and c = 5, or its dual. The
signature of the Killing form of g on the real tangent space of G/K is (20, 12) both for case (iv) and for case
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(viii). Thus the possibilities for the signature of invariant pseudo–riemannian metrics here are

E6,C/Spin(10;C) : (34, 32), (33, 33), (32, 34);

cases H = Spin(10): (17, 16) , (16, 17);

cases H = SO∗(10): (21, 12) , (20, 13) , (13, 20) , (12, 21).

Case (4): Mu = SU(2n+1)/Sp(n). Consider the four spaces listed in (2.6). The isotropy representation
of h on the real tangent space of G/H is the sum of the isotropy representation τK/H on the real tangent
space of K/H and the restriction νG/K |H of the isotropy representation of K on the real tangent space
of G/K. Thus the signatures of the Killing form on the minimal nondegenerate summands in the real
isotropy representation are as the second column of Table 3.6, and the possible signatures of invariant
pseudo–riemannian metric on G/H, are given by the third column there.

Case (5): Mu = SU(2n+1)/[Sp(n)×U(1)]. The four spaces listed in (2.7) are minor variations on those
of (2.6). The commutative factor of H is central in K, where it delivers a trivial factor in the representation
of h on k/h and the identity character χ, a nontrivial rotation ρ, or a dilation δ plus 1/δ, in the representation
of h on g/k. In this notation, the representation of h on the real tangent space of G/H, and the signature of
the restriction of the Killing form of g there, are listed in Table 3.6.

Case (6): Mu = Spin(7)/G2. In the three cases of (2.8), the representation τξ1 of h on the real tangent
space of G/H, the signature of the Killing form of g on that tangent space, and the possible signatures of
invariant pseudo–riemannian metric, are as listed in Table 3.6.

Case (7): Mu = G2/SU(3). In the four cases of (2.9), the representation of h on the real tangent space
of G/H, the signature of the Killing form of g on that tangent space, and the possible signatures of invariant
pseudo–riemannian metric, are given by the sum of the vector representation τξ1 and its dual τξ2 , and listed
in Table 3.6.

Case (8): Mu = SO(10)/[Spin(7) × SO(2)]. We run through the cases of (2.10). The representation
of Ku on the real tangent space of the Grassmannian SO(10)/[SO(8) × SO(2)] remains irreducible on
Spin(7)×SO(2), and the representation of Hu on the tangent space of Ku/Hu = [SO(8)×SO(2)]/[Spin(7)×
SO(2)] = S7 is just the vector representation. In the cases of (2.10), there is no further decomposition when
the identity component of the center of H is a compact. But it splits when that component is noncompact.
Thus the isotropy representation of h on the real tangent space of G/H, the signature of the Killing form
on the minimal nondegenerate summands in the real isotropy representation, and the possible signatures of
invariant pseudo–riemannian metrics on G/H, are as listed in Table 3.6.

Case (9): Mu = SO(9)/Spin(7). The cases of (2.11) are essentially the same as those of (2.10), but with
the central subgroup of H removed and with τξ3 no longer tensored with a 2–dimensional representation.
The isotropy representation of h on the real tangent space of G/H, the signature of the Killing form on
the minimal nondegenerate summands in the real isotropy representation, and the possible signatures of
invariant pseudo–riemannian metric on G/H, follow immediately as listed in Table 3.6.

Case (10): Mu = Spin(8)/G2. In the cases of (2.12), the representation of H on the tangent space of
G/H is the sum of two copies of the 7–dimensional representation τξ1 of G2 . The isotropy representation
of h on the real tangent space of G/H, the signature of the Killing form on the minimal nondegenerate
summands in the real isotropy representation, and the possible signatures of invariant pseudo–riemannian
metric on G/H, are listed in Table 3.6.

Case (11): Mu = SO(2n + 1)/U(n). The representation of H on the real tangent space of G/K =
SO(2n+1)/SO(2n) is the restriction (τξ2 ⊗ (ζ⊕ ζ)R) of the vector representation of SO(2n), and on the real
tangent space of K/H = SO(2n)/U(n) is ((τξ2 ⊗ χ)⊕ (τξn−2

⊗ χ))R as indicated in the second line of (3.3).
Now the isotropy representation of h on the real tangent space of G/H, the signature of the Killing form
on the minimal nondegenerate summands in the real isotropy representation, and the possible signatures of
invariant pseudo–riemannian metric on G/H, are given as stated below.
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Case (12): Mu = Sp(n)/[Sp(n − 1) × U(1)]. The representation of H on the real tangent space of
G/K = Sp(n)/[Sp(n−1)×Sp(1)] is the restriction τξ1,R⊗((ζ+1⊕ζ−1)R⊕(ζ−1⊕ζ+1)R) of the representation
τξ1,R ⊗ (τξn ⊕ τξn)R of K. The representation of H on the real tangent space of K/H is trivial on Sp(n− 1)
and is (ζ+1 ⊕ ζ−1)R on U(1). The results are listed below in Table 3.6. There “metric–irreducible” means
minimal subspace nondegenerate for the Killing form of g.

Table 3.6 Weakly Symmetric Pseudo–Riemannian G/H, G simple, H reductive

G/H metric–irreducibles metric signatures
(1) Real Form Family of SU(m+ n)/[SU(m)× SU(n)],m > n = 1; τ = ((τξ1 ⊗ τξm+n−1

)⊕ (τξm−1
⊗ τξm+1

))R ⊕ τ0,R
SL(m+n;C)

SL(m;C)×SL(n;C) (2mn, 2mn), (1, 0), (0, 1) (2mn + 2, 2mn), (2mn + 1, 2mn + 1), (2mn, 2mn + 2)

SL(m+n;R)
SL(m;R)×SL(n;R) (mn,mn), (1, 0) (mn + 1,mn), (mn,mn + 1)

SL(m+n;H)
SL(m;H)×SL(n;H)

(4mn, 4mn), (1, 0) (4mn + 1, 4mn), (4mn, 4mn + 1)

SU(m−k+`,n−`+k)
SU(m−k,k)×SU(`,n−`)

(2m` + 2nk − 4k`, 2mn− 2m`− 2nk + 4k`)
(0, 1)

(2m` + 2nk − 4k` + 1, 2mn− 2m`− 2nk + 4k`)
(2m` + 2nk − 4k`, 2mn− 2m`− 2nk + 4k` + 1)

(2) Real Form Family of SO(2n)/SU(n); τ = (τξ2 ⊕ τξn−2
)R ⊕ τ0,R

SO(2n;C)/SL(n;C) (n(n− 1), n(n− 1)), (1, 0), (0, 1)
(n(n− 1) + 2, n(n− 1))
(n(n− 1) + 1, n(n− 1) + 1)
(n(n− 1), n(n− 1) + 2)

SO∗(2n)/SU(k, `) (k(k − 1) + `(`− 1), 2k`), (0, 1)

(k(k − 1) + `(`− 1) + 1, 2k`)
(k(k − 1) + `(`− 1), 2k` + 1)
(2k` + 1, k(k − 1) + `(`− 1))
(2k`, k(k − 1) + `(`− 1) + 1)

SO(2k, 2`)/SU(k, `) ((k(k − 1) + `(`− 1), 2k`), (0, 1)

(k(k − 1) + `(`− 1) + 1, 2k`)
(k(k − 1) + `(`− 1), 2k` + 1)
(2k` + 1, k(k − 1) + `(`− 1))
(2k`, k(k − 1) + `(`− 1) + 1)

SO(n, n)/SL(n;R) ( 1
2
n(n− 1), 1

2
n(n− 1)), (1, 0)

( 1
2
n(n− 1) + 1, 1

2
n(n− 1))

( 1
2
n(n− 1), 1

2
n(n− 1) + 1)

(3) Real Form Family of E6/Spin(10); τ = (τξ4 ⊕ τξ5 )R ⊕ τ0,R
E6,C/Spin(10;C) (32, 32), (1, 0), (0, 1) (34, 32), (33, 33), (32, 34)

E6/Spin(10) (0, 32) , (0, 1) (33, 0) , (32, 1) , (1, 32), (0, 33)

E6,C4
/Spin(5, 5) (16, 16) , (1, 0) (17, 16) , (16, 17)

E6,A5A1
/SO∗(10) (20, 12) , (0, 1) (21, 12) , (20, 13) , (13, 20) , (12, 21)

E6,A5A1
/Spin(4, 6) (16, 16) , (0, 1) (17, 16) , (16, 17)

E6,D5T1
/Spin(10) (32, 0) , (0, 1) (33, 0) , (32, 1) , (1, 32), (0, 33)

E6,D5T1
/Spin(2, 8) (16, 16) , (0, 1) (17, 16) , (16, 17)

E6,D5T1
/SO∗(10) (12, 20) , (0, 1) (21, 12) , (20, 13) , (13, 20) , (12, 21)

E6,F4
/Spin(1, 9) (16, 16) , (1, 0) (17, 16) , (16, 17)

(4) Real Form Family of SU(2n+ 1)/Sp(n); τ = (τ1 ⊕ τ1)R ⊕ (τ2 ⊕ τ2)R ⊕ τ0,R

SL(2n + 1;C)/Sp(n;C)
(1, 0), (0, 1)
(4n, 4n)

(2n2 − n− 1, 2n2 − n− 1)

(2n2 + 3n + 1, 2n2 + 3n− 1)

(2n2 + 3n, 2n2 + 3n)

(2n2 + 3n− 1, 2n2 + 3n + 1)

SL(2n + 1;R)/Sp(n;R)
(1, 0)
(2n, 2n)

(n2 − 1, n2 − n)

(n2 + n + 1, n2 + 2n− 1)

(n2 + 2n, n2 + n)

(n2 + n, n2 + 2n)

(n2 + 2n− 1, n2 + n + 1)

SU(n + 1, n)/Sp(n;R)
(0, 1)
(2n, 2n)

(n2 − n, n2 − 1)

(n2 + n + 1, n2 + 2n− 1)

(n2 + 2n, n2 + n)

(n2 + n, n2 + 2n)

(n2 + 2n− 1, n2 + n + 1)

SU(2n+1−2`,2`)
Sp(n−`,`)

(0, 1)
(4`, 4n− 4`)

(4n`− 4`2, 2n2 − 4n` + 4`2 − n− 1)

(4n`− 4`2 + 4` + 1, 2n2 − 4n` + 4`2 + 3n− 4`− 1)

(4n`− 4`2 + 4n− 4` + 1, 2n2 − 4n` + 4`2 + 4`− n− 1)

(2n2 − 4n` + 4`2 + 3n− 4`, 4n`− 4`2 + 4`)

(2n2 − 4n` + 4`2 + 4`− n, 4n`− 4`2 + 4n− 4`)

(4n`− 4`2 + 4`, 2n2 − 4n` + 4`2 + 3n− 4`)

(4n`− 4`2 + 4n− 4`, 2n2 − 4n` + 4`2 + 4`− n)
(2n2 − 4n` + 4`2 + 3n− 4`− 1, 4n`− 4`2 + 4` + 1)

(2n2 − 4n` + 4`2 + 4`− n− 1, 4n`− 4`2 + 4n− 4` + 1)

(5) Real Form Family of SU(2n+ 1)/[Sp(n)× U(1)]; τ = ((τ1 ⊗ ζ1)⊕ (τ1 ⊗ ζ−1))R ⊕ ((τ2 ⊗ ζ2)⊕ (τ2 ⊗ ζ−2))R
SL(2n+1;C)
Sp(n;C)×C∗ (4n, 4n), (2n2 − n− 1, 2n2 − n− 1) (2n2 + 3n− 1, 2n2 + 3n− 1)

SL(2n+1;R)
Sp(n;R)×R∗ (n2 − 1, n2 − n), (2n, 2n) (n2 + 2n− 1, n2 + n), (n2 + n, n2 + 2n− 1)

SU(n+1,n)
Sp(n;R)×U(1) (n2 − n, n2 − 1), (2n, 2n) (n2 + n, n2 + 2n− 1), (n2 + 2n− 1, n2 + n)

SU(2n+1−2`,2`)
Sp(n−`,`)×U(1)

(4`, 4n− 4`)

(4n`− 4`2, 2n2 − 4n` + 4`2 − n− 1)

(4n`− 4`2 + 4`, 2n2 − 4n` + 4`2 + 3n− 4`− 1)

(4n`− 4`2 + 4n− 4`, 2n2 − 4n` + 4`2 + 4`− n− 1)

(2n2 − 4n` + 4`2 + 3n− 4`− 1, 4n`− 4`2 + 4`)

(2n2 − 4n` + 4`2 + 4`− n− 1, 4n`− 4`2 + 4n− 4`)

. . . table continued on next page
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table continued from previous page . . .

G/H metric–irreducibles metric signatures

(6) Real Form Family of Spin(7)/G2; τ = τξ1,R
Spin(7;C)/G2,C (7,7) (7,7)

Spin(7)/G2 (0,7) (7,0) and (0,7)

Spin(3, 4)/G2,A1A1
(4,3) (4,3) and (3,4)

(7) Real Form Family of G2/SU(3); τ = (τξ1 ⊕ τξ2 )R
G2,C/SL(3;C) (6,6) (6,6)

G2/SU(3) (0,6) (6,0) and (0,6)

G2,A1A1
/SU(1, 2) (4,2) (4,2) and (2,4)

G2,A1A1
/SL(3;R) (3,3) (3,3)

(8) Real Form Family of SO(10)/[Spin(7)× SO(2)]; τ = τξ1,R ⊕ (τξ3,R ⊗ (ζ1 ⊕ ζ−1))R
SO(10;C)

Spin(7;C)×SO(2;C) (16,16), (7,7) (23,23)

SO(10)
Spin(7)×SO(2)

(0,16), (0,7) (23,0), (16,7), (7,16), (0,23)

SO(9,1)
Spin(7,0)×SO(1,1)

(8,8), (0,7) (15,8), (8,15)

SO(8,2)
Spin(7,0)×SO(0,2)

(16,0), (0,7) (23,0), (16,7), (7,16), (0,23)

SO(6,4)
Spin(4,3)×SO(2,0)

(8,8), (4,3) (12,11), (11,12)

SO(5,5)
Spin(3,4)×SO(1,1)

(8,8), (4,3) (12,11), (11,12)

(9) Real Form Family of SO(9)/Spin(7); τ = τξ3,R ⊕ τξ1,R
SO(9;C)/Spin(7;C) (7,7) and (8,8) (15,15)

SO(9)/Spin(7) (0,7) and (0,8) (15,0), (8,7), (7,8), (0,15)

SO(8, 1)/Spin(7) (0,7) and (8,0) (15,0), (8,7), (7,8), (0,15)

SO(5, 4)/Spin(3, 4) (4,3) and (4,4) (8,7), (7,8)

(10) Real Form Family of Spin(8)/G2; τ = τξ1,R ⊕ τξ1,R
Spin(8;C)/G2,C (7,7) and (7,7) (14,14)

Spin(8)/G2 (0,7) and (0,7) (14,0), (7,7), (0,14)

Spin(7, 1)/G2 (7,0) and (0,7) (14,0), (7,7), (0,14)

Spin(4, 4)/G2,A1A1
(4,3) and (4,3) (8,6), (7,7), (6,8)

Spin(3, 5)/G2,A1A1
(4,3) and (3,4) (8,6), (7,7), (6,8)

(11) Real Form Family of SO(2n+ 1)/U(n); τ = (τξ2,R ⊗ (ζ ⊕ ζ−1))R
SO(2n+1;C)
GL(n;C) (2n, 2n),

(
n(n− 1), n(n− 1)

) (
n(n + 1), n(n + 1)

)
SO(2n+1−2k,2k)

U(n−k,k)
(2k, 2n− 2k)

(2kn− 2k2, n2 − 2kn + 2k2 − n)

(n2 − 2nk + 2k2 + n− 2k, 2nk − 2k2 + 2k)

(n2 − 2nk + 2k2 − n + 2k, 2nk − 2k2 + 2n− 2k)

(2nk − 2k2 + 2k, n2 − 2nk + 2k2 + n− 2k)

(2nk − 2k2 + 2n− 2k, n2 − 2nk + 2k2 − n + 2k)

SO(2n−2k,2k+1)
U(n−k,k)

(2n− 2k, 2k)

(2kn− 2k2, n2 − 2kn + 2k2 − n)

(n2 − 2nk + 2k2 + n− 2k, 2nk − 2k2 + 2k)

(n2 − 2nk + 2k2 − n + 2k, 2nk − 2k2 + 2n− 2k)

(2nk − 2k2 + 2k, n2 − 2nk + 2k2 + n− 2k)

(2nk − 2k2 + 2n− 2k, n2 − 2nk + 2k2 − n + 2k)

SO(n, n + 1)/GL(n;R)
(n, n)( 1
2
n(n− 1), 1

2
n(n− 1)

) ( 1
2
n(n + 1), 1

2
n(n + 1)

)
(12) Real Form Family of Sp(n)/[Sp(n− 1)× U(1)]; τ = (τξ1 ⊗ (ζ+1 ⊕ ζ−1)R)⊕ (ζ+1 ⊕ ζ−1)R

Sp(n;C)
Sp(n−1;C)×GL(1;C)

(2, 2)
(4n− 4, 4n− 4)

(4n− 2, 4n− 2)

Sp(n−k,k)
Sp(n−1−k,k)×U(1)

(0, 2)
(4k, 4n− 4k − 4)

(4n− 4k − 2, 4k)
(4n− 4k − 4, 4k + 2)
(4k + 2, 4n− 4k − 4)
(4k, 4n− 4k − 2)

Sp(n−k,k)
Sp(n−k,k−1)×U(1)

(0, 2)
(4n− 4k, 4k − 4)

(4n− 4k, 4k − 2)
(4n− 4k + 2, 4k − 4)
(4k − 4, 4n− 4k + 2)
(4k − 2, 4n− 4k)

Sp(n;R)
Sp(n−1;R)×GL(1;R) (1, 1), (2n− 2, 2n− 2) (2n− 1, 2n− 1)

Sp(n;R)
Sp(n−1;R)×U(1)

(2, 0), (2n− 2, 2n− 2) (2n, 2n− 2), (2n− 2, 2n)

4. Real Form Families for Gu Semisimple but not Simple.

Table (4.1) just below is Yakimova’s formulation ([17], [18]) of the principal case diagram of Mikityuk
[8], with some indices shifted to facilitate descriptions of the real form families. See [12, Section 12.8] for
the details. It gives the irreducible compact spherical pairs and nonsymmetric compact weakly symmetric
spaces. There, sp(n) corresponds to the compact group Sp(n). In each of the nine entries of Table (4.1), g
is the sum of the algebras on the top row and h is the sum of the algebras on the bottom row. We continue
the numbering from (2.1).
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The spaces of (2.1), and entries (1) through (8) in (4.1), all are principal. Entry (9) of (4.1) is a little
more complicated; see [12, Section 12.8]. There the gi are semisimple but not necessarily simple.

(4.1)

Compact Irred Nonsymmetric Weakly Symmetric (g, h), g is Semisimple but not Simple

(13) su(n) su(n+ 1)

su(n) u(1)
��

(16) su(n+ 2) sp(m+ 1)

u(n)
su(2) = sp(1)

sp(m)�
�

@
@

(19) sp(n+ 1) sp(`+ 1) sp(m+ 1)

sp(n) sp(1) sp(`) sp(m)
@@ ����

��
@@

(14) sp(n+ 2) sp(2)

sp(n) sp(2)
HH

(17) su(n+ 2) sp(m+ 1)

su(n)
su(2) = sp(1)

sp(m)�
�

@
@

(20) sp(n+ 1) sp(2) sp(m+ 1)

sp(n) sp(1) sp(1) sp(m)
@@ �� @@ ��

(15) so(n) so(n+ 1)

so(n)
@@��

(18) sp(n+ 1) sp(m+ 1)

sp(n) sp(1) sp(m)
��HH

(21) g1 . . . gn

h′1 . . . h′n

. . .
zh
��
��

��
��

Definition 4.2. Let Mu = Gu/Hu be one of the entries in (4.1) excluding entry (21). For entries (13),
(14), (15), (16), (17) and (18) express gu = g1,u ⊕ g2,u with gu,i nonzero and simple. For entries (19)
and (20) express gu = g1,u ⊕ g2,u ⊕ g3,u with gu,i nonzero and simple. Let hu,i denote the image of hu
under the projection gu → gu,i . Then each (gu,i, hu,i) corresponds to a compact simply connected irreducible

riemannian symmetric (or at least weakly symmetric) space Mu,i = Gu,i/Hu,i , and M̃u =
∏
Mu,i is the

riemannian unfolding of Mu .

Now we run through the cases of (4.1). The results will be summarized in Table 4.12 below.

(13)
su(n) su(n+ 1)

su(n) u(1)
�� [SU(n)SU(n+ 1)]/S[U(n)× U(1)]

The real form family of SU(n)/SU(n) consists of the G1/H1 given by

SL(n;C)/SL(n;C), SL(n;R)/SL(n;R), SL(n′;H)/SL(n′;H) if n = 2n′,

and one of the SU(k, `)/SU(k, `) where k + ` = n.

The real form family of SU(n+ 1)/S[U(n)×U(1)] consists of the M̃2 = G2/H2 in (2.3) with (m,n) replaced
by (n, 1). That family is

SL(n+ 1;C)/S[GL(n;C)×GL(1;C)], SL(n+ 1;R)/S[GL(n;R)×GL(1;R)],

SU(n− a+ 1, a)/S[U(n− a, a)× U(1, 0)], SU(n− a, 1 + a)/S[U(n− a, a)× U(0, 1)].

We can fold these together exactly in the cases where H1 is the semisimple part of H2 , so the possibilities
for G/H are

(4.3)

(i) [SL(n;C)× SL(n+ 1;C)]/[SL(n;C)×GL(1;C)]

(ii) [SL(n;R)× SL(n+ 1;R)]/[SL(n;R)×GL(1;R)]

(iii) [SU(k, `)× SU(k + 1, `)]/[SU(k, `)× U(1)]

(iv) [SU(k, `)× SU(k, `+ 1)]/[SU(k, `)× U(1)]

In case (i), the metric irreducible summands of the tangent space have signatures (n2 − 1, n2 − 1) and

(2n, 2n). In case (ii), those signatures are
(n(n+1)

2 − 1, n(n−1)2

)
and (n, n). In case (iii), those signatures are

(2k`, k2 + `2 − 1) and (2`, 2k). In case (iv), those signatures are (2k`, k2 + `2 − 1) and (2k, 2`).

(14)
sp(n+ 2) sp(2)

sp(n) sp(2)
HH [Sp(n+ 2)× Sp(2)]/[Sp(n)× Sp(2)]
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For Sp(n+ 2)/[Sp(n)× Sp(2), we have the following possibilities:

Sp(n+ 2;C)/[Sp(n;C)× Sp(2;C)], Sp(n+ 2;R)/[Sp(n;C)× Sp(2;R)]

Sp(n− a+ b, 2− b+ a)/[Sp(n− a, a)× Sp(b, 2− b)] for 0 5 a 5 n and 0 5 b 5 2

Thus we have the following possibilities for this case:

(4.4)

(i) [Sp(n+ 2;C)× Sp(2;C)]/[Sp(n;C)× Sp(2;C)]

(ii) [Sp(n+ 2;R)× Sp(2;R)]/[Sp(n;R)× Sp(2;R)]

(iii) [Sp(n− a+ b, 2− b+ a)× Sp(b, 2− b)]/[Sp(n− a, a)× Sp(b, 2− b)]
for 0 5 a 5 n and b ∈ {0, 1, 2}

In case (i), the metric irreducible summands of the tangent space have signatures (10, 10) and (8n, 8n). In
case (ii), those signatures are (6, 4) and (4n, 4n). In case (iii), those signatures are (8b− 4b2, 4b2 − 8b+ 10)
and (8n+ 4(a− n)b+ 4a(b− 2), 4(n− a)b+ 4a(2− b)).

(15)
so(n) so(n+ 1)

so(n)
@@�� [SO(n)× SO(n+ 1)]/SO(n)

For SO(n+ 1)/SO(n), the possibilities are

SO(n+ 1;C)/SO(n,C), and SO(n− a+ b, 1− b+ a)/SO(n− a, a) for 0 5 a 5 n and 0 5 b 5 1.

Thus the possibilities for M in this case are:

(4.5)

(i) [SO(n,C)× SO(n+ 1;C)]/SO(n,C)

(ii) [SO(n− a, a)× SO(n− a, a+ 1)]/SO(n− a, a) for 0 5 a 5 n

(iii) [SO(n− a, a)× SO(n− a+ 1, a)]/SO(n− a, a) for 0 5 a 5 n

In case (i), the metric irreducible subspaces of the real tangent space have signatures
(n(n−1)

2 , n(n−1)2

)
and

(n, n). In case (ii), those signatures are
(
(n − a)a, n(n−1)2 − (n − a)a

)
and (n − a, a). In case (iii), those

signatures are
(
(n− a)a, n(n−1)2 − (n− a)a

)
and (a, n− a).

(16)

su(n+ 2) sp(m+ 1)

u(n)
su(2) = sp(1)

sp(m)�
�

@
@ [SU(n+ 2)× Sp(m+ 1)]/[U(n)× SU(2)× Sp(m)]

Let Gu/Hu = [SU(n+ 2)× Sp(m+ 1)]/[U(n)× SU(2)× Sp(m)] as in entry (14) on Table 4.1. The real
form family of M1 = SU(n+2)/S[U(n)×U(2)] consists of the G1/H1 in (2.3) with (m,n) replaced by (n, 2).
That family is

SL(n+ 2;C)/S[GL(n;C)×GL(2;C)], SL(n+ 2;R)/S[GL(n;R)×GL(2;R)]

SL(n′ + 1;H)/S[GL(n′;H)×GL(1;H)] where n = 2n′

SU(n− a+ b, 2− b+ a)/S[U(n− a, a)× U(b, 2− b)] for a 5 n and b 5 2.

SL(4;R)/GL′(2;C), SU∗(4)/[GL′(2;C)], SU(2, 2)/[SL(2;C)× R].

where GL′(m;C) := {g ∈ GL(m;C) | | det(g)| = 1} and GL(k;H) := SL(k;H) × R+. The real form family
of M2 = Sp(m+ 1)/[Sp(m)× Sp(1)] consists of the

Sp(m+ 1;C)/[Sp(m;C)× Sp(1;C)], Sp(m+ 1;R)/[Sp(m;R)× Sp(1;R)], and

Sp(m− a+ b, 1− b+ a)/[Sp(m− a, a)× Sp(b, 1− b)] for 0 5 a 5 m and 0 5 b 5 1.
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Fitting these together, the real form family of Mu = [SU(n + 2) × Sp(m + 1)]/[U(n) × SU(2) × Sp(m)]
consists of the

[SL(n+ 2;C)× Sp(m+ 1;C)]/[GL(n;C)× SL(2;C)× Sp(m;C)]

[SL(n+ 2;R)× Sp(m+ 1;R)]/[GL(n;R)× SL(2;R)× Sp(m;R)]

[SU(n− a1 + b1, 2− b1 + a1)× Sp(m− a2 + b2, 1− b2 + a2)]

/[U(n− a1, a1)× SU(2)× Sp(m− a2, a2)] where 0 5 a1 5 n, 0 5 a2 5 m, b1 = 0, 2, b2 = 0, 1

[SU(n+ 1− a, a+ 1)× Sp(m+ 1;R)]/[U(n− 1, a)× SU(1, 1)× Sp(m;R)] for 0 5 a 5 n

[SL(4;R)× Sp(m+ 1;C)]/[GL′(2;C)× Sp(m;C)], [SU∗(4)× Sp(m+ 1;C)]/[SL(2;C)× Sp(m;C)× T ]

[SU(2, 2)× Sp(m+ 1;C)]/[SL(2;C)× Sp(m;C)× R]

This list is not convenient for analysis of the metric irreducible subspaces of the tangent space, so we refine
it as follows.

(4.6)

(i) [SL(n+ 2;C)× Sp(m+ 1;C)]/[GL(n;C)× SL(2;C)× Sp(m;C)]

(ii) [SL(n+ 2;R)× Sp(m+ 1;R)]/[GL(n;R)× SL(2;R)× Sp(m;R)]

(iii) [SL(n′ + 1;H)× Sp(m− a, 1 + a)]/[GL(n′;H)× SU(2)× Sp(m− a, a)] for 0 5 a 5 n

(iv) [SL(n′ + 1;H)× Sp(m− a+ 1, a)]/[GL(n′;H)× SU(2)× Sp(m− a, a)] for 0 5 a 5 n

(v) [SU(n− a1 + b1, 2− b1 + a1)× Sp(m− a2, 1 + a2)]

/[U(n− a1, a1)× SU(2)× Sp(m− a2, a2)], where 0 5 a1 5 n, 0 5 a2 5 m, b1 ∈ {0, 2}
(vi) [SU(n− a1 + b1, 2− b1 + a1)× Sp(m− a2 + 1, a2)]

/[U(n− a1, a1)× SU(2)× Sp(m− a2, a2)], where 0 5 a1 5 n, 0 5 a2 5 m, b1 ∈ {0, 2}
(vii) [SU(n+ 1− a, a+ 1)× Sp(m+ 1;R)]/[U(n− a, a)× SU(1, 1)× Sp(m;R)] for 0 5 a 5 n

(viii) [SL(4;R)× Sp(m+ 1;C)]/[SL(2;C)× Sp(m;C)× T ]

(ix) [SU∗(4)× Sp(m+ 1;C)]/[SL(2;C)× Sp(m;C)× T ]

(x) [SU(2, 2)× Sp(m+ 1;C)]/[SL(2;C)× Sp(m;C)× R]

In case (i), the metric irreducible subspaces of the real tangent space have signatures (3, 3), (4n, 4n) and
(4m, 4m). In case (ii), those signatures are (2, 1), (2n, 2n) and (2m, 2m). In case (iii), those signatures are
(0, 3), (4n, 4n) and (4m − 4a, 4a). In case (iv), those signatures are (0, 3), (4n, 4n) and (4a, 4m − 4a). In
case (v), those signatures are (0, 3), (4(n− a1)− 2b1(n− 2a1), 2b1(n− 2a1) + 4a1) and (4m− 4a2, 4a2). In
case (vi), those signatures are (0, 3), (4(n− a1)− 2b1(n− 2a1), 2b1(n− 2a1) + 4a1) and (4a2, 4m− 4a2). In
case (vii), those signatures are (2, 1), (2n, 2n) and (2m, 2m). In case (viii), those signatures are (3, 3), (6, 2)
and (4m, 4m). In case (ix), those signatures are (3, 3), (2, 6) and (4m, 4m). In case (x), those signatures are
(3, 3), (4, 4) and (4m, 4m).

(17)

su(n+ 2) sp(m+ 1)

su(n)
su(2) = sp(1)

sp(m)�
�

@
@ [SU(n+ 2)× Sp(m+ 1)]/[SU(n)× SU(2)× Sp(m)]

Using the calculations in §2, the real form family for SU(n+ 2)/[SU(n)× SU(2)] is

SL(n+ 2;C)/[SL(n;C)× SL(2;C)], SL(n+ 2;R)/[SL(n;R)× SL(2;R)], SL(4;R)/SL(2;C)

SU∗(4)/SL(2;C), SU(2, 2)/SL(2;C), SL(n′ + 1;H)/[SL(n′;H)× SL(1;H)] where n = 2n′, and

SU(n− a+ b, 2− b+ a)/[SU(n− a, a)× SU(b, 2− b)] for a 5 n and b 5 2.

Combining that with the possibilities for Sp(n + 1)/[Sp(n) × Sp(1)], and refining the result as appropriate
for computation of the metric irreducible subspaces of the real tangent space, this case gives us
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(4.7)

(i) [SL(n+ 2;C)× Sp(m+ 1;C)]/[SL(n;C)× SL(2;C)× Sp(m;C)]

(ii) [SL(n+ 2;R)× Sp(m+ 1;R)]/[SL(n;R)× SL(2;R)× Sp(m;R)]

(iii) [SL(n′ + 1;H)× Sp(m− a, 1 + a)]/[SL(n′;H)× SU(2)× Sp(m− a, a)] for 0 5 a 5 n

(iv) [SL(n′ + 1;H)× Sp(m− a+ 1, a)]/[GL(n′;H)× SU(2)× Sp(m− a, a)] for 0 5 a 5 n

(v) [SU(n− a1 + b1, 2− b1 + a1)× Sp(m− a2, 1 + a2)]

/[SU(n− a1, a1)× SU(2)× Sp(m− a2, a2)], where 0 5 a1 5 n, 0 5 a2 5 m, b1 ∈ {0, 2}
(vi) [SU(n− a1 + b1, 2− b1 + a1)× Sp(m− a2 + 1, a2)]

/[SU(n− a1, a1)× SU(2)× Sp(m− a2, a2)], where 0 5 a1 5 n, 0 5 a2 5 m, b1 ∈ {0, 2}
(vii) [SU(n+ 1− a, a+ 1)× Sp(m+ 1;R)]/[SU(n− a, a)× SU(1, 1)× Sp(m;R)] for 0 5 a 5 n

(viii) [SL(4;R)× Sp(m+ 1;C)]/[SL(2;C)× Sp(m;C)]

(ix) [SU∗(4)× Sp(m+ 1;C)]/[SL(2;C)× Sp(m;C)]

(x) [SU(2, 2)× Sp(m+ 1;C)]/[SL(2;C)× Sp(m;C)]

In case (i), the metric irreducible subspaces of the real tangent space have signatures (3, 3), (1, 0), (0, 1),
(4n, 4n) and (4m, 4m). In case (ii), those signatures are (2, 1), (1, 0), (2n, 2n) and (2m, 2m). In case (iii),
those signatures are (0, 3), (1, 0), (4n, 4n) and (4m− 4a, 4a). In case (iv), those signatures are (0, 3), (1, 0),
(4n, 4n) and (4a, 4m− 4a). In case (v), those signatures are (0, 3), (0, 1), (4(n− a1)− 2b1(n− 2a1), 2b1(n−
2a1)+4a1) and (4m−4a2, 4a2). In case (vi), those signatures are (0, 3), (0, 1), (4(n−a1)−2b1(n−2a1), 2b1(n−
2a1) + 4a1) and (4a2, 4m − 4a2). In case (vii), those signatures are (2, 1), (0, 1), (2n, 2n) and (2m, 2m). In
case (viii), those signatures are (3, 3), (0, 1), (6, 2) and (4m, 4m). In case (ix), those signatures are (3, 3),
(0, 1), (2, 6) and (4m, 4m). In case (x), those signatures are (3, 3), (1, 0), (4, 4) and (4m, 4m).

(18)

sp(n+ 1) sp(m+ 1)

sp(n) sp(1) sp(m)
��HH

Sp(n+1)×Sp(m+1)
Sp(n)×Sp(m)×Sp(1)

Here are the possibilities for real forms:

(4.8)

(i) [Sp(n+ 1;C)× Sp(m+ 1;C)]/[Sp(n;C)× Sp(1;C)× Sp(m;C)]

(ii) [Sp(n+ 1;R)× Sp(m+ 1;R)]/[Sp(n;R)× Sp(1;R)× Sp(m;R)]

(iii) [Sp(n− a1 + b1, 1− b1 + a1)× Sp(m− a2 + b2, 1− b2 + a2)]

/[Sp(n− a1, a1)× Sp(1)× Sp(m− a2, a2)] where 0 5 a1 5 n, 0 5 a2 5 m, b1, b2 ∈ {0, 1}
(iv) Sp(n+ 1;C)/[Sp(n;C)× Sp(1)] where m = n

(v) Sp(n+ 1;C)/[Sp(n;C)× Sp(1;R)] where m = n

The first three correspond to inner automorphisms of Gu, preserving each simple factor, and the last two to
an involutive automorphism α that interchanges the two simple factors. Then α is given by the interchange
(x1, x2) 7→ (x2, x1) and is the identity on the common Sp(1) factor of Hu , so the corresponding real form
G/H is given by G = Sp(n+ 1;C) of GC and H = Sp(n;C)× Sp(1) of HC . In detail we are using

Lemma 4.9. Let m1 and m2 be Lie algebras, m = m1 ⊕ m2 , and α an involutive automorphism of m
that exchanges the mi (so m1

∼= m2). Write m = m+ + m− , sum the (±1)–eigenspaces of α. Then the
corresponding Lie algebra m+ +

√
−1m− ∼= (m1)C as a real Lie algebra.

Proof. Identify the mi by means of α, so m = m1⊕m1 with α given by α(x, y) = (y, x). Then m+ = {(x, x) |
x ∈ m1} and m− = {(y,−y) | y ∈ m1}, and m+ +

√
−1m− = {(x, x) +

√
−1 (y,−y)} = {(z, z) | z ∈ (m1)C},

which is isomorphic to (m1)C as a real Lie algebra. �



SEMISIMPLE WEAKLY SYMMETRIC PSEUDO–RIEMANNIAN MANIFOLDS 18

In case (i), the metric irreducible subspaces of the real tangent space are of signatures (3, 3), (4n, 4n) and
(4m, 4m). In case (ii), those signatures are (2, 1), (2n, 2n) and (2m, 2m). In case (iii), those signatures are
(0, 3), (4(n− a1)− 4b1(n− 2a1), 4a1 + 4b1(n− 2a1)) and (4(m− a2)− 4b2(m− 2a2), 4a2 + 4b2(m− 2a2)). In
case (iv), those signatures are (3, 0) and (4n, 4n). In case (v), those signatures are (1, 2) and (4n, 4n).

(19)

sp(n+ 1) sp(`+ 1) sp(m+ 1)

sp(n) sp(1) sp(`) sp(m)
@@ ����

��
@@

Sp(n+1)×Sp(`+1)×Sp(m+1)
Sp(n)×Sp(`)×Sp(m)×Sp(1)

Let Mu = Gu/Hu = [Sp(n+1)×Sp(`+1)×Sp(m+1)]/[Sp(n)×Sp(`)×Sp(m)×Sp(1)] , n 5 ` 5 m. Then
M1,u = Sp(n+1)/[Sp(n)×Sp(1)], M2,u = Sp(`+1)/[Sp(`)×Sp(1)] and M3,u = Sp(m+1)/[Sp(n)×Sp(1)].
Let α be an involutive automorphism of Gu . It induces a permutation α of {M1,u ,M2,u ,M3,u}. Up to
conjugacy, and using α2 = 1, the possibilities are (a) α is inner and α = 1, and (b) α is outer, n = `, α
exchanges M1,u and M2,u , and α(M3,u) = M3,u . In case (b) we argue as in (4.8). Now the possibilities for
M = G/H are

(4.10)

(i) [Sp(n+ 1;C)× Sp(`+ 1;C)× Sp(m+ 1;C)]/[Sp(n;C)× Sp(`;C)× Sp(m;C)× Sp(1;C)]

(ii) [Sp(n+ 1;R)× Sp(`+ 1;R)× Sp(m+ 1;R)]/[Sp(n;R)× Sp(`;R)× Sp(m;R)× Sp(1;R)]

(iii) [Sp(n− a1 + b1, 1− b1 + a1)× Sp(`− a2 + b2, 1− b2 + a2)× Sp(m− a3 + b3, 1− b3 + a3)]

/[Sp(n− a1, a1)× Sp(`− a2, a2)× Sp(m− a3, a3)× Sp(1)]

where 0 5 a1 5 n, 0 5 a2 5 `, 0 5 a3 5 m, b1, b2, b3 ∈ {0, 1}
(iv) [Sp(n+ 1;C)× Sp(m+ 1;R)]/[Sp(n;C)× Sp(1;R)× Sp(m;R)] if n = `

(v) [Sp(n+ 1;C)× Sp(m+ 1− a, a)]/[Sp(n;C)× Sp(1)× Sp(m− a, a)], 0 5 a 5 m, if n = `

(vi) [Sp(n+ 1;C)× Sp(m− a, a+ 1)]/[Sp(n;C)× Sp(1)× Sp(m− a, a)], 0 5 a 5 m, if n = `

Here the first three cases correspond to inner automorphisms, case (a), and the remaining three correspond
to outer automorphisms α, case (b). There we apply Lemma 4.9 to the interchange G1,u ↔ G2,u defined by
α, α|G3,u

is any involutive automorphism.

In case (i), the signatures of the metric irreducible subspaces of the real tangent space of M = G/H are
(3, 3), (3, 3), (4n, 4n), (4l, 4l) and (4m, 4m). In case (ii) those signatures are (2, 1), (2, 1), (2n, 2n), (2`, 2`)
and (2m, 2m). In case (iii) those signatures are (0, 3), (0, 3), (4(n− a1)− 4b1(n− 2a1), 4a1 + 4b1(n− 2a1)),
(4(` − a2) − 4b2(` − 2a2), 4a2 + 4b2(` − 2a2)) and (4(m − a3) − 4b3(m − 2a3), 4a3 + 4b3(m − 2a3)). In case
(iv) those signatures are (1, 2), (2, 1), (4n, 4n) and (2m, 2m). In case (v) those signatures are (3, 0), (0, 3),
(4n, 4n) and (4a, 4m− 4a). In case (vi) those signatures are (3, 0), (0, 3), (4n, 4n) and (4m− 4a, 4a).

(20)

sp(n+ 1) sp(2) sp(m+ 1)

sp(n) sp(1) sp(1) sp(m)
@@ �� @@ ��

Sp(n+1)×Sp(2)×Sp(m+1)
Sp(n)×Sp(1)×Sp(1)×Sp(m)

The real form family members defined by involutive inner automorphisms of Gu are straightforward now.
If m = n we also have the automorphism α that is the interchange Sp(n + 1) ↔ Sp(m + 1) and preserves
Sp(2). Then Sp(2) goes to a real form of Sp(2;C) that contains Sp(1;C) as a symmetric subgroup. Again
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making use of Lemma 4.9, the result is

(4.11)

(i) [Sp(n+ 1;C)× Sp(2;C)× Sp(m+ 1;C)]/[Sp(n;C)× Sp(1;C)× Sp(1;C)× Sp(m;C)]

(ii) [Sp(n+ 1;R)× Sp(2;R)× Sp(m+ 1;R)]/[Sp(n;R)× Sp(1;R)× Sp(1;R)× Sp(m;R)]

(iii) [Sp(n− a1 + b1, 1− b1 + a1)× Sp(1, 1)× Sp(m− a2 + b2, 1− b2 + a2)]

/[Sp(n− a1, a1)× Sp(1)× Sp(1)× Sp(m− a2, a2)]

where 0 5 a1 5 n, 0 5 a2 5 m, and b1, b2 ∈ {0, 1}
(iv) [Sp(n− a1 + b1, 1− b1 + a1)× Sp(2)× Sp(m− a2 + b2, 1− b2 + a2)]

/[Sp(n− a1, a1)× Sp(1)× Sp(1)× Sp(m− a2, a2)]

where 0 5 a1 5 n, 0 5 a2 5 m, and b1, b2 ∈ {0, 1}
(v) [Sp(n+ 1;C)× Sp(2;R)]/[Sp(n;C)× Sp(1;C)] where m = n

(vi) [Sp(n+ 1;C)× Sp(1, 1)]/[Sp(n;C)× Sp(1;C)] where m = n

In case (i), the metric irreducible subspaces of the real tangent space have signatures (3, 3), (3, 3), (4n, 4n),
(4, 4) and (4m, 4m). In case (ii), those signatures are (2, 1), (2, 1), (2n, 2n), (2, 2) and (2m, 2m). In case
(iii), those signatures are (0, 3), (0, 3), (4(n − a1) − 4b1(n − 2a1), 4a1 + 4b1(n − 2a1)), (4, 0), and (4(m −
a2)− 4b2(m− 2a2), 4a2 + 4b2(m− 2a2)). In case (iv), those signatures are (0, 3), (0, 3), (4(n− a1)− 4b1(n−
2a1), 4a1 + 4b1(n − 2a1)), (0, 4), and (4(m − a2) − 4b2(m − 2a2), 4a2 + 4b2(m − 2a2)). In case (v), those
signatures are (3, 3), (4n, 4n) and (3, 1). In case (vi), those signatures are (3, 3), (4n, 4n) and (1, 3).

We summarize the computations for G semisimple but not simple, except for item (21), in the following
table. After the table we will discuss item (21).

Table 4.12 Weakly Symmetric Pseudo-Riemannian Homogeneous Spaces G/H,
G/H Not Symmetric, G Semisimple But Not Simple, H Reductive

G/H metric–irreducibles
(13) Real Form Family of [SU(n)× SU(n+ 1)]/S[U(n)× U(1)]

[SL(n;C)× SL(n + 1;C)]/[SL(n;C)×GL(1;C)] (n2 − 1, n2 − 1), (2n, 2n)

[SL(n;R)× SL(n + 1;R)]/[SL(n;R)×GL(1;R)] (n(n+1)
2

− 1,
n(n−1)

2

)
, (n, n)

[SU(k, `)× SU(k + 1, `)]/[SU(k, `)× U(1)] (2kl, k2 + l2 − 1), (2l, 2k)

[SU(k, `)× SU(k, ` + 1)]/[SU(k, `)× U(1)] (2kl, k2 + l2 − 1), (2k, 2l)

(14) Real Form Family of [Sp(n+ 2)× Sp(2)]/[Sp(n)× Sp(2)]
[Sp(n + 2;C)× Sp(2;C)]/[Sp(n;C)× Sp(2;C)] (10, 10), (8n, 8n)

[Sp(n + 2;R)× Sp(2;R)]/[Sp(n;R)× Sp(2;R)] (6, 4), (4n, 4n)

[Sp(n− a + b, 2− b + a)× Sp(b, 2− b)]/[Sp(n− a, a)× Sp(b, 2− b)] (8b− 4b2, 4b2 − 8b + 10)
(8n + 4(a− n)b + 4a(b− 2), 4(n− a)b + 4a(2− b))

(15) Real Form Family of [SO(n)× SO(n+ 1)]/SO(n)
[SO(n;C)× SO(n + 1;C)]/SO(n,C) (n(n−1)

2
,
n(n−1)

2

)
, (n, n)

[SO(n− a, a)× SO(n− a, a + 1)]/SO(n− a, a)
(
(n− a)a, n(n−1)

2
− (n− a)a

)
, (n− a, a)

[SO(n− a, a)× SO(n− a + 1, a)]/SO(n− a, a)
(
(n− a)a, n(n−1)

2
− (n− a)a

)
, (a, n− a)

(16) Real Form Family of [SU(n+ 2)× Sp(m+ 1)]/[U(n)× SU(2)× Sp(m)]
[SL(n + 2;C)× Sp(m + 1;C)]/[GL(n;C)× SL(2;C)× Sp(m;C)] (3, 3), (4n, 4n), (4m, 4m)

[SL(n + 2;R)× Sp(m + 1;R)]/[GL(n;R)× SL(2;R)× Sp(m;R)] (2, 1), (2n, 2n), (2m, 2m)

[SL(n′ + 1;H)× Sp(m− a, 1 + a)]/[GL(n′;H)× SU(2)× Sp(m− a, a)] (0, 3), (2n, 2n), (4m− 4a, 4a)

[SL(n′ + 1;H)× Sp(m− a + 1, a)]/[GL(n′;H)× SU(2)× Sp(m− a, a)] (0, 3), (2n, 2n), (4a, 4m− 4a)

SU(n−a1+b1,2−b1+a1)×Sp(m−a2,1+a2)
U(n−a1,a1)×SU(2)×Sp(m−a2,a2)

(0, 3)
(4(n− a1)− 2b1(n− 2a1), 2b1(n− 2a1) + 4a1)
(4m− 4a2, 4a2)

SU(n−a1+b1,2−b1+a1)×Sp(m−a2+1,a2)
U(n−a1,a1)×SU(2)×Sp(m−a2,a2)

(0, 3)
(4(n− a1)− 2b1(n− 2a1), 2b1(n− 2a1) + 4a1)
(4a2, 4m− 4a2)

[SU(n + 1− a, a + 1)× Sp(m + 1;R)]/[U(n− a, a)× SU(1, 1)× Sp(m;R)] (2, 1), (2n, 2n), (2m, 2m)

[SL(4;R)× Sp(m + 1;C)]/[SL(2;C)× Sp(m;C)× T ] (3, 3), (6, 2), (4m, 4m)

[SU∗(4)× Sp(m + 1;C)]/[SL(2;C)× Sp(m;C)× T ] (3, 3), (2, 6), (4m, 4m)

[SU(2, 2)× Sp(m + 1;C)]/[SL(2;C)× Sp(m;C)× R] (3, 3), (4, 4), (4m, 4m)

(17) Real Form Family of [SU(n+ 2)× Sp(m+ 1)]/[SU(n)× SU(2)× Sp(m)]
[SL(n + 2;C)× Sp(m + 1;C)]/[SL(n;C)× SL(2;C)× Sp(m;C)] (3, 3), (1, 0), (0, 1), (4n, 4n), (4m, 4m)

[SL(n + 2;R)× Sp(m + 1;R)]/[SL(n;R)× SL(2;R)× Sp(m;R)] (2, 1), (1, 0), (2n, 2n), (2m, 2m)

[SL(n′ + 1;H)× Sp(m− a, 1 + a)]/[SL(n′;H)× SU(2)× Sp(m− a, a)] (0, 3), (1, 0), (2n, 2n), (4m− 4a, 4a)

. . . table continued on next page
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table continued from previous page . . .

G/H metric–irreducibles
[SL(n′ + 1;H)× Sp(m− a + 1, a)]/[SL(n′;H)× SU(2)× Sp(m− a, a)] (0, 3), (1, 0), (2n, 2n), (4a, 4m− 4a)

SU(n−a1+b1,2−b1+a1)×Sp(m−a2,1+a2)
SU(n−a1,a1)×SU(2)×Sp(m−a2,a2)

(0, 3), (0, 1)
(4(n− a1)− 2b1(n− 2a1), 2b1(n− 2a1) + 4a1)
(4m− 4a2, 4a2)

SU(n−a1+b1,2−b1+a1)×Sp(m−a2+1,a2)
SU(n−a1,a1)×SU(2)×Sp(m−a2,a2)

(0, 3), (0, 1)
(4(n− a1)− 2b1(n− 2a1), 2b1(n− 2a1) + 4a1)
(4a2, 4m− 4a2)

[SU(n + 1− a, a + 1)× Sp(m + 1;R)]/[SU(n− a, a)× SU(1, 1)× Sp(m;R)] (2, 1), (0, 1), (2n, 2n), (2m, 2m)

[SL(4;R)× Sp(m + 1;C)]/[SL(2;C)× Sp(m;C)] (3, 3), (0, 1), (6, 2), (4m, 4m)

[SU∗(4)× Sp(m + 1;C)]/[SL(2;C)× Sp(m;C)] (3, 3), (0, 1) (2, 6), (4m, 4m)

[SU(2, 2)× Sp(m + 1;C)]/[SL(2;C)× Sp(m;C)] (3, 3), (1, 0), (4, 4), (4m, 4m)

(18) Real Form Family of [Sp(n+ 1)× Sp(m+ 1)]/[Sp(n)× Sp(m)× Sp(1)]
[Sp(n + 1;C)× Sp(m + 1;C)]/[Sp(n;C)× Sp(m;C)× Sp(1;C)] (3, 3), (4n, 4n), (4m, 4m)

[Sp(n + 1;R)× Sp(m + 1;R)]/[Sp(n;R)× Sp(m;R)× Sp(1;R)] (2, 1), (2n, 2n), (2m, 2m)

Sp(n−a1+b1,1−b1+a1)×Sp(m−a2+b2,1−b2+a2)
{Sp(n−a1,a1)×Sp(m−a2,a2)×Sp(1)

(0, 3)
(4(n− a1)− 4b1(n− 2a1), 4a1 + 4b1(n− 2a1))
(4(m− a2)− 4b2(m− 2a2), 4a2 + 4b2(m− 2a2))

Sp(n + 1;C)/[Sp(n;C)× Sp(1)] where m = n (3, 0), (4n, 4n)

Sp(n + 1;C)/[Sp(n;C)× Sp(1;R)] where m = n (1, 2), (4n, 4n)

(19) Real Form Family of [Sp(n+ 1)× Sp(`+ 1)× Sp(m+ 1)]/[Sp(n)× Sp(`)× Sp(m)× Sp(1)]
Sp(n+1;C)×Sp(l+1;C)×Sp(m+1;C)
Sp(n;C)×Sp(l;C)×Sp(m;C)×Sp(1;C) (3, 3), (3, 3), (4n, 4n), (4l, 4l), (4m, 4m)

Sp(n+1;R)×Sp(l+1;R)×Sp(m+1;R)
Sp(n;R)×Sp(l;R)×Sp(m;R)×Sp(1;R) (2, 1), (2, 1), (2n, 2n), (2l, 2l), (2m, 2m)

Sp(n−a1+b1,1−b1+a1)×Sp(l−a2+b2,1−b2+a2)×Sp(m−a3+b3,1−b3+a3)
Sp(n−a1,a1)×Sp(l−a2,a2)×Sp(m−a3,a3)×Sp(1)

(0, 3), (0, 3),
(4(n− a1)− 4b1(n− 2a1), 4a1 + 4b1(n− 2a1))
(4(l− a2)− 4b2(l− 2a2), 4a2 + 4b2(l− 2a2))
(4(m− a3)− 4b3(m− 2a3), 4a3 + 4b3(m− 2a3))

[Sp(n + 1;C)× Sp(m + 1;R)]/[Sp(n;C)× Sp(1;R)× Sp(m;R)] where n = ` (1, 2), (2, 1), (4n, 4n), (2m, 2m)

[Sp(n + 1;C)× Sp(m + 1− a, a)]/[Sp(n;C)× Sp(1)× Sp(m− a, a)] , n = ` (3, 0), (0, 3), (4n, 4n), (4a, 4m− 4a)

[Sp(n + 1;C)× Sp(m− a, a + 1)]/[Sp(n;C)× Sp(1)× Sp(m− a, a)] , n = ` (3, 0), (0, 3), (4n, 4n), (4m− 4a, 4a)

(20) Real Form Family of [Sp(n+ 1)× Sp(2)× Sp(m+ 1)]/[Sp(n)× Sp(1)× Sp(1)× Sp(m)]
Sp(n+1;C)×Sp(2;C)×Sp(m+1;C)

Sp(n;C)×Sp(l;C)×Sp(1;C)×Sp(m;C) (3, 3), (3, 3), (4n, 4n), (4, 4), (4m, 4m)

Sp(n+1;R)×Sp(2;R)×Sp(m+1;R)
Sp(n;R)×Sp(l;R)×Sp(1;R)×Sp(m;R) (2, 1), (2, 1), (2n, 2n), (2, 2), (2m, 2m)

Sp(n−a1+b1,1−b1+a1)×Sp(1,1)×Sp(m−a2+b2,1−b2+a2)
Sp(n−a1,a1)×Sp(1)×Sp(1)×Sp(m−a2,a2)

(0, 3), (0, 3), (4, 0)
(4(n− a1)− 4b1(n− 2a1), 4a1 + 4b1(n− 2a1))
(4(m− a2)− 4b2(m− 2a2), 4a2 + 4b2(m− 2a2))

Sp(n−a1+b1,1−b1+a1)×Sp(2)×Sp(m−a2+b2,1−b2+a2)
Sp(n−a1,a1)×Sp(1)×Sp(1)×Sp(m−a2,a2)

(0, 3), (0, 3), (0, 4)
(4(n− a1)− 4b1(n− 2a1), 4a1 + 4b1(n− 2a1))
(4(m− a2)− 4b2(m− 2a2), 4a2 + 4ba2(m− 2a2))

[Sp(n + 1;C)× Sp(2;R)]/[Sp(n;C)× Sp(1;C)] where m = n (3, 3), (4n, 4n), (3, 1)

[Sp(n + 1;C)× Sp(1, 1)]/[Sp(n;C)× Sp(1;C)] where m = n (3, 3), (4n, 4n), (1, 3)

(21)

g1 . . . gn

h′1 . . . h′n

. . .
zh
��
��

��
��

{(Gu,1/H′u,1)× · · · × (Gu,n/H′u,n)}/diag(ZHu )

Case (21) requires some discussion. To pass to the group level we assume that the semisimple groups
Gu,i are compact and simply connected, so Gu =

∏
Gu,i also is compact and simply connected, that the

central subgroup Zh of H is connected, and that Hu is connected. Thus Mu = Gu/Hu is simply connected
Let Hu,i be the projection of Hu to Gu,i, say Hu,i = H ′u,iZu,i where Zu,i = pi(Zh) is the projection of Zh to
Hu . Then Mu,i = Gu,i/Hu,i is weakly symmetric with non–semisimple isotropy Hu,i . Further, each Mu,i is
symmetric, or is the complexification of Mu,i, or is one of the spaces of Cases (1) through (20) of Tables 3.6
and 4.12. Combining these requirements, each Mu,i = Gu,i/Hu,i is one of the following:

• a compact irreducible hermitian symmetric space, or
• one of the spaces of cases (5), (8), (11) or (12) in Table 3.6, or
• one of the spaces of cases (13) or (16) in Table 4.12.

Thus either Mi = Gi/Hi is on Berger’s list of pseudo–riemannian symmetric spaces, or it is listed under
Case (5), (8), (11) or (12) in Table 3.6, or it is listed under Case (13) or (16) in Table 4.12.

Let M = G/H be a pseudo–riemannian weakly symmetric space with the same complexification as
Mu = Gu/Hu . Then M corresponds to an involutive automorphism σ of gu that preserves hu . It necessarily
preserves zh as well. Now permute the simple factors gu,i of gu so that σ exchanges gu,2i−1 and gu,2i for
2i 5 s and preserves each gu,i for s < i 5 s + t. For j = 2i 5 s we then have (gj,C, hj,C) corresponding to
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indices (2i − 1, i), and for i > s we have (gi, hi) where gi (resp. hi, resp. zi) is a real form of gu,i,C (resp
hu,i,C, resp. zu,i,C). It is implicit here that σ preserves the center ZHu of Hu so that ZHu is a subgroup of

the center Z̃Hu =
∏
ZHu,i of H̃u =

∏
Hu,i. Thus Hu ⊂ H̃u and we have

(4.13) ϕu : Mu = Gu/Hu → Gu/H̃u = M̃u by gHu 7→ gH̃u where M̃u =
∏

Mu,i and H̃u =
∏

Hu,i .

Since everything is σ–stable here, H ⊂ H̃ where H̃ =
∏
Hi and we have a well defined projection

(4.14) ϕ : M = G/H → G/H̃ = M̃ by gH 7→ gH̃ where M̃ =
∏

Mi and H̃ =
∏

Hi .

Conversely, let Mi = Gi/Hi be irreducible weakly symmetric pseudo–riemannian manifolds, not all sym-
metric, where each Gi is semisimple but each Hi has center Zi of dimension 1. Thus each Z0

i is a circle
group or the multiplicative group of positive reals or (if Gi is complex) the multiplicative group C∗, and each
Hi = H ′iZ

0
i with H ′i semisimple. Suppose that G = G1 × · · · ×G` has a Cartan involution θ that preserves

each Gi , each Hi and thus each Z0
i . Then we have the compact real forms

Gu =
∏

Gu,i , H̃u =
∏

Hu,i , Z̃0
u =

∏
Z0
u,i , and M̃u =

∏
Mu,i

where Mu,i = Gu,i/Hu,i and Zu,i is the center of Hu,i . Consider the set S of all closed connected θ–invariant

subgroups Su ⊂ Z̃u such that the projections Su → Z0
u,i all are surjective. The set S is nonempty – it contains

Z̃0
u – so it has elements of minimal dimension. Let Zu denote one of them and define H = (

∏
H ′i)Zu . Then

M = G/H belongs to the real form family of Case (21). This constructs every element in that real form
family.

Following [12, Proposition 12.8.4] and Tables 3.6 and 4.12, the metric signature of the weakly symmetric
pseudo–riemannian manifold G/H in the real form family of Case (21) is given as follows. First, we have the
metric irreducible subspaces Si,j of the real tangent space of Gi/Hi, and their signatures (ai,j , bi,j). That

gives us the metric irreducible subspaces, with their signatures, for G/H̃. To this collection we add the

metric irreducible subspaces of the fiber h̃/h of h̃→ h implicit in (4.14).

5. Special Signatures: Riemannian, Lorentz, and Trans–Lorentz.

We go through Berger’s classification [1] and our Tables 3.6 and 4.12 to pick out the cases where M =
G/K can have an invariant weakly symmetric pseudo–riemannian metric of signature (n, 0), (n − 1, 1) or
(n − 2, 2). Of course this gives the classification of the weakly symmetric pseudo–riemannian manifolds of
those signatures with G semisimple and H reductive in G; they are certain products G/H =

∏
Gi/Hi from

Berger [1] for the pseudo–riemannian symmetric cases and from Tables 3.6 and 4.12 for the nonsymmetric
pseudo–riemannian weakly symmetric cases.

We will refer to (n, 0), (n − 1, 1) and (n − 2, 2) as special signatures. Now we run through the cases of
Table 3.6, then the cases of Table 4.12, and finally the symmetric cases from [1].

From Table 3.6.

Case (1): Since m > n = 1 we know mn = 2. Then, of the first three cases, only SL(3;R)/SL(2;R) can
have special signature; it is (3, 2).

For the fourth case of Case (1), SU(m−k+`,n−`+k)
SU(m−k,k)×SU(`,n−`) , both 2m`+ 2nk− 4k` = 2(m− k)`+ 2(n− `)k and

2mn − 2m` − 2nk + 4k` = 2(m − k)(n − `) + 2k` are even, so it is enough to see when one of them is 0 or
2. If 2(m − k)` + 2(n − `)k = 0, then 2(m − k)` = 0 and 2(n − `)k = 0, so ` = 0 or k = m, and k = 0 or
` = n. If k = ` = 0, or if k = m and ` = n, then the metric irreducibles have signatures (2mn, 0) and (0, 1);

the other two cases of (k, `) trivialize M . That leaves us with SU(m,n)
SU(m)×SU(n) , which has invariant metrics of

signatures (2mn+ 1, 0) and (2mn, 1).



SEMISIMPLE WEAKLY SYMMETRIC PSEUDO–RIEMANNIAN MANIFOLDS 22

If 2(m− k)`+ 2(n− `)k = 2, then 2(m− k)` = 0 and 2(n− `)k = 2, or 2(m− k)` = 2 and 2(n− `)k = 0.
If 2(m − k)` = 2 then (m − k)` = 1, and either n = ` or k = 0; if k = 0 then m = ` = 1 and we have

SU(2,n−1)
SU(1)×SU(1,n−1) if n = ` then (m− k) = ` = 1 and we have SU(2,k)

SU(1,k)×SU(1) .

Since m = 2, we then have k = n = 1 and ` = 0, or k = m− 1 and ` = n = 1; then SU(m− 1, 2)/SU(m−
1, 1) has invariant metric of signature (2m − 1, 2). If 2(m − k)(n − `) + 2k` = 0, then k = 0 and ` = n,
or ` = 0 and k = m. As expected this shows that SU(m + n)/SU(m) × SU(n) has metrics of signatures
(2mn + 1, 0) and (2mn, 1). If 2(m − k)(n − `) + 2k` = 2, then k = ` = n = 1, or ` = 0, k = m − 1, n = 1.
Then SU(m, 1)/SU(m− 1, 1) has a metric of signature (2m− 1, 2). Summarizing,

SL(3;R)/SL(2;R) : (3, 2)

SU(m+ n)/[SU(m)× SU(n)] : (2mn+ 1, 0), (2mn, 1)

SU(m,n)/[SU(m)× SU(n)] : (2mn+ 1, 0), (2mn, 1)

SU(n− 1, 2)/SU(n− 1, 1) : (2n− 1, 2)

SU(n, 1)/SU(n− 1, 1) : (2n− 1, 2)

Case (2): Here n is odd and = 5 by (2.1). The first and fourth cases are excluded because 1
2n(n−1) 5 2

would give n < 3, so we only need to discuss the second and third cases. There (k(k − 1) + `(` − 1), 2k`)

is the signature. Since k(k − 1) + `(` − 1) = 1
2 (k + `)2 − n = n2

2 − n > 2 we are reduced to considering
2k` 5 2. if k = 0 then ` = n, G/H is SO∗(2n)/SU(n) or SO(2n)/SU(n), n odd, and the possible signatures
are (n(n− 1) + 1, 0) and (n(n− 1), 1). It is the same for ` = 0. Now we may suppose k` > 0; so k = ` = 1
because 2k` 5 2. So n = k + ` = 2. But n is odd. Summarizing, we have

SO∗(2n)/SU(n), SO(2n)/SU(n) : (n(n− 1) + 1, 0), (n(n− 1), 1)

Case (3): From Table 3.6, the spaces E6/Spin(10) and E6,D5T1
/Spin(10) have invariant metrics of

special signatures only for signatures (33, 0) and (32, 1).

Case (4): We may assume n = 2, so the first three cases of Case (4) are excluded. For the fourth,
SU(2n+1−2`,2`)

Sp(n−`,`) , we need ` = n or ` = 0, leading to signatures (2n2+3n−1, 1) and (2n2+3n, 0). Summarizing,

SU(2n+1)
Sp(n) , SU(2n,1)

Sp(n) : (2n2 + 3n− 1, 1), (2n2 + 3n, 0).

Case (5): As above, n = 2, and that excludes the first three cases of Case (5). For the fourth,
SU(2n+1−2`,2`)
Sp(n−`,`)×U(1) , we need ` = n or ` = 0, leading to special signature (2n2 + 3n− 1, 0). Summarizing,

SU(2n+ 1)/[Sp(n)× U(1)], SU(2n, 1)/[Sp(n)× U(1)] : (2n2 + 3n− 1, 0).

Case (6): The space Spin(7)/G2 has an invariant metric of special signature (7, 0).

Case (7): The space G2/SU(3) has an invariant metric of special signature (6, 0), and the space
G2,A1A1

/SU(1, 2) has an invariant metric of special signature (4, 2).

Case (8): The spaces SO(10)/[Spin(7)× SO(2)] and SO(8, 2)/[Spin(7)× SO(2)] each has an invariant
metric of special signature (23, 0).

Case (9): The spaces SO(9)/Spin(7) and SO(8, 1)/Spin(7) have invariant metrics of signatures (15, 0).

Case (10): The spaces Spin(8)/G2 and Spin(7, 1)/G2 have invariant metrics of signatures (14, 0).

Case (11): Here n = 2. That excludes the first and fourth cases of Case (11). For the second case,
if k = 0 or k = n, the signatures of the real tangent space irreducibles are (2n, 0) and (n2 − n, 0), so the
spaces SO(2n + 1)/U(n) and SO(2n, 1)/U(n) have invariant metrics of special signature (n2 + n, 0); and
SO(5)/U(2) and SO(4, 1)/U(2) have invariant metrics of special signature (4, 2). If k = 1 or k = n − 1,
the signatures of the irreducibles are (2, 2n − 2) and (2n − 2, (n − 1)(n − 2)), leading to n = 2 where
SO(3, 2)/U(1, 1) has metrics of special signature (4, 2). If 1 < k < n − 1 there is no invariant metric of
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special signature. Summarizing,

SO(2n+ 1)/U(n), SO(2n, 1)/U(n) : (n2 + n, 0)

SO(5)/U(2), SO(4, 1)/U(2), SO(3, 2)/U(1, 1) : (4, 2)

Case (12): Here n = 3. That excludes the first and fourth cases of Case (12). In the second and third
cases we exclude the range 0 < k < n − 1 where 4k, 4n − 4k − 4 = 4. There, for k = 0 and k = n − 1 we
note that Sp(n)/[Sp(n − 1) × U(1)] and Sp(n − 1, 1)/[Sp(n − 1) × U(1)] have metrics of special signatures
(4n− 2, 0) and (4n− 4, 2).

From Table 4.12.

Case (13): Here n = 2. That excludes the first and second cases of Case (13). It also excludes

the possibility k` 6= 0 in the third and fourth cases. That leaves G/H = SU(n)×SU(n+1)
SU(n)×U(1) and G/H =

SU(n)×SU(n,1)
SU(n)×U(1) , which have invariant metrics of special signature (n2 + 2n− 1, 0).

Case (14): Here n = 1. That excludes the first two cases of Case (14). In the third case, 8b−4b2 implies
b 5 2, and b = 1 is excluded because of a metric irreducible (4, 6). For b = 0 and b = 2, the signatures of the
metric irreducibles are (0, 10) and (8n− 8a, 8a), so a = 0 or a = n, leading to

[Sp(n, 2)× Sp(2)]/[Sp(n)× Sp(2)] and [Sp(n+ 2)× Sp(2)]/[Sp(n)× Sp(2)]

with invariant metric of special signature (8n+ 10, 0).

Case (15): Here n = 3 since G is semisimple. That excludes the first case of Case (15). In the second
and third cases a = 0 and a = n lead to [SO(n) × SO(n, 1)]/SO(n) and [SO(n) × SO(n + 1)]/SO(n)

with invariant metric of special signature (n(n+1)
2 , 0), and the cases a = 1 and a = n − 1 lead only to

[SO(2, 1)×SO(2, 2)]/SO(2, 1) and [SO(2, 1)×SO(3, 1)]/SO(2, 1) with invariant metric of special signature
(4, 2). The cases 1 < a < n− 1 do not lead to special signature.

Case (16): Here n + m = 1. The first, second, seventh, eighth, ninth and tenth cases of Case (16) are
excluded at a glance, reducing the discussion to the third, fourth, fifth and sixth cases. The third and fourth
require n = 0 and then further require a = 0 or a = m, leading to [Sp(1)× Sp(m, 1)]/[Sp(m)× Sp(m)] and
[Sp(1)× Sp(m+ 1)]/[Sp(m)× Sp(m)] with invariant metrics of special signature (3 + 4m, 0). These are in
fact included in the fifth and sixth cases. For the fifth and sixth cases, we must have a1 = 0 or a1 = n, and
a2 = 0 or a2 = m. Then we arrive at the spaces

SU(n+2)×Sp(m+1)
U(n)×SU(2)×Sp(m) ,

SU(n,2)×Sp(m+1)
U(n)×SU(2)×Sp(m) ,

SU(n+2)×Sp(m,1)
U(n)×SU(2)×Sp(m) ,

SU(n,2)×Sp(m,1)
U(n)×SU(2)×Sp(m) ,

which have invariant metrics of special signature (4n+ 4m+ 3, 0).

Case (17): This essentially is a simplification of Case (16). By the considerations there, we have that
the spaces

SU(n+2)×Sp(m+1)
SU(n)×SU(2)×Sp(m) ,

SU(n,2)×Sp(m+1)
SU(n)×SU(2)×Sp(m) ,

SU(n+2)×Sp(m,1)
SU(n)×SU(2)×Sp(m) ,

SU(n,2)×Sp(m,1)
SU(n)×SU(2)×Sp(m)

have invariant metrics of special signatures (4n+ 4m+ 4, 0) and (4n+ 4m+ 3, 1).

Case (18): Here n + m ≥ 1. The first, second, fourth and fifth cases of Case (18) are excluded at
a glance, so we only need to consider the third case. There, the signatures of the irreducibles are (0, 3),
(4(n − a1) − 4b1(n − 2a1), 4a1 + 4b1(n − 2a1)) and (4(m − a2) − 4b2(m − 2a2), 4a2 + 4b2(m − 2a2)), where
b1, b2 = {0, 1}. Thus we must have a1 = 0 or a1 = n, and a2 = 0 or a2 = m. That brings us to the spaces

Sp(n+1)×Sp(m+1)
Sp(n)×Sp(1)×Sp(m) ,

Sp(n,1)×Sp(m+1)
Sp(n)×Sp(1)×Sp(m) ,

Sp(n,1)×Sp(m,1)
Sp(n)×Sp(1)×Sp(m) ,

Sp(n+1)×Sp(m,1)
Sp(n)×Sp(1)×Sp(m) ,

which have invariant metrics of special signature (4n+ 4m+ 3, 0).

Case (19): The first case of Case (19) is excluded at a glance. Visibly, the second and fourth cases require
` = m = n = 0, where G/H is [Sp(1;R) × Sp(1;R) × Sp(1;R)]/Sp(1;R) or [Sp(1;C) × Sp(1;R)]/Sp(1;R);



SEMISIMPLE WEAKLY SYMMETRIC PSEUDO–RIEMANNIAN MANIFOLDS 24

they have invariant metrics of special signature (4, 2). The fifth and sixth cases require n = ` = 0 and a = 0
or a = m, leading to

[Sp(1;C)× Sp(m+ 1)]/[Sp(1)× Sp(m)] and [Sp(1;C)× Sp(m, 1)]/[Sp(1)× Sp(m)]

which have invariant metrics of special signature (4m+ 6, 0).

For the third case, we must have a1 = 0 or a1 = n, a2 = 0 or a2 = `, and a3 = 0 or a3 = m. In other
words, G/H must be one of

Sp(n+1)×Sp(`+1)×Sp(m+1)
Sp(n)×Sp(`)×Sp(m)×Sp(1) ,

Sp(n+1)×Sp(`+1)×Sp(m,1)
Sp(n)×Sp(`)×Sp(m)×Sp(1) ,

Sp(n+1)×Sp(`,1)×Sp(m+1)
Sp(n)×Sp(`)×Sp(m)×Sp(1) ,

Sp(n+1)×Sp(`,1)×Sp(m,1)
Sp(n)×Sp(`)×Sp(m)×Sp(1) ,

Sp(n,1)×Sp(`+1)×Sp(m+1)
Sp(n)×Sp(`)×Sp(m)×Sp(1) ,

Sp(n,1)×Sp(`+1)×Sp(m,1)
Sp(n)×Sp(`)×Sp(m)×Sp(1) ,

Sp(n,1)×Sp(`,1)×Sp(m+1)
Sp(n)×Sp(`)×Sp(m)×Sp(1) ,

Sp(n,1)×Sp(`,1)×Sp(m,1)
Sp(n)×Sp(`)×Sp(m)×Sp(1) ,

These all have invariant metrics of special signature (4n+ 4`+ 4m+ 6, 0).

Case (20): The first, second, fifth and sixth cases are excluded at a glance. For the third and fourth
cases, we must have a1 = 0 or a1 = n, and a2 = 0 or a2 = m. Then the spaces

Sp(n+1)×Sp(1,1)×Sp(m+1)
Sp(n)×Sp(1)×Sp(1)×Sp(m) ,

Sp(n,1)×Sp(1,1)×Sp(m+1)
Sp(n)×Sp(1)×Sp(1)×Sp(m) ,

Sp(n,1)×Sp(1,1)×Sp(m,1)
Sp(n)×Sp(1)×Sp(1)×Sp(m) ,

Sp(n+1)×Sp(1,1)×Sp(m,1)
Sp(n)×Sp(1)×Sp(1)×Sp(m)

Sp(n+1)×Sp(2)×Sp(m+1)
Sp(n)×Sp(1)×Sp(1)×Sp(m) ,

Sp(n,1)×Sp(2)×Sp(m+1)
Sp(n)×Sp(1)×Sp(1)×Sp(m) ,

Sp(n,1)×Sp(2)×Sp(m,1)
Sp(n)×Sp(1)×Sp(1)×Sp(m) ,

Sp(n+1)×Sp(2)×Sp(m,1)
Sp(n)×Sp(1)×Sp(1)×Sp(m)

have invariant metrics of special signature (4n+ 4m+ 10, 0).

From Berger’s [1, Table II].

The irreducible pseudo-riemannian symmetric spaces G/H of [1] fall into two classes: the real form families
for which Gu is simple and those for the compact group manifolds Gu = Lu × Lu where Hu is the diagonal
δLu = {(x, x) | x ∈ Lu}. First consider the group manifolds. There the real tangent space of G/H is
m = {(ξ,−ξ) | ξ ∈ l} and the invariant pseudo-riemannian metrics come from multiples of the Killing form
of l. Thus G/H = (L × L)/diag(L) has an invariant pseudo-riemannian metric of special signature if and
only if (i) the Killing form of l is definite, or (ii) the Killing form of l has signature ±(dim l − 1, 1), or (iii)
the Killing form of l has signature ±(dim l− 2, 2).

The case (i) is the case where G/H is a compact simple group manifold with bi-invariant metric. The
cases (ii) and (iii) occurs only for the group manifold SL(2;R) (up to covering); that group manifold has
bi-invariant metrics of signatures (2, 1) and (1, 2).

For the moment we put the group manifold cases aside and consider the cases where Gu is simple. Start
with the compact simple classical groups: SU(n) for n = 2, Sp(n) for n = 2, and SO(n) for n = 7.

For Gu = SU(n), n = 2, we have the following cases:

(1) SL(n;R)/SO(n) and SU(n)/SO(n) with signature (n
2+n
2 − 1, 0).

(2) SL(2;C)/SO(2;C) with signature (2, 2).
(3) SL(2;R)/R with signature (1, 1).
(4) SL(2;C)/SL(2;R)( or SL(2;C)/SU(1, 1)) with signature (2, 1).
(5) SU∗(2n)/Sp(n) and SU(2n)/Sp(n) with signature (2n2 − n− 1, 0).
(6) SL(2;C)/SU∗(2) with signature (3, 0).
(7) SU(m,n)/S(U(m)× U(n)) and SU(m+ n)/S(U(m)× U(n)) with signature (2mn, 0).
(8) SL(n;C)/SU(n) with signature (n2 − 1, 0).
(9) SL(3;R)/[SL(2;R)×R] with signature (2, 2).

(10) SL(4;R)/Sp(2;R) with signature (3, 2).
(11) SL(4;R)/GL′(2;C) with signature (6, 2).
(12) SU∗(4)/Sp(1, 1) with signature (4, 1).
(13) SU∗(4)/GL′(2;C) with signature (6, 2).
(14) SU(2, 1)/SO(2, 1) with signature (3, 2).
(15) SU(2, 2)/Sp(2;R) with signature (3, 2).
(16) SU(2, 2)/Sp(1, 1) with signature (4, 1).
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(17) We discuss the case SU(m− a + b, n− b + a)/S(U(m− a, a)× U(n− b, b)) with signature (2mn−
2(m − a)b − 2(n − b)a, 2(m − a)b + 2(n − b)a) = 2(m − a)(n − b) + 2ab, 2(m − a)b + 2(n − b)a). If
(m− a)(n− b) + ab = 0, or (m− a)b + (n− b)a = 0, we are in the riemannian case (7) just above.
If (m − a)(n − b) + ab = 1, or (m − a)b + (n − b)a = 1, we have SU(n − 1, 2)/U(n − 1, 1) and
SU(n, 1)/U(n− 1, 1) with signature (2n− 2, 2).

For Gu = SO(n), n = 7, we have the following cases:

(1) SO∗(2n)/U(n) and SO(2n)/U(n) with signature (n2 − n, 0).
(2) SO(m,n)/[SO(m)× SO(n)] and SO(m+ n)/[SO(m)× SO(n)] with signature (mn, 0).

(3) SO(n;C)/SO(n) with signature (n
2−n
2 , 0).

(4) SO(n−3, 3)/[SO(n−3, 1)×SO(2)] and SO(n−1, 1)/[SO(n−3, 1)×SO(2)] with signature (2n−6, 2).
(5) Finally (for SO(n)) we discuss the case SO(m− a+ b, n− b+ a)/[SO(m− a, a)×SO(n− b, b)] with

signature (mn − (m − a)b − (n − b)a = (m − a)(n − b) + ab, (m − a)b + (n − b)a). We need to see
when one of the above two numbers in the signature is 0, 1, or 2.

If (m − a)(n − b) + ab = 0, or (m − a)b + (n − b)a = 0, we are in case (2) of SO(n) just above.
If (m − a)(n − b) + ab = 1 or (m − a)b + (n − b)a = 1, we have SO(n − 1, 2)/SO(n − 1, 1) and
SO(n, 1)/SO(n− 1, 1) with invariant metric of signature (n− 1, 1). The discussion for these cases is
similar to case (17) for SU(n) because the equations are the same.

Now we consider the cases where (m− a)(n− b) + ab = 2 or (m− a)b+ (n− b)a = 2.
First let (m− a)b+ (n− b)a = 2. If (m− a)b = 1 then a = b = 1 and m = n = 2, contradicting

our assumption n = 7. Thus either (m−a)b = 0 and (n− b)a = 2, or (m−a)b = 2 and (n− b)a = 0.
Then we have the following solutions:

(1) m = a = 1, n = b+ 2 (2) m = a = 2, n = b+ 1

(3) b = 0, n = 1, a = 2 (4) b = 0, n = 2, a = 1

(5) a = 0,m = 1, b = 2 (6) a = 0,m = 2, b = 1

(7) n = b = 1,m− a = 2 (8) n = b = 2,m− a = 1

We may assume m 5 n. As m+ n = 7 the solutions are (1), (2), (5) and 6. That leads us to

SO(n− 1, 3)/[SO(n− 1, 1)× SO(2)] : (2n− 2, 2) and SO(n− 2, 3)/SO(n− 2, 2) : (n− 2, 2).

A similar discussion of the case (m− a)(n− b) + ab = 2 leads to

SO(n+ 1, 1)/[SO(n− 1, 1)× SO(2)] : (2n− 2, 2) and SO(n− 1, 2)/SO(n− 2, 2) : (n− 2, 2).

For Gu = Sp(n), n = 2, we have the following cases:

(1) Sp(n;R)/U(n) and Sp(n)/U(n) with signature (n2 + n, 0).
(2) Sp(m,n)/[Sp(m)× Sp(n)] and Sp(m+ n)/[Sp(m)× Sp(n)] with signature (4mn, 0).
(3) Sp(n;C)/Sp(n) with signature (2n2 + n, 0).
(4) Sp(2;R)/[Sp(1;R)× Sp(1;R)] with signature (2, 2).
(5) Sp(2;R)/U(1, 1) and Sp(1, 1)/U(1, 1) with signature (4, 2).
(6) Sp(2;R)/Sp(1;C) and Sp(1, 1)/Sp(1;C) with signature (3, 1).
(7) We discuss the case Sp(m − a + b, n − b + a)/[Sp(m − a, a) × Sp(n − b, b)] with signature (4mn −

4(m− a)b− 4(n− b)a, 4(m− a)b+ 4(n− b)a). It is enough to discuss 4mn− 4(m− a)b− 4(n− b)a =
4(m− a)(n− b) + 4ab = 0 or 4(m− a)b+ 4(n− b)a = 0. It gives case (2) just above.

Now we look for special signature in real form families where Gu is a compact simple exceptional group.

(1) G∗2/[SU(2)× SU(2)] and G2/[SU(2)× SU(2)] with signature (8, 0).
(2) F4,C3A1

/[Sp(3)× SU(2)] and F4/[Sp(3)× SU(2)] with signature (28, 0).
(3) F4,B4/SO(9) and F4/SO(9) with signature (16, 0).
(4) E6,C4/Sp(4) and E6/Sp(4) with signature (42, 0).
(5) E6,A5A1

/[SU(6)× SU(2)] and E6/[SU(6)× SU(2)] with signature (40, 0).
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(6) E6,D5T1
/[SO(10)× T1] and E6/[SO(10)× T1] with signature (32, 0).

(7) E6,F4/F4 and E6/F4 with signature (26, 0).
(8) E7,A7/SU(8) and E7/SU(8) with signature (70, 0).
(9) E7,D6A1

/[SO(12)× SU(2)] and E7/[SO(12)× SU(2)] with signature (64, 0).
(10) E7,E6T1

/[E6 × T1] and E7/[E6 × T1] with signature (54, 0).
(11) E8,D8

/SO(16) and E8/SO(16) with signature (128, 0).
(12) E8,E7A1/[E7 × SU(2)] and E8/[E7 × SU(2)] with signature (112, 0).

Finally, we tabulate the results according to special signature. As indicated earlier, the semisimple
riemannian symmetric spaces are (up to local isometry) the products of spaces from Table 5.1, the semisimple
lorentzian spaces are (up to local isometry) the products of spaces from Table 5.1 and one space from Table
5.2, and the semisimple trans–lorentzian spaces are (up to local isometry) the products of spaces from Table
5.1 and either one space from Table 5.3 or two spaces from Table 5.2.

Table 5.1 Weakly Symmetric Pseudo–Riemannian G/H,

G Semisimple and H Reductive, of Riemannian Signature

Type of g G/H: irreducible cases of riemannian signature metric signature
A SU(m + n)/[SU(m)× SU(n)] and SU(m,n)/[SU(m)× SU(n)] (2mn + 1, 0)
D SO(2n)/SU(n) and SO∗(2n)/SU(n) (n(n− 1) + 1, 0)
E E6/Spin(10) and E6,D5T1

/Spin(10) (33, 0)

A SU(2n + 1)/Sp(n) and SU(2n, 1)/Sp(n) (2n2 + 3n, 0)

A SU(2n + 1)/[Sp(n)× U(1)] and SU(2n, 1)/[Sp(n)× U(1)] (2n2 + 3n− 1, 0)
B Spin(7)/G2 (7, 0)
G G2/SU(3) (6, 0)
D SO(10)/[Spin(7)× SO(2)] and SO(8, 2)[Spin(7)× SO(2)] (23, 0)
B SO(9)/Spin(7) and SO(8, 1)/Spin(7) (15, 0)
D Spin(8)/G2 and Spin(7, 1)/G2 (14, 0)

B SO(2n + 1)/U(n) and SO(2n, 1)/U(n) (n2 + n, 0)
C Sp(n)/[Sp(n− 1)× U(n)] and Sp(n− 1, 1)/[Sp(n− 1)× U(n)] (4n− 2, 0)

A+A [SU(n)× SU(n + 1)]/[SU(n)× U(1)] and [SU(n)× SU(n, 1)]/[SU(n)× U(1)] (n2 + 2n− 1, 0)
C+C [Sp(n, 2)× Sp(2)]/[Sp(n)× Sp(2)] and [Sp(n + 2)× Sp(2)]/[Sp(n)× Sp(2)] (8n + 10, 0)

B+D [SO(n)× SO(n, 1)]/SO(n) and [SO(n)× SO(n + 1)]/SO(n) (
n(n+1)

2
, 0)

A+C
SU(n+2)×Sp(m+1)
U(n)×SU(2)×Sp(m)

,
SU(n,2)×Sp(m+1)

U(n)×SU(2)×Sp(m)
,

SU(n+2)×Sp(m,1)
U(n)×SU(2)×Sp(m)

,
SU(n,2)×Sp(m,1)

U(n)×SU(2)×Sp(m)
(4n + 4m + 3, 0)

A+C
SU(n+2)×Sp(m+1)

SU(n)×SU(2)×Sp(m)
,

SU(n,2)×Sp(m+1)
SU(n)×SU(2)×Sp(m)

,
SU(n+2)×Sp(m,1)

SU(n)×SU(2)×Sp(m)
,

SU(n,2)×Sp(m,1)
SU(n)×SU(2)×Sp(m)

(4n + 4m + 4, 0)

C+C
Sp(n+1)×Sp(m+1)

Sp(n)×Sp(1)×Sp(m)
,

Sp(n,1)×Sp(m+1)
Sp(n)×Sp(1)×Sp(m)

,
Sp(n,1)×Sp(m,1)

Sp(n)×Sp(1)×Sp(m)
,

Sp(n+1)×Sp(m,1)
Sp(n)×Sp(1)×Sp(m)

(4n + 4m + 3, 0)

C+C [Sp(1;C)× Sp(m + 1)]/[Sp(1)× Sp(m)] and [Sp(1;C)× Sp(m, 1)]/[Sp(1)× Sp(m)] (4m + 6, 0)

C+C+C

Sp(n+1)×Sp(`+1)×Sp(m+1)
Sp(n)×Sp(`)×Sp(m)×Sp(1)

,
Sp(n+1)×Sp(`+1)×Sp(m,1)
Sp(n)×Sp(`)×Sp(m)×Sp(1)

,
Sp(n+1)×Sp(`,1)×Sp(m+1)
Sp(n)×Sp(`)×Sp(m)×Sp(1)

Sp(n+1)×Sp(`,1)×Sp(m,1)
Sp(n)×Sp(`)×Sp(m)×Sp(1)

,
Sp(n,1)×Sp(`+1)×Sp(m+1)
Sp(n)×Sp(`)×Sp(m)×Sp(1)

,
Sp(n,1)×Sp(`+1)×Sp(m,1)
Sp(n)×Sp(`)×Sp(m)×Sp(1)

Sp(n,1)×Sp(`,1)×Sp(m+1)
Sp(n)×Sp(`)×Sp(m)×Sp(1)

,
Sp(n,1)×Sp(`,1)×Sp(m,1)

Sp(n)×Sp(`)×Sp(m)×Sp(1)

(4n + 4` + 4m + 6, 0)

C+C+C

Sp(n+1)×Sp(1,1)×Sp(m+1)
Sp(n)×Sp(1)×Sp(1)×Sp(m)

,
Sp(n,1)×Sp(1,1)×Sp(m+1)
Sp(n)×Sp(1)×Sp(1)×Sp(m)

,
Sp(n,1)×Sp(1,1)×Sp(m,1)

Sp(n)×Sp(1)×Sp(1)×Sp(m)
Sp(n+1)×Sp(1,1)×Sp(m,1)
Sp(n)×Sp(1)×Sp(1)×Sp(m)

,
Sp(n+1)×Sp(2)×Sp(m+1)

Sp(n)×Sp(1)×Sp(1)×Sp(m)
,

Sp(n,1)×Sp(2)×Sp(m+1)
Sp(n)×Sp(1)×Sp(1)×Sp(m)

Sp(n,1)×Sp(2)×Sp(m,1)
Sp(n)×Sp(1)×Sp(1)×Sp(m)

,
Sp(n+1)×Sp(2)×Sp(m,1)

Sp(n)×Sp(1)×Sp(1)×Sp(m)

(4n + 4m + 10, 0)

various see discussion of Case (21) see Case (21)

A+A [SU(n)× SU(n)]/diag(SU(n)) and SL(n;C)/SU(n) (n2 − 1, 0)
BD+BD [SO(n)× SO(n)]/diag(SO(n)) and SO(n;C)/SO(n) (n(n− 1)/2, 0)

C+C [Sp(n)× Sp(n)]/diag(Sp(n)) and Sp(n;C)/Sp(n) (2n2 + n, 0)
G+G [G2 ×G2]/diag(G2) and G2,C/G2 (14, 0)

F+F [F4 × F4]/diag(F4) and F4,C/F4 (52, 0)

E+E [E6 × E6]/diag(E6) and E6,C/E6 (78, 0)

E+E [E7 × E7]/diag(E7) and E7,C/E7 (133, 0)

E+E [E8 × E8]/diag(E8) and E8,C/E8 (248, 0)

A SL(n;R)/SO(n) and SU(n)/SO(n) (n2+n
2
− 1, 0)

A SU(2n)/Sp(n) and SU(2n)∗/Sp(n) (2n2 − n− 1, 0)
A SU(m + n)/S(U(m)× U(n)) and SU(m,n)/S(U(m)× U(n)) (2mn, 0)

D SO(2n)/U(n) and SO∗(2n)/U(n) (n2 − n, 0)
BD SO(m + n)/[SO(m)× SO(n)] and SO(m,n)/[SO(m)× SO(n)] (mn, 0)

C Sp(n)/U(n) and Sp(n;R)/U(n) (n2 + n, 0)
C Sp(m + n)/[Sp(m)× Sp(n)] and Sp(m,n)/[Sp(m)× Sp(n)] (4mn, 0)
G G2/[SU(2)× SU(2)] and GA1A1

/[SU(2)× SU(2)] (8, 0)

F F4/Spin(9) and F4,B4
/Spin(9) (16, 0)

F F4/[Sp(3)× SU(2)] and F4,C3A1
/[Sp(3)× SU(2)] (28, 0)

E E6/Sp(4) and E6,C4
/Sp(4) (42, 0)

E E6/[SU(6)× SU(2)] and E6,A5A1
/[SU(6)× SU(2)] (40, 0)

. . . table continued on next page
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table continued from previous page . . .

Type of g G/H: irreducible cases with riemannian signature metric signature
E E6/[SO(10)× SO(2)] and E6,D5T1

/[SO(10)× SO(2)] (32, 0)

E E6/F4 and E6,F4
/F4 (26, 0)

E E7/SU(8) and E7,A7
/SU(8) (70, 0)

E E7/[SO(12)× SU(2)] and E7,D6A1
/[SO(12)× SU(2)] (64, 0)

E E7/[E6 × T1] and E7,E6T1
/[E6 × T1] (54, 0)

E E8/SO(16) and E8,D8
/SO(16) (128, 0)

E E8/[E7 × SU(2)] and E8,E7A1
/[E7 × SU(2)] (112, 0)

Table 5.2 Weakly Symmetric Pseudo–Riemannian G/H,

G Semisimple and H Reductive, of Lorentz Signature

Type of g G/H: irreducible cases of Lorentz signature metric signature
A SU(m + n)/[SU(m)× SU(n)] and SU(m,n)/[SU(m)× SU(n)] (2mn, 1)
D SO(2n)/SU(n) and SO∗(2n)/SU(n) (n(n− 1), 1)
E E6/Spin(10) and E6,D5T1

/Spin(10) (32, 1)

A SU(2n + 1)/Sp(n) and SU(2n, 1)/Sp(n) (2n2 + 3n− 1, 1)

A+C
SU(n+2)×Sp(m+1)

SU(n)×SU(2)×Sp(m)
,

SU(n,2)×Sp(m+1)
SU(n)×SU(2)×Sp(m)

,
SU(n+2)×Sp(m,1)

SU(n)×SU(2)×Sp(m)
,

SU(n,2)×Sp(m,1)
SU(n)×SU(2)×Sp(m)

(4n + 4m + 3, 1)

A+A group manifold SL(2;R) = [SL(2;R)× SL(2;R)]/diag(SL(2;R)) viewed as Lorentz manifold (2, 1)
A+A SL(2;C)/SL(2;R) viewed as Lorentz manifold (2, 1)
A SL(2;R)/R (1, 1)
A SU∗(4)/Sp(1, 1) (4, 1)
A SU(2, 2)/Sp(1, 1) (4, 1)
BD SO(n, 1)/SO(n− 1, 1) and SO(n− 1, 2)/SO(n− 1, 1) (n− 1, 1)
C Sp(2;R)/Sp(1;C) and Sp(1, 1)/Sp(1;C) (3, 1)

Table 5.3 Weakly Symmetric Pseudo–Riemannian G/H,

G Semisimple and H Reductive, of Trans–Lorentz Signature

Type of g G/H: irreducible cases of Trans–Lorentz signature metric signature
A SL(3;R)/SL(2;R) (3, 2)
A SU(n− 1, 2)/SU(n− 1, 1) and SU(n, 1)/SU(n− 1, 1) (2n− 1, 2)
G G2,A1A1

/SU(1, 2) (4, 2)

B SO(4, 1)/U(2), SO(5)/U(2) and SO(3, 2)/U(1, 1) (4, 2)
C Sp(n)/[Sp(n− 1)× U(1)] and Sp(n− 1, 1)/[Sp(n− 1)× U(1)] (4n− 4, 2)
BD [SO(2, 1)× SO(2, 2)]/SO(2, 1) and [SO(2, 1)× SO(3, 1)]/SO(2, 1) (4, 2)
A+A group manifold SL(2;R) = [SL(2;R)× SL(2;R)]/diag(SL(2;R)) viewed as Trans–Lorentz manifold (1, 2)
A SL(2;C)/SO(2;C) (2, 2)
A SL(2;C)/SL(2;R) = SL(2;C)/SU(1, 1)) (1, 2)
A SL(3;R)/[SL(2;R)× R] (2, 2)
A SL(4;R)/Sp(2;R) (3, 2)

A SL(4;R)/GL′(2;C) and SU∗(4)/GL′(2;C) (6, 2)
A SU(2, 1)/SO(2, 1) (3, 2)
A SU(2, 2)/Sp(2;R) (3, 2)
A SU(n− 1, 2)/U(n− 1, 1) and SU(n, 1)/U(n− 1, 1) (2n− 2, 2)
BD SO(n− 3, 3)/[SO(n− 3, 1)× SO(2)] and SO(n− 1, 1)/[SO(n− 3, 1)× SO(2)] (2n− 6, 2)
BD SO(n− 2, 3)/SO(n− 2, 2) and SO(n− 1, 2)/SO(n− 2, 2) (n− 2, 2)
C Sp(2;R)/[Sp(1;R)× Sp(1;R)] (2, 2)
C Sp(2;R)/U(1, 1) and Sp(1, 1)/U(1, 1) (4, 2)
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