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So many of the best moments of my life were possible because of you.

You are such an important part of the person I have become.

You will always be with me wherever I go.

I love you so much.

Lee Hansche

March 8, 1978 - May 21, 2024
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“The value engine is moving from the certainties of answers to the uncertainties of

questions. Facts, order, and answers will always be needed and useful. But the most

precious aspects, the most dynamic, most valuable, and most productive facets of our

lives and new technology will lie in the frontiers, in the edges where uncertainty, chaos,

fluidity, and questions dwell.”

– from The Inevitable, by Kevin Kelley
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Abstract

First principles studies of thermal, structural, and chemical phase spaces in quantum

materials

by

Alex Hallett

In quantum materials, phenomena occurring at the subatomic level can manifest

as properties on a macroscopic scale. The exploration of quantum effects in materials

with nontrivial band topology and strongly correlated electrons holds great promise for

technological advancement in fields such as quantum computing. This thesis examines

properties of three such quantum materials using computational methods.

The primary material system investigated is strontium titanate, an incipient ferro-

electric that gives rise to an unconventional superconducting state at exceptionally low

doping levels. The polar phase can be stabilized through strain or chemical substitu-

tion. Remarkably, superconductivity is enhanced within the polar phase, suggesting that

the polar instability plays a pivotal role in the superconducting pairing mechanism. We

develop a simplified free energy model combined with statistical mechanics methods to

assess the character of the polar transition, which we find to be neither order-disorder

nor displacive.

We explore the effects of doping on the structural phase transitions and find that,

in agreement with experiment, the polar distortion and formation of polar nanodomains

are suppressed in the presence of free carriers, while antiferrodistortive order remains

essentially unchanged. The single-domain nature and insensitivity to doping suggest

that the antiferrodistortive order does not play an important role in Cooper pairing.

By calculating electronic properties in the polar phase, we analyze parameters that are

ix



relevant to superconductivity such as the density of states at the Fermi level, the Rashba

splitting of the energy bands, and the Migdal ratio.

We explore the chemical phase space of the naturally occurring minerals herbert-

smithite [ZnCu3(OH)6Cl2] and Zn-substituted barlowite [ZnCu3(OH)6BrF], which both

feature perfect kagome layers of spin-1/2 copper ions and display experimental signa-

tures consistent with a quantum spin liquid state at low temperatures. To identify

other possible candidates within this material family, we perform a systematic first-

principles combinatorial exploration of structurally related compounds [ACu3(OH)6B2

and ACu3(OH)6BC] by substituting nonmagnetic divalent cations (A) and halide anions

(B, C). We select several promising candidate materials that we believe deserve further

attention.

Finally, we examine CsV3Sb5, a member of the AV3Sb5 (A = K,Rb,Cs) family of

kagome metals, whose low-energy physics is dominated by an unusual charge density

wave phase. We elucidate the nature of the charge density wave order parameter us-

ing first-principles density functional theory calculations which support the findings of

experimental coherent phonon spectroscopy measurements. Through our study of the

structural phase space of CsV3Sb5, we find that the charge density wave can be described

as tri-hexagonal ordering with interlayer modulation along the c-axis.

First-principles techniques are often limited by their inability to incorporate the effects

of temperature and disorder. Here, we augment first-principles density functional calcula-

tions using statistical mechanics methods such as the Metropolis Monte Carlo algorithm

and Langevin dynamics to incorporate temperature effects on large, disordered super-

cells to simulate the thermal phase space of strontium titanate. The chemical phase of

the herbertsmithite material family is systematically explored through high-throughput

first-principles pseudo-convex hull calculations and an assessment of defect formation

energy. We use frozen phonon calculations to investigate the structural phase space of

x



CsV3Sb5 and find that the charge density wave order expands beyond the previously

studied 2×2×1 construction. Our techniques can be applied more broadly to other ma-

terial systems to expand the capabilities of computational methods to accurately capture

thermal effects and structural disorder in quantum materials.
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Chapter 1

Introduction

1.1 Outline

Chapter 1 will provide an overview of the physical phenomena relevant to the materi-

als systems studied in this thesis, including ferroelectricity and superconductivity, charge

density wave order, and quantum spin-liquid behavior. In Chapter 2, I will describe

the first principles, phenomenological, and statistical mechanical methods I use in my

research. I discuss the results of my work characterizing the polar phase transition in

strontium titanate in Chapter 3 after giving a review of previous experimental and com-

putational studies of the polar phase transition. Chapter 4 will examine the electronic

properties and assess parameters relevant to superconductivity in compressively strained

SrTiO3. In Chapter 5, I will describe a combinatorial exploration of herbertsmithite-

related spin-liquid compounds to identify new quantum spin liquid candidates. I will

report the characterization of the charge density wave order of CsV3Sb5 in Chapter 6.

Chapter 7 will conclude with an exploration of future directions for research for each

material system, and suggest other potential applications for the methods used in this

work.
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Introduction Chapter 1

1.2 Ferroelectricity

Ferroelectrics are insulating materials possessing at least two stable or metastable

states with spontaneous, finite electric polarization in the absence of any external electric

field. The system must be able to switch between the two polarization states under the

application of an applied electric field. The coupling of the polarization to the field is given

by −E · P . Polarization can be approximated by the magnitude of ionic displacements

from the high symmetry structure and the Born effective charges.

The ability of ferroelectrics to exhibit spontaneous, switchable, electric polarization

makes them extremely useful in a variety of technologies. Applications for ferroelectrics

include data storage, computing, and sensing. Their implementation in capacitors makes

ferroelectric materials vital components of energy storage and harvesting systems. An

excellent overview of ferroelectricity and its applications can be found in [1].

Ferroelectric crystal structures must have a polar (noncentrosymmetric) space group.

However, many materials which have a polar space group are not ferroelectric, either

because the ions comprising the structure are not charged in a such a way as to induce

finite polarization, or because the polarization is not switchable under the application of

an electric field. In ferroelectric materials, the spontaneous polarization is the result of

a particular arrangement of charged ions in the crystal lattice.

1.2.1 Perovskite Oxides

Ferroelectricity was first discovered in Rochelle salt, a hydrogen-bonded material [2].

The discovery of the perovskite oxide BaTiO3 in 1949 [3] with its simple crystal struc-

ture provided an excellent platform to study the physics of ferroelectrics, and perovskite

oxides remain the most highly studied family of ferroelectric oxide materials. The ideal

perovskite structure, shown in Fig.1.1(a), has the space group Pm3̄m with a simple cu-
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bic lattice and a 5-atom basis. Two of the possible polarization states are depicted in

Fig.1.1(b,c), where the positively charged B cation is displaced from the center of an

octahedron of six nearest-neighbor oxygen anions, with an A cation positioned at the

corners of the unit cell. Depending on the structure, the direction of the polarization

vector may be along various axes, and domains of different polarization orientations are

possible in many materials.

Figure 1.1: Ferroelectric Perovskite Oxide (a) Prototypical cubic perovskite struc-
ture (b) Polarization up state where cations and anions move in opposition to one
another (c) Polarization down state (d) Different view of the perovskite structure,
centered around the A atom (e) A smaller tolerance factor (t < 1), corresponds to
loosely packed ions, and polar distortions are favored. (f) A larger tolerance factor
(t > 1), corresponds to tightly packed ions, and octahedral rotations are favored. Fig-
ure adapted from [4].

In Fig.1.1(d), an alternative view of the crystal structure is presented where the

A cation is positioned in the center of the unit cell, surrounded by twelve equidistant

oxygen atoms. The relative size of the oxygen octahedra containing the B atoms and

the A atoms occupying the holes between the octahedra determines whether a material

takes on the prototypical perovksite structure. Following this logic, Goldschmidt [5]

3



Introduction Chapter 1

provided a condition describing the ideal relation between ionic radii. The bond lengths

(rA + ro), (rB + ro) are depicted schematically in Fig.1.1(d), and the following relation

between them is defined as the tolerance factor:

t =
rA + ro√
2(rB + ro)

(1.1)

The perovskite oxide structure forms when t ≈ 1. When t > 1 [Fig.1.1(e)], ions are

loosely packed and the B atom is too small for the oxygen octahedron. The structure

develops a small polar distortion, such as in BaTiO3. When t < 1 [Fig.1.1(f)], the A

atom is small in comparison to the space between the octahedra and the rotations or

titling of the oxygen octahedra is favored. Owing to the ease of chemical substitution

and the variety of polar and rotational distortions, the perovskite oxide family hosts a

variety of diverse structural and physical properties.

1.2.2 Quantum Paraelectricity

In addition to finite, switchable polarization, a ferroelectric phase transition is char-

acterized by a dielectric constant that diverges at low temperatures and a phonon mode

that softens to zero at the ferroelectric transition temperature, Tc. It is possible for a ma-

terial that is expected to be ferroelectric to avoid transitioning to an ordered phase due

to quantum fluctuations between the two polarization states. Such a material is called

a quantum paraelectric. The characteristic behavior of the soft mode frequency and the

dielectric constant for ferroelectric and quantum paraelectric materials are compared in

Fig.1.2. The softening of the phonon mode is aborted at the transition temperature of

the quantum paraelectric phase [Fig.1.2(a)], and likewise the dielectric function saturates

at the quantum paraelectric transition temperature [Fig.1.2(b)].

Strontium titanate (SrTiO3), the primary material system studied in this thesis, is a

4
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Figure 1.2: Signatures of Quantum Paraelectricity (a) Temperature dependence
of the soft phonon mode. Here, Tc denotes the transition to either the ferroelectric
phase (blue) where the mode softens completely to zero, or the quantum paraelectric
phase (red), where the softening is aborted due to quantum fluctuations. (b) Tem-
perature dependence of the dielectric function which diverges at Tc for a ferroelectric
(blue) and saturates for a quantum paraelectric at Tc (red).

perovskite oxide and a quantum paraelectric in the bulk phase. Experimental measure-

ments of the soft transverse optical mode and the dielectric electric constant as functions

of temperature exhibit the expected behavior of the quantum paraelectric [6].

1.2.3 Polar metals

Polar metals are an example of a contra-indicated material: a material which enables

the coexistence of phenomena typically considered to be mutually exclusive. Examples

of contra-indicated properties include ferroelectricity and magnetism, or magnetism and

superconductivity. An excellent review of polar metals can be found in [7].

Some clarifications should be made, from a semantic standpoint, about polar met-

als versus ferroelectrics. A polar space group possesses a polar direction (where two

directional senses are inequivalent), which permits the existence of a permanent dipole

5
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moment. The condition for ferroelectricity that there should be a measurable macro-

scopic polarization holds only for insulating systems. Furthermore, ferroelectricity re-

quires switchability of the spontaneous polarization, which is not a requirement for polar

metals. Thus, a polar metal is defined as a material with a polar space group with free

carriers that lead to electronic conductivity.

Conventional ferroelectric materials are insulating. Whether ferroelectric order is

achieved at low temperatures depends on the competition between two energies: short-

range Coulomb repulsion and long-range dipole-dipole Coulomb interactions which favor

the ferroelectric phase. These dipole-dipole interactions are screened by free carriers, so

metallicity disfavors polar order. Most conventional metals adopt centrosymmetric struc-

tures due to the non-directionality of metallic bonding. Coulomb repulsion between ions

is minimized at a particular density for evenly spaced ions. Additionally, chemical bond-

ing that occurs between cations and ligands in the second-order Jahn-Teller effect leads

to the off-centering of ions favored by empty valence shell cations, which are correlated

with insulating behavior.

Anderson and Blout [8] suggested that a polar transition could occur in a metal if

the metallic electrons do not interact strongly with the soft transverse optical phonons

responsible for ferroelectricity. Polar metallicity can be achieved by doping polar semicon-

ductors or adding carriers to conventional or unconventional ferroelectrics. Ferroelectrics

driven by stereochemically active lone pairs that displace their host cations may be more

robust to doping than those driven by the d0 driven distortions, since the lone pairs are

far from the Fermi level. Polar metals may posses nontrivial topological properties, or

host unconventional superconducting phases. By tuning strain and other parameters, the

polar phase of SrTiO3 can be stabilized. When polar SrTiO3 is doped, a polar metallic

phase is achieved [9].

6
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1.3 Quantum Criticality

Figure 1.3: Quantum Critical Phase Diagram. The temperature dependence of
the order parameters depends on a tuning parameter P . While the phase transition
takes place at 0 K, quantum critical behavior fans out to finite temperatures in the
vicinity of the quantum critical point (QCP).

In recent years, condensed matter physics research has revealed a new type of phase

that is driven by quantum fluctuations associated with Heisenberg’s uncertainty principle,

rather than thermal fluctuations. When motion ceases at absolute zero, atoms and

molecules cannot be at rest according to the uncertainty principle which states that

the velocity and position of a particle cannot be simultaneously known with complete

certainty. As a consequence of quantum uncertainty, atoms undergo zero-point motion at

extremely low temperatures. If this zero-point motion becomes significant, it can “melt”

order, much like thermal motion can melt ice. In the case of a quantum critical phase

transition, this “melting” takes place at absolute zero.

A phase transition taking place at absolute zero cannot happen in practicality, but

the quantum critical effects fan out through a finite-temperature regime, as depicted

in Fig.1.3. This leads to interesting behavior, such as the fluctuation of bosonic order

7



Introduction Chapter 1

parameters, which can facilitate Cooper pairing in superconductors. Since the phase

transition is not driven by temperature, another tuning parameter (P) parameterizes the

phase diagram [10]. In SrTiO3, for example, strain or isotope substitution can drive the

material from a quantum paraelectric into the polar phase [11].

1.4 Superconductivity

Superconductivity is characterized by two main properties: perfect conductivity and

perfect diamagnetism. In a perfect conductor the resistivity is exactly zero, making the

conductivity infinite. As a result, current can flow in a superconducting circuit indefi-

nitely without the loss of energy to heat. A perfect diamagnet is completely impermeable

to magnetic fields and expels any internal magnetic field.

Since the discovery of superconductivity in 1911 by Kamerlingh Onnes, superconduc-

tors have been implemented in a number of practical applications. Superconductors are

currently used in MRI machines, particle accelerators, magnetic levitating transporta-

tion, and the detection of small magnetic fields. However, use of superconductors in

technological applications is limited by the fact that they almost exclusively operate at

extremely low temperatures, close to absolute zero.

Discovering new types of superconductors may expand their possible applications.

These new functional materials will likely not adhere to the established theoretical

paradigm for superconductivity. Future technologies of interest include lossless power

transmission in high-temperature superconductors, and quantum computers which could

use superconductors with non-trivial band topology to encode information. Unconven-

tional superconductors provide an opportunity to discover novel physical phenomena and

may open the door to technologies that are not yet imaginable.
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1.4.1 BCS Theory

Before discussing unconventional superconductivity, we must first understand the

conventional theory of superconductors presented by Bardeen, Cooper, and Schrieffer in

1957 [12]. Within the BCS paradigm, an attractive interaction between electrons results

from the exchange of virtual phonons under the condition that the energy difference

between the electronic states (∆ϵ) is less than the phonon energy (hω). The discussion

below will follow closely the description provided by Tinkham et al. [13].

Figure 1.4: Cooper Pairing (a) Schematic of Cooper pairing of electrons within 2ωD

of the Fermi energy EF via the interaction energy Vk,k′ . Figure adapted from [14].
(b) Feynman diagram of Cooper pairing via interaction with virtual phonon.

In his seminal 1956 paper, Cooper demonstrated that an arbitrarily small attractive

interaction between two electrons will lower their energy, forming a bound state with

negative energy with respect to the Fermi level [15]. To see how this might occur, we

can consider two electrons within ℏω of the Fermi energy EF , with k > kF , such as those

depicted in Fig.1.4(a), connected by the green arrow. The two-particle wave function

describing these electrons will have zero total momentum, as this will minimize the total

energy according to Bloch’s theorem. The pair wavefunction is given by:

9
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ψ0(r1, r2) =
∑
k

gke
ik·r1e−ik·r2 (1.2)

Where (r1, r2) are the positions of the electrons, k represents a point in momentum

space, and the values of gk give the weighting coefficients of the eigenstates. Electrons are

fermions, so the total wavefunction (ψ0) must be antisymmetric; if the orbital component

of the wavefunction is even, the spin component must be odd. From Eq.1.2, ψ0 can be

written as a sum of cosinusoidal products with an odd spin-singlet function (α1β2−β1α2),

where α corresponds to spin-up and β to spin-down. Alternatively, one could write ψ0

as sinusoidal products with an even spin-singlet function (α1β2 + β1α2, α1α2, β1β2). The

function cos(k·(r1 − r2)) results in the highest probability that electrons will be in close

spatial proximity to one another and most likely to pair, meaning that the accompanying

form of the spin function should be a singlet to preserve the overall antisymmetry:

ψ0(r1, r2) =

[∑
k>kF

gkcosk · (r1 − r2)

]
(α1β2 − β1α2) (1.3)

We can insert Eq.1.3 into the Schrodinger equation to determine the energy eigenvalue

E and the weighting coefficients gk:

(E − 2ϵk)gk =
∑
k′>kF

Vkk′gk′ (1.4)

Here, Vkk′ is the magnitude of the scattering potential of a pair of electrons with momenta

(k′,−k′) to (k,−k). This interaction Vkk′ is approximated according to the following

condition:

Vkk′


−V for ζk ≤ ℏωc

0 otherwise

(1.5)

10
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Where ζk = ϵk−EF is the energy of an electron relative to the Fermi surface. By replacing

the sum in Eq.1.4 with an integral and simplifying we obtain:

1

V
= N(0)

∫ EF+ℏωc

EF

dϵ

2ϵ− E
=

1

2
N(0)ln

EF − E + 2ℏωc

2EF − E
(1.6)

Where N(0) is the density of states at the Fermi level. Assuming weak coupling,

N(0)V << 1, a condition that is met in most superconductors, we can write Eq.1.6 as:

E ≈ 2EF − 2ℏωcE
−2/N(0)V (1.7)

We have shown in Eq.1.7 that an arbitrarily small potential (V ), so long as it is attractive,

will outweigh the excess kinetic energy for a pair of electrons with k > kF , forming a

bound state with E < EF , shown in Fig.1.4(a) as states connected by the blue arrow.

However, there must be justification for why Vkk′ should be negative.

After accounting for the bare Coulomb interaction V (r) = (e2/r) and the dielectric

function of the medium (ϵ = 1 + k2s/q
2) which incorporates the screening effect of the

conduction electrons, we are still left with a positive interaction potential. An attractive

interaction only occurs when the interaction of the electrons with the lattice vibrations

(phonons) is considered.

V eff
k,k′ =

4πe2

q2 + k2TF

+
4πe2

q2 + k2TF

ω2
q

ω2 − ω2
q

(1.8)

In Eq.1.8, a solid material is modeled as a fluid of electrons containing point ions,

referred to as the “jellium” model. If momentum is conserved scattering a phonon from

k to k’, the phonon must have momentum q = k − k′. From the last resonance term

in Eq.1.8, we get a net negative interaction when ω < ωq. The cutoff energy for an

attractive V eff
k,k′ is on the order of the Debye energy ℏωD, which characterizes the cutoff
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of the phonon spectrum.

Phonon-mediated pairing, subject to the condition that phonon frequency must be

slow compared to the energy of the electrons, can be understood intuitively as follows:

if lattice deformation is slow compared to the velocity of the electrons, by the time the

lattice deforms in response to the motion of one electron, the first electron will be far

away by the time a second electron is attracted to the modulation of charge density

generated by the motion of the first electron through the lattice. In this framework, it is

justified to ignore Coulomb repulsion between electrons.

Following the processes described above, electrons can form bosonic quasiparticles

called Cooper pairs with spin zero and an effective charge of negative two. These quasi-

particles condense into a single coherent quantum state, the Bose-Einstein condensate,

that can be described by a many-body wavefunction. Superconductivity is an example

of a quantum phenomenon that can be observed on a macroscopic scale.

The order parameter which characterizes the superconducting phase transition is the

energy gap ∆, where an energy of 2∆ is required to destroy a Cooper pair. The gap

results from the hybridization of electron-like and hole-like quasiparticles, which leads

to the formation of new quasiparticles, called Bogoliubons, that act as superposition of

electron and holes. The energy gap is subject to a similar condition as the interaction

potential in Eq.1.4:

∆k =


∆ for |ζk| < ℏωc

0 otherwise

(1.9)
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Properties of BCS Cooper Pairs

1. Opposite spin (|↑⟩ , |↓⟩)

2. Isotropic gap (∆k = ∆)

3. Zero total momentum (|k⟩ , |−k⟩)

4. Slow phonons, fast electrons (ωD << EF )

In summary, a conventional Cooper pair consists of time-reversed quasiparticle states

that form an antisymmetric spin singlet with a symmetric, nodeless orbital component

of the wavefunction, and a superconducting energy gap that is isotropic reciprocal space.

The attractive interaction is mediated by exchange of a virtual phonon with ℏω << EF .

1.4.2 Unconventional Superconductivity

In an unconventional superconductor, the nature of Cooper pairing deviates from the

conditions outlined by BCS theory. This can manifest in a variety of ways depending

on the material system. In the previous section, we discussed how the pair wavefunction

can be decomposed into its spin and orbital components. Here, we will write the total

wavefunction as, Ψk,ss′ = ϕ(k)χss′ , with ϕ(k) representing the orbital component and χss′

representing the spin component with (s, s′) indicating the spins of the two electrons.

The parity of the wavefunction is related to the angular momentum, with even parity

corresponding to l = 0, 2, 4 and odd parity l = 1, 3, 5, analogous to angular momentum

of electronic orbitals. Conventional s-wave pairing is spherically symmetric with l = 0,

and all states with l ̸= 0 are considered unconventional [16]. To preserve the total

antisymmetry of Ψ, the orbital and spin components of must have opposite parity, as

outlined in Tab.1.1. An odd orbital wavefunction is accompanied by a spin-triplet pairing,

with three possible pairing channels. The superconducting energy gap will reflect the

symmetry of the pair wave function.

13
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Table 1.1: Conditions for even and odd pairing symmetries, adapted from[16]

Pairing Type Orbital Spin

Even Parity ϕ(k⃗) = +ϕ(−k⃗) χ(ss′) = 1√
2
(|↑↓⟩ − |↓↑⟩)

Odd Parity ϕ(k⃗) = −ϕ(−k⃗) χ(ss′) =


|↑↑⟩
1√
2
(|↑↓⟩ + |↓↑⟩)

|↓↓⟩

For an even parity gap, we can write a 2 × 2 matrix in spin space represented by a

scalar function Ψ, where Ψ(−k) = Ψ(k):

∆(k⃗) = iΨ(k⃗)σ̂y =

0 −ψ

ψ 0

 (1.10)

For odd parity spin-triplet superconductors, we use the odd vector function d(k⃗), where

d(k⃗) = −d(−k⃗):

∆(k⃗) = id⃗(k⃗) · ˆ⃗σσ̂y =

−dx(k) + idy(k) dz(k)

dz(k) dx(k) + idy(k)

 (1.11)

Depending on the specific form of d(k), the superconducting gap can take on different

symmetries, some examples of which are shown in Fig.1.5. Other possible symmetries

which are not shown here include f -wave, or px + ipy.

Although p-wave pairing [Fig.1.5(b)] has been experimentally observed in the super-

fluid 3He [18], it can be difficult to obtain definitive evidence for the symmetry of the

order parameter since the thermodynamic signatures for p-wave pairing can often resem-

ble that of s- or d-wave superconductors. Materials which are posited to have potential

p-wave pairing states include Fe-based superconductors, such as NdFeAs(O,F) [19].

The cuprate family of high-temperature superconductors is an example of unconven-

tional d-wave pairing symmetry[Fig. 1.5(c)]. Cuprate crystals contain 2D planes of Cu
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Figure 1.5: Superconducting Gap Symmetries (a) Conventional s-wave supercon-
ductivity. Cooper pairs are spin singlets with an isotropic gap. (b) Unconventional
odd parity p-wave pairing. (c) Unconventional even parity d-wave pairing. Figure
adapted from [17].

and O atoms arranged in a square lattice within 2D planes that order into antiferro-

magnetic Mott insulating ground state. Upon hole doping, superconductivity emerges

with critical temperatures of up to 145 K. The superconducting state is characterized by

the strong dx2−y2 symmetry of the energy gap, where electrons pair strongly parallel to

the Cu-O-Cu bond directions, but do not pair along the diagonals of the square lattice.

This directional dependence of the pairing strength manifests in the symmetry of the gap

function in reciprocal space [20].

In materials where the phonon frequency is fast relative to the velocity of the elec-

trons, phonon-mediated pairing may not be sufficient to overcome Coulomb repulsion

and an unconventional pairing glue may be required. The superconducting critical tem-

perature is limited by the adiabatic criterion (ℏω > EF ), so other pairing glues may be

the key to discovering new high-temperature superconductors. When superconductivity
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occurs near a second-order phase transition that has been suppressed to T = 0 K, criti-

cal fluctuations of a bosonic order parameter may mediate pairing. Spin fluctuations in

materials with strong antiferromagnetic exchange interactions, such as the cuprates, are

posited to mediate superconductivity [21]. Other families of unconventional supercon-

ductors include heavy fermion materials, where localized f electrons actively participate

in pairing. Due to their large effective mass, certain heavy fermion materials are can-

didates for the Fulde–Ferrell–Larkin-Ovchinnikov (FFLO) phase, in which Cooper pairs

have finite momentum [22].

In addition to providing possible routes to high-temperature superconductivity, un-

conventional superconductors, particularly those with odd or mixed parity, can possess

nontrivial band topology. Topological superconductors can give rise to emergent quasi-

particles whose properties can be harnessed for use in practical applications, such as

quantum computing.

Strontium titanate is not only a quantum paraelectric which can be tuned into a

polar metallic state, it is also superconductor with a critical temperature on the order

of several hundred millikelvin. The adiabatic criterion is not met in SrTiO3, making it

an unconventional superconductor. The unconventional nature of the superconducting

phase will be discussed in detail in Chapter 4.

1.5 Topological Materials

While the computational methods used in this thesis do not explicitly involve topolog-

ical classifications of materials, the search for materials systems with nontrivial topology

is the underlying motivation for each project. It is therefore worthwhile to understand

what topological materials are and how they can be used. It is of particular interest to

discover superconductors with nontrivial topology because of their potential applications
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in quantum computing technology.

Broadly speaking, topology is a mathematical concept used to classify geometries.

When two geometries can be continuously deformed into one another, such as a donut and

a coffee mug, they are said to have the same topology. Similarly, when one Hamiltonian

can be adiabatically transformed into another without closing the energy gap, they are

considered topologically equivalent.

1.5.1 Topological Insulators

Before discussing topological superconductors, it is helpful to understand the basic

characteristics of topological insulators. Topological insulators are distinct from either

metals or insulators. A metal contains half-filled bands which allows electrons to move

freely to unoccupied states within the same band, allowing for electrical conduction. In an

insulator, however, there is an energy gap between a valence band of filled electronic states

and a conduction band of unfilled states. In the atomic limit, electrons are completely

localized onto individual atoms. The Hamiltonian of a topological insulator cannot be

adiabatically transformed into that of an atomic insulator without closing the energy gap.

Therefore, a topological insulator necessarily contains topologically protected gapless

(conducting) edge states. These states typically exist on the surface of the material,

where the nontrivial topology of the bulk must transition to the trivial topology of the

vacuum, thus closing the energy gap. This transition from nontrivial to trivial topology

is accompanied by a mixing of the valence and conduction band states referred to as

band inversion. The phenomenon of characteristics of the bulk band structure affecting

states at the surface is known as bulk-boundary correspondence.

In topological band theory, classifications are made by computing a number called a

topological invariant. If a material is topologically nontrivial, the wavefunctions of the
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Hamiltonian may have a twist in the parameter space that defines its eigenstates. A

quantity called the Berry phase (λ) can be used to quantify these twists in parameter

space, which in the context of electronic band structures is momentum space.

λ =

∮
P

A(λ) · dλ (1.12)

The Berry connection, A(λ)=⟨uλ| i∂λ |uλ⟩, measures the rate of change of the wavefunc-

tion in momentum space. The Berry curvature is defined as Ω = ∇ × A. According

to the Chern theorem, the Berry curvature of a fully closed loop in momentum space is

quantized.

2πC =

∮
S

Ω · dS (1.13)

Here, C is the topological invariant known as the Chern number. The Chern number

can be used to classify topological materials according to their Hamiltonians, under the

constraints required by different symmetries [23].

1.5.2 Topological Superconductors

Topological superconductors are distinct from the Bose-Einstein condensate of Cooper

pairs which forms a trivial superconducting state, just as topological insulators are dis-

tinct from the trivial limit of an atomic insulator. To understand how the topological

invariant is defined for superconductors, where there is no gap between the valence and

conduction bands, we must consider a special symmetry of superconductors: particle-hole

symmetry.

A superconductor creates and annihilates pairs of electrons from the Fermi sea by

breaking apart and forming Cooper pairs. The effective Hamiltonian for a superconduct-
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ing ground state is given by:

H =
∑
nm

Hnmc
†
ncm +

1

2

(
∆nmc

†
nc

†
m + ∆∗

nmcncm
)

(1.14)

Note that this expression H does not conserve the number of electrons, since Cooper

pairs are being created (annihilated) by the operators c(c†). However, the parity of the

electrons, whether the number of electrons is even or odd, is conserved, since Cooper pairs

are comprised of two electrons. By grouping the creation and annihilation operators into

a vector, we can write H as:

H =
1

2
C†HBdGC (1.15)

The Bogoliubov-de Gennes (BdG) Hamiltonian (HBdG) has the following structure:

ψ =

 H ∆

−∆∗ −H∗


The BdG Hamiltonian acts on wavefunctions whose first half consists of annihilation

operators of electrons, and whose second half contains creation operators of those same

electrons. The creation operators can be thought of as annihilation operators of an extra

set of holes, which effectively doubles the number of degrees of freedom in the system.

The HBdG automatically has an extra symmetry that exchanges electrons with holes, and

has an antiunitary operator that acts on the hole blocks.

The spectrum of HBdG must be symmetric about zero, where zero energy corresponds

to the Fermi level. For each eigenvector with energy E, a symmetric particle-hole eigen-

vector exists with energy −E. The negative energy states are all filled, much like in

a topological insulator, which allows topological invariants to be defined for supercon-

ductors. Considering one HBdG Hamiltonian being transformed into another, the energy

crossings, which typically occur in the presence of a conserved quantity, are associated
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with changes in fermion parity, which is the conserved quantity in a superconductor due

to particle hole symmetry.

Majorana Fermions

The emergence of special particles, called Majorana fermions, is a prominent feature

of topological superconductors which renders them of great practical interest to physi-

cists. In 1937, Majorana found that the Dirac equation describes a particle that is its

own antiparticle [24]. Majorana fermions may exist as emergent collective excitations of

electrons at the boundaries of topological superconductors, or within certain spin liquid

states [23].

In order for a collective excitation to classify as a Majorana fermion, the excitation

must (1) obey the Dirac equation (2) be its own antiparticle. Gapless excitations which

obey the Dirac equation arise due to bulk-boundary correspondence in a topological

superconductor. As a consequence of particle-hole symmetry, electron and hole states are

indistinguishable in the superconducting state, making the topological gapless boundary

excitations Majorana fermions.

Majorana fermions obey non-abelian statistics, which characterizes their symmetries

under the exchange of two particles. The wavefunction of a fermion is antisymmetric

under exchange, while that of a boson is symmetric under exchange. This wavefunction

symmetry underlies the Pauli exclusion principle, superfluidity, metallicity, Bose-Einstein

condensation, and more. In three dimensions, only bosons and fermions exist. In two

dimensions, however, a particle loop that encircles another particle cannot be deformed

to a point without cutting through the other particle, as depicted in Fig.1.6(b). So,

when two particles are interchanged twice in a clockwise manner, the system does not

necessarily come back to the same state (Fig.1.6(c). When one particle is exchanged in a
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Figure 1.6: Exchange of Majoranas (a) Initial state of two Majorana fermions

(1) and (2) with operators γ
(1)
0 and γ

(2)
0 (b) A third Majorana (1) is braided around

(2). (c) Due to the non-abelian statistics of Majorana anyons, γ
(2)
0 → −γ

(2)
0 . Figure

adapted from [23].

counterclockwise manner with the other, the wavefunction picks up an arbitrary phase.

ψ(r1, r2) → eiθψ(r1, r2) (1.16)

A second clockwise exchange may lead to a state distinct from the initial state with a

nontrivial phase.

ψ(r1, r2) → e2iθψ(r1, r2) (1.17)

The cases where θ = 0, π correspond to bosons and fermions, respectively. Particles with

other values of this statistical angle are called anyons. Let’s consider a quantum state |Ψ⟩

with a ground state manifold of 2N where two Majoranas are exchanged and the initial

and final quantum states are connected by a unitary operator U written as a 2N × 2N

matrix. To exchange Majoranas γm and γn, we have the operator U defined as:

U = exp
(
±π

4
γnγm

)
=

1√
2

(1 ± γnγm) (1.18)
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For the braiding process in Fig.1.6 where γm and γn are exchanged twice we have:

(U23)
2γ20(U †

23)
2 = −γ20 (1.19)

(U23)
2γ30(U †

23)
2 = −γ30 (1.20)

U23U12 ̸= U12U23 (1.21)

The operators U12 and U23 do not commute, making this exchange process non-abelian.

The braiding of non-abelian anyons like Majoranas can be used to perform quantum

computations. A network of 2N Majoranas can be thought of as a small computer with

N bits. Unlike in a classical computer, this register of bits can exist in a superposition

of states. By exchanging Majorana modes, different sequences of exchanges will yield

different algorithms. The state of this register is encoded in the fermion parity degrees of

freedom which are shared non-locally by the Majoranas. This means the information is

topologically protected against decoherence. The environment cannot access the stored

information so long as the Majoranas are kept far away from each other. Decoherence is a

major barrier to engineering robust quantum computing platforms, and thus Majoranas

could provide a solution [25].

There are several routes to engineer superconducting systems with non-trivial topol-

ogy at an interface, or at the ends of a nanowire. However, it is of interest to discover

so-called natively entangled materials that posses intrinsic topological properties without

the need for device engineering. One possible route to such a system is through an odd-

parity superconducting state, which can occur in a noncentrosymmetric material in the

presence of strong antisymmetric spin-orbit coupling.

22



Introduction Chapter 1

1.5.3 Topological Properties of Noncentrosymmetric Supercon-

ductors

Non-centrosymmetric superconductors (NCS) lack a center of inversion and therefore

parity symmetry (|k⟩ → |−k⟩) no longer exists. SrTiO3, within the polar phase, is an

example of a noncentrosymmetric superconductor. The pairing symmetries of spin-singlet

and spin-triplet Cooper pairs are given by ∆(k) = ψ(k)iσy and ∆(k) = i∆0d(k) · σσy,

respectively. As a consequence of the Pauli exclusion principle, spin-singlet states are

even under inversion, and spin-triplet states are odd under inversion. Removing parity

symmetry eliminates the strict separation between singlet and triplet states, allowing

them to mix [26], giving the following expression for pairing:

∆(k) = ψ(k)iσy + d(k) · iσσy (1.22)

While inversion symmetry breaking removes the constraint that separates singlet and

triplet states, another ingredient is necessary to provide the specific mechanism for mix-

ing. This missing ingredient is antisymmetric spin-orbit coupling (ASOC). Symmetric

Figure 1.7: Spin Textures induced by ASOC (a) Rashba spin texture (b) Dres-
selhouse spin texture (c). Persistent spin texture (PST).
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spin-orbit coupling is a relativistic effect through which the spin and orbital angular

momentum become correlated due to the magnetic field generated by the accelerating

positive nucleus in the reference frame of the electron. The spin-orbit coupling interaction

in centrosymmetric systems is given by:

HSO = ζ(r)L · S (1.23)

Where ζ(r) is a radial function of the distance r from the nucleus, L is the orbital

angular momentum and S is the spin angular momentum. Spin-orbit coupling leads to

the splitting of electronic eigenstates observable in the hyper-fine splitting of the hydrogen

spectrum.

In the absence of inversion symmetry, the strength of the spin orbit coupling inter-

action becomes momentum-dependent leading to spin orbit coupling that is asymmetric

throughout momentum space. The antisymmetric spin orbit coupling interaction is given

by:

HASOC = S · (k × E) (1.24)

Where k is the electron wave vector and E is an effective electric field which is typically

perpendicular to the plane in which inversion symmetry is broken. This effective electric

field arises due to the variation in the potential felt by the electrons due the symmetry of

the underlying lattice. As a consequence of this momentum-dependent electric field, the

expectation value of the spin becomes dependent on the direction of k, resulting in diverse

spin textures in reciprocal space. This correlation between the spin and momentum is

referred to as spin-momentum locking.

There are three basic forms of spin textures resulting from ASOC, which are depicted

in Fig.1.7 . The type of spin texture that arises in a specific materials system will depend
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on the symmetries of the crystal. Linear combinations of these effective fields are also

possible [27]. We will focus primarily on Rashba spin-orbit coupling (RSOC), as it is

most relevant to SrTiO3 which will discussed in Chapter 4. The RSOC interaction term

is given by:

HRSOC = α (k × σ) · ẑ = α (kyσx − kxσy) (1.25)

Where α is the Rashba coupling constant, k = (kx, ky) is the electron wave vector in

the plane, and (ẑ) is the direction of the effective electric field. For a given value of

k, spins couple to the momentum differently based on whether they are aligned parallel

or anti-parallel to the effective magnetic field Beff = α(k × ẑ). The presence of Beff

breaks the degeneracy between spin states at each k-point, known as Kramer’s degen-

eracy. Kramer’s degeneracy is typically protected in centrosymmetric systems by parity

P |k, ↑⟩ = |−k, ↑⟩and time-reversal T |k, ↑⟩ = |−k, ↑⟩ symmetries, giving the Kramer’s

pair:

PT |k, ↑⟩ = |k, ↓⟩ (1.26)

Lifting the Kramer’s degeneracy splits the energy bands, leading to the two helical bands

with opposite spin textures, shown in Fig.1.7(a). In a noncentrosymmetric Rashba super-

conductor, if the RSOC interaction is sufficiently strong, the gap between helical bands

is large enough that Cooper pairing between electrons on different bands can be ignored,

giving the following expressions in the helicity basis for singlet and mixed parity pairing,

respectively:

⟨ψs| =
1√
2

(⟨k, ↑| ⟨−k, ↓| − ⟨k, ↓| ⟨−k, ↑|) (1.27)

⟨ψsp| =
i

2
√

2

(
−e−iϕk ⟨k, ↑| ⟨−k, ↓| + e−iϕk ⟨k, ↓| ⟨−k, ↑|

)
(1.28)

Coupling takes place between electrons of opposite spin within the same band, indicated

by the dashed lines in Fig.1.7(a). Note that there are no same-spin Cooper pairs. There
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is no physical reason why the superconducting gap must be the same for both helicity

bands, and indeed the presence of different gap magnitudes is an experimental signature

of mixed parity [26].

The possibility of mixed-parity states has interesting consequences. In 2015 Kozii

and Fu [28] proposed that in the presence of spin-orbit coupling, fluctuations of incipient

parity-breaking order generate an attractive pairing interaction in an odd-parity pairing

channel which competes with s-wave pairing. They demonstrated that Coulomb repulsion

or an external Zeeman field suppresses the s-wave pairing and promotes the odd-parity

superconducting state.

Wang et al. [29] expounded on this idea, demonstrating that the degeneracy between

s- and p-wave superconducting order parameters was a result of the conserved fermionic

helicity χ, and the two degenerate channels correspond to even and odd combinations of

superconducting order parameters with χ = ±1. As a result, the system has an enlarged

symmetry U(1)×U(1), with each U(1) corresponding to one value of the helicity χ. The

enlarged symmetry allows for exotic topological defects like a fractional quantum vortex,

which has a Majorana zero mode bound at its core.

In the polar phase, strontium titanate is a noncentrosymmetric superconductor. Sig-

natures of mixed parity superconductivity have been predicted theoretically, and also

observed experimentally by nonreciprocal charge transport measurements [30]. The un-

conventional and possibly topological nature of superconductivity in SrTiO3 is our main

motivation for studying this material.

1.6 Charge Density Waves

A charge density wave (CDW) is a static modulation of conduction electrons which

lowers the electronic energy due to distortions of the underlying lattice. A clear example
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of this is a Pierels distortion, depicted in Fig.1.8. Pierels suggested that a one-dimensional

chain of atoms is susceptible to a distortion of the lattice which changes the periodicity.

In Fig.1.8(a), the typical energy versus momentum dispersion is shown for a monovalent

metal. The first Brillouin zone is half occupied and the periodic charge density is localized

around the ion cores. Fig.1.8(b) shows a lattice distortion that doubles the size of the unit

cell in real space, opening an energy gap at the zone boundary. This lowers the energy of

the electrons at the Fermi energy and shifts the Fermi energy downwards. In this case,

the periodic lattice distortion has a purely electronic origin. This process is referred to

Figure 1.8: Pierels Instability (a) Band structure of a monovalent metal (b). Below
the charge density wave transition, the unit cell doubles, opening an energy gap and
lowering the Fermi energy.

as Fermi surface nesting and will occur when the Fermi surface permits a connection by

the same wavevector Q. The modulation with wavevector Q will create gaps in the Fermi

surface corresponding to the nested positions. If the energy gain obtained by creating

the energy gaps overcomes the energy cost of the lattice distortion, the formation of a

CDW will be favored [31].
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In addition to a favorable geometry of the Fermi surface, strong electron-phonon

coupling is also a requirement for CDW formation. If the electron-phonon interaction

is not sufficient, the Coulomb repulsion caused by the lattice distortion will become

prohibitive and a CDW transition will not occur.

Similar to CDW transitions, superconducting transitions are typically mediated by

an attractive electron-phonon mechanism. It can therefore be expected that systems

with CDW may also exhibit superconductivity at low temperatures. However, super-

conducting and CDW transitions are somewhat antithetical to one another. While a

superconductor has infinite conductivity, the CDW state produces a semiconductor gap

in the electronic energy dispersion, resulting in a nonconducting state. Furthermore, the

microscopic mechanisms of superconducting and CDW transitions are distinct: super-

conductivity arises from electron-electron coupling into Cooper pairs mediated by virtual

phonon exchange, while CDW arises from electron-hole coupling and charge redistribu-

tion.

The natural competition between superconducting and CDW order makes their co-

existence unusual and indicates the possibility of unconventional superconductivity. The

recently discovered family of kagome metals exhibits a charge density wave transition fol-

lowed by a superconducting transition at lower temperatures. In Chapter 6, the nature

of the charge density wave order in CsV3Sb5 is characterized using first-principles cal-

culations, which support findings from experimental measurements of coherent phonon

spectroscopy.

1.7 Quantum Spin Liquids

In the context of physics, “frustration” refers to the presence of competing forces that

cannot be satisfied simultaneously. When magnetic moments, or spins, are localized on
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atoms with certain geometric arrangements, competing exchange interactions between

these spins make it impossible for the desired ground state to be acquired, thus giving

rise to geometric frustration of the spins. Such materials are called frustrated magnets.

Under a particular set of conditions, this geometric frustration of magnetic moments

can lead to states of matter where spins fluctuate strongly down to zero temperature

despite strong magnetic exchange interactions. For materials with large spin s >> 1/2,

fluctuations of magnetic moments tend to be classical, and driven by thermal energy as

they cycle through different microstates, randomly reorienting with time. Classical spin

liquids usually freeze into a static order when kBT becomes too small [32].

Figure 1.9: Frustrated Magnetism (a) In a triangular lattice, an antiferromagnetic
ground state configuration is not possible. Question marks represent undetermined
spins which are not able to satisfy the antiferromagnetic exchange interaction. (b)
Frustrated spins on a kagome lattice can be in a superposition of many states at once.
(c) Shaded ellipses represent spin singlets with S = 0 on a Kagome lattice. Figure
adpated from [33].

For materials with smaller values of spin s = 1/2, quantum fluctuations due to the

uncertainty principle are comparable to the size of the spin, and the fluctuations persist

to absolute zero. If phase coherent quantum fluctuations are strong enough, the result

is a quantum spin liquid (QSL). The ground state of a QSL is a superposition of many

possible spin orientations. In other words, the spins are in a superposition of pointing in

many directions at one, and they are highly entangled with one another.
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Quantum entanglement between two states means that the result of a measurement

of an observable affects the outcome of measurements, even when the observables are

independent of one another. States of two observables can range from disentangled

product states to maximally entangled states. The most intriguing implication of the

many-body entanglement of spins in a QSL is the ability of these states to host non-local

excitations. These excitations can have finite energy and behave as quasiparticles such

as solitons, spinons, orbitons, and chargons.

In a quantum spin liquid, the many-body entanglement in the highly degenerate

ground state can give rise to non-local excitations, or the fractionalization of elemen-

tary particles into quasiparticles, emergent gauge fields, and long-range entanglement.

In topological quantum spin liquids, information can be encoded and topologically pro-

tected, with a higher ability to withstand decoherence than topological superconducting

systems of qubits, and thus quantum spin liquids could be a promising platform for

quantum computing.

Experimental verification of a QSL state is challenging. A QSL does not break fun-

damental lattice symmetries, and there is no local order parameter that describes the

transition. When identifying a QSL, one must first show the absence of magnetic or-

der down to low temperature, and the presence of strong, usually antiferromagnetic,

superexchange interactions. Measurements of the magnetic susceptibility, heat capacity,

or neutron diffraction patterns can be used to confirm the absence of magnetic order.

Nuclear magnetic resonance and muon spectroscopy can detect spin freezing [33].

However, all of these things identify what a spin liquid is not, and may not defini-

tively confirm the existence of a QSL ground state. For instance, the absence of magnetic

order could be caused by the disorder of the lattice. The key features defining a QSL

are long-range entanglement and the associated fractional spin excitations. It is difficult

to characterize long-range entanglement, so we focus on the fractional excitations. For
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example, spinons are deconfined from the crystal lattice and have their own dispersions.

For U(1) gapless QSLs, spinons form a Fermi sea, similar to that of a metal. Techniques

sensitive to magnetic excitations, like neutron scattering, thermal conductivity and ther-

mal hall conductivity, electron spin resonance, specific heat, as well as Raman and THz

spectroscopy, can be utilized to clarify whether fractionalized excitations are present.

The search for new quantum spin liquid candidates is an active field of research in

condensed matter physics. One of the most promising materials candidates to date is her-

bertsmithite. In Chapter 7, we perform a combinatorial exploration of herbertsmithite-

related compounds in search of other spin liquid candidates
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Methods

2.1 Density Functional Theory

Density functional theory (DFT) is a versatile tool for understanding the electronic

properties of atoms, molecules, and crystalline solids. Like many powerful computa-

tional frameworks, density functional theory is successful because of its ability to sim-

plify computationally intractable problems into simpler approximations that are feasible

to compute. An excellent introduction to this field is provided in [34].

The goal of DFT is to calculate the energy of an atomic system and how this energy

changes when the atoms move. Nuclei are much heavier than electrons, and thus the

computational problem can be divided into two pieces: (1) solving for positions of the

fixed nuclei and (2) finding the lowest energy state of the electrons. This separation of

the system is known as the Born Oppenheimer Approximation, where for N fixed nuclei

with positions R1, ...RM the energy of the ground state can be expressed as an adiabatic

potential surface E(R1...RM).

Typically, to determine how the energy changes, one would solve the time independent

Schrodinger equation:
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[
h2

2m

N∑
i=1

∇2
i +

N∑
i=1

V (ri) +
N∑
i=1

∑
j<i

U(ri, rj)

]
ψ = Eψ (2.1)

The terms in Eq.2.1 are, respectively, the kinetic energy of each electron, the inter-

actions between nuclei and electrons, and the interactions between electrons. Solving

the above equation for any significant number of particles would quickly become pro-

hibitively costly to calculate. Fortunately, two mathematical theorems, proved by Kohn

and Hohenberg in in 1964 [35], can greatly simplify the computational task at hand.

First, the energy of the ground state calculated by the the Schrodinger equation is a

unique functional of the electron density. Second, the true ground state of the system is

given by the electron density which minimizes this functional.

Hohenburg-Kohn Theorems

1. The ground state energy from the Schrodinger equation is a unique functional

of the electron density.

2. The electron density that minimizes the energy of the overall functional is the

true ground state density corresponding to the full solution of the Shrodinger

equation.

By implementing these theorems, we can use the electron density, a function of three

spatial coordinates, instead of the full Schrodinger equation which is a function of 3N

variables, where N is the number of particles. While a function takes as input the values

of variables and returns a single number from those variables, a functional takes a function

as input, and returns a single number from that function. The energy functional takes
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the wave function as input, which is a function of the electron density n(r), given by:

n(r) = 2
∑
i

ψ∗
i (r)ψ(r) (2.2)

The energy functional is written as:

E[ψi] = Eknown[ψi] + EXC [ψi] (2.3)

The term Eknown in the energy functional can be solved for exactly, and is written as:

Eknown[ψi] =
h2

m

∑
i

∫
ψ∗
i∇2ψid

3r +

∫
V (r)n(r)d3r +

e2

2

∫ ∫
n(r)n(r′)

|r − r′|
d3rd3r′ + Eion

(2.4)

Where the terms above are respectively, the kinetic energy of the electrons, the attractive

Coulomb repulsion between nuclei and electron, and the repulsive Coulomb interaction

between electron pairs. However, some quantum mechanical effects are not included in

Eknown and must be approximated in the exchange-correlation term EXC .

The exchange-correlation term accounts for interactions that cannot be captured by

the mean-field approximation of the system’s electron density. The exchange energy

describes the asymmetry of the wavefunction upon the exchange of two electrons. The

correlation term accounts for correlations in the motion of electrons which can be non-

local. The true form of EXC is not known, except in one case for a uniform electron

gas where n(r) is a constant. The uniform electron gas provides a starting point to

approximate the true EXC for real materials. Two of the main approximations are the

local density approximation (LDA), and the generalized gradient approximation (GGA).

The minimization of the energy functional can be achieved by solving a set of single-

particle equations, called the Kohn-Sham equations, which are similar to the full Schrodinger
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equation shown above, but without the summation, since the Kohn-Sham equations are

for single electron wavefunctions depending on only three spatial variables. The Kohn-

Sham equations have the form:

[
h2

2m
∇2 + V (r) + VH(r) + VXC(r)

]
ψi(r) = ϵiψi(r) (2.5)

Solutions to the Kohn-Sham equations can be found through an iterative, self-consistent

work flow. First, an initial trial electron density is defined and the Kohn-Sham equations

are solved. Then the electron density is calculated using the Kohn-Sham equations from

the second step. The densities from the first and second steps are compared, and the

process is iterated until they match within a certain tolerance.

Density functional theory (DFT) has been used in the present work in a variety of

ways, to perform structural relaxations, to compare energies of different structures, to

explore the effects of changing carrier concentration, and to studying the electronic and

vibrational degrees of freedom of different materials. DFT remains one of the most robust

and versatile tools in the field of computational materials science, which is demonstrated

by the pivotal role DFT has played in each project discussed in this thesis.

2.2 Landau Theory

Landau theory is a phenomenological theory, meaning that the microscopic details

of the system, such as pairing interactions in a superconductor or dipole interactions

in a ferroelectric, are not considered. Landau theory is the theory of phase transitions

based on the appearance or disappearance of some element of symmetry. While the

presence or absence of a certain symmetry is discontinuous (there is no intermediate

state) the change of other related quantities, such as the energy, may be continuous.
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Figure 2.1: Landau Free Energy (a) Potential energy landscape of a second order
phase transition (b) Schematic of order parameter versus temperature (second order
phase transition) (c) Susceptibility versus temperature (second order phase transition)
(d) Potential energy landscape for a first order phase transition (e) Temerature de-
pendence of the order parameter (first order phase transition) (f) Susceptibility versus
temperature (first order phase transition)

Landau introduced the concept of the order parameter: a measure of order before and

after a phase transition. The order parameter is zero above some critical temperature and

takes on a finite value below the critical temperature. The central component of Landau

theory is the construction of the Landau free energy F , which is a function of the order

parameters relevant to the phase transitions of the system. According to Landau theory,

the stable state of the system is the state for which the F is minimized with respect to

the internal degrees of freedom given a set of external parameters.

A high-symmetry phase is assumed to exist in the phase diagram, typically at high

temperatures. In this high symmetry phase the order parameters of the relevant modes
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are zero. The free energy functional can be written as:

F = F0 + ∆F(ηi) (2.6)

In the vicinity of the phase transition, ∆F(ηi) is assumed to be small, and F0 does not

influence the phase transition. Since ∆F(ηi) is small, one can perform a Taylor series

expansion in powers of ηi. In the case of a one-dimensional real order parameter, the

Taylor series expansion of the Landau free energy will resemble:

∆F(ηi) = −ηH +
a

2
η2 +

c

3
η3 +

b

4
η4 + o(η5) (2.7)

Only terms allowed by symmetry will exist in the final polynomial expression. Linear

terms are not included unless there is coupling to an external field. It is imperative that

∆F is invariant by all symmetry elements of the high-symmetry group.

In this thesis, Landau theory is employed to model the structural phase transitions

in strontium titanate. These simulations will be discussed in detail in Chapter 3.

2.3 Metropolis Monte Carlo

The Monte Carlo method was initially developed in the 1940s at Los Alamos National

Laboratory as a means to evaluate intractable numerical problems such as multidimen-

sional integrals. In the context of materials science, the Monte Carlo method is a powerful

tool for providing thermodynamic information for a given system. It is based on the direct

evaluation of the ensemble average, and therefore does not yield dynamical information,

but can be extremely useful in calculating thermal averages of material properties. The

descriptions provided in this section follow closely those outlined in [36].

The objective of the Monte Carlo method is to simulate trajectories that represent a
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system at thermal equilibrium, where a trajectory is defined as a chronological sequence

of configurations. A typical Monte Carlo simulation considers a system with constant

temperature, volume, and number of particles. The thermal average of a quantity in the

canonical ensemble of such a system is given by:

⟨P ⟩ =

∑
α e

−Eα/kbTPα∑
α e

−Eα/kbT
=
∑
α

Pαρα (2.8)

In the above expression P is a quantity representing some property of the system and

the α subscript represents all possible configurations of the system. The probability of

finding the system in a specific configuration is given by:

ρα =
e−Eα/kbT∑
α e

−Eα/kbT
=
e−Eα/kbT

Q
(2.9)

where Q is the partition function:

Q =
∑
α

e−Eα/kbT (2.10)

The relative probability of the system being in one state α or another state β is:

ρβ
ρα

=
e−Eβ/kbT

Q

Q

e−Eα/kBT
= e−(Eβ−Eα)/kbT (2.11)

The energy difference, ∆Eα,β = Eβ − Eα, completely determines the relative proba-

bility between the states α and β.

In principle, evaluating the true thermal average of a system would require a list of

all possible configurations of the system. However, while many configurations will be

possible, very few are probable. In 1953 Metropolis et al. [37] developed an algorithm

that employs importance sampling; while we cannot know the true probability of the
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system being in a certain configuration, if we consider a sufficiently large and sufficiently

random sample of configurations, the probability we calculate from that sample will be

representative of the true probability

Using the Metropolis algorithm we begin in a starting configuration and make a trial

move to a new configuration. By considering the relative probabilities between the old

and new configurations, we decide whether the new configuration should be added to

our trajectory through the phase space. Let us begin in configuration i with energy

Ei. We perform a trial move to configuration i + 1 with energy Ei+1. We determine

whether i + 1 is added to our trajectory based on the ratio of probabilities between the

two states ρi+1/ρi = exp(−∆Ei,i+1/kBT ). Within the Metropolis algorithm, the trial

move is accepted or rejected based on the following criteria:

∆Ei,i+1 ≤ 0 accept since probability is 1

or

∆Ei,i+1 > 0 accept move with probability e−∆Ei,i+1/(kBT )

(2.12)

By performing many trial moves, a list of n configurations with energies En can be

generated with probability representative of the true probability. Therefore, the average

of a thermodynamic quantity P can be calculated as for a total number of m trial moves:

⟨P ⟩ =
1

n

m∑
α=1

Pα (2.13)

In this thesis, the Monte Carlo Metropolis algorithm is used in combination with a free

energy model developed using the prescription of Landau to simulate the structural phase

transitions in strontium titanate. The details of these simulations will be discussed in

Chapter 3.
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2.4 Lagrangian Mechanics

In addition to Newtonian and Hamiltonian mechanics, Lagrangian mechanics provides

an elegant framework for obtaining the equations of motion for systems of particles. The

key principle underlying this formalism is the principle of least action.

Principle of Least Action

The principle of least action states that the path of a particle between two points

in configuration space is the path that minimizes the action integral.

S =

∫ t2

t1

L(y, ẏ, t)dt (2.14)

In the formalism of Lagrangian mechanics, the action is the integral of the Lagrangian

over time, where the Lagrangian function (L) is defined as the kinetic energy (T ) minus

the potential energy (U) of the system.

L = T − U (2.15)

This Lagrangian function characterizes the state of a physical system. The Euler-

Lagrange equation, formulated from the calculus of variations, is the function that min-

imizes the action integral.

d

dt

(
∂L

∂ẍ

)
− ∂L

∂x
= 0 (2.16)

The trajectory of a system will evolve according to Eq.2.16. While Newtonian mechanics

sums over all forces in the system, Lagrangian mechanics offers a different formulation

based on energies instead of forces. Instead of considering the unwieldy vector equations

required by Newtonian mechanics, the Euler-Langrange equation simplifies the compu-

tational problem by considering energies in a generalized coordinate system. Lagrangian
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mechanics can also simplify the implementation of constraints and the consideration of

various symmetries.

In Chapter 3, Lagrangian mechanics is used to calculate the low energy phonon

bands in the ground state of strontium titanate. Instead of considering the motion of

all atoms in all three Cartesian directions, we consider the value of the overall polar and

antiferrodistortive distortions within a unit cell and solve the Euler Lagrange equation.

Using Lagrangian mechanics reduces the dimensionality of the problem from 15N , where

N is the number of atoms in the unit cell, to only four degrees of freedom.

2.5 Langevin Dynamics

Brownian motion, or the random motion of small particles, was described formally in

1827 by Thomas Brown. In 1908, Paul Langevin demonstrated that Brownian motion

could be described by an equation of motion called the Langevin equation, a stochastic

differential equation that describes the time evolution of a subset of degrees of freedom.

The following discussion of Langevin dynamics follows closely with that provided in [36].

m
d2r

dt2
= F− γ

dr

dt
+ Frand(t) (2.17)

In the above equation, r is the position of the particle, γ is a drag or friction coefficient,

m is the mass of the particle, and Frand(t) =
√

2γkBTR(t) is a random force term.

This stochastic noise term, Frand(t), typically describes the collision of a particles with

molecules of a surrounding fluid. The random variable R(t) is uncorrelated in time,

meaning that the random force at a given time t is unaffected by the force at any other

time. The form of this force is given by the fluctuation-dissipation theorem. The random

force must be drawn from a normal Gaussian distribution according to the central limit
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theorem.

The Langevin equation is a powerful tool for including temperature effects in diss-

apative systems. Modeling of complex systems with many particles can be simplified by

considering only a subset of the total degrees of freedom. For example, solvent molecules

in a solute can be modeled by considering the drag on the solute molecules and random

forces due to the thermal motion of the solvent molecules, ignoring the detailed motion of

each solvent particle. The faster, microscopic variables are encompassed in the stochastic

portion of the Langevin equation, while the macroscopic degrees of freedom that evolve

more slowly are simulated explicitly.

The presence of a dissipative force term, (−γ dr
dt

), has a dramatic effect on the dynamics

of the system. An object dropped in a vacuum, subjected only to gravity, will accelerate

until it hits the ground, while an object falling through a viscous fluid will quickly reach

a constant velocity. Therefore, a large damping coefficient can shorten the time required

to reach equilibrium.

In this thesis, Langevin dynamics is used to calculate the temperature-dependent

phonon spectral function of strontium titanate. The potential force term is derived from a

free energy model developed using Landau theory. Temperature effects, including through

the stochastic force term in the Langevin equation, allow us to model the frequency of

the polar phonon modes with respect to temperature in a large, disordered supercell.
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Polar Order in Strontium Titanate

3.1 Lattice Dynamics

At high temperatures, bulk SrTiO3 has a cubic structure with the space group Pm3̄m.

The unit cell contains five atoms and has a total of 3× 5 = 15 normal vibrational modes

comprised of 12 optical modes, and 3 acoustic modes. At the Γ point, there are four

triply degenerate T1u modes. Three of these four modes are associated with the polar

eigenvectors shown in Fig.3.1(a-c). The degeneracy of polar triplets is broken by energy

splitting of the longitudinal and transverse optical modes [6, 38]. Frequencies of the polar

modes are given in Tab.3.1.

The polar displacements at the Γ point are associated with cations moving in opposi-

tion to anions, which produces an electric dipole moment. Due to the coupling between

lattice distortions and the electric polarization, the polar phonon modes are subject to

long-range Coulomb interactions, and as a result, each triplet of polar modes splits into

one longitudinal optical mode with frequency ωL,j and a doubly degenerate transverse op-

tical phonon mode with frequency ωT,j. For the longitudinal mode, ions displace parallel

to the direction of wave propagation and parallel to the electric field. Therefore, it takes
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Figure 3.1: Eigenvectors of Polar Modes (a) Slater mode (b) Last mode (c) Axe
mode (d) Transverse optical modes where displacements occur perpendicular to the
direction of propagation. (e) Longitudinal optical mode where displacements occur
parallel to the direction of propagation. Figure adapted from [39, 38].

more energy to excite these modes, and the LO mode has higher energy. Schematics of

LO and TO phonon modes are depicted in Fig.3.1(d,e). The large LO/TO splittings in

SrTiO3 indicate the strong polar nature of this material.

Table 3.1: Frequencies of Polar Phonon Modes in SrTiO3. Adapted from [39]

.

TO Mode Frequency [meV] LO Mode Frequency [meV]
TO1 (1,11.3) LO1 21.3
TO2 21.7 LO2 58.7
TO3 67.4 LO3 98.1

The proximity to a ferroelectric-like transition in SrTiO3 is characterized by the di-

vergence of the dielectric function upon temperature lowering. The dielectric function

can be approximated by a generalized Lyddanne-Saches-Teller relation:

ϵp(ω, q) = ϵ∞

3∏
j=1

ω2
L,j − ω2

ω2
T,j − ω2

(3.1)

The frequency of the TO1 mode (ωTO1) is sensitive to factors like temperature, doping,

and electric fields, which can be summarized in the phenomenological equation:

ω2
T,1(q, T, E, n) = ω2

0 + (cT q)
2 + (γTT )2 + (γEE)2 + γnn (3.2)
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Which can be substituted into Eq.3.2. As temperature decreases, the static dielectric

function ϵ0 of SrTiO3 increases from 300 to 2 × 104 following Curie-Weiss behavior

ϵ0(T ) ∝ (T − To)
−1. This behavior signals a ferroelectric instability around T0 ≈ 36K.

However, the increase in ϵ0 saturates at this temperature instead of diverging, indicating

a transition from a classical to a quantum paraelectric, where an ordered polar state

is suppressed by quantum fluctuations. Methods for stabilizing polar order will be dis-

cussed in the next section. At 105 K, a triply degenerate T2u mode softens at the R-point,

leading to zone folding [40]. Below this transition, the soft TO1 mode has the irrep Eu.

Within the polar phase, the irrep of polar mode is A1g.

3.2 Stabilizing Polar Order

A polar transition can be induced through uniform epitaxial strain [41, 42, 43], plastic

deformation [44], or other methods including chemical substitution and optical excita-

tion [45, 46, 47, 48, 49, 50, 51]. As discussed in Chapter 1, superconductivity is enhanced

in proximity to the quantum critical point, as well as within the polar phase. A rigorous

understanding of the polar order is therefore essential in elucidating the superconduct-

ing pairing mechanism. The characteristics of the polar phase, including the space group

symmetry, the direction of the polar eigenvector, and the critical temperature of the tran-

sition will depend on the method used to induce the polar transition. Isotope substitution

with 18O can facilitate the condensation of the TO1 mode at 23 K, as the heavier oxygen

isotopes soften the phonon frequency. This leads to an orthorhombic low-symmetry space

group with a polarization vector along [110] and symmetry-equivalent directions, with a

quantum critical point at 35 % 18O substitution [45, 52, 53].

Exchange of Sr with isovalent Ca ions in Sr1−xCaxTiO3 leads to local electric dipoles

as the smaller Ca ions take off-center positions. Above a threshold concentration of
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Figure 3.2: Structural Transitions (a) High-temperature strained, centrosymmetric
structure (b) Transition to the tetragonal phase with antiferrodistortive rotations
occurs at ≈ 360 K in the strained system, compared to to 105 K in the bulk (c) The
polar transition to the low-temperature noncentrosymmetric structure occurs around
140 K in the strained system in the absence of dopants.

x = 0.002 , long-range polar order is stabilized below a Curie temperature of around 10

K, with a maximum Curie temperature of 27 K at x = 0.009 [46].

Room temperature ferroelectricity can be achieved through tensile strain of up to

2%. In systems under high levels of tensile strain with a polar vector along the [100]/[00]

directions within the orthorhombic mm2 space group. The formation of polar nan-

odomains at high temperatures are observed through experimental imaging techniques

and the results of molecular dynamics simulations [43]. In this work, we will focus on a

system under 1% biaxial compressive strain that transitions from the high-temperature

P4/mmm (Fig.3.2(a)) structure to the tetragonal I4/mcm structure (Fig.3.2(b)) at 360

K, and to the polar I4cm structure at 140 K (Fig.3.2(c)). The polarization vector is along

the [001] axis. In following sections we will define the different classes of polar transitions

and provide an overview of previous work characterizing the polar phase before discussing

our results.
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3.3 Classifications of Polar Phase Transitions

Polar phase transitions are generally categorized into one of two main classes: dis-

placive or order-disorder. The two types of ferroelectric phase transitions can be described

by the same Hamiltonian, with different limiting conditions on its parameters.

H =
1

2
α
∑

r⃗

u(r⃗)2 +
1

4
βu(r⃗)4 +

1

2
c
∑
r⃗,r⃗∗

(u(r⃗) − u(r⃗∗))2 (3.3)

Here, α < 0 and β > 0. The first term describes the motion of the A (cation) and

B (anion) ions against one another, i.e. the ferroelectric distortion within the unit cells.

The second term describes the interaction of intersite A atoms, i.e. the coupling of dipoles

in neighboring cells. The coefficient c can be thought of as the “stiffness” of the force

between neighboring sites. The potential acting a single A atom is:

U =
1

2
(α + 6c)u(r⃗o)

2 +
1

4
βu(r⃗o)

4 (3.4)

In a displacive transition |α| << c, indicating that the strength of the interactions

between neighboring dipoles is large compared to the potential well. Individual A atoms

move in a potential well with a single minimum, the value of which shifts approaching the

transition temperature, Tc. The displacive Hamiltonian is expressed in terms of a local

normal coordinate which describes the magnitude of the uniform ferroelectric distortion

at a given time. In the order-disorder limit |α| >> c, the potential barrier is high relative

to interactions, so each atom occupies one of the two minima, even at high temperatures.

The order-disorder Hamiltonian can be reduced to the Ising model [54]. Since the relative

importance of these contributions depends on the ratio of continuous parameters, there

exist some intermediate values of these coefficients where the distinction between the

two types of transitions is no longer well-defined [55]. A polar transition with mixed
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Figure 3.3: Two Main Classes of Polar Transitions (a) In a displacive transition
above Tc, all unit cells are centrosymmetric. (b) For an order-disorder transition above
Tc, unit cells are randomly polarized up or down. Polar distortions exist but there is
no global polar order. (c) In the ground state below Tc, all dipole moments align.

character is observed in SrTiO3. Scattering experiments show a soft phonon mode whose

frequency decreases with temperature (displacive character), while imaging techniques

show polar nanodomains (order-disorder character). The data supporting each type of

phase transition in SrTiO3 will now be presented, followed by a discussion of how they

may coexist.

3.3.1 Displacive Characteristics in STO

Scattering experiments have measured the temperature dependence of the lowest

energy TO phonon mode. Only one study has provided data showing complete softening

of the mode (ω → 0 at Tc) in ferroelectric samples [56], while others show incomplete

softening [57] [58] [46] [53], where the frequency plateaus at a finite value approaching

Tc. A summary of this evidence is given in Tab.3.2.
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Table 3.2: Soft Mode Data

Material Technique References

Neutron [59] [6] [60] [61]
Bulk STO Infrared [6] [62]

Raman [63][64] [65]
Computation [66] [67]

Raman [68] [69]
Thin Films Infrared [70]

Dielectric Permittivity [70]
THz Time Domain [71]

Raman [72]
Doped STO Neutron [72]

Computation [73] [74]
SrTi18O16

x O1−x Raman [56] [57] [53]
Raman [46]

Sr1−xCaxTiO3−δ Computation [75]
Raman [58]
Infrared [76]

Strained STO Dielectric Permittivity [58] [77] [78]
Neutron [79]

Computation [80] [81] [82] [75]

In bulk SrTiO3, the frequency of the TO1 mode decreases following Curie-Weiss type

behavior down to low temperature where it saturates around 1 meV [60]. It is assumed

that this behavior is due to quantum fluctuations which prevents complete softening of

the mode, however, clusters of polar order could also result in the same effect.

In thin films, the soft mode hardens significantly compared to bulk single crystals.

This discrepancy is likely due to formation of local polar regions with reduced grain size

in thinner films [70] [68] [71] [69].

Below the AFD transition, the TO1 mode has the irreducible representation (irrep)

Eu, which is infrared active but can be observed by Raman spectroscopy due to local

symmetry breaking. The intensity of the polar mode can be enhanced by an applied

electric field [69]. Below the ferroelectric transition temperature, the irrep of the polar
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mode is A1 and the mode is Raman active [56].

The effect of free carriers on the soft mode is explored in [72], where the temperature

dependence of the TO1 mode was measured using Raman spectroscopy for various levels

of doping via oxygen reduction. Increasing free carriers leads to the hardening of the

TO1 mode due to the influence of free electrons, local changes in potential, and changes

in potential due to long-range interactions. A-site La-doped and B-site Nb-doped STO

also display soft mode hardening as measured by terahertz time-domain spectroscopic

ellipsometry [83]. Hydrostatic pressure [77] [78] also has the effect of hardening the soft

mode and suppressing ferroelectricity.

Mode softening, on the other hand, can be achieved by inducing ferroelectricity. In

a classic displacive ferroelectric the TO1 mode would be expected to soften completely

(ω → 0 at Tc). As discussed above, only one study observed complete softening while

others saw softening. Whether the frequency of the TO1 mode decreases completely

to zero is largely irrelevant in terms of the superconducting pairing mechanisms that

involve the soft mode. The same qualitative effects would be seen for complete versus

incomplete softening. Theories for pairing mechanisms involving the soft phonon mode

will be discussed in detail in Chapter 4.

3.3.2 Order-Disorder Characteristics in STO

Despite the broad assumption that SrTiO3 is a classic displacive ferroelectric, there

are also experimental and computational studies showing the existence of polar nan-

odomains in SrTiO3 films at high temperatures. A summary of this evidence is given

in Tab.3.3. Early dielectric permittivity [84] [85] [86] and birefringence experiments [87]

[88] confirmed the relaxor-type behavior of Sr1−xCaxTiO3−δ (STO:Ca), where off-center

calcium ions lead to domain formation.
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Quadrupole NMR experiments also showed off-center titanium atoms at high tem-

peratures in STO18 [89] [90]. Nanodomains have been observed using piezoelectric force

microscopy in SrTiO3 samples under 2% tensile strain, and accompanying molecular

dynamics simulations showed a double-peaked histogram of the polar vector at high

temperatures, indicative of oppositely ordered domains [43].

Table 3.3: Nanodomain Data

Material Technique References

Bulk STO Computation [91]
STO18 Quadrupole NMR [89] [90]

Dielectric Permittivity [84] [85] [86]
Sr1−xCaxTiO3−δ Birefringence [87] [88]

Raman [88]
PFM [92] [43]

Strained STO HAADF-STEM [93] [94] [95]
Computation [43] [96] [74]

More recently, nandomains have been observed by HAADF-STEM imaging in both

strained and unstrained films at room temperature. The possible relationship between

polar clusters and superconductivity will be discussed in Chapter 4.

It should be noted that in the soft mode experiments for STO18 discussed previously,

the polar Eu mode in the Raman spectra was only visible due to local symmetry breaking,

implying the existence of precursor order [69] [56]. It was also suggested that the soft

mode hardening in thin films compared to bulk SrTiO3 was due to reduced domain size

[71] [68] [70].

The technical challenges in measuring the size of the nanodomains down to low tem-

peratures make it difficult to experimentally study domain dynamics. The statistical

mechanical methods implemented in this work allow for the simulation of domains across

the phase transition at various doping levels.
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3.3.3 A More Complex Picture

Considerable experimental evidence exists both for a ferroelectric soft mode and for

the presence of polar nanodomains. The important question remains as to which dy-

namics are key in the superconducting pairing mechanism. We must also examine how

phonons and polar domains coexist, as phonons are technically defined in the context

of a perfect crystal. Displacive transitions may take on order-disorder character in the

critical region as the soft mode begins to condense inhomogeneously, and ordered clus-

ters may form before percolating into the uniform low-energy state. Likewise, the growth

and ordering of domains in an order-disorder type transition may involve fluctuations of

phonon-like excitations with finite lifetimes. Simulations of both the phonon spectrum

and polar order using the same model parameters will be useful in gaining a more holistic

understanding of the complex dynamics of mixed character phase transitions.

3.4 Characterizing Polar Order in Strontium Titanate

1To investigate the nature of the polar order in strontium titanate, we develop a

simplified free energy model that only includes the degrees of freedom necessary to cap-

ture the relevant physics in a biaxially compressively strained system. Our model can

calculate the energies of large, disordered systems with near DFT-level accuracy. We

simulate the ferroelectric and antiferrodistortive phase transitions using the Monte Carlo

method and discuss the coupling between various order parameters. Finally, we assess

the character of the polar transition, which we find to be neither strictly displacive nor

order-disorder.

1The contents of this section are adpated from [97]: “Modeling polar order in compressively strained
strontium titanate,” Alex Hallett, and John W. Harter, Physical Review B, 106, (2022): 214107.
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3.4.1 Computational Procedure

Before simulating large-scale systems, it is necessary to first find the ground state

strained structure at zero temperature. Through a series of structural relaxations, the

ground-state structure of SrTiO3 was calculated by DFT as implemented in the Vienna ab

intio simulation package (vasp) [98, 99, 100]. We used the supplied projector-augmented

wave (PAW) potentials [101] within the generalized gradient approximation (GGA) and

Perdew-Burke-Ernzerhof (PBE) scheme [102]. Electronic wave functions were expanded

in a plane-wave basis set with a kinetic energy cutoff of 800 eV, and the reciprocal space

was sampled using an 8 × 8 × 8 Γ-centered k-point mesh for a single 5-atom unit cell.

The k-point density was appropriately scaled for any supercell calculations.

After fully relaxing the cubic structure, the a and b lattice parameters were decreased

to 99% of their equilibrium values to replicate the effect of compressive epitaxial strain.

After obtaining the equilibrium c-axis lattice parameter in the strained centrosymmetric

state, iterative calculations were performed which varied the rotation, polarization, and

additional elongation of the c-axis until the energy was minimized. We confirmed the

stability of the ground state structure by calculating the phonon dispersion using the

finite displacement method within the phonopy code [103] and verifying the absence of

imaginary frequencies. The phonon dispersions of the strained, centrosymmetric refer-

ence structure and the polar structure with in-plane polarization components included

are shown in Fig. 3.5. We found it was necessary to include slight in-plane polarization

displacements to eliminate small imaginary frequencies at the Γ-point. However, the in-

plane components of the polarization were neglected in subsequent calculations as they

become insignificant at any finite temperature due to the shallowness of their potential

well. After calculating the phonon dispersion in Fig. 3.5(b), the structure was relaxed

further, without in-plane polarization components since they become insignificant at fi-
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Polarization                     Rotation                      Elongation 

Figure 3.4: Structural distortions in SrTiO3. Three main order parameters are
considered in our model: the polarization along the c-axis, in-plane antiphase octahe-
dral rotations, and the elongation of the c-axis.

Table 3.4: Ground state distortions.

Ion Type & Direction Displacement (Å)
Titanium (ẑ) 0.035

In-Plane Oxygen (ẑ) −0.100
Out-of-Plane Oxygen (ẑ) −0.112

Rotation (x̂/ŷ) 0.172
Elongation (ẑ) 0.051

nite temperature compared to the out-of-plane polarization. The final ground state was

lower in energy than the structure shown in this dispersion. Due to the arduous process

of finding the correct in-plane polarization components to eliminate tiny imaginary fre-

quencies at the Γ-point, an optimized dispersion was not calculated for the fully relaxed

ground-state structure. The non-analytical correction (NAC) term was used in phonopy

to account for energy splitting of the transverse-optical and longitudinal-optical modes.

The progression of the structural parameters at different stages of relaxation is sum-

marized in Tab.3.5. The increase in c-axis elongation is presented in Tab.3.6, and the

ratio of the in-and out-of-plane oxygen displacement to the titanium displacement is

shown in 3.7. Due to the changes in ratio of titanium to oxygen displacements, the

movements of the ions comprising the overall polar eigenvector were treated as separate

degrees of freedom.
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Figure 3.5: Phonon Dispersion (a)Phonon dispersion for the strained, centrosym-
metric reference state calculated using DFT and Phonopy software using the finite
displacement method. (b) Phonon dispersion of structure close to the ground state.
This structure includes in-plane polarization displacements to eliminate small imagi-
nary frequencies at the Γ-point

Table 3.5: Ionic displacements for the rotation and polarization displacements.

Structure Ti (Å) Oin (Å) Oout (Å) R (Å/°) ∆E (meV)
Cubic – – – – –

Strained – – – – –
Polarized 0.0169 -0.0988 -0.0972 – -8.0237

Polarized/Rotated 0.0303 -0.0675 -0.0726 0.1712/5.0181 -12.5920
Pol./Rot./Elongated 0.0352 -0.1001 -0.1119 0.1722/5.0484 -17.7073

The order parameters in subsequent discussions are defined by the displacements of

the ions in the ground state structure relative to the strained, centrosymmetric reference

state. Schematics of these orders parameters are shown in Fig. 3.4, and their numerical

values in the ground state are given in Table 3.4. With this definition, the individual

order parameter amplitudes vanish in the reference state and are equal to exactly one in

the ground state, which corresponds to a ground state polarization of 0.294 C/m2.

The net polarization order parameter is calculated as the component of the titanium

and oxygen ion displacement vector along the direction of the ground state displace-

ment (ẑ) comprised of the three components: titanium (Ti), axial in-plane oxygens

(Oin,1, Oin,2), and apical out-of-plane oxygen (Oout) displacements. The squared frac-
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Table 3.6: Change in c-axis ∆c from the reference state.

Structure c-axis (Å) Increase from cubic (%) c/a ratio ∆c (Å)
Cubic 3.9389 – – –

Strained 3.9647 0.6530 1.0167 0
Polarized 3.9647 0.6530 1.0167 0

Polarized/Rotated 3.9647 0.6530 1.0167 0
Pol./Rot./Elongated 4.0154 1.9403 1.0297 0.0507

Table 3.7: Ratios of oxygen displacements to titanium displacement.

Structure Oin/Ti Oout/Ti Oin/Oout

Cubic – – –
Strained – – –
Polarized -5.8963 -5.8027 1.0161

Polarized/Rotated -2.2281 -2.3950 0.9303
Pol./Rot./Elongated -2.8443 -3.1780 0.895

tional ground state displacements are multiplied by the amplitude of each degree of

freedom and then normalized by dividing by the sum of the squared displacements. Re-

call that the amplitude of the order parameter is Xdisp/XGSD, and thus the ground state

displacements must be squared in the numerator. The resulting expressions ensure that

the order parameter is equal to one in the ground state, and equal to zero in the absence

of polar distortions.

P =
Ti2GSD(TiOP ) +O2

in,GSD(Oin,1) +O2
in,GSD(Oin,2) +O2

out,GSD(Oout)

Ti2GSD + 2(O2
in,GSD) +O2

out

(3.5)

The rotation order parameter is defined as the absolute value of the displacement of

the axial oxygen ions along (x̂, ŷ), accounting for averaging between neighboring unit

cells. The ground-state structure has an octahedral rotation angle of 5.04◦. The values

Rx within Eq.3.6 correspond to the amplitude of the order parameter (Rdisp/RGSD) in

different unit cells.
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The full rotation order parameter is given by:

Rn =
1

2

(
R1,n −R1,n+δ=100

2
+
R2,n −R2,n+δ=010

2

)
(3.6)

The elongation degree of freedom describes the lengthening of the c-axis lattice param-

eter from its reference state value of 3.965 Å (a 0.65% increase from the cubic structure)

to its ground state value of 4.015 Å (a 1.9% increase from the cubic structure). The

in-plane lattice parameters remain constant at 3.900 Å for all calculations.

3.4.2 Free Energy Model

DFT is limited due to its inability to account for thermal effects and the prohibitive

computational cost of large, disordered systems. To simulate the thermal phase tran-

sitions in SrTiO3, we construct a simple model that can efficiently incorporate both

temperature and disorder. Following the prescription of Landau, we approximate the

free energy of the system by a Taylor series expansion about the relevant order parame-

ters, which yields a linear sum of invariant polynomials. We consider five total degrees of

freedom in formulating the free energy expression: the three components of the polariza-

tion (titanium and in- and out-of-plane oxygen ions), the octahedral rotations, and the

additional elongation of the c-axis in the ground state relative to the reference state. We

used the isotropy software suite [104, 105] to calculate invariant polynomials and find

all symmetry-allowed free energy terms up to fourth-order in rotation and polarization

and included coupling to the elongation up to linear order. Coupling of order parameters

between neighboring sites (26 neighbors per site) was also included. The final expression

for the free energy consisted of a polynomial containing 109 distinct terms.

In the harmonic spring model of a lattice with a quadratic interatomic potential, the
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total potential energy of the lattice is given by:

V =
∑
i′,n′

Kα,βϕ
2
i′,n′ (3.7)

Where Kα,β is a 3N × 3N matrix of interatomic force constants where N is the total

number of ions, the indices (α, β) correspond to the cartesian directions (x, y, z), and

ϕi′,n′ is the ionic displacement of ion i in unit cell n. For a large, disordered system,

the matrix Kα,β is extremely large. In our model, we greatly reduce the phase space by

defining ϕn as the amplitude of an order parameter (as defined in Eq.3.5 and Eq.3.6) in

a given unit cell . The potential energy including the coupling to nearest neighbors is

given by:

V =
∑
n,δ

aδϕnϕn+δ (3.8)

Where n represents a sum over all unit cells, δ indicates the high symmetry direction of

the nearest neighbor, and aδ is the force constant along δ and all equivalent directions.

Coupling to the 26 nearest neighbors in the 6 high-symmetry directions was considered.

The fully expanded form of Eq.3.8 is:

V = a000
∑
n

ϕ2
n + a100

∑
n,δ

ϕnϕn+δ + a001
∑
n,δ

ϕnϕn+δ...

...+ a101
∑
n,δ

ϕnϕn+δ + a110
∑
n,δ

ϕnϕn+δ + a111
∑
n,δ

ϕnϕn+δ

(3.9)

For brevity, a shorthand for Eq.3.7 can be used:

V =
∑
n,δ

aδϕnϕn+δ → ax−(x+5)ϕ
2 (3.10)

The coefficients ax are numbered from x = 0 − 109 to reach the total terms in the free
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Table 3.8: Types of calculations and the number of calculations performed.

Type Count
Random 1863
Uniform 1265

Specific Distortions 514
4 × 4 × 4 Supercerll 131

Total 3773
Test 100

energy polynomial. A full list of the polynomial terms in the model is given in Appendix

A. Note that even though the terms with higher than quadratic order do not take nearest

neighbor coupling into account, the averaging between oxygens is still accounted for, as

shown here:

R4
n =

1

2

[(
R1,n −R1,n+δ=100

2

)4

+

(
R2,n −R2,n+δ=100

2

)4
]

(3.11)

To find the coefficients in the free energy expression, we used DFT to calculate the

energies of 2×2×2 supercell configurations, with random values chosen for every degree

of freedom in each unit cell. In addition to these random calculations, we also included a

set of specific uniform distortions. Larger 4 × 4 × 4 supercells were also incorporated to

determine if the exclusion of longer-range interactions affected the accuracy of the model.

Specific configurations that lead to divergences in the model energy were also included

to train the model to accurately calculate their energies and eliminate divergences to

negative energies at finite temperature. A total of 3,773 configurations were considered.

To further verify the accuracy and generality of our model, we also tested a set of 100

random 2 × 2 × 2 configurations that were not used to calculate the model parameters.

The error in the calculated energies for these test structures was comparable to that of

the training data set. The different types of calculations are summarized in Tab.3.8.

We solved for the values of the coefficients by minimizing the error between the model
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Figure 3.6: Verification of the free energy model. (a) A plot of the energies
of 3,873 configurations calculated by our model versus the DFT-calculated energies.
The model energies are in excellent agreement with DFT, with a root-mean-square
error of 0.21 meV/atom. The inset shows the error distribution as the frequency of
the error versus the error itself, which is defined as the discrepancy per atom between
the DFT and model energies. (b) The 4 low-energy phonon bands (3 polarization, 1
rotation) calculated using our phonon dispersion expression are overlaid on the disper-
sion calculated using phonopy for the strained, centrosymmetric reference structure,
showing that the simple model is able to capture the relevant instabilities with near
DFT-level accuracy.

and DFT energies using the general formulat for least-squares linear regression given by:

M = (AAT )−1ATE (3.12)

Here M is the 109×1 vector of the model parameters, A is a 3773×109 matrix where each

row represents a different configuration calculated by DFT and each column represents a

term in the polynomial. The vector E is the 3773× 1 vector of DFT energies. The order

parameters were randomly or uniformly varied in different ways to ensure the physically

relevant distortions were captured by the model and that there was an even distribution

of configurations over a large range of energies. In order to eliminate divergences to large

negative energies for physically irrelevant structures, Eq.3.12 was modified to weight

certain configurations corresponding to specific instabilities more heavily, and impose

certain constraints on the oxygen degrees of freedom.
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The full expression to solve for the model coefficients, including the constraints and

weighting matrix is:

M = inv[AtWA]AtWE − inv[AtWA]Q ∗ inv[Qtinv[AtWA]Q] ∗ (Qtinv[AtWA]AtWE − C)

(3.13)

The weighting matrix W is a 3773 × 3773 square diagonal matrix whose elements corre-

spond to the weighting value of a particular configuration. The matrices Q and C place

constraints on the oxygen ions. As previously discussed, oxygen ions are shared between

neighboring cells, so the amplitudes of the degrees of freedom between these unit cells

must be averaged. The model must calculate the same energy for a configuration in which

the oxygen components of the polarization order parameters have high, out-of-phase am-

plitudes (or the rotation order parameter has high in-phase amplitudes) as it does for

configurations where all amplitudes are zero. We impose a set of 32 constraints where

the ion motion must equal zero at certain wavevectors. The matrix Q in Eq.3.13 has

dimensions of 109 × 32, corresponding to the number of terms in the polynomial (rows)

and the number of constraints (columns), and C is a 32×1 vector, for the 32 constraints.

In this case, since the oxygen amplitudes must average to zero at certain wavevectors, C

is a vector of zeros.

To solve for the entries in the Q matrix, we begin with the quadratic potential energy

terms for the degrees of freedom which need to be constrained (Oin, Oout, R). We also need

to include terms in which these degrees of freedom couple to other degrees of freedom or

one another. At high symmetry points where the motion of the oxygen ions must average

to zero, we set the energy contribution of these polynomial terms to zero. We then use

a plane wave ansatz for all ϕ and input the relevant values for the 26 relevant nearest

neighbor vectors δ and the relevant wavevector (q).
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Figure 3.7: Histogram of errors The root mean square error and error distributions
are shown for the different supercell constructions plotted in Fig. 3.6

Plugging in the plane wave ansatz to Eq.3.14 and simplifying we have:

0 = a000 + a100
∑
δ

e−iq·δ + a001
∑
δ

e−iq·δ + a101
∑
δ

e−iq·δ + a110
∑
δ

e−iq·δ + a111
∑
δ

e−iq·δ

(3.14)

For a given term in the polynomial (row of Q matrix), and a given constraint (column

of Q matrix), the values of
∑

δ e
−iq·δ will give the corresponding Q matrix element. The

full list of constraints is given in Appendix A.

In Fig. 3.7, the error distribution of the various supercell constructions plotted in

Fig. 3.6 of the manuscript are compared. As expected, uniform distortions have the

lowest error, while the randomly distorted supercells have the same general error dis-

tribution, but less sharply peaked near zero error. The test configurations, which were

randomly constructed supercells not included in calculating the model parameters, were

well-approximated by the model. The larger supercells do have higher error, possibly

due to domain walls of the rotation order parameter which cannot occur in the smaller

supercells, as well as the fact that next-nearest neighbor interactions are not considered.

While the error of the 4 × 4 × 4 supercells deviates from the model energies at higher
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energies, configurations close to the ground state, which are most important in our sim-

ulations, are still well approximated. For instance, if considering only those 4 × 4 × 4

configurations within 35 meV of the ground state energy, the RMS error is 0.175, which

is comparable to the error of the random distortions of smaller supercells.

Finally, we calculated the phonon dispersion of our free energy model and compared

it to the dispersion calculated by phonopy for the strained, centrosymmetric reference

structure. Figure 3.6(b) compares the two phonon dispersions. Our model does not

include all phononic degrees of freedom, and we therefore do not expect to accurately

capture the high frequency bands. Instead, by using a simple model with a significantly

reduced phase space volume, we are able to capture the relevant structural instabilities

in the low energy phonon bands with near DFT-level accuracy.

Phonon dispersions are typically calculated by solving for the eigenvalues of the

3N × 3N dynamical matrix. We simplify the computational problem by considering

the amplitude of the polarization vector of the unit cell along ẑ and the displacements of

the oxygen ions in the rotations along x̂ and ŷ instead of considering the motion of every

ion in all directions. To accomplish this, we use Lagrangian mechanics to work in a gen-

eralized coordinate system, and solve the Euler-Lagrange equations for the wavevector

dependent frequency expressions. The full derivation of the phonon model is shown in

Appendix A.

3.4.3 Zero-Temperature Calculations

After confirming the accuracy of the model, we used it to investigate the coupling

between the polarization (P ), rotation (R), and elongation (C) order parameters at zero

temperature. These results are shown in Fig. 3.8. For each panel, the amplitude of a

single order parameter (X) was fixed while the other order parameter (Y ) was varied to
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Figure 3.8: Coupling between order parameters. Dependence of the polarization
(P ), rotation (R), and elongation of the c-axis (C) on one another through minimiza-
tion of the free energy. The axes are unitless and correspond to the normalized order
parameters described in the main text. (a) The dependence of R (top) and C (bottom)
on P . R is completely suppressed as P increases, while C becomes much larger with
increasing P . (b) Dependence of P (top) and C (bottom) on R. P is suppressed while
C increases slightly with larger R. (c) Dependence of P (top) and R (bottom) on C.
P and R both increase with increasing C, although P has the strongest dependence
on C.

minimize the free energy. The value of Y at this minimum is plotted in the figure for both

the reference state and ground state values of the third order parameter (Z). A total

of six combinations of X and Y are possible, and each pairing was explored. As shown

in Fig. 3.8(a), increasing the polarization amplitude suppresses the rotation entirely and

dramatically increases the elongation. When the rotation is increased [Fig. 3.8(b)], po-

larization is moderately suppressed and there is a slight elongation of the c-axis. Elon-

gation [Fig. 3.8(c)] enhances both polarization and rotation, but the increase in P is

much greater than the increase in R. In general, the change in Y (X) is approximately

the same for Z = 0 and Z = 1, but the overall amplitude is shifted in some cases. The
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exception to this rule is that P (R) decreases faster when C = 1 compared to C = 0. In

summary, rotation and polarization are negatively correlated, although P suppresses R

more strongly than R suppresses P . Elongation is positively correlated with both polar-

ization and rotation, but the positive correlation between C and P is more significant

than between C and R.

In addition to examining the coupling between order parameters, we performed calcu-

lations to determine the stability of polar domains. We found that abrupt domain walls

between two oppositely oriented domains have a significant energy costs. It can be ener-

getically favorable, however, for polar domains to form within an unpolarized reference

state, which is likely to exist (at least on average) at temperatures above the ferroelectric

transition. We performed zero-temperature calculations for clusters of varying dimen-

sions to explore the energetics of domain formation within an unpolarized background.

Clusters were embedded in an unpolarized supercell for two types of systems: one without

octahedral rotations (R = 0), representing a system before the AFD transition, and one

with rotations (R = 1) to emulate the system after the AFD transition. The elongation

of the c-axis occurs concomitantly with the ferroelectric transition, so C = 0 in both

cases. Inside the cluster, the magnitude of P was set to the value which minimizes the

energy for a homogeneous system with the relevant amplitudes of R and C.

3.4.4 Monte Carlo Simulations

To incorporate temperature into our model, we used the Monte Carlo Metropolis

algorithm to simulate the ferroelectric and AFD phase transitions with our free en-

ergy expression. We considered temperature-dependent fluctuations of the five separate

degrees of freedom (the three components of the polarization order parameter, octahe-

dral rotations, and the global elongation of the c-axis) for a 16 × 16 × 16 supercell.
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Figure 3.9: Stability of polar clusters. (a) Energy versus cluster size for N×N×N
polar domains embedded in an unpolarized background with C = 0 throughout the
system and for both R = 0 (orange curve) and R = 1 (purple curve). (b) Map of
stable cluster dimensions (negative cluster formation energies). The value of N for
which the energy of an M ×M ×N cluster becomes negative is plotted versus M .

Thermally-averaged order parameters are plotted versus temperature in Fig. 3.10(a,b).

The transition temperatures for the ferroelectric and AFD transitions for our 1% com-

pressively strained system were 280 K and 540 K, respectively.

We simulate the phase transition from low to high temperature. Within each iteration

of the Metropolis algorithm, a separate trial move is made for each of the five degrees of

freedom (DOF). Each trial move consists of adding random fluctuations of the DOF to

each unit cell. The energy of the new configuration is calculated to determine whether the

trial will be accepted or rejected. The step size of the fluctuation was adaptively adjusted

to ensure an acceptance ratio of approximately 0.5. Acceptance rates for each degree

of freedom are tracked separately, and each degree of freedom has its own adaptively

updated fluctuation value. The average order parameter over all unit cells is calculated

and stored for each DOF in every iteration. Iterations before reaching equilibrium are

ignored. The final value of the order parameter at each temperature step is averaged
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over millions of Monte Carlo iterations after ignoring the pre-equilibrium runs. Note

that though we are individually updating the three separate DOF that comprise the

polarization, only the global polarization is considered in the determination of Tc. The

averaging of oxygen ions for both the rotation and polarization order parameters is taken

into account in the Monte Carlo simulations by averaging between different unit cells as

previously described.

Figure 3.10: Simulation of thermal phase transitions. (a) The value of the
c-axis lattice constant versus temperature. From low to high temperatures, the lattice
constant decreases rapidly across the ferroelectric transition, then increases slightly
due to thermal expansion. (b) The rotation and polarization order parameters plot-
ted versus temperature. The ferroelectric transition occurs at 280 K and the AFD
transition occurs at 540 K. The slight kink in the rotation curve at the polarization
transition is due to coupling between the order parameters. (c) The ratio of the in-
and out-of-plane oxygen displacement versus temperature, which decreases towards
the ferroelectric transition. (d) Ratios of the oxygen to titanium displacement versus
temperature. The ratio for in-plane oxygen atoms increases while that for out-of-plane
oxygen atoms decreases slightly towards the polar transition. (e) Representative snap-
shot of the polarization order parameter in the xy-plane, showing polar clusters on
the order of several unit cells. (f) Snapshot of the polarization order parameter in the
xz-plane showing dominant correlations along the c-axis.
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Table 3.9: Comparison of room temperature lattice parameters and transition temperatures.

Type ϵ∥ (%) ϵ⊥ (%) a (Å) b (Å) c (Å) TFE (K) TAFD (K) ∆c (Å) Ref.
Comp −1 1.04 3.900 3.900 3.98 280 540 0.035 [97]
Comp 2 – 3.934 3.857 3.834 400 – – [43]
Comp −0.8 – – – – 110 320 – [108]
Exp −1.6 1.24 3.842 – 3.953 210 510 0.008 [107]
Exp −0.92 0.71 3.869 – 3.933 155 370 0.004 [107]
Exp −0.9 0.8 – – – 140 360 0.005 [109]

Near the transition temperature, finite size effects are evident in the plots of the

average order parameter versus iteration number, and the system can flip from a positive

value of the order parameter to a negative one. After several sign flips of the order

parameter, we assume the order parameter will average to zero with infinite iterations.

Temperature steps above the phase transition are not plotted in Fig. 3.10.

The influence of the DFT-calculated c-axis should be considered when evaluating the

accuracy of our transition temperatures. It is well-known that while the LDA exchange-

correlation functional underestimates the lattice parameters, the GGA functional (used in

this work) overestimates them [106]. Table 3.9 compares our results to other experimental

and computational studies of strained films. Shown are the room-temperature experi-

mental and computational lattice parameters, ferroelectric (TFE) and antiferrodistortive

(TAFD) transition temperatures, as well as the elongation of the c-axis in the ground state

compared to the room-temperature phase (∆c). The room-temperature c-axis lattice con-

stant in our simulation is approximately 3.98 Å, with an out-of-plane strain (ϵ⊥) of 1.04%.

Experimental values of TFE and TAFD for a sample with c = 3.953 Å and ϵ⊥ = 1.24 are

210 K and 510 K, respectively [107]. Given the overestimation of the lattice parameters

by DFT, our transition temperatures approximately align with experimentally expected

values for films with similar ϵ⊥.

A possible solution to the overestimation of the c-axis lattice constant could be pro-
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vided by the strongly constrained and appropriately normed (SCAN) functional, which

has been shown to give accurate energies and structural parameters for perovskite ox-

ides [110]. In addition, the discrepancy in the transition temperatures could be due to

the exclusion of anharmonic coupling effects of the low energy bands with higher energy

phonon bands of the same symmetry. We also acknowledge that previous studies have

found long range dipole-dipole interactions to be important, although they are compu-

tationally expensive to consider [111].

3.4.5 Evaluating Hamiltonian Parameters

In addition to simulating the thermal transition, we calculated the spatial correlation

functions and probability distributions of the order parameters. The spatial correlation

of the polar order parameter is defined as:

C(δ) =
∑
i

pipi+δ − ⟨pi⟩2

⟨p2i ⟩ − ⟨pi⟩2
, (3.15)

where pi is the value of the polarization at site i and the vector δ indicates the distance

and direction to the neighboring unit cell at site i+ δ. We find the strongest correlations

are in the [001] direction. Figure 3.11(a) shows the correlation function along the [001]

direction at several temperatures across the transition. Correlations are strongest at

290 K just above TFE as random thermal fluctuations form domains that percolate into

an ordered state.

The correlation lengths plotted in Fig. 3.11(b) were extracted by fitting the correlation

functions to an exponential C(δ) = exp(−δ/L). The correlation length (L) is expected

to diverge near the transition temperature. Finite-size effects in our simulation, however,

limit this divergence, and C(δ) instead is found to approach a constant value as the

spatial correlations exceed the system size. The maximum correlation length occurs just
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Figure 3.11: Spatial correlation of the polar order. (a) Calculated correlation
functions, as defined in Eq. 3.15, versus δ ∥ [001] for various temperatures across the
transition. (b) Correlation lengths extracted from the correlation functions for 5 high
symmetry directions.
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Figure 3.12: Histograms of the polar order parameter. Probability distributions
for the polarization order parameter at various temperatures throughout the transi-
tion.
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above the transition, with a value of 1.5 unit cell lengths, in accordance with the small

domains visible in Fig. 3.10(e,f).

Histograms representing the probability distribution of the polarization order param-

eter at several temperatures across the transition are plotted in Fig. 3.12. The histograms

are normalized such that the area under each curve equals one. The peaks shift from one

for T < TFE to zero for T > TFE. In a displacive transition, the probability distribution

is sharply peaked at a single value that shifts with temperature. For an order-disorder

system below TFE we expect a double-peaked distribution with no amplitude where the

order parameter equals zero.

Both experimental [42] and computational studies have found the ferroelectric transi-

tion in SrTiO3 to have signatures of both order-disorder and displacive character. Com-

putational studies using molecular dynamics to simulate phase transitions in strained

SrTiO3 have found double-peaked probability distributions with non-zero amplitude at

zero polarization, indicating mixed displacive and order-disorder character [43, 108]. Our

simulations do not exhibit this behavior. Given significant differences in the models, sim-

ulation techniques, DFT parameters, and the amplitude and direction of applied strain,

it is challenging to reconcile this difference. Nevertheless, our high-temperature polar-

ization histogram is sufficiently broad to indicate a mixed-character transition, and thus

we are in qualitative agreement with the conclusions drawn from prior studies.

To quantify the displacive versus order-disorder character more precisely, we com-

pared the relative strength of the single-site potential barrier and the intersite interac-

tions. For displacive transitions, the coupling strength between neighbors outweighs the

potential barrier, while the reverse is true in the order-disorder limit [112, 54].
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Consider the general energy expression

H =
∑
i

(
−A

2
p2i +

B

4
p4i

)
+
C

2

∑
i,j

(pi − pj)
2 , (3.16)

where pi represents the polarization in unit cell i. The first and second summation terms

in Eq. 3.16 give the energy contribution of the single-site potential and intersite inter-

actions, respectively. By examining the relative magnitudes of the A and C coefficients,

the character of the transition can be approximated. The case where C ≪ A corresponds

to the order-disorder limit, and C ≫ A to the displacive regime [54].

For our system, A and B were obtained by setting the rotation and elongation to

their ground state values and varying the amplitude of the polarization order param-

eter. The DFT energy versus polarization amplitude was then fit to the polynomial

E(p) = −(A/2)p2 + (B/4)p4. To calculate C, we considered the energy required to flip

a single site in the ground state to the opposite polarization orientation, ∆E. This was

calculated from DFT as the total energy of a 4× 4× 4 supercell in the ground state with

one site flipped, minus the total energy of the ground state structure. For the single-

site-flipped configuration, the second sum in Eq. 3.16 will collapse since there is only a

single flipped site, and the potential energy will cancel out when the ground state energy

is subtracted, leaving C = (B/4A)∆E.

Our calculated C/A ratio is 1.26, indicating a slight tendency towards displacive char-

acter since C > A. This aligns with the single-peaked distributions shown in Fig. 3.12.

The A and C parameters, however, are of nearly the same magnitude, and the observed

signatures of order-disorder behavior are not surprising. These signatures include the

stability of polar domains in an unpolarized reference state (Fig. 3.9), polar domains

simulated by Monte Carlo [Fig. 3.10(e,f)], and the broadening of the probability distri-

butions at high temperatures (Fig. 3.12), although overall the probability distributions
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have characteristics of a displacive transition.

As first pointed out in prior experimental and computational work, SrTiO3 is not eas-

ily classified into either limiting character. Indeed, the same Hamiltonian can describe

both order-disorder and displacive ferroelectrics, and the overall character of the transi-

tion is ultimately determined by the comparative strength of continuous parameters of

this Hamiltonian. As such, most real materials will fall somewhere along a continuous

spectrum between the two extreme cases. We find that the binary classification of the

polar transition in SrTiO3 is limited in its descriptive power, and it is far more instructive

to investigate the specific characteristics of the system, such as its lattice dynamics and

domain structure.

3.5 Effects of Doping on Polar Order

2 Our primary motivation for studying SrTiO3 is to better understand the relationship

between the polar order and superconductivity in this material. Superconductivity, of

course, can only occur in the presence of free carriers, so we must expand our model to

incorporate the effects of doping. We begin with the same relaxed ground state described

in Section 3.4.1. Computational parameters are identical as those previously described.

To obtain more accurate transition temperatures and compensate for the overestimation

of the c-lattice parameter by the GGA approximation [106], the out-of-plane strain was

set at the experimental value of 0.71% [107].

The relaxed lattice parameter for the bulk, cubic unit cell calculated by DFT was

cbulk = 3.939 Å, making the in-plane lattice parameters for the 5-atom unit cell under

1 % compressive strain a = b = 3.8995 Å. The out-of-plane strain was fixed at the

experimental value of 0.71%, so that c = 3.9669 Å[107].

2The contents of this section are adapated from: “Effects of doping on lattice dynamics and polar
order in strontium titanate,” Alex Hallett and John W. Harter, in preparation.

73



Polar Order in Strontium Titanate Chapter 3

Table 3.10: Ground state distortions for the three doping levels at u⊥ = 0.71%.

Ion Undoped 0.84 % 4%
Titanuium (ẑ) 0.196 0.174 0.142

In-Plane Oxygen (ẑ) 0.047 0.035 0.031
Out-of-Plane Oxygen (ẑ) 0.056 0.045 0.040

Rotation x̂/ŷ 0.194 0.193 0.201

The out-of-plane strain, u⊥, is given by:

u⊥ = [
cstrain
cbulk

− 1] ∗ 100 (3.17)

After calculating the lattice parameters, a series of structural relaxations were performed

at different doping levels, where only the atomic positions were allowed to relax. We

found the ground state displacements of ions for u⊥ = 0.71% strain for three doping levels:

undoped, 1.4 × 1019 cm−3 (0.84%), and 6.63 × 1020 cm−3 (4%). These displacements are

tabulated in Tab.3.10. The carrier concentration was varied by setting the number of

valence electrons in VASP using the NELECT tag. A compensatory background charge

is applied to maintain charge neutrality.

3.5.1 Free Energy Model

Our free energy model for the doped system followed the same general procedure as

described in Section 3.4.2, with some modifications. Coupling to the elongation degree

of freedom of was not considered due to the fixed value of out-of-plane strain, reducing

the total number of distinct terms in the free energy polynomial from 109 to 69. Similar

to the previous formulation of the model, the isotropy software suite [104, 105] was

used to find all symmetry-allowed free energy terms up to fourth-order in rotation and

polarization. In this formation of the model, we included onsite terms up to sixth order

to eliminate divergences. The full energy expression is given in Appendix A.
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Table 3.11: Types of calculations and the number of calculations performed

Type Count
Random 489
Uniform 903

Total Included in Model 1392
Test Configurations 84
4 × 4 × 4 Supercell 34

Bulk SrTiO3 does undergo a cubic-to-tetragonal phase transition which coincides with

the onset of the octahedral rotations. The strained system, however, is already in the

tetragonal phase and as the results of our previous simulation show in Fig.3.10(a), the

additional elongation of the c-axis does not occur at TAFD, but a large ∆c is associated

with the polar transition. Because the c-axis is already overestimated by DFT, we obtain

much more accurate transition temperatures using the experimental out-of-plane strain

of 0.71%.

After determining our polynomial expression for the free energy, we solved for the

values of the coefficients using DFT to calculate the energies of 2×2×2 supercell config-

urations and chose random values of each degree of freedom in each unit cell, as previously

described in Section 3.4.2. In addition to these random calculations, we also included a

set of specific uniform distortions. The energies of the same set of configurations were

calculated for all three doping levels, obtaining three separate sets of model coefficients.

A total of 1392 configurations were considered in calculating the model parameters for

each doping level. The different types of configurations considered are listed in Tab.3.11.

After calculating the model parameters using least squares linear regression, we used

the model to calculate the energies of 84 test configurations to confirm the generality of

our free energy expression. The error in the calculated energies for these test structures

was comparable to that of the training data set. We also calculated the energies of

larger 4 × 4 × 4 supercells to determine if excluding longer-range interactions affected
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Figure 3.13: Verification of the free energy model. Plots of the energies of
1392 configurations calculated by our model versus the DFT-calculated energies for
all three doping levels: (a) undoped (b) 1.4 ×1020 and (c) 6.63 ×1020. The model
energies are in excellent agreement with DFT, with a root-mean-square error of 0.16,
0.14, 0.12 meV/atom from the lowest to the highest doping levels. (d-f) The 4
low-energy phonon bands (3 polarization, 1 rotation) calculated using our phonon
dispersion expression are overlaid on the dispersion calculated using phonopy for
the strained, centrosymmetric reference structure, showing that the simple model can
capture the relevant instabilities with near DFT-level accuracy for all three doping
levels.

Figure 3.14: Error distribution for different doping levels. The histogram of
errors for the different types of calculation are displayed for the three doping levels
(a) undoped (b) 0.84% (c) 4%
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the accuracy of the model. In this formulation of the model, we did not include the the

4 × 4 × 4 supercells in the configurations used to calculate the model parameters, as the

model does not account for next-nearest-neighbor interactions, and therefore including

the larger supercells only worsens the overall performance.

The model energies are plotted versus DFT energies for each doping level in Fig. 3.13(a-

c). The root-mean-square errors of the model energies relative to DFT for each doping

level are 0.16, 0.14, and 0.12 meV/atom, ordered from lowest to highest doping. While

the 4 × 4 × 4 supercell energies deviate from the model at higher energies, they are ac-

curately calculated by the model close to the ground state, which is most relevant in

simulations of the phase transitions. The discrepancy between the DFT and model en-

ergies for the larger supercells far from the ground state could be due to domain walls

in the rotation order parameter or increased coupling between next-neighbors at high

displacement amplitudes.

Finally, we compared the phonon dispersion calculated by our free energy model to

the dispersion calculated by phonopy, using inputs from density functional theory for

the strained, centrosymmetric reference structure. Figure 3.13(d-f) plots the model and

DFT phonon dispersions for each doping level. The derivation for the phonon model

is provided in AppendixA. We do not expect to accurately capture the high-frequency

bands with our model as we do not consider all phononic degrees of freedom. Our goal

is to capture the relevant structural instabilities accurately with a dramatically reduced

phase space volume. As seen in Figure 3.13(b), we successfully calculate the low-energy

phonon bands with near DFT-level accuracy.
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Figure 3.15: Stability of polar clusters. Energy versus cluster size for N ×N ×N
polar domains embedded in an unpolarized background where the rotation order pa-
rameter is set to the ground state value for each doping level.

3.5.2 Zero-Temperature Calculations

After validating the model’s accuracy, we assessed the stability of polar domains

across different doping levels according to the same procedure described in Section 3.4.3.

Similar to the results shown in Fig. 3.9, our results reveal that abrupt domain walls

between oppositely oriented domains incur significant energy costs. However, for an

undoped or lightly doped system, it can be energetically favorable for polar domains to

form within an unpolarized background. Such domains are likely to exist (on average)

at temperatures above the polar transition. We performed zero-temperature calculations

for clusters of varying dimensions to explore the energetic of domain formation within

a reference state where the polar order parameter is zero, and the rotation is set to the

ground state value for each doping level to represent the system after the AFD transition

but before the polar transition. Inside the cluster, the magnitude of the polarization was

set to the ground state value corresponding each doping level.

Figure 3.15 shows energy versus cluster size calculated using our free energy model.
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When the system energy becomes negative, the formation of domains is favorable. This

occurs for an N ×N ×N domain when N = 10 for the undoped system, N = 12 for the

0.84 % system, and for the highest doping level, domain formation is never favorable. For

the two lower doping levels, the energy increases initially from the cost of the domain wall

(∝ N2), but decreases when the cluster obtains a critical size as energy is lowered within

the domain (∝ N3). For the highest doping level, the energy is continually increased as

domain formation is disfavored. These results are in agreement with the experimental

observations that increased doping destroys polar nanodomains in strontium titanate

[113].

3.5.3 Monte Carlo

We used the Monte Carlo Metropolis algorithm in combination with our free energy

model to simulate the temperature-dependent ferroelectric and AFD phase transitions.

We considered thermal fluctuations of the four separate degrees of freedom (the three

components of the polarization order parameter and the octahedral rotations) for a 16 ×

16 × 16 supercell. The thermally-averaged order parameters are plotted versus temper-

ature in Fig. 3.16(a,b). The unitless order parameters are defined in section 3.4.3. The

technical details of the Monte Carlo Simulation have been described in section 3.4.4.

Table 3.12 compares our results to experimental studies of strained, doped films.

This table includes the doping levels, room-temperature experimental lattice parameters,

ferroelectric (TFE) and antiferrodistortive (TAFD) transition temperatures. As previously

mentioned, the out-of-plane strain in our simulation is set to the experimental value

from [107]. The transition temperature of the undoped system is within 40 K of the

experimentally measured transition temperature, which is an impressive quantitative

agreement for such a simplified model. The polar transition temperature decreases with
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Figure 3.16: Simulation of thermal phase transitions. The rotation and polar-
ization order parameters plotted versus temperature. The slight kink in the rotation
curve at the polarization transition is due to coupling between the order parameters.
(a) For the undoped system, the ferroelectric transition occurs at 180 K and the AFD
transition occurs at 560 K. (b) At 0.84% doping, the ferroelectric transition occurs
at 160 K and the AFD transition occurs at 550 K. (c) For the 4% doped system, the
ferroelectric transition occurs at 50 K and the AFD transition occurs at 550 K.

increasing doping, which is in qualitative agreement with experiment [42].

In section 3.4.4, we pointed out that the overestimation of the c-axis lattice constant,

and particularly the additional elongation form the reference to polar phase was a possible

source of error in our transition temperature. Indeed, we found that by fixing the out-

of-plane strain at the experimental value, we reduced the polar transition by 100 K, in

much closer agreement with the experiment. An alternative solution could be provided by

the strongly constrained and appropriately normed (SCAN) functional, which has been

shown to give accurate energies and structural parameters for perovskite oxides [110]. The

remaining discrepancies in the transition temperatures may be caused by the omission of

anharmonic coupling effects of the low energy bands with higher energy phonon bands

of equivalent symmetry. We also recognize that previous studies have found long-range

dipole-dipole interactions to be significant. However, they are computationally expensive

to consider [111].
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Table 3.12: Comparison of transition temperatures for different doping levels.

Doping level ϵ∥ (%) ϵ⊥ (%) a,b (Å) c (Å) TFE (K) TAFD (K) Reference
0 −1 0.71 3.8995 3.967 180 560 This Work

0.84 −1 0.71 3.8995 3.967 160 550 This Work
4 −1 0.71 3.8995 3.967 60 550 This Work
0 −0.9 0.8 – – 140 360 [109]
0 −0.92 0.71 3.869 3.933 155 370 [107]

0.36 −1 – – – 92 – [42]
0.84 −1 – – – 39 – [42]
1.6 −1 – – – None – [42]

3.5.4 Phonon Spectral Function

To observe the softening of the polar mode as a function of temperature and doping,

we simulated the temperature dependence of the phonon spectral function using Langevin

dynamics. As described in Chapter 1, the Langevin equation is a stochastic differential

equation approximating the time evolution of a subset of macroscopic degrees of freedom

in a system. The behavior of the faster, microscopic variables is incorporated through a

stochastic term. The Metropolis Monte Carlo algorithm is useful for obtaining snapshots

of the equilibrium polar order at different temperatures, but it cannot account for the

dynamics of the system. To simulate for the dynamics of the system over time, which is

required to obtain phonon frequencies, we use the Langevin equation. The majority of

the simulation is performed in momentum space to simplify the computational problem.

Oxygen atoms are shared between neighboring unit cells and therefore simulating in real

space would necessitate solving many coupled differential equations simultaneously. The

Langevin equation in momentum space is given by:

M(k)ϕ̈k = −K(k)ϕk −
∂VNL

∂xk
− γM(k)ϕ̇k +M(k)

1
2η(t)

√
2γkBT (3.18)
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Eq.3.18 is written in the form of Newton’s equation, ma =
∑
F , summing over the

quadratic, nonlinear, drag, and stochastic contributions to the forces, respectively. Sim-

ilarly to the phonon model derived in Appendix A, Eq.3.18 can be written as a matrix

equation, dividing both sides by M(k) to isolate the acceleration term ϕ̈k. Here, ϕk is

a 4 × 1 vector containing the values of the four order parameters at each k-point. The

unitless, normalized order parameter is analogous to the “position” of a particle in classic

Newtonian mechanics. The matrix form of K(k) in the first term is of the same form for

the ground state phonon dispersion discussed in Appendix A, where the force constants

are given by the coefficients of the formulated free energy model for each doping level.

The matrix (∂VNL

∂ϕk
) is found by taking the derivative of the nonlinear terms of the free

energy expression. These higher order contribution to the force must be computed in

real space for computational efficiency. At each time step, the higher order forces are

computed by plugging in the real-space values of the order parameters in each unit cell

into the (∂VNL

∂ϕk
) matrix.

The third term is the damping term, where the damping coefficient the value of γ

is chosen to be 1012 Hz for the optimal convergence times. A larger γ is preferable, as

it increases the degree of “thermalization” from one time step to another, decreasing

the required length of the simulation. However, the damping coefficient will artificially

broaden the spectral lines, and any spectral broadening we observe will ideally be from

thermal or nonlinear effects, not damping, so a balance must be found between limiting

artificial broadening and optimizing computational efficiency. The value of γ is chosen to

be as large as possible while keeping the corresponding spectral broadening sufficiently

narrow.

The last term is the random component of the force. We are simulating in momentum

space, so the random components of the force at k and −k must be complex conjugates to

ensure that the forces are real when transformed into real space. In other words, k-points
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are treated as time-reversed pairs. A separate random number is pulled from a Gaussian

distribution for both the real and imaginary components. For the TRIM points, where

k = −k, a single, real random force is used.

We begin in the ground state structure and simulate from high (500 K) to low (1 K)

temperature for a 16 × 16 × 16 supercell. For every temperature step, we average over

10 runs after rejecting an initial, pre-equilibrium run. For each run, we simulate for a

total of 65536 time steps of 10−15 s each, for a total 6.55×10−11 s. The minimum time

step is chosen to be one tenth of the period of the fastest oscillation, and the total time

is chosen to be 10 times longer than the slowest oscillation.

An individual run contains an outer loop over all time steps and an inner loop over

all k-points. In the outer loop, the higher order forces are calculated with the real-space

positions from the previous time step. Within the inner loop over each k-points, the sum

over the forces is calculation for each k-points. To solve for the updated position (ϕk)

and velocity (ϕ̇k), we use the general scheme of Euler numerical integration:

vn+1 = vn + F∆t (3.19)

xn+1 = xn + vn∆t (3.20)

In order to avoid divergences due to small numerical errors over time, the complex con-

jugate relationship between the forces at k and −k is explicitly enforced at the end of

each loop over the k points before storing the positions for each time step at a given

temperature in a vector ϕ(t).

After a single run over all time steps is completed, the Fourier transform of the

position versus time vector ϕ(t) is taken to get to frequency space ϕ(ω). The intensity

at each k-point is computed as the square of the Fourier amplitude I(k) = ϕ(k)2. For
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the final simulation, we stored only the Γ point frequency for computational efficiency.

The intensities at positive and negative time steps are added together to obtain the total

intensity for a certain frequency value. The intensity maps are averaged together over

the 10 runs performed at each temperature.
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Figure 3.17: Temperature dependent phonon spectral function. The temperature
dependence of the polar phonon modes at the gamma point are shown for the (a)
undoped system (Tc ≈ 200 K) (b) 0.84 % doping (Tc ≈ 180 K) (c) 4% doping (Tc ≈
60 K). The transition temperatures are in qualitative agreement and within close
quantitative agreement with the Monte Carlo simulations.

Before plotting the data, the logarithm of the intensity is taken to account for the

wide range of values over the entire spectrum. The frequency of the polar modes at the

Γ point is plotted as a function of temperature in Fig. 3.17 (a-c) for the undoped, 0.84%,

and 4% doped systems. In Fig. 3.17 (a-c), the lowest energy polar mode softens to zero

at the transition temperature, which is indicative of a displacive transition. The polar

transition temperatures are 200 K, 180 K, and 60 K, in qualitative and close quantitative

agreement with our Monte Carlo simulations.

The softening of the polar mode is in alignment with the many optical studies dis-

cussed in Section 3.3.1. Many optical studies show incomplete softening of the polar

mode, where the frequency does not decrease all the way to zero. The complete softening

(ω → 0) observed in our simulations may be a result of the uniformity of the charge

84



Polar Order in Strontium Titanate Chapter 3

carriers, as we are not accounting for any local strain effects or disorder introduced by

the dopant atoms. Additionally, film thickness is shown to lead to hardening of the polar

mode, and we are not specifically simulating a thin film geometry. Similar to the exper-

imental data available for SrTiO3 we observe the presence of polar clusters, as shown by

our Monte Carlo simulations, but still simulate the softening of the polar mode, further

confirming the mixed character of the transition.

The relevance of the classification of the polar transition is to answer the question of

whether Cooper pairing is likely mediated by quantum critical fluctuations of the polar

mode. As previously discussed, binary classifications can be limited in their descriptive

power, and it is important to look at the nuances of the specific electronic and structural

degrees of freedom of the system. Within the polar phase, the soft mode frequency

hardens again to ω1 ≈ 2.5 THz for the lowest frequency mode and ω2 ≈ 6.5 THz for the

second polar mode. A third polar mode at ω2 ≈ 10 THz is calculated, but is not plotted

in Fig. 3.17 for clarity. Enhanced superconductivity is observed within the polar phase

in compressively strained SrTiO3 where this mode clearly has a finite frequency. This

calls into question the relevance of quantum critical fluctuations of the soft mode as the

mediator for Cooper pairing. In Chapter 4, we will discuss the relevance of the polar

mode for pairing, within the ordered phase, in more detail.
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3.6 Coexistence of AFD and Polar Order

3Our calculations of the ground state structures at different doping levels, as well as

our Monte Carlo simulations, have demonstrated that doping suppresses the magnitude

of the polar distortion and the likelihood that nanodomains will form. These conclusions

are supported by prior imaging experiments [93, 113]. Recently, scanning transmission

electron microscopy (STEM) imaging was performed on compressively strained, doped

SrTiO3 samples to investigate the effects of doping on the antiferrodistortive structural

phase transition. We have performed first-principles calculations to support these ex-

periments. In this work, Sm-doped SrTiO3 70-nm-thick films were grown by molecular

Figure 3.18: First-principles simulations of AFD and polar order. (a) The
magnitude of ground-state Ti displacements (orange) and AFD rotation angles (blue)
as a function of carrier concentration. (b) Imaginary phonon frequencies associated
with the polar (orange) and AFD (blue) instabilities as a function of carrier concen-
tration. (c)–(f) Representative snapshots calculated from Monte Carlo simulations at
300 K of the polarization (c,d) and rotation (e,f) order parameters for a 32× 32× 32
supercell with carrier density 1.4× 1020cm−3. The polarization snapshots show small
domains with opposite polarization (orange and purple patches), while the rotation
snapshots show a large single domain.

beam epitaxy on a (001) LSAT substrate which imposes a compressive biaxial strain

of -0.9 % with carrier density of 9 × 1019 cm−3, which corresponds to the peak of the

3The contents of this section are adapted from [114]:‘Coexistence of antiferrodistortive and polar order
in a superconducting SrTiO3 film,” Guomin Zhu, Alex Hallett, Nicholas G. Combs, Hanbyeol Jeong, Arda
Genc, John W. Harter, and Susanne Stemmer, Physical Review Materials, 8, 001800 (2024): L051801.
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superconducting dome. This film was previously observed to undergo ferroelectric (su-

perconducting) phase transitions at 100 K (410 mK) [115]. Cross-section transmission

electron microscopy (TEM) samples were prepared along two planes; the (01̄1), parallel

to the [001] direction, and (11̄0), which is tilted by 45◦ against [001]. Annular bright field

imaging of these planes gives the experimental rotation angle of 0.9◦ ± 0.6. The imaging

experiments demonstrate the single-domain nature of the AFD order. More details on

the experimental parameters and results can be found in [114].

To support these experimental calculations, we simulated the domain structure of

both the polar and AFD orders using the free energy model described in Section 3.5.2.

In Fig. 3.18(a), ground-state displacements associated with the polar and AFD orders,

respectively, are displayed as a function of the free-carrier concentration at 0 K. As the

carrier concentration is increased, the Ti displacements are reduced until the polar order

is eventually destroyed. The AFD rotation angles, however, remain virtually unaffected

by doping, though a moderate increase is associated with the destruction of polar order,

as is expected due to the competition between these orders demonstrated previously in

Fig.3.8. The calculated imaginary phonon frequencies (plotted as negative frequencies)

of the polar and AFD instabilities are plotted as a function of carrier concentration in

Fig. 3.18(b). While the polar distortion is strongly affected by doping, the rotation of

the oxygen octahedra is essentially independent of the carrier density.

To visualize the domain structure at 300 K, representative snapshots of the polar and

AFD-order parameters simulated by Monte Carlo are shown in Fig. 3.18(c) for a film

with a carrier density of 1.4× 1020 cm−3. Each pixel represents a single 5-atom unit cell,

with the color scale indicating the magnitude of the order parameter normalized to the

ground-state value of the undoped system.
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Table 3.13: Average Order Parameter

Doping concentration No Doping 1.4 ×1020cm−3 6.63 ×1020cm−3

Rotation order parameter 0.8897 0.8863 0.8824

The rotation order parameter is multiplied by a phase factor where if i, j, k represent

the unit cell indices in the x, y, z directions of the supercell, the final order parameter is:

Rn,uniform = Rn × (−1)i+j+k (3.21)

This yields a uniform order parameter for the rotation, rather than a checkerboard pat-

tern of out-of-phase displacements. Small variations of AFD order are primarily due to

thermal fluctuations at 300 K; the rotation order parameter averaged over 500,000 Monte

Carlo iterations shows small variations. Additionally, because the AFD and polar-order

parameters are weakly coupled, polar domains may contribute to a small nonuniformity

of the AFD order.

The relative independence of the AFD order parameter is further corroborated by the

data in Tab.3.13, which shows the rotation order parameter averaged over a 16×16×16

supercell at room temperature for three different doping levels. A small variation of the

average order parameter for separate Monte Carlo snapshots is to be expected, even at

the same doping level. The room temperature AFD order parameter, in the absence of

polar distortion, is independent of doping.

In summary, experiments and simulations demonstrate that the AFD transition in

compressively strained, doped SrTiO3 films occurs above room temperature, in agreement

with previous results for undoped films [109][116]. The doped film studied in this work

consists of a single, AFD domain similar to the undoped films [116]. The role of AFD

domain walls in enhancing the superconductivity in compressively strained films [117] is

ruled out by the single domain nature of the films. Our results demonstrate that the low-
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temperature resistance anomaly seen in these films [117] and other ferroelectric SrTiO3

samples [118] is not related the AFD transition or domain walls, as seen elsewhere [119],

but rather with the ferroelectric transition, as found previously [117].

The relative insensitivity of the AFD transition to the presence of free carriers is

demonstrated by simulations, and supported by the imaging experiments which find the

AFD transition to occur above room temperature, similar to undoped strained films that

have been studied previously [116]. The superconducting critical temperature depends

strongly on doping, and thus the insensitivity of the the AFD order on carrier concen-

tration suggests that there is no connection to the superconducting transition.

3.7 Conclusion and Outlook

We have derived a minimal free energy model of biaxially compressively strained

SrTiO3 that accurately reproduces the energies of disordered configurations and accounts

for the coupling between rotation, polarization, and elongation of the c-axis. The ther-

mal transition temperatures extracted from our model are consistent with experimental

values, and our results show characteristics of both a displacive and order-disorder tran-

sition.

We have successfully incorporated the effects of doping into our model and found that

doping suppresses the polar transition temperature and the magnitude of the polar order

parameter, and makes the formation of polar domains unfavorable. Our simulations of

the temperature-dependent phonon spectral function incorporate the effects of disorder

and temperature into the phonon dispersion and demonstrate the broadening of spectral

lines while showing transition temperatures in agreement with our Monte Carlo simula-

tions. We observe similar phonon softening seen in experiments. In essence, we observe

the coexistence of order-disorder and displacive character, the existence of polar nan-
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odomains, as well as phonon softening, just as has been documented by the experimental

studies outlined in Sections 3.2. We also confirm the hardening of the lowest energy TO1

mode to ωTO1 ≈ 2.5 THz within the polar phase, which is the relevant phase for super-

conductivity. Our model has also been used to complement STEM imaging experiments

to confirm that the antiferrodistortive order, unlike the polar order, is relatively insensi-

tive to doping, and is single-domain in nature, making it unlikely that antiferrodistortive

domain walls influence superconductivity.

More broadly, the techniques implemented here to augment first-principles calcula-

tions to incorporate the effects of temperature and disorder can be applied to other

systems. Many models which use Landau theory and density functional theory calcula-

tions to solve for the coefficients of invariant polynomials do not always take into account

random fluctuations of individual order parameters and are therefore unable to simulate

domain structure. Using Lagrangian mechanics in combination with a free energy model

to calculate zero temperature phonon dispersions can also be implemented in a variety

of material systems where calculating the full dispersion may be too computationally

costly. We have also demonstrated that thermal effects and structural disorder can be

incorporated into phonon spectral function models using Langevin dyanmics. Our meth-

ods can very easily be mapped to other perovksite oxides with similar structural degrees

of freedom.
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Chapter 4

Unconventional Superconductivity

in Strontium Titanate

Our primary motivation for studying strontium titanate is to understand its unconven-

tional superconducting phase, which emerges from an exceptionally dilute metallic state.

Due to the presence of spin-orbit coupling and inversion symmetry breaking, a mixture

of s- and p-wave order parameters is possible, which could result in a superconducting

state with nontrivial topology.

This chapter will begin by giving a detailed overview of the electronic properties of the

normal metallic state and our own electronic band structure calculations with spin orbit

coupling for the polar phase will be discussed. Next, an overview of the proposed pairing

mechanisms for strontium titanate will be outlined, focusing on two main theoretical

frameworks; quantum critical fluctuations and broken inversion symmetry. Finally, we

will discuss calculations of the Rashba splitting of bands in the polar phase, the density

of states at the Fermi level as a function of doping, and the Migdal ratio as we place our

results in the broader context of the literature.
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4.1 Electronic Properties

In perovskite oxides, the Oh crystal field of the TiO6 octahedra splits the five Ti 3d

bands into two higher energy eg and three lower energy t2g bands. Strontium titanate is

an insulator with an indirect gap between filled oxygen 2p states and three unoccupied

Ti t2g orbitals at the Γ point [39]. Spin-orbit coupling causes a splitting between the

lower j = 3/2 multiplet and the higher energy j = 1/2 doublet in the high-temperature

cubic structure. At low temperatures, the antiferrodistortive distortion is accompanied

by a tetragonal transition, splitting the degeneracy of the j = 3/2 multiplet yielding

three doubly degenerate bands at Γ [120]. The lowest energy band has a non-parabolic

dispersion, beginning as a light band and becoming heavier at k > 0.1/a due to an

avoided crossing [9]. A schematic of the three Ti t2g conduction bands is shown in the

inset of Fig. 4.1. Doping can be achieved through the substitution of Sr2+ with a cation

Figure 4.1: Metallicity in Bulk SrTiO3. The x-axis spans the doping range of
metallicity, from 1015-1022 cm−3. The one, two, and three band regimes are separated
by two Lifshitz transitions at 1018 and 1019cm−3, with schematic Fermi surfaces for
each regime depicted at the top of the phase diagram. The lower left inset shows the Ti
t2g bands for the tetragonal I4/mcm structure along [001] and [100]. Superconducting
domes with Tc on the order of several hundred millikelvin are shown for oxygen
reduced [121] and Nb substituted [122] SrTiO3. Figure adapted from [39].
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containing an additional valence electron such as La [118] or Sm [117], substituting Ti4+

with Nb, or through oxygen reduction, which contributes two electrons per vacancy.

Metallic behavior occurs at carrier concentrations as low as 1015 cm−3 [123], with a

sharp Fermi surface emerging at 1017 cm−3 [124]. Fig.4.2 spans the range of carrier

concentration where metallic behavior is observed for strontium titanate (1015 - 1022).

The dashed lines at 1018 cm−3 and 1019 cm−3 correspond to the Liftshitz transitions as

the second and third bands begin to fill [39]. Schematics of 2D [001] slices of the Fermi

surface in the one, two, and three-band regimes are depicted at the top of the phase

diagram. The Fermi surface begins as an ellipsoid (blue), with a second semi-spherical

Fermi surface emerging in the two-band limit (yellow), and a third emerging in the three-

band regime (green). First principles calculations of the Fermi surface in the three-band

regime for the polar structure will be discussed in the next section. Superconducting

domes for oxygen-reduced [121] and Nb-substituted [122] SrTiO3 are shown at carrier

concentrations ranging from 2×1017 - 2×1021 cm−3 with a maximum critical temperature

of around 500 mK.

The dilute metallic state is possible due to the large effective Bohr radius, which is

defined as:

a∗Bohr =
4πℏ2

e2
ϵ0
m∗ (4.1)

The value of a∗Bohr is determined by the permittivity (ϵ0) and the effective mass (m∗).

SrTiO3 is a quantum paraelectric and therefore has an extremely high static permittivity,

resulting in a∗Bohr up to 600 nm. This exceptionally long effective Bohr radius protects

the Fermi sea by increasing the Thomas-Fermi screening length, even though the Fermi

energy (1 meV) is three orders of magnitude smaller than the band gap (3 eV) [9].

The unique metallic state in strontium titanate is characterized by the unusual tem-

perature dependence of the normal state resistivity (ρ), which follows T 3 behavior at high
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temperatures, before transitioning to T 2 in the low-temperature regime, following Fermi

liquid behavior [125]. The T 2 dependence on the resistivity persists down to carrier den-

sities as low as 2 × 10−5 per f.u. This behavior is similar to other aborted ferroelectrics,

which suggests that the soft TO phonons may play a role in the form of ρ(T ) [9].

In SrTiO3 samples where the polar order has been stabilized, anomalies in the re-

sistivity occur at the onset of the polar phase transition, which can be attributed to a

decrease in carrier density and increased film resistivity caused by the screening of polar

charges which causes carriers to localize [42]. In our band structure calculations, we

specifically investigate compressively strained SrTiO3 within the polar phase, the effects

of the polar distortion on the band structure, Rashba splitting, and the density of states.

4.1.1 Band Structure Calculations of the Polar Phase

Our band structure calculations for the cubic, tetragonal and polar phases presented

in Fig. 4.2 were computed by DFT as implemented in VASP, following the same computa-

tional procedure as outlined in Chapter 3. Carrier concentration was varied by setting the

number of valence electrons and applying a neutralizing background charge. Spin-orbit

coupling is applied to all electronic band structure calculations within the noncollinear

version of VASP, and symmetry is turned off. Non-spherical components to the charge

density are included using LASPH = True to account for non-spherical components of the

charge density, and LMAXMIX = 4 is used to account for the d-orbital contributions of

the metal cations. In a compressively strained system, the ground state polar distortion

causes the lowest energy band to shift downward. In the single band limit, the energy

shift is dependent on the magnitude of the polar distortion, which in turn depends on

the level of strain and doping. Similar to the low-temperature tetragonal phase, the

Fermi surface of the polar phase is an ellipsoid elongated along ẑ. A 2D slice of the
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Figure 4.2: Electronic Band Structures Band structures for the undoped (a) cubic
(Pm3̄m) (b) tetragonal (I4/mcm) and (c) polar (I4cm) band structures along the path
X → Γ → Z .

Figure 4.3: Fermi surfaces of the polar phase in the three-band limit. Three
Fermi surfaces are presented corresponding to each of the three Ti t2g bands. The
topology of the Fermi surface for the I4cm polar structure, is similar to the I4/mcm
tetragonal phase depicted schematically in Fig.4.1. Plotted using software from [126].
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Fermi surface in the I4cm polar structure is shown in Fig.4.3, which evolves similarly

as bulk SrTiO3 with increased doping, depicted schematically in Fig.4.1. The primary

difference between the polar and low-temperature tetragonal structures in the location

of the Liftshitz transition, as the lowest energy Ti band is shifted downwards in energy,

extending the region of the doping regime in the single band limit.

4.2 Overview of Proposed Pairing Mechanisms

Superconductivity was first observed in strontium titanate in 1964, yet a precise

understanding of the microscopic pairing mechanism remains elusive. The first general

theory for superconductivity in polar semiconductors developed by Gurevich, Larkin, and

Firsov (GLF) in the early 1960s [127], and new mechanisms are being proposed up to

the present. A summary of references that discuss these proposed mechanisms is given

in Tab.4.1.

It is challenging to formulate apt theoretical descriptions of superconductivity in

dilute systems due to the small density of states at the Fermi level, N(0). In the weak

coupling limit of BCS theory, the critical temperature can be expressed as:

Tc ≈ TDexp[−1/λ] (4.2)

The electron-phonon coupling constant λ is given by λ = N(0)Ve−ph. An extremely

strong e-ph interaction potential (Ve−ph) should be necessary to compensate for low N(0),

thus complicating theoretical treatments that implement approximations based on the

assumption of weak coupling (λ < 1). The remainder of this section will outline the

general principles behind the primary proposed pairing mechanisms to give context for

our results.
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4.2.1 Considerations for Polar Semiconductors

According to GLF theory, Ve−ph will never be strong enough to outweigh the Coulomb

repulsion in non-polar semiconductors. However, exchange between polar LO phonons

in the long-wavelength limit results in a lattice contribution to the dynamically screened

Coulomb interaction which can account for pairing in the case where ωLO << ϵF [127].

In addition to providing a dynamical screening effect, long-range dipolar interactions

also lead to energy splitting between LO and TO modes in polar materials. In SrTiO3,

the LO mode which originates from the same triplet as the soft TO1 mode is pushed

to high energies (100 meV) in the long-wavelength limit. The low value of N(0) in

combination with high characteristic phonon frequency ωLO, places STO outside the

adiabatic regime, meaning that the conventional electron-phonon interactions described

by BCS theory cannot account for Cooper pairing.

While the traverse optical mode remains within the adiabatic limit at 1-11 meV in

doped thin films [39], coupling of the electron density to transverse optical phonons is

not permitted by symmetry. Given a coupling of the form in Eq.4.3, the electron-phonon

interaction vanishes for transverse modes.

Hel−ph = iV0
∑
q

q · uqρ−q (4.3)

In 1974, Ngai proposed a mechanism involving the exchange of two TO phonons to cir-

cumvent this issue. Expanding the single-electron Hamiltonian in powers of the atomic

displacements, one obtains a contribution from the second-order perturbation that con-

sists of an effective electron-two-phonon interaction which involves an increase in the

phonon density of states as compared to a single electron process. The interaction is

expressed as a two-phonon deformation potential that can lead to an attractive inter-

action between electrons [128]. However, this higher-order interaction term is typically
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too small to account for pairing [39]. Several other mechanisms involving the exchange

of multiple LO phonons [129], LO-plasmon hybrid modes [130, 131, 78], plasmons [132],

and polarons [133, 134] have also been proposed.

The superconducting critical temperature of strontium titanate is enhanced in prox-

imity to and within the polar phase [117] [52]. Likewise suppressing polar order also

suppresses Tc [77] [39]. This unique relationship between ferroelectric-like order and su-

perconductivity has placed the polar instability at the center of many proposed pairing

mechanisms.

Table 4.1: Superconducting Pairing Mechanisms

Mechanism References
Intervalley Phonons (Disproof) [135] [136] [137]

Transverse Optical Phonons [40] [128] [52] [138] [139]
Longitudinal Optical Phonons [140] [14] [78]

Critical Fluctuations [11] [46] [14] [141] [142] [143] [75] [53]
Single TO Mode and SOC [144] [145] [146]

Plasmon [130] [132] [133]
Polaron Contributions [134] [147] [148]

SOC/Inversion Symmetry Breaking [28] [30] [149] [150] [151][139]
Filamentary Superconductivity [152] [74] [153]

Due to the immense volume of research that exists on pairing mechanisms in SrTiO3,

it is not possible to discuss every proposed mechanism in detail here. The reader can refer

to Tab.4.1 for references that support these theories. We will focus on two of the predom-

inant theoretical frameworks for Cooper pairing established thus far: quantum critical

fluctuations and inversion symmetry breaking in the presence of spin-orbit coupling.

The quantum critical fluctuation framework posits that the undoped edge of the

superconducting dome corresponds to the emergence of the Fermi surface. The maximum

Tc is pinned to the quantum critical point (QCP) where the soft mode goes approaches

zero and the overdoped dome edge corresponds to the hardening of the polar mode[11].
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There has recently been experimental evidence that does not align with the quan-

tum critical framework. The enhancement of the superconducting critical temperature

deep within the polar phase in combination with the observation of polar nanodomains

above the polar transition temperature calls into question the validity of quantum critical

fluctuations as the pairing glue. Instead, it is suggested that the primary condition for

superconductivity is that Cooper pairing must occur in a noncentrosymmetric environ-

ment of greater length scale than the coherence length. In this framework, the overdoped

side of the dome corresponds to the destruction of polar nanodomains rather than the

hardening of the polar mode.

We will close by discussing the Rashba coupling mechanism, where symmetry ar-

guments allow for coupling to a single polar phonon mode in the presence of inversion

symmetry breaking and spin-orbit coupling. Theories supporting Rashba coupling do

address the importance of inversion-symmetry breaking, but still align qualitatively with

the idea the coupling will be enhanced in proximity to the quantum critical point and

rely on a polar soft mode as the pairing glue. A unifying description that encompasses

the superconducting behavior in the various structural phases of SrTiO3 has yet to be

formulated.

4.2.2 Quantum Critical Fluctuations

One of the early studies addressing the question whether quantum critical theory

could be applied to quantum paraelectric was presented by Rowley et al. in 2014 [154].

It was found that a ϕ4-quantum field model for critical behavior was relevant in to

several quantum paraelectrics and could reproduce the temperature dependence of the

dielectric function. In 2015, Edge et al. [11] investigated this idea by performing doping-

dependent DFT calculations of the soft polar mode frequency. They found that the mode
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became real at 1020 cm−3, in alignment with the carrier concentration corresponding to

the maximum Tc in the experimental data taken from [136]. They performed a theoretical

treatment using the Eliashberg theory and obtained the following expression for the

electron-phonon coupling in the limit of a van Hove singularity at q = 0:

λ = α2 1

ωq=0(f18, EF )
(4.4)

Here, α is a k-independent electron-phonon coupling, ωq=0 is the frequency of the soft

TO1 phonon mode at the Γ point and f18 and EF are the 18O fraction and the Fermi

energy, respectively. In this formulation, the electron-phonon coupling is clearly enhanced

as the transverse optical mode softens.

Figure 4.4: Phase Diagrams supporting quantum critical fluctuation frame-
work (a) Superconducting dome of ferroelectric (blue) and paraelectric (red)
Sr1−xCaxTiO3. The curie temperature (dashed line) is plotted along the right axis for
x = 0.009. Superconductivity is enhanced in the vicinity of the quantum critical point.
Data was re-plotted from [46]. (b) Critical temperature versus carrier concentration
for paraelectric (red) SrTiO3 and ferroelectric isotope exchanged STO18 (blue). The
curie temperature is potted along the right axes. Superconductivity is enhanced near
the quantum critical point. Data was replotted from [53] (c) Superconducting critical
temperature versus hydrostatic pressure. Increased pressure leads to hardening of the
polar mode and decreased superconducting Tc. Data was replotted from [77].

Fluctuations do not typically appear explicitly in the mathematical formulations pro-

vided by theorists, however, a unique perspective was given by Volkov et al., who sug-
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gested that although the electron density cannot couple directly to the critical mode,

indirect coupling could be mediated through the polar energy tensor [155].

Experimental studies have also been performed which support the enhancement of

superconductivity in the vicinity of a quantum critical point from the paraelectric side.

Schematic phase diagrams from these experiments are shown in Fig.4.4. In 2017, Rischau

et. al measured the superconducting and critical temperatures in Sr1−xCaxTiO3−δ for

(0.002 < x < 0.2), (10−3 < δ < 10−2) and found an enhancement of TC in samples with

x = 0.009. [46]. In 2022, a similar study was performed on SrTi18O16
y O1−y, claiming

that the trend of increasing Tc upon isotope substitution and decreasing Tc. This was

combined with earlier work in 2018 from [77] showing the decrease in the normalized

critical temperature with 1/ϵ, indicating a reduction of Tc correlated with the hardening

of the polar mode.

While a great deal of work has been done in support of the quantum critical frame-

work, it is still not clear precisely how the electron density couples to the q = 0 mode, nor

is it in alignment with recent experiments showing the enhancement of superconductivity

deep within the polar phase, which will be discussed in the next section.

4.2.3 Inversion Symmetry Breaking

As discussed in the previous chapter, HAADF-STEM studies were performed on STO

films grown on LSAT under 0.9% compressive strain. Polarization orientation maps

revealed the presence of polar nanodomains at room temperature, far above the polar

transition temperature of 140 K. The observation of nanodomains in the paraelectric

phase is consistent with an order-disorder phase transition [113]. The order-disorder

character of the transition calls into question whether critical fluctuation of a soft phonon

mode, a characteristic of a classic displacive transition, can fully explain Cooper pairing.
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In Sm-doped films, polar nanodomains on the length scale of nanometers were ob-

served at low doping levels (6 × 1019 cm−3). Upon further doping (1 × 1020 cm−3, 3×

1020 cm−3) both the length scale of the polar domains and the magnitude of the polar

distortion decreased. In films where domains had been destroyed by dopants, no po-

lar transition occurred [93], supporting the notion that cluster formation is a necessary

precursor to global polar order. Furthermore, overdoped films that did not undergo a

polar transition were not superconducting, indicating a connection between the inversion

symmetry-breaking polar order and superconductivity [42].

Figure 4.5: Superconducting Phase Diagram Superconducting critical tempera-
ture is plotted vs carrier concentration on the left axis, and the Curie temperature is
plotted on the right axis. The highest superconducting Tc is in a sample with Tcurie

of ≈ 40 K, meaning that the film is deep within the polar phase at lower temperatures
relevant to superconductivity. Data replotted from [42]

The relationship between precursor clusters of polar order and superconductivity was

explored further by examining an unstrained paraelectric film at room temperature which

was superconducting, but did not undergo any polar transitions. Polar nanodomains were

present, and indeed were larger than those of a strained, overdoped sample with a lower

critical temperature. [95]. Further evidence for the connection between the existence
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of polar domains at high temperatures and enhanced superconductivity was provided

by studies on partially strain-relaxed films. All films contained polar nanodomains and

exhibited enhanced superconductivity compared to unstrained films, even though three

out of the four films studied did not undergo a global polar transition [115]. These obser-

vations together suggest that inversion symmetry breaking may indeed be a requirement

for pairing. In this framework, superconductivity occurs as long as the polar domains

are larger than the coherence length of the Cooper pairs.

Superconductivity in noncentrosymmetric systems is often unconventional and can

give rise to mixed-parity superconductivity [156]. Non-reciprocal transport, which is

evidence of an odd parity superconducting channel has been measured in SrTiO3 [30].

Support for an unconventional superconducting state in SrTiO3 was also demonstrated

by its insensitivity to magnetic impurities. Superconductivity persisted up to 3% doping

with Eu, which is unexpected for conventional BCS superconductors that are highly

sensitive to magnetic dopants [157].

There is a direct correlation between nanodomain size in the paraelectric phase and

the superconducting and ferroelectric transition temperatures in doped, compressively

strained SrTiO3. As nanodomains are destroyed by nonmagnetic or magnetic dopants,

or strain relaxation, films that do not have sufficiently large nanodomains at room tem-

perature do not undergo a superconducting transition. These studies present strong

evidence for inversion symmetry breaking and spin-orbit coupling as the key ingredients

for pairing. In this framework, Cooper pairs effectively exist in a noncentrosymmetric

environment, even in films that do not exhibit global polar order, such as unstrained or

highly doped films. Superconductivity persists so long as the length scale of the nan-

odomains is longer than the coherence length of the Cooper pairs. The pairing glue in

this scenario remains unknown, but the existence of a unconventional superconductivity

is supported by nonreciprocal charge transport and insensitivity to magnetic dopants.
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4.2.4 Rashba Coupling

Rashba coupling is a proposed pairing mechanism which combines aspects of both the

quantum critical and inversion symmetry breaking frameworks. The suggested mediator

for pairing is a single, soft TO1 phonon mode in the presence of strong spin-orbit coupling

and inversion symmetry breaking. Coupling between the electron density and the TO

phonons is typically prohibited since these modes do not generate a modulation of positive

charge density. Tunneling between different t2g orbitals on neighboring atoms is forbidden

in an inversion symmetric system. Furthermore, pairing to TO modes is contrary to the

idea presented by Anderson and Blout [8], that polar metallicity is possible when TO

phonons do not interact with conduction electrons.

Several groups have presented possible pairing mechanisms based on the coupling

of a single TO phonon mode in the presence of inversion symmetry breaking and anti-

symmetric spin-orbit coupling [158, 146, 144]. They argue that because the TO phonon

mode itself breaks inversion symmetry, new hopping channels between d-orbitals on near-

est neighbor atoms are introduced, mediated by the oxygen p-orbitals. These hopping

channels are shown schematically in Figure 4.6.

In 2022, Gastiasoro et al. [144] outlined a theory of Rashba coupling-mediated super-

conductivity in incipient ferroelectrics, considering only the paraelectric phase. They be-

gin with a minimal tight binding model considering spin-orbit coupling, and the hopping

channels introduced by the polar distortion of the lattice. The linearized gap equations

at Tc can be written in terms of a four-component vector dα for the even and odd-

parity channels. The linearized gap equation is decoupled into orthogonal m channels

dmα (k̂) =
∑

l b
m
l ylm(k̂) each with eigenvalue υma , which gives the BCS coupling constant:

λ(m)
a = NF

g2TO

ωTO

υma (4.5)
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Figure 4.6: Rashba coupling. Inversion symmetry breaking of the polar mode u1
along ẑ allows for the hopping channel ∂ztxyxu1 mediated by |px ↓⟩ and |pz ↑⟩. Figure
adapted from [159].

Here, gTO = αTOkF gives the Rashba coupling strength. Numerical estimations of the

coupling constant were made by considering n ≈ 2 × 1018, corresponding to a Tc of

0.2 K. Using the experimental value for NF = 0.04eV −1 obtained from specific heat

measurements. The overall coupling was calculated as λm=0
0 ≈ 0.01 which is not sufficient

to support Tc ≈ 0.2K. They argue that since λm=0
0 ∝ ω−2

TO the superconducting coupling

constant grows as the system approaches the quantum critical point ωTO → 0, and that

tetragonal domains of AFD order may allow for variation of carrier concentration or

the softness of the mode which may lead to filamentary superconductivity. However,

as previously discussed, superconductivity persists in the polar phase, away from the

quantum critical point, and within the polar phase, tetragonal domains of the AFD order

are not observed. In 2023, they expanded on this formulation, deriving a generalized

Rashba-like coupling between polar modes and conduction electrons at the zone center.

They reproduce the dome-like dependence of Tc/Tc,max in the single band limit, and find

their optimum density in agreement with experiment [159].

Theoretical arguments based on Rashba coupling were presented by Yu et al. in 2022

[158]. They used experimental data to constrain their theoretical parameters and present
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the most likely pairing mechanism for tetragonal, Nb-doped SrTiO3 in the paraelectric

phase. A single band approximation for the BCS eigenvalue for adiabatic pairing to

a single TO1 phonon was compared to a three band model incorporating odd parity

inter-orbital tunneling. The single-band approximation is given by:

λBCS ∝ NF

ω2
T

≈ n1/3

K0 +K1n
(4.6)

An electron-phonon interaction term was then derived from a three-band tight-binding

model including the symmetry-allowed d-orbital hopping channels for the noncentrosym-

metric system. Using this electron phonon coupling, they derive the dimensionless BCS

pairing interaction and compare the single-band and three band model presented in

Eq.4.6 and find that the superconducting dome also arises with the unconventional, odd-

parity electron-phonon coupling, where the optimal doping level is shifted slightly, but

the suppression of superconductivity on the high density dome edge due to TO1 phonon

hardening still remains.

Experimental data provided in [146], shows that the TO1 mode frequency remains

below the Fermi energy across the doping range relevant to superconductivity, supporting

the possibility of BCS-type pairing to this mode. They also performed planar junction

tunneling experiments showing the superconducting gap was in agreement with the BCS

value 2∆0/kBTc, and thus supporting the possibility of a conventional BCS pairing sce-

nario with a single soft TO1 phonon mode.

While the studies discussed above consider only the paraelectric phase, one theoretical

treatment, presented by Zyuzin et al. [139] proposed a theoretical model where conduc-

tion electrons interact with two phonons in the paraelectric phase. They generalize the

two phonon mechanism to the ferroelectric case which allows for coupling to a single TO

phonon.
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While Rashba coupling takes into account the importance of inversion symmetry

breaking and spin-orbit coupling, the arguments presented in this section generally align

with the quantum critical framework. The aforementioned papers do not directly address

the existence of superconductivity deep within the polar phase, where the polar mode

has hardened.

4.3 Evaluation of Parameters Relevant to Supercon-

ductivity

1Much of the work done thus far to elucidate the pairing mechanism in SrTiO3 (sum-

marized in Tab.4.1) does not explicitly address the polar phase in the compressively

strained system, with the exception of a few experimental studies [30, 117]. Here, we

investigate parameters relevant to the superconducting phase including the Rashba split-

ting of the energy bands, the density of states at the Fermi level, and the Migdal ratio.

4.3.1 Rashba Splitting

As introduced in Chapter 1, in the presence of inversion symmetry breaking, anti-

symmetric spin-orbit coupling can split the energy levels of electronic bands and lead

to spin-momentum locking. The splitting of the Fermi surface due to this inversion

symmetry breaking is a key element of the Rashba coupling pairing mechanism.

The parabolic curve fits of the lowest, middle, and upper Ti t2g bands for the un-

doped compressively strained polar structure are plotted in Fig.4.7(a-c), respectively

along the path perpendicular to the direction of polar displacement (−X → Γ → X).

The Rashba parameter is defined as αR = 2∆ER

kR
, where ∆ER represents the difference

1The contents of this section are adapted from: “Effects of doping on lattice dynamics and polar
order in strontium titanate,” Alex Hallett and John W. Harter, in preparation.
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between the energy at which the spin-up and spin-down bands cross, defined as zero en-

ergy in Fig.4.7(a-c), and the band minima. The value kR is the wavevector corresponding

to the band minima relative to the Γ point. The Rashba splitting decreases in intensity

from the highest to lowest energy band. Fig.4.7(e) shows the decrease in the Rashba

parameters of the lowest (αR1), middle (αR2) and, upper (αR3) bands as the polar distor-

tion is suppressed. Fig.4.7(e) shows the energy splitting between bands for the polar and

Figure 4.7: Rashba Splitting (a) Rashba splitting for the lowest (αR = 10 meV/Å)
(a) middle (αR = 23 meV/Å) (b) and (c) highest energy (αR = 34 meV/Å) Ti t2g
bands of the undoped polar structure. The splitting decreases in magnitude from
the highest to lowest energy band. (d) Rashba parameter versus doping. In the limit
where the polar distortion is suppressed, the Rashba splitting goes to zero. (e) Energy
splitting of the bands versus doping. While the energy splitting of the bands remains
constant for the unstrained tetragonal structure (AFD ∆1,∆2), the energy splitting
due to the polar distortion (Polar ∆1) changes drastically with doping, while Polar
∆2 increases slightly as the polar distortion is suppressed. (f) Band structures at
different doping levels showing the decrease in band splitting at higher doping levels
as the polar distortion is suppressed.
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AFD structures. The energy splittings ∆1 and ∆2 are the energy differences between the

lowest and middle band, and the middle and upper bands, respectively, for both the polar

structure and the unstrained structure with rotations (labeled as AFD). Since the AFD

rotation angle is not dependent on doping, the bands rigidly shift below the Fermi level

with increasing carrier concentration for the AFD structure, and the splitting between

the bands remains constant. For the polar structure, the value of ∆1 begins at around

150 meV, and then begins rapidly decreasing, until n ≈ 0.02 e per f.u. as the polar

distortion is suppressed, while ∆2 remains constant until the structure approaches the

unstrained centrosymmetric structure, and then increases slightly. At the highest doping

levels where the polar distortion is completely suppressed, the energy splittings for the

polar structure are slightly higher than those for the AFD structure, likely due to the

increased elongation of the c-axis in the compressively strained system. The band struc-

tures at several doping levels are shown in Fig.4.7(f) depicting the change with doping

as magnitude of the polar distortion decreases and the band structure approaches that

of the strained, centrosymmetric strained.
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As discussed in Section 4.2.4, previous work [144] found the overall coupling to

be insufficient to support experimental transition temperatures, but argued that since

λm=0
0 ∝ ω−2

TO the superconducting coupling constant grows as the system approaches the

quantum critical point ωTO → 0, and that tetragonal domains of AFD order may al-

low for variation of carrier concentration or the softness of the mode which may lead

to filamentary superconductivity. However, in the strained system, superconductivity is

enhanced deep within the polar phase [42], where the phonon frequency has hardened to

a finite value as we saw in our Langevin simulations in Chapter 3. Furthermore, both

experimental and computational work has shown the AFD order to be single-domain

in the compressively strained system, meaning that the filamentary superconductivity

would not occur, and could not enhance or account for Rashba coupling. Furthermore,

we find that in the strained system where the polar eigenvector is oriented along ẑ, the

Rashba splitting is smallest in the lowest energy band, and that due to the increased

energy splitting between the lowest and middle band, the strained system remains in

the single-band regime up to higher doping levels compared to the AFD structure. This

could mean that in the polar, compressively strained system superconductivity is occur-

ring within the single band regime where the Rashba parameter is smallest and Rashba

coupling would be expected to be weakest. Proposals for continued work quantifying

Rashba coupling in the strained system will be discussed in Chapter 7.

4.3.2 Density of States

We have computed the density of states at the Fermi level N(EF ), as well as the

Fermi energy EF from DFT calculations for the compressively strained polar phase, and

unstrained tetragonal I4/mcm phase. The Fermi energy was taken to be the energy

difference between the lowest band and the Fermi level computed by VASP. We first
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performed self-consistent calculations to obtain the charge density file with spin orbit

coupling, and then calculated the density of states using an 18×18×18 k-mesh for the

primitive 10-atom unit cell.

Before computing N(EF ) for the relevant low-temperature structures with spin-orbit

coupling, we verified that our DFT calculations were yielding the expected dependence

of N(EF ) as a function of carrier concentration using an approximate ellipsoid model

for the cubic and polar structures without spin-orbit coupling. In the single band limit,

the Fermi surface of the polar structure is an ellipsoid elongated along ẑ. The energy

dispersion in this limit can be approximated by a simple model:

E(k) = α(k2x + k2y) + βk2z (4.7)

The volume of an ellipsoid is given by V = 4/3πabc, where, in our case, a, b and c

correspond to the length between the center and the edge of the ellipsoid along kx, ky, and

kz, respectively, as depicted schematically in Fig.4.8(a). The electronic band structures

at different doping levels can be fit to parabolic curves EF = αk2x and EF = βk2z to

extract the curvature coefficients α and β. We can then compute a, b =
√
EF/α and

c =
√
EF/β . The volume of the Fermi surface is then given by:

VFS =
4

3
π

√
E3

F

α2β
(4.8)

The number of carriers can be computed using Luttinger’s theorem, which states that

the volume enclosed by the Fermi surface is directly proportional to the particle density.

The carrier density is given by the volume of the Fermi surface divided by the volume of

the Brillouin zone (N = VFS/VBZ). We multiply by a factor of two to account for spin

degeneracy at each k-point and plug in our volume expression from Eq.4.8 to obtain:
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N = 2

(
L

2π

)3
4

3
π

√
E3

F

α2β

 (4.9)

We can rearrange the constants and write Eq.4.9 as N = S(E
2/3
F ), where the constant

S is Spolar = (V/3αβ1/2π2) for the polar structure and Scubic = (V/3αβ1/2π2) for the

cubic structure. The expression for N(EF ) can now be obtained by taking the derivative

of N with respect to EF :

DOS(EF ) =
∂N

∂EF

=
3

2
SE

1/2
F (4.10)

Similarly, we can verify the dependence EF as a function of doping by inverting Eq.4.9

to obtain, EF = S−1N2/3. The results from our ellipsoid model are compared to the

DFT results in Fig.4.8(a,b). The DFT data is shown as markers for the cubic and polar

structures. The values of N(EF ) versus doping calculated from the ellipsoid model is

shown as a shaded region, where the upper bound corresponds to the curvature coeffi-

cients for band structure with 0.015 additional carriers per formula unit, and the lower

bound corresponds to the curvature coefficients of the undoped band structure.

A similar technique is used to calculate N(EF ) and EF for the cubic structure, where

the Fermi surface can be approximated as three equivalent ellipsoids elongated along

kx, ky, and kz. To compare the density of states for the polar and cubic structures within

the single band limit, we calculate N(EF ) within a single ellipsoid, and divided the total

density of states calculated from DFT by three.

The DFT calculations and ellipsoid model are in good qualitative and quantitative

agreement, confirming that DFT gives reasonable results for N(EF ). At higher doping

levels (corresponding to higher EF ) the quadratic fit to the band structure becomes

less accurate, leading to a deviation from the model at higher carrier concentrations.
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Figure 4.8: Density of States at the Fermi level (a) Schematic of an ellipsoid
showing the parameters a, b, and c used in the ellipsoid model of the Fermi surface.
(b) Density of states at the Fermi level versus doping for the strained polar and bulk
cubic structures without spin orbit coupling. The DFT calculations (markers) are
compared to the ellipsoid model (shaded region) where panels (b,c) the upper and
lower bounds of the shaded region correspond to the model N(EF ) calculated with
curvature coefficients for the highest and lowest doping levels, respectively. (c) Fermi
energy of the unstrained cubic and polar structures without spin-orbit coupling. The
Fermi energy is calculated as energy difference between the Fermi energy output from
the density of states DFT calculation relative to the lowest energy band. (d) Band
structures for the unstrained tetragonal I4/mcm structure with octahedral rotations
labeled as (AFD) and the strained polar structure and a doping level of 0.015 e per
f.u., corresponding to the upper range of carrier concentration in panels (b,c) and (e,f).
The polar structure is still within the single-band limit, while the AFD structure is
in the three-band regime. (e) Density of states versus doping for the strained polar
and unstrained AFD structures with spin orbit coupling. The dashed line fits the
data with the idealized n1/3 doping dependence predicted by the ellipsoid model,
although here it serves primarily as a guide for the eye, as spin-orbit coupling limits
the applicability of the idealized model. (f) Fermi energy versus doping for the AFD
and polar structures. The dashed line fits the data with the idealized n2/3 doping
dependence predicted by the ellipsoid model, and serves primarily as a guide for the
eye.
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As expected, N(EF ) is higher within a single band for the polar structure, since the

energy splitting caused by the polar distortion pushes the lowest energy band below the

Fermi level, and all the carrier density fills a single band instead of being spread evenly

over three bands. These calculations explicitly demonstrate that a single band shifted

below the Fermi level will yield a higher single-band density of states compared to a

structure with three degenerate bands below the Fermi level, however, the tetragonal

and antiferrodistortive phase transitions, in addition to spin-orbit coupling, cause band

splitting that complicate the picture captured by this simple model.

Having used our ellipsoid model to ensure DFT yields the expected doping dependence

for N(EF ) and EF , we now calculate these quantities for the relevant structures in the

superconducting phase with spin orbit coupling (SOC): the polar structure and the low

temperature tetragonal structure with antiferrodistortive rotations (AFD structure). The

Fermi surface of the low temperature tetragonal structure cannot be approximated as

three equivalent ellipsoids since the bands are no longer degenerate, so we do not attempt

to develop an ellipsoid model for this structure. The total density of states per formula

unit for the AFD structure is compared to the polar density of states in Fig.4.8(e). The

dashed guidelines fit the data the n1/3 doping dependence, and serve primarily as guides

for the eye. The band dispersions for the polar (red) and AFD (blue) structures plotted

in Fig.4.8(d) show that at the highest doping level of 0.015 electrons per formula unit, the

polar structure is still within the single-band limit, while the unstrained AFD structure

is in the three-band regime. At this doping level, N(EF ) is approximately twice as

high for the AFD structure as for the polar structure. Two of the AFD bands extend

approximately the same distance below the Fermi surface, and the third uppermost band

is also partially filled. If superconductivity occurs within a single band, which is a

reasonable approximation, N(EF ) within a single band is likely lower for the tetragonal

structure. As shown in Fig.4.8(f), the Fermi energy, which is calculated as EF extracted
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from DFT relative to the energy of the lowest band, is higher for the polar structure. A

higher density of states at the Fermi level within the single, lowest energy band for the

polar structure could be one reason for enhanced superconductivity in the polar phase.

Continuing work to quantify the single-band density of states in the AFD structure and

to compare computational results to experiment will be discussed in Chapter 7.

4.3.3 Phonon Frequency

In Chapter 1, we introduced the Migdal ratio, the ratio of the characteristic phonon

energy to the Fermi energy (ωD/EF ). For conventional phonon mediated pairing de-

scribed by BCS theory, the Midgal ratio must be much less than one in order to justify

ignoring Coulomb repulsion and acheive a net attractive interaction between paired elec-

trons. We calculate the Migdal ratio from first principles calculations for the two lowest

energy polar phonon modes. The phonon frequencies were calculated using the density

functional perturbation theory (DFPT) method implemented in VASP. For the phonon

calculations, we include the small in-plane components of the polar distortion which

are ignored in the calculations exploring the thermal phase space in Chapter 3 to avoid

imaginary modes and to improve the accuracy of the calculated frequencies. The Fermi

energies used to calculate the Migdal ratio are the same as those extracted from the

density of states calculations described in the previous section.

In Chapter 3, our Langevin simulations calculated the frequency of the polar modes

as a function of temperature. These results are shown in Fig.3.17. At low doping levels,

the two lowest energy phonon modes have frequencies of approximately 2.1 THz and

6.2 THz. We identify these modes in our phonon frequency calculations. These modes

are the only modes at low energy which show a significant dependence on doping. The

mode around 2 THz (mode 1), and the mode around 6 THz (mode 2) are plotted versus
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Figure 4.9: Phonon Energies (a) Energy of polar phonon modes plotted against
carrier concentration (b) Migdal ratio versus doping.

doping in Fig.4.9(a). The lowest energy mode hardens slightly with increased doping,

while the higher energy mode softens slightly. Given the doping dependence of the mode

frequency, and the results from the Langevin simulations, the lowest energy polar mode

is the relevant TO1 soft mode.

The Migdal ratio for the two modes is plotted in Fig.4.9(b). Both modes remain

within the adiabatic regime (ωD/EF ) << 1 throughout the doping range. The Midgal

ratio decreases at higher doping levels as the increase in the Fermi energy outweighs the

changes in the phonon frequency. The doping dependence of the soft mode [Fig.4.9(a)]

and the fact the Migdal ratio calculated using the soft mode would place SrTiO3 within

the adiabatic regime [Fig.4.9(b)] could suggest that the TO1 mode plays a role in Cooper

pairing. However, the specific mechanism through which electron density could pair to

this mode has yet to be provided, since Rashba coupling, in addition to other phonon

mediated mechanisms, do not appear to be strong enough to mediate Cooper pairing.

Theories which posit that these phonon-mediated mechanisms may be strong enough
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to mediate pairing near the quantum critical point do not explain the enhancement

of superconductivity that we observe in strained films far on the ordered side of the

quantum critical point. A theory for Cooper pairing in strontium titanate should explain

superconductivity in all related systems, whether they be strained, isotope-exchanged,

or Ca-substituted samples. So far, the proposed theories are not able to accomplish this.

4.4 Summary

We have calculated electronic band structures for the strained polar and unstrained

tetragonal phases over a range of doping levels. We find that the polar distortion in-

creases the energy splitting between the lowest energy band and the upper bands. Our

density of states calculations indicate that in the limit of single-band superconductivity,

an increased density of states within a single band could result in enhanced superconduc-

tivity within the polar phase. Experimental investigations of the Fermi energy, density

of states, and the precise location of the Lifshitz transitions in the strained system could

be useful in corroborating these results.

We also investigate the Rashba splitting in the polar structure and find that the

Rashba splitting is lowest in the lowest energy band, which may be most relevant to

superconductivity in the polar structure, where the single-band regime is relevant up to

higher doping levels. Rashba coupling may not be sufficient to justify superconductivity

in the polar phase.

The Migdal ratio is calculated from first principles over a range of doping levels for

the two lower-energy polar modes, whose frequencies agree with the simulations of the

phonon spectral function described in Chapter 3. We find the Migdal ratio to be within

the adiabatic limit throughout the relevant doping regime. However, it should be noted

that the eigenvectors and frequencies of the polar modes may differ from experiment.
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Also, the level of carrier concentration required by DFT to suppress the polar distortion

is much greater than experiment, which could influence the doping dependence of the

phonon frequencies.
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Chapter 5

Combinatorial Exploration of

Herbersmithite-related Quantum

Spin Liquid Candidates

5.1 Introduction

1 In a quantum spin liquid (QSL), frustrated antiferromagnetic exchange interactions

prevent localized spins from ordering at low temperatures, instead forming a fluid-like

phase. The large degeneracy of this state can give rise to novel phenomena such as

fractionalized quasiparticles, emergent gauge fields, and long-range entanglement [32,

161, 162, 163]. The kagome lattice of corner-sharing triangles is known to have high

geometric frustration and is capable of hosting such a phase. A leading QSL material

candidate possessing this structure is herbertsmithite [ZnCu3(OH)6Cl2], which contains

perfect kagome layers of spin-1/2 copper cations separated by non-magnetic Zn and Cl

1The contents of this chapter are adapted from [160]: “Combinatorial exploration of quantum spin
liquids in the herbertsmithite material family,” Alex Hallett, Catalina Avarvarei, and John Harter,
Physical Review Materials, 7, (2023): 064403.
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ions [164, 165], as shown in Fig. 5.1(a,c). Indeed, although herbertsmithite has strong

antiferromagnetic exchange interactions, no magnetic phase transition is observed down

to sub-kelvin temperatures [166, 167, 168, 169, 170], and an array of experimental and

theoretical work favors a possible QSL scenario [171, 172, 173, 174, 175, 176, 177, 178,

179, 180, 181, 182, 178, 183].

Despite its many promising features, herbertsmithite is prone to cation substitutional

disorder, where Cu may occupy interlayer sites and Zn may occupy intralayer kagome

sites [166, 173, 184]. The precise amount of this disorder is debated. Several studies

suggest that while there is minimal substitution of Zn on the kagome layers, the interlayer

sites can be occupied by up to 15% Cu [185, 186, 171, 187], resulting in a decidedly off-

stoichiometric compound. These interlayer “orphan” spin-1/2 Cu2+ defects are highly

problematic for the QSL state, causing weak ferromagnetic interactions between kagome

layers and distorting the surrounding matrix of magnetic ions [172]. Zn-substituted

barlowite (Zn-barlowite), a structurally related compound and another potential QSL

candidate [188, 189], is thought to have a much lower interlayer disorder concentration,

largely due to the greater chemical distinction between the interlayer and intralayer

sites, as shown in Fig. 5.1(b,d) [190, 191]. Experiments indicate that in Zn-barlowite,

off-center interlayer C2v sites can contain up to 5% Cu defects. Like herbertsmithite,

however, Zn-barlowite does not order magnetically, even with these large concentrations

of magnetic defects [192, 193]. While progress on this class of materials is encouraging,

it is nevertheless desirable to further minimize orphan Cu spins to realize a clean QSL

ground state.

Synthesizing compounds structurally similar to herbertsmithite and Zn-barlowite

is a promising route to discover new QSL candidates. For example, Mg-substituted

herbertsmithite, MgxCu4−x(OH)6Cl2 (tondiite), has been successfully synthesized and

shows no magnetic phase transition down to 1.8 K [194, 195, 196], and a Cd analog
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(d)

Zn Cu Cl O H Zn Cu O HBr F

(b)(a)

(c)

Figure 5.1: Crystal structures of herbertsmithite and Zn-barlowite (a) Her-
bertsmithite viewed along the c-axis, showing the kagome arrangement of Cu ions.
(b) Zn-barlowite viewed along the c-axis. (c) Herbertsmithite viewed along the [110]
direction, showing the shifted stacking arrangement of the kagome layers. (d) Zn-bar-
lowite viewed along [110], showing the stacking of the kagome layers and the inequiv-
alence of the Br and F sites.

[CdCu3(OH)6Cl2] shows no magnetic ordering down to 2 K, although it exhibits signif-

icant distortions of the kagome planes [197]. Synthesis of the bromide analog of her-

bertsmithite [ZnCu3(OH)6Br2] was attempted but unsuccessful [198]. A Zn-barlowite

related structure, Zn-claringbullite [ZnCu3(OH)6ClF], shows no obvious magnetic tran-

sition down to 2 K, but a perfectly stoichiometric compound was not achieved [199].

While the Mg analog of barlowite cannot be synthesized due to the insolubility of MgF2

in water, the bromide analog was attempted [MgCu3(OH)6Br2], but did not have the

Zn-barlowite structure and ordered antiferromagnetically at 5.4 K [200].

Clearly, more work is needed to search for and identify viable candidates in this mate-

rial family. Only a few computational studies exist exploring cation substitution in bar-

lowite [190, 191], and a complete exploration of the structural families of herbertsmithite

and Zn-barlowite using computational methods has not been performed. Here, we use ab
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initio calculations to systematically explore compounds within the herbertsmithite and

Zn-barlowite families. We compare the thermodynamic stability, structural properties,

and tendency towards disorder. After considering all these criteria together, we select

promising QSL candidates that merit further experimental and theoretical examination.

5.2 Computational Methods

We carry out a systematic exploration of the structural relatives of herbertsmithite

[ACu3(OH)6B2] and Zn-barlowite [ACu3(OH)6BC] by substituting closed-shell (spinless)

2+ cations (A = Ba, Be, Ca, Cd, Ge, Hg, Mg, Pb, Sn, Sr, Zn) and halide anions (B,C

= Br, Cl, F, I). We investigate all 44 possible herbertsmithite relatives. While there are

176 possible Zn-barlowite relatives, we eliminate compounds where B = C because the

herbertsmithite structure always has lower energy in these cases. We also do not consider

compounds in which the less electronegative anion occupies the C site [the site occupied

by F in Fig. 5.1(b,d)]. All hydrogen bonds are oriented towards the C site, so the more

electronegative ion will always occupy this position to minimize energy. Thus, a total of

66 relatives in the Zn-barlowite family were selected for consideration.

We perform high-throughput calculations where the structural optimization of each

candidate is followed by a static calculation to extract the ground-state energy and to

compute phonon frequencies at the Γ point to confirm structural stability. In addition

to confirming the stability of the relaxed structures, we perform convex hull calculations

to determine if synthesis of the candidate compounds is thermodynamically feasible. For

the most promising materials, we also calculate defect formation energies and full phonon

dispersions throughout the first Brillouin zone to verify stability at k-points away from

the zone center.

All structures were calculated by allowing the lattice parameters, cell volume, and
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atomic positions to fully relax using density functional theory (DFT) as implemented

in the Vienna ab initio simulation package (vasp) [98, 99, 100]. We used the supplied

projector augmented wave potentials [101] within the generalized gradient approximation

and Perdew-Burke-Ernzerhof scheme [102]. Electronic wave functions were expanded in

a plane wave basis set with an energy cutoff of 800 eV, and reciprocal space was sampled

using an 8 × 8 × 8 k-point mesh for herbertsmithite-related structures and an 8 × 8 × 5

k-point mesh for Zn-barlowite-related structures. A Γ-centered mesh is necessary due to

the hexagonal symmetry of Zn-barlowite. The spacing between k-points was ∼0.15 Å−1

for both structural families, and this spacing was also used for calculating the energies

of binary compounds used in the convex hull analysis. All structures were relaxed until

forces on the atoms were less than 1 meV/Å. Calculations were non-spin-polarized.

5.3 Structural Stability

Phonon calculations at the Γ point for the fully-relaxed structures were performed in

vasp within the finite differences approximation to confirm structural stability. As ex-

pected, many structures have unstable phonon modes. Fig. 5.2(a,b) shows the frequency

of the lowest energy optical phonon mode, f0, for all compounds. In all subsequent plots,

the unstable compounds (with f0 < 0) are marked with an ‘X’ to distinguish them from

structurally stable and potentially viable candidates. Cations are shown on the vertical

axis and anions on the horizontal axis, in order of increasing ionic radius from bottom

to top and left to right, respectively. The reference compound, either herbertsmithite or

Zn-barlowite, is shown in white and marked with an asterisk. Compounds with parame-

ter values more favorable than the reference compound are shown with warm colors, and

values less favorable are shown with cool colors. For example, a higher frequency of the

lowest energy optical mode indicates higher dynamical stability, so higher frequencies are
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(a) (b) (c) (d)

* * **

Ba

Pb

Sr

Sn

Hg

Ca

Cd

Ge

Zn

Mg

Be

F Cl Br I Cl-F Br-F I-F Br-Cl I-Cl I-Br F Cl Br I Cl-F Br-F I-F Br-Cl I-Cl I-Br

0 50 100 150-50 25025 100 175-6.4 1.6-4.4 -2.4 -0.4-5.0 5.0-2.5 0 2.5 200

f0 (THz) f0 (THz) Ehull (meV/atom) Ehull (meV/atom)

Figure 5.2: Structural stability and thermodynamics of candidate com-
pounds. (a) Lowest optical phonon frequency for herbertsmithite-related candidates.
(b) Lowest optical phonon frequency for Zn-barlowite-related candidates. (c) Con-
vex hull energies for herbertsmithite-related candidates. (d) Convex hull energies
for Zn-barlowite-related candidates. Structurally unstable compounds (identified by
f0 < 0) are denoted with an ‘X’. Cations are shown on the vertical axis and anions on
the horizontal axis, in order of increasing ionic radius from bottom to top and left to
right, respectively. The reference compound (either herbertsmithite or Zn-barlowite)
is shown in white and marked with an asterisk. Compounds with parameter values
more favorable than the reference compounds are shown with warm colors, and values
less favorable are shown with cool colors.
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shown with warm colors.

Compounds containing larger cations are generally unstable, as well as Zn-barlowite

relatives containing Be. Most compounds containing group IV elements (Ge, Sn, Pb)

tend to be unstable, with the exception of GeCu3(OH)6F2 and PbCu3(OH)6F2. Group

IV elements have two major oxidation states, 2+ and 4+. For Ge and Sn, the 4+

oxidation state is more stable. For heavier group IV elements such as Pb, the inert pair

effect, where the force exerted on the outermost s electrons by the nucleus is stronger,

the 2+ oxidation state is more stable since the s electrons are more difficult to ionize.

Thus, while nearly all Pb containing compounds are unstable, they follow the expected

trends based on cation size. Materials containing Ge and Sn, on the other hand, have

more negative phonon frequencies than might be expected based on their size.

5.4 Pseudo Convex Hull Calculations

The convex hull of a compound is useful for determining if synthesis is thermody-

namically feasible, usually through a comparison of the compound’s formation energy

to the sum of the energies of all other possible combinations of crystal structures that

could be created from the same set of elements in the same ratios. Due to the prohibitive

size of the phase space for our candidate materials, we perform a simplified procedure.

Instead of considering all possible crystal structures, we consider only simple binary ionic

compounds [e.g. A(OH)2, AB2], which are most likely to yield the lowest convex hull en-

ergies. Starting structures for these binary compounds were obtained from the Materials

Project [201] and then re-relaxed with our settings.

For herbertsmithite-related compounds of the form ACu4(OH)6B2 we considered two

possible outcomes for the formation of simple binary compounds:
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ACu4(OH)6B2 ↔ AB2 + [Cu(OH)2]3 (5.1)

ACu4(OH)6B2 ↔ A(OH)2 + CuB2 + [Cu(OH)2]2 (5.2)

For Zn-barlowite-related compounds of the form ACu4(OH)2BC, we considered the

following outcomes from the production of binary compounds:

ACu4(OH)6BC ↔ 1

2
AB2 +

1

2
AC2 + [Cu(OH)2]3 (5.3)

ACu4(OH)6BC ↔ A(OH)2 +
1

2
CuB2 +

1

2
CuC2 [Cu(OH)2]2 (5.4)

For each structural family, we sum the energies of the binary product compounds for

the two scenarios above. Whichever reaction is lower in energy is subtracted from the

energy of the compound itself and normalized by the number of atoms to calculation

the energy above the hull (Ehull). While this method does not rule out the formation of

stable polymorphs of the candidate compounds, it eliminates candidates for which the

simple binary products are favored.

Insulators with energies less than ∼50 meV above the convex hull tend to be sta-

ble [202]. We therefore use an energy cutoff of 50 meV/atom as our criteria for ther-

modynamic stability when identifying candidate materials. The calculated energy above

the hull for each compound is shown in Fig. 5.2(c,d). Energies higher than the refer-

ence compound are considered unfavorable and are represented with cool colors, while

energies lower than the reference compound are favorable and represented with warm

colors. Again, the reference compounds are shown in white and marked with an asterisk,

and compounds with structural instabilities (as determined by phonon calculations) are
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marked with an ‘X’. There does not appear to be a clear connection between convex hull

energy and structural stability or ion size.

Some compounds which show high thermodynamic stability may be structurally un-

stable, and some stable compounds may exhibit unfavorable thermodynamics. The con-

vex hull energy depends not only on the candidate compound, but also on the energies

of the binary and reference compounds. Certain materials maybe have highly unstable

binary compounds, such that the relative stability of the final configuration is preferred,

even though it is structurally unstable.

5.5 Structural Parameters

In addition to structural and thermodynamic stability, we use Cu-O-Cu bond angles

and spacings between kagome layers as metrics to rank the candidate compounds. A Cu-

O-Cu bond angle approaching 180◦ leads to a large antiferromagnetic superexchange in-

teraction while minimizing undesirable Dzyaloshinskii–Moriya interactions. Larger bond

angles are therefore highly desirable. A greater separation between the kagome layers

isolates the two-dimensional magnetic subsystems and suppresses unwanted coupling be-

tween planes. In Fig. 5.3, these two structural properties are displayed for all candidate

compounds. Squares corresponding to specific compounds are colored and marked ac-

cording to the same system described for Fig. 5.2, where bond angles and interplane

distances larger (smaller) than the reference compounds are favorable (unfavorable) and

represented with warm (cool) colors, and structurally unstable compounds continue to

be marked with an ‘X’. Compounds with larger cation and anion radii generally lead to

larger bond angles and interplane distances, but also tend to be structurally unstable.

Ge and Sn substituted compounds tend to have smaller bond angles due to structural

distortions of the hydroxyl groups surrounding the relatively unstable 2+ cation.
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Figure 5.3: Structural properties of candidate compounds. (a) Cu-O-Cu bond
angle for herbertsmithite-related candidates. (b) Cu-O-Cu bond angle for Zn-bar-
lowite-related candidates. (c) Interplane kagome distance for herbertsmithite-re-
lated candidates. (d) Interplane kagome distance for Zn-barlowite-related candidates.
Structurally unstable compounds are denoted with an ‘X’. Cations are shown on the
vertical axis and anions on the horizontal axis, in order of increasing ionic radius from
bottom to top and left to right, respectively. The reference compound (either herbert-
smithite or Zn-barlowite) is shown in white and marked with an asterisk. Compounds
with parameter values more favorable than the reference compounds are shown with
warm colors, and values less favorable are shown with cool colors.

5.6 Effects of Ion Size

We investigate the effects of ion size on the physical properties of the candidate

compounds in more detail in Fig. 5.4. In Fig. 5.4(a), the Cu-O-Cu bond angle is plotted

versus anion radius for the structurally stable materials. The anion size plotted on the

horizontal axis for Zn-barlowite relatives refers to the C-site anion that occupies the

same position as F in the reference compound [ZnCu3(OH)6BrF] because it has the

largest influence on bond angle. For all materials, bond angle increases with increasing

anion size, and for a given anion, the bond angle also increases with increasing cation size.
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Figure 5.4(b) shows the kagome plane spacing versus cation radius for stable compounds,

with separate traces for each anion. As expected, a larger cation radius leads to greater

distance between the kagome layers. For a given cation, interplane distance also increases

with increasing anion size. In Fig. 5.4(c), we find that while the C-site anion has the

greatest effect on the Cu-O-Cu bond angle, larger bond angles are obtained when the

B-site anion is similar in size to the C-site anion.

We examine the effect of ion size on the lattice parameters of stable compounds in

Fig. 5.4(d). The c-axis length primarily increases with cation size while the a-axis length

primarily increases with anion size, although anion size has a much weaker affect on the

a-axis than cation size does on the c-axis. The frequency of the lowest optical phonon

mode (f0) is plotted against c-axis length in Fig. 5.4(e) for both stable (filled markers)

and unstable (empty markers) structures. Of all the structural parameters, the c-axis

length has the highest correlation with f0. For herbertsmithite relatives, as the c-axis

increases, f0 decreases, meaning compounds tend to be less dynamically stable. Of the

compounds not containing Ge or Sn, c-axis lengths that are very small or very large

lead to structural instabilities. Compounds containing group IV ions which are more

stable in the 4+ oxidation state (Ge, Sn) are plotted in darker shades for both structural

families because nearly all compounds containing these elements are unstable despite

having intermediate c-axis lengths. Materials which contain cations from groups IIA and

IIB which are close in size to Zn tend to be most stable. Fig. 5.4(f) shows Cu-O-Cu bond

angle versus a-axis length. We find that a larger a-axis leads to a larger bond angle,

which agrees with the results in Fig. 5.4(a), where bond angle is positively correlated

with anion radius, and Fig. 5.4(d), which shows the positive correlation between anion

size and the length of the a-axis. It should be noted that many unstable compounds

containing Ge and Sn have much smaller bond angles than most other candidates due to

the relative instability of the 2+ oxidation state as previously mentioned.
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Figure 5.4: Dependence of structural properties on ion size. (a) Cu-O-Cu bond
angle versus anion radius. For Zn-barlowite, the radius plotted is that of the most
electronegative anion. Blue (red) traces correspond to Zn-barlowite (herbertsmithite)
relatives. Different cations are plotted as separate traces where darker (lighter) traces
correspond to smaller (larger) ion sizes. (b) Interplane kagome distance versus cation
radius for herbertsmithite (red) and Zn-barlowite (blue) relatives. Separate traces are
plotted for each anion, where small (large) anions are plotted in dark (light) shades.
(c) Cu-O-Cu bond angle versus the anion B to anion C ratio for stable compounds.
Separate traces are plotted for different cations. (d) c-axis length versus cation size
(left, dashed line) and a-axis length versus anion size (right, solid lines). (e) Frequency
of the lowest optical phonon mode versus c-axis length for Zn-barlowite (blue) and
herbertsmithite (red) relatives. Stable (unstable) compounds are shown with filled
(empty) markers. The group IV elements (Ge, Sn) which are less stable in the 2+
oxidation state are plotted with darker colors because they are almost always unstable,
regardless of their c-axis length. (f) Cu-O-Cu bond angle versus a-axis length for
Zn-barlowite (blue) and herbertsmithite (red) relatives. Stable (unstable) compounds
are shown with filled (empty) markers. Compounds containing Ge and Sn cations
(shown in darker colors) tend to have much smaller bond angles.
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We also explored correlations between Cu-O-Cu bond angle, interplane distance, and

in-plane Cu-Cu bond length. These correlations are plotted in Fig.5.5 The Cu-O-Cu

bond angle has a weak positive correlation with interplane distance. There is also a

positive correlation between in-plane Cu-Cu distance and Cu-O-Cu bond angle, as both

are influenced by the length of the a-axis, which increases with increasing anion size.

There is no obvious correlation between the interplane kagome distance and the in-plane

Cu-Cu bond length, as the interplane distance depends mostly on cation size, and in-

plane bond length depends on anion size.

Figure 5.5: Correlations between structural parameters. (a) Cu-O-Cu bond
angle vs. interplane kagome distance for herbertsmithite. (b) Cu-O-Cu bond angle
vs. in-plane Cu-Cu distance for herbertsmithite. (c) Interplane kagome distance vs.
in-plane Cu-Cu distance for herbertsmithite. (d) Cu-O-Cu bond angle vs. interplane
kagome distance for Zn-barlowite. (e) Cu-O-Cu bond angle vs. in-plane Cu-Cu dis-
tance for Zn-barlowite. (f) Interplane kagome distance vs. in-plane Cu-Cu distance
for Zn-barlowite.
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Overall, for both structural families, compounds with cations of intermediate size

(Mg, Zn, Cd, and Hg) are most stable. Compounds containing the group IV elements

(Ge, Sn) are mostly unstable and have significantly smaller bond angles. Larger anions

and cations lead to favorable structural properties, such as larger bond angles and inter-

plane distances, but may also lead to distortions of the kagome layers or other structural

instabilities. While the same general trends are present for both herbertsmithite and

Zn-barlowite, some clusters of data for the Zn-barlowite have linear correlations of var-

ious properties since compounds with certain cations having linear dependencies with

increasing anion size, as is explicitly shown in Fig.5.4.

5.7 Defect Formation

Herbertsmithite and Zn-barlowite are both susceptible to cation disorder. In herbert-

smithite, the Jahn-Teller active d9 Cu2+ ion occupies the tetragonally elongated site in

the center of the CuO4Cl2 octahedra. The d10 Zn2+ ions are not Jahn-Teller active, and

occupy the higher-symmetry trigonally compressed octahedral sites between the kagome

layers. Due to the electronic configurations of the ions and distinct coordination en-

vironments, it is not favorable for Zn to occupy the in-plane sites within the kagome

layer. However, herbertsmithite is the x = 1 end member of the Zn-paratacamite family

[ZnxCu4−x(OH)6Cl2], and there is a preference for some Cu to exist on the interlayer site

instead of full occupation with Zn alone [166]. The equilibrium occupation of the inter-

layer site by Cu has been estimated to be as large as 15% in herbertsmithite [185, 186].

In Zn-barlowite, the interlayer site has a trigonal prismatic geometry, making it

even less favorable for the Jahn-Teller active Cu2+ ion. As a result, the interlayer Cu

occupation is only ∼5% in Zn-barlowite [192], confirming early computational predic-

tions [190, 191]. Site-specific x-ray diffraction measurements have shown that there are
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Figure 5.6: Coordination geometry for cations in herbertsmithite and
Zn-barlowite. (a) The elongated CuClO2 octahedral geometry for in-plane Cu ions
in herbertsmithite. The Jahn-teller active cooper ion prefers this octahedral coordina-
tion geometry. (b) The compressed octahedral coordination geometry of interlayer Zn
in herbertsmithite, which is unfavorable for the d9 Cu ion. (c) The elongated CuBrO2

octahedral coordination geometry of in-plane Cu in Zn-barlowite. (d) Trigonal pris-
matic geometry of interlayer Zn sites in Zn-barlowite, which are highly unfavorable
for the Cu ions.

two distinct interlayer sites in Zn-barlowite: an off-center C2v site and a central D3h site.

The interlayer Cu defects occupy the C2v sites. In barlowite [Cu4(OH)6Cl2] a magnetic

transition is observed at TN = 15 K, where the bulk magnetic moment comes from the

interlayer Cu spins. It should be noted that even for large concentrations of Cu ions on

the interlayer site, Zn-barlowite does not show signs of magnetic ordering, indicating that

the possible QSL phase is somewhat robust against interlayer magnetic impurities [192].

In order to determine the tendency towards disorder for our best candidate com-

pounds, we calculated the formation energy for interlayer defects. We did not consider

defects within the kagome layer as these are known to be much higher in energy (and are

therefore not observed experimentally) due to the difference of coordination geometry

of in-plane and interlayer sites. The coordination geometries are shown in Fig.5.6 for

herbertsmithite and Zn-barlowite.

The defect formation energy consists of the total energy difference between the per-

fectly ordered bulk structure, and the structure with a defect, as well as the chemical

potential difference from replacing a metal ion with a Cu ion.
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M8Cu24(OH)48(BC)8 + Cu2+ ↔M7Cu25(OH)48(BC)8 +M2+ (5.5)

∆Ef
d = (Einter + µM) − (Ebulk + µCu) (5.6)

∆Ef
d = (Einter − (Ebulk)(µ2+

M − µCu) (5.7)

∆Ef
d = ∆Es + ∆µ (5.8)

The individual components of ∆Ef
d are shown in Tab.5.1 for herbertsmithite-related

compounds and Tab.5.2 for Zn-barlowite-related compounds.

Table 5.1: Components of ∆Ef
d for herbertsmithite-related compounds.

Compound ∆Es (eV) ∆µ (eV) ∆f
d (eV)

BaCu3(OH)6I2 5.40 -2.98 2.42
CaCu3(OH)6I2 4.34 -3.48 0.87

CaCu3(OH)6Cl2 4.12 -3.55 0.57
MgCu3(OH)6Br2 2.77 -2.40 0.36
ZnCu3(OH)6Cl2 -0.57 0.70 0.13

Table 5.2: Components of ∆Ef
d for Zn-Barlowite-related compounds.

Compound ∆Es (eV) ∆µ (eV) ∆f
d (eV)

CaCu3(OH)6IBr 4.31 -3.57 0.74
CaCu3(OH)6ICl 4.25 -3.52 0.72

MgCu3(OH)6BrCl 2.62 -2.32 0.30
MgCu3(OH)6ClF 2.79 -2.40 0.39
ZnCu3(OH)6BrF -0.60 0.70 0.10
ZnCu3(OH)6ClF -0.62 0.69 0.70

An ideal QSL candidate will have only non-magnetic ions on the interlayer sites, and

therefore must have a high energy cost for interlayer Cu substitution. We calculated the

formation energy of such defects in a select number of our most promising candidates

(those structurally stable, with Ehull < 50 meV/atom, and with bond angles and inter-

plane distances larger than the reference compounds). Since nearly all experimental and
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computational studies indicate that there is negligible substitution of non-magnetic ions

within the kagome layers, we consider only interlayer defects. The general expression for

the formation energy of a charge-neutral substitutional defect is

Ef
d = E[defect] − E[bulk] + (µA − µCu) = ∆Es + ∆µ,

where ∆Es is the difference in energy between a structure with a single defect and the

pristine bulk structure and ∆µ is the chemical potential difference of A and Cu. To calcu-

late E[defect], we construct defect structures from 2× 2× 2 supercells of herbertsmithite

relatives and 2× 2× 1 supercells of Zn-barlowite relatives, with a single Cu substitution.

We relax the atomic positions of the defect structures shown in Fig.5.7 and subtract the

energy of the original defect-free structure to obtain ∆Es.

Figure 5.7: Defect supercell structures. (a) A single copper defect occupies an
interlayer Zn site in a 2× 2× 2 herbertsmithite supercell. (b) Side-view of a 2× 2× 1
Zn-barlowite supercell where a Cu defect occupies an interlayer off-center C2v site. (c)
Top-view of a 2×2×1 Zn-barlowite supercell where a Cu defect occupies an interlayer
off-center C2v site.
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The chemical formulas for the defect-containing and defect-free configurations are

not equivalent, so the chemical potential difference ∆µ = µA − µCu must be considered.

Interlayer defects are primarily created during the initial growth of the material. During

synthesis of ACu3(OH)6B2, the chemical potentials of the constituent elements must

satisfy the inequality

µA + 3µCu + 6µOH + 2µB > E[ACu3(OH)6B2].

Individual chemical potentials must all be less than zero (µA < 0, µB < 0, µOH < 0,

and µCu < 0). Additionally, the formation of unwanted side products must be avoided,

imposing the additional inequalities

µA + 2µB < E[AB2],

µCu + 2µB < E[CuB2],

µA + 2µOH < E[A(OH)2].

Similar inequality constraints exist for ACu3(OH)6BC. A higher defect formation energy

is preferable to minimize disorder. To maximize Ef
d , we must maximize the chemical po-

tential difference ∆µ subject to the above inequality constraints. The defect formation

energies calculated with these optimal values of ∆µ are given in Table 5.3. All candidate

compounds investigated had a higher energy cost for interlayer defects than herbert-

smithite and Zn-barlowite except ZnCu3(OH)6ClF (Zn-substituted claringbullite).

Two previous computational studies investigated doping selectivity in barlowite [190,

191]. In both cases, the authors investigated the likelihood of substituting various non-

magnetic ions into the interlayer and intralayer sites of barlowite, in contrast to the
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present work where we examine the energy cost of a Cu defect on an interlayer site in

fully-substituted A-barlowite (A = Zn, Mg, Ca). Despite differences in the methodology

used to construct defect structures and calculate the chemical potential differences, our

findings are generally consistent with those studies, which suggested Zn and Mg to be

the most favorable ions for synthesizing barlowite-related compounds.

5.8 Phonon Dispersions

After eliminating all compounds with structural instabilities at the Γ point, formation

energies greater than 50 meV/atom above the convex hull, and Cu-O-Cu bond angles

smaller than the reference compounds, 9 candidate materials remained. For these can-

didates, we calculated the defect formation energy Ef
d . To determine a final ranking, we

used the following criteria:

1. Structural stability (f0 > 0)

2. Convex hull energy (Ehull < 50 meV/atom)

3. Defect energy cost (Ef
d [candidate] > Ef

d [ref])

4. Cu-O-Cu bond angle (θ > θref)

All compounds satisfying these criteria are listed with their associated properties in

Table 5.3. For these final candidates, we verified structural stability by calculating the

full phonon dispersion throughout the entire Brillouin zone using the finite displacement

method within the phonopy code [103]. Such calculations can identify structural insta-

bilities associated with an enlargement of the unit cell. Dispersion curves were calculated

for all candidates in Table 5.3. However, only one compound in the herbertsmithite fam-

ily and two compounds in the Zn-barlowite family were found to be stable throughout the

entire Brillouin zone. The dispersion curves of these compounds are shown in Fig. 5.8.
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Figure 5.8: Phonon dispersions of final candidates. (a) The phonon disper-
sion for MgCu3(OH)6Br2 (blue) overlaid with the reference dispersion for herbert-
smithite (gray). (b) The phonon dispersion for CaCu3(OH)6ICl (blue) overlaid with
the reference dispersion for Zn-barlowite (gray). (c) The phonon dispersion for
MgCu3(OH)6ClF (blue) overlaid with the reference dispersion for Zn-barlowite (gray).
The absence of imaginary phonon frequencies in all three cases confirms the structural
stability of these candidate compounds.

The dispersions with imaginary modes for herbertsmithite-related compounds in

Tab.5.3 are shown in Fig.5.9, the eigenvectors for the imaginary modes are shown in

Fig.5.10. Dispersions with imaginary modes and the eigenvectors of the structural insta-

bilities for Zn-barlowite-related compounds are shown in Fig.5.11 and Fig.5.12, respec-

tively.

Surprisingly, while Zn-claringbullite [ZnCu3(OH)6ClF] is known to have perfect kagome

layers at room temperature [199], our ground state dispersion shows instabilities at the

M and K points (see Fig.5.11). The instabilities we observe in DFT may be avoided by

thermal fluctuations at room temperature, which could explain the discrepancy between

our calculations and the experimental results. Two other Zn-barlowite-related candidate

compounds listed in Table 5.3, CaCu3(OH)6IBr and MgCu3(OH)6BrF, showed similar

instabilities (see Fig.5.12, and therefore may also be stable at room temperature.
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Figure 5.9: Herbertsmithite imaginary phonon frequencies. (a) Phonon disper-
sion for BaCu3(OH)6I2 (blue) overlaid with the dispersion for herbertsmithite (gray)
An instability is observed at the L point. (b) Phonon dispersion for CaCu3(OH)6Br2
(blue) overlaid with the dispersion for herbertsmithite (gray). Instabilities are ob-
served at the L point. (c) Phonon dispersion for CaCu3(OH)6Cl2 (blue) overlaid
with the dispersion for Zn-Barlowite (gray). Instabilities are observed at the F and L
points.

Figure 5.10: Eigenvectors for imaginary frequencies herbertsmithite. (a)
Eigenvector for the instability at the L-point for BaCu3(OH)6I2. The coordinate
compass in the lower left of panel (a) is the same for all eigenvectors (a-e). (b)
Eigenvector for the instability at the L-point for CaCu3(OH)6Br2. (c) Eigenvector for
lowest frequency instability at the L-point for CaCu3(OH)6Cl2. (d) Eigenvector for
higher frequency instability at the L-point for CaCu3(OH)6Cl2. (e) Eigenvector for
the instability at the F-point for CaCu3(OH)6Br2.
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Figure 5.11: Imaginary frequencies for Zn Barlowite Candidates. (a) Phonon
dispersion for CaCu3(OH)6IBr (blue) overlaid with the dispersion for Zn-barlowite
(gray). Instabilities are observed at the M and K points. (b) Phonon dispersion
for MgCu3(OH)6BrCl (blue) overlaid with the dispersion for Zn-barlowite (gray).
Instabilities are observed at the M, K, and Γ points. (c) Phonon dispersion for
ZnCu3(OH)6ClF (blue) overlaid with the dispersion for Zn-barlowite (gray). Instabil-
ities are observed at the M and K points.

Figure 5.12: Eigenvectors for imaginary frequencies Zn-barlowite. (a) Eigen-
vector for the instability at the K-point for MgCu3(OH)6BrCl. (b) Eigenvector for
the instability at the M-point for MgCu3(OH)6BrCl. (c) Eigenvector for instability
at the Γ-point for MgCu3(OH)6BrCl. (d) Eigenvector for higher frequency instabil-
ity at the M-point for ZnCu3(OH)6ClF. (e) Eigenvector for higher frequency insta-
bility at the K-point for ZnCu3(OH)6ClF. (f) Eigenvector for the instability at the
M-point for CaCu3(OH)6IBr. (g) Eigenvector for the instability at the K-point for
CaCu3(OH)6IBr.
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5.9 Determining Final Candidates

Our calculations identify MgCu3(OH)6Br2 as a potential candidate within the her-

bertsmithite family, as well as CaCu3(OH)6ICl and MgCu3(OH)6ClF in the Zn-barlowite

family. However, some practical considerations related to synthesis may require further

investigation.

Table 5.3: Properties of the most promising QSL candidate materials as compared
to the reference materials. The references (herbertsmithite and Zn-barlowite) are
highlighted in gray, and the final candidates (with no instabilities throughout the
Brillouin zone) are marked with asterisks.

Compound f0 (THz) Ehull (meV/atom) Ef
d (eV) θ (deg) dinter (Å) din (Å)

BaCu3(OH)6I2 0.41 42.6 2.42 128.0 6.09 3.53
CaCu3(OH)6Br2 0.50 30.7 0.87 125.7 5.19 3.53
CaCu3(OH)6Cl2 0.70 44.8 0.57 125.8 5.06 3.51
MgCu3(OH)6Br2 ∗ 2.23 36.0 0.36 125.2 4.65 3.57
ZnCu3(OH)6Cl2 2.63 41.2 0.13 125.0 4.58 3.53
CaCu3(OH)6IBr 0.77 31.6 0.74 127.7 5.20 3.58
CaCu3(OH)6ICl ∗ 0.94 19.2 0.72 125.4 5.17 3.54
MgCu3(OH)6ClF ∗ 1.09 39.6 0.39 118.1 4.60 3.38
MgCu3(OH)6BrCl 0.35 26.9 0.30 126.1 4.61 3.56
ZnCu3(OH)6BrF 1.41 38.6 0.10 118.0 4.69 3.39
ZnCu3(OH)6ClF 0.89 43.1 0.07 118.5 4.64 3.38

For instance, the Mg analog of Zn-barlowite [MgCu3(OH)6BrF] has not been synthe-

sized due to the insolubility of MgF2 in water. While synthesis of Zn-barlowite using

NH4F yields a structurally equivalent compound, crystals obtained using this method

show a similar magnetic transition to barlowite, suggesting possible differences in de-

fect structures between the two synthesis methods [203]. The insolubility of MgF2 may

therefore present difficulty in synthesizing our candidate MgCu3(OH)6ClF [199]. Synthe-

sis of MgCu3(OH)6Br2 has been attempted, but the desired product was a Zn-barlowite

analog [200]. The synthesis method, which followed the typical hydrothermal procedure,

resulted in a compound with P 3̄m1 symmetry, which may mean that the herbertsmithite
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R3̄m structure is not favored in this reaction. It is possible that other synthesis meth-

ods could yield different results. To our knowledge, no experimental studies have been

performed on the Ca analog of either herbertsmithite or Zn-barlowite, nor any related

compounds containing I.

In summary, we performed a systematic combinatorial exploration of herbertsmithite

and Zn-barlowite material relatives and identified those with properties that may enhance

the likelihood of an ideal QSL ground state. We found several promising candidates—

MgCu3(OH)6Br2, CaCu3(OH)6ICl, and MgCu3(OH)6ClF—that are structurally stable,

thermodynamically feasible to synthesize, have high energy costs for interlayer defects,

and whose structural properties may result in antiferromagnetic superexchange interac-

tions stronger than herbertsmithite or Zn-barlowite. These compounds, if they can be

synthesized, may prove to be better QSL candidates than their well-studied counter-

parts.
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Chapter 6

Characterizing the Nature of Charge

Density Wave order in CsV3Sb5

1Kagome metals are intriguing due to their ability to host topologically nontrivial elec-

tronic states. Single orbital tight-binding models yield Dirac points and a flat band which

can give rise to nontrivial band topology and strong electron correlations [205, 206, 207,

208, 209, 210, 211, 212]. These unique electronic structures enable the possibility for

charge density waves, superconductivity, and charge fractionalization. The recently dis-

covered family of AV3Sb5 (A = K, Cs, Rb) kagome metals provides a platform to study

a unique combination of interconnected material properties, where an unusual charge

density wave (CDW) transition is measured at TCDW = 78, 102, 94 K [213, 214, 215]

followed by a superconducting transition at TC = 0.93, 0.92, 2.5 K [216] for A = K, Rb,

Cs respectively.

The high-temperature crystal structure of CsV3Sb5 viewed along the c-axis is shown

1The contents of this chapter are adapted from [204]: “Coherent phonon spectroscopy and interlayer
modulation of charge density wave order in the kagome metal CsV3Sb5,” Noah Ratcliff, Lily Hallett,
Brenden R. Ortiz, Stephen D. Wilson, and John W. Harter, Physical Review Materials, 5, (2021):
L111801.
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in Fig.6.1(a). Vanadium atoms form a kagome lattice with a bond length 2.75 Å, with

antimony atoms positioned above and below the 2D kagome plane. The layered na-

ture of the structure means the material can be easily cleaved, making experimental

measurements convenient. Diffraction measurements have observed charge order with

a q = (0.5, 0.5) wave vector in KV3Sb5 and CsV3Sb5 corresponding to 3Q CDW order.

Candidate distortions leading to such order are the Star of David or inverse Star of David

distortions are shown in Fig.6.1(b,c). At lower temperatures, unidirectional charge stripe

order appears to coexist with the 3Q CDW state, connecting the underlying interactions

to stripe/nematic instabilities within a kagome network [216].

Figure 6.1: Distortions of the kagome Lattice. (a) Pristine kagome lattice viewed
along the c-axis (b) Star of David (SoD) distortion (breathing out) (c) Inverse Start
of David distortion (breathing in). Figure adpated from [216].

Experiments have revealed many interesting properties, including the giant anoma-

lous Hall effect [217, 218], chiral charge order [219], and proximity to a time-reversal

symmetry-breaking instability in the absence of magnetic moments [213, 220], ther-

modynamic signatures of nodal quasiparticles [221], multiple superconducting domes

[222, 223, 224], spin-triplet supercurrents [223], and zero-bias conductance peaks in-

side superconducting vortex cores [225] have all been observed. This combination of

properties, in addition to the fact that the charge density wave instability seemingly

competes with superconductivity, suggests the formation of an unconventional and po-

tentially topological superconducting state. However, the microscopic origin of the charge
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density wave is still an open question.

We address two important questions in our work. The first is whether or not the CDW

modulates along the c-axis [225, 216, 226], and the second involves reports of uniaxial

CDW order which onsets lower than the initial CDW transition [225, 227, 222, 228]. We

use a combination of ultrafast coherent phonon spectroscopy and first-principles density

functional theory calculations to investigate the charge density wave order in CsV3Sb5.

We demonstrate that there is modulation of the CDW along the c-axis which we attribute

to the simultaneous condensation of one M and two L point modes. We refer to this as

the “MLL” distortion, which breaks C6 rotational symmetry and therefore could provide

an explanation for the uniaxial order observed at low temperatures.

6.1 Coherent Phonon Spectroscopy

Single crystals of CsV3Sb5 were synthesized according to the methodology outlined

in [213]. Samples were mounted in an optical cryostat and time-resolved optical reflec-

tivity measurements were performed on freshly cleaved surfaces. A non-collinear optical

parametric amplifier was used to generate ∼ 50 fs signal (800 nm) and idler (1515 nm)

pulses at a repetition rate of 500 kHz, which were used as probe and pump beams, respec-

tively. Both pulses had a low fluence of ∼ 100 µJ/cm2 to avoid sample heating and were

linearly polarized in-plane. A lock-in amplifier and optical chopper were used to mea-

sure the small pump-induced transient change in reflectivity. Raw transient reflectivity

data measured at several temperatures is shown in Fig.6.2. Above TCDW, the reflectivity

increases after the pump pulse and shows oscillations at a single phonon frequency. Be-

low TCDW, the reflectivity decreases and shows a complex beat pattern, indicating that

multiple oscillation frequencies are present. The clear difference in the transient optical

response across the CDW phase transition (∆R/R > 0 above TCDW, ∆R/R < 0 below
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Figure 6.2: Coherent phonon spectroscopy data for CsV3Sb5. (a) Transient reflec-
tivity curves for a series of temperatures above and below the CDW phase transition.
Temperatures are approximately evenly spaced and scans are offset for clarity. Above
TCDW, the reflectivity increases after the pump pulse and a single oscillation frequency
is apparent. Below TCDW, in contrast, the reflectivity decreases after the pump pulse
and the presence of multiple oscillation frequencies results in a complex beat pattern.
(b) Magnitude of the Fourier transform of the reflectivity oscillations after subtraction
of a double exponential background. Curves are offset for clarity. Three resonances
are identified and labeled α (1.3 THz), β (3.1 THz), and γ (4.1 THz). (c) Two-dimen-
sional temperature-frequency map of the Fourier magnitude of the coherent phonon
oscillations. While γ is present at all temperatures, α only becomes active below
TCDW. Below T ∗ ≈ 60 K, the broad β resonance appears and gradually grows in
amplitude. A weak softening of all three frequencies is apparent with increasing tem-
perature.

146



Characterizing the Nature of Charge Density Wave order in CsV3Sb5 Chapter 6

TCDW) is likely due to the opening of a partial energy gap near the Fermi level at the

CDW phase transition [229] and related changes in the density of states. The sign of

∆R/R is sensitive to electronic parameters influencing carrier dynamics, such as band

filling and band gap renormalization [230]; therefore, qualitative changes in the transient

optical response are expected at TCDW.

To gain a better understanding of the coherent phonon oscillations, a double expo-

nential background (A0 + A1e
−t/τ1 + A2e

−t/τ2) is fitted and then subtracted from the

reflectivity curves after t = 100 fs. The remaining oscillations are Fourier transformed

and plotted in Fig. 6.2(b). There are three resonance modes present in the material: α

at 1.3 THz, β at 3.1 THz, and γ at 4.1 THz. No other frequencies are detected up to

10 THz. The two dimensional temperature-frequency map of the oscillation spectrum is

shown in Fig.6.2c, where the temperature dependence of the phonon oscillations can be

seen more clearly.

The γ mode (4.1 THz) is present at all temperatures, but the α mode (1.3 THz) shows

a sudden, intense appearance at T ≈ 92 K, close to TCDW = 94 K determined through

independent heat capacity measurements [213]. Therefore, we identify this mode with

the CDW transition temperature. The slightly lower detection temperature is likely due

to the modest local heating of the sample by the laser. Below T ∗ ≈ 60 K, the broad

β mode (3.1 THz) appears. All three resonances show a weak frequency softening as

temperature is increased, but none of the modes show evidence of complete softening

(ω → 0).

6.2 Phonon Dispersions

DFT calculations were performed to explain the experimental observations. Phonon

frequencies were calculated using DFT within the Perdew-Burke-Ernzerhof generalized
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gradient approximation, as implemented in the Vienna ab initio Simulation Package

(vasp) [99]. The projector augmented wave potentials considered 9 valence electrons for

the cesium atoms, the plane wave basis cutoff energy was 300 eV, and the zero damping

DFT-D3 van der Waals correction was employed. The unit cell structure was relaxed

using a Γ-centered 18 × 18 × 12 k-point mesh. The relaxed lattice parameters were

a = b = 5.450 Å and c = 9.297 Å and the out-of-plane antimony atoms were located

at fractional height z = 0.7435. Phonon dispersion relations were calculated with the

phonopy software package [103] via the finite displacement method using a 3 × 3 × 2

supercell. A 2×2×2 supercell was used to calculate the energies of modes simultaneously

condensing at the M and L points.
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Figure 6.3: First-principles phonon calculations. (a) Unit cell for CsV3Sb5.The
vanadium atoms (red) form a perfect kagome net and are coordinated with in-plane
and out-of-plane antimony atoms. (b) First Brillouin zone of the hexagonal lattice,
with high-symmetry points labeled. (c) Calculated phonon dispersion relations. There
are two unstable modes with imaginary frequencies: one at the M point with irre-
ducible representation M+

1 , and the other at the L point with irreducible represen-
tation L−

2 . Right panel shows the phonon density of states. (d) Illustration of the
fully symmetric Γ+

1 phonon at 4.10 THz experimentally detected at all temperatures.
(e) Illustration of the L−

2 phonon at 1.27 THz experimentally detected below TCDW.

Phonon frequencies were calculated for the CsV3Sb5 in the P6/mmm crystal structure

shown in Figure 6.3(a). The first Brillouin zone is depicted in 6.3(b), showing the M -

point at kz = 0, which connects the saddle points in the band structure and is associated

with the nesting-driven Peirels-like instability [213], as well as the L point with kz =

π/c. Tab.6.1, lists all the calculated phonon frequencies up to 5 THz. The full phonon

dispersion is shown in Fig.6.3c where there are two instabilities, one at the M point
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Table 6.1: Calculated phonon frequencies up to 5 THz.

Γ point M point L point
Irrep f (THz) Irrep f (THz) Irrep f (THz)
Γ−
6 1.28 M+

1 −2.03 L−
2 −2.40

Γ−
2 1.51 M−

2 1.11 L−
2 1.27

Γ−
6 1.99 M−

3 1.30 L−
3 1.30

Γ−
4 2.16 M+

3 1.33 L−
4 1.43

Γ+
6 2.19 M−

4 1.49 L−
4 1.52

Γ−
2 2.70 M+

2 1.79 L−
1 1.78

Γ−
5 3.30 M−

2 1.88 L+
1 1.84

Γ+
5 3.81 M−

1 2.39 L+
2 2.39

Γ+
1 4.10 M−

2 2.78 L+
1 2.76

Γ+
3 4.42 M−

4 2.92 L+
3 2.90

M+
4 3.24 L−

3 3.27
M−

3 3.32 L+
4 3.29

M+
3 3.46 L−

4 3.52
M+

1 3.63 L−
2 3.67

M−
2 3.85 L+

1 3.84
M−

4 3.89 L+
3 3.87

M−
3 4.14 L+

4 4.12
M−

4 4.93 L+
3 4.92

L−
2 4.98

and one at the L point, with irreducible representations M+
1 and L−

2 , respectively, in

the notation of Miller and Love. The L point instability has a slightly larger imaginary

frequency.

6.3 Frozen Phonon Calculations

As discussed in the introduction, condensation of three equivalent M-point modes

leads to a fully symmetric breathing mode, the two possible configurations being the

”Star-of-David” (breathing out), or ”inverse star-of-David” (breathing in) [216]. There

are also other types of 3Q order, including MML, MLL, and LLL. We performed

frozen-phonon calculations to determine which ground state is most favorable, relaxing
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the unit cell volume and shape but not further relaxing the atomic coordinates. In other

words, nonlinear phonon couplings are omitted.
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Figure 6.4: Energy lowering by 3Q distortions. For MMM and MLL configu-
rations, positive displacements correspond to tri-hexagonal distortions and negative
displacements correspond to “Star of David” distortions. The lowest energy occurs
for the MLL configuration consisting of in-plane tri-hexagonal distortions that are
laterally shifted in neighboring planes. Curves are least squares fits to sixth-degree
polynomials.

As Fig.6.4 shows, the lowest energy state corresponds to the tri-hexagonal MLL dis-

tortion and not the previously assumed MMM distortion. This ground state distortion,

consisting of one M- and two L-point modes, can be described as in-plane tri-hexagonal

distortions with a lateral shift of one lattice vector between neighboring kagome planes.

This conclusion is supported by the earlier experimental observation that the CDW phase

transition is first-order, which eliminates the odd-parity MML and LLL distortions.

6.4 Discussion and Outlook

The three modes observed experimentally in Fig.6.2 can be assigned to modes cal-

culated by density functional theory. The fully symmetric γ mode is predicted by DFT

to have f = 4.2 THz, Γ+
1 . The distortion associated with this mode is depicted in
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Fig.6.3(d), and corresponds to the coherent motion of the out-of-plane antimony atoms

towards and away from the kagome plane. The α mode is detected at 1.3 THz. Its ap-

pearance directly at TCDW indicates that the mode should be associated with the charge

density wave transition and therefore must have an irreducible representation of either

M+
1 or L−

2 symmetry. There is indeed a calculated phonon mode with f = 1.27 THz

having L−
2 symmetry. This distortion involves cesium motion along the c-axis, depicted

in Fig.6.3(e). The observation of this mode supports the conclusion that the CDW is of

MLL order. Predicted phonon modes also appear at 3.63 THz (M+
1 ) and 3.67 THz (L−

2 ).

Weak spectral intensity can be observed in the Fourier map below TCDW around these

frequencies, implying that these modes are present in the data, with a weaker amplitude.

The β resonance extends over a broad spectral range centered at 3.1 THz. Since this

mode appears below TCDW at T ∗ ≈ 60 K, we believe this resonance may be associated with

the 1Q uniaxial order observed below this temperature by scanning tunneling microscopy

experiments [227, 225, 231]. The uniaxial ordering enlarges the in-plane unit cell beyond

the 2 × 2 3Q reconstruction, and would therefore result in newly active phonon modes

through the DECP mechanism, several with frequencies near 3.1 THz. The onset of 3Q

MML order breaks C6 rotational symmetry, whereas MMM order does not. This could

play a role in the emergence of 1Q order at lower temperatures since 1Q order behaves

more like a crossover than a sharp phase transition, the fact the C6 symmetry has already

been broken might facilitate the crossover.

Additionally, we suggest the lower onset temperature of the 1Q order could be associ-

ated with and order-disorder transition corresponding to c-axis coherence since there are

three equivalent MLL configurations distinguished by the direction of the lateral shift of

the tri-hexagonal CDW pattern. Long-range ordering of the CDW along the c axis relies

on weak next-nearest-neighbor kagome plane interactions and therefore involves smaller

energy (and temperature) scales. Further experimental and theoretical studies will be
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needed to elucidate the nature of the uniaxial order.

In summary, our experimental coherent phonon spectroscopy results combined with

first-principles DFT calculations have uncovered a first-order 3Q phase transition which

is characterized by the condensation of one M - and two L-point phonons, which we call

MLL CDW order. This ordering involves the interlayer modulation of the CDW along

the c axis and offers a potential explanation for the uniaxial order observed below TCDW .

Our results represent a large step forward in understanding the CDW order in CsV3Sb5.

Since the completion of this work, further studies have been performed that show longer

wavelength modulation than the kz = π/c (L point) wave vectors in this work. These

studies will be discussed in Chapter 7 along with suggested avenues for future research.
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Chapter 7

Future Directions

7.1 Strontium Titanate

In Chapter 3, we developed a simplified free energy model considering only the neces-

sary degrees of freedom to simulate the temperature dependent polar order in strontium

titanate at different doping levels. We found the phase transition to exhibit character-

istics of both displacive and order disorder transitions. A similar model could be used

to simulate the existence of polar nanodomains in bulk SrTiO3, which have also been

observed experimentally. It may also be of interest to add in-plane strain to the model,

and see how the formation of polar nanodomains is influenced for various magnitudes

and directions of strain. The effects of next-nearest neighbor interactions could also be

included for increased accuracy. Local strain around dopant atoms is shown to influence

the structure surrounding the dopant [95], so DFT calculations investigating the effects

of local strain could be useful. When formulating more complex versions of the model,

it may be necessary to employ more advanced machine learning techniques, rather than

simple linear regression, to find the values of coefficients for terms which would require

large supercells to compute using the linear regression technique.
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A similar model could be formulated for the pervoskite oxide KTaO3 which also

exhibits enhanced superconductivity at an interface with Rashba splitting of the bands.

There no antiferrodistortive rotations in KTaO3, so simulations are significantly simpler.

A comparison of the lattice dyanmics and electronic structures of SrTiO3 and KTaO3 may

offer insights into how the mechanisms of their superconducting phases may be similar

or different.

In Chapter 4, we investigated the evolution of the electronic structure of SrTiO3 with

doping, and the effects of spin orbit coupling. We compared the density of states and

Fermi energies for the polar and tetragonal structures, and explored the Rashba splitting

in the polar phase. Determining the single-band density of states for the unstrained

AFD structure and comparing this value to the density of states at the Fermi level in

the polar phase may determine if the ferroelectric enhancement of superconductivity

could be due to an increased density of states within a single band. Quantifying the

Rashba coupling and comparing our results with previous theory papers will be useful

in determining whether the Rashba is capable of explaining the observed enhancement

of superconductivity deep within the polar phase in the compressively strained system.

Calculations of the electron-phonon coupling integrated across the entire Brillouin zone

using the EPW code for the polar and tetragonal phases could be performed to compare

the electron-phonon coupling constant throughout the relevant range of doping for both

structures.

Experimental measurements of the phonon frequency and Fermi energy in the strained

system at low temperatures as a function of doping would be extremely valuable to

determine if coupling to the polar mode in the ordered ground state would be within the

adiabatic regime.
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7.2 Quantum Spin Liquids

In Chapter 5, we identified three promising quantum spin liquid candidates through

a combinatorial exploration of the chemical phase space of herbertsmithite and Zn-

barlowite related compounds: MgCu3(OH)6Br2, CaCu3(OH)6ICl, and MgCu3(OH)6ClF.

In our work, we explored structural and thermodynamic instabilities, as well as the values

of desirable structural parameters. A similar high-throughput technique could be applied

to other material families in order to find related materials with desirable properties.

Density functional theory cannot accurately calculate the magnetic ground state of a

geometrically frustrated material, and thus, we did not directly consider magnetism in our

calculations. However, Hubbard models and calculation of the exchange coefficients could

be performed to more directly investigate the magnetic ground state of our candidate

materials.

The next step after identifying promising candidate materials is to attempt to synthe-

size these compounds. In addition to synthesizing the three final candidates, two other

candidates that showed instabilities in their phonon dispersions (CaCu3(OH)6IBr and

MgCu3(OH)6BrF) may in fact be stable at room temperature since ZnCu3(OH)6ClF had

the same calculated imaginary eigenvectors but is stable at room temperature [199]. We

encourage experimental groups with experience in hydrothermal synthesis to try synthe-

sizing these compounds.

7.3 Kagome Metals

In Chapter 6, we demonstrated that there is interlayer modulation of charge density

wave order along the c-axis in CsV3Sb5. Since the publication of the work discussed in

Chapter 6 [204], additional experiments have been performed revealing a 2×2×4 lattice
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structure with both TrH- and SoD-like distortions of the kagome layers [214].

There seems to be some degree of randomness to the particular layer distortions.

A model incorporating statistical mechanics, similar to that discussed in Chapter 3,

could be used to simulate the equilibrium charge order and account for any stochastic

contributions to the CDW. Additionally, in order to confirm the existence of the CDW,

calculations of the charge density may be useful in determining whether the structural

modulation of the atoms is causing the expected changes in charge density, and to what

degree the charge density is localized on the atoms.
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Appendix A

Strontium Titanate Model

A.1 Polynomial Terms: Version 1

The full polynomial expression for the model described in Section 3.6 is given below.

Coupling to the additional elongation of the c axis in the polar phase is considered.

Constant

a0

Strain

a1C + a2C
2

Quadratic Coupling

a3−8R
2 + a9−14Ti

2 + a15−20O
2
in + a21−26O

2
out

Bilinear Coupling

a27−32(Ti ∗Oin) + a33−38(Ti ∗Oout) + a39−44(Oin ∗Oout)

Strain and Bilinear Coupling

a45−50C(Ti ∗Oin) + a51−56C(Ti ∗Oout) + a57−62C(Oin ∗Oout)

Strain and Quadratic Coupling

a63−68C(R2) + a69−74C(Ti2) + a75−80C(O2
in) + a81−86C(O2

out)
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Quartic Terms

Coupling to nearest neighbors is no longer considered for higher order terms, though

averaging the amplitudes for the displacement of the oxygen ions is accounted for.

Quadratic Rotation and Polarization Components

a87R
2Ti2 + a88R

2Oin2 + a89R
2O2

out

Two Quadratic Polarization Components

a90Ti
2O2

in + a91Ti
2O2

out + a92O
2
inO

2
out

Single Component Quartic Terms

a93R
4 + a94Ti

4 + a95O
4
in + a96O

4
out

One Cubic and One Linear Polarization Component

a97(Ti
3 ∗Oin) + a98(Ti

3 ∗Oout) + a99(Ti ∗O3
in) + a100(O

3
in ∗Oout) + a101(Ti ∗O3

out) +

a102(Oin ∗O3
out)

One Quadratic, Two Linear Polarization Components

a103(Ti
2 ∗Oin ∗Oout) + a104(Ti ∗O2

in ∗Oout) + a105(Ti ∗Oin ∗O2
out)

Two Linear Polarization Components and Quadratic Rotation

a106(R
2 ∗ Ti ∗Oin) + a107(R

2 ∗ Ti ∗Oin) + a108(R
2 ∗ Ti ∗Oin)

A.2 Constraints: Version 1

In-Plane Oxygen (M,A)

M: a15 − 4a16 + 2a17 + 4a18 − 8a19 + 8a20 = 0

A: a15 − 4a16 − 2a17 + 4a18 + 8a19 − 8a20 = 0

Titanium and In-Plane oxygen at (M,A)

M: a27 − 4a28 + 2a29 + 4a30 − 8a31 + 8a32 = 0

A: a27 − 4a28 − 2a29 + 4a30 + 8a31 − 8a32 = 0

In-Plane Oxygen and Strain (M,A)
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A: a75 − 4a76 − 2a77 + 4a78 + 8a79 − 8a80 = 0

M: a75 − 4a76 + 2a77 + 4a78 − 8a79 + 8a80 = 0

Titanium, In-Plane, and Strain (M,A)

M: a45 − 4a46 + 2a47 + 4a48 − 8a49 + 8a50 = 0

A: a45 − 4a46 − 2a47 + 4a48 + 8a49 − 8a50 = 0

Constraints for Out-of-Plane Oxygen at (Z,A,R)

Z: a21 + 4a22 − 2a23 + 4a24 − 8a25 − 8a26 = 0

R: a21 − 2a23 − 4a24 + 8a26 = 0

A: a21 − 4a22 − 2a23 + 4a24 + 8a25 − 8a26 = 0

Titanium and Out-of-Plane Oxygen at (Z,A,R)

Z: a33 + 4a34 − 2a35 + 4a36 − 8a37 − 8a38 = 0

R: a33 − 2a34 − 4a35 + 8a36 = 0

A: a33 − 4a34 − 2a35 + 4a36 + 8a37 − 8a38 = 0

Out-of-Plane Oxygen and Strain (Z,A,R)

Z: a81 + 4a82 − 2a83 + 4a84 − 8a85 − 8a86 = 0

R: a81 − 2a83 − 4a84 + 8a85 = 0

A: a81 − 4a82 − 2a83 + 4a84 + 8a85 − 8a86 = 0

Titanium, Out-of-Plane Oxygen, and Strain (Z,A,R)

Z: a51 + 4a52 − 2a53 + 4a54 − 8a55 − 8a56 = 0

R: a51 − 2a53 − 4a54 + 8a56 = 0

A: a51 − 4a53 − 2a54 + 4a55 + 8a56 − 8a57 = 0

In- and Out-of-Plane Oxygen at (M,Z,A,R)

M: a39 − 4a40 + 2a41 + 4a42 − 8a43 + 8a44 = 0

Z: a39 + 4a40 − 2a41 + 4a42 − 8a43 − 8a44 = 0

R: a39 − 2a41 − 4a42 + 8a44 = 0

A: a39 − 4a40 − 2a41 + 4a42 + 8a43 − 8a44 = 0
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In- and Out-of-Plane Oxygen and Strain (M,Z,A,R)

M: a57 − 4a58 + 2a59 + 4a60 − 8a61 + 8a62 = 0

Z: a57 + 4a58 − 2a59 + 4a60 − 8a61 − 8a62 = 0

R: a57 − 2a59 − 4a60 + 8a62 = 0

A: a57 − 4a58 − 2a59 + 4a60 + 8a61 − 8a62 = 0

Rotation (Γ,Z)

Γ: a3 + 4a4 + 2a5 + 4a6 + 8a7 + 8a8 = 0

Z: a3 + 4a4 − 2a5 + 4a6 − 8a7 − 8a8 = 0

Rotation and Strain (Γ,Z)

Γ: a63 + 4a64 + 2a65 + 4a66 + 8a67 + 8a68 = 0

Z: a63 + 4a64 − 2a65 + 4a66 − 8a67 − 8a68 = 0

A.3 Polynomial Terms: Version 2

The full polynomial expression for the model described in Section 3.5.1 is given below.

Here, no elongation of the c axis is considered as the out-of-plane strain was set to the

experimental value. Sixth-order on-site terms were included to avoid divergences.

Constant

a0

Quadratic Coupling

a1−6R
2 + a7−12Ti

2 + a13−18O
2
in + a19−24O

2
out

Bilinear Coupling

a25−30(Ti ∗Oin) + a31−36(Ti ∗Oout) + a37−42(Oin ∗Oout)

Quartic Terms

Coupling to nearest neighbors is no longer considered for higher order terms, though
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averaging the amplitudes for the displacement of the oxygen ions is accounted for.

Quadratic Rotation and Polarization Components

a43R
2Ti2 + a44R

2Oin2 + a45R
2O2

out

Two Quadratic Polarization Components

a46Ti
2O2

in + a47Ti
2O2

out + a48O
2
inO

2
out

Single Component Quartic Terms

a49R
4 + a50Ti

4 + a51O
4
in + a52O

4
out

One Cubic and One Linear Polarization Component

a53(Ti
3∗Oin)+a54(Ti

3∗Oout)+a55(Ti∗O3
in)+a56(O

3
in∗Oout)+a57(Ti∗O3

out)+a58(Oin∗O3
out)

One Quadratic, Two Linear Polarization Components

a59(Ti
2 ∗Oin ∗Oout) + a60(Ti ∗O2

in ∗Oout) + a61(Ti ∗Oin ∗O2
out)

Two Linear Polarization Components and Quadratic Rotation

a62(R
2 ∗ Ti ∗Oin) + a63(R

2 ∗ Ti ∗Oin) + a64(R
2 ∗ Ti ∗Oin)

Two Linear Polarization Components and Quadratic Rotation

a65(R
6) + a66(Ti

6) + a67(O
6
in) + a68(O

6
out)

A.4 Constraints: Version 2

In-Plane Oxygen (M,A)

M: a15 − 4a16 + 2a17 + 4a18 − 8a19 + 8a20 = 0

A: a15 − 4a16 − 2a17 + 4a18 + 8a19 − 8a20 = 0

Titanium and In-Plane oxygen at (M,A)

M: a27 − 4a28 + 2a29 + 4a30 − 8a31 + 8a32 = 0

A: a27 − 4a28 − 2a29 + 4a30 + 8a31 − 8a32 = 0

Constraints for Out-of-Plane Oxygen at (Z,A,R)

Z: a21 + 4a22 − 2a23 + 4a24 − 8a25 − 8a26 = 0
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R: a21 − 2a23 − 4a24 + 8a26 = 0

A: a21 − 4a22 − 2a23 + 4a24 + 8a25 − 8a26 = 0

Titanium and Out-of-Plane Oxygen at (Z,A,R)

Z: a33 + 4a34 − 2a35 + 4a36 − 8a37 − 8a38 = 0

R: a33 − 2a34 − 4a35 + 8a36 = 0

A: a33 − 4a34 − 2a35 + 4a36 + 8a37 − 8a38 = 0

In- and Out-of-Plane Oxygen at (M,Z,A,R)

M: a39 − 4a40 + 2a41 + 4a42 − 8a43 + 8a44 = 0

Z: a39 + 4a40 − 2a41 + 4a42 − 8a43 − 8a44 = 0

R: a39 − 2a41 − 4a42 + 8a44 = 0

A: a39 − 4a40 − 2a41 + 4a42 + 8a43 − 8a44 = 0

Rotation (Γ,Z)

Γ: a3 + 4a4 + 2a5 + 4a6 + 8a7 + 8a8 = 0

Z: a3 + 4a4 − 2a5 + 4a6 − 8a7 − 8a8 = 0

A.5 Phonon Model

We begin with the Euler-Lagrange equation, where ϕn is the value of a degree of

freedom in unit cell n:

∂L

∂ϕn

− d

dt

∂L

∂ϕ̇n

= 0 (A.1)

∂L

∂ϕn

= − ∂V

∂ϕn

since
∂T

∂ϕ̇n

= 0 contains only ϕ̇ (A.2)

∂L

∂ϕ̇n

= − ∂T

∂ϕ̇n

since
∂V

∂ϕn

= 0 contains only ϕ (A.3)

We now solve for the left- and right-hand sides of the following simplified equation:
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− ∂V

∂ϕn

=
d

dt

∂T

∂ϕ̇n

(A.4)

The ansatz for the order parameter and its derivatives are given by:

ϕn = Aei(ωt−q·n)

ϕ̇n = iωϕn

ϕ̈n = −ω2ϕn

ϕn+δ = ϕne
iq·δ

(A.5)

The polarization order parameter is a vector with three components corresponding to

the vector below, where x,y,z should not be confused with Cartesian directions:

ϕn =


xn

yn

zn

 (A.6)

The left-hand side of Eq.A.4 can be expressed as a 3 × 3 matrix, whose components are

found by plugging the ansatz given in Eq.A.5 into the quadratic terms of the free

energy expression, taking the derivative, and simplifying:

−∂V (ϕ)

∂ϕ
=


xx xy xz

yx yy yz

zx zy zz

 =


∂V (x)
∂x

∂V (x)
∂y

∂V (x)
∂z

∂V (y)
∂x

∂V (y)
∂y

∂V (y)
∂z

∂V (z)
∂x

∂V (z)
∂y

∂V (z)
∂z

 (A.7)

We now solve for the right-hand side of Eq.A.4 where the kinetic energy has the general

form T = 1
2
mϕ̇2:

T =
1

2
mv2 (A.8)
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T =
∑
n

1

2
mxx

2
GSDẋ

2
n +myD

2
y

(
ẏ + ẏn+δ=010

4

)
...

...+myD
2
y

(
ẏ + ẏn+δ=100

4

)
+mzD

2
z

(
ż + żn+δ=001

4

) (A.9)

Here, Dϕ is the ground state displacement in meters and mϕ is the mass of the ion

species in kilograms. For the x order parameter, we plug in our ansatz and simplify to

obtain:

T

ẋn
= 4

∑
r

[mxD
2
xẋn] (A.10)

Lx =
d

dt

∂T

∂ẋn
(A.11)

We follow the same process for the other components of the polarization order

parameter. Note that here x̂, ŷ, and ẑ do correspond to vectors along the Cartesian

directions:

Ly =
d

dt

∂T

∂ẋn
= −ω2myD

2
yy

(
cos2

(
q · ŷ

2

)
+ cos2

(
q · x̂

2

))
(A.12)

Lz =
d

dt

∂T

∂żn
= −ω2mzD

2
zzcos

2

(
q · ẑ

2

)
(A.13)

Our final eigenvalue equation is:

ω2
p


x

y

z

 =


xx
Lx

xy
Lx

xy
Lx

yx
Ly

yy
Ly

yz
Ly

zx
Lz

zy
Lz

zz
Lz



x

y

z

 (A.14)

Eq.A.14 is solved numerically to obtain the wavevector-dependent frequencies of the

three polarization bands. We follow a similar procedure for the rotation, although here,

we have only a single order parameter.

−∂V
ϕn

=
d

dt

∂T

∂ϕ̇n

(A.15)
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∂
V

ϕn

= ϕ

[
2a3 +

∑
δ

a4−8e
−iq·δ

]
(A.16)

d

dt

∂T

∂ϕ̇n

= −ω2moR
2
GSDϕ

[
sin2

(
q · ŷ

2

)
+ sin2

(
q · x̂

2

)]
(A.17)

ωR =

√
1

moR2
GSD

(
[2a3 +

∑
δ a4−8e

−iq·δ]

[sin2( q·ŷ
2

) + sin2( q·x̂
2

)]

)
(A.18)
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Appendix B

Quantum Spin Liquid Data

Table B.1: Parameters for all herbertsmithite-related compounds: the lowest optical
phonon frequency (fo), energy above the hull (Ehull ), the copper-oxygen-copper bond
angle (θCu−O−Cu), interplane distance between kagome layers (dinter), and distance
between in-plane copper ions (din).

Compound f0 (THz) Ehull (meV/atom) θcu-O-Cu dinter din
BaCu3(OH)6Br2 -0.96 65.7 126.9 6.04 3.49
BaCu3(OH)6Cl2 -1.26 86.0 126.4 6.04 3.48
BaCu3(OH)6F2 0.73 119.9 122.8 6.01 3.43
BaCu3(OH)6I2 0.41 42.6 128.0 6.09 3.53
BeCu3(OH)6Br2 2.58 132.2 124.7 4.26 3.60
BeCu3(OH)6Cl2 3.24 89.2 123.3 4.20 3.53
BeCu3(OH)6F2 3.53 82.8 116.8 4.14 3.32
BeCu3(OH)6I2 -4.37 210.5 125.6 4.38 3.72
CaCu3(OH)6Br2 0.50 30.7 125.7 5.19 3.53
CaCu3(OH)6Cl2 0.70 44.8 125.8 5.06 3.51
CaCu3(OH)6F2 2.27 103.8 122.1 5.10 3.43
CaCu3(OH)6I2 0.83 56.8 125.8 5.38 3.57
CdCu3(OH)6Br2 1.34 71.9 126.5 5.05 3.55
CdCu3(OH)6Cl2 1.67 62.5 126.6 4.94 3.53
CdCu3(OH)6F2 2.16 47.4 121.8 5.03 3.42
CdCu3(OH)6I2 1.24 99.1 126.2 5.24 3.59
CuCu3(OH)6Br2 2.12 72.6 124.5 4.74 3.55
CuCu3(OH)6Cl2 2.68 45.7 123.7 4.63 3.50
CuCu3(OH)6F2 3.13 8.5 119.3 4.62 3.37
CuCu3(OH)6I2 -2.09 130.8 125.2 4.95 3.60
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Table B.2: Herbertsmithite data (continued)

Compound f0 (THz) Ehull (meV/atom) θcu-O-Cu dinter din
GeCu3(OH)6Br2 -2.25 70.4 127.4 5.08 3.55
GeCu3(OH)6Cl2 -2.44 -31.6 114.9 4.57 3.59
GeCu3(OH)6F2 1.44 -11.7 106.2 4.70 3.32
GeCu3(OH)6I2 -3.52 101.1 127.0 5.30 3.59
HgCu3(OH)6Br2 0.97 107.7 127.7 5.17 3.55
HgCu3(OH)6Cl2 1.13 89.9 128.0 5.08 3.53
HgCu3(OH)6F2 1.38 24.0 122.1 5.24 3.41
HgCu3(OH)6I2 0.84 146.6 127.4 5.36 3.58
MgCu3(OH)6Br2 2.23 36.0 125.2 4.65 3.57
MgCu3(OH)6Cl2 2.74 7.1 124.6 4.52 3.53
MgCu3(OH)6F2 3.63 67.3 120.6 4.44 3.40
MgCu3(OH)6I2 1.75 94.0 124.9 4.85 3.64
PbCu3(OH)6Br2 -0.77 76.3 127.7 5.58 3.52
PbCu3(OH)6Cl2 -0.57 77.2 128.1 5.52 3.52
PbCu3(OH)6F2 1.29 86.0 122.6 5.64 3.43
PbCu3(OH)6I2 -0.71 84.9 127.6 5.76 3.54
SnCu3(OH)6Br2 -3.57 18.5 117.8 4.81 3.69
SnCu3(OH)6Cl2 -2.67 11.7 116.8 4.76 3.62
SnCu3(OH)6F2 -1.95 28.5 109.7 4.91 3.40
SnCu3(OH)6I2 -0.99 94.8 127.6 5.63 3.56
SrCu3(OH)6Br2 -1.07 46.4 125.9 5.57 3.50
SrCu3(OH)6Cl2 -1.27 68.1 126.2 5.50 3.49
SrCu3(OH)6F2 1.46 117.9 122.4 5.53 3.43
SrCu3(OH)6I2 -0.42 33.8 126.4 5.72 3.54
ZnCu3(OH)6Br2 2.17 58.2 125.6 4.69 3.57
ZnCu3(OH)6Cl2 2.63 41.2 125.0 4.58 3.53
ZnCu3(OH)6F2 2.98 30.1 120.6 4.55 3.40
ZnCu3(OH)6I2 1.56 108.8 125.5 4.88 3.64
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Table B.3: Parameters for all Zn-barlowite-related compounds: the lowest optical
phonon frequency (f0), energy above the hull (Ehull), the copper-oxygen-copper bond
angle (θCu-O-Cu), interplane distance between kagome layers (dinter), and distance be-
tween in-plane copper ions (din).

Compound f0 (THz) Ehull (meV/atom) θcu-O-Cu dinter din
BaCu3(OH)6BrCl -1.18 80.6 124.4 5.99 3.45
BaCu3(OH)6BrF -5.54 137.7 119.3 5.93 3.37
BaCu3(OH)6ClF -5.69 157.2 118.6 5.94 3.35
BaCu3(OH)6IBr -0.44 50.7 126.9 6.03 3.50
BaCu3(OH)6ICl -0.49 60.0 125.1 6.00 3.48
BaCu3(OH)6IF 5.49 117.8 120.5 5.94 3.40
BeCu3(OH)6BrCl -5.52 140.5 125.1 4.34 3.56
BeCu3(OH)6BrF -2.84 97.0 116.4 4.46 3.36
BeCu3(OH)6ClF -2.71 91.4 117.0 4.41 3.35
BeCu3(OH)6IBr -6.15 182.1 126.7 4.39 3.65
BeCu3(OH)6ICl -5.89 154.5 124.2 4.42 3.58
BeCu3(OH)6IF -4.27 117.4 115.9 4.52 3.38
CaCu3(OH)6BrCl -0.68 34.6 125.9 5.10 3.52
CaCu3(OH)6BrF -2.25 72.7 118.4 5.05 3.39
CaCu3(OH)6ClF -2.08 89.3 118.6 5.01 3.38
CaCu3(OH)6IBr 0.77 31.6 127.7 5.20 3.58
CaCu3(OH)6ICl 0.94 19.2 125.4 5.17 3.54
CaCu3(OH)6IF -1.06 60.3 118.3 5.11 3.41
CdCu3(OH)6BrCl -0.36 67.0 126.7 4.99 3.54
CdCu3(OH)6BrF -0.81 65.2 118.6 4.99 3.39
CdCu3(OH)6ClF -1.14 71.4 118.9 4.95 3.39
CdCu3(OH)6IBr 0.77 78.9 128.5 5.07 3.60
CdCu3(OH)6ICl 0.86 65.0 126.0 5.06 3.55
CdCu3(OH)6IF -1.51 65.7 118.3 5.06 3.41
CuCu3(OH)6BrCl -1.81 67.1 126.1 4.70 3.54
CuCu3(OH)6BrF -1.24 38.5 117.5 4.73 3.37
CuCu3(OH)6ClF -1.37 38.2 118.0 4.68 3.36
CuCu3(OH)6IBr -2.23 99.6 127.8 4.79 3.60
CuCu3(OH)6ICl -1.82 76.4 125.2 4.79 3.55
CuCu3(OH)6IF -1.10 51.1 116.8 4.81 3.38
GeCu3(OH)6BrCl -4.26 32.1 120.7 4.61 3.66
GeCu3(OH)6BrF -1.68 32.5 109.0 4.86 3.39
GeCu3(OH)6ClF -2.69 38.8 108.7 4.85 3.37
GeCu3(OH)6IBr -5.73 44.8 122.9 4.61 3.76
GeCu3(OH)6ICl -5.03 29.5 119.9 4.67 3.68
GeCu3(OH)6IF -2.22 36.1 109.8 4.87 3.43
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Table B.4: Parameters for all Zn-barlowite-related compounds (continued): the lowest
optical phonon frequency (f0), energy above the hull (Ehull), the copper-oxygen-copper
bond angle (θCu-O-Cu), interplane distance between kagome layers (dinter), and distance
between in-plane copper ions (din).

Compound f0 (THz) Ehull (meV/atom) θcu-O-Cu dinter din
HgCu3(OH)6BrCl -0.25 98.8 127.2 5.13 3.53
HgCu3(OH)6BrF -2.24 80.4 119.2 5.13 3.39
HgCu3(OH)6ClF -2.15 82.3 119.5 5.08 3.39
HgCu3(OH)6IBr 0.75 120.3 129.0 5.21 3.59
HgCu3(OH)6ICl 0.89 103.6 126.6 5.20 3.54
HgCu3(OH)6IF -2.47 87.2 118.9 5.19 3.41
MgCu3(OH)6BrCl 0.35 26.9 126.1 4.61 3.56
MgCu3(OH)6BrF 1.57 26.1 117.6 4.65 3.39
MgCu3(OH)6ClF 1.09 39.6 118.1 4.60 3.38
MgCu3(OH)6IBr -0.15 59.8 127.8 4.68 3.64
MgCu3(OH)6ICl -0.43 35.9 125.2 4.68 3.58
MgCu3(OH)6IF 1.24 18.9 117.2 4.72 3.41
PbCu3(OH)6BrCl -1.00 77.9 126.0 5.54 3.49
PbCu3(OH)6BrF -4.54 114.4 119.5 5.49 3.39
PbCu3(OH)6ClF -4.46 124.9 119.4 5.46 3.38
PbCu3(OH)6IBr -0.76 74.9 127.8 5.64 3.54
PbCu3(OH)6ICl -0.60 70.7 125.8 5.60 3.50
PbCu3(OH)6IF -4.50 108.8 119.6 5.55 3.40
SnCu3(OH)6BrCl -3.64 38.5 121.5 4.79 3.68
SnCu3(OH)6BrF -1.84 38.5 109.3 5.03 3.41
SnCu3(OH)6ClF -2.67 47.4 108.9 5.03 3.39
SnCu3(OH)6IBr -4.85 48.9 124.0 4.78 3.78
SnCu3(OH)6ICl -4.07 32.0 120.9 4.83 3.70
SnCu3(OH)6IF -1.41 37.3 110.2 5.03 3.45
SrCu3(OH)6BrCl -1.17 55.9 125.1 5.51 3.49
SrCu3(OH)6BrF -4.38 106.2 118.6 5.44 3.37
SrCu3(OH)6ClF -4.18 125.9 118.4 5.41 3.36
SrCu3(OH)6IBr -0.69 33.1 127.1 5.59 3.53
SrCu3(OH)6ICl -0.50 37.6 125.1 5.55 3.50
SrCu3(OH)6IF -4.45 89.8 119.0 5.48 3.40
ZnCu3(OH)6BrCl -0.34 54.5 126.6 4.64 3.56
ZnCu3(OH)6BrF 1.41 38.6 118.0 4.69 3.39
ZnCu3(OH)6ClF 0.89 43.1 118.5 4.64 3.38
ZnCu3(OH)6IBr -0.38 74.8 128.3 4.71 3.64
ZnCu3(OH)6ICl 0.57 54.3 125.7 4.71 3.58
ZnCu3(OH)6IF 1.19 42.5 117.5 4.76 3.41
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Behnia. Metallicity and Superconductivity in Doped Strontium Titanate. Annual
Review of Condensed Matter Physics, 10(1):25–44, March 2019.

[10] Piers Coleman and Andrew J. Schofield. Quantum criticality. Nature,
433(7023):226–229, January 2005.

[11] Jonathan M. Edge, Yaron Kedem, Ulrich Aschauer, Nicola A. Spaldin, and Alexan-
der V. Balatsky. Quantum Critical Origin of the Superconducting Dome in SrTiO3.
Physical Review Letters, 115(24):247002, December 2015.

170



[12] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Theory of superconductivity. Phys.
Rev., 108:1175–1204, Dec 1957.

[13] Michael Tinkham. Introduction to Superconductivity. Dover Publications, 2 edition,
June 2004.

[14] Yaron Kedem. Novel pairing mechanism for superconductivity at a vanishing level
of doping driven by critical ferroelectric modes. Physical Review B, 98(22):220505,
December 2018.

[15] Leon N. Cooper. Bound electron pairs in a degenerate Fermi gas. Phys. Rev.,
104:1189–1190, November 1956.

[16] Manfred Sigrist, Adolfo Avella, and Ferdinando Mancini. Introduction to uncon-
ventional superconductivity in non-centrosymmetric metals. In AIP Conference
Proceedings, pages 55–96, Salerno (Italy), 2009. AIP.

[17] H. Tou, Y. Kitaoka, K. Asayama, N. Kimura, Y. Ōnuki, E. Yamamoto, and
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