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Towards a content model of strategic explanation.

Kristian J. Hammond
Department of Computer Science
The University of Chicago
1100 East 58th Street
Chicago, IL 60637

Abstract

Over the past few years there has been a grow-
ing interest in the notion of using causal expla-
nations in both learning ([Dejong and Mooney,
1986] [Mitchell et al., 1986]) and planning ([Ham-
mond, 1989], [Hammond, 1987] and [Simmons and
Davis, 1987]). The study of how complex causal
explanations can be used in learning has turned
into something of a cottage industry in Al; how-
ever, little attention has paid to how explanations
may be constructed. In this paper, we will exam-
ine some of the current proposals concerning the
process of explanation, augment them with a few
ideas of our own, and suggest a new, more strate-
gic level of knowledge about explanations that can
be used to guide the explanation process. In par-
ticular, we are interested in the problems involved
with integrating rule-based methods of explana-
tion construction with memory-based approaches.

Explanation: Use vs. Construction

In recent years, explanation has been rediscovered as
a theoretical issue in Cognitive Science. The stress,
however, in the study of explanation has been aimed at
the use of explanations, rather than their construction.
Little work has been done on the issue of explanation
as a constructive task. Our goal is to develop a model
of the task that is a content theory of the process of ex-
planation. In particular, we are interested in a theory
that includes a strategic level of knowledge about ex-
planations that can be used to guide the construction
as well as the use of explanations.

The need for such a theory is straightforward: Ex-
planations are being billed as the answer to the prob-
lem of credit assignment in learning ([Dejong and
Mooney, 1986] and [Mitchell et al., 1986]) as well as a
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credible approach to avoiding extensive search in plan-
ning ((Hammond, 1989, [Hammond, 1987] and [Sim-
mons and Davis, 1987]). For these claims to be any-
thing more than the exchange of one set of intractable
problems for another, we need a theory that provides
us with a method for constructing as well as for us-
ing causal explanations. As a first step towards this,
we will examine the different proposals that have been
made concerning explanation as a task and attempt
to organize the operations required by each in into a
single knowledge base. We will further propose a three-
leveled organization of that knowledge base into Task,
Method and Domain level knowledge.

Explanation in Learning: Backward
Chaining

The most recent impact that causal explanation has
had in Artificial Intelligence is as a mechanism for
credit assignment in various theories of learning. Ini-
tially proposed as a method for learning macro oper-
ators in STRIPS ([Fikes et al., 1972]) it was rediscov-
ered by both DeJong and Mitchell and implemented
in EGGs and EBG respectively. Although both re-
searchers suggest an interesting use for explanations,
neither has gone on to suggest an advancement over
existing methods for the construction of the explana-
tions that they use.

DeJong, because he has been concerned with do-
mains involving planful action, has relied on a PAM-
like ([Wilensky, 1978]) process of explanation that per-
forms goal regression; that is, backward chaining from
a perceived goal through the steps that are input to the
system. The back chaining is done using a set of causal
rules that include provide links between actions, states
and intentions. As in PAM, an action is explained
when it is linked to a plan, a plan is explained when
it is linked to a goal and a goal is explained when it is
either linked to an existing theme or has been provided
to the system as part of its input.

Unfortunately, also like PAM, this process is non-
deterministic and therefore potentially exponential.
DeJong handles this problem by introducing an arbi-
trary length limit to the chains that the explanation



process is allowed to construct. As a result, any set of
inputs that include gaps larger than this limit simply
cannot be explained, This limit is, in some sense, es-
sential to the overall argument that Delong proposes
for the use of explanations in learning. Without it, all
inputs would fall into the class of "explainable” cases,
and there would be no reason to build new scripts that
are the result of the learning process. With it, the only
inputs that can be explained are those which are either
sufficiently detailed to allow the explanation process to
link the steps, or those that are examples of previously
constructed scripts.

EBL is not the only theory with this drawback;
Mitchell’'s EBG, though concerned with more struc-
tural explanations and categories, also faces this prob-
lem. The fact that Mitchell has tended to use theo-
rem provers as the basis for the explanation process
tends to make this fact even more apparent because
the techniques he uses are known to be worst-case ex-
ponential. While these techniques are known to be
potentially exponential, their extensive use has mini-
mized the problematic status of these solutions to the
explanation problem.

Explanation Patterns: Reminding and
Transformation

Qutside of the realm of EBL, some work has been done
in the area of explanation generation. Schank has sug-
gested a memory intensive approach that uses struc-
tures called Explanations Patterns ([Schank, 1986))
that record existing explanations in a form that al-
lows them to be reused analogically. Schank’s ap-
proach combines a retrieval stage in which the features
of an unexplained event are used to find an explanation
pattern (or XP) in memory, followed by a transfer or
“tweaking stage” in which the existing explanation is
transformed to fit the current case. This approach dif-
fers from backward chaining because it involves search
of a space of transformations rather than a space of
operators. Given the nature of most domains (non-
homogeneous with clusters of viable explanations), this
approach is a potential winner in terms of efficiency of
search.

It appears that the techniques that Schank suggests
may be directly adaptable to the problem of building
the causal dependency structures that the EBL meth-
ods require. A much clearer case for the reuse of pack-
aged explanations in the construction of dependency
structures has been provided by Simmons’ GTD, an ex-
planatory system that uses associational rules to gener-
ate approximate explanations and detailed causal rules
to debug them ([Simmons and Davis, 1987]). While
different in form, this approach depends on the same
principle as Schank’s XP’s. That is, viable explana-
tions for events in a domain tend to be found in clus-
ters, making the approach of ”approximate and debug”
an effective one.

Both of these approaches rest on the overall coher-
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ence of most domains. They construct approximate
solutions Schank through recall of existing patterns
and Simmons through the use of associational rules
that are then modified to fit the facts that require ex-
planation. The interesting aspect of both is that they
are alternatives to simple backward chaining, and pro-
vide a different means by which the space of possible
explanations can be searched. Specifically, the space
of explanations is searched via transformational rules
that allow the explanation process to change the struc-
ture of an explanation without any backtracking.

Understanding as Explanation: Script
Application
There is a third view of explanation that is, in some
sense, the simpliest theory of how explanations are con-
structed. This is the view of understanding as an ex-
planation process, in which new events are explained
by virtue of their identification within a script. The
result of this view is the notion that script application
is an explanatory process in which attention is focused
on relevant aspects of the situation by the script or
frame ([Minsk , 1975], [Charniak, 1977], [Schank and
Abelson, IQT?K [Wilensky, 1978] and [DeJong, 1979]).

The basic process of script (or frame) application
has two parts: script selection and script application.
Script selection requires the use of semantic indering
of scripts in a knowledge base that is traversed in the
initial phases of understanding. Once a script is found,
it 1s applied (or instantiated) by having empty fields
in the script filled in with information gleaned from a
piece of text or set of conceptual structures.

Like the process of explanation transformation sug-
gested by Schank and Simmons, this process rests of
the existence of structures in memory that approxi-
mate the final form of the explanation. Like backward
chaining, however, it is essentially non-deterministic in
both selection and instantiation of the scripts, opening
the door to the possibility of exponential search.

Rules, Memories and Scripts

Each of these three approaches to explanation makes
use of a different knowledge base; specifically, domain
level inference rules for backward chaining, explicit
memories for reminding/transformation and seripts for
selection/instantiation. But what is the relationship
between these approaches? Is there a way to combine
them into a single model of explanation?

An obvious approach would be to characterize
scripts and episodic information as macro versions
(combinations) of the inference rules. This approach
is immediately problematic: The basic algorithm of
transformational (memory-based) explanation is very
different than that of backward chaining, in that the
internal structure of the reminding is altered using do-
main neutral transformation rules ([Kass et al., 1986]).
Likewise, the process of script selection and instantia-
tion makes use of control heuristics that have little to



do with the search control rules of backward chaining.
Since the methods are incompatible, simply combining
the rule sets is unworkable.

The opposite approach, that of characterizing back-
ward chaining as a degenerate form of reminding
plus transformation, seems to be equally problematic.
There are dynamics and technology involved in back-
ward chaining that cannot currently be reproduced
within the confines of the reminding/transformation
approach.

The only alternative, then, is to view these three
approaches to explanation as exactly that, three sep-
arate and distinct methods for constructing explana-
tions. This implies, however, that we must now think
in terms of how they interact, and how we can integrate
them into a single theory of explanation. In effect, it
implies the need for a theory of how to control the
movement, between these approaches in constructing
viable explanations. In some ways, this theory will be
analogous to content theories of search control; how-
ever, the basic operations that make up the right-hand-
sides of the control rules will differ in that they will re-
fer to the components of reminding — transformation,
selection and instantiation — as well as rule applica-
tion. The intention here is to provide for explanation
what Stefik did for planning ([Stefik, 1981a]); that is,
suggest a content theory of the processes involved in
the construction of explanations.

Step One: Representation

Our basic notion of explanation comes out of the lit-
erature on plan understanding ([Wilensky, 1978] and
[Charniak, 1983]8 and DeJong’s work in explanation-
based learning ([Dejong and Mooney, 1986]). In this
work, an explanation is a set of dependencies in which
states are supported by action/rule pairs, actions are
supported by plan/rule pairs, plans are supported
by goal/rule pairs and goals are supported by the
theme/rule pairs. We will ignore for a moment the
support structure of the rules themselves.

While, each support requires both a rule and a fact,
either can be an assumption required to construct the
explanation. This form is exactly what is produced
through backward chaining, and is stored in memory
for use in the construction of new explanations. Scripts
take a slightly different form in that they organize mul-
tiple part-of relationships into a single structure that
has a standard goal associated with it. The final form
of the type of explanation associated with scripts, how-
ever, still consists of these dependency structures.

Although there is a single final form for each of
these methods, each uses a different sort of knowledge
base. Explanation via chaining requires a base of in-
ference rules that allows the incremental addition of
individual links to the final dependency chain. Ex-
planation via reminding plus transformation requires
a knowledge base of known explanations and a set of
transformation rules that allows these explanations to
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be modified. And script based explanation requires a
knowledge base of abstracted scripts that can be re-
fined through the use of slot filling mechanisms. These
different kinds of facts about a domain make up what
we call the Domain Level of knowledge used in ex-
planation.

Step Two: The Task

The task of explanation begins with the notion of an
anomaly ([Schank, 1986]) and ends when that anomaly
supported by a dependency structure that serves to
link it to known or assumed facts. As we have said,
this can be done through the use of any one of the three
methods we have discussed. But each of these methods
brings its own characteristic method and dynamic to
the problem.

Backward chaining involves the use of domain rules
to traverse a virtual AND/OR tree, using control rules
to guide the search. Reminding/transformation re-
quires the retrieval of explanations from memory and
the subsequent transformation of those explanations.
This is supported by rules that select the appropriate
features from the initial problem for use in indexing,
and rules that control the application of the transfor-
mation rules themselves. Script application also de-
pends on the use of indexing techniques to find the
appropriate script in a library of possibilities.

Step Three: The Actions

In this section, the central issue of the set of actions
that can be applied during the construction of a ex-
planation is addressed. What we examine here are the
“right hand sides” of the control rules that guide the
construction of explanations. Some of these actions,
such as rule or script selection, are already part of the
standard repertoire of understanding and explanation.
Others, such the feature selection and recasting of rep-
resentalion, are more recent additions to this list. For
presentation purposes, the more familiar of these ac-
tions are considered first, followed by more recent ad-
ditions. However, the unifying notion is that these
actions may be taken at any time during the construc-
tion of an explanation. While some are logically de-
pendent on others (e.g., you have to select a set of
features to use in indexing before looking for an expla-
nation in memory), the idea is that these actions are
on the right hand side of rules that theoretically can
be fired at any time during the explanation process.
In particular, we want to stress that the selection of
an explanation method (chaining, script application or
reminding/transformation) is not fixed: An explainer
can (and almost always will) move between the differ-
ent methods.

There really are only two actions (aside from backing
up) that can be taken in constructing an explanation
out of a base of domain rules; namely, rule selection
and rule application. While they are not the most im-
portant rules in the library we are constructing, search



control rules are the most familiar. These are rules
that guide the selection of the individual domain rules
that are applied to explain an anomaly when a disjunct
of possibilities is presented. For example, in trying to
explain why Jack is out of orange juice, we could have
attempted to find an explanation that involved some
use of orange juice other than as an ingestible liquid.
But this line of reasoning is cut short by control rules
that give preference to the explanation that includes
the “standard” use. But chaining is only a small part
of the overall explanation process and is really only at-
tempted after many other steps are taken. In fact,
there are many steps involved with constructing an
explanation that come well before the selection of a
backward chaining rule or even the decision to apply
backward chaining as a method in the construction of
the explanation.

Before building an explanation, there must be some-
thing to explain; therefore, the first step is the selection
of the anomaly or set of anomalies to explain. What
1s needed at this stage is a set of rules for deciding
which anomalies are even candidates for inclusion in
a single explanation. These rules are needed to ini-
tially focus the explainer’s attention on the events and
states that it should attempt to connect. In an earlier
paper ([Hammond and Hurwitz, 1988]), we suggested a
set of heuristics based on temporal, physical and sys-
temic proximity that guided the attempts at joining
separate anomalies into a single coherent explanation.
These rules are particularly important when the ex-
plainer does not have a complete set of domain rules,
and thus must make assumptions about the connectiv-
ity (or lack of connectivity) of a set of input features.

These rules allow a system to propose causal rela-
tionships between anomalous features that were proxi-
mate from one of many possible points of view. Schank
has also proposed this type of heuristic ([Schank,
1986]); in particular, attempting to coordinate anoma-
lies that occur at the same time as well as those that
are of the same type. Likewise, Falkenhainer ([Falken-
hainer, 1988]) has proposed a similar heuristic that
locks for particular differences in the input (as com-
pared to a standard model) to try to connect.

The important point here is that these heuristics fo-
cus the explainer’s attention of a select sub-set of fea-
tures that will be included in the explanation itself. Of
course, these are heuristics, and, as such, are open to
error. But it is important to understand that, like the
search control rules of backward chaining, they are es-
sential to controlling the movement through the space
of possible explanations that can be constructed for
any one set of inputs.

Once a set of anomalies are selected, the next step
1s to decide on the basic strategy that should be taken
in trying to join them into a single explanation. This
is just the decision as to whether to try to find a sin-
gle cause for all of the anomalies, to explain them in
terms of a flow of cause and effect or to find an expla-

152

nation that includes multiple actors and goals that tie
the anomalies together. For example, in trying to ex-
plain the correlation between a rise in ice cream sales
and a rise in the occurrence of drownings, one impor-
tant step is to see the two facts as the dual effects of a
single cause; namely, the onset of summer. An attempt
to explain these events by creating a causal chain lead-
ing from one to the other ("eating ice cream gives you
stomach cramps when you try to swim” or ” people who
watch drowning victims being taken away tend to eat
a lot of ice cream”) leads the explainer away from a
more reasonable explanation.

Examples of useful heuristics include attempting to
build chains forward from earlier actions, building out
from intentional actions to states, and attempting to
construct the typical theme->goal->plan->action
chains that are often used to explain human behavior
([Schank and Abelson, 1977]). Like the rules deter-
mining the selection of the anomalies, these heuristics
are a large part of what controls the search for the
explanation.

Next, somewhat dependent on the selected strat-
egy, comes the selection of actual method to use in
the construction of the explanation (or part of an ex-
planation). This involves deciding on which of chain-
ing, script application or reminding/transformation to
apply to the problem. As we mentioned earlier, this
decision is not a fixed one that will remain unchanged
throughout the explanation process. Existing scripts
or explanations often have to be extended using indi-
vidual causal rules. Likewise, a partial explanation
constructed using backward chaining will uncover a
new set of features that may be used to find a script
or existing explanation.

This flexibility in method application is an impor-
tant point in this model: We are proposing an in-
tegrated approach, not advocating one method over
others. It is clear that each of these methods has its
advantages, and that each has its problems. Secript
and memory-based methods provide a good means
for searching very regular spaces of explanations, and
chaining gives us the ability to do a formal analysis
of the search. However the complexity of script and
memory-based approaches when applied to less regu-
lar domains has yet to be solved, while simple chaining
methods do not allow for the possibility of reuse of al-
ready formed explanations. So, it is clear that the best
approach is one that attempts to integrate these into a
single methodology for constructing and saving expla-
nations. It may in fact be the case that, as a model of
human cognition, a variety of such approaches are nec-
essary to replicate the flexibility of the explanation pro-
cess. Depending upon how these separate processes are
defined, there may be functional justifications for their
existence within an arsenal of methods to be applied
to problems. Finally, some psychological evidence sug-
gests that problem solving ability, and creativity, may
be linked to the individual’s ability to flexibly move



between approaches to a problem.

Along with explanation retrieval and transforma-
tion, there is another sort of action that needs to be
taken by memory based explanation systems that is
often ignored: This is the recasting of initial represen-
tations into forms that might provide better feature
sets for use in retrieval of existing explanations. In-
tuitively, this is what we do when we “see something
from a different point of view” or “in a different light”.
In order for this to make sense, however, it must be
driven by a set of heuristics that makes these changes
for a reason.

Kass, Leake and Owens have done some tentative
work in this area in the SWALE project ([Kass et al.,
1986]). In this work, they looked at the issue of trans-
formingslots fillers of partially filled structures in order
to generate more indices for search into memory. For
example, viewing a race horse as an athlete in order
to find explanations related to athletes that might be
applied to horses. Most of this work centered on the
notion of moving around in a semantic net however
and was not concerned with either the notion of gen-
erating characterizations of an overall situation or in
using aspects of the macro structure of the representa-
tion to generate new features. An example of the first
would include representational changes such as seeing
a take-over of space in an office complex as imperialism
([Schank, 19861)) or seeing the decision to go to sleep
or keep working as a resource allocation problem. The
point in both of these is that there is a representa-
tion that captures aspects of the situation that are not
captured by a simple listing of the actions involved.

Recasting, as we are defining it, involves looking at
event and goal configurations at a more abstract level.
For example, in the following story:

Bob was sitting in a hallway when a woman came
out and took a drink from the near by water foun-
tain. A few moments after she left, she returned
for another drink. A few moments after this, she
came back for a third drink. As she was drinking,
a man came up behind her and held a knife above
her, poised to strike. She turned, screamed, and
then the two of them laughed and walked away
together.

As with the single bug assumption, a strategy selection
decision is made to try to find a single goal that both
drinking water and being attacked might satisfy. How
to find such an explanation? The flat representation
of individual actions can be recast as the repetition
of a single event — leading to a memory search that
attempts to explain why events are repeated — followed
by the threat of attack and laughter. This leads to an
attempt to explain the story in terms of the possible
reasons for multiple versions of the same action.

In protocol studies [Seifert, 1989] subjects seem
to perform this particular recasting of representation
whether or not they go on to find an explanation for
the story. In particular, subjects often propose the no-
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tion of rehearsal to explain the repeated events, either
as part of a play or movie, or for a real attack. In ei-
ther case, the structural form of the actions is used to
recognize a feature which can then be used to either
find an existing explanation or help in the construc-
tion of a new one. The point is that there is a basic
piece of vocabulary being used to store information in
memory (and as part of backward chaining rules) that
must be derived from even the deepest representations
of events.

A second piece of recasting appears to be critical
in the development of indices that will successfully re-
trieve a particularly apt explanation from memory. In
representing the attack, the outcome (shared laughter)
is not the expected one, and that it therefore did not
achieve the desired result. Therefore, the notion of a
different intention or action may be considered through
a variety of strategies: the outcome that did occur can
be considered the intended one, and the actions recast
to fit; or the outcome can be considered a side effect of
the actions rather than the intended outcome. In both
cases, if the attempted attack is recast in terms of its
actual outcome, the scream is viewed as a successful
outcome of an attempt to scare the woman. The addi-
tion to the representation through recasting — that the
attack "scared” the woman - facilitates the connection
of the repeated actions with the attack. Attempting to
incorporate "scaring someone” and ”someone drinking
water” as plans in service of the same goal are much
better indices to retrieve from memory the goal of cur-
ing the hiccups, an explanation satisfying all of the
information in the problem.

This process of recasting representation, al-
though presented here as an aspect of remind-
ing/transformation, actually belongs at the level of
anomaly, strategy and method selection. This is be-
cause the recasting of representation has a global ef-
fect on the course of the explanation in much the
same way that it does in problem solving. That is,
it allows the introduction of new features that them-
selves present alternative paths for chaining and/or
script and explanation retrieval. These four basic ac-
tions make up what we call the Task Level knowl-
edge in explanation. That is, a level of knowledge
about how to proceed in building an explanation in
general. The other actions are part of what we call
the Method Level in that they are the subparts
of specific approaches. These division play the same
role in explanation as the divisions suggested by both
Stefik ([Stefik, 1981b]) and Hayes-Roth&Hayes-Roth
([Hayes-Roth and Hayes-Roth, 1979)) play in planning.
They allow different types of knowledge to have access
to the process control during the entire process, rather
than just at a single stage.

The final set of actions in the method level are those
associated with script application. The two most rel-
evant are script selection and slot instantiation. We
hold with the idea that script selection is an issue



Schank and Birnbaum, 1980]) and that slot instanti-
ation is best guided by the semantic constraints pro-
vided by the script itself ([DeJong, 1979]). A full treat-
ment of either of these issues is well beyond the scope
of this paper, but it is important to note that these
are the two most relevant actions in script application,
even though each is further decomposable into subac-
tions.

The actions involved with explanation construction
fall into two main groups: Task Level action and
Method Level actions. Task level actions relate to
global issues of representation and strategy. Method
level actions are the actions used in the control of the
actual building of the explanations within a particu-
lar method being used. An important point is that
method level actions tend to be used only within the
confines of particular methods while task level actions
are always available to guide the construction of the ex-
planation. Knowledge of rules, individual scripts and
memories of existing explanations is stored on its own
Domain Level.

orcn to guidance by both semantics and pragmatics
(

Conclusions and the next step

Our goal in this paper was to outline the process of
explanation as a task. We have tried to accomplish
this in three basic steps. First, we have posited a gen-
eral representation for explanations that can be (and
in many cases is) used for work in both EBL and plan
debugging. Second, we have tried to at least partially
explicate the different process models that have been
proposed. And third, we have suggested an integra-
tion of those proposals through the decomposition of
the primitive actions that fit into a three level orga-
nization of Task, Method and Domain level knowl-
edge. This decomposition is the first step in a true
integration of the different methods into a single the-
ory of explanation construction. We suggest that the
final form of this integration will be similar to the dis-
tributed systems suggested by Stefik, and Hayes-Roth
and Hayes-Roth, for use in planning.
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