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Identifying chromosomal regions associated with glucocorticoid-regulated gene transcription 

Delsy Marina Martinez 

Abstract 

Glucocorticoid (GC) response elements (GREs) are genomic segments that confer GC-regulated 

transcription in by recruiting hormone-bound glucocorticoid receptor (GR) and nucleating assembly of 

transcriptional regulatory complexes (TRCs). The locations of GR binding, the functionality of those GR 

occupied regions (GORs) as GREs, and the molecular features and spatial organization that characterize 

active GREs are gene-, cell- and physiological-context specific, and poorly understood. Moreover, 

identification of the gene(s) targeted for regulation by a given GRE has been inferred by proximity, or 

examined outside the normal chromosomal context, rather than rigorously validated. We approached 

these two issues in two human cell lines with distinct tissue origins, treated or not with a hormonal ligand 

that activates GR. First, we took a systems approach to examine the GC response, cataloging GORs by 

ChIP-seq, comparing RNA-seq defined transcriptome datasets from three different laboratories, mapping 

short bidirectional transcripts by Pro-seq, and assessing higher order genome structure by in situ Hi-C. To 

identify a functional GRE, we focused on a single 1.4 Mb topological domain bearing a GC-regulated 

gene and multiple GORs, and used Cas9 mutagenesis for in-genome GOR editing, coupled with 

transcriptional analysis to assess GRE activity and identify target gene(s). Our work established an 

experimental and analytic workflow for identification of robust sets of GC-regulated genes, and for 

unequivocal determination and validation of GRE activity. We found some but not all of the GORs 

dispersed across the topological domain contributed to GRE activity, the GRE directly regulated only one 

or two of the seven genes within the domain, and that features such as bidirectional transcripts or 

chromosome looping were seen at some but not all functional GORs. These results are consistent with 

context-specific combinatorial assembly of TRCs into functional GREs, which together enable GCs to 

orchestrate organismal developmental and physiological actions comprised of gene- and cell-specific 

transcriptional regulatory events. 
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Chapter 1: Introduction 

 

Specific patterns of gene expression are required for developmental and physiological 

processes. Key players in this arrangement are genomic response elements, DNA segments that 

bind transcriptional regulatory factors (TFs) and nucleate assembly of multifactor transcriptional 

regulatory complexes (TRCs) to activate or repress target gene transcription. Advances in 

genomic technologies enable description of chromatin structure and putative response elements 

both at specific loci and genome-wide, but defining molecular determinants of their regulatory 

activities is greatly complicated by variation dependent on gene-, cell- and physiologic-context. 

Moreover, it appears that response element regulatory activities must be assessed in their normal 

chromosomal environments, suggesting that genome editing methodologies provide the only 

viable strategy for functional dissection, and for identification of cognate target genes. It seems 

likely that response element activities in each specific context may derive from unique 

combinations of bound factors and other molecular features, thus generating context-specific 

regulation. Thus, very few response elements and target genes have been unequivocally 

identified, despite commonplace assignment of genomic regions as enhancers based on proxy 

datasets (Halfon et al., 2019). By extension, the functions of bound factors and molecular 

features at a bona fide putative response element have not been established, and the gene(s) 

inferred to be regulated by putative response elements remain unknown.  

 

Several molecular features have been claimed to correlate with response element 

activities. Open chromatin, genomic regions highly accessible to nucleases, and presumably to 

TFs, have been described, commonly together with  particular histone modifications, such as 

H3K27Ac and H3K4me1 (Shlyueva et al., 2014). Other investigations cataloged TF binding 
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sequence (TFBS) motifs, or motifs for multiple different TFs tightly clustered in genomic 

segments (Yanez-Cuna et al., 2012; Meireles-Filho et al., 2009), and monitored their occupancy 

by corresponding TFs or by coregulatory factors recruited by them (Rogatsky et al., 2003; 

Weikum et al., 2017). More recently, short bidirectional transcripts, so-called eRNAs, have been 

mapped at candidate response elements (Halfon et al., 2019). 

 

In addition to these molecular features, at least two classes of higher-order genome 

structure have been suggested to be relevant. First, chromatin loops, up to 450 kb, that appear to 

bring into physical proximity certain promoters of regulated genes and putative response 

elements (Fraser et al. 2009, Bonev et al. 2016; Kaduake et al. 2009, Pombo et al. 2015); while 

spatial proximity is a tempting determinant of activity and target gene identity, direct studies 

have shown that it is not sufficient as an indicator of regulatory function (Shlyueva et al., 2014). 

Second, topologically associating domains (TADs), which are typically demarcated by bound 

Cohesin complex and CCCTC-binding protein (CTCF), and contain characteristic chromatin 

modifications and histone marks between these boundaries (Rao et al. 2014). Disruption of TAD 

boundaries can affect expression of nearby genes and promote disease states (Matharu et al., 

2015), and a common speculation is that TADs define interaction zones that constrain the range 

over which response elements can act. TAD boundaries appear to be generally conserved across 

several cell types and species (Rao et al., 2014). The domains are classified as euchromatin-like, 

compartment A, or heterochromatin-like, compartment B (Lieberman-Aiden et al. 2009), and are 

thought to enable intra- but not inter-domain looping interactions (Dixon et al., 2012). However, 

due to the lack of standard criteria for defining TAD boundaries, different researchers have 

assigned domains across a range from 40 kb to 3 Mb. 
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Although the molecular features and higher order structures described above comprise a 

provocative roster of correlates to putative response element function, the overarching problem is 

that response elements and their target genes have themselves not been functionally validated. 

Therefore, we have set out in this work to begin to define functional response elements and their 

target genes. Our approach is to focus on the actions of a single TF, the human glucocorticoid 

receptor (GR), the founding member of the nuclear hormone receptor family, and likely the best 

characterized metazoan TF. GR is constitutively expressed in virtually all vertebrate cells 

(Weikum et al., 2017), residing inactive in the cytoplasm until it binds a glucocorticoid (GC) 

ligand (such as cortisol, the natural human hormone or dexamethasone (dex), a synthetic GC 

drug), whereupon it translocates into the nucleus, binds to context-specific genomic GC response 

elements (GREs) (Chandler et al., 1983) and confers gene-, cell- and physiologic-context 

specific transcriptional regulation (Yamamoto et al., 1985, Yamamoto et al., 1998). 

 

Ligand-gating of GR activity allows candidate GREs and target genes to be inferred in 

comparative experiments carried out in the presence and absence of dex. For example: (i) GR 

ChIP-seq reveals thousands of genomic GR occupied regions (GORs) in ligand-treated cells 

(Reddy et al., 2009; Encode Consortium 2012); (ii) microarray analyses implies hundreds of 

genes either induced or repressed upon dex treatment, many of them cell-type specifically, in 

lung carcinoma (A549) versus osteosarcoma (U2OS) cells (Rogatsky et al. 2013). 

 

The context specificity of GR action has been discussed as a paradox in which this single 

TF controls a precise transcription program in a given setting, but displays facile plasticity, 

dramatically changing binding sites and target genes when the setting is altered (Weikum et al., 
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2017). A consequence is that GR action must be analyzed both at a systems level, e.g., to identify 

all genes regulated in a given context, and locus specifically, e.g., to describe the determinants 

and mechanism of action of an individual GRE. In the current work, we employ both approaches, 

describing whole genome approaches to defining TADs, chromosome loops, protein-coding and 

non-coding transcripts in presence and absence of dex, with an emphasis on definitive target 

gene identification; at the single locus level, we use genome editing procedures to unequivocally 

identify a functional GRE and to characterize its activities. 
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Chapter 2: Genome-wide analysis of GC response 

 

Introduction 

 

GR is expressed in virtually all vertebrate cells, but its actions are highly context specific, 

e.g., mediating immunosuppression and anti-inflammation in immune cells, modulating glucose 

and lipid metabolism in liver, reducing bone and muscle mass, driving lung maturation and 

surfactant biosynthesis, promoting cell proliferation in the dentate gyrus of the hippocampus. 

The implication is that a single DNA-binding TF, potentiated by a single hormonal ligand 

(cortisol in humans, or a synthetic homolog such as dex), is somehow controlling transcription of 

distinct batteries of genes in different cell contexts (Weikum et al., 2017). Thus, visualizing the 

spectrum of candidate GR-target genes and GREs in a given context could be achieved by 

various systems approaches that compare, for example, full transcriptomes and genomic 

structure from hormone treated and control cells.  

 

RNA-seq provides a sensitive quantitative strategy for monitoring transcription at the 

whole genome level. A typical experimental workflow involves RNA extraction, RNA 

fragmentation and reverse transcription, library construction and sequencing (Han et al., 2015). 

The computational and systems biology that follows depends upon the end goal, be it identifying 

new transcripts or alternative splicing analysis. RNA-seq has commonly been employed to 

measure differential expression, in which statistically significant differences in read counts are 

detected between two experimental conditions (Anjum et al., 2016). Unfortunately, however, 

agreement has not been achieved on a standard protocol, analysis pipeline and statistical metrics 

to identify differentially expressed genes (DEGs) or to infer biological relevance. The ENCODE 

Consortium established standards, guidelines and experimental practices for RNA-seq, e.g., 
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information to report for each sample, number of replicates and sequencing depth, but these 

guidelines have not been widely adopted, nor do they address the computational and system 

biology aspects. 

 

While procedural and computational differences are known to affect RNA-seq results (Li 

et al., 2014, T’Hoen et al., 2013, Khanin et al., 2013), it has not been generally considered 

whether statistical metrics for defining DEGs (e.g., log2FoldChange > 1) may exclude 

biologically relevant transcripts, or whether such tools should or should not be deployed prior to 

a systems biology step. Currently, the False Discovery Rate adjusted p (q) value<0.05 is a 

commonly used cutoff value for differential expression tests but is not guaranteed to be the first 

metric used to filter datasets. Instead, emphasis is placed on log2FoldChange values being 

greater than a user-specified threshold, but there is no a priori reason that a large 

log2FoldChange is more biologically relevant than a small log2FoldChange (Zarse et al., 2012).  

 

With these concerns in mind, we set out to compare RNA-seq data from dex-treated and 

control human A549 cells, collected in three different laboratories, but analyzed through the 

same computational pipeline, with the gene lists subjected to pathway analysis. We sought to 

establish and justify the use of metrics in a specified order that represents the biology of the 

glucocorticoid response in those cells. 

 

In addition to this transcriptome determination, we carried out two further systems 

analyses. First, we sought to map short, labile bidirectional transcripts, enhancer RNAs (eRNAs) 

or distal transcribed elements (dTREs), suggested to be selectively expressed at putative 
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response elements. Because eRNAs are not detected by standard RNA-seq, we collaborated with 

John Lis (Cornell University, Ithaca, NY) to perform Precision nuclear Run-On Sequencing 

(Pro-seq) in A549 and U2OS cells, with and without dex treatment. Pro-seq enables quantitative 

tracking of nascent transcripts genome-wide at nucleotide resolution (Wissink et al., 2019), 

which in turn identify distal transcribed elements.  

 

Finally, to provide a rational metric for defining the genomic segment searched for GREs 

that regulate a given target gene, we used in situ Hi-C to visualize the three-dimensional genome 

architecture in intact A549 and U2OS nuclei, inferring higher order chromatin structure, for 

which we suggest a standard criterion for demarcating TADs.  

 

Results & Discussion 

 

Identification of GR-regulated genes in one cell and physiologic context 
 

Description of RNA-seq datasets analyzed 

We examined three RNA-seq datasets produced by three laboratories from different 

research institutions (Figure 2.1; denoted as D1, D2, and D3). Each dataset consists of three 

biological replicates A549 cells treated with 100 nM dex or vehicle (EtOH) for 4 hrs. Each dataset 

sought to identify GC regulated genes—but acquisition of each entailed various pre-analysis (wet 

lab) differences (See Materials and Methods). Experimental factors that can affect differential 

expression analysis range from RNA extraction methods to sequencing depth, and can even be as 

seemingly trivial as the serum source, due to FBS-associated RNA contaminants (Wei et al., 2016).  
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Figure 2.1: Overview of experimental design of RNA-seq datasets from multiple 

laboratories. (A) Description of RNA-seq datasets of A549 cells treated with and without 100 

nM dex for 4 hours from 3 different laboratories. (B) Computational and systems biology 

pipeline devised for determination of differentially expressed genes that are glucocorticoid 

regulated. (C) Volcano plots. Red dots signify differentially expressed genes with q <0.01. 

FKBP5, a canonical glucocorticoid regulated gene, is present in all 3 datasets.  
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Several groups have probed sources of experimental variation extensively, such as mRNA 

(polyA+) enrichment (Zhao et al., 2018) and sequencing platform (Li et al. 2014). D1 used total 

RNA for cDNA synthesis but with a kit whose proprietary combination of enzymes allows for 

preferential priming of non-rRNA sequences and therefore a reduced number of reads from rRNA, 

whereas D2 and D3 isolated mRNA from total RNA. rRNA and tRNA make up >95% of total 

RNA and does not allow for efficient transcript/gene detection if not removed or biased against by 

selective priming. Poly(A) selection provides good recovery of mRNAs but biologically relevant 

RNA species lacking poly(A) go undetected. Hence, each RNA selection approach has advantages 

and disadvantages. All three datasets used the Illumina sequencing system, HiSeq. D3 doubled the 

amount of reads due to paired end (PE) sequencing, and D2, though single end (SE), used 100 bp 

read length; both approaches provided better alignment accuracy. 

 

Computational analysis pipeline  

We identified differentially expressed genes (DEGs) in each individual dataset with the 

pipeline outlined in Figure 2.1. We used HISAT2, a fast, efficient pipeline that employs splice 

junctions and hierarchical indexing for fast alignment to the hg38 human reference genome (Kim 

et al., 2015) rather than de novo transcriptome assembly, which was unnecessary in our case. 

Sequencing depth would further limit our ability to differentiate between transcripts/isoforms of 

genes for some of the datasets, therefore, we employed a gene-level summation using 

Featurecounts (Liao et al., 2013). This read summation process maps the number of reads to 

genomic features (e.g., exons) with a hg38 refFLAT GTF file containing chromosomal coordinates 

of exons and coding regions we provided along with the alignment file from HISAT2. Finally, we 

used DESeq2 (Love et al., 2014) to identify DEGs between vehicle- and dex-treated samples.  
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As a quality control measure, principal component analyses (PCA) of individual datasets 

revealed strong separation of vehicle and dex-treated samples across PC1, which provided the most 

variance. While each dataset identified GC-regulated genes, a PCA with the combined datasets 

displayed clustering based on dataset instead of treatment conditions as the primary source of 

variances (Figure 2.2). Sequencing read type and length conditions contributed to the variance as 

two of the three datasets displayed greater alignment due to PE sequencing or longer read lengths, 

which increased accuracy in alignment and therefore allocation of counts. Thus, combining 

samples from different datasets without accounting for variance across datasets is uninformative. 

When accounting for batch effects, the effect of treatment conditions by combining treated and 

vehicle samples from all of the datasets displayed 98% of all DEGs from the individual datasets. 

We developed an approach to infer “robust DEGs”, which are GC-responsive despite variance 

across the three datasets, using statistical metrics that probe biologically relevant pathways. 

 

Metrics for assessing robustness 

1. The False Discovery Rate adjusted q value is more appropriate than p value, given the 

need for multiple correction testing. A p value < 0.05 gives evidence against the null hypothesis, 

measuring the likelihood that a gene is significantly differentially expressed in the vehicle versus 

dex-treated samples. The q value is superior when dealing with thousands of genes, because it 

measures the likelihood of false positives; a q<0.05 threshold is a strong determinant of 

statistical significance. With a q<0.05, we identified 733, 1450, and 2115 differentially expressed 

genes in D1, D2, and D3, respectively (Figure 2.3). With a more stringent threshold of q<0.01, 

we lose 28% of regulated genes across all the datasets.  



11 
 

 

 

Figure 2.2: Combined PCA of RNA-seq datasets primarily differentiates individual datasets 

instead of treated versus untreated samples. (A) PC1 and PC2, which account for the majority 

of the variance, differentiate datasets whereas (B) PC3 and PC4 differentiate treatment. 
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Figure 2.3: Filtering list of differentially expressed genes for statistical significance and 

consistency. (A) Number of differentially expressed upregulated (gold) and downregulated 

(purple) genes with q<0.05. (B) Venn diagrams showcasing consistent genes from all 3 datasets 

with 503 genes with q<0.05 (left) and 367 genes with q<0.01 (right). 
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Consistent biological behavior across datasets and computational tools 

2a) An additional criterion for robustness was consistent biological behavior. A gene met 

this metric if it was statistically significant in all three datasets and was consistently upregulated 

or downregulated in all three datasets. With a q<0.05 we identified 503 genes versus 367 genes 

with q<0.01 that were consistently upregulated or downregulated in every dataset (Figure 2.3) 

(Table 2.1); no genes switched between dex-activation and -repression at q<0.05. The mean 

log2foldchange value of these robust DEGs was +0.3 at q<0.05, and +0.4 at q<0.01, which is 

equivalent to a greater than 1.23-fold change for differentially expressed genes in all datasets. The 

range of the mean log2FoldChange for these 503 genes is +6.87 to -3.48, which is equivalent to 

112-fold increase and 11-fold decrease in expression, respectively. DESeq2 by default finds an 

optimal value at which to filter low count genes. Unsurprisingly, genes that met the default low 

count filter but had low mean normalized counts in one or two of the datasets commonly had large 

deviations in mean log2FoldChange values. Examples of upregulated genes in all three datasets 

were TFCP2L1 and ACSL1, and consistently down-regulated genes included PLK2 and IER5, all 

of which align with known effects of GCs on lipid metabolism and stress response (D’Ippolito et 

al., 2018). 

      

2b) To determine biological relevance of thresholds, and justify cutoffs, we used 

QIAGEN’s web-based software application, Ingenuity Pathway Analysis (IPA, 

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/). The manually 

curated content of the Ingenuity Knowledge Base efficiently determined the biological context of 

specific gene lists, and assessed effects of altering q values or log2foldchange values on pathway 

ranking and presence. IPA determines pathway significance with p<0.05 values reflecting the 

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/
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likelihood of non-random overlap between inputs and pathways. D1 had 206 significant IPA 

pathways, with statistically significant DEGs at q<0.05. Interestingly, though D2 and D3 had 

more statistically significant DEGs at q<0.05 compared to D1, D2 and D3 had 194 and 197 

pathways, respectively, and they were neither complete subsets of each other nor of D1. Table 

2.2 compares the z-scores of pathways generated from genes with q<0.05 in individual datasets.  

 

Analyses of pathways generated from the robust gene list (Table 2.1) under different 

thresholds, q<0.05 and q<0.01, altered the p value ranking of pathways, but few pathways were 

gained or lost. The number of statistically significant pathways overlapped by greater than 80% 

regardless of q value threshold (Figure 2.4). The top ranking pathways were Glucocorticoid 

receptor signaling (p value=2.76E-07), Colorectal cancer metastasis signaling (p value=1.17E-06), 

NRF2-mediated oxidative stress response (p value=2.86E-06), IL-7 signaling (p value=6.69E-06) 

and p53 signaling (p value=7.96E-06 (Table 2.3). Acknowledging that IPA pathways containing 

more well-documented molecules, such as cancer pathways that are highly studied and reported, 

can skew the significance of dataset gene lists and pathway rankings, we were nevertheless pleased 

that GR signaling was top-ranked.  

 

2c) Another criterion for robustness involved using another parametric differential 

expression tool, EdgeR (Robinson et al., 2010, Liu et al., 2015), to compare the number of DEGs 

produced in the individual datasets with our set metric of q<0.05. EdgeR yielded >80% of the 

DEGs produced from DESeq2, which is a common range between the two different tools (Schurch 

et al., 2016). 
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Figure 2.4: Significant IPA pathways consistent with varying q values but massive 

differences observed with imposed log2FoldChange (L2FC) threshold. (A) Overlap of 

significant* pathways generated from robust differentially expressed genes with a q<0.05 (Grey) 

and q<0.01 (Pink). (B) Overlap of significant* pathways generated from robust differentially 

expressed genes with a q<0.05 (Grey) manually imposed log2FoldChange (L2FC) +1 (Dark 

Grey). *IPA determined p value in which p<0.05 reflects likelihood overlap between inputs and 

pathway are not random. 
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Importantly, the commonly used log2FoldChange >1 threshold is not a sound filter for 

biological relevance. Large fold changes do not guarantee biological relevance, while genes with 

small fold changes may be biologically relevant yet discarded. With our robust gene list at the 

q<0.05 threshold, we determined that a log2FoldChange+1 cutoff excluded 50% of genes and 

>60% of pathways (Figure 2.4). We could not confidently manually impose log2FoldChange 

filters because the biological processes, molecular functions and components generally remained 

consistent while varying q value thresholds but varied drastically when filtering with a stringent 

log2foldchange threshold. These biologically relevant pathways are derived from what is currently 

available in the literature by IPA and would take an additional effort to distinguish if the remaining 

pathways, when imposing log2foldchange thresholds, selected for essential pathways. The 

likelihood that a large log2foldchange selects for core pathways is contrary to published work 

showing genes not highly differentially expressed are biologically relevant (Zarse et al., 2012). 

Finally, it should be noted that RNA levels may not predict protein levels, as processes downstream 

of transcription may also be regulated (Vogel et al., 2012). 

 

Guidelines for DEG identification 

Based on our analysis of three RNA-seq datasets, we propose guidelines for metrics to 

identify robust DEGs: (1) filter by q value; (2) filter by consistent behavior; (3) allow the q value 

to determine the log2foldchange. We opted for a more inclusive q<0.05 value, as a 5% chance of 

a false positive seemed acceptable against the risk losing information at a more stringent threshold; 

notably, the pathway analysis using a q<0.01 setting overlapped strongly with that at the q<0.05 

setting. It is strongly advised to have at least 3 replicates for statistical validation of genes whose 

differential expression is reliable within a dataset. Our analysis of three datasets, which allowed 
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comparisons within and across datasets, captured >500 DEGs, with some genes unique to each 

dataset and some differences in pathway analysis; nevertheless, we found 503 consistent DEGs. 

Of course, it is not customary to compare RNA-seq datasets from different labs, but our analysis 

confirms that nonidentical results can emerge from slight differences in experimental and analytic 

approaches.  

 

In summary, we identified genes that were statistically significant based on a q value 

threshold of less than 0.05 or 0.01, which set a log2FoldChange cutoff to + 0.3-0.4 in each dataset. 

We further distinguished genes that were robust to experimental variation (library preparation, 

sequencing system, PE vs SE, and read length), as assessed by consistency in expression in all 3 

datasets. We ran these robust gene lists with varying q values and found that the IPA pathways 

were generally conserved. In contrast, imposing a stringent log2FoldChange threshold severely 

constrained the number of pathways with published findings linking them to the genes on our list. 

Therefore, the log2foldchange threshold is set by q value, rather than arbitrarily assigned.  

 

Bidirectional transcripts in response to GC exposure in two cell lineages 

We also looked at non-protein coding transcripts, as it has been claimed that short, 

bidirectional, noncoding transcripts from so-called distal transcribed regions (dTREs) are 

characteristic of functional response elements (hence, have been denoted as enhancer RNAs, 

eRNAs). We treated U2OS and A549 cells with ethanol, 1 nM, or 100 nM dex for 45 min, then 

performed PRO-seq (Erin Wissink, Cornell University). dTREs were identified using dREG 

(Wang et al., 2016) and differential expression was performed with DESeq2 (Love et al., 2014). 

We found that the overall dTRE landscape was A549- and U2OS-specific. PRO-seq identified 
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~63,175 constitutive dTREs in A549 cells and ~ 51,234 in U2OS cells (Figure 2.5). Intriguingly, 

a fraction of these dTREs (593 (0.9% of detected dTRE loci) in A549, 2,055 in (4% of detected 

dTRE loci) in U2OS are differentially responsive to GC signaling (100 nM dex relative to EtOH) 

at a p value ≤0.05 (in A549, log2FoldChange max = 8.1 [chrX:86,147,390-86,147,800], min = -

5.5 [chr10:100,696,430-100,696,959], median = 2.89, mean = 2.31 ± 2.88; in U2OS, 

log2FoldChange max = 7.2 [chrX:43,655,190-43,655,640], min = -5.1 [chr10:100,347,760-

100,348,300], median = 1.82, mean = 1.47 ± 2.14).  Further study is required to assess whether 

eRNAs play a role in GRE activity (See Chapter 3). 

 

 

 
 

Fig 5: Distal biredictional transcripts (dTREs) overlap with GORs distinctly in A549 and 

U2OS cell lines. 46% of A549 GORs overlap with dTREs whereas 26% of GORs overlap with 

dTREs in U2OS cells. 
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Human genome structure in response to GC exposure in two cell lineages 

To assess whether chromosome topological interactions (large-scale topological domains 

and/or smaller-scale intrachromosomal looping) may be related to or functional in GC 

regulation, we performed in situ Hi-C in both A549 and U2OS cell lines treated with 100 nM dex 

or EtOH vehicle for 1.5 hr. Hi-C relies on DNA proximity to produce genome-wide DNA-DNA 

contact maps.  

 

We first examined interchromosomal interactions between whole chromosomes in the 

human genome for either cell line. Heatmaps display the observed interactions between 

chromosomes relative to random expectations (Figure 2.6; clusters of red indicate preferential 

association between chromosomes whereas blue clusters indicate avoidance). As expected from 

prior reports (Lieberman-Aiden et al., 2009), gene-rich chromosomes preferentially associated 

with each other and to a lesser degree, gene-poor chromosomes also associated. We subtracted 

the dex- and vehicle-treated samples’ interaction frequencies for each chromosome after 

normalization by sequencing depth. The differences in the interaction frequencies did not favor 

association or avoidance between chromosomes, and dex treatment did not detectably alter 

chromosomal interactions.   
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Figure 2.6: Interchromosomal contacts do not appear or disappear with glucocorticoid 

treatment in A549 cells. Interchromosomal interactions in A549 cells treated with 100nM dex 

(left) or vehicle (right). Heatmaps of chromosome association where observed counts are 

normalized against random expectation and shown on log2 scale. Red indicates enrichment and 

blue indicates depletion of interactions.  A549 dex and EtOH interchromosomal heatmaps were 

normalized by valid read pairs and subtracted (bottom). 
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Intrachromosomal heatmaps display the same chromosomal region mapped to itself. 

Interactions on the diagonal are enriched, because these regions are close in three-dimensional 

space, whereas off-diagonal interactions represent long range interactions. At 100 kb resolution, 

dex did not provoke appearance or disappearance of putative TAD structures larger than 2 Mb 

encompassing GC-regulated genes in either A549 or U2OS, consistent with the previous 

observation of conservation of TAD boundaries and loops across several cell types and species 

(Rao et al., 2014). Figure 2.7, upper panels, display intrachromosomal Hi-C data in dex-treated 

and control A549 cells for a 10 Mb region of chromosome 10 in which each pixel is a 100-kb bin 

of the genome and a putative TAD is visible with the GC-regulated gene, ANKRD1 promoter at 

the TAD border. Figure 2.7, bottom panel, examines a 2 Mb segment of this region in the dex 

treated sample.  

 

We sought to use in situ Hi-C to assess in A549 and U2OS cells how a GC regulated 

gene may be influenced by DNA elements potentially within a TAD via chromatin loops. While 

we secured reproducible results, resolution was limited to 100kb, so we could not be confident 

that we were capturing chromatin loops that might bridge candidate GREs and cognate 

promoters, or even relatively small topological structures that might limit the search space for 

candidate response elements. For that reason, we relied on intrachromosomal Hi-C contacts at 

higher resolution (~5kb), in the A549 cell line provided by T. Reddy (Duke University). In the 

case of GC response, higher order genome structure appears to be ‘pre-wired’ in that chromatin 

loops detected before and after GC exposure are similar, albeit with some changes in interaction 

frequency (D’Ippolito et al., 2018). 
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Figure 2.7: Putative TAD in A549 cells containing glucocorticoid regulated gene. 

Intrachromosomal interactions within 10 Mb region of chromosome 10 in A549 cells treated 

with 100nM dex (left) or vehicle (right) normalized by valid read pairs. Red indicates enrichment 

of interactions and every pixel corresponds to 100 kb region. Bottom box: Zoom in of putative 

~2 Mb TAD containing GC regulated gene, ANKRD1, in blue box at potential TAD border. 
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Figure 4: A549 Hi-C chromosome 10 contact profile.  

2 MB region at 100 kb resolution where more red 

corresponds to a greater intensity of  interactions.  

In blue is the ANKRD1 locus.  
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Material and Methods 

RNA-seq 

Experimental Biology 

For D1: 

Two T-225 flasks of A549 cell lines were maintained at 37 °C with 5% CO2 (v/v) in DMEM H-

16 low-glucose media supplemented with 5% (v/v) fetal bovine serum. Confluent cells were 

treated with 100nM dex (D4902-25MG) or EtOH-vehicle for 4 hr (old media was switched out for 

dex- or vehicle-containing media). RNA from 3x106 cells was purified using Qiagen RNeasy mini 

kit with QIAshredder columns and optional DNAse step with final elution in 50 L Ambion 

RNase-free water; eluants were snap frozen in liquid N2 and stored at -80°C. 15-25 ng total RNA 

was used to prepare amplified cDNA using Nugen’s Ovation RNAseq system V2 kit. 3 g cDNA 

was sheared with an S2 Focused-ultrasonicator (Covaris) set at intensity 5, duty cycle 10%, 

cycles/burst 200, and time = 60s for 2 cycles for fragment sizes ~100-400 bp. Libraries were 

constructed with 100ng in the Ovation Ultralow System V2 #1-16 (Part #0344) with 8 cycles 

amplification and quantified on a 2100 Bioanalyzer System (Agilent) with High Sensitivity DNA 

Kit. Each library was sequenced on a HiSeq 4000 (Illumina) using single reads of 50 bp in length.  

 

For D2: 

 

Refer to Pack, L.R., 2017:  

A549 cells were grown in 15 cm dishes using DMEM H-16 low glucose media supplemented 

with 5% (v/v) fetal bovine serum. Two 15 cm dishes were used for each condition analyzed by 

RNA-seq: i) Control siRNA/ethanol, ii) Control siRNA/dex. Pool of siRNA acting as a non-

targeting negative control (Darmacon, D-0018190- 10-20) were used for the reverse 
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transfections. 200 pmol of siRNA was diluted in 3.5 mL of Optimem-I media, followed by the 

addition of 42 µL of RNAiMAX (ThermoFisher) for each 15 cm plate. The mixtures were added 

to the 15 cm plates and incubated for 20 min at room temperature (rt). Following incubation, 

1.3x106 cells were plated in 16.5 mL of standard growth media. The cells were incubated with 

their respective siRNA pools for 72 hr after which the media was replaced with fresh media 

containing either 100 nM dex in 0.2% ethanol or 0.2 % ethanol for 4 hr. Following incubation 

with dex or ethanol, the media was removed and cells were collected by scraping with 1 mL of 

RLT buffer from the RNAeasy kit (Qiagen). RNA was isolated using Qiashredder and RNAeasy 

mini columns. RNA quantity was measured using Nanodrop spectroscopy, quality using the 

Bioanalyzer, and knockdown efficiency using qPCR. mRNA was isolated from total RNA using 

Oligotex mRNA isolation (Qiagen) as described in the protocol with two modifications: i) 

following the removal of supernatant from the Oligotex beads, water and OBB buffer were 

added and the heating, cooling and pelleting steps repeated; ii) beads were treated twice with 70 

µL of elution buffer. Following mRNA isolation, rRNA contamination was assessed using the 

Bioanalyzer . mRNA was precipitated with sodium acetate, isopropanol, and glycoblue and 

resuspended in 9 µL of 10 mM Tris pH7.0. To fragment the RNA, samples were heated to 95 °C 

for 2 min followed by 1 µL of fragmentation buffer (Ambion) and incubation at 95°C for 2 min; 

1 µL of stop solution was then added. Samples were run on a 10% TBU gel (Invitrogen) at 200 

V for 50 min. Gels were visualized by Sybr Gold and 80-120 bp RNA was cut from the gel. The 

RNA was gel extracted by first pulverizing the gel pieces and then incubating in 300 µL of 

DEPC water at 70 °C in a Thermomixer. Supernatant was collected through a SpinX column and 

precipitated with sodium acetate, ethanol, and glycoblue. Following precipitation, the RNA was 

resuspended in 7 µL of 10 mM Tris pH=7. 1 µL of 10x PNK buffer, 1 µL of Superase Inhibitor, 
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and 2 µL of PNK were added to each sample, which were then incubated at 37°C for 1 hr. 

Following incubation with PNK, linker ligation was achieved by adding 6 µL of PEG, 1 µL of 

linker-1, 1 µL of DTT, 1.1 µL of ligation buffer, and 1.5 µL of Truncated T4 RNA ligase 2 

(NEB M0242L). Linker ligation was performed for 2 hr at 37°C. Following ligations samples 

were precipitated and pellets were resuspended in 8.5 μL 10 mM Tris pH7.0 and run on a 10% 

TBU gel for 50 min at 200V. The ligated samples were cut from the gel and gel extracted as 

described. Following precipitation, samples were resuspended in 11 μL of 10 mM Tris pH7.0. 

0.8 μL of oCJ200 reverse transcription (RT) buffer was added to the ligated RNA and was 

incubated at 65°C for 5 min and 35°C for 5 min. Following incubation, 4 µL of 5x RT buffer, 1 

µL of DTT, 1 µL of dNTPs, 1 µL of Superase Inhibitor, and 1 µL of reverse transcriptase was 

added to the RNA primer mixture. Samples were incubated at 52°C for 12 min. Samples were 

then incubated with 2 µL NaOH for fifteen minutes at 95°C. After boiling, 2 µL of HCl was 

added to each sample to neutralize the pH. Samples were precipitated in Tris pH8.0, glycoblue, 

and ethanol, and run on a 10% TBU gel for 1 hr and 20 min at 200V. DNA was imaged and 

extracted. Samples were resuspended in 15 μL of 10 mM Tris pH8.0 and were circularized 

through the addition of 2 µL of 10x circ ligase buffer (epiBio), 1 µL of 20 mM ATP, 1 µL of 50 

mM MgCl2, and 1 µL of circ ligase (epiBio). Samples were incubated at 60°C for 1 hr and circ 

ligase was heat inactivated at 80°C for 10 min. After circularization, 3 µL of circ product was 

PCR amplified using Phusion. The PCR primers were primer 0231 and the indexed primers of 

interest. PCR conditions included an initial denaturation at 98°C for 30 sec followed by 10 or 12 

cycles of denaturation at 98°C for 10 sec, annealing at 60°C for 10 sec, and extension at 72°C for 

5 sec. Samples were run on a 8% TBE gel at 180V for 47 min. Amplified products were gel 

extracted. Following PCR amplification, the quality of the libraries was determined by 
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Bioanalyzer. Libraries were quantified by qPCR using the KAPA library quantification 

standards. We generated 5 nM solutions of each library and combined 2.5 μL of each sample for 

LRPA and LRPB. Samples were sequenced by the UCSF center for advanced technology on an 

Illumina Hi-seq using Rapid Run single reads of 100 bp in length. The sequencing primer used 

was oNTI202. Unpublished raw fastq files were provided by Lindsey Pack. 

 

For D3: 

Refer to links below for experimental procedures. Raw fastq files were downloaded from Encode.  

https://www.encodeproject.org/experiments/ENCSR632DQP/ 

https://www.encodeproject.org/experiments/ENCSR326PTW/ 

 

Computational Biology 

 RNA-seq profiling for three biological replicates from each of three datasets were performed 

and yielded ∼25–60 x106 mapped sequences. For quality control, mapping and read 

quantification, we employed the web-based platform Galaxy (usegalaxy.org). FastQC was used 

to evaluate the quality of reads (Andrew 2010). Raw Fastqs from each dataset were uniformly 

processed and analyzed, with the exception that Cutadapt (v1.16.3) was used for D2 to remove 

the 3’ sequence (CTGTAGGCACCATCAATATCTCGTATGCCGTCTTCTGCTTG) (Marcel 

2011). Reads were mapped using HISAT2 (v2.1.0+galaxy3) to the hg38 genome with default 

settings. We employed a gene-level summarization using Featurecounts (v1.6.3+galaxy2) with a 

hg38 refFLAT GTF file (UCSC Main on Human: refFLAT(genome)) containing chromosomal 

coordinates of exons and coding regions we provided along with the alignment file from 

https://www.encodeproject.org/experiments/ENCSR632DQP/
https://www.encodeproject.org/experiments/ENCSR326PTW/
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HISAT2 and default settings. Finally, we used R-DESeq2 (v1.22.2) to identify DEGs between 

vehicle (EtOH) and dex-treated samples in individual datasets. 

 

Systems Biology 

We submitted gene lists of individual datasets and robust gene list with q value thresholds <0.05 

or <0.01 through the Ingenuity Pathway Analysis (IPA) tool. We used the Core Analyses feature 

to obtain relevant relationships, mechanisms, functions and pathways for a given gene list. 

Pro-seq 

 

Cells were maintained in DMEM supplemented with FBS and pen/strep. 5 x106 cells were plated 

per experiment 24 hr prior to treatment. Media was supplemented with ethanol or the appropriate 

concentration of dex for 45 min and kept in a 37° C incubator with 5% CO2 during the 

incubation. Cells were kept on ice during the extraction protocol. Cells were washed with PBS, 

then incubated in PBS supplemented with 10 mM PBS for 5 min. Cells were scraped and placed 

in 15 mL Falcon tubes, then washed twice with PBS. Cells were then incubated in 

permeabilization buffer for 5 min, pelleted, and washed twice with permeabilization buffer. Cells 

were resuspended in freezing buffer and flash frozen. Run-on reactions with biotin-11-CTP and 

biotin-11-UTP were performed for 5 min. RNA was isolated, fragmented on ice with 0.2 N 

NaOH, and underwent buffer exchange with a P-30 column. Three biotin enrichments were 

performed with Dynabead streptavidin beads, and between enrichments, the 3' adapter was 

ligated, the 5' end was repaired with RppH and PNK enzymatic treatments, and the 5' adapter 

was ligated. RT was performed with SuperScript III, and 13 cycles of PCR were used to amplify 

the library, followed by clean-up with Ampure beads (1.6x ratio). 
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In Situ Hi-C 

Passage modified from Moquin et al., 2017: 
 
In situ Hi-C was performed with 5 x106 cells per experiment as described (Rao et al., 2014), with slight 

modifications. After end repair and washes, Dynabeads (Thermo Fisher Scientific) with bound DNA were 

resuspended in 10 mM Tris, 0.1 mM EDTA, pH 8.0, and transferred to new tubes. Sequencing libraries 

were created from bound DNA by using an Ovation Ultralow library system V2 kit (NuGEN), with one 

modification. After adapter ligation, because DNA was still attached to the beads, water instead of SPRI 

beads was added to the reaction mixture. Beads with bound DNA were purified by use of a magnet, 

washed, and resuspended in 10 mM Tris, 0.1 mM EDTA, pH 8.0. After library amplification, SPRI beads 

were added as directed to purify the amplified DNA. Quantitation and size distribution of libraries were 

performed using a Bioanalyzer High Sensitivity DNA kit (Agilent). Fifty-base PE reads were sequenced 

on a HiSeq instrument (Illumina). Once sequenced, PE reads were aligned to human reference genome by 

use of the Hi-C User Pipeline (HiCUP), version 0.5.0, using default parameters to generate a set of 

interactions. We used the human hg19 sequence. The HiCUP processing steps remove PCR duplicates as 

well as invalid read pairs, including those that are self-ligated or map to identical or adjacent fragments. 

Only alignments with mapq scores of ≥30 were retained. Data sets contained on average 25 x106 valid PE 

Hi-C contacts after quality control filtering. 
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Chapter 3: Identification of a glucocorticoid response element and a cognate target gene  

 

 

Introduction 

 

GR regulates gene networks that are precisely determined in a given context, yet displays 

remarkable plasticity as a function of cell type and physiological state. It accomplishes this feat 

by binding at context-specific genomic sites and provoking assembly of context-specific TRCs, 

which in turn modulate context-specific processes in mRNA production, such as initiation, 

release of stalled RNA polymerase II, elongation, splicing, etc. (Weikum et al., 2017). This 

extreme context specificity enables global regulators like GR to control organismal processes as 

aggregate outcomes of distinct effects in different cells and tissues, developmental stages and 

physiologic states. Context specificity also greatly complicates characterization and mechanistic 

analysis of response element activities, as there is no single set of molecular characteristics, no 

simple genomic map of functional GREs, no single mechanistic action that can be ascribed to 

functional GR. Rather, GREs are comprised of context-specific combinations of molecular 

features, higher order genomic arrangements and TRC components, which together modulate 

different steps in the transcription of cognate target genes. 

 

A consequence of this complexity is that systems approaches cannot identify functional 

response elements such as GREs. Most investigations have failed to appreciate this important 

point, and have used molecular features, higher order genomic organization and spatial proximity 

as surrogate criteria of response element function and activity. Candidate response elements have 

also been transferred onto plasmids and their actions measured on linked minimal promoter-

reporter gene constructs, despite clear evidence that native chromosomal context and target gene 

promoter context are critical determinants of response element function.  
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We conclude that at our present level of knowledge, functional response elements must 

be defined individually, and must be validated genetically in their normal chromosomal 

environment. Therefore, in this work, we interrogated our genome-wide datasets to select a gene 

that is GR-regulated in A549 and U2OS gene, and that resides in a well-resolved TAD bearing 

multiple GORs. We used CRISPR/Cas9-directed GOR ablation to define the functional GRE, 

combined with transcript analyses to identify the target gene(s).  

 

Results & Discussion 

GR occupancy on the human genome varies across cell lineages 

We mapped by ChIP-seq GR occupied regions (GORs) genome-wide in A549 and U2OS 

cells, treated with 100 nM dex or EtOH-vehicle for 1.5 hr. We observed 7, 313 GORs in A549, 

of which 67.4% are shared with U2OS and 24, 891 GORs in U2OS of which 19.8% are shared 

with A549; > 40 and >70% of the GORs summits encompassed a canonical GBS motif in A549 

and U2OS, respectively (Figure 3.1). Clearly, GORs are in substantial excess of GC regulated 

genes (Figure 3.2). 

 

We focused on a TAD defined by Hi-C contacts occurring within a 1.4 Mb region of 

chromosome 10 that is conserved across several cell types, including A549 (Figure 3.3). The 

TAD encompasses 7 coding genes. Only ANKRD1 is GC responsive in A549, with the nearest 

GC responsive gene is more than 2 Mb away and outside of the TAD. In contrast, in U2OS, 

ANKRD1and HECTD2 are dex-responsive within the TAD. ANKRD1 resides near one boundary, 

and HECTD2 is near the center of the TAD. Interestingly, ANKRD1 is upregulated in A549 cells 

at 100 nM dex, whereas in U2OS, ANKRD1 is activated at 1 nM but repressed at 100 nM dex; 
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HECTD2 is activated at both dex concentrations in U2OS. The TAD includes 4 and 15 GORs in 

A549 and U2OS, respectively; all 4 A549 GORs coincide with U2OS GORs. 

 

 

 
 

 

 

Figure 3.1: GOR overview in A549 and U2OS cells. (A) Overlapping and distinct GR 

occupancy in A549 (orange) and U2OS (blue) cell lines. (B) Number of loci with GBS 

intersecting with one (1) or fifteen (2) bp of GOR summit versus random 1 or 15 bp region 

(grey). (C) Enrichment of GBS motif matches across 1 kb zones centered on GOR peak summit 

(Heatmap color scale ranges from green to blue to pink (most significant)). 
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Figure 3.2: Gene, GOR and TAD overview in chromosome 10. Example overview of 

topological units (purple), genes (all vs dex-responsive (blue = downregulated, red= 

upregulated), GORs in A549 and U2OS cells. 
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Figure 3.3: 1.4 Mb topological unit with distinct GOR occupancy and GC gene regulation 

in A549 and U2OS cells. GORs numbered left to right in 1.4 Mb region on chromosome 10 in 

A549 (orange) and U2OS (blue) cells with some overlapping (4, 6, 8, 12) and unique ChIP-seq 

peaks. Genes within TAD are boxed in red. ANKRD1 is GC responsive in both A549 and U2OS 

cells and HECTD2 is responsive only in U2OS cells. Hi-C contacts in grey not extending past 

housekeeping genes, RPP30 and BTAF1, serve as the demarcation of TAD. 
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Cas9 mutagenesis of GR occupancy at single loci 

 

We used directed Cas9 genome editing to generate chromosomal deletions or insertions 

(indels) that disrupt GBS motifs, or GOR peak summits for GORs lacking a GBS. A GOR 

regulating ANKRD1 was discovered by a homozygous, ~120 bp deletion of GOR4. GOR4 is 

slightly upstream of the ANKRD1 promoter (-0.451 kb) and contains a single GBS. In A549, a 

single H3K27Ac site was disrupted by deletion of GOR4 (Figure 3.4), and dex induction of 

ANKRD1 declined by 75% (Figure 3.5). In U2OS, ANKRD1 is no longer upregulated at 1 nM and 

further downregulated at 100 nM with loss of GOR4 (Figure 3.6).  

 

We examined the GOR4 region in the A549 wild type and GOR4 mutant by ChIP-seq, and 

confirmed the loss of the GOR4 peak (Figure 3.4). In A549, ANKRD1 expression in the absence 

of dex was elevated by 2.5-fold in the GOR4 mutant, implying that non-GR TF or chromatin 

remodeling binding sites may have been deleted or created by the ~120bp GOR4 deletion. RNA-

seq established that only ANKRD1 transcription levels were changed significantly by the GOR4 

mutant, examining the surrounding ±1 Mb region, either in the absence (Table 3.1) or the presence 

(Table 3.2) of dex. Genome-wide, dex-regulated expression of four additional genes, none residing 

on chromosome 10, appeared to be altered in the GOR4 mutant (Table 3.3). Further testing is 

required to validate these findings, and to test whether dex regulation of those genes is primary, 

i.e., controlled directly by GR, or secondary. Our provisional conclusion is that GOR4 displays 

GRE activity that is nearly fully specific to ANKRD1 in A549. Interestingly, this appears to 

contrast with a report in which a Cas9-driven deletion of a single H3K27Ac locus in HCT116 

colon cancer cells produced large scale changes in gene expression of several genes ±1 Mb from 

the deletion (Tak et al., 2016). 
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Figure 3.4: Validation of GOR4 deletion in A549 cells. A549 wildtype (WT, purple) sequence 

containing one GBS highlighted in red. A549 GRE mutant (MT) is a homozygous 120 basepair 

deletion which ablates GBS and GOR4 upstream of ANKRD1 that overlaps with H3K27Ac mark 

(green). 
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Figure 3.5: ANKRD1 induced and basal expression is affected by deletion of GOR4 in A549 

cells. RNA-seq and qPCR show a 4-fold decrease in ANKRD1 expression when comparing 

wildtype (WT) and mutant (MT) levels (left) and 2.5-fold increase in ANKRD1 expression in 

mutant when compared to wildtype basal levels (right). 
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Figure 3.6: Multiple GORs affect expression of single GC regulated gene, ANKRD1.  

(A) Zoom in on chromosome 10 topological unit focusing on GOR1 (+135kb) downstream of 

ANKRD1 and GOR4 (-0.451kb) upstream of ANKRD1. (B) ANKRD1 regulatory analysis of 

GOR1 (+135kb) and GOR4 (-0.451kb) ablations across 0.01, 1, and 100 nM dex dose. 
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GRE composition 

We have found that multiple GORs can influence transcription of a single GC-responsive 

gene (Figure 3.6). Interestingly, mutation of GOR4 (-0.451kb) in U2OS abrogated ANKRD1 

upregulation at 1 nM, but strengthened its downregulation at 100 nM, whereas mutation of 

GOR1 (+135kb) abrogated its downregulation at 100 nM. Hence, it appears that GR regulates 

expression in ANKRD1, at least in U2OS, from a composite GRE that includes at least two 

GORs separated by >135kb. It will be very interesting to interrogate the other GORs within this 

TAD. We speculate that control by dispersed composite GREs will prove to be common, 

whereas some GORs in the TAD will lack detectable activity in the two contexts assessed here, 

but may well be highly functional in other contexts. 

 

 Finally, we note that thousands of GORs overlap with intergenic or intronic regions that 

produce dTREs in each cell line (Figure 2.5). GOR1 overlaps with 1 dTRE in U2OS cells 

whereas GOR4 does not display dTREs, but genome-wide, 26% and 46% of GORs overlap with 

dTREs in U2OS and A549 cells, respectively. We detected 37 dTREs within the TAD; 1 

overlapped with GOR6 in A549 versus 5 overlapping with GORs 1, 5, 6, 7, and 9 in U2OS cells. 

Of the 37 dTREs, only 1 dTRE had expression affected significantly (p<0.05) by dex in A549 

cells and it did not overlap with a GOR. In U2OS, only 1 dTRE had expression affected 

significantly by dex and it overlapped with GOR6. While a role for dTREs/eRNAs in GRE 

activity remains to be investigated, it would be consistent with the context specificity of response 

element composition and function to assume that dTREs will be found at some but not all GORs, 

and at some but not all GREs. 
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Materials and Methods 

 

GR ChIP-seq 

A549 and U2OS.hGR cells were grown in ~3 T-225 cm flasks to 90% confluency. After 90 min 

treatment with dex (Sigma) at 100 nM or ethanol (Koptec), cells were harvested by 

trypsinization, counted on a hemocytometer, and distributed to 50-mL Falcon tubes in volumes 

corresponding to ~1.8 x 107 cells/tube (anticipating ~1.8 x 107 cells/ChIP). 36.5% formaldehyde 

was added to suspended cells to a final concentration of 1% v/v; after incubating 3-10 min at RT, 

formaldehyde was quenched by adding 2.5 M glycine to 0.3 M, RT 5 min, followed by transfer 

to ice. Cells were recovered by centrifugation at 450g, 5 min, 4 ˚C, then washed twice by 

resuspension and pelleting in 20 mL ice-cold TBS (100 mM Tris-HCl, pH 7.5 @ 4 ˚C/150 mM 

NaCl) on ice. Cells were then washed 3x at RT in 1 mL MC lysis buffer (10 mM Tris-HCl, pH 

7.5 @ RT, 10 mM NaCl, 3 mM MgCl2, 0.5% (v/v) Tergitol type NP-40), resuspended in 1 mL 

RT MC lysis buffer and transferred to a 1.5 mL Eppendorf tube. Cells were pelleted at 200g, 5 

min; residual buffer was removed and cells were frozen in liquid N2 for storage at -80 ˚C. 

Frozen nuclear pellets were thawed in cool water, resuspended in 180 µL MNase reaction buffer 

(10 mM Tris-HCl, pH 7.5 at RT, 10 mM NaCl, 3 mM MgCl2, 1 mM CaCl2, 4% (v/v) Tergitol 

type NP-40) supplemented with PMSF to 1:100, and the volume was taken to 270 µL with 

MNase reaction buffer. MNase (New England Biolabs) was diluted 1:10 in MNase reaction 

buffer, and 1.35 µL was added to the resuspended chromatin and incubated at 37 ˚C, 5 min. A 

cOmplete Mini, EDTA-free Protease Inhibitor Cocktail tablet (Roche) was dissolved in 500 µL 

MNase buffer (PIn cocktail); MNase reaction was stopped by adding 5.4 µL 0.2 M EGTA (pH 

8), 7.2 µL 100 mM PMSF, 14.65 µL PIn cocktail, 14.65 µL 20% SDS, and 14.4 µL 5 M NaCl, 
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with gentle tube inversion to mix. 164 µL volume was transferred to each of two 1.5 mL 

Bioruptor®Plus TPX microtubes (Diagenode, Denville, NJ) and sonicated in a Bioruptor® Plus 

(UCD-300) Sonication System using intensity setting ‘H’ (320 W) and sonication parameters 

“CYCLE Num:30, Time ON:30sec, Time OFF:30sec”. During a 15-min rest interval, samples 

were vortexed for 5 sec, spun down in a microfuge, and transferred to new TPX tubes on ice, 

followed by a second round of sonication (amounting to 60 cycles total). 150 µL Dynabeads™ 

Protein G slurry (Invitrogen) was mixed with 20 mg N499 (rabbit α-human GR IgG) antibody 

plus 450 µL Lysis Buffer 2 (10 mM Tris-HCl, 1 mM EDTA, 150 mM NaCl, 5% (v/v) glycerol, 

0.1% (w/v) sodium deoxycholate, 0.1% (w/v) SDS, 1% (v/v) Triton X-100, pH 8 at 4 ˚C; no PIn 

added) in a 1.5 mL Eppendorf tube, incubated 1 hr with rolling in 4 ˚C cold room; tubes were 

placed in magnetic rack and supernatant was removed. Sonicated chromatin samples were 

pelleted at maximum speed, 10 min, 4 ˚C, and white pellet and cloudy suspension above pellet 

were recovered by transferring from 1.5 µL TPX tubes to new 1.5 mL tubes. 10 µL aliquot of 

combined input was set aside for later processing. 25 µL 100X Halt™ Protease Inhibitor 

Cocktail (Thermo Scientific) was added to a 5 mL tube with 2.5 mL Dilution Buffer (identical to 

Lysis Buffer 2, except without SDS). ~275 µL chromatin (from ~1.5 x 107 cells) was added to 

the Dilution Buffer+beads in the 5 mL tube, effectively diluting the chromatin 1:10. The 5 mL 

tube was sealed with parafilm and incubated 4 h on a roller in a 4 ˚C cold room. During this time, 

input material was reverse-crosslinked by adding TE (10 mM Tris-HCl, 1 mM EDTA, pH 8; pH 

7.5 at RT) to a total volume of 80 µL, followed by addition of 100 µL ChIP Elution Buffer (50 

mM Tris-HCl, pH 7.5 @ RT, 10 mM EDTA, 1% SDS) and 20 µL Pronase (Roche, 20 mg/mL) 

for incubation at 42 ˚C for 2 hr, then 65 ˚C overnight. 100X Halt PIn was warmed to RT, and 15 

µL was added to 1.5 mL of each of three Wash Buffers (A-C; Wash Buffer A: Buffer A 
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containing 10 mM Tris-HCl, 1 mM EDTA, 150 mMNaCl, 5% (v/v) glycerol, 0.1% (w/v) sodium 

deoxycholate, 0.1% (w/v) SDS, 1% (v/v) Triton X-100, pH 8.0; Wash Buffer B: Buffer A with 

500 mM NaCl and Halt protease inhibitor mixture; Wash Buffer C: 20 mM Tris-HCl, 1 

mM EDTA, 250 mM LiCl, 0.5% (v/v) Nonidet P-40, 0.5% (w/v) sodium deoxycholate, Halt 

protease inhibitor mixture, pH 8.0 ). Beads were washed consecutively in 1.5 mL of each of the 

Wash Buffers A-C (1X Halt PIn), by gently adding buffer to resuspend the beads, then placing 

the tube on a magnetic rack and removing the supernatant after beads settled. Chromatin (from 

1.5 x 107 cells on beads from 150 µL slurry) was eluted from beads in 300 µL Elution 

Buffer/Reverse-Crosslinking Buffer (10 mM Tris-HCl, 1 mM EDTA, 0.7% (w/v) SDS, pH 8 at 

RT) by incubating beads in buffer for 5 min, RT with gentle pipetting to occasionally mix, then 

allowing beads to settle on magnetic rack and transferring eluant volume to a new 1.5 mL 

Eppendorf tube. To reverse crosslinks, 450 µL Adjustment Buffer (50 mM Tris, 10 mM EDTA, 

0.45% SDS pH 7.0 at RT) was added with 82.5 µL Pronase (20 mg/mL) to 300 µL eluted 

chromatin, followed by incubation at 42 ˚C for 2 hr, then 65 ˚C overnight. DNA was 

subsequently cleaned from “input/MNase only” samples using a Qiagen PCR Purification Kit, 

and MinElute PCR Purification Kit (Qiagen) columns were used to purify ChIPs (one 

column/each ChIP, using 2.5 mL ERC buffer or 4.16 mL PB buffer), eluted in 15 µL EB. 

Recovered DNA was stored at -20 ˚C. Libraries were generated using an Ovation® Ultralow 

System V2-32 (NuGEN Technologies, Redwood City, CA), quantified on a 2100 Bioanalyzer 

System (Agilent, Santa Clara, CA) with High Sensitivity DNA Kit. Each library was sequenced 

on a HiSeq (Illumina) using single reads of 50 bp in length. Bigwig files were generated using 

the MACS2 callpeak algorithm in Galaxy (usegalaxy.org), and displayed as a custom track in the 
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UCSC Genome Browser (http://genome.ucsc.edu) with files hosted at Cyverse Discovery 

Environment (https://de.cyverse.org/de/). 

GBS selection 

ANKRD1 ENSG00000148677 TSS was defined as CAGE peak at chr10:90,921,087 in hg38 

(GRCh38/hg38 human genome assembly, accession GCA_000001405.15), FANTOM5 CAGE 

phase 1&2 pooled human tracks (fantom.org). A549 and U2OS.hGR GR occupied regions called 

by MACS2 in a 1.4 Mb vicinity of ANKRD1 TSS (GRCh38/hg38 chr10:90,756,900-92,156,900) 

were selected for functional analysis, with GOR identifier designated based on approximate 

below-summit GBS position relative to TSS. 500-1000 bp regions were recovered from the 

UCSC Genome Browser using ‘Get DNA’ function and populated into SnapGene.dna files for 

archiving and analysis. Putative direct DNA-binding motifs recognized by GR at peak summits 

were identified by scanning DNA files for a degenerate GBS ‘match’ (‘extremely generic GBS 

motif’ 5’-NNNACANNNNGTNCNN-3’) and by analysis in rsat matrix-scan 

(http://rsat01.biologie.ens.fr/rsat/matrix-scan_form.cgi) using the TRANSFAC NR3C1 

positional weight matrix with markov order 1 and p value upper threshold 5e-2 (0.05).  

 

GBS/GOR editing 

Single guide (sg) RNAs that deliver S. pyogenes Cas9 to genomic target loci were identified 

using two publicly available SpCas9 sgRNA design tools, sgRNA Designer 

(https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design) and CRISPR-MIT 

(crispr.mit.edu): for 250-bp regions flanking a GR ChIP-seq peak-centered GBS or GR ChIP-seq 

peak summit (i.e., GOR), guide selections identified in sgRNA Designer were cross-referenced 

https://de.cyverse.org/de/)
https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design
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to guides identified in CRISPR-MIT in MySQL. sgRNA sequences were populated as ‘primers’ 

in SnapGene sequence files and prioritized for selection based on targeting within or near GBS 

motifs, high on-target efficacy scores and high efficiency scores. For Cas9 RNPs, sgRNAs were 

synthesized as T7 RNA Pol in vitro transcription (IVT) products from a double-stranded DNA 

template. dsDNA template was synthesized by PCR using 4 primers in multiplex: 18-mer 

ML557 (TAA TAC GAC TCA CTA TAG), 22-mer ML558 (AAA AGC ACC GAC TCG GTG 

C), 93-mer ML611 (AAA AGC ACC GAC TCG GTG CCA CTT TTT CAA GTT GAT AAC 

GGA CTA GCC TTA TTT AAA CTT GCT ATG CTG TTT CCA GCA TAG CTC TTA AAC) 

and target-specific 58-mer comprising 5’ 18-mer (5’-TAATACGACTCACTATAG-3’) and 3’ 

20-mer (5’-GTTTAAGAGCTATGCTGGAA-3’). 100-µL PCRs were performed as follows: 20-

µL 5X Phusion buffer (125 mM TAPS-HCL, 250 mM KCl, 10 mM MgCl2, 5 mM 

βmercaptoethanol), 2 µL 10 mM dNTPs, 8 µL ML557+558 at 12.5 µM each, 0.5 µL ML711 at 4 

µM, 0.5 µL target-specific oligo at 4 µM, 1 µL Phusion pol, cycled using thermocycler program 

IVT_TMPL (95 ˚C 30 sec, 95 ˚C 15 sec, 57 ˚C 15 sec, 72 ˚C 15 sec (cycle to step 2 30x), 72 ˚C 

30 sec, 10 ˚C indefinitely. PCR products was isolated using DNA Clean & Concentrator-5 kit 

(Zymo) and eluted in 12 µL nuclease-free H2O. IVTs were performed in 100 µL reaction 

volumes with 5X reaction buffer (components), 2 µL each NTP (each at 25 mM), 5 µL 100 mM 

DTT, 600-700 ng template DNA (10 µL PCR product), incubated 4 h–o/n, 37 ˚C. RNA was 

isolated using RNA Clean & Concentrator-5 columns (Zymo), eluted in 15 µL nuclease-free 

H2O; RNA concentration was estimated in a NanoDrop™ Microvolume Spectrophotometer 

(ThermoFisher) and diluted as appropriate for sgRNA stock ~100 µM (estimating that sgRNA 

MW ~37 kDa, 3700 ng/µL ~100 µM). sgRNAs were assembled with Cas9-NLS protein (QB3 

MacroLab, Berkeley, CA; qb3.berkeley.edu/macrolab/) as follows: for single RNP 
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nucleofections, sgRNA volumes corresponding to 40-100 pmol sgRNA were distributed to 500 

µL non-stick, nuclease-free Eppendorf tubes (Ambion) on ice; 40 pmol Cas9-NLS (1 µL Cas9-

NLS at 40 µM/6.4 mg/mL in 20 mM HEPES-KOH, pH 7.5, 150 mM KCl, 10% glycerol, 1 mM 

DTT; Mw 160.95 kDa) was added, then 50 pmol carrier DNA (0.5 µL Alt-R Cas9 

electroporation enhancer nucleic acid at 100 µM, IDT); the resulting ~2.5 µL volume was 

incubated at 37 C for 15 min, transferred to ice; 10- 11 µL cells suspended in buffer R at a 

concentration of 2.5 x 106 cells/mL were then added directly to the RNP volume, for a final 

concentration of ~1.6 pmol/µL RNP (~1.6 µM RNP in cell suspension, ratio of ~108 RNP 

molecules per cell). 10 µL RNP+cell suspension was transferred into 10 µL Neon tip and 

nucleofected into A549 and U2OS.GR populations using the Neon™ Transfection System 

(ThermoScientific) with 10 µL Neon tips, and the following electroporation settings (pulse 

voltage (V), pulse width (ms), pulse #: A549: 1200, 30, 2; U2OS.GR: 1200, 10, 4). Nucleofected 

cells were delivered to 12-well or 6-well dishes containing pre-warmed DMEM/high glucose 

(HyClone)/10% FBS (GemCell) for recovery, and incubated for 24 – 72 h before FACS isolation 

of individual cells.  

 

Clonal isolation by FACS 

Single cells were delivered to 100 μL HAM’S F-12 media (Lonza, Basel, Switzerland), (A549) 

or DMEM/5% FBS mixed 1:1 with conditioned media (U2OS.hGR) in individual wells of 96-

well plates (Corning, Kennebunk, ME) by FACSAria2 (BD Biosciences, San Jose, CA) in the 

UCSF Center for Advanced Technology, and grown for 3-4 weeks with regular media 

replacement after 2 weeks. Media in 96-well plates was changed by aspiration using 8-channel 

adapter (Argos Technologies, Elgin, IL; EV503) attached directly to aspirator tubing and fitted 
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with sterile, disposable pipet tips (Rainin SS-L10); all processing for media addition was 

performed using sterile filter tips.  

 

Allele description (genotyping)—Cells were prepared for genotyping by removing media, 

washing with 100 μL DPBS/Modified (–calcium/–magnesium) (HyClone Laboratories, Logan, 

UT), and trypsinization with 30 μL 0.5% trypsin-EDTA (Gibco/ThermoScientific, Waltham, 

MA). 15-20 μL volume from each trypsinized well was transferred to corresponding well of 96-

well, 0.2 mL/well TempPlate semi-skirted polypropylene PCR plate (USA Scientific, Ocala, FL) 

for lysis, and 100 μL fresh media was added to remaining cells in 96-well plate for return to 

culture. Cells in polypropylene plates were sealed with cold storage foil (USA Scientific), lysed 

by adding 15 μL 2X lysis buffer+1:100 Recombinant PCR Grade Proteinase K (Roche, Basel, 

Switzerland), with thermocycler incubation at 65 °C 30 min., 95 °C 15 min. Amplicons were 

prepared for massively parallel sequencing in two PCR reactions, performed in Hard-Shell® 

PCR plates, 384-well, thin-wall (Bio-Rad Laboratories, Hercules, CA): PCR1 (~219 bp 

amplicons)—4 μL lysate in 20 μL PCR volume, TCHDWN: cycled at 98 °C 2 min 30 sec, [98 

°C 30 sec, 57-62 °C 20 sec, 72 °C 30 sec (30x)], 72 °C 8 min. PCR2 (~302-bp amplicons)—0.5 

μL PCR1 template in 20 μL volume, with i5 and i7 indexed primers at 200 nM. SampleSheet 

preparation for Illumina MiSeq (Illumina, San Diego, CA) was automated for barcoded 

amplicons using SampleSheet.py (Ehmsen et al., in preparation, 

https://github.com/YamamotoLabUCSF). Following PCR2, 5 μL from each well was pooled, 

100 μL pooled amplicons were column-cleaned (Zymo DNA Clean & Concentrator-5, Genesee 

Scientific, San Diego, CA), concentration was estimated by NanoDrop (ThermoFisher 

Scientific), and library was quantified using the KAPA Library Quantification Kit for Illumina 

https://github.com/YamamotoLabUCSF
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platforms at 2-3 concentrations (serially diluted to 1,000,000 – 100,000,000-fold dilutions to 

reach within commercial standards, according to manufacturer’s instructions and quantification 

template (www.kapabiosystems.com). Sequencing was performed using MiSeq Reagent Kit v2 

(300-cycles) or MiSeq Reagent Nano Kit v2 (300-cycles) according to manufacturer’s 

instructions, at 8 – 12 pM (typically 10 pM) library with φX DNA (Illumina PhiX Control v3) at 

5-30% (typically 5%). Data were monitored in Illumina BaseSpace (basespace.illumina.com), 

fastq files were directly transferred from the MiSeq instrument to an external drive for 

processing, and processed in bash for Mac OS to identify top reads per well. Top reads were 

aligned to a reference sequence in SnapGene 4.0.8 (GSL Biotech LLC, Chicago, IL; 

www.snapgene.com) using Tools⟶Align Multiple Sequences, to assess alleles and genotypes in 

clones. Target clones were expanded from 96-well plates to 48- or 12-well plates, 6-well plates, 

and finally to 100-mm plates, by trypsinization, etc., from which three vials were frozen in 

DMEM/5% FBS/5% DMSO in styrofoam blocks or Mr. Frosty freezing containers (Thermo 

Scientific) and archived for long-term storage in liquid N2.  

 

Regulatory analysis by qPCR 

3 mL cells at 1.2 – 1.5 x 105 cells/mL were plated in 6-well dishes. 24 – 36 h later, media was 

removed and replaced with 2.4 mL media with charcoal-stripped FBS (Omega Scientific, 

Tarzana, CA). 3 h later, 600 μL media containing 5X dex (Sigma Scientific, St. Louis, MO) was 

added. 4 hr later, media was aspirated, cells were rinsed with 3 mL PBS, and following 

aspiration, cells were lysed in situ with 350 μL RLT buffer (1:100 β-mercaptoethanol). Cell 

lysate was transferred to 1.5 mL Eppendorf tubes, flash-frozen in liquid N2, and stored at -80 °C. 

RNA was isolated by RNEasy (Qiagen, Hilden, Germany) according to manufacturer 
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instructions, with DNase treatment (50 μL RNase-free DNase (Qiagen)), eluted in 30 μL 

nucleasefree H2O. RNA concentration was determined by NanoDrop. cDNA was synthesized in 

20-μL volumes with 1 μg RNA template, 4 μL 5X iScript reaction mix, 1 μL iScript reverse 

transcriptase, incubated under ISCRIPT thermocycler program in RNase-free 0.5-mL microfuge 

tubes (Ambion) (25 °C 5 min, 42 °C 30 min, 85 °C 5 min, 4 °C indefinitely). RNA stocks were 

stored at -80 °C after flash-freezing; cDNA reaction products were stored at -20 °C. cDNA 

reactions were diluted 4-fold, with 4 μL/reaction (50 ng/reaction). 6 μL primers at 0.83 μM 

(each) were added; 20 uL final qPCR reaction volume, the final working concentration of each 

oligo will be 250 nM. Add 10 μL SsoAdvanced Supermix low-retention tips and multichannel 

pipet if possible, 95 °C 30 sec, 95 °C 5 sec, 57 °C 30 sec, (cycle to step 2 39x). Note plate types, 

Microseal ‘B’ optically clear adhesive seals (Bio-Rad). Note primer IDs. qPCR primer pairs 

were designed using IDT PrimerSelect tool and selected for assay use based on certification for 

between-cycle 2-fold amplification efficiency across a 7-sample, 10-fold serial dilution of cDNA 

(maximum 50 ng cDNA tested, 2-fold amplification efficiency accepted up to empirical cutoff of 

Cq = 33, beyond which linearity abruptly declines) and target specificity as monitored by qPCR 

melt curve analysis. Primers mixed as pairs (667 nM in H2O) and cDNA (50 ng/ μL) were 

prepared in separate wells of 384- well source plates (Labcyte) and delivered to 384-well white 

PCR plates (Bio-Rad) at 3000 nL and 1000 nL/well, respectively, using an Echo® 525 Acoustic 

Liquid Handler (Labcyte Inc., San Jose, CA). 4000 nL SsoAdvanced Supermix (BioRad) was 

then added from 6-well reservoir source plate (final assay concentrations: 50 ng cDNA/reaction, 

250 nM/primer, 8 μL reaction volume). Plates were sealed with Microseal ‘B’ optically clear 

adhesive seals (Bio-Rad), centrifuged 5 min. at 1500g, and processed for qPCR at 95 °C 30 sec, 

95 °C 5 sec, 57 °C 30 sec, (cycle to step 2 39x), with endpoint melt curve analysis. RNA only 
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(no RT) controls were processed in parallel for every primer pair and cDNA sample, certifying 

qPCR signal attributable to amplification from cDNA template.  

 

Locus evaluation (topological unit/TAD designation) 

Metazoan genomes are increasingly recognized to exhibit intrachromosomal looping or nested 

sets of heightened interaction/proximity frequencies at distances ranging from several kb to 

hundreds of kb; although many long-range proximities may be incidental (without evolutionarily 

selected function), others may participate in regulatory control of specific genes or gene hubs.  It 

is presently difficult to define stable borders between sub-chromosomal regions in which 

unexpectedly high proximity interactions can be detected by chromosomal conformation assays; 

we chose to bin TADs (topological units) based on publicly available 5-kb resolution HiC data 

(Reddy lab, Duke University, Chapel Hill, NC).  Topological domains were defined based on 

publicly available HiC datasets (D’Ippolito et al. 2018), rendered as tabix files hosted at Cyverse 

Discovery Environment for viewing in the UCSC Genome Browser. Briefly, we converted 

HICCUPS file contact data for 5-kb genomic units to tabix files (Li et al., 2011); then using 

custom Python code, we populated chromosome-length lists with binary (‘0’ vs. ‘1’) definitions 

for each bp, with ‘0’ denoting no evidence of that bp partaking in long-range interaction with 

another bp block, and ‘1’ denoting HiC evidence for that bp partaking in a long-range interaction 

with another bp block.  The resulting Python lists were processed in pandas data frames to mark 

chromosomal units that either comprised topological interactions or were void of topological 

interactions, thereby fractionating the genome into topological units.  We mapped genes, GORs, 

and dTREs into these units based on bedtools intersects.  HiC contact heat maps were 

additionally visualized in cloud-based Juicebox (www.aidenlab.org/juicebox/). 

http://www.aidenlab.org/juicebox/
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Appendix to Chapter 3 

 

Once GREs are functionally identified, we aspire to identify the protein components of 

the TRCs at those loci. We have begun to develop and validate a new technology, 

CasCUT&RUN (Matthew Knuesel, UCSF), which will enable for the first time isolation and 

purification of in vivo assembled, GRE-specific TRCs. Ultra-high resolution mass spectrometry 

will then be used to identify resident proteins and their post-translational modifications. 

 

Results 

Chromatin fragment recovery from CUT&RUN 

In preliminary studies, we have validated CUT&RUN (Skene et al., 2017) as the basis for 

modification to CasCUT&RUN. DNA fragments of the appropriate size were solubilized from 

digitonin-permeabilized, Concanavalin-A bead immobilized cells, and incubated with control or 

H3K27Me3-antibody followed by ProteinA-MNase (Appendix Figure 3.1). These validated 

procedures serve as the basis for development of CasCUT&RUN. 
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Appendix Figure 3.1: Validation of CUT&RUN for use in CasCUT&RUN. CUT&RUN 

schematic from Skene et al., 2017 (left) and Bioanalyzer trace of ProteinA-MNase cleaved and 

solubilized DNA from 42,000 cells incubated with anti-H3K27Me3 or pre-immune IgG control 

antibody (right). CasCUT&RUN approach overview (bottom).  

CUT&RUN

Skene and Henikoff
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Chapter 4: Discussion 

 

 

Jacob and Monod (1961) established that prokaryotic transcription is regulated by a TF 

bound adjacent to a target gene promoter and affecting RNA polymerase function. However, this 

concept seems insufficient to account for transcriptional regulation in metazoans, where genes 

are expressed with remarkable cell- and physiological-context specificity. Britten and Davidson 

introduced the idea of combinatorial regulation (1969), which in principle could enable context 

specificity if metazoan TFs were dynamic multifactor TRCs assembled as context-specific 

combinations of broadly expressed TFs and co-regulators. 

 

Our lab showed that GR, which regulates distinct gene networks in different cell-and 

physiological contexts, receives and integrates multiple signals (e.g., hormonal ligands, DNA 

binding sequences, post-translational modifications, interacting non-GR TFs) as allosteric 

effectors that together drive distinct GR conformations bearing specific patterns of interaction 

surfaces for association with particular co-regulator factors, such as histone modification 

enzymes and chromatin remodeling machines, etc. Hence, context-specific signaling to GR 

results in context-specific TRC assembly, in turn conferring context-specific regulatory functions 

on GR, which alone is merely a DNA-binding scaffold protein lacking intrinsic transcriptional 

regulatory activity (Weikum et al., 2017).  

 

Context-specific combinatoriality introduces enormous complexity into identification and 

validation of GRE or any response element, as there is no simple “GRE code” that specifies 

DNA binding sites, TRC components, genome features or higher order organization, or even a 

regulatory action or mechanism, that corresponds to a functional GRE. Thus, systems analyses 
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cannot identify GREs, and instead, they must be validated individually using genome editing 

procedures that allow genetic analysis in normal chromosomal context. Similarly, the capacity of 

metazoan transcriptional regulation to operate over long range, vastly greater and more flexible 

than the base-pair positional specificity of prokaryotic response elements relative to their target 

gene promotors, complicates identification of cognate target gene(s) for a given GRE, from 

amongst all candidate GC-regulated genes, identified by whole genome systems approaches such 

as RNA-seq.  

 

Decades ago, our lab demonstrated sequence-specific binding by GR, showed that a DNA 

fragment bearing GR-binding sequences could confer GC regulation on a remotely positioned 

heterologous promoter, and denoted that first functional response element as a GRE (Chandler et 

al.,1983).  Since that time, progress in securing a full understanding of the defining properties 

and mechanisms for response element actions, and in unequivocal identification of target genes, 

has been severely hampered by failure to acknowledge and address context specificity. Instead, 

numerous reports have appeared describing systems analyses that catalog features whose 

relationships to response element activity rely on untested assumptions and/or flawed assays, 

together with inference of target gene identity based virtually solely on linear or topologic 

proximity.  

 

Clearly, neither systems nor reductionist approaches alone can predict response elements 

or provide insight into allostery-determined combinatorial regulation of transcription. In the 

present work, we have established for the first time a standard for unequivocal identification of 

functional response elements and cognate target genes, and a path forward for determination of 
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TRC composition and mechanism. Context specificity demands that GREs be characterized and 

validated individually, using first genetic, and eventually molecular and biochemical approaches. 

Target genes can then be imputed by assessing the effects of GRE mutations on genome-wide 

GC-regulated transcription.  

 

In time, with CRISPR mutagenesis of candidate GREs and genetic screens like Perturb-

seq, it should be possible to probe functionality of GORs and apply machine learning algorithms 

to high throughput studies such as RNA-seq, HiC, and Pro-seq, to divulge classes of response 

elements. With validated response elements and cognate target genes in hand, we will be able to 

determine whether chromatin loops are essential GRE properties, linking GORs to each other or 

to a target gene promoter; we could assess whether topological unit demarcation functions to 

constrain GRE activity to that domain; we could test whether eRNAs are functional components 

of GREs. With successful development of CasCut&Run, we could define the outcome of context 

specificity, identifying the composition of TRCs that are the products of signal-driven allostery. 

In summary, functional validation of response elements and their cognate target genes, as we 

have described here, is an essential first step to derive mechanistic insights into context-specific 

metazoan transcriptional regulation; our work with GR can be generalized to other eukaryotic 

TFs and response elements. 

 

When numerous GRE-target gene combinations have been defined, we predict that 

subsets of GREs that control a given physiologic property, e.g., GC-mediated 

immunosuppression, will be found to bear nonidentical but overlapping features and 

characteristics. This potential to assign GREs to functional and compositional sub-classes could 
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open a pathway to design and screen new therapeutics for treatment of diseases and pathologic 

conditions influenced by glucocorticoids.  
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Table 2.1 Robust differentially expressed genes that are glucocorticoid regulated derived 

from 3 different RNA-seq datasets filtered by q<0.05 and consistency. 

 

Geneid D1_MNC D2_MNC D3_MNC ML2FC PSE 

ZBTB16 11 18 20 6.87 2.27 

IP6K3 10 55 57 6.75 1.81 

KLF15 4 76 47 6.36 2.15 

BEST2 4 18 86 6.16 2.26 

EDN3 17 23 343 6.11 1.84 

STAC2 42 273 329 5.31 0.92 

TGFBR1 2403 4088 27848 1.19 0.23 

ITGA5 576 2511 4722 1.18 0.26 

TNS4 7983 8041 9636 1.18 0.21 

FAM222B 1301 1802 2481 1.17 0.21 

NAV2 1065 1614 2554 1.16 0.29 

MTSS1L 637 5209 2317 1.16 0.23 

NOL3 109 1131 695 1.16 0.32 

CHST7 144 1141 1780 1.13 0.30 

RAP1GAP2 124 594 1896 1.12 0.37 

SNX8 212 3816 2355 1.12 0.27 

 

 

MNC= Mean Normalized Counts 

ML2FC= Mean log2FoldChange 

PSE= Propagated Standard Error 

 

For full table refer to Supplemental material. 
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Table 2.2. Significant IPA pathways with z-scores* generated when comparing significant 

genes (q<0.05) from individual RNA-seq datasets.  

 

Canonical Pathways D1  D2  D3  

1D-myo-inositol Hexakisphosphate Biosynthesis II (Mammalian) 2.643906 1.73539 1.619185 

Actin Cytoskeleton Signaling 2.462857 1.388326 2.490645 

Adipogenesis pathway 2.389909 4.292143 3.97629 

Aldosterone Signaling in Epithelial Cells 3.280751 4.532621 3.182586 

AMPK Signaling 3.562997 1.883844 1.919056 

Apelin Cardiac Fibroblast Signaling Pathway 2.309694 1.377331 1.966831 

Aryl Hydrocarbon Receptor Signaling 1.777732 1.806659 3.614807 

Axonal Guidance Signaling 2.212286 5.505336 4.364587 

B Cell Receptor Signaling 6.486534 3.255869 4.843051 

cAMP-mediated signaling 3.374472 3.561877 2.012879 

Cardiac Hypertrophy Signaling 2.268857 3.021608 2.223682 

CD27 Signaling in Lymphocytes 2.160571 3.754794 5.436833 

CD40 Signaling 2.934406 2.281777 5.615934 

Cholecystokinin/Gastrin-mediated Signaling 3.767673 3.744966 4.40559 

Coagulation System 2.304078 1.965551 2.890629 

Colorectal Cancer Metastasis Signaling 6.071404 7.828613 5.269203 

D-myo-inositol (1,3,4)-trisphosphate Biosynthesis 2.643906 1.73539 1.619185 

Death Receptor Signaling 3.705599 4.21389 2.242668 

Dopamine-DARPP32 Feedback in cAMP Signaling 2.615848 3.561038 1.527505 

Endocannabinoid Cancer Inhibition Pathway 3.732522 5.906265 2.617165 

Ephrin A Signaling 1.309416 2.523677 1.385245 

ERK/MAPK Signaling 5.500968 3.146976 2.251855 

Erythropoietin Signaling 2.129856 2.316979 2.026099 

FAT10 Cancer Signaling Pathway 3.205523 2.173376 4.68403 

G-Protein Coupled Receptor Signaling 6.271612 4.242412 4.272729 

Germ Cell-Sertoli Cell Junction Signaling 2.249039 5.426497 5.492191 

Glioblastoma Multiforme Signaling 1.65853 4.34853 1.938122 

Glucocorticoid Receptor Signaling 6.975216 2.997772 3.726176 

GNRH Signaling 3.897797 3.598599 3.725523 

Gα12/13 Signaling 2.638167 2.693414 2.757247 

Gαq Signaling 4.1459 2.909962 2.849026 

Hepatic Cholestasis 3.672366 1.789902 4.591475 

HER-2 Signaling in Breast Cancer 1.911651 2.306768 2.126638 

HGF Signaling 2.240166 5.133435 3.667105 

HIPPO signaling 2.785495 5.395457 1.740107 

HMGB1 Signaling 4.891232 1.568172 2.82961 

Human Embryonic Stem Cell Pluripotency 2.587956 3.309917 1.981469 

IGF-1 Signaling 2.977284 2.613001 2.290066 

IL-15 Signaling 2.821795 1.441507 2.185325 

IL-17 Signaling 2.515274 2.452659 4.169711 

IL-17A Signaling in Fibroblasts 1.597324 2.516619 6.070165 

IL-6 Signaling 5.092213 3.372676 4.838371 

IL-7 Signaling Pathway 5.062841 2.852634 3.640857 
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Canonical Pathways D1  D2  D3  

IL-8 Signaling 5.534844 2.878552 5.281046 

ILK Signaling 3.17568 2.536524 4.294798 

Integrin Signaling 3.98307 3.168003 1.875243 

JAK/Stat Signaling 3.790389 2.965972 3.753987 

Leukocyte Extravasation Signaling 2.03031 2.301522 2.348736 

Molecular Mechanisms of Cancer 5.307066 5.63485 4.325399 

Mouse Embryonic Stem Cell Pluripotency 1.508663 2.940608 1.885225 

Neuregulin Signaling 5.062841 2.452659 2.676043 

NF-κB Signaling 5.555803 2.589104 3.873892 

NRF2-mediated Oxidative Stress Response 5.603326 5.03428 4.930995 

Osteoarthritis Pathway 7.043288 9.387797 8.868343 

p53 Signaling 4.788103 4.264839 5.68214 

p70S6K Signaling 2.247157 2.821382 2.866489 

Pancreatic Adenocarcinoma Signaling 4.409603 1.905684 2.749329 

PEDF Signaling 2.452856 3.602853 3.53153 

Phospholipase C Signaling 3.430408 1.510878 1.662007 

PI3K Signaling in B Lymphocytes 2.365433 3.422913 3.058173 

PI3K/AKT Signaling 4.750667 4.597864 3.305299 

PPARα/RXRα Activation 5.591886 2.06237 3.518141 

Production of Nitric Oxide and Reactive Oxygen Species in Macrophages 2.754767 2.865988 3.542982 

Prolactin Signaling 2.044714 2.17237 2.767532 

Protein Kinase A Signaling 6.552419 6.728815 4.192154 

PTEN Signaling 5.666282 2.182808 2.710541 

Pyridoxal 5'-phosphate Salvage Pathway 2.955853 3.812655 3.728923 

RANK Signaling in Osteoclasts 3.280535 3.489395 4.584293 

Regulation of IL-2 Expression in Activated and Anergic T Lymphocytes 2.749788 2.418637 2.540031 

Regulation of the Epithelial-Mesenchymal Transition Pathway 4.142112 4.153821 3.892539 

Role of IL-17A in Arthritis 2.142947 2.475979 5.228995 

Role of IL-17F in Allergic Inflammatory Airway Diseases 2.51678 1.347999 2.74813 

Role of JAK2 in Hormone-like Cytokine Signaling 3.169118 2.610244 2.319303 

Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid 

Arthritis 7.704222 10.22705 7.500913 

Role of NFAT in Cardiac Hypertrophy 2.964131 4.263755 2.621085 

Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis 4.586137 6.058212 3.692843 

Role of Tissue Factor in Cancer 3.466248 1.316639 1.696787 

Salvage Pathways of Pyrimidine Ribonucleotides 2.392311 2.260049 2.502588 

Semaphorin Signaling in Neurons 2.160571 1.34905 1.751605 

Signaling by Rho Family GTPases 2.464832 1.7461 3.506808 

STAT3 Pathway 3.466248 1.316639 5.058376 

Superpathway of D-myo-inositol (1,4,5)-trisphosphate Metabolism 2.237757 2.503949 1.88316 

Superpathway of Inositol Phosphate Compounds 3.589532 2.905062 2.061907 

Tec Kinase Signaling 4.403678 1.727516 1.358031 

Thrombin Signaling 2.447693 1.857448 1.825301 

TNFR2 Signaling 2.604299 3.731476 5.946274 

Type II Diabetes Mellitus Signaling 5.569767 4.350193 3.499235 

VDR/RXR Activation 3.708659 4.896869 4.007937 

VEGF Signaling 4.229428 3.095633 1.98179 
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Canonical Pathways D1  D2  D3  

Wnt/β-catenin Signaling 3.333721 6.831619 4.49353 

Xenobiotic Metabolism Signaling 1.761764 1.937908 2.578716 

Adipogenesis pathway 2.389909 4.292143 3.97629 

Induction of Apoptosis by HIV1 1.870271 1.726929 1.849297 

Adrenomedullin signaling pathway 2.525959 1.965462 1.914548 

Apoptosis Signaling 2.98057 4.48977 1.742702 

April Mediated Signaling 2.843392 1.686666 3.927846 

B Cell Activating Factor Signaling 2.7277 1.564348 3.731838 

Circadian Rhythm Signaling 3.241586 1.605227 2.395433 

D-myo-inositol (1,4,5,6)-Tetrakisphosphate Biosynthesis 2.157214 1.482325 1.400982 

D-myo-inositol (3,4,5,6)-tetrakisphosphate Biosynthesis 2.157214 1.482325 1.400982 

Factors Promoting Cardiogenesis in Vertebrates 1.539124 2.503278 1.511383 

GADD45 Signaling 1.659524 2.297122 1.538295 

Hepatic Fibrosis / Hepatic Stellate Cell Activation 3.946922 1.346507 5.203837 

IL-1 Signaling 2.579651 1.819164 2.323672 

iNOS Signaling 3.26515 1.347999 4.059563 

NF-κB Activation by Viruses 3.015909 1.358075 1.422867 

LPS-stimulated MAPK Signaling 2.452856 1.358075 2.164607 

p38 MAPK Signaling 2.823452 1.462723 2.116711 

Phagosome Formation 4.032202 1.316639 1.696787 

Phosphatidylethanolamine Biosynthesis II 1.494239 1.396366 1.796522 

PPAR Signaling 2.811401 2.082144 2.340891 

RhoA Signaling 1.744632 2.182808 1.622267 

Role of PKR in Interferon Induction and Antiviral Response 2.009216 1.564348 3.0521 

Small Cell Lung Cancer Signaling 3.31868 1.335007 3.992418 

T Cell Exhaustion Signaling Pathway 2.628443 1.440375 1.652109 

Toll-like Receptor Signaling 5.276365 2.144276 4.143018 

TWEAK Signaling 3.099294 1.965551 5.19109 

Wnt/Ca+ pathway 1.837685 2.523677 1.385245 

Type I Diabetes Mellitus Signaling 2.014714 1.693589 2.774934 

 

*z-score is a statistical measure of the match between expected relationship direction and 

observed gene expression. A z-score > 2 or < -2 is considered significant. Note that the actual z-

score is weighted by the underlying findings, the relationship bias, and dataset bias. 
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Table 2.3 Canonical IPA pathways from robust gene list with log(p-values). 

 

Ingenuity Canonical Pathways -log(p-value) 

Glucocorticoid Receptor Signaling 6.56E+00 

Colorectal Cancer Metastasis Signaling 5.93E+00 

NRF2-mediated Oxidative Stress Response 5.54E+00 

IL-7 Signaling Pathway 5.17E+00 

p53 Signaling 5.10E+00 

Molecular Mechanisms of Cancer 5.05E+00 

Protein Kinase A Signaling 4.96E+00 

G-Protein Coupled Receptor Signaling 4.70E+00 

Insulin Receptor Signaling 4.61E+00 

Aldosterone Signaling in Epithelial Cells 4.45E+00 

Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis 4.41E+00 

Neuregulin Signaling 4.39E+00 

B Cell Receptor Signaling 3.94E+00 

ErbB Signaling 3.91E+00 

Wnt/β-catenin Signaling 3.90E+00 

Integrin Signaling 3.88E+00 

Cholecystokinin/Gastrin-mediated Signaling 3.87E+00 

PI3K/AKT Signaling 3.84E+00 

Phagosome Formation 3.76E+00 

VEGF Signaling 3.74E+00 

ERK/MAPK Signaling 3.69E+00 

Osteoarthritis Pathway 3.56E+00 

p70S6K Signaling 3.53E+00 

HMGB1 Signaling 3.51E+00 

VDR/RXR Activation 3.48E+00 

Paxillin Signaling 3.44E+00 

Human Embryonic Stem Cell Pluripotency 3.40E+00 

PTEN Signaling 3.38E+00 

Tec Kinase Signaling 3.35E+00 

Regulation of the Epithelial-Mesenchymal Transition Pathway 3.33E+00 

Role of NFAT in Cardiac Hypertrophy 3.26E+00 

cAMP-mediated signaling 3.24E+00 

Pyridoxal 5'-phosphate Salvage Pathway 3.24E+00 

Type II Diabetes Mellitus Signaling 3.16E+00 

Circadian Rhythm Signaling 3.13E+00 

T Cell Exhaustion Signaling Pathway 3.11E+00 
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Ingenuity Canonical Pathways -log(p-value) 

Macropinocytosis Signaling 3.09E+00 

Endocannabinoid Cancer Inhibition Pathway 3.09E+00 

Adipogenesis pathway 3.09E+00 

Role of JAK2 in Hormone-like Cytokine Signaling 3.07E+00 

Superpathway of Inositol Phosphate Compounds 3.06E+00 

IGF-1 Signaling 3.03E+00 

JAK/Stat Signaling 3.03E+00 

PPARα/RXRα Activation 3.03E+00 

Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses 2.97E+00 

HER-2 Signaling in Breast Cancer 2.88E+00 

Salvage Pathways of Pyrimidine Ribonucleotides 2.85E+00 

Glioblastoma Multiforme Signaling 2.83E+00 

ILK Signaling 2.81E+00 

Neuroinflammation Signaling Pathway 2.75E+00 

IL-8 Signaling 2.69E+00 

SPINK1 General Cancer Pathway 2.64E+00 

Germ Cell-Sertoli Cell Junction Signaling 2.63E+00 

Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis 2.63E+00 

HIPPO signaling 2.55E+00 

NF-κB Signaling 2.51E+00 

Gαq Signaling 2.47E+00 

FAT10 Cancer Signaling Pathway 2.47E+00 

Cell Cycle: G1/S Checkpoint Regulation 2.44E+00 

IL-3 Signaling 2.41E+00 

Prolactin Signaling 2.39E+00 

Nitric Oxide Signaling in the Cardiovascular System 2.39E+00 

Factors Promoting Cardiogenesis in Vertebrates 2.36E+00 

Production of Nitric Oxide and Reactive Oxygen Species in Macrophages 2.35E+00 

IL-17 Signaling 2.34E+00 

Gα12/13 Signaling 2.33E+00 

Virus Entry via Endocytic Pathways 2.32E+00 

Caveolar-mediated Endocytosis Signaling 2.31E+00 

IL-4 Signaling 2.26E+00 

HGF Signaling 2.25E+00 

Actin Cytoskeleton Signaling 2.25E+00 

Pancreatic Adenocarcinoma Signaling 2.23E+00 

PDGF Signaling 2.21E+00 

Toll-like Receptor Signaling 2.17E+00 
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Ingenuity Canonical Pathways -log(p-value) 

1D-myo-inositol Hexakisphosphate Biosynthesis II (Mammalian) 2.16E+00 

D-myo-inositol (1,3,4)-trisphosphate Biosynthesis 2.16E+00 

Coagulation System 2.14E+00 

Apelin Endothelial Signaling Pathway 2.13E+00 

Thrombin Signaling 2.12E+00 

Glioma Invasiveness Signaling 2.11E+00 

GADD45 Signaling 2.09E+00 

Axonal Guidance Signaling 2.09E+00 

Role of NANOG in Mammalian Embryonic Stem Cell Pluripotency 2.07E+00 

Phospholipase C Signaling 2.07E+00 

ErbB4 Signaling 2.06E+00 

FAK Signaling 2.01E+00 

PI3K Signaling in B Lymphocytes 1.98E+00 

Dopamine-DARPP32 Feedback in cAMP Signaling 1.97E+00 

Huntington's Disease Signaling 1.97E+00 

Signaling by Rho Family GTPases 1.97E+00 

IL-15 Signaling 1.96E+00 

IL-6 Signaling 1.96E+00 

Ephrin A Signaling 1.92E+00 

Regulation of IL-2 Expression in Activated and Anergic T Lymphocytes 1.92E+00 

Apelin Cardiac Fibroblast Signaling Pathway 1.91E+00 

14-3-3-mediated Signaling 1.91E+00 

Inositol Pyrophosphates Biosynthesis 1.90E+00 

Small Cell Lung Cancer Signaling 1.89E+00 

Regulation of Cellular Mechanics by Calpain Protease 1.89E+00 

Chronic Myeloid Leukemia Signaling 1.89E+00 

Erythropoietin Signaling 1.87E+00 

Mouse Embryonic Stem Cell Pluripotency 1.87E+00 

Superpathway of D-myo-inositol (1,4,5)-trisphosphate Metabolism 1.86E+00 

Sirtuin Signaling Pathway 1.86E+00 

CXCR4 Signaling 1.83E+00 

eNOS Signaling 1.80E+00 

Fcγ Receptor-mediated Phagocytosis in Macrophages and Monocytes 1.78E+00 

TGF-β Signaling 1.76E+00 

Ephrin Receptor Signaling 1.76E+00 

mTOR Signaling 1.74E+00 

Epithelial Adherens Junction Signaling 1.74E+00 

Lymphotoxin β Receptor Signaling 1.74E+00 
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Ingenuity Canonical Pathways -log(p-value) 

ERK5 Signaling 1.74E+00 

Clathrin-mediated Endocytosis Signaling 1.73E+00 

LPS-stimulated MAPK Signaling 1.72E+00 

NF-κB Activation by Viruses 1.72E+00 

Antiproliferative Role of TOB in T Cell Signaling 1.72E+00 

Ovarian Cancer Signaling 1.71E+00 

EGF Signaling 1.71E+00 

Cardiac Hypertrophy Signaling 1.71E+00 

VEGF Family Ligand-Receptor Interactions 1.70E+00 

Leukocyte Extravasation Signaling 1.68E+00 

Thrombopoietin Signaling 1.66E+00 

Glutamine Biosynthesis I 1.65E+00 

Sphingosine-1-phosphate Signaling 1.65E+00 

Fc Epsilon RI Signaling 1.64E+00 

TR/RXR Activation 1.62E+00 

Th1 and Th2 Activation Pathway 1.62E+00 

AMPK Signaling 1.61E+00 

Natural Killer Cell Signaling 1.59E+00 

Renin-Angiotensin Signaling 1.59E+00 

RAR Activation 1.58E+00 

Hepatic Cholestasis 1.58E+00 

Role of Tissue Factor in Cancer 1.56E+00 

STAT3 Pathway 1.56E+00 

Pregnenolone Biosynthesis 1.55E+00 

ErbB2-ErbB3 Signaling 1.55E+00 

RANK Signaling in Osteoclasts 1.55E+00 

TNFR2 Signaling 1.55E+00 

Semaphorin Signaling in Neurons 1.53E+00 

Docosahexaenoic Acid (DHA) Signaling 1.50E+00 

Androgen Signaling 1.49E+00 

Th1 Pathway 1.48E+00 

CD40 Signaling 1.47E+00 

Xenobiotic Metabolism Signaling 1.45E+00 

GNRH Signaling 1.44E+00 

3-phosphoinositide Biosynthesis 1.44E+00 

SAPK/JNK Signaling 1.41E+00 

Amyotrophic Lateral Sclerosis Signaling 1.40E+00 

D-myo-inositol (1,4,5,6)-Tetrakisphosphate Biosynthesis 1.38E+00 
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Ingenuity Canonical Pathways -log(p-value) 

D-myo-inositol (3,4,5,6)-tetrakisphosphate Biosynthesis 1.38E+00 

Apelin Pancreas Signaling Pathway 1.38E+00 

TWEAK Signaling 1.38E+00 

Angiopoietin Signaling 1.37E+00 

Histidine Degradation VI 1.37E+00 

Acute Phase Response Signaling 1.37E+00 

Gap Junction Signaling 1.37E+00 

Glutamine Degradation I 1.36E+00 

Neuropathic Pain Signaling In Dorsal Horn Neurons 1.34E+00 

Induction of Apoptosis by HIV1 1.34E+00 

IL-12 Signaling and Production in Macrophages 1.33E+00 

p38 MAPK Signaling 1.32E+00 

Actin Nucleation by ARP-WASP Complex 1.31E+00 

G Beta Gamma Signaling 1.31E+00 

Telomerase Signaling 1.31E+00 
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TABLE 3.1 

Basal expression changes of genes +/- 1 Mb from GRE deletion on chromosome 10. 

Gene Coordinates log2Fold Change q-value 

LOC101926942 92,162,278-92,300,562 ND ND 
HTR7 92,500,576-92,617,671 ND ND 

RPP30 92,631,474-92,668,312 0.05 0.99 
ANKRD1 92,671,857-92,681,032 -1.52 0.01 

XLOC 008559 92,707,057-92,751,889 ND ND 
LOC105378430 92,792,923-92,801,012 ND ND 

LINC00502 92,805,565-92,821,916 ND ND 
NUDT9P1 92,911,761-92,912,837 -0.06 0.99 

PCGF5 92,922,769-93,044,088 0.003 0.99 
HECTD2-AS1 93,066,719-93,371,217 2.84 0.85 

HECTD2 93,170,096-93,274,520 0.28 0.96 
PPP1R3C 93,388,197-93,392,858 0.28 0.86 

TNKS2-AS1 93,542,596-93,558,048 ND ND 
TNKS2 93,558,151-93,625,232 0.25 0.96 

FGFBP3 93,666,345-93,669,258 0.65 0.40 
BTAF1 93,683,736-93,790,080 -0.06 0.99 

a Row shading indicates differentially regulated genes with a q-value < 0.05.  
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TABLE 3.2 

Genes +/- 1Mb of GRE deletion on chromosome 10 whose drug effects are different in the presence of 
mutation. 

Gene Coordinates log2Fold Change q-value 

LOC101926942 92,162,278-92,300,562 ND ND 
HTR7 92,500,576-92,617,671 2.1 1 

RPP30 92,631,474-92,668,312 -0.03 1 
ANKRD1 92,671,857-92,681,032 2 7.39E-10 

XLOC 008559 92,707,057-92,751,889 -0.6 1 
LOC105378430 92,792,923-92,801,012 ND ND 

LINC00502 92,805,565-92,821,916 ND ND 
NUDT9P1 92,911,761-92,912,837 1.5 1 

PCGF5 92,922,769-93,044,088 0.38 1 
HECTD2-AS1 93,066,719-93,371,217 -2.95 1 

HECTD2 93,170,096-93,274,520 -0.21 1 
PPP1R3C 93,388,197-93,392,858 1 1 

TNKS2-AS1 93,542,596-93,558,048 0.89 1 
TNKS2 93,558,151-93,625,232 0.26 1 

FGFBP3 93,666,345-93,669,258 0.08 1 
BTAF1 93,683,736-93,790,080 0.34 1 

a Row shading indicates differentially regulated genes with a q-value < 0.05. 
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TABLE 3.3 

Candidate genes whose expression is primarily affected by GRE deletion. 

Gene Coordinates log2Fold Change q-value 

GPR153 
Chr1: 6,247,346 - 

6,260,990  2.30 0.02 

ETNK2 
Chr1: 204,131,061 - 

204,152,182 1.80 0.01 

ZBTB18 
Chr1: 244,048,939 - 

244,057,476 -1.13 0.03 

ANKRD1 
Chr10: 90,912,096 - 

90,921,276 -2.01 0.19 

SALL1 
Chr16: 51,135,975 - 

51,152,316  1.84 0.02 

Differentially regulated genes with a q-value < 0.2. 
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