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Abstract
Optimization of clinical trial designs can help investigators achieve higher qual-
ity results for the given resource constraints. The present paper gives an overview 
of optimal designs for various important problems that arise in different stages of 
clinical drug development, including phase I dose–toxicity studies; phase I/II stud-
ies that consider early efficacy and toxicity outcomes simultaneously; phase II 
dose–response studies driven by multiple comparisons (MCP), modeling techniques 
(Mod), or their combination (MCP–Mod); phase III randomized controlled multi-
arm multi-objective clinical trials to test difference among several treatment groups; 
and population pharmacokinetics–pharmacodynamics experiments. We find that 
modern literature is very rich with optimal design methodologies that can be utilized 
by clinical researchers to improve efficiency of drug development.

Keywords Estimation efficiency · Dose-finding · Multiple comparisons and 
modeling · Optimal response-adaptive randomization · Phase I/II studies · 
Population PK/PD studies · Power

1 Introduction

Recent years have seen significant advances in biotechnology, genomics, and 
medicine. The number of investigational compounds that hold promise of becom-
ing treatments for highly unmet medical needs has been steadily increasing, and 
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so has the need for efficient research methodologies to evaluate these compounds 
in clinic. Clinical trial designs are becoming increasingly more elaborate as 
investigators aim at evaluating the effects of multiple therapies in different sub-
groups of patients with respect to multiple clinical endpoints within a single trial 
infrastructure. Such multi-arm and multi-objective clinical trials can potentially 
increase efficiency of clinical research and development [123].

Optimization of a clinical trial design can help an investigator achieve higher 
quality results (e.g., higher statistical power or more accurate estimates of the 
treatment effects) for the given resource constraints. In the context of clinical 
research, efficient achievement of the study objectives using frequently minimum 
sample size is particularly important because study subjects are humans, suffer-
ing from a severe disease. Medical ethics (e.g., the Declaration of Helsinki) pre-
scribes that every trial participant’s welfare is always prime, and therefore opti-
mal clinical trial designs that extract maximum information from the trial while 
minimizing exposure of study subjects to suboptimal (inefficacious or toxic) 
treatment regimens warrant careful consideration in practice.

Sverdlov and Rosenberger [109] gave an overview of optimal allocation 
designs in clinical trials. That review primarily concerned the methods for paral-
lel-group comparative studies where the design points (treatment arms) are pre-
specified, and an optimal design problem is to determine optimal allocation pro-
portions across the treatment arms. The current paper extends the aforementioned 
work in the following important ways:

1. We broaden the scope of the review by also considering clinical trials with dose-
finding objectives, i.e., where the experimental goals may include estimation of 
the dose–response relationship and other important parameters, such as quantiles 
of the dose–response curve.

2. We give an update of important optimal design methodologies for multi-arm 
comparative clinical trials that have been developed since the publication of 
the earlier review [109], including some novel optimal allocation targets and 
response-adaptive randomization methods for implementing these optimal targets 
in practice.

3. We provide an overview of optimal designs for some population pharmacokinet-
ics–pharmacodynamics experiments using nonlinear mixed-effects models.

In the present paper, we focus on optimal designs only in the context of clini-
cal research. Some broader and more mathematical expositions on modern opti-
mal designs with non-clinical applications can be found in Cook and Fedorov 
[25], Wong [120], Fedorov [39], Yang et al. [125], among others. There are excel-
lent monographs on design, see for example, Atkinson et al. [3] and Fedorov and 
Leonov [40].

To facilitate a discussion, we consider a clinical trial with a univariate 
response variable Y  with density function �(y|x,�) , where the variable x is subject 
to control by an experimenter and belongs to some compact set � , i.e., x ∈ � , 
and � is a vector of model parameters. The set � may be a closed interval, say, 
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� = [0, 1] , which corresponds to a continuum of dose levels; or a finite set, say, 
� =

{
x1,… , xK

}
 , which may be the case when xi represents the ith treatment 

group.
If Y  is a normally distributed variable, a common choice is a linear model

where f �(x) =
(
f1(x),… , fp(x)

)
 and its components are given linearly independent 

regression functions. The vector �� =
(
�1,… , �p

)
 contains the unknown regression 

coefficients, and � is a random error term that follows a normal distribution with 
E(�) = 0 and var(�) = �2(x) . Throughout, we assume all observations are independ-
ent and we have resources to take a sample of n subjects.

Suppose � =
{
x1,… , xK

}
 . For a trial of size n , let ni ≥ 1 be the number of sub-

jects whose response is to be observed at xi . With the observed data { yij , 

i = 1,… ,K , j = 1,… ., ni }, the likelihood function is Ln(�) =
K∏
i=1

ni∏
j=1

�
�
yij�xi,�

�
 . 

The maximum likelihood estimator, �̂MLE , maximizes Ln(�) ; it can be found by 
solving the system of p score equations: �

��
logLn(�) = 0 . Under certain regular-

ity conditions on �(y|x,�) , √n
�
�̂MLE − �

�
 has asymptotically normal distribution 

with zero mean and variance–covariance matrix �(�,�) = �−1(�,�) , where 
�(�,�) is the Fisher information matrix (FIM) for � given design 
� =

{(
xi, ni

)
, i = 1,… ,K

}
.

The FIM is the key object in the optimal design theory. Its inverse provides 
an asymptotic lower bound for the variance of an efficient estimator of � . With a 
K-point design � =

{(
xi, ni

)
, i = 1,… ,K

}
 , the p × p FIM can be written as

where �
(
xi,�

)
= −E

{
�2

����′
log�(y|xi,�)

}
 is the information matrix of a single 

observation at xi ∈ � , i = 1,… ,K . For instance, in the normal linear model case, 
we have �

(
xi,�

)
= �−2

(
xi
)
f
(
xi
)
f �
(
xi
)
.

To make further progress, we focus on approximate designs, which are probabil-
ity measures on the design space. We denote such a design by 
� =

{(
xi, �i

)
, i = 1,… ,K

}
 , where �i ∈ (0, 1) is the allocation proportion at xi and 

K∑
i=1

�i = 1 . For a trial of size n , the number of subjects assigned by the design � to xi 

is ni ≈ n�i , after rounding each n�i to a positive integer, subject to 
n1 + n2 +⋯ + nK = n . Given an objective function carefully selected to reflect the 
study objective, we first formulate it as a convex function � (⋅) of �(�,�) over the 
space of all designs on the (compact) design space � . The goal is to find an approxi-
mate design �∗ such that �∗ = argmin

�
�
(
�−1(�,�)

)
 . For nonlinear models, the opti-

mal designs depend on � and so they are locally optimal. This means that such 
designs can be implemented only when a best guess of the value of � is available 
either from prior or similar studies. For convenience, we refer locally optimal 
designs simply as optimal designs.

(1)Y = f �(x)� + �,

(2)�(�,�) =

K∑
i=1

ni�
(
xi,�

)
,
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A common choice for � (⋅) is D-optimality, which seeks a design �∗
D

 that mini-
mizes the function log ||�−1(�,�)|| = − log |�(�,�)|over all designs on � . Such a 
design minimizes the generalized variance of the estimates of � and so estimates 
the model parameters most accurately. The D-optimal design �∗

D
 is typically used 

as an important benchmark to facilitate comparison among designs for estimating 
� . The D-efficiency of a design � relative to �∗

D
 is defined as

For instance, if Deff(�,�) = 0.90 , this means that the design � is 90% as efficient 
as �∗

D
 , and the sample size for a study with the design � must be increased by 10% 

to achieve the same level of estimation efficiency as with the D-optimal design 
�∗
D

 . Note that the D-optimal design addresses a single objective, i.e., to estimate 
all parameters in the mean function of the model as accurately as possible. Other 
objectives can carry equal, or even greater importance to an experimenter, and 
finding designs that provide optimal trade-off among the selected objectives are 
often warranted.

In this paper, we discuss various approaches to optimization of clinical 
trial designs. In Sect.  2, we give an overview of optimal designs for dose-find-
ing studies that are ubiquitous in early clinical development. We assume the 
dose–response relationship can be adequately described by some nonlinear and/or 
heteroscedastic regression model, and the design space consists of a continuum of 
dose levels. In this case, the search of an optimal design involves determining the 
number of optimal design points, the location of these points in the design space, 
and the corresponding optimal allocation proportions. The solution can be math-
ematically complex and it frequently must be found by numerical methods. We 
shall discuss some statistical software tools available for this purpose. In Sect. 3, 
we discuss multi-objective optimal designs for parallel-group, randomized com-
parative clinical trials. Unlike the designs for early clinical development that are 
driven primarily by the goals of identifying some target dose(s) and estimation 
of the dose–response, randomized comparative studies are driven by hypothesis 
testing and statistical power considerations. A common goal is to achieve the 
desired level of statistical power while minimizing the total study size or the total 
expected number of treatment failures in the trial. The resulting optimal alloca-
tion designs often depend on the model parameters and call for response-adaptive 
randomization (RAR) for their implementation. We shall review some important 
recent advances in this field. In Sect. 4, we give an overview of optimal designs 
for population pharmacokinetic experiments, which are gaining increased pop-
ularity in modern clinical research. The optimal designs for such experiments 
involve careful balance between the selection of the PK sampling times and the 
number of subjects to include in the study to reduce study costs. Section 5 offers 
concluding remarks and outlines some important research in the field of optimal 
designs for clinical trials that are likely to gain attraction in the near future.

(3)Deff(�,�) =

⎧⎪⎨⎪⎩

����−1
�
�∗
D
,�
����

���−1(�,�)��

⎫⎪⎬⎪⎭

1∕p

.
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2  Optimal Designs for Dose‑Finding Clinical Trials

The importance of dose-finding in clinical drug development cannot be underesti-
mated [34, 35]. Identification of the “right” dose regimen(s) in early clinical studies can 
increase probability of success of subsequent randomized comparative clinical trials. 
A nice exposition of modern dose-finding methods can be found in [74]. Dose-find-
ing designs can be categorized into three major types: phase I dose-escalation designs; 
phase I/II seamless designs; and phase II dose-ranging studies. In this section, we pro-
vide an overview of optimal designs for each of these types of studies.

2.1  Phase I Dose‑Escalation Studies

The clinical part of any new drug development program starts with phase I studies 
to investigate safety, tolerability, and pharmacokinetics of the compound. Phase I 
first-in-human studies are commonly cast as dose-escalation designs. Study subjects 
are exposed to the drug at increased dose levels in a staggered manner: only when 
the previous dose is deemed as “safe” would the next cohort of subjects be assigned 
to the next dose level. The primary objective is to determine the maximum toler-
ated dose (MTD)—the highest dose level at which the risk of toxicity (side effects) 
is “acceptable”—which is thought to subsequently demonstrate therapeutic benefit 
(efficacy) in larger-scale studies.

The majority of innovative phase I dose-finding methodologies were developed in 
the context of cytotoxic anti-cancer compounds, where an inherent assumption is a 
monotone relationship between the dose and the risk of toxicity. The problem of find-
ing the MTD can be then viewed as determination of a percentile of the dose–toxic-
ity curve. In the literature, one can find numerous sequential design methodologies 
that can be useful for this purpose. These include nonparametric approaches, such as 
the up-and-down design [32]; parametric model-based approaches, such as the con-
tinual reassessment method [75] and escalation with overdose control [5]; semipara-
metric designs [23], etc. A recent review of many of these methods is given in [112].

In this paper, we focus on designs for estimating the parameters of interest in 
phase I dose-toxicity studies. These designs are rarely used in clinical practice 
because it is very difficult for Institutional Review Boards to justify a design that 
optimizes a statistical criterion and not take patient safety into account. The key 
merit of these optimal designs is that they provide important theoretical benchmarks 
to facilitate comparison with other more heuristically chosen designs.

To fix ideas, consider using a two-parameter logistic model in a dose–toxicity 
study. The design space is � =

{
x1 < x2 < ⋯ < xK

}
 comprising pre-specified doses 

to be investigated in the study. Assume the binary outcome ( Y = 1 if toxicity, and 
Y = 0 otherwise). The model is

where � (intercept) and 𝛽 > 0 (slope) are unknown parameters to be estimated based 
on data. Let � = log

(
�

1−�

)
 , where � ∈ (0, 1) is a predetermined constant (target 

(4)P
(
xi
)
= Pr

(
Y = 1|xi

)
=

1

1 + exp
{
−
(
� + �xi

)} , i = 1,… ,K,
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toxicity rate). Then, D100� =
�−�

�
 is the 100� -th percentile of the curve P(x) ; i.e., it 

is the dose for which P
(
D100�

)
= �  . In particular, if � = 0.5 , D50 = −�∕� is the 

50th percentile (median).
For estimation of the model (4), we use the data D =

{(
xi, ni, yi

)
, i = 1,… ,K

}
 , 

where ni is the number of subjects exposed at xi (each subject in the study is assigned 
to only one dose), and yi =

ni∑
j=1

Yij is the number of toxicities at xi , such that 

yi ∼ Binomial
(
ni,P

(
xi
))

 , i = 1,… ,K . The maximum likelihood estimator (MLE) 
( ̂𝛼, 𝛽  ) of ( �, � ) are the roots of the system of score equations �

��
logL(�) = 0 , where 

logL(�) =
K∑
i=1

�
yi logP

�
xi
�
+
�
ni − yi

�
log

�
1 − P

�
xi
���

 and �� = (�, �) . By the 

invariance property of MLEs, MLEs of other parameters can be readily obtained, for 
example, D̂100𝛤 =

𝛾−�̂�

𝛽
 is the estimate of the 100� -th percentile of the logistic model.

The FIM for (�, �) given design � =
{(

xi, �i
)
, i = 1,… ,K

}
 is 

�(�, �, �) = n
K∑
i=1

�i�
�
xi, �, �

�
 , where �

(
xi, �, �

)
= �i(�, �)

(
1 xi
xi x

2
i

)
 and 

�i(�, �) = e−(�+�xi)∕
(
1 + e−(�+�xi)

)2

 , i = 1,… ,K . Asymptotically, ( ̂𝛼, 𝛽  ) follows a 
bivariate normal distribution with mean ( �, � ) and variance–covariance matrix 
�−1(�, �, �) . Once we have ( ̂𝛼, 𝛽  ) and �−1

(
𝜉, �̂�, 𝛽

)
 , we can construct (asymptotic) 

confidence intervals for various parameters of interest, including � , � , P(x) (where x 
is not necessarily among the doses tested), D100� , etc.

The next important question is: Which design is optimal for this model? Depend-
ing on the trial objectives, different criteria can be optimized. If we want to maxi-
mize efficiency in estimation of the entire dose–toxicity relationship, three possi-
ble criteria are the D-optimality det{�−1(�, �, �) } (to minimize the volume of the 
confidence ellipsoid for (�, �) ); the A-optimality trace{�−1(�, �, �) } (to minimize 
the sum of the lengths of the major axes in the confidence ellipsoid for (�, �) ); and 
the E-optimality: maximum eigenvalue of �−1(�, �, �) (to minimize the length of 
the largest axis in the confidence ellipsoid for (�, �) ). A comprehensive treatment of 
this problem is available, for instance, in [102], where the authors found that for a 
broad class of symmetric models (including the logistic model), and a class of dif-
ferent optimality criteria (including D-, A-, and E-optimality), the optimal design 
is a 2-point design, symmetric about D50 , with possibly unequal weights. Further-
more, Yang and Stufken [126] gave a general solution for nonlinear models with 
two parameters, including logistic, probit, double exponential and double reciprocal 
models for binary data, a log-linear Poisson model for count data, and the Michae-
lis–Menten model. Their results are applicable to any functions of the original 
parameters, any commonly used optimality criteria, and the design space can be 
restricted or non-restricted. That paper essentially unified most optimal design work 
for 2-parameter generalized linear models and other nonlinear models.

Let us describe one particularly insightful result, namely the structure of the 
locally D-optimal design for a 2-parameter logistic model. Minkin [70], Sitter 
and Wu [104], Sitter and Fainaru, [102], Matthew and Sinha [67], among others, 
reported that the locally D-optimal design is symmetric and equally supported at the 
17.6th and 82.4th percentiles of the dose–response curve (4):
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where D17.6 =
−c∗−�

�
 , D82.4 =

c∗−�

�
 , and c∗ = log

(
0.824

0.176

)
= 1.5434 . Moreover, the 

structure of the D-optimal design remains the same for many other estimation objec-
tives [67]. If, say, �1 and �2 are two functions of � and � , then the information matrix 
for ( �1 , �2 ) is J�(�, �, �)J� , where the matrix J does not depend on the dose levels. 
Hence, the design (5) is also D-optimal, for instance, for the joint estimation of � 
(slope) and D100� ( 100� -th percentile), or for the joint estimation of D100�1

 and 
D100�2

 , where �1,�2 ∈ (0, 1) (two different percentiles).
From Eq. (5), one can see several limitations of the D-optimal design that makes 

its application in real clinical research problematic: i) The D-optimal design was 
obtained under the assumption of a 2-parameter logistic model, which may be mis-
specified in many ways; ii) even if the logistic model is plausible, the D-optimal 
design is a function of the model parameters ( �, � ) which are unknown at the out-
set; iii) the D-optimal design addresses the goal of estimating the entire dose–tox-
icity curve, whereas the most common goal of a phase I clinical trial is to cluster 
dose assignments at and around the target percentile; iv) the D-optimal design allo-
cates 50% of the subjects to the dose with toxicity probability 17.6% (which may 
be viewed as too low from the clinical perspective) and 50% of subjects to the dose 
with toxicity probability 82.4% (which may be prohibitively toxic).

To address issue i), one can consider design optimization for more elaborate mod-
els, such as 3- or 4-parameter logistic [58], or even 5-parameter logistic [64]. Link 
functions other than logistic can be considered as well; for instance a semiparamet-
ric model can help alleviate the problem of mis-specification of the distributional 
assumption on the dose–toxicity curve [119]. One should be mindful, however, that 
phase I studies are typically small, and it may be problematic to fit complex models 
due to sparsity of the data. Therefore, striking the right balance between model par-
simony and rigor is essential.

The issue ii)—the dependence of optimal designs on the true parameter values—
is common to nonlinear (and heteroskedastic) models. It is referred to as local opti-
mality of the designs. An experimenter may decide to implement the design for the 
best guess of the parameter values [22]; however, the efficiency of such a design 
may drop if the true values are different from the guessed ones. There are three 
approaches to mitigate this problem: adaptive designs, minimax designs, and Bayes-
ian designs. The first approach is actually the core of any phase I dose-escalation 
study [112]. Since clinical trials are sequential experiments, one can use accumulat-
ing data for updating the dose–toxicity curve, and direct future dose assignments to 
the targeted optimal design. Various adaptive procedures can be constructed to 
approximate the targeted optimal design [45, 62, 68, 91, 103]. For instance, an ethi-
cally restricted sequential D-optimal design for model (4) can be constructed itera-
tively as follows [66, 119]. Based on data from n patients and design �n after n allo-
cations, obtain estimates 

(
�̂�, 𝛽

)
 of (�, �) and update the feasible dose range to 

�R =
{
x ∈ � ∶ x ≤ �̂�R

}
 , where �̂�R =

𝛾R−�̂�

𝛽
 and �R = log

(
�R

1−�R

)
 for some predeter-

mined �R ∈ (0, 1) . Essentially, �̂�R is the estimated highest dose to which patients can 
be assigned safely. Then, the dose assignment for the (n + 1) st patient, �n+1 , is 

(5)�∗
D
=
{(

D17.6, 0.5
)
,
(
D82.4, 0.5

)}
,
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determined as one that maximizes an incremental gain in information, subject to a 
constraint on the upper bound for the dose range:

Note that the procedure (6) can be only implemented after initial reliable esti-
mates 

(
�̂�, 𝛽

)
 are available, which may be challenging in phase I trials. Therefore, a 

“start-up” procedure to ascertain initial data and model estimates must be chosen 
judiciously [62].

With the minimax approach, the idea is to find a design that is robust to the choice 
of the parameter values, by minimizing the maximum loss in efficiency with respect 
to the locally optimal designs over the range of potential model parameter values 
[56, 101]. For instance, a minimax D-optimal design problem is to find 
�∗
M
= argmin

�
max

(�,�)∈℘

||�−1(�, �, �)|| , where ℘ denotes the pre-specified “region of 
robustness” of the design, reflecting uncertainty in the parameters.

With the Bayesian approach, we want to find a design that maximizes average 
efficiency with respect to the locally optimal designs for a given prior distribution of 
the parameters [19, 20]. A Bayesian D-optimal design problem is to find 
�∗
B
= argmin

�
∫ log ||�−1(�,�)||g(�)d� , where g(�) is a prior probability density for 

� = (�, �).
Due to added model uncertainty, both minimax and Bayesian optimal designs 

typically have more support points and more complex structure than the locally 
optimal designs; they are usually not mathematically tractable and must be found 
numerically.

The issues iii) and iv) are closely related. The statistical goal of estimating the 
MTD ( 100� -th percentile of the dose–toxicity curve) and the “ethical” goal of treat-
ing the majority of study patients at the true MTD are in good correspondence; how-
ever, achieving these goals in practice may be problematic because the true MTD is 
unknown. It is intuitive that in order to estimate the target percentile with most pre-
cision, the design should assign all subjects to this unknown dose level. However, 
this is not always the case. Formally, if the parameter of interest is D100� =

�−�

�
 , then 

the asymptotic variance of D̂100𝛤 , the MLE of D100� , can be approximated using 
delta method as var

(
D̂100𝛤

)
≈ c��−1(𝜉, 𝛼, 𝛽)c , where 

c� =
(

�D100�

��
,
�D100�

��

)
= −

1

�

(
1,D100�

)
 . The c-optimal design is one that minimizes 

var
(
D̂100𝛤

)
 , i.e., �∗

c
= argmin

�

{
c��−1(�, �, �)c

}
 . The structure of the c-optimal 

designs under different distributions, including one in Eq. (4), can be found in [124]. 
It is either a one-point design centered at the percentile of interest, or a two-point 
design with one point at the lower part and the other point at the upper part of the 
dose–toxicity curve. The latter case, for ethical reasons, is infeasible in practice. To 
overcome this limitation, restricted optimal designs, where a restriction on the dose 
range reflects ethical constraints, have been proposed [45, 66, 85]. Ethically con-
strained Bayesian D- and c-optimal designs [45, 85] can be viable in practice due to 
their established theoretical properties [92] and availability of the corresponding sta-
tistical software [84].

(6)𝛿n+1 = arg max
xi∈�R

|||�
(
𝜉n, �̂�, 𝛽

)
+ �

(
xi, �̂�, 𝛽

)|||.
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Since most clinical trials are multi-objective experiments, it is problematic to 
have a single optimization criterion that would adequately fulfill the desired experi-
mental objectives. Two common approaches for constructing multi-objective opti-
mal designs are to find the constrained and the compound optimal designs. The 
equivalence of these two approaches was established by Cook and Wong [26] and 
Clyde and Chaloner [24]. Some examples of applications of constrained and com-
pound optimal designs in clinical trials can be found in [7, 8, 109].

2.2  Phase I/II Efficacy–Toxicity Studies

A conventional path of developing a new cytotoxic drug in oncology involves two 
major steps: a phase I dose-escalation trial to identify the maximum tolerated dose 
(MTD), followed by a phase II trial to study the drug activity (therapeutic response) 
at the MTD. However, such a path may be inappropriate for development of a tar-
geted therapy, such as a cytostatic agent in immuno-oncology, because such thera-
pies have lower potential for toxicity than cytotoxic drugs, and their dose–efficacy 
curve may peak or reach plateau at doses below the MTD. The designs for targeted 
therapies require special considerations. An increasingly popular approach is the 
seamless phase I/II trial that includes both safety (toxicity) and therapeutic (efficacy) 
concerns in the dose-finding objectives [128]. An advantage of such an approach 
is that important, potentially correlated, clinical safety and efficacy outcomes are 
investigated jointly within the same trial, which can be more efficient than investi-
gating each of these outcomes in separate studies [108].

Formulating a joint model for efficacy and toxicity is an important first step for a 
seamless phase I/II trial. Let us consider a simple case when the dose space is 
� =

{
x1 < x2 < ⋯ < xK

}
 , and both efficacy and toxicity outcomes are binary: 

YT = 1(0) if toxicity (no toxicity); and YE = 1(0) if efficacy (no efficacy). Let 
p(x) = Pr(YT = 1|x) and q(x) = Pr(YE = 1|x) denote, respectively, the marginal 
probabilities of toxicity and efficacy at x ∈ � . Assume that both p(x) and q(x) are 
monotone increasing. The maximum tolerated dose MTD is defined by 
MTD = max

{
x ∈ � ∶ p(x) ≤ p̄T

}
 and the minimum efficacious dose MED is 

defined by MED = min

{
x ∈ � ∶ q(x) ≥ q

−
E

}
 , for some user-specified thresholds 

p̄T, q
−
E

∈ (0, 1) . A therapeutic window is the interval [ MED , MTD ] when 

MED < MTD ; otherwise it is an empty set. Looking at the outcomes 
(
YT, YE

)
 

jointly, there are several possibilities. For instance, a three-category model is 
obtained by defining a variable Z = 0 , if 

(
YT, YE

)
= (0, 0) (no efficacy and no toxic-

ity); Z = 1 , if 
(
YT, YE

)
= (0, 1) (efficacy without toxicity); and Z = 2 , if (

YT, YE
)
= (1, ∗) (toxicity). Such a trinomial outcome model is also known as a con-

tingent response model, where an occurrence of toxicity makes efficacy irrelevant 
[83]. A four-category model assumes that any of the combinations (
YT, YE

)
= {(0, 0), (0, 1), (1, 0), (1, 1)} can be observed. In either case, the outcome (

YT, YE
)
= (0, 1) is regarded as a “success,” and one can define the probability of 

success at dose x ∈ � as s(x) = Pr
(
YE = 1|YT = 0, x

)
× Pr

(
YT = 0|x) . A dose 

d∗ ∈ � that maximizes s(x) is called the most successful dose (MSD). If, in addition, 
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it satisfies the safety constraint Pr
(
YT = 1|d∗) ≤ p̄T , then it is called the safe MSD 

(sMSD). The objectives of a seamless phase I/II trial may be to identify sMSD (or 
stop the trial early if no such dose exists), and estimate it as accurately as possible. 
Locally optimal designs for estimation of various parameters in this context can be 
important calibrating tools for clinical investigators.

Optimal designs for various trinomial (contingent response) models were investi-
gated by Fan and Chaloner [37, 38] and Rabie and Flournoy [82, 83]. In particular, 
Rabie and Flournoy [83] gave a comprehensive description of both D- and c-optimal 
designs for estimating MSD for contingent response models using different distribu-
tions for probabilities of toxicity and efficacy given no toxicity.

Optimal designs for bivariate binary models where all four outcomes are observ-
able have also received attention in the literature [30, 31, 46]. It is instructive to 
consider a bivariate Gumbel model, which is a natural extension of a univariate 
logistic model (4). The marginal probabilities of efficacy and toxicity are mod-
eled using the logistic distribution function given by F(x) = {1 + exp(−x)}−1 , 
i.e., �E = Pr

(
YE = 1|x) = F

(
�E + �Ex

)
 and �T = Pr

(
YT = 1|x) = F

(
�T + �Tx

)
 

( 𝛽E, 𝛽T > 0 to ensure both have monotone increasing relationships). Let � be a 
parameter to characterize correlation between efficacy and toxicity ( |𝜌| < 1 ). Then, 
the joint probability function can be written as

The model (7) is defined by a 5-parameter vector � =
(
�E,�T, �E, �T, �

)
 . Other 

bivariate binary models are available in Ch. 6.5 of Fedorov and Leonov [40]. Locally 
D- and c-optimal designs for model (7) and some other models have been investi-
gated Dragalin and Fedorov [30] and Dragalin et  al. [31]. Many of these designs 
may assign high proportions to overly toxic and/or inefficacious doses. To address 
this limitation, Dragalin and Fedorov [30] proposed penalized optimal designs (see 
also [79]. The idea is to introduce a cost function that penalizes doses with high tox-
icity and low efficacy: C(x,�) =

{
�1,0(x,�)

}−CE
{
1 − �0,1(x,�) − �1,1(x,�)

}−CT , 
where CE,CT ≥ 0 are user-defined constants. The total cost of a K-point design � is 

Ctot(�,�) =
K∑
i=1

�iC
�
xi,�

�
 and the penalized D-optimal design is 

�∗
pen

= argmin
�

{
log

|�−1(�,�)|
Ctot(�,�)

}
 . Such a design provides maximum information per 

cost unit; in this particular case, the cost is the penalty for treating patients at highly 
toxic or inefficacious doses. Note that when CE = CT = 0 , the problem reduces to 
finding the D-optimal design; otherwise, we have a design that provides some trade-
off between information and treatment goals. Likewise, penalized c-optimal or some 
other penalized letter optimal designs can be constructed.

A limitation of local optimality can be overcome by constructing adaptive penal-
ized optimal designs. After initial pilot data have been ascertained, one obtains 
model parameter estimates, and performs dose assignments for subsequent patients 
adaptively, either sequentially or in cohorts, to approximate the targeted optimal 

(7)

�y,z(x,�) = Pr
(
YE = y,YT = z|x,�) = {

�E
}y{

�T
}z{

1 − �E
}1−y{

1 − �T
}1−z

+ (−1)y+z
e� − 1

e� + 1
�E�T

{
1 − �E

}{
1 − �T

}
.
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design. When properly calibrated, such adaptive designs show very reasonable, 
competitive performance, as shown both theoretically and through simulations [30, 
31, 80].

In summary, we would like to highlight some further advantages and limitations 
of phase I/II optimal designs. One major advantage is that the approach is very flex-
ible. In principle, bivariate models can be extended to accommodate several control 
variables (e.g., doses of different drugs) and important prognostic covariates. This 
can be useful in studies of drug combinations and in personalized dose-finding tri-
als, where the drug effect is expected to vary across patient subgroups. The meth-
odology is not limited to binary responses; Padmanabhan et al. [78] and Magnus-
dottir [63] considered the cases when efficacy and safety are continuous, or one is 
binary and the other one is continuous. One limitation of adaptive optimal phase I/II 
designs, which is shared with adaptive optimal designs for phase I toxicity studies, is 
that they may be difficult to pass Institutional Review Boards due to technical com-
plexity of algorithms and potential ethical restrictions. An additional operational 
challenge is that the efficacy outcome is usually observed after some delay, which 
may make design adaptations problematic. Some methods to alleviate this problem, 
for example using Bayesian data augmentation algorithms, are discussed in [128].

2.3  Phase II Dose‑Ranging Studies

Phase II drug development usually starts after phase I studies have demonstrated 
acceptable safety, tolerability, and PK properties of the investigational compound. 
The common objectives of phase II are two-fold: to assess the drug effect (clinical 
efficacy) in patients with the disease of interest, and  to identify dose(s) with most 
promising benefit/risk ratio for testing in confirmatory phase III trials. Phase II trial 
designs are typically randomized, controlled studies involving several doses of an 
investigational drug, with sample sizes up to several hundred patients.

There are several approaches to phase II trial designs. The first one is based on 
multiple comparisons—the dose is regarded as a classification factor, and minimal 
(if any) assumptions are made on the underlying shape of the dose–response rela-
tionship. Let Y  denote a continuous outcome variable, where large values of Y  sig-
nify clinical efficacy. Let 0 < d1 < d2 < ⋯ < dK be the selected dose levels of the 
drug, with d0 = 0 being the placebo. A simple statistical model for the outcome of 
interest is

where �i is the effect at dose di , �ij ’s are independent error terms assumed to be 
normally distributed with mean 0 and variance �2

i
 , and ni denotes the number of sub-

jects at di for i = 0, 1,… ,K , j = 1,… , ni.
Various objectives can be formulated for model (8), e.g., testing the homogene-

ity hypothesis H0 ∶ �0 = �1 = ⋯ = �K versus some alternative; identifying the 
minimum efficacious dose (MED), defined as MED = min

{
di ∶ 𝜇i > 𝜇0 + Δ

}
 for 

some user-selected clinically relevant parameter Δ > 0 ; estimating different treat-
ment contrasts, etc. Depending on the study goals, various optimal designs can be 

(8)Yij = �i + �ij,
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constructed. In this case, finding an optimal design means finding the vector of opti-
mal treatment allocation proportions, which often times can be done explicitly, using 
Lagrange multiplier optimization. Sverdlov and Rosenberger [109] provided a com-
prehensive review of various single-objective and multi-objective optimal designs 
for model (8). For instance, the  DA-optimal design minimizing the volume of a con-
fidence ellipsoid for a vector of treatment–placebo contrasts 

(
�1 − �0,… ,�K − �0

)
 

has an interesting structure: Its treatment allocation proportions are ordered consist-
ently with the magnitude of treatment variances, such that more variable treatment 
groups receive higher proportions of subjects [122]. Other minimization objectives 
(and their combinations) will clearly result in different optimal designs. Therefore, a 
clear articulation of the experimental goals is important before the start of the study.

The second approach to phase II dose–response study designs is based on mod-
eling. In contrast to Eq. (8), the drug effect is assessed using a regression model

where f
(
di,�

)
 is the mean response at di (some (non)linear function), � are the param-

eters of interest, and �ij ’s are independent (e.g., normal) error terms. The form of the 
dose–response should reflect the underlying biological mechanism of the drug effect, 
which clearly depends on the disease and the drug studied. For example, a very flexi-
ble class is a 4-parameter Emax model: f

(
di,�

)
= E0 + Emax

dr

EDr
50
+dr

 , where 
�� =

(
E0, ED50,Emax, r

)
 . An advantage of using a regression model (9) over a satu-

rated model (8) is that the dose is regarded as a continuous predictor for the mean 
response and regression modeling allows borrowing information across the range of 
doses to extrapolate the results beyond the doses actually studied. For (9), the mini-
mum efficacious dose is defined as MED(�) = inf

{
d ∈

(
0, dK

]
∶ f (d,�) ≥ f (0,�) + Δ

}
 

and Δ is a user-specified positive constant. One potential limitation of the modeling 
approach is that it is model-dependent, and the model can be mis-specified in a num-
ber of ways, thereby complicating the design.

Optimal designs for dose–response studies driven by the modeling approach 
involve searches over a continuum of dose levels in the interval 

(
0, dK

]
 . Once the 

study objectives have been identified and nominal values of � are available, we can 
use algorithms to generate locally optimal designs. Besides D-optimal designs, some 
useful selected references include c-optimal designs for estimating percentiles and 
minimum efficacious doses for various dose–response models [13, 27, 28, 77, 132], 
optimal designs for models with quadratic terms for the dose effect [36, 52, 53], 
optimal designs for estimating the interesting part of a dose-effect curve [69], etc. A 
limitation of local optimality can be overcome by means of adaptive designs. Some 
interesting simulation results can be found in the papers by a PhRMA adaptive dose-
ranging studies working group [17, 29].

Since the majority of phase II studies are randomized, careful calibrations of 
a randomization procedure to implement the chosen optimal design is warranted. 
Ryeznik et  al. [94, 95] investigated multi-stage adaptive D-optimal designs for 
dose–response studies with time-to-event outcomes. They found that both the choice 
of the allocation design and the randomization procedure can affect the quality of 
model estimates. For best performance, one should use a randomization procedure 

(9)Yij = f
(
di,�

)
+ �ij,
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that closely attains the targeted optimal design at each stage, especially when sample 
sizes are small.

Finally, the third approach to phase II dose–response studies is a combination 
of multiple comparisons (MCP) with modeling (Mod) techniques (MCP-Mod). 
The MCP-Mod, originally proposed by Bretz et  al. [18] can efficiently handle 
model uncertainty at the design stage. The method is cast in two parts. The MCP 
part addresses a simple Yes/No question—whether there is any effect due to the 
drug. At the beginning of the trial, a set of candidate models that describe plausible 
dose–response relationships is postulated. When experimental data become avail-
able, the significance of dose–response is tested for each model, with appropriate 
adjustments for multiplicity. If the null hypothesis of a flat dose response cannot be 
rejected for any of the models, the procedure stops; otherwise, the Mod part com-
mences—it involves modeling of the dose–response and subsequent application of 
various statistical inference procedures for the model(s) that is (are) most appro-
priate given the data. The MCP-Mod method has become increasingly popular in 
practice. Many clinical trial applications and numerous extensions of the original 
method have been developed; see Part III of O’Quigley et al. [74] for details. Fur-
thermore, MCP–Mod received a qualification opinion from the European Medicines 
Agency in 2014 as a methodology that…will promote better trial designs incorpo-
rating a wider dose range and increased number of dose levels [35].

We would like to give one example of a successful phase II trial application using 
MCP-Mod. Selmaj et al. [97] conducted an adaptive dose-ranging, randomized, pla-
cebo-controlled phase II trial to evaluate safety, tolerability and efficacy of BAF312 
(siponimod) in patients with relapsing-remitting multiple sclerosis (RRMS). The 
primary objective was to evaluate the dose–efficacy relationship among five doses 
of siponimod and placebo during 3  months of treatment in adult patients with 
RRMS. The primary endpoint was the number of combined unique active MRI 
lesions (CUAL) at 3  months, modeled using a negative binomial regression. The 
design included three main parts: stage 1, interim analysis, and stage 2. At stage 
1, four doses were tested: placebo (0 mg), 0.5 mg, 2 mg, and 10 mg, with the total 
sample size of n1 = 188 (47 patients per arm). At the interim analysis, three assess-
ments were made: (1) analysis for futility (turned out to be negative); (2) calibration 
of the dose range by fitting six candidate dose–response models and choosing one 
that showed the highest correlation to the observed negative binomial fit, where-
upon a 2-parameter Emax model was chosen, and additional two doses, 0.25 mg and 
1.25 mg, were selected for testing in stage 2; and (3) sample size reassessment based 
on parameters not directly related to treatment effect (it turned out that increasing 
the sample size was unnecessary). At stage 2, three groups were tested: placebo 
(0 mg), 0.25 mg, and 1.25 mg ( n2 = 109 patients, 1:4:4 randomization). The final 
analysis was made based on pooled data from stage 1 and stage 2. The MCP step 
showed statistical significance of the Emax model (P = 0.0001) and the sigmoid 
Emax model (P = 0.0115). The Mod step based on the Emax model estimated the 
target dose range  ED70–ED90 as 0.96–3.7 mg. In all, a 2-stage adaptive design suc-
cessfully achieved the trial objectives and the study allowed further development of 
siponimod, with a judicious selection of doses for confirmatory phase III testing.



 Journal of Statistical Theory and Practice           (2020) 14:10 

1 3

   10  Page 14 of 29

3  Optimal Designs for Phase III Randomized Comparative Trials

Randomized comparative trials test the difference between two or more treatment 
groups. The design considerations include statistical power and other criteria, such 
as total sample size, study cost, number of treatment failures, etc. In this section, we 
give an overview of optimal allocation designs for two-arm and multi-arm compara-
tive studies, and randomization procedures to implement these optimal designs in 
practice.

3.1  Two‑Arm Trials

Consider a randomized clinical trial comparing the effects of two treatments, experi-
mental ( E ) and control ( C ) with respect to some primary outcome variable 
(response). Let Yj(k) be the j th patient’s potential response when the patient is rand-
omized to the treatment group k , where k = E, C and, assume that Yj(E) ∼ N

(
�E, �

2
)
 

and Yj(C) ∼ N
(
�C, �

2
)
 , where �E,�C ∈ ℝ and 𝜎2 > 0 . If Δ = �E − �C , we wish to 

test the null hypothesis H0 ∶ Δ = 0 versus the alternative hypothesis H1 ∶ Δ > 0 . 
For simplicity, we assume that �2 is known and without loss of generality, assume 
that it is unity. Then a one-sided �-sized z-test for testing treatment difference would 
reject H0 if Z =

Δ̂√
1

nE
+

1

nC

> z𝛼 , where Δ̂ is the sample mean difference and z� is the 

100(1 − �) th percentile of the standard normal distribution. If � ∈ (0, 1) is the allo-
cation proportion to treatment group E and the total sample is n , we have nE ≈ n� 
patients in treatment group E and nC ≈ n(1 − �) patients in treatment group C . A 
basic, yet important question is: What allocation maximizes the power of the test? In 
our case, the power of the z-test (for given values of � , Δ , � , and n ) is 
�
�
Δ
√
n�(1 − �) − z�

�
 , where �(⋅) is the standard normal distribution function. 

Clearly, for fixed Δ > 0 , n , and � , the power is maximized when � = 1∕2 , i.e., equal 
allocation with n∕2 patients in each group E and C . This results also holds if �2 is 
unknown and the z-test is replaced by a two-sample t-test [6].

If the outcome variance is heterogeneous across the groups, equal allocation may 
not be optimal for maximizing power. This can be seen using an elegant general 
approach for optimizing a two-arm trial with binary responses as described in chap-
ter 17 of Jennison and Turnbull [55]. Let pk be the success rate for treatment k and 
qk = 1 − pk , k = E,C . If we have a sufficiently large sample size for a normal 
approximation to a binomial to hold, the Wald test statistic 
W =

(
p̂E − p̂C

)
∕
√

p̂Eq̂E

nE
+

p̂Cq̂C

nC
 can be used to test H0 ∶ pE = pC versus 

H1 ∶ pE > pC . Here, p̂k is a consistent estimate of pk , q̂k = 1 − p̂k , k = E,C , and nE 
and nC are the two group sample sizes. The asymptotic power of the Wald test is a 
decreasing function of pEqE

nE
+

pCqC

nC
 , which is the variance of p̂E − p̂C under the alter-

native hypothesis. The criterion we wish to minimize is wEnE + wCnC for some suit-
ably chosen weights wE,wC > 0 subject to the constraint that pEqE

nE
+

pCqC

nC
≤ L for 

some small constant L > 0 . In fact, L should be set ≤ 1/2, since for any nE ≥ 1 and 
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nC ≥ 1 , one has pEqE
nE

+
pCqC

nC
≤ 1

4nE
+

1

4nC
≤ 1

2
 . A smaller value of L implies greater 

restriction on the asymptotic variance, and hence greater desired precision, which 
can be achieved by increasing the total sample size n = nE + nC . However, the opti-
mal allocation proportion �∗ = nE

nE+nC
 does not depend on L . Using Lagrange multi-

plier minimization, one can easily find that �∗ in this case is given by

If we set wE = wC ≡ 1 , we are minimizing the total sample size of the study, in 
which case the optimal solution, �∗

N
=
√
pEqE∕

�√
pEqE +

√
pCqC

�
 , is the Neyman 

allocation. Note that �∗
N
= 1∕2 if either pE = pC or pE = 1 − pC . One limitation of 

Neyman allocation is that it is skewed to a less successful treatment arm if 
pE + pC > 1 . If we set wE = qE and wC = qC , then we are minimizing the total 
expected number of treatment failures in the study, and the optimal solution, given 
by Rosenberger et al. [87] is �∗

RSIHR
=
√
pE∕

�√
pE +

√
pC

�
 , which is always skewed 

in favor of a more successful treatment group.
The described approach was extended by many authors in a number of ways: for 

two-arm trials with binary responses and different study objectives [41, 127], trials 
with normal outcomes [14, 129], trials with survival outcomes [130], etc.

Another useful approach for obtaining trade-off between statistical inference and 
treatment goals in the binary response case was proposed in Baldi Antognini and 
Giovagnoli [7]. It is based on optimizing a weighted criterion

where � ∈ [0, 1] is a user-specified weight that determines trade-off between infer-
ence and treatment (e.g., � = 0.8 ⇒ 80% emphasis on inference and 20% on ethics), 
�1(�) =

pEqE

�
+

pCqC

1−�
 (scaled variance of the estimated difference in proportions, 

inferential criterion), � ∗
1
=
�√

pEqE +
√
pCqC

�2

 (minimum value of �1(�) for 
� ∈ (0, 1) ), �2(�) = qE� + qC(1 − �) (expected proportion of treatment failures, ethi-
cal criterion), and � ∗

2
= min

{
qE, qC

}
 (minimum value of �2(�) for � ∈ (0, 1) ). The 

optimal allocation, �∗
�
= argmin

�
��(�) is the unique solution in (0,1) of the follow-

ing equation (to be solved numerically for given � , pE , pC , qE , qC ): 
�

1−�
×

pE−pC

min(qE ,qC)
×
{√

pCqC

pEqE
+ 1

}2

=

{
pCqC

pEqE
−1

}
�2+2�−1

{�(1−�)}2
.

An excellent treatise of various multi-objective optimal allocation designs for 
two-arm comparative trials can be found in chapter 5 of Baldi Antognini and Gio-
vagnoli [8]. Since many of these designs depend on model parameters, response-
adaptive randomization (RAR) is needed to implement them in practice. We shall 
discuss RAR in Sect. 3.3.

Another consideration in optimizing treatment allocation ratio is the presence of 
important baseline covariates such as age, gender, disease severity, genetic signature, 

(10)�∗ =

√
pEqE∕wE√

pEqE∕wE +
√
pCqC∕wC

.

��(�) = �

{
�1(�)

� ∗
1

}
+ (1 − �)

{
�2(�)

� ∗
2

}
,
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etc., that are known to be correlated with the clinical outcome. For the classical lin-
ear regression model with constant variance and additive effects due to treatment 
and covariates, balance in both treatment totals and across the covariates is optimal 
for statistical inference [8]. However, for more complex settings, such as heterosce-
dastic and nonlinear models with possibly treatment-by-covariate interactions, bal-
anced allocation may no longer be optimal [88]. Recently, some optimal designs for 
such complex scenarios have been proposed [1, 118]. These designs may be par-
ticularly useful in trials of precision medicine with potentially differential treatment 
effects across patient subgroups.

3.2  Multi‑arm Trials

Randomized trials comparing the effects of several treatments in a single study are 
very common in clinical research. The treatment arms may be different doses of a 
drug, different drug combinations, or different intervention strategies. Designs for 
multi-arms trials require careful considerations, and the process of planning such tri-
als is more complex than that in the two-arm case. As an example, suppose there are 
K ≥ 1 experimental treatment groups E1,… ,EK and a control group C , the outcome 
is binary (success or failure) and we want to assess performances using differences 
in their proportions. Suppose Yj(k) , the jth patient’s potential response to treatment 
k , has Bernoulli distribution with E

(
Yj(k)

)
= pk and var

(
Yj(k)

)
= pkqk , 

k = 0, 1,… ,K (here k = 0 is the index for the control and k = 1,… ,K is for the 
experimental treatments). The (K + 1)-vector of true success probabilities is 
p� =

(
p0, p1,… , pK

)
 and the K-vector of treatment contrasts is 

p
�

c
=
(
p1 − p0,… , pK − p0

)
= A�p , where A′ is the appropriately chosen 

K × (K + 1) contrast matrix. An allocation vector is �� =
(
�0, �1,… , �K

)
 , �k ∈ (0, 1) , 

K∑
k=0

�k = 1 . For a total sample size n , nk ≈ n�k subjects would be randomized to 

group k = 0, 1,… ,K . The optimal value of � is to be determined based on the study 
goals. The MLE p̂� =

(
p̂0, p̂1,… , p̂K

)
 has asymptotic variance–covariance matrix 

var(p̂) = diag
{

p0q0

n0
,
p1q1

n1
,… ,

pKqK

nK

}
 and that for p̂c = A�p̂ is 

var
(
p̂c
)
= diag

{
p1q1

n1
,… ,

pKqK

nK

}
+

p0q0

n0
��

� , where � is the K-vector of ones.
For testing treatment difference, one may consider, for instance, a global hypoth-

esis H0 ∶ pc = � versus H1 ∶ pc ≠ � . An appropriate test statistic is the Wald test 
Wn = p̂

�

c

(
�var

(
p̂c
))−1

p̂c , where �var
(
p̂c
)
 is a consistent estimator of var

(
p̂c
)
 . Assuming 

that n is sufficiently large, Wn follows asymptotically chi-squared distribution with 
K − 1 degrees of freedom under H0 . Under H1 , the distribution is non-central chi-
squared with K − 1 degrees of freedom and the non-centrality parameter 

𝜙(n) = p
�

c

�
var

�
p̂c
��−1

pc =
K∑
i=1

ni

piqi

�
pi − p0

�2
−

�
K∑
i=1

ni

piqi

�
pi − p0

��2

∕
K∑
i=0

ni

piqi
 , which 

is a concave function of n� =
(
n0, n1,… , nK

)
 with ∇� ≥ 0 [115].

One important observation is that there is a fundamental difference between the 
goals of estimation and testing, which will impact the choice of an optimal alloca-
tion design [96]. Efficient estimation of pc calls for minimization of some function 
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of var
(
p̂c
)
 (e.g., determinant, trace, maximum eigenvalue, etc.), whereas maximiza-

tion of power for testing H0 ∶ pc = � calls for maximization of the non-centrality 
parameter p�

c

(
var

(
p̂c
))−1

pc . The resulting optimal allocations are, in general, quite 
different [109].

Second, even if an investigator has decided on hypothesis testing as the primary 
tool for inference, he or she may be interested in different kinds of research hypoth-
eses (e.g., testing each experimental treatment vs. control rather than testing a global 
hypothesis of homogeneity); may prefer using other metrics for treatment difference 
(e.g., relative risk or odds ratio); and may wish to use different test statistics (other 
than Wald test). All these aspects will impact optimization and the structure of opti-
mal allocation proportions [4, 10, 65, 96, 110].

Third, in addition to power maximization, some other objectives may be deemed 
relevant. For instance, in trials with grave outcomes, there is a strong ethical require-
ment to minimize the total number of treatment failures in the trial while maintain-
ing sufficient power of the test. A constrained optimization approach for deriving 
optimal allocations that provide trade-off between statistical (power) and ethical 
goals for a multi-arm binary outcome trial was originally proposed by Tymofyeyev 
et al. [115], and subsequently extended by several authors in various contexts [9, 15, 
54, 111, 131]. Baldi Antognini and Giovagnoli [8] also described in chapter  5 of 
their monograph a compound optimality approach that provides a trade-off among 
selected objectives by optimizing a weighted combination of the chosen criteria.

As in the two-arm case, optimal allocation designs for multi-arm trials frequently 
depend on the true values of model parameters and necessitate the use of response-
adaptive randomization.

3.3  Response‑Adaptive Randomization

Consider a clinical trial with K ≥ 2 treatment groups, for which the vector of target 
allocation proportions has been derived according to some optimality criteria as 

�� =
(
�1(�),… , �K(�)

)
 , where �i(�) ∈ (0, 1) , 

K∑
i=1

�i(�) = 1 and � is the vector of 

model parameters (including treatment effects and variances). The total sample size 
( n ) is fixed and predetermined. Eligible subjects enter the trial sequentially and must 
be randomized such that Ni(n) ≈ n�i(�) subjects are assigned to the ith treatment 
group. If � were known, one could easily accomplish this by randomizing the j th 
subject to the i th treatment with probability Pi(j) = �i(�) , k = 1,… ,K , j ≥ 1 . How-
ever, in practice � is unknown, which motivates introduction of response-adaptive 
randomization (RAR). The idea is to use accumulating data to sequentially estimate 
� and modify treatment randomization probabilities to direct the design to the 
desired target allocation [49].

Conceptually, RAR is implemented as follows: initial m0 < n patients are rand-
omized according to some fixed (non-adaptive) procedure; e.g., using equal rand-
omization. Assume that outcomes are ascertained without delay after randomiza-
tion. After m assignments ( m ≥ n0 ), one can obtain an estimate �̂m , update the target 
allocation vector �̂m =

(
𝜌1
(
�̂m

)
,… , 𝜌K

(
�̂m

))
 and randomize the next, (m + 1)st 
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patient according to �̂m . Let N(m) =
(
N1(m),… ,NK(m)

)
 be the treatment group 

sample sizes after m assignments. Then, a general RAR procedure can be described 
by specifying randomization probabilities for the (m + 1) st subject using informa-
tion from the previous m subjects as follows:

where the functions 𝜙i = 𝜙i

(
�̂m,

N(m)

m

)
 , 0 < 𝜙i < 1 , 

K∑
i=1

�i = 1 must be chosen 

judiciously.
For instance, one practical choice is the doubly adaptive biased coin design 

(DBCD) procedure of Hu and Zhang [50] obtained by setting 
𝜙i

(
�̂m,

N(m)

m

)
∝ 𝜌i

(
�̂m

)
⋅
(

𝜌i(�̂m)
N1(m)∕m

)𝛾

 , where � ≥ 0 is a user-defined parameter that 
controls the degree of randomness of the design. In practice, � = 2 is recom-
mended [86]. The DBCD has well-established theoretical properties: under 
widely satisfied conditions, the sample allocation proportions N(m)

m
 converge to the 

target allocation � and asymptotically follow a multivariate normal distribution 
with a known covariance structure. Also, the MLE �̂m is strongly consistent for � 
and is asymptotically normally distributed. This implies that, theoretically, stand-
ard large sample estimators and tests can be used for statistical inference follow-
ing DBCD, including other RAR procedures for which allocation proportions 
converge to the predetermined target proportions 0 < 𝜌i(�) < 1 , i = 1,… ,K . 
These results do not apply, however, to some RAR designs, such as Thompson’s-
type Bayesian RAR designs [113, 114] or randomly reinforced urn models [42] 
that target an extreme limiting allocation by skewing randomization to the supe-
rior treatment group when it exists. In practice, simulations should be used to 
evaluate performance of RAR in finite samples, and assess robustness of these 
procedures under various standard and worst-case scenarios, including cases 
when some underlying assumptions may be violated [89].

An alternative to the likelihood-based inference is the randomization-based 
inference [81, 90]. The idea is to treat responses as deterministic, and calculate 
the test statistic over the set of all possible randomization sequences induced by a 
given RAR procedure. The randomization-based P-value is then the sum of prob-
abilities of randomization sequences that yield the value of the test at least as 
extreme as the one observed. Monte Carlo simulation can be used to obtain a 
consistent estimate of the randomization-based P-value. In the context of RAR, 
randomization-based tests have been found to be useful and more robust than the 
likelihood-based tests [43, 100, 116].

RAR has a long history in biostatistics literature. It includes a very broad fam-
ily of randomization designs which cannot be comprehensively covered in any 
single paper. The readers are referred to recent monographs on this topic by Hu 
and Rosenberger [49], Atkinson and Biswas [2] and Baldi Antognini and Giovag-
noli [8].

Pi(m + 1) = Pr {(m + 1)st subject is assigned to the ith group|data}
= 𝜙i

(
�̂m,

N(m)

m

)
, i = 1,… ,K,
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4  Optimal Designs for Population PK Experiments

In recent years, there has been an increasing interest in applying pharmacometrics—a 
branch of science that combines mathematical, statistical, and computational methods 
with pharmacology—to tackle various problems in drug development. Pharmacomet-
rics can be used to characterize, understand and predict a drug’s pharmacokinetics 
(PK), pharmacodynamics (PD) and biomarker-outcome behavior [33]. The PK part 
answers the question “what the body does to the drug,” whereas the PD part explains 
“what the drug does to the body” [71]. As noted in [76], pharmacometric models may 
be descriptive (to characterize existing data) and predictive (to allow testing situations 
when data are not available via model-based simulation). The latter approach holds the 
promise to increase the number of successful clinical trials and to improve the effi-
ciency of the informed decision making in drug development [44].

In this section, we discuss three important components of pharmacometrics: popula-
tion modeling of PK/PD data, optimal designs for the population studies, and model-
based adaptive optimal designs relevant to this setting. We also highlight useful soft-
ware packages and some real-life applications.

4.1  Population Modeling of PK/PD Data

The population modeling approach was first proposed by Sheiner et  al. [98], and it 
has been increasingly used in modern model-based drug development. This approach 
allows modeling of potentially sparse PK/PD data from individual subjects to allow 
estimation of the population parameters of interest while accounting for inter-individual 
variability of the observed responses. A statistical approach to handle population mod-
eling is based on nonlinear mixed-effects models (NLMEM). With such an approach, a 
simple continuous response model can be defined as

where f (⋅) is some nonlinear (vector) function, and for the i th individual, we have yi 
is a vector of responses (e.g., some efficacy measurement), ti is a vector of sampling 
time points, xi is a vector of administered dose levels, � is a vector of typical param-
eter values, �i ∼ MVN(0,�) is a vector of inter-individual variabilities (IIV’s), and 
�i ∼ MVN(0,�) is a vector of measurement errors. In a more general setting, model 
(11) may also include important individual covariates, and the residual term �i may 
be modeled as a function of other components of the model (11).

The first problem that arises in population modeling is to estimate the parameters 
(�,�,�) . The maximum likelihood estimate (�∗,�∗,�∗) is found as

where 𝓁i(⋅) is the individual likelihood, and p(⋅) is the probability density of the 
IIV’s, given the population parameters ( � ). The integral in Eq.  (12) is the mar-
ginal likelihood of ith individual which explains the individual’s contribution to the 

(11)yi = f
(
ti, xi,�, �i

)
+ �i, i = 1,… , n,

(12)(�∗,�∗,�∗) = arg max
�,�,�

n∑
i=1

log

(
∬ 𝓁i

(
yi, �|�,�

)
⋅ p(�|�)d�

)
,
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population likelihood. There is no closed-form solution to the problem in Eq. (12), 
so numerical methods are used. The dimensionality of the problem can be very 
large. For instance, if there are p typical values and p random effects, then we have 
to estimate, in general, p + p(p + 1)∕2 parameters. If, additionally, there are n indi-
viduals, then n diagonal elements of � have to be estimated as well. The most chal-
lenging part of finding a solution to Eq.  (12) is an approximation of the marginal 
likelihood, which is also essential for calculating the FIM to find the population 
optimal designs. Below are some numerical methods suitable for this purpose, with 
more details in [117].

• First-order (FO) method [12] was originally implemented in NONMEM [11], 
the most popular commercial software to deal with NLMEM. The method lin-
earizes the model around the means of individual parameters, �i = 0 , and the 
marginal likelihood is then calculated assuming the observed data are nor-
mally distributed with the mean and the variance of the linearized model.

• First-order conditional estimation (FOCE) method was first introduced in 
[61], and implemented in NONMEM. First, the algorithm searches for the 
solution to the optimization problem: �∗ = argmax

�
𝓁i

(
yi, �|�,�

)
⋅ p(�|�) . 

Then, the linearization around �∗ is done, and the marginal likelihood is then 
calculated assuming the observed data are normally distributed with the mean 
and the variance which are linear in �∗.

• Laplace integration method is more computationally intensive compared to 
the FO and FOCE approaches due to calculations of the Hessian of the indi-
vidual likelihoods, but the approximated result is more accurate.

• Stochastic and Monte Carlo methods are based on sampling techniques from 
probability distribution p(�|�) . These methods are rather slow to converge. 
NONMEM provides several stochastic algorithms to calculate likelihood, and 
they include Monte Carlo importance sampling method [93] and the stochas-
tic approximation of expectation minimization (SAEM) algorithm [57]. The 
latter algorithm was originally developed and implemented in a commercial 
software Monolix (http://lixof t.com/produ cts/monol ix/), which is another pop-
ular software for NLMEM with a free license for use in academia. Today, it 
is the only algorithm used for MLE in Monolix. The method simulates indi-
vidual data using a Markov Chain, then, at the E-step, the stochastic approach 
approximates the likelihood, and, at the M-step, the parameters are updated 
to maximize the likelihood. The procedure is repeated iteratively until some 
user-specified convergence criterion or criteria are met.

It is worth mentioning some other useful software tools for NLMEM, such 
as SAS PROC NLMIXED; Perl-speaks-NONMEM (PsN) [59, 60]; open source 
R packages such as nlme, nlmer, saemix, brms [105], nlmixr (http://nlmix r.org/
wp/), mrgsolve (https ://mrgso lve.githu b.io/), PopED [73], etc. A comparison of 
five different software tools (PFIM, PkStaMp, PopDes, PopED, and POPT) for 
design evaluation in population PK/PD studies was done in [71].

http://lixoft.com/products/monolix/
http://nlmixr.org/wp/
http://nlmixr.org/wp/
https://mrgsolve.github.io/
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4.2  Population Optimal Designs

Population PK/PD experiments are quite complex and require careful design consid-
erations. Optimal design techniques can be applied to enhance planning of a PK/PD 
experiment under a given nonlinear mixed-effects model. Elements to be optimized 
may include sampling times, sampling frequency, sampling cost, dose, etc. Popula-
tion optimal designs can be useful, for instance, in the following cases:

• When a study sample size is small (as in many PK studies), population optimal 
designs can help understand a typical pattern of PK over time and the uncer-
tainty in the observations.

• Population optimal designs can reduce the number of sampling times, which 
may translate into savings in the study cost.

• Population optimal designs may help improve existing therapies or diagnostics, 
and provide recommendations for efficient dose regimen(s).

• In pediatric studies, population optimal designs may help extrapolate results 
from the trials in adults onto children population(s).

Most of the population optimal designs are obtained under local optimality con-
ditions. Data from previous studies can be used to build initial designs, and then 
both the model and the design can be calibrated during the study via simulations.

The most common application of optimal designs for population PK studies is 
optimization of the sampling schedule. In Fedorov and Leonov [40], the authors 
considered an example of a population D-optimal design to estimate the parameters 
of a two-compartment PK model with bolus input x0 (cf.  Equation  (7.9) in [40], 
§7.2.2, p. 192). The model describes the amount of the drug at a given time in the 
central and peripheral compartments. In terms of Eq.  (11), the parameters are: �1 
(plasma clearance), �2 (volume of distribution), Ω11 = var

(
�i1

)
 , Ω22 = var

(
�i2

)
 , 

Ω12 = cov
(
�i1, �i2

)
 ( �i1 and �i2 are the ith individual’s effects that explain IIV in 

clearance and volume, respectively), Σ1 = var
(
�i1

)
 , and Σ2 = var

(
�i2

)
 ( �i1 and �i2 are 

residual error terms). The initial non-optimal study design consisted of 16 sampling 
points. Several D-optimal designs with different numbers of sampling points (from 5 
to 8) were obtained and then compared to the original 16-point design. The 8-point 
design was, overall, 16% less informative; however, the increase in the number of 
samples from 8 to 16 did not affect the precision of all the estimates of the param-
eters �1, �2,Ω11,Ω22,Ω12, and Σ1 , except Σ2 . In addition, when the total cost of col-
lecting and analyzing samples was taken into consideration, the cost-efficiency of a 
design with a fewer number of sampling time points became apparent. The optimal 
design was found to be

which means that 10% of the subjects should be randomized to a 3-sample sequence 
x∗
1
 and 90% of patients should be randomized to a 5-sample sequence x∗

2
.

�∗
D
=

{
x∗
1
= (5min; 15min; 144h) x∗

2
= (5min; 15min; 30min; 84h; 144h)

w∗
1
= 0.1 w∗

2
= 0.9

}
,
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The above method is not limited to finding optimal sampling times. Other design 
variables, such as dose, can be taken into account as well. For instance, Nyberg et al. 
[72] investigated optimization of doses on a continuous scale, and sampling time 
points for three PK/PD models: (1) intravenous PK, E-max PD model; (2) oral PK, 
E-max PD model; and (3) intravenous PK with Michaelis–Menten elimination. Two 
approaches to optimization were compared: simultaneous (times and doses are opti-
mized at the same time), and sequential (doses are optimized for given fixed times, 
and then times are optimized given the optimal doses from the first stage; or, alter-
natively, times are optimized in the first stage, and then optimization is done for 
doses). Both D-optimal (locally optimal) and ED-optimal (globally optimal) designs 
were investigated. Another important problem is optimization of the treatment 
period length in a study of disease progression [48]. ED-optimal design applied to 
three disease progression models with different drug effects—a symptomatic effect, 
a disease-modifying effect, and a combination of both effects—demonstrated high 
power in discriminating between the models.

More complex experiments may call for optimization of several objectives simul-
taneously. For example, Hennig et al. [47] found D-, Ds-, and EDs-optimal designs 
to improve a pre-transplant dose-finding of an immunosuppressant drug ciclosporin. 
The following variables were optimized simultaneously, using a published ciclo-
sporin population PK model as prior information: the sampling times, the dose of 
ciclosporin, the timing of the second dose, the infusion duration, and the adminis-
tration order. The original design was reduced from 22 to 6 samples per patient and 
both doses (intravenous oral) were administered within 8  hours. The loss in effi-
ciency of the optimal design with reduced samples compared to the original rich 
design was found to be minimal.

Another instructive example is Silber et  al. [99], where the authors considered 
optimization of the intravenous glucose tolerance test in patients with type 2 diabe-
tes. It was found that the Ds-optimal design, in contrast to the standard design, could 
improve the insulin modified intravenous glucose tolerance test, with possibly fewer 
number of samples. Optimization of sampling times resulted in the largest improve-
ment, followed by the insulin dose. The reduction in the total sample time resulted 
only in a minor loss in efficiency. The predicted uncertainty of parameter estimates 
was low in all tested cases, despite the reduction in the number of samples per sub-
ject. All computations were done using PopED [73].

4.3  Adaptive Optimal Designs

Model-based adaptive optimal designs (MBAOD) for population experiments are 
novel and there are many open research problems on this topic. These designs essen-
tially attempt to overcome potential non-robustness to changes in the parameter val-
ues of locally optimal designs. One example of a MBAOD can be found in Ström-
berg [106], where the adaptive design with the FDA stopping criteria was applied 
in a bridging study from adults to children. It was shown that the MBAOD requires 
fewer children to fulfill the precision criteria than the sample size obtained from 
the traditional estimation methodologies. The power for a non-adaptive optimal 



1 3

Journal of Statistical Theory and Practice           (2020) 14:10  Page 23 of 29    10 

design was lower than the required target value of 80%. Another interesting example 
is described in Strömberg and Hooker [107], where the authors compared robust 
(global) optimality with local optimality for the MBAOD. It was shown that opti-
mizing design by using global optimality criteria is more flexible, and that the 
MBAOD may be less sensitive to mis-specification in the prior information avail-
able at the design stage. The MBAOD methodology was applied to a simulated 
PK/PD study with a concentration from a one-compartment first-order absorption 
PK model driving the population effect response in a sigmoidal Emax PD model. 
A stopping criterion was introduced to obtain an accurate effect prediction using 
MBAOD based on minimizing the expected uncertainty in the effect response of the 
typical individual. Simulations showed that by using a robust optimality criterion 
in MBAODs, one could reduce the number of required adaptations and improve the 
practicality of adaptive trials using optimal design.

The R package MBAOD (https ://githu b.com/andre whook er/MBAOD ) provides 
tools for simulating clinical or pre-clinical trials based on predefined adaptation 
and optimization rules. This package can be used to plan and evaluate the predicted 
effectiveness of an upcoming trial, and it can be also used to optimize any specific 
cohort of an ongoing study.

5  Discussion

In this paper, we gave an overview of optimal designs for various problems from 
clinical drug development. Overall, optimal designs serve at least two important 
purposes. First and foremost, they provide benchmarks for judging alternatives. If a 
simple heuristic procedure is shown to be robust and nearly as efficient as the opti-
mal one, its use may be well justified in a given trial. However, if a simple proce-
dure exhibits high loss in efficiency, then alternatives should be considered. Second, 
adaptive designs using either stage-wise or sequential calibration of the model can 
be constructed to approximate optimal designs, and potentially achieve study goals 
with a reduced sample size. However, implementation of such adaptive optimal 
designs requires time, careful planning, and frequently extra resources to properly 
implement interim analyses and design adaptations. Some of these optimal designs 
are computationally challenging to find and as noted by Yang et al. [125] and Cheng 
and Yang [21], developing novel and efficient algorithms to generate them in prac-
tice is an important contribution to the field.

Optimal designs for phase I dose–toxicity studies have been well researched in 
the literature. Statistical software (web-based) for constructing optimal designs for 
various nonlinear models, including the logistic model (4) is available [51, 121]. 
Another class of optimal designs is the seamless phase I/II dose-finding trials where 
efficacy and toxicity are considered simultaneously. Optimization of such trials can 
help identify doses with favorable benefit/risk ratio more efficiently than in separate 
dose–toxicity and dose–efficacy studies. Adaptive optimal designs for phase I and 
phase I/II studies have been developed, but are rarely used in practice, because they 
are unlikely to receive approval by Institutional Review Boards.

https://github.com/andrewhooker/MBAOD
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Phase II clinical trials commonly investigate dose–response relationships using 
multiple comparisons (MCP), modeling techniques (Mod), or, most recently, using 
a combination approach MCP-Mod [18]. Optimal designs for such studies have 
been developed to address various research questions, such as testing the presence 
of dose–response, estimation of a minimum efficacious dose, etc. Adaptive optimal 
designs can be cast in two or more stages and they have been developed and imple-
mented in practice [16, 17]. Since most phase II studies are randomized, controlled, 
parallel-group designs, careful choice of a randomization procedure that adjusts 
optimal allocation ratio at interim analyses is essential [95].

Phase III trials are randomized and adequately well-controlled studies designed 
to test specific clinical research hypotheses. Such designs typically use 1:1 rand-
omization in the two-arm case, but recently, some statistical research has been done 
to develop optimal allocation designs for randomized multi-arm clinical trials with 
multiple objectives. These objectives may be to minimize the expected number of 
treatment failures while maintaining power. Such optimal designs can be imple-
mented using RAR with established properties. Despite that optimal RAR designs 
can potentially balance, to some degree, the competing goals of experimentation and 
treatment while maintaining integrity and validity of the trial results, they are very 
rarely used in phase III confirmatory settings.

A novel, interesting and promising research area is optimal designs for population 
experiments. The applications are numerous, including optimization of PK sam-
pling times, optimization of dosing and frequency of treatment regimens, bridging 
population studies (e.g., from adults to children), etc. A major challenge is the high 
dimensionality and complexity in the computation and optimization. Special soft-
ware packages are available [71]. In the future, we expect continuation of research 
and applications of optimal designs and model-based adaptive optimal designs for 
population studies.

Acknowledgements The authors would like to thank three anonymous reviewers for their constructive 
comments that have helped improve the original version of the manuscript. Wong was partially supported 
by a grant from the National Institute of General Medical Sciences of the National Institutes of Health 
under Award Number R01GM107639. The content is solely the responsibility of the authors and does not 
necessarily represent the official views of the National Institutes of Health.

Compliance with Ethical Standards 

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of 
interest.

References

 1. Atkinson A (2015) Optimum designs for two treatments with unequal variances in the presence of 
covariates. Biometrika 102(2):494–499

 2. Atkinson A, Biswas A (2014) Randomised response-adaptive designs in clinical trials. Chapman & 
Hall/CRC Press, Boca Raton

 3. Atkinson A, Donev A, Tobias R (2007) Optimum experimental designs, with SAS. Oxford Univer-
sity Press, New York



1 3

Journal of Statistical Theory and Practice           (2020) 14:10  Page 25 of 29    10 

 4. Azriel D, Feigin PD (2014) Adaptive designs to maximize power in clinical trials with multiple 
treatments. Seq Anal 31:60–86

 5. Babb J, Rogatko A, Zacks S (1998) Cancer phase I clinical trials: efficient dose escalation with 
overdose control. Stat Med 17:1103–1120

 6. Baldi Antognini A (2008) A theoretical analysis of the power of biased coin designs. J Stat Plan 
Inference 138:1792–1798

 7. Baldi Antognini A, Giovagnoli A (2010) Compound optimal allocation for individual and collec-
tive ethics in binary clinical trials. Biometrika 97(4):935–946

 8. Baldi Antognini A, Giovagnoli A (2015) Adaptive designs for sequential treatment allocation. 
CRC Press, Boca Raton

 9. Baldi Antognini A, Novelli M, Zagoraiou M (2018) Optimal designs for testing hypothesis in 
multiarm clinical trials. Stat Methods Med Res. https ://doi.org/10.1177/09622 80218 79796 0

 10. Bandyopadhyay U, Bhattacharya R (2018) An optimal three treatment allocation for binary treat-
ment responses. Stat Biopharm Res 10(4):287–300

 11. Bauer RJ (2018) NONMEM user guide. Introduction to NONMEM 7.4.3. Gaithersburg, MD
 12. Beal SL, Sheiner LB (1982) Estimating population kinetics. Crit Rev Biomed Eng 8(3):195–222
 13. Biedermann S, Dette H, Zhu W (2007) Compound optimal designs for percentile estimation in 

dose–response models with restricted design intervals. J Stat Plan Inference 137:3838–3847
 14. Biswas A, Mandal S (2004) Optimal adaptive designs in phase III clinical trials for continuous 

responses with covariates. In: Di Bucciano A, Lauter H, Wynn HP (eds) mODa7—Advances in 
model-oriented design and analysis. Physica-Verlag, Heidelberg, pp 51–58

 15. Biswas A, Mandal S, Bhattacharya R (2011) Multi-treatment optimal response-adaptive designs 
for phase III clinical trials. J Korean Stat Soc 40:33–44

 16. Bornkamp B, Bretz F, Dette H (2011) Response-adaptive dose-finding under model uncertainty. 
Ann Appl Stat 5(2B):1611–1631

 17. Bornkamp B, Bretz F, Dmitrienko A, Enas G, Gaydos B, Hsu CH, König F, Krams M, Liu Q, 
Neuenschwander B, Parke T, Pinheiro J, Roy A, Sax R, Shen F (2007) Innovative approaches for 
designing and analyzing adaptive dose-ranging trials. J Biopharm Stat 17(6):965–995

 18. Bretz F, Pinheiro J, Branson M (2005) Combining multiple comparisons and modeling techniques 
in dose-response studies. Biometrics 61:738–748

 19. Chaloner K, Larntz K (1989) Optimal Bayesian design applied to logistic regression experiments. J 
Stat Plan Inference 21:191–208

 20. Chaloner K, Verdinelli I (1995) Bayesian experimental design: a review. Stat Sci 10:273–304
 21. Cheng Q, Yang M (2019) On multiple-objective optimal designs. J Stat Plan Inference 200:87–101
 22. Chernoff H (1953) Locally optimal designs for estimating parameters. Ann Math Stat 24:586–602
 23. Clertant M, O’Quigley J (2018) Semiparametric dose finding methods. J R Stat Soc B 

79(5):1487–1508
 24. Clyde M, Chaloner K (1996) The equivalence of constrained and weighted designs in multiple 

objective design problems. J Amer Stat Assoc 91:1236–1244
 25. Cook RD, Fedorov V (1995) Constrained optimization of experimental design. Statistics 

26:129–178
 26. Cook RD, Wong WK (1994) On the equivalence of constrained and compound optimal designs. J 

Am Stat Assoc 89:687–692
 27. Dette H, Bretz F, Pepelyshev A, Pinheiro J (2008) Optimal designs for dose-finding studies. J Am 

Stat Assoc 103:1225–1237
 28. Dette H, Kiss C, Bevanda M (2010) Optimal designs for the emax, log-linear, and exponential 

models. Biometrika 97(2):513–518
 29. Dragalin V, Bornkamp B, Bretz F, Miller F, Padnamabhan SK, Patel N, Perevozskaya I, Pinheiro J, 

Smith JR (2010) A simulation study to compare new adaptive dose-ranging designs. Stat Biopharm 
Res 2(4):487–512

 30. Dragalin V, Fedorov V (2006) Adaptive designs for dose-finding based on efficacy–toxicity 
response. J Stat Plan Inference 136:1800–1823

 31. Dragalin V, Fedorov V, Wu Y (2008) Two-stage designs for dose-finding that accounts for both 
efficacy and toxicity. Stat Med 27:5156–5176

 32. Durham SD, Flournoy N, Rosenberger WF (1997) A random walk rule for phase I clinical trials. 
Biometrics 53:745–760

 33. Ette EI, Williams PJ (2007) Pharmacometrics: the science of quantitative pharmacology. Wiley, 
New York

https://doi.org/10.1177/0962280218797960


 Journal of Statistical Theory and Practice           (2020) 14:10 

1 3

   10  Page 26 of 29

 34. European Medicines Agency (1994) ICH E4: Dose-response information to support drug registra-
tion. http://www.ich.org/filea dmin/Publi c_Web_Site/ICH_Produ cts/Guide lines /Effic acy/E4/Step4 /
E4_Guide line.pdf. Accessed 9 Feb 2019

 35. European Medicines Agency (2014) Qualification opinion of MCP-Mod as an efficient statistical 
methodology for model-based design and analysis of phase II dose finding studies under model 
uncertainty. https ://www.ema.europ a.eu/docum ents/regul atory -proce dural -guide line/quali ficat ion-
opini on-mcp-mod-effic ient-stati stica l-metho dolog y-model -based -desig n-analy sis-phase -ii_en.pdf. 
Accessed 10 Feb 2019

 36. Fackle Fornius E, Nyquist H (2009) Using the canonical design space to obtain c-optimal designs 
for the quadratic logistic model. Commun Stat Theory Methods 39(1):144–157

 37. Fan SK, Chaloner K (2001) Optimal designs for a continuation-ratio model. In: Atkinson AC, 
Hackl P, Müller WG (eds) mODa 6—advances in model-oriented design and analysis. Physica-
Verlag, Heidelberg, pp 77–86

 38. Fan SK, Chaloner K (2004) Optimal designs and limiting optimal designs for a trinomial response. 
J Stat Plan Inference 126:347–360

 39. Fedorov V (2010) Optimal experimental design. WIREs Comput Stat 2:581–589
 40. Fedorov V, Leonov S (2014) Optimal design for nonlinear response models. CRC Press, Boca 

Raton
 41. Feng C, Hu F (2018) Optimal response-adaptive designs based on efficiency, ethic, and cost. Stat 

Interface 11:99–107
 42. Flournoy N, May C, Secchi P (2012) Asymptotically optimal response-adaptive designs for allocat-

ing the best treatment: an overview. Int Stat Rev 80(2):293–305
 43. Galbete A, Rosenberger WF (2016) On the use of randomization tests following adaptive designs. J 

Biopharm Stat 26(3):466–474
 44. Gobburu JV (2010) Pharmacometrics 2020. J Clin Pharmacol 50:151–157
 45. Haines L, Perevozskaya I, Rosenberger WF (2003) Bayesian optimal designs for phase I clinical 

trials. Biometrics 59:591–600
 46. Heise MA, Myers RH (1996) Optimal designs for bivariate logistic regression. Biometrics 

52(2):613–624
 47. Hennig S, Nyberg J, Fanta S, Backman JT, Hoppu K, Hooker AC, Karlsson MO (2012) Applica-

tion of the optimal design approach to improve a pretransplant drug dose finding design for ciclo-
sporin. J Clin Pharmacol 52(3):347–360

 48. Hennig S, Nyberg J, Hooker AC, Karlsson MO (2009) Trial treatment length optimization with an 
emphasis on disease progression studies. J Clin Pharmacol 49(3):323–335

 49. Hu F, Rosenberger WF (2006) The theory of response-adaptive randomization in clinical trials. 
Wiley, New York

 50. Hu F, Zhang L-X (2004) Asymptotic properties of doubly adaptive biased coin designs for multi-
treatment clinical trials. Ann Stat 32(1):268–301

 51. Hu J, Zhu W, Su Y, Wong WK (2010) Controlled optimal design program for the logit dose 
response model. J Stat Softw 35:6

 52. Hyun SW (2013) Optimal designs for a probit model with a quadratic term. Stat Biopharm Res 
5(1):18–26

 53. Hyun SW (2014) Optimal designs for estimating the ED50 when response functions have a down-
turn. Stat Biopharm Res 6(1):9–15

 54. Jeon Y, Hu F (2010) Optimal adaptive designs for binary response trials with three treatments. Stat 
Biopharm Res 2:310–318

 55. Jennison C, Turnbull B (2000) Group sequential methods with applications to clinical trials. Chap-
man & Hall/CRC, New York

 56. King J, Wong WK (2000) Minimax D-optimal designs for the logistic model. Biometrics 
56:1263–1267

 57. Kuhn E, Lavielle M (2005) Maximum likelihood estimation in nonlinear mixed effects models. 
Comput Stat Data Anal 49(4):1020–1038

 58. Li G, Majumdar D (2008) D-optimal designs for logistic models with three and four parameters. J 
Stat Plan Inference 138:1950–1959

 59. Lindbom L, Pihlgren P, Johnsson EN (2005) PsN Toolkit—a collection of computer intensive sta-
tistical methods for non-linear mixed effects modeling using NONMEM. Comput Methods Pro-
grams Biomed 79(3):241–257

http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E4/Step4/E4_Guideline.pdf
http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E4/Step4/E4_Guideline.pdf
https://www.ema.europa.eu/documents/regulatory-procedural-guideline/qualification-opinion-mcp-mod-efficient-statistical-methodology-model-based-design-analysis-phase-ii_en.pdf
https://www.ema.europa.eu/documents/regulatory-procedural-guideline/qualification-opinion-mcp-mod-efficient-statistical-methodology-model-based-design-analysis-phase-ii_en.pdf


1 3

Journal of Statistical Theory and Practice           (2020) 14:10  Page 27 of 29    10 

 60. Lindbom L, Ribbing J, Johnsson EN (2003) Perl-speaks-NONMEM (PsN)—a Perl module for 
NONMEM related programming. Comput Methods Programs Biomed 75(2):85–94

 61. Lindstrom MJ, Bates DM (1990) Nonlinear mixed effects models for repeated measures data. 
Biometrics 46(3):673–687

 62. Liu G, Rosenberger WF (2006) Sequential designs for logistic phase I clinical trials. J Biopharm 
Stat 16(5):605–621

 63. Magnusdottir BT (2013) c-optimal designs for the bivariate Emax model. In: Usiński D, Atkinson 
AC, Patan M (eds) mODa 10—advances in model-oriented design and analysis. Springer, Berlin, 
pp 153–161

 64. Manukyan Z, Rosenberger WF (2010) D-optimal design for a five-parameter logistic model. In: 
Giovagnoli A, Atkinson AC, Torsney B (eds) mODa 9—advances in model-oriented design and 
analysis. Physica-Verlag, Heidelberg, pp 17–24

 65. Marschner IC (2007) Optimal design of clinical trials comparing several treatments with a control. 
Pharm Stat 6:23–33

 66. Mats VA, Rosenberger WF, Flournoy N (1998) Restricted optimality for phase I clinical trials. In: 
Rosenberger WF, Flournoy N, Wong WK (eds) New developments and applications in experimen-
tal design, vol 34. Lecture Notes—Monograph Series. Institute of Mathematical Statistics, Hay-
ward, pp 50–61

 67. Matthew T, Sinha BK (2001) Optimal designs for binary data under logistic regression. J Stat Plan 
Inference 93:295–307

 68. McLeish DL, Tosh DH (1990) Sequential design in bioassay. Biometrics 46:103–116
 69. Miller F, Guilbaud O, Dette H (2007) Optimal designs for estimating the interesting part of a dose–

effect curve. J Biopharm Stat 17(6):1097–1115
 70. Minkin S (1987) Optimal designs for binary data. J Am Stat Assoc 82:1098–1103
 71. Nyberg J, Bazzoli C, Ogungbenro K, Aliev A, Leonov S, Duffull S, Hooker AC, Mentré F (2015) 

Methods and software tools for design evaluation in population pharmacokinetics-pharmacody-
namics studies. Br J Clin Pharmacol 79(1):6–17

 72. Nyberg J, Karlsson MO, Hooker AC (2009) Simultaneous optimal experimental design on dose 
and sample times. J Pharmacokinet Pharmacodyn 36:125–145

 73. Nyberg J, Ueckert S, Strömberg EA, Hennig S, Karlsson MO, Hooker AC (2012) PopED: an 
extended, parallelized, nonlinear mixed effects models optimal design tool. Comput Methods Pro-
grams Biomed 108(2):789–805

 74. O’Quigley J, Iasonos A, Bornkamp B (eds) (2017) Methods for designing, monitoring, and analyz-
ing dose-finding trials. CRC Press, Boca Raton

 75. O’Quigley J, Pepe M, Fisher L (1990) Continual reassessment method: a practical design for phase 
I clinical studies in cancer. Biometrics 46:33–48

 76. Owen JS, Fielder-Kelly J (2014) Introduction to pharmacokinetic/pharmacodynamic analysis with 
nonlinear mixed effects models. Wiley, New York

 77. Padmanabhan SK, Dragalin V (2010) Adaptive Dc-optimal designs for dose finding based on a 
continuous efficacy endpoint. Biom J 52(6):836–852

 78. Padmanabhan SK, Hsuan F, Dragalin V (2010) Adaptive penalized D-optimal designs for dose 
finding based on continuous efficacy and toxicity. Stat Biopharm Res 2(2):182–198

 79. Parker S, Gennings C (2008) Penalized locally optimal experimental designs for nonlinear model. J 
Agric Biol Environ Stat 13(3):334–354

 80. Pronzato L (2010) Penalized optimal adaptive designs for dose finding. J Stat Plan Inference 
140:283–296

 81. Proschan MA, Dodd DE (2019) Re-randomization tests in clinical trials. Stat Med 
38(12):2292–2302

 82. Rabie H, Flournoy N (2004) Optimal designs for contingent response models. In: Di Bucciano A, 
Lauter H, Wynn HP (eds) mODa 7—advances in model-oriented design and analysis. Physica-
Verlag, Heidelberg, pp 133–142

 83. Rabie H, Flournoy N (2013) Optimal designs for contingent response models with application to 
toxicity–efficacy studies. J Stat Plan Inference 143:1371–1379

 84. Rosenberger WF, Canfield GC, Perevozskaya I, Haines LM, Hausner P (2005) Development of 
interactive software for Bayesian optimal phase 1 clinical trial design. Drug Inf J 39:89–98

 85. Rosenberger WF, Haines LM, Perevozskaya I (2001) Constrained Bayesian optimal designs for 
phase I clinical trials: continuous dose space. In: Atkinson AC, Hackl P, Müller WG (eds) mODa 
6—advances in model-oriented design and analysis. Physica-Verlag, Heidelberg, pp 225–233



 Journal of Statistical Theory and Practice           (2020) 14:10 

1 3

   10  Page 28 of 29

 86. Rosenberger WF, Hu F (2004) Maximizing power and minimizing treatment failures in clinical tri-
als. Clin Trials 1:141–147

 87. Rosenberger WF, Stallard N, Ivanova A, Harper CN, Ricks ML (2001) Optimal adaptive designs 
for binary response trials. Biometrics 57:909–913

 88. Rosenberger WF, Sverdlov O (2008) Handling covariates in the design of clinical trials. Stat Sci 
23(3):404–419

 89. Rosenberger WF, Sverdlov O, Hu F (2012) Adaptive randomization for clinical trials. J Biopharm 
Stat 22(4):719–736

 90. Rosenberger WF, Uschner D, Wang Y (2019) Randomization: the forgotten component of the ran-
domized clinical trial. Stat Med 38:1–12

 91. Roth K (2012) Sequential designs for dose escalation studies in oncology. Commun Stat Simul 
Comput 41(7):1131–1141

 92. Roy A, Ghosal S, Rosenberger WF (2009) Convergence properties of sequential Bayesian D-opti-
mal designs. J Stat Plan Inference 139:425–440

 93. Rubinstein RY, Kroese DP (2017) Simulation and the Monte Carlo method. Wiley, New York
 94. Ryeznik Y, Sverdlov O, Hooker A (2018) Adaptive optimal designs for dose-finding studies with 

time-to-event outcomes. AAPS J 20(1):24
 95. Ryeznik Y, Sverdlov O, Hooker A (2018) Implementing optimal designs for dose–response studies 

through adaptive randomization for a small population group. AAPS J 20(5):85
 96. Schou IM, Marschner IC (2017) Design of clinical trials involving multiple hypothesis tests with a 

common control. Biom J 59(4):636–657
 97. Selmaj K, Li DK, Hartung HP, Hemmer B, Kappos L, Freedman MS, Stüve O, Riekmann P, 

Montalban X, Ziemssen T, Auberson LZ, Pohlmann H, Mercier F, Dahlke F, Wallström E (2019) 
Siponimod for patients with relapsing-remitting multiple sclerosis (BOLD): an adaptive, dose-
ranging, randomised, phase 2 study. Lancet Neurol 12(8):756–767

 98. Sheiner LB, Rosenberg B, Marathe VV (1977) Estimation of population characteristics of pharma-
cokinetic parameters from routine clinical data. J Pharmacokinet Biopharm 5:445–479

 99. Silber HE, Nyberg J, Hooker AC, Karlsson MO (2009) Optimization of the intravenous glucose 
tolerance test in T2DM patients using optimal experimental design. J Pharmacokinet Pharmacodyn 
36:281–295

 100. Simon R, Simon NR (2010) Using randomization tests to preserve type 1 error with response-
adaptive and covariate-adaptive randomization. Stat Probab Lett 81(7):767–772

 101. Sitter RR (1992) Robust designs for binary data. Biometrics 48(4):1145–1155
 102. Sitter RR, Fainaru I (1997) Optimal designs for the logit and probit models for binary data. Can J 

Stat 25(2):175–190
 103. Sitter RR, Forbes BE (1997) Optimal two-stage designs for binary response experiments. Stat Sin 

7:941–955
 104. Sitter RR, Wu CFJ (1993) Optimal designs for binary response experiments: Fieller, D, and A cri-

teria. Scand J Stat 20(4):329–341
 105. Stegmann G, Jacobucci R, Harring JR, Grimm KJ (2018) Nonlinear mixed-effects modeling pro-

grams in R. Struct Eq Model Multidiscip J 25(1):160–165
 106. Strömberg EA (2016) Applied adaptive optimal design and novel optimization algorithms for prac-

tical use. Uppsala University. Retrieved from simulated model based adaptive optimal design using 
FDA stopping criteria. An adults to children bridging study example: https ://www.page-meeti 
ng.org/pdf_asset s/7437-MBAOD _simul ation _ES_2.pdf

 107. Strömberg EA, Hooker AC (2017) The effect of using a robust optimality criterion in model based 
adaptive optimization. J Pharmacokinet Pharmacodyn 44:317–324

 108. Sverdlov O, Gao L (2017) Phase I/II dose-finding designs with efficacy and safety endpoints. In: 
O’Quigley J, Iasonos A, Bornkamp B (eds) Methods for designing, monitoring, and analyzing 
dose-finding trials. CRC Press, Boca Raton, FL, pp 81–107

 109. Sverdlov O, Rosenberger WF (2013) On recent advances in optimal allocation designs in clinical 
trials. J Stat Theory Pract 7(4):753–773

 110. Sverdlov O, Ryeznik Y (2019) Implementing unequal randomization in clinical trials with hetero-
geneous treatment costs. Stat Med 38:2905–2927

 111. Sverdlov O, Tymofyeyev Y, Wong WK (2011) Optimal response-adaptive randomized designs for 
multi-armed survival trials. Stat Med 30:2890–2910

 112. Sverdlov O, Wong WK, Ryeznik Y (2014) Adaptive clinical trial designs for phase I cancer stud-
ies. Stat Surv 8:2–44

https://www.page-meeting.org/pdf_assets/7437-MBAOD_simulation_ES_2.pdf
https://www.page-meeting.org/pdf_assets/7437-MBAOD_simulation_ES_2.pdf


1 3

Journal of Statistical Theory and Practice           (2020) 14:10  Page 29 of 29    10 

 113. Thall PF, Wathen JK (2007) Practical Bayesian adaptive randomisation in clinical trials. Eur J Can-
cer 43:859–866

 114. Thompson WR (1933) On the likelihood that one unknown probability exceeds another in view of 
the evidence of two samples. Biometrika 25(3/4):285–294

 115. Tymofyeyev Y, Rosenberger WF, Hu F (2007) Implementing optimal allocation in sequential 
binary response experiments. J Am Stat Assoc 102:224–234

 116. Villar SS, Bowden J, Wason J (2018) Response-adaptive designs for binary responses: How to 
offer patient benefit while being robust to time trends? Pharm Stat 17:182–197

 117. Wang Y (2007) Derivation of various NONMEM estimation methods. J Pharmacokinet Pharmaco-
dyn 34(5):575–593

 118. Wang Y, Ai M (2016) Optimal designs for multiple treatments with unequal variances. J Stat Plan 
Inference 171:175–183

 119. Warfield J, Roy A (2013) A semiparametric sequential algorithm for estimation of dose–response 
curve. Seq Anal 32:196–213

 120. Wong WK (1999) Recent advances in multiple-objective design strategies. Stat Neerl 53:257–276
 121. Wong WK (2013) Web-based tools for finding optimal designs in biomedical studies. Comput 

Methods Progr Biomed 111:701–710
 122. Wong WK, Zhu W (2008) Optimum treatment allocation rules under a variance heterogeneity 

model. Stat Med 27:4581–4595
 123. Woodcock J, LaVange L (2017) Master protocols to study multiple therapies, multiple diseases, or 

both. New Engl J Med 377:62–70
 124. Wu CFJ (1988) Optimal design for percentile estimation of a quantal response curve. In: Dodge Y, 

Fedorov V, Wynn HP (eds) Optimal design and analysis of experiments. Elsevier Science, North 
Holland, pp 213–223

 125. Yang M, Biedermann S, Tang E (2013) On optimal designs for nonlinear models: a general and 
efficient algorithm. J Am Stat Assoc 108(504):1411–1420

 126. Yang M, Stufken J (2009) Support points of locally optimal designs for nonlinear models with two 
parameters. Ann Stat 37(1):518–541

 127. Yi Y, Yuan Y (2013) An optimal allocation for response-adaptive designs. J Appl Stat 
40(9):1996–2008

 128. Yuan Y, Nguyen HQ, Thall PF (2016) Bayesian designs for phase I-II clinical trials. CRC Press, 
Boca Raton

 129. Zhang L, Rosenberger WF (2006) Response-adaptive randomization for clinical trials with con-
tinuous outcomes. Biometrics 62:562–569

 130. Zhang L, Rosenberger WF (2007) Response-adaptive randomization for survival trials: the para-
metric approach. Appl Stat 56(2):153–165

 131. Zhu H, Hu F (2009) Implementing optimal allocation for sequential continuous responses with 
multiple treatments. J Stat Plan Inference 139:2420–2430

 132. Zhu W, Wong WK (2001) Bayesian optimal designs for estimating a set of symmetrical quantiles. 
Stat Med 20:123–137

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	On Optimal Designs for Clinical Trials: An Updated Review
	Abstract
	1 Introduction
	2 Optimal Designs for Dose-Finding Clinical Trials
	2.1 Phase I Dose-Escalation Studies
	2.2 Phase III Efficacy–Toxicity Studies
	2.3 Phase II Dose-Ranging Studies

	3 Optimal Designs for Phase III Randomized Comparative Trials
	3.1 Two-Arm Trials
	3.2 Multi-arm Trials
	3.3 Response-Adaptive Randomization

	4 Optimal Designs for Population PK Experiments
	4.1 Population Modeling of PKPD Data
	4.2 Population Optimal Designs
	4.3 Adaptive Optimal Designs

	5 Discussion
	Acknowledgements 
	References




