
UC Merced
UC Merced Electronic Theses and Dissertations

Title
Lane Determination and Optimization for Multi-Agent Systems

Permalink
https://escholarship.org/uc/item/3gq6q71c

Author
Khazaei Pool, Maryam

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3gq6q71c
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, MERCED

Lane Determination and Optimization for Multi-Agent Systems

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Electrical Engineering and Computer Science
in the Graduate Division of

the University of California, Merced

by

Maryam Khazaei Pool

Committee in charge:

Professor Sungjin Im, Chair
Professor Marcelo Kallmann
Professor Shawn Newsam
Professor David Noelle

Fall 2023

Copyright

Maryam Khazaei Pool, Fall 2023

All rights reserved.

The dissertation of Maryam Khazaei Pool is ap-

proved, and it is acceptable in quality and form

for publication on microfilm and electronically:

(Professor Marcelo Kallmann)

(Professor Shawn Newsam)

(Professor David Noelle)

(Professor Sungjin Im, Chair)

University of California, Merced

Fall 2023

iii

DEDICATION

To my family

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . viii

Acknowledgements . ix

Vita and Publications . x

Abstract . xi

Chapter 1 Introduction . 1

Chapter 2 Literature Review . 6
2.1 Sampling-based Path Planners 6
2.2 Shortest-Path Algorithms 10
2.3 Numerical Path Optimization Techniques 14
2.4 Geometric Path Optimization Techniques 15
2.5 Shortcut-based Optimization Techniques 16
2.6 Trajectory Optimization Techniques 17
2.7 Multi-agent Path Optimization Techniques 18

Chapter 3 Path Smoothing by Deterministic Shortcuts 22
3.1 Introduction . 22
3.2 Related Work . 23
3.3 Definition and Models 24
3.4 Methodology . 26

3.4.1 Disk Test . 26
3.4.2 Corner Test . 27
3.4.3 Termination Condition 29
3.4.4 DSS Method . 29
3.4.5 Random shortcut Method 31

3.5 Evaluation and results 34
3.6 Conclusion . 36

v

Chapter 4 Optimizing Curvature and Clearance of Piecewise Bézier Paths 38
4.1 Introduction . 38
4.2 Related Work . 39
4.3 Mathematical model and Definitions 42
4.4 Method . 44

4.4.1 Problem Statement 44
4.4.2 Generating the Initial Piecewise Bézier Path . . . 45
4.4.3 Optimization Variables 48
4.4.4 Multi-Objective Optimization Function 48
4.4.5 Optimization Constraints 51
4.4.6 Convex Optimization Problem 53

4.5 Results and Evaluation 54
4.5.1 Input Paths . 54
4.5.2 Experiments . 55
4.5.3 Discussion . 56
4.5.4 Curvature Control 59
4.5.5 Conclusion . 60

Chapter 5 Multi-Objective Path Optimization for Sets of Lanes in Clut-
tered Environments . 62
5.1 Introduction . 62
5.2 Related Work . 64

5.2.1 Geometric Optimization Methods 64
5.2.2 Numerical Optimization Methods 66

5.3 Method . 69
5.3.1 Problem Description 69
5.3.2 Proposed Method 75
5.3.3 Alternative Approaches 77

5.4 Results and Evaluation 80
5.4.1 Experiments . 80
5.4.2 Discussion . 82
5.4.3 Conclusion . 90

Chapter 6 Conclusion . 91
6.1 Future Directions . 92

Chapter 7 Appendix . 93

Bibliography . 106

vi

LIST OF FIGURES

Figure 2.1: RRT Path Planning . 8
Figure 2.2: Taxonomy of Shortest-Path Algorithms 11

Figure 3.1: Corner Test example 1 . 28
Figure 3.2: Disk Test example 1 . 29
Figure 3.3: Comparison of Corner and Disk Tests 1 31
Figure 3.4: Comparison of Corner and Disk Tests 2 32
Figure 3.5: DSS in Mixed environment . 35
Figure 3.6: DSS in Regular Environment 36

Figure 4.1: Bezier Curves up to degree 3 44
Figure 4.2: Transforming to piecewise quadratic Bézier curves 47
Figure 4.3: Visualization of the Distance Constraint 51
Figure 4.4: Single Agent Convex Optimization in Regular Environment . . 57
Figure 4.5: Close-up in Maze Environment 57
Figure 4.6: Single Agent Convex Optimization in Maze Environment . . . 58
Figure 4.7: Differing objective functions in Maze environment 58
Figure 4.8: Curvature Scalar Field . 61

Figure 5.1: Multi-agent Distance Constraint 73
Figure 5.2: First illustration of environments 81
Figure 5.3: Second illustration of environments 81
Figure 5.4: Multi-agent Baseline Convex Optimization 84
Figure 5.5: Multi-agent Baseline versus Interleaving Convex Optimization 1 85
Figure 5.6: Effect of objective function using MICO 85
Figure 5.7: Effect of objective function using MICO 86
Figure 5.8: Multi-agent Interleaving Optimization in Teeth environment . 87
Figure 5.9: Multi-agent Interleaving Convex Optimization in Elbow Envi-

ronment . 87
Figure 5.10: Multi-agent Interleaving Convex Optimization in Elbow Envi-

ronment . 88
Figure 5.11: Multi-agent Convex Optimization in Mixed Environment . . . 88

Figure 7.1: Cubic Bézier Curve Control Points 103
Figure 7.2: Cubic Bézier Curve Disk Test 1 104
Figure 7.3: Cubic Bézier Curve Disk Test 2 104
Figure 7.4: Cubic Bézier Curve Disk Test 3 105

vii

LIST OF TABLES

Table 3.1: Comparison of Shortcut methods 37

Table 4.1: Properties of Optimization Methods 42
Table 4.2: Single-agent Convex Optimization in Elbow environment 55
Table 4.3: Single-agent Convex Optimization in Maze environment 55

Table 5.1: Numerical comparison of multi-agent convex optimization tech-
niques in the “ Regular ” environment. MICO on average com-
puted the path with the best path length, and max curvature,
min clearance. Notation: T = Time in seconds, K = Curvature,
L = Length, and C = Clearance. 86

Table 5.2: Numerical comparison of multi-agent convex optimization tech-
niques in the “ Mixed ” environment. MICO on average com-
puted the path with the best computational time, path length,
and average curvature, and clearance. Notation: T = Time in
seconds, K = Curvature, L= Length, and C = Clearance. 89

Table 5.3: Multi-agent Objective Functions in Teeth environment 89

viii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my PhD supervisor, Professor

Marcelo Kallmann, for his unwavering support, guidance, and expertise through-

out this doctoral journey. His insightful feedback and encouragement have been

invaluable in shaping the direction of my research.

I would like to convey my sincere thanks to my PhD advisor Professor Sungjin Im,

for his encouragement, expertise throughout this doctoral journey and guidance.

I appreciate the collaborative efforts of both mentors, and I am fortunate to have

such dedicated and inspiring individuals supporting my academic endeavors.

I extend my sincere gratitude to committee members Professor Sungjin Im, Pro-

fessor David Noell, and Professor Shawn Newsam for generously dedicating their

time, offering invaluable guidance, and demonstrating remarkable patience during

both my qualifying examination and thesis defense. Their expertise and construc-

tive feedback have significantly enriched the quality of my research.

In this moment of accomplishment, I wish to extend my deepest appreciation to

my husband Matthew. His belief in my abilities has been a constant source of

motivation. I extend my appreciation to my family specially my mother and my

father for their unconditional love and encouragement.

This dissertation would not have been possible without the financial assistance

provided by Teaching Fellow and Teaching Assistant from University of Califor-

nia, Merced. I am sincerely thankful for the support from Professor Sungjin Im,

Professor Shawn Newsam, and Professor Cerpa which allowed me to focus on my

studies and research.

ix

VITA

2013 B. S. in Applied Mathematics cum laude, Iran Univer-
sity of Science and Technology (IUST), Tehran

2018 M. S. in Applied Mathematics cum laude, University
of Colorado, Denver

2023 Ph. D. in Electrical Engineering and Computer Sci-
ence, University of California, Merced

PUBLICATIONS

Maryam Khazaei, Carlos Alvarenga, Marcelo Kallmann, “Deterministic Single-
Agent Path Optimization in 2D”, IEEE 18th International Conference on Au-
tomation Science and Engineering (CASE), Oral presentation Paper, 2022

Maryam Khazaei, Carlos Alvarenga, Marcelo Kallmann,“Path Smoothing with
Deterministic Shortcuts”, 2022 IEEE Robotic Computing (IRC), page 411-415,
Italy, 2022

Maryam Khazaei, Matthew Morozov, Marcelo Kallmann,“Optimizing Curvature
and Clearance of Piecewise Bézier Paths”, IEEE International Conference on Con-
trol, Mechatronics and Automation (ICCMA), Norway, 2023

Maryam Khazaei, Matthew Morozov, Marcelo Kallmann,“Multi-Objective Multi-
Robot Path Planning in Continuous Environment using Convex Optimization”,
To be submitted, 2023

Maryam Khazaei, Lori Lewis, “A Review on Higher-Order Spline Techniques for
Solving Burgers Equation Using Variation of B-Spline Techniques”, International
Conference on Advances in Applied and Engineering Mathematics, San Francisco,
United States, 2022

Maryam Khazaei, Yeganeh Karamipour, “The Spline Collocation Method for Solu-
tion of The Linear Seventh Order Boundary Value Problems”, Journal of Applied
Mathematics and Physics, page 3058-3066, 2021

Jalil Rashidinia, Maryam Khazaei, Hassan Nikmarvani, “Spline collocation method
for solution of higher order linear boundary value problems”, Turkic World Math-
ematical Society (TWMS) Journal of Pure and Applied Mathematics, page 38-47,
2015

x

ABSTRACT OF THE DISSERTATION

Lane Determination and Optimization for Multi-Agent Systems

by

Maryam Khazaei Pool

Doctor of Philosophy in Electrical Engineering and Computer Science

in the Graduate Division of

the University of California, Merced

University of California Merced, Fall 2023

Professor Sungjin Im, Chair

Path planning and path optimization are enduring areas of interest in the fields

of computer science and automation. With the increasing presence of autonomous

mobile robots in industries such as agriculture, manufacturing, and shipping, it is

essential that we develop and improve methods for both planning and optimizing

plans for agents in diverse environments. In this thesis I focus on path smoothing

and optimization methods with customized properties and their application to

optimizing multiple non-intersecting paths, which we also refer to as sets of lanes.

First I propose a new path smoothing method based on the approach of deter-

ministic shortcuts. The presented method addresses limitations of the the popular

random shortcuts method, and demonstrates superior results as measured both

in terms of path length and smoothness. As common in such methods, the path

is represented here as a polygonal line and smoothness quality is measured as

the worst angle on the path. The proposed approach also provides user-specified

quality-based termination conditions.

I then present a method that addresses a continuous path representation, by

employing piecewise Bézier curves for the path representation. In this way, the

optimized paths guarantee C1 continuity and also enable taking into account cur-

vature constraints, which are important on a number of applications. Given this

xi

representation, I then propose a new path optimization scheme based on convex

optimization of piecewise quadratic Bézier paths. The proposed method targets a

minimum required clearance from obstacles while minimizing path length and max-

imum curvature. The user is able to customize the objective function by assigning

different weights to the clearance, length, and curvature terms.

Finally I introduce a priority-based approach to improve the application of

the piecewise quadratic Bézier optimization scheme to multi-agent applications

where a set of non-intersecting paths, or lanes, needs to be optimized. The pro-

posed approach is called Multi-agent Interleaving Convex Optimization (MICO),

where a priority-based approach is used to interleave the optimization of the

individual lanes, such that convergence is achieved faster than alternative ap-

proaches. I present results comparing MICO to two other optimization strategies:

the first is a Multi-agent Baseline Convex Optimization (MBCO) approach where

lane optimization is interleaved without any particular priority, and the second

method, called Piecewise Quadratic Bézier Curve Multi-agent Convex Optimiza-

tion (MCO), applies the same optimization scheme to all the piecewise Quadratic

Bézier paths simultaneously in a single optimization scheme.

Users can still fine-tune the objective function by assigning different weights to

clearance, length, and curvature terms, ensuring adaptability to various scenarios.

In conclusion, this work provides three new approaches to path optimization for

multi-agent systems. The proposed methods address path optimization schemes

that simultaneously optimizes for clearance, length, and curvature, providing flex-

ibility and adaptability for various application requirements. This work also opens

the door to the problem of developing multi-lane path planning and smoothing

approaches, providing valuable tools for addressing certain types of multi-agent

planning problems in robotics, autonomous vehicles, and simulated autonomous

agents.

xii

Chapter 1

Introduction

Path planning and path optimization are two important areas of research in

the fields of computer science and automation. Path planning and optimization

are crucial for the efficient and safe operation of autonomous mobile robots in

various industries. In the manufacturing industry, path planning and optimization

techniques can help to minimize the time taken by robots to move between different

workstations, thereby increasing productivity and reducing costs. For instance, a

recent study by Jin et al [47] proposed an optimized path planning technique for

additive manufacturing that helps to improve the quality and uniformity of printed

parts. Similarly, in the shipping industry, path planning and optimization can help

to reduce fuel consumption and minimize the time taken by ships to reach their

destinations. Modern route planning systems use global weather forecasts to build

optimal routes, which can help to ensure that ships arrive safely and on time at

their ports of destination [38,46,47]. These examples demonstrate the importance

of path planning and optimization in diverse industries and the potential benefits

that can be achieved by developing and improving these methods [70].

Path planning and optimization may be applied to 2-dimensional, 3-dimensional,

or higher-dimensional configuration spaces. For path planning, the goal is gener-

ally to find a continuous set of configurations connecting an initial configuration to

a goal configuration which satisfy certain environmental constraints, such as not

crossing obstacles or limiting the range of motion of an actuator that will be used

to execute the path. In 2 dimensions, we may represent a path as a set of piecewise

1

2

linear segments. Alternative path representations use higher order curves to better

represent smooth executable paths. Path optimization seeks to improve a given

path according to domain-specific or user-defined criteria. Updates may come in

the form of changing a single vertex, path segment, or the entire representation

of the path at once. Methods for both path planning and path optimization are

discussed in greater detail in the literature review sections and in the state of the

art discussion included in each chapter.

In my research, I have explored the topic of path optimization and proposed sev-

eral novel methods, such as the Deterministic Shortcut-based Smoothing method,

and Quadratic Bézier Convex Optimization methods for single-agent and multi-

agent systems. In developing each method, I have considered the trade-offs of the

existing methods in the literature and demonstrated how I was able to push for-

ward the state of the art. This involved discovering the practical challenges and

advantages when using these techniques in real-world situations, especially when

dealing with multi-lane systems. Chapter 2 establishes context for this work in the

broader literature. In this section, I discuss the existing optimization techniques

for path smoothing such as Shortcut methods, Numerical optimization method,

and Geometric optimization methods.

My first work proposed a shortcut-based path smoothing method which uti-

lized a novel technique for determining the free space available to vertices of a

linear path. Chapter 3 presents this method, which is named Deterministic Short-

cut Smoothing (DSS). Here, a polygonal path is considered smooth if the angle

between path segments at each vertex is large. We do not consider smoothness

beyond this definition for this section. The goal of this definition of smoothness

is to approximate a continuous differentiable path. We compare against the pop-

ular random shortcut technique and we show to improve some of its weaknesses,

which include not having quality-based termination conditions, and being prone

to miss smoothing tight areas which are unlikely to be sampled. As a result, our

prioritized shortcut selection and quality-based termination conditions result in a

method that outperforms the random shortcuts approach both in terms of path

length, average angle, worst-case angle, and running time. Polygonal paths, which

3

are comprised of linear segments, are not suitable for all applications. My main

interest in developing this method was to apply it to optimizing and improving the

quality of multiple lanes in a lane system. Therefore, my next chapter addresses

a path representation relying on Bézier curves. This way, I was able to address a

continuous definition of smoothness, such as C1 continuity.

My second work described in chapter 4 presents a novel method for path opti-

mization that combines piecewise quadratic Bézier curves with convex optimization

to produce smooth, and obstacle-avoiding paths. Starting with a transformation

method that turns piecewise linear paths into piecewise quadratic Bézier curves, we

discuss the challenges of ensuring C1 continuity and shaping the objective function

to balance the trade-offs between path length, curvature, and being collision-free.

The approach, referred to as the Quadratic Bézier Convex Optimization (QBCO)

method, prioritizes not only the length of the path but also takes into account

crucial aspects such as continuity, curvature, and obstacle clearance.

A distinctive feature of QBCO lies in its user-friendliness, allowing individu-

als to customize the objective function by assigning specific weights to clearance,

length, and curvature parameters. As a result, QBCO emerges as a versatile so-

lution with promising applications in robotics and autonomous vehicles. QBCO’s

distinguishing feature lies in its adaptability, empowering users to fine-tune the ob-

jective function of our convex optimization problem to their specific requirements.

Our previously proposed work considered path optimization for only one agent

at a time and used a standard Rapidly-Exploring Random Tree (RRT) method

[1, 3] to generate the paths used to test the presented optimization methods. For

the work proposed in chapter 5, I have explored a rich set of new problems from

expanding the scope of planning to generating multiple non-intersecting paths,

or lanes, and then optimizing the lane systems for multiple agents. In chapter

5, I propose three convex optimization algorithms, each of which is tested by

first generating paths with a multi-agent version of RRT, refining them through

multi-agent DSS, and transforming piecewise linear paths into piecewise quadratic

Bézier curves for further smoothing while maintaining C1 continuity. This method

maintains the user-specified objective function from my work in the single-agent

4

case, while solving challenges unique to multi-agent systems. In this work, I do

not focus on developing a new planner. Instead, I modified existing planners to

generate multi-lane systems that can be optimized using the path optimization

methods presented in this work.

The Multi-agent Baseline Convex Optimization Method (MBCO) adopts a se-

quential and individual optimization strategy for each path lane. This straight-

forward approach optimizes one lane at a time, treating each lane as a separate

entity. The optimization process utilizes single-agent optimization technique dis-

cussed chapter 4, considering each other lane as an obstacle for the current lane.

The algorithm iteratively adjusts paths using convex optimization, accounting for

real obstacles, and returns an efficient set of paths.

Our proposed algorithm, Multi-agent Interleaving Convex Optimization Method

(MICO), presents a novel approach by iteratively optimizing each lane in turns.

It initiates with a small optimization step for lane 1, progresses to lane 2, and

repeats the process. Similar to the MBCO, it employs a single-agent optimiza-

tion technique, treating other lanes as obstacles. The prioritization criteria are

heuristic-based, considering factors such as path length, the sharpest angle of the

path, and proximity to obstacles to determine the order of optimization. The al-

gorithm uses a weighted scoring system to select the path with the highest overall

score for optimization, contributing to a faster convergence time for all paths.

We refer to the global convex optimization of all paths in the multi-lane sys-

tem as the Piecewise Quadratic Bézier Curve Multi-agent Convex Optimization

(MCO). This method creates a single convex optimization problem for all the

paths together, minimizing a combination of factors such as curvature, clearance,

and length. The problem is subject to various constraints, ensuring continuity

and specific conditions at the start, end, and critical points of the path. The algo-

rithm runs the optimization program iteratively, updating the Bézier path with the

values calculated through convex optimization until convergence is reached. This

iterative process allows for capturing changes in the path’s shape and updating

distance constraints for precise optimization, providing an improved set of paths

for multi-agent path planning.

5

Main Contributions: In summary, this thesis presents contributions to the

research community in the areas of single and multi-path optimization. The pro-

posed methods address both single and multi-agent systems in 2D environments

with diverse obstacle configurations. The contributions include a deterministic

shortcut method for polygonal paths, a convex optimization model for paths de-

fined as piecewise Bézier curves, and an optimized priority-base approach to ad-

dress systems of multiple lanes for multi-agent problems. Furthermore, I extended

the classical RRT path planner to be able to plan multiple non-intersecting paths

simultaneously with high probability of success in order to generate multi-lane

solutions that were used in the presented benchmarks and evaluations.

Chapter 2

Literature Review

Path planning and optimization techniques have been extensively researched

in the fields of computer science and automation.

This literature review briefly discusses popular approaches for path planning

and discusses optimization techniques based on shortcuts, geometry, and numer-

ical solvers. We highlight the specific case of trajectory optimization and the

constraints that systems with dynamic models present. Finally we summarize the

approaches as they apply to multi-agent or multi-lane systems, as these are the

most relevant for our most recent works.

2.1 Sampling-based Path Planners

Sampling-based path planners are a family of algorithms that are used to solve

path planning problems. These planners create possible paths by randomly adding

points to a graph or tree until some solution is found or time expires. They are

probabilistic complete, meaning that the probability to find a path approaches one

when time goes to infinity [33,66]. PRMs and RRTs are two of the most commonly

used path planning algorithms, with many variations available. Additionally, there

are asymptotically optimal versions of these algorithms, namely PRM* and RRT*.

PRM* and RRT* are extensions of PRMs and RRTs, respectively, that are de-

signed to find the optimal solution to the path planning problem. They are shown

to be asymptotically optimal, with the probability of finding the optimal solution

6

7

approaching unity as the number of iterations approaches infinity. Two prominent

examples of sampling-based planners are Rapidly-exploring Random Trees (RRT)

and Probabilistic Roadmaps (PRM). RRT can be understood as growing a single

tree from a robot’s starting point until one of its branches hits a goal. PRM create

a tree by randomly sampling points in the state-space, testing whether they are

collision-free, connecting them with neighboring points using paths that reflect the

kinematics of a robot, and then using classical graph shortest path algorithms to

find shortest paths on the resulting structure. These algorithms have been used in

a variety of applications, including additive manufacturing and mobile robot path

planning [33,51,66,74].

Rapidly-Exploring Random Tree Planner

Rapidly-exploring Random Tree (RRT) methods, have attracted attention over

the last decade and are proposed as effective planning algorithms in high-dimensional

spaces [1, 3, 58,101].

The Rapidly-exploring Random Tree (RRT) algorithm is a motion planning

algorithm that efficiently searches non-convex, N-dimensional spaces by randomly

building a space-filling tree. The algorithm was developed by Steven M. LaValle

and James J. Kuffner Jr.

The idea of the algorithm for RRT is explained as follows:

• Initialize the tree T with the initial configuration qinit.

• Repeat the following steps until either a goal configuration qgoal is added to

T or a time limit is reached:

• Generate a random configuration qrand.

• Find the node n in T that is closest to qrand.

• Steer from node n towards qrand to generate a new configuration qnew. If the

path from node n to qnew is collision-free, we add qnew to T and add an edge

from node n to qnew.

8

Figure 2.1: This image represents a visualization of the RRT algorithm’s path
planning process.

In the visual representation of Figure 2.1, we can see the tree growing from

the initial configuration qinit towards the goal configuration qgoal. The algorithm

explores the configuration space by repeatedly extending the tree towards random

points qrand, ultimately finding a path from the start to the goal (if one exists)

while avoiding obstacles. The dynamic nature of the RRT algorithm is showcased

as it efficiently explores and expands towards the goal. Sampling-based algorithms

depend on collision checking in order to determine the feasibility of possible tra-

jectories. This sampling generates a graphic road-map which avoids an explicit

representation of the Configuration Space. These algorithms provide probabilistic

completeness. This means that, as more samples are taken, the probability that

the planner fails to find a path asymptotically approaches zero, if a path exists.

Piecewise-linear trajectories obtained from RRT may be jerky or have sharp turns,

which effects the efficiency of agents following those trajectories. As a result, the

importance of generating smooth trajectories and feasible motions is considered.

Ravankar et al [86] summarized the state of the art, noting the importance across

all smoothing methods of considering dynamic and kinematic constraints in path

planning and optimization. Dynamic properties of robots also play a major role in

control theory, as exemplified by a paper by Wu et al [95] on the topic of controlling

9

5-DOF machine tools.

Path smoothing and optimization is a topic which has been studied by many re-

searchers. Path optimization techniques play a crucial role in refining the generated

paths to improve their quality. Researchers have explored different optimization

objectives, such as minimizing path length, reducing energy consumption, and op-

timizing other performance metrics [23]. Trajectory optimization builds upon path

optimization by considering the dynamics and constraints of the robot. It aims

to find an optimal control solution that guides the robot along the desired path

while satisfying various constraints, such as actuator limits and obstacle avoidance.

Optimal control techniques, such as model predictive control (MPC) and direct col-

location methods, have been extensively studied for trajectory optimization. While

some methods, like our discrete shortcut-based smoothing method [56], are based

on iterative shortcuts, a wide range of techniques focusing on the generation of

smooth paths have been proposed. From a broad view, one possible classifica-

tion for single-robot path planning is outlined by numerical optimization-based

methods, geometric-based methods and shortcut-based iterative methods.

Probabilistic Roadmap Planner

The probabilistic roadmap planner (PRM) has been studied by many resear-

chers [2, 12]. The probabilistic roadmap planner (PRM) is a planning algorithm

in robotics that helps robots find a path between a starting configuration and a

goal configuration while avoiding collisions. The PRM takes random samples from

the robot’s configuration space, testing them to see if they are in free space, and

uses a local planner to connect these configurations to other nearby configurations.

The starting and goal configurations are added to the graph, and a graph search

algorithm is applied to determine a path between them.

Comprising two main phases, PRM begins with a construction phase wherein

a roadmap or graph is created to approximate feasible motions within the environ-

ment. This involves the generation of random configurations that are subsequently

connected to neighbors, typically defined by either the k nearest neighbors or all

neighbors within a predetermined distance. Configurations and connections are

10

continuously added to the graph until a satisfactory level of density is achieved.

In the subsequent query phase, the start and goal configurations are linked to the

graph, and the path is derived through a Dijkstra’s shortest path query.

Given certain relatively weak conditions on the shape of the free space, PRM

is probabilistically complete. The rate of convergence depends on certain visibility

properties of the free space, where visibility is determined by the local planner. If

each point can see a large fraction of the space, and also if a large fraction of each

subset of the space can see a large fraction of its complement, then the planner

will find a path quickly. The invention of the PRM method is credited to Lydia

E. Kavraki [52, 53, 94]. There are many variants on the basic PRM method, some

quite sophisticated, that vary the sampling strategy and connection strategy to

achieve faster performance [81].

2.2 Shortest-Path Algorithms

A shortest-path algorithm is a method to find the path between two vertices in

a graph that has the minimum cost. The shortest-path problem is a well-studied

topic in computer science, particularly in graph theory. An optimal shortest-path

is one that satisfies the minimum length criteria from a source to a destination.

Due to the problem’s numerous and diverse applications, there has been a surge of

research in shortest-path algorithms. These applications include network routing

protocols, route planning, traffic control, path finding in social networks, computer

games, and transportation systems, among others [71].

Most shortest-path algorithms can be grouped into two main types. The first

type focuses on finding the shortest paths from one starting point to all other

points in the graph, known as single source shortest-path (SSSP). The second type

determines the shortest paths between every pair of vertices in the graph, which

is called all-pairs shortest-path (APSP).

The classification system illustrated in the subsequent Figure 2.2 provides a

taxonomy for organizing various categories of shortest-path problems. This is one

approach to structuring such a classification [71].

11

Figure 2.2: Taxonomy of Shortest-Path Algorithms

The static branch in Figure 2.2 lists algorithms that operate over graphs with

fixed weights for each edge. The weights can represent distance, travel time, cost,

or any other weighting criteria. The SSSP algorithms compute the shortest-path

from a given vertex to all other vertices. The APSP algorithms compute the

shortest-paths between all pairs of vertices in the graph. Hierarchical algorithms

break the shortest-path problem into a linear complexity problem, which can lead

to enhanced performance in computation by orders of magnitude. Goal-directed

algorithms optimize in terms of distance or time toward the target solution. Dis-

tance oracle algorithms include a pre-processing step to speed up the shortest-path

query time. Distance oracle algorithms can either be exact or approximate. The

dynamic branch in Figure 2.2 lists algorithms that process update or query op-

erations on a graph over time [71]. The update operation can insert or delete

edges from the graph, or update the edge weights. The query operation computes

the distance between source and destination vertices. Dynamic algorithms include

12

both APSP and SSSP algorithms. Time-dependent algorithms target graphs that

change over time in a predictable fashion. Stochastic shortest-path algorithms

capture the uncertainty associated with the edges by modeling them as random

variables. Parametric shortest-path algorithms compute a solution based on all

values of a specific parameter. Replacement path algorithms compute a solution

that avoids a specified edge, for every edge between the source vertex and the desti-

nation vertex. Replacement paths algorithms achieve good performance by reusing

the computations of each edge it avoids. On the other hand, alternative path al-

gorithms also compute a shortest path between vertices that avoids a specified

edge [71]. The distinguishing factor between both categories is that replacement

path algorithms compute a solution for every edge between the source vertex and

the destination vertex, whereas alternative path algorithms only compute a single

shortest path between vertices that avoids a specified edge [71].

Practical surveys such as [105] have been conducted on the topic of shortest-

path algorithms. This survey focuses on exact and approximate shortest-path

algorithms, including single-source shortest-path (SSSP), all pairs shortest-path

(APSP), spanners, and distance oracles. The survey highlights the various vari-

ations that each category adopts when handling negative and non-negative edge

weights as well as directed and undirected graphs [105].

Algorithms intended for traffic applications, particularly route planning tech-

niques, are the subject of numerous surveys. Holzer et al [42] categorize Dijkstra’s

algorithm variants based on the speedup techniques that are used. The kind of

data used in oracle methods greatly influences how effective speed-up strategies

are. Furthermore, the optimal speedup method is contingent upon the RAM,

layout, and acceptable preparation time. The goal of heuristic algorithms is to

reduce calculation time. The primary characteristics of heuristic algorithms and

their computational expenses are suggested by the survey [31].

Good worst-case and average-case bounds over a graph are demonstrated by

the survey [36]. From a theoretical perspective, Goldberg [36] looks into how well

point-to-point shortest path algorithms perform over road networks. In addition to

reviewing algorithms like Dijkstra and A∗, Goldberg provides examples of heuristic

13

methods for calculating the shortest path given a section of the graph.

Farias et al [30] present an improved method for computing shortest path maps

using OpenGL shaders. The authors use GPU rasterization to propagate optimal

costs on a 2D environment, producing efficient shortest path maps. The method

handles both point and line segment sources. The paths produced have global op-

timality, which is often neglected in animated virtual environments. The approach

is suitable for animating multiple agents moving toward entrances or exits in a vir-

tual environment. This work focuses on the Multi-agent Random Shortcut Method,

where initial paths are derived from the Max Flow algorithm. In contrast, our re-

search emphasizes Multi-agent Convex Optimization on piece-wise Bezier curves,

with initial paths obtained from the Rapidly-exploring Random Tree (RRT) al-

gorithm. This highlights the different approaches and methodologies employed

in path optimization. While Random shortcut method can be simpler and faster

for some problems due to its straightforward implementation and the fact that it

does not require complex computations or the need to satisfy any constraints [8],

piecewise Bezier curves, compared to piecewise linear paths, offer smoothness,

flexibility in shape manipulation, and curvature control. They provide a better

physical interpretation of motion, making them suitable for applications like com-

puter graphics and autonomous vehicle path planning. Moreover, the proposed

convex optimization methods have C1 continuity and allow for the incorporation

of constraints, making it a more flexible and powerful tool for path optimization.

The Max Flow algorithm is designed to identify the maximum number of paths

traversing from a start region to a goal region. On the other hand, the work on

this thesis focus on the optimization phase. The Rapidly-exploring Random Tree

(RRT) algorithm used to compute multiple lanes does not guarantee finding the

maximum number of paths however it is extendible to multiple dimensions, which

is one of the reasons for the popularity of such methods.

14

2.3 Numerical Path Optimization Techniques

In terms of trajectories, optimization techniques require appropriate objective

functions, collision checks with obstacles, and constraints on velocity and accel-

eration in order to build smooth trajectories [20]. Studies show that applying

optimization techniques such as B-spline trajectory planning have resulted in high-

quality trajectories in terms of smoothness and in terms of reducing unnecessary

motions [20]. One of the limitations of these methods is the reliance on an ini-

tial trajectory. These initial trajectories are relatively simple, and the proposed

optimization methods are not effective on complicated trajectories.

A Chaos-based Particle Swarm Optimization (CPSO) system has been pro-

posed to find control points for a Bézier curve so as to produce a path that avoids

collisions and minimizes path length [91]. The authors studied how different chaos

maps effect the final solution and demonstrated that the proposed method outper-

forms non-chaos PSO. The algorithm performs local spline refinement to compute

smooth, collision-free paths in narrow passages and satisfy velocity and accelera-

tion constraints.

Several smoothing techniques relying on curve interpolation such as Bézier

Curves [90], Splines [59] and Polynomial Basis Functions [84] have been developed.

Considering the fact that B-spline curves take local modifications into consider-

ation without the overall path changes, B-spline curves are used for describing

the motion trajectory of robot [78]. The problem of shape representation using

free-form curves or surfaces is solved with B-spline curves in computer graphics

[55,73].

Pan et al [80] presented a path optimization technique include a local spline

refinement to compute smooth, collision-free paths in narrow passages and satisfy

velocity and acceleration constraints.

CHOMP optimizes an initial trajectory iteratively using functional gradient

techniques [104]. Despite some techniques focusing on computing feasible paths,

CHOMP optimizes in dynamic environments and uses task-based criteria. Using

Covariant Hamiltonian gradient descent, CHOMP minimizes trajectory velocities

while keeping configurations collision-free for the agents. However, finding the

15

global optimum might lead to obtaining high-cost local minima. Additionally,

CHOMP does not function properly when the initial trajectory is far from obsta-

cles.

Stochastic Trajectory Optimization for Motion Planning (STOMP) is an algo-

rithm introduced by Kalakrisshnan et al [49] inspired by the CHOMP algorithm.

This algorithm outperforms gradient based-methods like CHOMP when finding

the local minimum cost function. STOMP samples a series of noisy trajectories

near to the initial path to reduce trajectory cost. One of the limitations of STOMP

and CHOMP is their performance when finding feasible solutions when the number

of constraints is high.

Heiden et al [40] proposed a Gradient-informed post-smoothing algorithm with

two phases: deformation of trajectories by the placement of vertices; and pruning

of the path with shortcuts. These phases generate continuous trajectories which

can avoid collision in dynamic environments.

Yang et al [97] presented a gradient-free optimization technique which they

call the Double Layer Ant Algorithm. The authors perform Turning Point Opti-

mization and Piecewise B-spline smoothing to improve the initial path.

2.4 Geometric Path Optimization Techniques

Optimizers that rely on geometric path representations are quite popular. For

example, Choi and colleagues [16–19] have developed path planning algorithms for

autonomous vehicles that use Bézier curves to generate paths, taking into account

waypoint and corridor constraints.

Similar to our work, they break the path into segments using Bézier curves and

aim to make the path smooth while ensuring it does not have sharp turns. They

also ensure the path is collision-free by dividing the space into sections within a

specified corridor. However, their approach requires pre-computing the corridor

and does not allow for customization based on factors like curvature and clearance

from obstacles.

In contrast, our approach automatically defines a corridor using a set of free

16

disks placed around the path. This corridor adapts as the optimization process

unfolds. Unlike the approach by Choi et al [17], we do not restrict the control

points of the Bézier curve to be inside the free space. Instead, we allow control

points to extend outside the free space as long as the path remains collision-free.

Additionally, our approach lets users customize the importance of factors like path

length, curvature, and clearance in the optimization process.

Another related work is by Cimurs et al [21], where they use Bézier curves for

path smoothing. However, their method focuses on simplifying paths and ensuring

they are short and smooth without using optimization techniques. They also do

not consider curvature as a part of the smoothing process.

2.5 Shortcut-based Optimization Techniques

A lack of simple and effective methods with quality-based termination condi-

tions can be observed in the traditional shortcut methods [35,39,43,82]. Random

shortcut heuristic methods replace jerky portions of a path with shorter segments in

the configuration space and check if they are collision-free. The sub-path between

the two vertices on the path will be replaced with a straight segment if it is collision

free. The implementation of shortcut techniques is simple, fast, and produces high-

quality paths in many cases [35,50,54]. However, these implementations might not

be able to provide higher-order smoothness. Also, collision checking along higher

order trajectories is costly and the random selection of shortcuts may miss tight

areas difficult to sample. This may lead to sharp corners in tight areas, making

it difficult to achieve termination conditions based on path quality. Traditional

shortcut methods operate as ‘anytime’ functions, without natural stopping con-

ditions, and may be ineffective at optimizing smaller sections of the path. Thus,

random shortcut methods are not efficient in cases where only a small portion of

the path needs to be optimized [8].

17

2.6 Trajectory Optimization Techniques

This thesis primarily deals with static path optimization, but there is also

considerable work being done optimizing and planning for agents where dynamic

conditions and factors must be considered. Specializing around dynamic factors

is beyond the scope of the algorithms presented in this thesis, but such con-

straints can be straightforwardly included in future iterations of the proposed algo-

rithms. Nevertheless, we provide an overview of optimization techniques focusing

on dynamically-modelled trajectories here.

Numerous studies have demonstrated the crucial role of trajectory design in

ensuring the stability and enhanced control of dynamic systems [92]. The pro-

cess of creating a trajectory that satisfies a set of restrictions and minimizes (or

optimizes) a performance metric is known as trajectory optimization. Trajectory

optimization, in general, refers to a method for calculating an open-loop solu-

tion to an optimal control issue. It is frequently applied to systems for which

it is impractical, impossible, or not necessary to compute the whole closed-loop

solution. The direct multiple shooting strategy is a conventional technique for

direct methods that has been applied to real-world issues [9, 22]. Global colloca-

tion approaches have received a lot of interest lately, and a lot of work has been

done in this area [48]. For example, Fahroo and Ross [29] developed a Cheby-

shev pseudospectral method to solve Bolza trajectory optimization problems in

general that involve control and state constraints. All direct approaches, however,

seek to translate the difficulties of continuous-time optimum control into nonlinear

programming problems (NLP) [9, 68,79].

Well-developed optimization techniques can solve the resultant NLP numeri-

cally. Using the trajectory optimization problem, several path planning techniques

have been developed during the past ten years for both aerial and surface vehicles.

Four conditions must be satisfied for a trajectory planning algorithm to be effec-

tive. First, the motion planning approach must always be able to determine the

optimal path in real static scenarios. It must also be flexible enough to adjust to

shifting circumstances. Thirdly, it ought to support and reinforce the chosen self-

referencing technique. Fourth, it needs to minimize computing time, data storage,

18

and complexity [75]. The most popular optimization methods among these two

groups are summarized and tabulated in [9].

The motivation behind employing dynamic programming-based approaches

stems from their improved capability to achieve consistent performance and ad-

dress local optimal solutions inherent in nonlinear optimal control problems.

In the overview of trajectory optimization techniques, several popular deter-

ministic optimization algorithms are highlighted for their applicability to trajec-

tory optimization problems. These include Sequential Quadratic Programming

[41], the Interior-Point Method [60], Interior-Point Sequential Quadratic Program-

ming [10], Linear Programming [67], Second-Order Cone Programming, Semidef-

inite Programming, Dynamic Programming, Differential Dynamic Programming,

and Stochastic Differential Dynamic Programming. Each of these algorithms offers

unique advantages in solving specific types of optimization problems, making them

valuable tools in the field of trajectory optimization [9].

2.7 Multi-agent Path Optimization Techniques

In the area of multi-agent path optimization, the exploration of shortcut-based

approaches appears relatively limited. Considering the various methods and con-

ceptual variations in how these algorithms function and navigate multiple agents

through their paths, multi-agent path-planning algorithms can be categorized into

geometry-based methods and numerical optimization methods.

Wang et al [93] propose a method that uses topological reasoning to assign

different paths to each agent, so that they can avoid congestion and reduce their

travel time. The paper also presents a fast re-planning algorithm and a potential

field based controller that enables robots to avoid collisions with each other while

following their assigned paths.

Alotaibi et al [4] present a survey of sampling-based algorithms in their paper,

including the methods used to solve the problem of finding optimal paths for

multiple autonomous vehicles in a city environment. For a centralized approach,

multi-agent path-planning RRT outperforms push-and-rotate, push-and-swap, and

19

the Bibox algorithm in optimizing solutions and navigating the search space within

an urban environment.

To enhance remote sensing and expand coverage using multiple agents, Avellar

et al [6] present a method that models the task as a graph and solves a mixed

integer linear programming problem. The paper states that their method can find

the optimal number of UAVs to use, depending on the area and the vehicles. Cho

et al [14] present a method for planning the optimal path for a group of UAVs to

cover a ground area with aerial images in a maritime search and rescue scenario.

The method first divides the area into hexagonal cells and assigns a node to each

cell center; and then it solves a mixed integer linear programming problem to find

the shortest path for each UAV to visit all the nodes, considering the constraints

of the UAVs’ performance and the setup time.

Wu et al [96] extended this work to the problem of path planning for multiple

agents in a dynamic environment. The authors of this paper propose an algo-

rithm that combines an improved artificial potential field (APF) method and a

B-spline curve optimization technique. The improved APF method introduces a

gain constraint and a random factor to reduce the path oscillation and avoid the

local minimum problem that affects the traditional APF method.

While similar to our work, they use optimization techniques for multi-agents

to refine planned paths and reduce path curvature, our contribution lies in a cus-

tomizable objective function that allows users to influence clearance terms. We

optimize for quadratic Bézier curves, prioritizing simplicity in mathematical repre-

sentation, computational efficiency, and space optimization over the cubic B-spline

curves employed by the previous work.

Heuristic algorithms are particularly designed to prioritize efficiency when find-

ing optimal paths. Within this category, two specific algorithms, A∗ and D∗
Search, are highlighted as prime examples of effective and streamlined approaches

to path planning. Lurz et al [69] presents a method for path planning and recon-

figuration for rigid multi-agent formations using splines. The authors describe a

method of path planning that combines the benefits of the relaxed-A∗ algorithm
for quick initial path-finding with the smooth and controlled path optimization

20

provided by Bézier curves, splines, including considerations for restricting acceler-

ation and velocity.

Yuan et al [99] propose a path planning algorithm which aims to avoid colli-

sions and conflicts among multiple automated guided vehicles (AGVs) in complex

environments. The algorithm utilizes an enhanced A∗ and dynamic RRT to plan

and generate paths for AGVs. Addressing the multi-AGV routing challenge, the

improved A∗ algorithm strategically devises a global path. Concurrently, the dy-

namic RRT algorithm is applied to establish a viable local path that conforms to

kinematic constraints, thereby effectively averting collisions within the grid map.

TheD∗ algorithm is utilized for collaborative navigation among multiple robots

through a knowledge-sharing mechanism facilitated by sensors by Ravankar et

al [85]. The D∗ algorithm enables robots to communicate critical environmental

updates, such as the presence of new static obstacles or path blockages, and can

be expanded for real-time applications in mobile scenarios.

Artificial Intelligence (AI)-based approaches lead the way in multi-agent path

planning, leveraging cutting-edge technology to handle challenges in dynamic en-

vironments. The common subcategories involve a range of techniques, such as

machine learning, optimization, and utilizing the capabilities of AI for multi-agent

systems. The emphasis on AI arises from its extensive application and flexibility in

tackling the evolving complexities of multi-robot scenarios, making it a key driver

of innovation in intelligent path planning.

Zohdi et al [103] develops and tests a method for multiple drones to work to-

gether and map complex areas using machine-learning. This work introduces a

machine-learning method for UAVs to plan their paths. The UAVs use reinforce-

ment learning to learn from their actions and outcomes. The paper sets a reward

function based on information, energy, and safety. It also suggests a heuristic algo-

rithm that adjusts to different situations. By analyzing the image data to identify

the exact situation in the environment, the convolutional neural networks enable

robot navigation with a novel multi-robot path-planning algorithm that uses Deep

Q-learning [7].

Deits et al [24] developed a method for guiding UAVs using mixed-integer op-

21

timization, but it’s computationally intensive due to the division of environments

into convex shapes. Our approach simplifies this, avoiding environment division,

and is less time-consuming. It addresses their method’s limitations in computa-

tional complexity, adaptability, and path refinement. Their work lacks emphasis

on clearance and curvature control, and restricts paths to single safe regions, lim-

iting global optimality claims. It also relies on specific convex regions, requiring

intelligent seed point selection in complex environments. They face challenges in

ensuring smooth control inputs and solving problems without numerical difficulties.

Chapter 3

Path Smoothing by Deterministic

Shortcuts

3.1 Introduction

Path smoothing is an important operation that appears in a number of path

planning applications. Path smoothing is often used to smooth the result of a

sampling-based planner, or to deform a path in order to achieve desired qualities,

such as maintaining a desired distance from obstacles or controlling a given quality

aspect. In applications relying on multiple paths, such as in multi-agent path find-

ing problems, relying on a simple and efficient smoothing method with controlled

quality becomes particularly important given that the quality of one smoothed

path may influence the space available for smoothing the other paths.

In this chapter, we propose a Deterministic Shortcut-based Smoothing (DSS)

method which overcomes the main limitations of previous shortcut-based methods

by being able to consider user-specified termination conditions based on solution

quality. At each iteration, our method first identifies a vertex on the path that

has the most potential for path improvement, and then applies one of two possible

shortcut-based smoothing operations.

As a result, our prioritized shortcut selection and quality-based termination

conditions result in a method that outperforms a traditional implementation of

22

23

the random shortcut approach, both in terms of path length and in worst-case

angle measured along the path. In this work, similarly to previous work on this

area, we consider a path to be represented as a polygonal line. We present several

benchmarks demonstrating that, for the same amount of smoothing time, our

method produces higher-quality paths when compared to the traditional random

shortcut approach [35,39,43,82].

3.2 Related Work

The method proposed in this work is most related to methods based on random

shortcuts, which represent a popular approach that is simple and effective [35,39,

43,82]. However, without extensions, random shortcut selection may fail to smooth

a path in tight areas which are difficult to be sampled. This may lead to sharp

corners in tight areas making it difficult to achieve termination conditions based

on path quality.

Hsu et al [43] describe a short-cutting technique that removes redundant mo-

tions on path. The optimization approach used recursively breaks the path into

two sub-paths and check whether the sub paths can be replaced by straight-line

paths. Instead of only removing redundant vertices, our Deterministic Shortcut-

based Smoothing (DSS) Algorithm takes nearby obstacles into account by using

the Corner test described in Section 3.4 that lets the paths remain sufficiently far

away from obstacles. Also, the termination condition in our DSS Algorithm is

based on two criteria: angle and clearance. To measure the angle or smoothness

of the current solution, we compute the sharpest angle in the polygonal path and

test if it is under a desired threshold. Related previous work does not consider the

angle at each vertex at all and therefore may result in paths which are impracti-

cal for a robot to follow. Further, in general, the conditions considered in Hsu’s

work are not as robust as ours and may leave large distances between the path

and obstacles (larger than required clearance), which is often sub-optimal. The

termination criteria in Hsu’s work only consider successive iterations to improve

the path and terminate if the improvement falls below some threshold. The work

24

of Hsu et al [43] also considers potential shortcuts in an order which is not robust

because the technique described in Hsu’s work considers the longest shortcuts first.

However, this issue is solved by the angle criterion of the termination condition in

our approach.

The Cutting-triangle’s-edge algorithm presented by Guernane et al [37] pro-

duces shortcuts by connecting the midpoints of path segments for every adjacent

edge in the path. The dynamic and kinematic constraints of the robot are used

to define cubic polynomials which smooth edge discontinuities. One of the draw-

backs of this technique is that there might not be the chance to create a shortcut

for every corner of the path. In contrast, our method will try to make the best

shortcut that it can for every vertex of the path, in a prioritized manner. Our

method generates shortcuts that can cut out a larger portion of unneeded path by

calculating the most free space in the environment (discussed in 3.4). Therefore,

we believe our proposed method is able to create shorter paths than that of [37].

Another shortcut-based method was proposed by Campana et al [8], which uses

backtracking when a collision is detected on the most recent iteration of the algo-

rithm. However, while their work is based on the computation of a gradient, our

method follows a simpler approach. We select vertices according to their potential

for improving the path nearby it, using their distance to obstacles. Therefore our

method does not need to perform an explicit collision check. Further, the method

proposed by Campana does not explicitly take into consideration the angles formed

at vertices along the path.

3.3 Definition and Models

In this section, we introduce notations and present the definitions used in the

computation of the path. The definitions provided here match closely to and are

largely based on those provided in Planning Algorithms, by Lavalle [62].

Configuration Space (C-space)

A Configuration Space (C-space) is the space of all possible transformations

that could be applied to a robot. Thus, each discrete transformation or set of pa-

25

rameters defining robot pose, shape, and orientation may be called a configuration

in the C-space.

Cfree and Cobstacle are two regions within the C-space. Cobstacle is the set of all

configurations of the robot which bring it into collision with one or more obstacles

in the environment. Thus Cfree is the collision-free configuration space Cfree =

C \ Cobstacle. We typically designate a configuration, cI ∈ Cfree as the initial state

with a configuration cT ∈ Cfree designated as the target state. For simplicity, we

denote initial state and the target state with s, and t and call them the start and

target points respectively.

Single Agent Planning Problem In this work, we consider the environment

for a single agent planning problem to be set of obstacles denoted by O, which

contain a polygonal boundary. The environment contains a Start point s and a

Target point t between which our goal is to generate and optimize a path.

Path A path is defined as a continuous function Π : [0, 1]⇒ C with Π(0) ∈ Cs

and Π(1) ∈ Ct. Cs is the set of configurations which correspond to the Start point

s. Likewise, Ct corresponds to t. For the path to be collision-free, its span must

lie in Cfree ⊆ C.

Obstacle An obstacle is a connected subset of the configuration space. When

a robot occupies a configuration in this subspace, it is considered in collision with

this obstacle. Cobstacle may consist of many obstacles.

Our environment contains only stationary obstacles with known polygonal ge-

ometry. When planning, we avoid these obstacles in order to create and improve a

collision-free path using s and t. Obstacles may be convex or non-convex polygons

in the environment.

Agent An agent is an entity capable of making decisions or following instruc-

tions. In this chapter, we are particularly interested in autonomous mobile robots

acting as agents, and therefore we sometimes use the terms interchangeably.

Clearance of a configuration In this chapter, we call the minimum Eu-

clidean distance from a configuration c ∈ C to any obstacle the clearance of that

configuration c.

Finding the clearance of every point along a path in this way is important in

26

making real-world collision-free plans. By keeping path clearance above a thresh-

old, the path will not cause a robot to collide with an obstacle when attempting

to execute said path in the real world because of the robot’s finite size. For this

reason, we use a definition of clearance which emphasizes the minimum distance

to any obstacle, rather than the total volume around a configuration.

3.4 Methodology

In the scope of this work we address the particular case of 2D polygonal paths.

We consider that the input polygonal path P is defined by an ordered set P =

{v1,v2, ...,vN} containing N vertices. The path connects the starting location v1

to the goal location vN . Environments are 2-dimensional and described by a set

of polygonal obstacles O = {O1, O2, ..., OM}.
Our goal is to minimize the length of P and maximize the smallest angle be-

tween two adjacent P segments, while maintaining P collision-free and fixed at v1

and vN .

Our proposed Deterministic Shortcut-based Smoothing (DSS) method is based

on two geometric shortcut determination procedures: the Disk Test and the Corner

Test. These procedures will first test if a shortcut can be performed with respect

to a given vertex, and if so, that shortcut is returned and the path is improved;

otherwise, a label done is returned and the overall algorithm stops.

3.4.1 Disk Test

The Disk Test is outlined in algorithm 1. The Disk Test follows a greedy

selection process: at every iteration, we optimize the path at the vertex with the

most free space around it. First, for every non-terminal vertex vi, we start by

calculating the minimum Euclidean distance to every obstacle in the environment:

dmin(vi) = min
Oj∈O

D(vi, Oj), ∀i ∈ {2, 3, ..., N − 1},

where O is the set of obstacles, Oj is an obstacle in the environment and D

is a function that returns the minimum distance from the polygonal obstacles to

27

a vertex in the path. This distance serves as a proxy for the free space available

around a vertex. We then determine the vertex with the most free space v∗, which

is the vertex such that:

dmin(v
∗) = d∗ = max dmin(vi),∀i ∈ {2, 3, ..., N − 1}.

Distance d∗ is then used as the radius of a circle centered at v∗, which we call

C. The points of intersection between C and the path form the endpoints of the

shortcut with which we will update the path.

Algorithm 1: Disk Test

Data: input path P as a set of vertices

for every vertex vi in P \ (v0, vn) do
di ← minO D(vi, O)

end

if TerminationConditionsAreMet() then

return done

r ← max(di)

v∗ ← P [index(max(di))]

s = (p1,p2)← PointsOfCircleIntersection(r, v∗)

return s

When there are fewer than two points of intersection between the circle and

the path, then the circle must encompass one or both of the endpoints of the

path. Therefore, in such cases, we choose those encompassed path endpoints as the

endpoints of the shortcut. Additionally, if there are more than two intersections,

then we choose the earliest and latest among those intersections, with respect to

each path direction, as the shortcut endpoints.

The overall Disk Test procedure is summarized in Algorithm 1.

3.4.2 Corner Test

The Corner Test has similarities with the Disk Test; however, the key difference

is that it only considers a subset of the obstacles. For every vertex, excluding the

28

v∗

s

R

d∗

Figure 3.1: An example of the Corner test: an environment including two obsta-
cles, v∗ the vertex with the most free space (largest radius di called d∗), the convex
region R in yellow, and shortcut s in green.

start and end vertices, a corner is defined as the triplet consisting of the previous

vertex, the current vertex, and the next vertex. The Corner Test computes the

same distance to the obstacles as with the Disk Test, except that now only obstacles

that are inside of the corner region defined by the corner are considered, as defined

below.

Given a corner (v0,v1,v2), we define the corner region as the region in-between

the rays (v1,v0) and (v1,v2). While the Corner Test searches for obstacles at any

distance from v∗, it limits our choice of shortcut endpoints to be inside the sub-path

delimited by rays (v1,v0) and (v1,v2).

When the number of intersections between the circle and the path is not exactly

2, we choose the shortcut endpoints in the same way as described for the Disk Test.

However, when applying the Corner Test, we limit the shortcut endpoints to not

exceed the previous and next vertices of v∗. The pseudo-code for the procedure is

given in Algorithm 2.

In Figure 3.1, the region R, shown here in yellow, is the only area where

obstacles are considered. A shortcut s is then built from the intersection of C

and path P . With the Corner Test the generated shortcut is not allowed to go

outside the corner region. Figure 3.2 shows an example iteration of the procedure

when applied to some initial path.

29

Initial path Obstacle Corner region Shortcut Collision free region

Figure 3.2: An example of the Disk test: an environment with two obstacles, v∗,
the vertex with the most free space (largest radius di called d∗), circle in red, and
shortcut s in green.

3.4.3 Termination Condition

We define a termination condition based on the quality of the solution, accord-

ing to two criteria. When one of the two quality criteria are met for every vertex,

the smoothing iterations stop and the algorithm terminates.

The first criterion determines, for a given vertex v, if v is within the threshold

distance to any obstacle in the environment. This means that v is already at the

limit distance to the obstacles and cannot be further optimized.

The second criterion is a measure of smoothness around v that is simply based

on the angle between the two path edges sharing v. If the angle is larger than a

desired threshold, then this criterion is met for v.

When these criteria are met for a given vertex it means that the vertex is not

suitable for optimization, and will not be chosen as v∗. When every vertex satisfies

at least one of these criteria, then the optimization terminates.

3.4.4 DSS Method

At each iteration of our proposed DSS method one of the two shortcut determi-

nation tests proposed in the previous subsections is employed. Figures 3.3 and 3.4

30

Algorithm 2: Corner Test

Data: input path P as a set of vertices

for every vertex vi in P \ (v0, vn) do
Y ← subset of O that is in corner region

di ← minY D(vi, Y)

end

if TerminationConditionsAreMet() then

return done

r ← max(di)

v∗ ← P [index(max(di))]

s = (p1,p2)← PointsOfCircleIntersection(r, v∗)

return s

illustrate cases in which either the Corner or Disk Test can be most advantageous.

We first consider the Corner Test because we have found it to be, most of the

time, the better operation to perform. Considering Figure 3.3, it is possible to see

that when the obstacles in the corner region are far away, the shortcuts tend to

be longer. In this case, the Corner Test makes a more useful shortcut than the

Disk Test, since there might be obstacles not inside corner region which are closer

to v∗. On the other hand, if the distance from the obstacles to v∗ is the same on

both sides of the path, or the closest obstacle is in the corner region, then it is

more advantageous to employ the Disk Test.

Therefore we first check if the Corner Test provides an effective shortcut, and

if not, we then compute the result of the Disk Test and compare the two obtained

shortcuts in order to select the best one. The pseudocode for DSS is given in

Algorithm 3 (we note here that the termination conditions are handled in the

Corner Test and Disk Test functions). Finally, note that the order in which the

vertices are processed may affect the determination of v∗.

Using a single test (Corner or Disk) does not always perform well in terms

of length, sharpest angle, and average angle, which are our metrics of interest.

Therefore, we define parameters δ and k to specify how DSS should decide which

31

v∗

sc
sd

R

Input path Obstacle Corner region Disk Corner

Figure 3.3: Comparative example between shortcuts sc (in red) and sd (in green)
obtained, respectively, with the Corner Test and the Disk Test. Here the Corner
Test provides the longest shortcut because it only considers obstacles inside the
corner region R.

method is better at the current iteration. Parameter k represents a factor applied

to the radius of the circle used to derive the Corner Test’s shortcut. When the

length of the shortcut is much smaller than the radius of the circle, DSS chooses to

also consider the shortcut provided by the Disk Test. Since no chord of a circle can

be larger than the diameter, it does not make sense to choose k > 2. Parameter

δ provides a similar discrimination, but according to the absolute distance of the

shortcut from the Corner test, rather than its ratio to the radius. Regardless of the

used parameter values, if the Disk Test is considered, then its shortcut is compared

with the shortcut obtained from the Corner Test, and the shortcut with greater

length is ultimately used.

3.4.5 Random shortcut Method

Random shortcut heuristic methods replace portions of a path with shorter

segments in the configuration space, and check if they are collision free. The

pseudocode showing the implementation we used for our evaluation, while staying

close to the canonical form of the method in continuous environments is provided

in algorithm 4.

32

v∗

sd
sc

R

Initial path Obstacle Corner region Disk Corner

Figure 3.4: Comparative example between shortcuts sc (in red) and sd (in green)
obtained, respectively, with the Corner Test and the Disk Test. The corner region
R is shown in yellow. Here the Disk Test provides the longest shortcut.

Algorithm 3: DSS (δ, k)

Data: δ, k: Selection parameters, O: Obstacles, P : Current path

InitializeEnvironment(P, O)

s1 = CornerTest()

if s1.length < δ + s1.r · k then

s2 = DiskTest()

if s2.length > s1.length then

UpdatePath(P , s2)

else

UpdatePath(P , s1)

end

else

UpdatePath(P , s1)

end

33

Algorithm 4: Random Shortcut

Data: initial path as set of vertices P , execution time T

while current time < T do
Choose vertices vi, vj uniformly without replacement from P \ t
Choose ri uniformly along the edge (vi, vi+1)

Choose rj uniformly along the edge (vj, vj+1)

if collisionFree(ri, rj) then
updatePath(P, (ri, rj))

end

34

3.5 Evaluation and results

We validated our DSS method and compared it against a regular implemen-

tation of the Random Shortcuts method in five different environments which con-

tained a variety of convex and non-convex obstacles of different sizes and place-

ments. Both methods only address static obstacles.

Our implementation of the Random Shortcuts is based on: 1) sampling random

pairs of points along the current path, 2) checking if the shortcut connecting a pair

of points is collision-free and respecting the given minimum clearance, and 3) if

that is the case, the respective path section is replaced with the sampled shortcut.

This implementation reflects how the approach is mostly used, or cited, in previous

work [39].

We performed 50 trials for each environment. For every environment, a trial

consisted of: (1) randomly choosing start and goal locations, (2) optimizing a path

result computed with an RRT implementation, and (3) optimizing the path using

the methods being compared.

The three metrics we used to compare the algorithms, which are common in

the literature [8, 82], are average angle, sharpest angle and average length. The

first two metrics capture how smooth the final solution is, while the last metric

captures the cost of traversal for the final solution. If the average angle is larger,

the path is considered smoother. These metrics are useful to determine a path that

is easier and faster to traverse for robots with typical dynamic constraints [86].

For comparison, we implemented the Random Shortcut method and ran it for

the same amount of time as the DSS method.

For comparison, we implemented a Randomized shortcut method and ran it

for the same amount of time as the DSS method, which has its own termination

conditions. We add to our analysis by considering the theoretical running time

of DSS in comparison to the Random Shortcut technique. Let N be number of

vertices in initial path, and let L be the total number of edges in all obstacles.

Since the random shortcut method must check if a given shortcut is collision free,

each iteration of random shortcut takes O(L) running time. Each iteration of our

method must find the distance between each vertex and the nearest obstacle which

35

Initial path Randomized DSS Corner Disk

Figure 3.5: Results produced by DSS, DSS with only the Corner Test, DSS with
only the Disk Test and Random Shortcuts in an environment with obstacles of
diverse shapes.

we compute by iterating over every pair. Therefore, each iteration of our method

takes O(NL) running time. However, the probability of the shortcut proposed by

the random method being collision free is strongly dependent on the initial path

and the environment. Our method always chooses the vertex with the most free

space for optimizing. Therefore, the expected number of iterations of the random

method that would be needed to achieve the same stopping conditions as our

method achieves is much greater than the number of iterations that our method

requires. This analysis agrees our experimental results comparing the average

angle, path length and sharpest angle achieved by the two methods when run for

the same amount of time.

Figure 3.5 represents a visualization of DSS versus Random Shortcuts in one of

our test environments. We circled and zoomed the regions of interest. Figure 3.5

shows that DSS produces a final path in green which is smoother and shorter than

the final path obtained by regular Random shortcuts. Due to the sharpest angle

in the final path produced by Random Shortcuts (method shown in black), we can

say DSS is smoother.

Figure 3.6 shows a similar improvement as in figure 3.5 when using the DSS

method.

Table 3.1 shows the performance for δ = 2.0 and k = 0.0. In almost all

scenarios, DSS performs better in terms of average angles and sharpest angles, as

36

Initial path Randomized DSS Corner Disk

Figure 3.6: Results produced by DSS, DSS with only the Corner Test, DSS with
only the Disk Test and Random Shortcuts in an environment with regularly spaced
obstacles.

well as average length. DSS with only the Disk Test performs better than DSS

with only Corner Test in the Simple environment, as expected according to the

discussion proposed in Section 3.4.

While our current method proves to be more effective than the regular random

selection of shortcuts, a number of additional combinations of the proposed deter-

ministic tests and selection parameters can be explored which we however leave

for future work.

3.6 Conclusion

We show that the proposed priority-based deterministic shortcut method, for

the same amount of computation time, produces comparable and in many cases

better results than the regular random selection of shortcuts in terms of path length

and smoothness.

In general, the Corner Test is more advantageous since it can safely ignore

some of the obstacles in the environment, however the Disk Test is more effective

in particular cases. A promising future work is to include a characterization of the

complexity of the environment in relation to the performance of either the Corner

Test or the Disk Test.

More generally this work shows that simple geometric tests can improve the

37

Metric Method Environment
Mixed Interlocked Regular Simple Office

Avg Angle Random 152.34 143.99 149.46 141.93 143.31
Corner 174.18 175.39 173.52 166.63 173.15
Disk 169.29 169.41 173.52 172.74 173.93
DSS 174.68 175.41 173.67 166.54 172.95

Sharpest Angle Random 88.60 80.10 81.25 83.9 83.39
Corner 144.11 147.86 138.63 131.20 144.95
Disk 127.74 132.28 123.87 137.49 143.14
DSS 145.23 147.93 139.99 130.15 144.88

Avg Length Random 16.34 17.47 15.10 18.05 15.26
Corner 16.43 17.44 15.05 19.35 15.59
Disk 16.97 18.16 15.47 18.34 15.57
DSS 16.27 17.52 14.98 19.42 15.57

Table 3.1: Table showing the different methods. Here DSS is called as DSS(δ =
2.0, k = 0). DSS performs better than the Randomized shortcut method in several
environments.

performance of shortcut-based path smoothing techniques, motivating further de-

velopments in this area. We intend to further improve our path optimization

method by employing Bézier curves as path segments in order to produce C2

continuity and the opportunity to address curvature constraints to the resulting

optimized paths.

Chapter 4

Optimizing Curvature and

Clearance of Piecewise Bézier

Paths

4.1 Introduction

Path planning is an important procedure in robotics and computer graphics,

among other areas. While this focuses on applications related to autonomous vehi-

cles, path planning can be applied to generic configuration spaces under different

types of constraints, and is also an important topic in robotic manipulation [87].

Many researchers have investigated path smoothing and optimization methods,

which generally fall into one of two main categories: iterative geometric improve-

ment, or optimization using linear, convex, or non-convex models. Our proposed

work is related to the second category as we employ a convex optimization ap-

proach for our proposed model.

Our method is applied to paths represented as piecewise Bézier Curves [90].

Bézier curves and other forms of Spline curves are very popular for path represen-

tation [59,63,65,90], since they are parameterized and, in comparison to other poly-

nomial interpolation approaches, Runge’s phenomenon can be avoided for higher

degrees. B-spline curves also represent a popular approach for Spline-based path

38

39

or trajectory representation [28, 77, 78]. We rely on Bézier curves because of their

simpler formulation and suitability for integration in our optimization framework.

In this chapter we propose a path optimization method based on convex opti-

mization, where we focus on addressing clearance constraints while optimizing the

length and curvature of a path represented as a piecewise quadratic Bézier curve.

Addressing curvature is important for ensuring that the resulting path avoids sharp

turns. For instance, such curves are difficult to be followed by mobile robots.

We apply our method to optimize low-quality polygonal paths generated by

a Rapidly-Exploring Random Tree (RRT) planner [61]. The sampling-based na-

ture of this planner generates paths that are not usable without smoothing proce-

dures [1, 101].

Our approach can be applied to optimize such paths. More in general our

method addresses applications that require smooth paths considering curvature

and clearance constraints.

We propose a piecewise Quadratic Bézier Convex Optimization method (QBCO)

which allows users to customize terms in the objective function for controlling clear-

ance, length, and curvature. This process includes a method for transforming a

piecewise linear path, which is given as input, into a piecewise quadratic Bézier

path. We then present a set of optimization constraints which ensure C1 conti-

nuity and how our objective function can be written in order to address length,

curvature and clearance.

We provide several benchmarks to show the results of our method, and also

present comparisons against a shortcut-based smoothing method. Our method

is fast and gives users the flexibility to customize the properties of the obtained

paths.

4.2 Related Work

Path optimization is often applied to smooth paths generated by motion plan-

ners. In particular, sampling-based planning techniques [62] have sparked a de-

mand for effective path smoothing algorithms.

40

These methods have become very popular primarily because of their ability

to solve problems in high-dimensional spaces [1, 101]. Sampling-based algorithms

however produce

paths that often feature numerous twists and turns, making it necessary to

incorporate a post-processing smoothing step. In order to evaluate our results we

apply our path optimization method to paths generated by a sampling-based RRT

planner [61].

Direct trajectory optimization methods [5, 26, 100] can be applied to optimize

high-dimensional trajectories, with consideration given to addressing the robot

kinematics and dynamics. However, when such planning problems are transcribed

as non-convex programs of local optimization scope, these methods can be unsuc-

cessful in discovering a collision-free trajectory, particularly in cluttered configu-

ration spaces.

Optimizers based on geometric path representations are also popular. Choi et

al [16, 17, 19] have presented path planning algorithms that utilize Bézier curves

for autonomous vehicles with waypoint and corridor constraints. Similar to our

work, their algorithms generate paths for vehicles from a series of Bézier curve

segments. These methods use a constrained optimization technique that aims

to minimize the curvature and length of the path, while maintaining C1 (and in

the most recent paper C2) continuity. They ensure their path is collision-free by

dividing the space into a series of convex regions within a given corridor of the

environment. However, this approach requires a corridor to be computed and does

not take into account customizable terms including both curvature an clearance

in order to address arbitrary distance from obstacles. In contrast, our approach

automatically extracts corridor information with a set of free disks centered on

the path, which constitute our collision-free region for optimization. Our corridor

definition adapts to the free space as the optimization is performed. Another

limitation of [17] is that the control points of the Bézier curve are forced to be in

the free space. Since not all of the control points of a Bézier curve fall on the curve

itself, we provide the path more freedom by allowing control points to fall outside

the free space as long as the path is collision-free. Finally, our formulation allows

41

the user to customize the weights influencing the length, curvature, and clearance

terms of our objective function.

Also related to our work is the geometric approach of Cimurs et al [21], where

a path smoothing method also using Bézier curves is proposed. Their overall

method consists of four modules: node generation by the path planner, shortest

path selection, removal of unnecessary nodes using a shortcut method, and node

alignment. Although their method can produce smooth short paths, does not use

optimization software and does not consider curvature as part of the smoothing

procedure.

Additionally, their approach uses the convex hull of the control points to check

for collisions, which is overly conservative. Our method utilizes disks centered on

the path in order to define a collision-free optimization region without sacrificing

performance.

Following a geometric approach, Geraerts et al [34] have proposed several tech-

niques to improve the quality of paths by shortening their length and maximizing

their clearance. They propose an iterative technique to increase the clearance of a

path in order to improve its computation time.

However, the proposed method does not address both clearance and curvature

as part of the optimization procedure. In contrast our approach formulates the

problem in a generic optimization scheme that addresses all these properties in a

unified way.

There has also been work by Neto et al [76], which attempts directly generate

a path composed of Piecewise Bézier curves using RRT, rather than converting

from line segments to Bézier curves. This work insures curvature continuity using

degree 7 polynomials, but does not offer any path optimization.

Kielas et al [57] present a technique that utilizes degree elevation of Bernstein

polynomials to produce optimal trajectories. This method avoids collisions through

finding the convex hull of a polynomial curve. By adding more control points to

the curve, the convex hull can be brought closer to the curve without changing its

shape. Although we do not focus on improved collision detection, such a collision

detection technique could be integrated in our work.

42

Work Curvature Clearance Input Bézier Degree Collision Check Termination
[17] Min - Corridor Any Convex Hull One Round
[21] - Min Voronoi Cubic Convex Hull One Round
[15] - - Corridor Cubic Convex Hull One Round

QBCO Min Min RRT Quadratic Sequence of disks Convergence

Table 4.1: Summary of properties observed in related work and our proposed
method. Our method is the only one minimizing curvature and length while con-
trolling clearance. Our method also has a more accurate way to model collision
checks.

Table 4.1 presents a summary comparing the most relevant methods discussed

above.

4.3 Mathematical model and Definitions

Bézier Curves were invented in 1962 by the French engineer Pierre Bézier for

designing automobile bodies. Today, Bézier Curves have significant applications

in computer graphics and animation [25,72]. According to [15], a Bézier Curve of

degree n can be represented as

P (t) =
n∑

i=0

Bn
i (t)Pi

Where Pi are control points such that P (0) = P0 and P (1) = Pn, B
n
i (t) is a

Bernstein polynomial given by

Bn
i (t) =

(
n

i

)
(1− t)n−iti, i ∈ {1, ..., n}

Some of the useful properties of Bézier Curves for path planning are listed

below:

• They always passes through control points P0 and Pn.

• They are always tangent to the lines connecting P0 � P1

and Pn � Pn−1 at P0 and Pn respectively.

• They always lie within the convex hull consisting of their control points.

43

A quadratic Bézier curve P is constructed by three control points P0,P1, and

P2:

P (λ) = P0(1− λ)2 + 2λ(1− λ)P1 + λ2P2 (4.1)

Where λ ∈ [0, 1) represents the proportion of the distance along the curve between

P0 and P2.

Derivative, Continuity and Curvature of Bézier Curve The derivatives

of a Bézier curve can be determined geometrically from its control points [15, 88].

The first derivative of a Bézier curve

P (t) =
n∑

i=0

Bn
i (t)Pi

is evaluated as

P ′(t) =
n−1∑
i=0

n(Pi+1 −Pi)B
n−1
i (t) (4.2)

Where n(Pi+1 −Pi), are control points of P ′(t)

In order to obtain the higher order derivative of a Bézier curve, the relationship

of equation 4.2, can be used iteratively.

Two Bézier curve P (t) and Q(t) are said to be Ck continuous at t0 if

P (t0) = Q(t0), P ′(t0) = Q′(t0), ..., P
k(t0) = Qk(t0) (4.3)

Thus, C0 continuity means simply that the two adjacent curves share a common

endpoint. C1 continuity means that the two curves not only share the same end-

point, but also that they have the same tangent vector at their shared endpoint,

in magnitude as well as in direction. C2 continuity means that two curves have

C1 continuity and, in addition, that they have the same second order parametric

derivatives at their shared endpoint, both in magnitude and in direction. Figure

4.1 shows a demonstration of simple, quadratic and cubic Bézier curves.

Lemma 1 If P (t) and Q(t) are at least C2 continuous at t1, for the path con-

structed by two Bézier curve segments P (t) and Q(t), then the path has continuous

curvature for every point on it.

44

Figure 4.1: (a) shows a linear Bezier curve. (b) shows a quadratic Bezier curve
and (c) shows a cubic Bezier curve.

4.4 Method

4.4.1 Problem Statement

We are given a path as an ordered set of tuples P = {v1,v2, ...,vN}, vi ∈ R2,

and a set of polygonal obstacles O = {O1, O2, ..., OM}. Our goal is to optimize

the path between the initial and final points of P . We call P a piecewise lin-

ear path. Our optimization criteria are curvature, clearance, and path length.

More specifically, we enforce C1 continuity while minimizing a combination of the

maximum curvature along the path, the distance between the path and obstacles,

plus the length of the path, subject to user-specified coefficients. In the scope of

this work, we address the particular case of 2-dimensional polygonal paths, where

each vertex is a tuple vi = (xi, yi), and each obstacle is an ordered set of tuples

Oi = {oi,1,oi,2, ...}.
Our proposed method first transforms the input path to an ordered set of

Quadratic Bézier curves P ′ = {B1, B2, ...}, where each quadratic Bézier curve

is defined by three control points Bi = {pi,0,pi,1,pi,2}. Our method therefore

computes and improves the positions of the control points which define a continuous

collision-free path. In this section, we also use the notation B(t) to refer to a given

quadratic Bézier curve evaluated at t.

45

4.4.2 Generating the Initial Piecewise Bézier Path

Description of methods and evaluation criteria

Approach 1: Quadratic Bézier approach This chapter proposes an effi-

cient, quadratic Bézier curve-based approach providing C1 curvature continuity

for path planning in a static environment. The Bézier curve-based algorithm will

be obtained by the following steps:

1. At every iteration we optimize the path at the vertex with the most free

space. First, we start by calculating the minimum Euclidean distance to

every obstacle in the environment, for every non-terminal vertex:

di = min
Oj∈O

D(vi, Oj), ∀i = 2, 3, ..., N − 1

Where O is the set of obstacles, Oj is an obstacle in the environment and D

is a function that returns the minimum distance from an obstacle to a vertex

in the path. This distance serves as a proxy for the free space available at a

vertex. We determine the vertex with the most free space, which we call v∗,

and its corresponding distance d∗. In other words, v∗ = vi, d
∗ = di such that

maxj∈[N] dj = di. The distance d∗ is used as the radius of a circle centered

at v∗, which we call C. The points of intersection between C and the path

form the endpoints of the shortcut with which we will update the path.

2. We use the same intuition in the Corner test, but now we only consider

a subset of the obstacles inside of the corner. Given a corner (v0,v1,v2),

we define the convex region R as the area in-between the rays (v1,v0) and

(v1,v2). Then we apply Corner test in order to get the initial shortcut.

3. In order to apply the Bézier curve, we consider all possible cases that happen

for the obtained shortcut from Corner test. More clearly, the endpoints of

the shortcuts obtained by the Corner test follow two cases:

(a) Case 1: The shortcut’s endpoints are inside convex region. We label

the shortcut endpoints P0 and P2. We create a quadratic Bézier curve

with control points (P0,v
∗,P2).

46

(b) Case 2: One of the shortcut’s endpoints are outside convex region. We

label the endpoint inside the convex region P0. We then label the

midpoint between v∗ and the vertex following v∗ as P2. We create a

quadratic Bézier curve with control points (P0,v
∗,P2).

(c) Case 3: Both shortcut endpoints are outside convex region. Similar to

case 2, we label the midpoints between v∗ and its previous and next

vertices P0 and P2, respectively. We create a quadratic Bézier curve

with control points (P0,v
∗,P2).

Figure 4.2 shows the resulting shortcut from each case of the quadratic Bézier

curve selection process explained above.

We choose the first and last control points of the quadratic Bézier curve, which

we also call the end points of the shortcut, carefully in order to avoid scenarios in

future iterations where it is not possible to choose a quadratic Bézier curve which

maintains C1 continuity.

In all cases, none of the endpoints of the Bézier curve shortcut are allowed to

go beyond the previous and next vertices of v∗ because we are not checking all

the obstacles in the environment. Bézier curves are fast to compute, therefore,

by using these curves, we will not lose too much performance compared to DSS

method.

Following the optimization process, our findings revealed that the geometric

rules we had created for converting linear shapes into Bézier curves had a minimal

influence on the outcomes of my testing. Consequently, we decided to use the most

simple version of linear to Bézier for all our work going forwards.

Approach 2: To create a smooth (e.g. C1 continuous) path from a piecewise

linear path, we devise a simple curve fitting technique which involves creating one

quadratic Bézier curve for each vertex of the input polygonal path. For each vertex

vi ∈ P, i ̸= 1, N , we define the control points for curve Bi = {pi,0,pi,0,pi,0} in P ′

as:

• pi,0 = 0.5(vi−1 + vi),

• pi,1 = vi,

47

Figure 4.2: (a) The intersections between the circle and the path are selected as the
end points of the shortcut and are inside the convex region. (b)When one or more
of the intersections between the circle and the path fall outside the convex region,
we choose the midpoint between v∗ and the next vertex inside the convex region
as the end point of the shortcut on that side.(c) when there are fewer than two
intersections between the circle and the path, we can treat this scenario similarly
as when the intersection are outside the convex region.

• pi,2 = 0.5(vi + vi+1).

Thus, pi,0 is the midpoint between vi and the previous vertex, while pi,0 is the

midpoint between vi and the next vertex. For the first vertex, p0,0 = v0, and for

the last vertex, pN−1,2 = vN .

This process will not introduce any collisions with the environment if the initial

path P already has enough clearance from obstacles, because the distance between

P and P ′ after this operation is very small.

However, in the case when the initial clearance is not sufficient, we may check

each Bézier curve for collisions. If a collision is found for a given curve, the first

and last control points of the curve are moved to the mid-points between their

original positions and vertex vi, effectively making the curve to be closer to the

48

input polygonal path at vertex vi. When this binary subdivision is performed,

two new Bézier curves forming straight segments are added to connect the created

gap at the beginning and end of the modified curve. This process can be repeated

recursively in order to ensure that no collisions are introduced when converting

the input path to the piecewise Bézier representation.

4.4.3 Optimization Variables

Let {mi,0,mi,1,mi,2} = Bm,i ∈ M,∀i, be variables for the optimization model

M , where mi,j = (xm,i,j, ym,i,j). Each mi,j corresponds to pi,j ∈ P ′. We can

evaluate the model variables just like we do with the control points:

Bm,i(t) = (1− t)2mi,0 + 2t(1− t)m1 + t2mi,2. (4.4)

4.4.4 Multi-Objective Optimization Function

Since there is more than one independent quantity to optimize, our problem

requires multi-objective optimization. We assign a weight (or coefficient) to each

objective term to indicate its relative importance in the model. Thus we write our

objective function for max curvature Kmax, clearance ∆, and length L as:

Minimize cK
∑

Kmax + c∆∆+ cLL. (4.5)

The maximum curvature along a single quadratic Bézier curve can be calculated

with:

KMax =
∥p2 − 2p1 + p0∥

2|(p1 − p0), (p2 − p1)|
. (4.6)

The mathematical procedure for obtaining this formula is presented in Ap-

pendix 7. This formula however is not suitable for optimization packages, since it

is non-linear, non-convex, and discontinuous. Therefore, we approximate the max

curvature using a first-degree Taylor Expansion, therefore linearizing the equation.

The linearization involves taking derivatives of Kmax with respect to each of the

49

optimization variables, evaluated at the corresponding control points of P ′, which

we take as our base. We apply the process of linearizing a function y = f(x) with:

ŷ = (x− xbase)
df

dx

∣∣∣∣
x=xbase

+ f(xbase). (4.7)

Where ŷ is the linear approximation for y. Applying this process to Kmax

results in:

K̂max = (x0 − x0,base)
dKmax

dx0

∣∣∣∣
x=x0,base

(4.8)

+ (y0 − y0,base)
dKmax

dy0

∣∣∣∣
y=y0,base

+ ...

+Kmax(x0,base, y0,base, ..., y2,base).

Where K̂max is the linear approximation for curvature. Expressions for each

derivative of Kmax can be found in the Appendix. This linearized version of max

curvature is implemented in the objective function, substituting pi with the cor-

responding optimization variable mi. We sum the max curvature of every curve

along the path in order to minimize the maximum curvature throughout the path,

rather than myopically focusing on only one curve at a time.

We represent the length of the entire piecewise Bézier curve as L =
∑

Li, where

Li is the length of curve Bi. A quadratic Bézier curve Bi(t) is defined on the range

t ∈ (0, 1). Therefore, we can express the arc length of this curve with:

Li =

∫ 1

0

∥∥∥∥dBi

dt

∥∥∥∥ dt. (4.9)

A method for calculating the exact arc length for a quadratic Bézier curve is

outlined in the Appendix. Alternatively, the arc length can be roughly approxi-

mated as the sum of the distances between its control points:

L̂i = ∥pi,0 − pi,1∥+ ∥pi,2 − p1∥. (4.10)

Where L̂i is our approximation for Li. This approximated version of arc length

is sufficient for the purpose of minimizing the total path length, and has been

50

implemented in our objective function, substituting pi,j with the corresponding

optimization variable mi,j.

The exact equation for determining the arc length of a quadratic Bézier curve

is however used for reporting the total path length obtained by our optimization

procedure.

The exact arc length is derived as:

I(x = 1)− I(x = 0), (4.11)

where I is represented by the following expression:

I = w1 (w2 · w3 + log |w3 + w2|) , (4.12)

with fractions w1, w2, and w3 specified as:

w1 =
n2

8a
3
2

, w2 =
n1√
n2

, and w3 =

√
n2
1

n2
2

+ 1, (4.13)

where:

n1 = 2ax− b,

n2 = 4ac− b2,

a = 4x2
2 + 16x2

1 + 4x2
0 − 16x2x1 + 8x2x0 − 16x1x0,

+ 4y22 + 16y21 + 4y20 − 16y2y1 + 8y2y0 − 16y1y0,

b = −16x2
1 − 8x2

0 + 8x2x1 − 8x2x0 + 24x1x0,

− 16y21 − 8y20 + 8y2y1 − 8y2y0 + 24y1y0

c = −8x1x0 + 4x2
0 + 4x2

1 − 8y1y0 + 4y20 + 4y21. (4.14)

Clearance in our convex optimization problem refers to the minimum distance

between the path generated by the optimization algorithm and any obstacles in

the environment. To ensure that the system is safe, it is important to consider

clearance in the optimization problem.

Clearance is expressed in the objective function as a pseudo indicator function

where control points with adequate clearance have low cost, and control points

outside of the collision-free region have very high cost.

51

Constraint Initial path Model path

Clearance Obstacles

Figure 4.3: Visualization of the Distance constraint

4.4.5 Optimization Constraints

We optimize the model subject to the following constraints:

Bi(t = 1) = Bi+1(t = 0)⇒mi,2 = mi+1,0, (4.15)

B′
i(t = 1) = B′

i+1(t = 0)

⇒mi,2 −mi,1 −mi+1,1 + 2mi+1,0 = 0, (4.16)

∥m0,0 − v1∥ < ϵ, (4.17)

∥mN−1,2 − vN∥ < ϵ, (4.18)

∥m∗ − c∥ < rc. (4.19)

C0 Continuity: this constraint is expressed in equation 4.15. C0 continuity

means two adjacent (ordered one after the other) curves share an endpoint.

C1 Continuity: equation 4.16 ensures C1 continuity. This constraint means

the tangent vectors of two adjacent curves must be equal at their shared endpoint.

The resulting path therefore has smooth transitions between each consecutive pair

of Bézier curves, with a continuous first derivative.

Endpoints Constraint: constraints 4.17 and 4.18 are related to the start and

end points of the path. In our problem statement, we stated that the optimized

52

path P ′ should maintain the same start and endpoint as the initial linear path

P . If we enforce this exactly by constraining m0,0 = p0,0 we would make the

optimization model infeasible; therefore, we accept a small difference, ϵ, in the

position of the start and end of the path.

Distance Constraint: the distance constraint in equation 4.19 prevents col-

lision between the path and obstacles, and is also used for the clearance objective.

We identify a collision-free region around the path P ′ by a collection of collision-free

disks. The model M is constrained to move the path only within the collision-free

region. The center points of the disks are placed along the path, and the radii

of the disks are set to be the distance between each path center and its closest

obstacle.

To define these disks, we choose a set equally-spaced points along the path.

For each chosen point, p∗, we find the closest point omin, among the obstacles to

p∗:

omin = argmin
o∈Oj ,Oj∈O

∥o− p∗∥,

with corresponding distance being:

dmin = ∥omin − p∗∥

We thus take the center of the collision-free disk corresponding to the chosen point

to be equal to point c = p∗, with radius rc = dmin − δ, where δ is the desired

clearance between the path and obstacles. The optimization model expression

corresponding to p∗ is m∗. Precisely:

p∗ = Bi(t
∗) = (t∗)2pi,2 + 2t∗(1− t∗)pi,1 + (1− t∗)2pi,0

⇒m∗ = (t∗)2mi,2 + 2t∗(1− t∗)mi,1 + (1− t∗)2mi,0.

This disk is guaranteed to be collision-free, since the distance between p∗ and

m∗ is constrained to be less than the distance between p∗ and the nearest obstacle

to p∗. This constraint is illustrated in Figure 4.3. Since our environments and

paths are 2-dimensional, we can further express constraint 4.19 as:

53

There exist several methods for calculating the distance between Bézier curves,

such as those based on culling [11]. Using such methods may improve the running

time of our proposed algorithm, but we leave this for future work.

(xm∗ − xc)
2 + (ym∗ − yc)

2 < r2c . (4.20)

4.4.6 Convex Optimization Problem

To summarize, we have outlined the following convex optimization problem M :

Minimize
n−1∑
i=0

cKK̂maxi + c∆∆i + cLL̂i (4.21)

Subject to:

mi,2 = mi+1,0,

mi,2 −mi,1 −mi+1,1 + 2mi+1,0 = 0,

∥m0,0 − v1∥ < ϵ,

∥mN−1,2 − vN∥ < ϵ,

∥m∗ − c∥ < rc.

Since our objective function is an approximation of the true max curvature and

length, we chose to limit the distance between mi,j and pi,j, ∀i, j, in addition to

the above constraints. We point out that K̂max is the linear approximation for

curvature and L̂i is the quadratic approximation for length. This ensures that our

approximations have small enough error to the true max curvature and length.

To account for this limitation, we run the optimization program a few times,

until convergence is reached. After each iteration, P ′ is updated with the values

calculated through convex optimization in M . The path is considered converged

if the distance between the P ′ and M ′ is sufficiently small after an iteration. This

process of running optimization multiple times also allows us to update the distance

constraint before each iteration in order to precisely capture the free space available

as the path changes shape. Algorithm 5 illustrates the pseudocode for this process.

54

Algorithm 5: Piecewise Quadratic Bézier Curve Convex Optimization

(QBCO)

Data: Initial linear path P , Obstacles O

P ′ ← QuadraticBezierMethod(P)

M ← CreateConvexModel()

while P ′ not converged do

AddVarsFromBezier(M , P ′)

AddObjLinearCurvature(M , P ′)

AddObjApproxLength(M , P ′)

AddEndConstraints(M , P ′)

AddC1Constraints(M , P ′)

AddDistConstraints(M , P ′, O)

Optimize(M)

P ′ ← ExtractPath(M)

end

4.5 Results and Evaluation

We have applied our method to optimize different types of input paths, in

several environments and using varied sets of parameters.

4.5.1 Input Paths

To generate the initial piecewise linear path P for optimization, we have used

the popular RRT algorithm on different types of 2D environments. We ran several

experiments using the path created from this method.

We used the shortcut-based path smoothing method demonstrated in [83] for

comparison. This method, DSS, identifies the vertex with the most potential for

path improvement at each iteration based on obstacle distance and corner prop-

erties in order to determinitstically create effective shortcuts to gradually improve

the path. Termination occurs when all vertices are close to obstacles or the angles

at vertices approach 180 degrees. DSS can also be used as a first pass to be applied

55

Method Time Length Kmax Kave Min Clear. Ave Clear.
RRT <0.01 21.48 - - 0.50 1.53

QBCO (Length) 5.36 18.78 2.96 2.24 0.25 1.57
QBCO (Curvature) 0.59 34.83 2.65 1.12 0.38 1.43

QBCO (Length + Curvature) 0.75 20.20 3.70 2.32 0.87 1.82

DSS 0.11 12.22 - - 0.04 0.76
QBCO (Length) 5.02 12.21 1.98 1.25 0.04 0.76

QBCO (Curvature) 0.98 12.75 1.80 1.21 0.04 0.79
QBCO (Length + Curvature) 4.54 12.72 1.94 1.27 0.04 0.78

Table 4.2: Numerical comparison in the “Elbows” environment. Our piecewise
Quadratic Bézier with Convex Optimization method (QBCO) has shorter length
when optimizing for length, and lower max curvature when optimizing for curvature
for inputs from both DSS and RRT. Using DSS as input makes the length closer
to optimal in comparison to starting from RRT. Numbers in bold show the best
values for that column, for each input (RRT and DSS).

Method Time Length Kmax Kave Min Clear. Ave Clear.
RRT <0.01 42.35 - - 0.59 1.20

QBCO (Length) 3.39 30.55 6.21 2.41 0.21 0.61
QBCO (Curvature) 0.81 36.02 1.68 0.85 0.15 0.78

QBCO (Length + Curvature) 3.14 35.71 1.84 0.93 0.17 0.77

DSS <0.01 35.71 - - 0.17 0.77
QBCO (Length) 0.75 29.16 5.37 2.01 0.45 0.60

QBCO (Curvature) 0.71 33.73 1.72 1.00 0.19 0.79
QBCO (Length + Curvature) 1.77 33.42 3.14 0.74 0.22 0.78

Table 4.3: Numerical comparison in the “Maze” environment. Our piecewise
Quadratic Bézier with Convex Optimization method (QBCO) performs well in
difficult environments, decreasing both path length and max curvature in reason-
able computation time. Numbers in bold show the best values for that column,
for each input (RRT and DSS).

to the input path before applying QBCO, so that QBCO can reach convergence

faster.

4.5.2 Experiments

We have tested and evaluated the effectiveness of our piecewise Quadratic

Bézier with Convex Optimization method (QBCO) in various environments: maze,

56

mixed, inter-locked, simple, office, elbow, and regular; which were also used in pre-

vious path planning work [83]. These environments include convex and non-convex

obstacles varying in size and placement.

We have used the Gurobi optimization package to solve our convex optimization

problem. We have tested QBCO with both RRT and DSS paths as input, and with

different weights for the objective function. We propose results optimizing only

path length (by setting the weight for curvature to be zero), only around max

curvature (by setting the length weight to zero), and optimizing both length and

curvature with equal weights. For all tests, the weight of clearance in the objective

function was left at 1, in order to ensure our paths were always collision-free.

These weights can be easily changed through the user-interface we have built for

the testing application.

We have utilized common metrics found in the literature: computation time,

path length, maximum curvature, maximum curvature averaged over every curve

in the path, minimum clearance, and minimum clearance averaged over every curve

in the path. These measurements best capture the features of paths which are the

focus of path optimization literature.

4.5.3 Discussion

Tables 4.2 and 4.3 display how effective our approach is at reducing path length

and minimizing curvature in two different environments. In both of these tables,

the columns for curvature show a dash symbol for RRT and DSS since those

methods by themselves are piecewise linear and therefore no curvature control.

The best values for each column and type of initial path (RRT or DSS) are shown

in bold. The shortest length path is consistently found with QBCO prioritizing

length. The path with the smallest maximum curvature is consistently found with

QBCO prioritizing curvature. QBCO with equal weight for maximum curvature

and length provides a middle ground in both of these metrics while maintaining

the largest clearance among each method. Therefore, our method is responsive to

the user-specified optimization weights.

The number of iterations of QBCO before convergence was typically less than

57

Obstacle RRT QBCO (RRT) QBCO (DSS)

Figure 4.4: Results in the “Regular” environment obtained from QBCO starting
from RRT, versus starting from DSS, both prioritizing curvature. The path starting
from DSS is smoother and shorter, since DSS allows QBCO to converge closer to
the optimal solution for the same amount of iterations. The zoomed-in section
shows the differences between the final paths.

Obstacle RRT QBCO (DSS)

Figure 4.5: QBCO employing DSS input in the “Inter-locked” environment with
cL = 0.80 and cKmax = 0.20. The zoomed-in region shows that the path is straighter
but has higher curvature near obstacles.

58

Obstacle RRT QBCO (DSS)

Figure 4.6: QBCO using DSS input in the ”Inter-locked” environment with cL =
0.50, and cKmax = 0.50. The result is balanced in terms of path smoothing and
shortness.

Obstacle QBCO (L) QBCO (Kmax)

Figure 4.7: Comparative analysis of QBCO performance between prioritizing cur-
vature vs prioritizing length. Scenario 1 (cL = 0.75, cKmax = 0.25) prioritizes path
length, resulting in a shorter but higher curvature path. Scenario 2 (cL = 0.25,
cKmax = 0.75) prioritizes curvature, leading to a smoother but longer path.

10. The running time for the convex optimization solver from Gurobi significantly

differs based on the constraints and objective function imposed. As a result, the

59

computation times for different methods can differ significantly. The values shown

in our tables are averaged over 50 runs using the same start and end points.

Figure 4.4 compares the results obtained by starting from RRT or DSS as the

initial piecewise linear path for QBCO. The paths are very similar, but starting

from DSS allows us to achieve a better result, in this case in terms of both path

length and curvature. Figure 4.5 shows a scenario where length is prioritized. The

weight for length is 0.80, while the weight for curvature is 0.20. Thus we can see

the path is shorter, but may have sharper corners than if the objective function

prioritized curvature.

Figure 4.6 is a more balanced example with 0.50 for the length weight, and 0.50

for the curvature weight. The length of the path is reduced, but not too much at

the expense of curvature.

Figure 4.7 displays the performance of QBCO with respect to an RRT input

path. Two different optimization scenarios were considered, one prioritizing length

(cL = 0.75 and cKmax = 0.25) and the other prioritizing curvature (cL = 0.25,

cKmax = 0.75), when optimizing a corner. The results reveal that when prioritizing

length, the path becomes shorter but exhibits higher curvature, as illustrated in

the image. In contrast, when prioritizing curvature, the path becomes smoother

but longer in length.

4.5.4 Curvature Control

Figure 4.8 shows the max curvature of a quadratic Bézier curve when varying

the x and y coordinate of one of the control points of that curve. The curvature is

relatively flat and planar, except at the region of discontinuity. Therefore, as long

as the control points are constrained to not reach the discontinuous region of this

surface, our linear approximation of maximum curvature is a very close to the true

value.

60

4.5.5 Conclusion

Robots and other real-world agents have constraints on their dynamic proper-

ties, such as a limit to how quickly they can accelerate or how fast their maximum

velocity is. Therefore, we have an interest in generating paths with a limit on the

their maximum curvature, since curvature is directly related to angular accelera-

tion at a given velocity. Our proposed method directly addresses such cases by

minimizing the maximum curvature of the path being optimized.

Some methods for path planning using Bézier curves provide C2 continuity.

When using exclusively quadratic Bézier curves, this is not possible. Quadratic

Bézier curves are defined by three control points which gives each curve three degree

of freedom. Enforcing each of C0, C1, and C2 continuity requires one equality

constraint in the optimization model for every curve. Therefore, enforcing C0, C1,

and C2 continuity on a series of quadratic Bézier curves represents a system of

linear equations with three equations and three unknowns for each curve. Such

a linear system has a unique solution if it exists, which is not suitable for convex

optimization. While relying on a quadratic formulation gives us a simplified way

to incorporate the curvature term, as future work we plan to extend our method

to a piecewise cubic representation.

61

Figure 4.8: Illustration of the maximum curvature when varying a control point of
a Bézier curve. The vertical axis is curvature while the horizontal plan represents
the range of x and y values the control point may take. The chasm down the middle
of the figure is a result of an infinite discontinuity at that set of x-y values.

Chapter 5

Multi-Objective Path

Optimization for Sets of Lanes in

Cluttered Environments

5.1 Introduction

Path computation is a crucial process in robotics and computer graphics. It is

important for many applications, from autonomous vehicles to autonomous entities

in computer games. In its most common form, path computation is finding a path

for an agent from its initial configuration to a given goal configuration, without

colliding with any declared obstacles in the environment. The path computation

problem can be however defined to address different types of constraints, such as

clearance from obstacles and maximum curvature. Additionally, path computation

can be defined for higher dimensional problems, such as for addressing robotic

manipulation [87] problems. In this chapter, I address this problem in 2D and I

approach it in two phases: first, one or more paths are computed using a path

planning method, and then, a path optimization phase is proposed to produce the

final result addressing given constraints. The goal of this chapter is to address

these steps for the case of multiple non-crossing paths which are called lanes.

For the planning phase, this chapter presents modifications to the Rapidly-

62

63

exploring Random Tree (RRT) sampling-based planner, such that sets of lanes

between goal regions in an environment can be generated. Given the sampling-

based nature of the method, the produced paths are often highly irregular and

they require an optimization procedure. Figure 2.1 summarizes how trees and

paths are generated by this method. We can see the tree growing from the initial

configuration qinit towards the goal configuration qgoal. Please refer to Section 2.1

for more details.

Optimizing paths for multiple agents navigating a shared environment presents

a significant challenge. Multi-agent path optimization plays a critical rule in sce-

narios where autonomous entities, such as drones, robots, or virtual agents, collec-

tively traverse from distinct starting points to designated destinations. Common

objectives include the facilitation of coordinated movements, ensuring avoidance

of collisions, and the maximization of overall efficiency.

Many researchers have studied path smoothing and optimization methods. In

our current study, we specifically align with the domain of optimization methods,

where we use a convex optimization-based approach for our proposed model.

Our method is applied to the paths represented as piecewise Bézier Curves [90].

Splines, including Bézier curves, are widely favored for representing paths due to

their popularity in various applications. [59, 63, 65, 90], since they are parameter-

ized and, in comparison to other polynomial interpolation approaches, Runge’s

phenomenon can be avoided for higher degrees. B-spline curves also represent a

popular approach for Spline-based path or trajectory representation [28, 77, 78].

We rely on Bézier curves because of their simpler formulation and suitability for

integration into our optimization framework.

We introduce an optimization method for multiple agents called Piecewise

Quadratic Bézier Curve Multi-agent Convex Optimization (MCO) that enables

users to customize the terms in the objective function to control clearance, length,

and curvature. In order to test our method, we present a multi-agent formulation

of Rapidly-exploring Random Trees (RRT) with lazy collision checking to produce

sets of lanes to be optimized. We outline a series of optimization constraints that

guarantee C1 continuity, and as well define a objective function formulated to

64

address length, curvature, and clearance.

We provide several benchmarks to show the results of the method, and also

to present comparisons against the Multi Deterministic Shortcut-based Smooth-

ing (MDSS) method presented in Chapter 3. The presented method outperforms

the compared methods in speed of computation, and gives users the flexibility

to customize the properties of the obtained paths by tuning the weights in the

multi-objective function.

5.2 Related Work

We categorize Path-planning algorithms for multiple agents into Geometric and

Numerical Optimization Methods. Geometric methods follow classical approaches

like Artificial Potential Field, Sampling-based Approaches, and Graph-Based Ap-

proaches, while Numerical optimization methods include heuristic algorithms and

AI-based approaches. In the literature review section of this thesis, I review pa-

pers in the areas of geometric-based and numerical optimization-based methods.

However, in this specific section, my focus is primarily on the papers that I intend

to compare with the work presented in this chapter.

5.2.1 Geometric Optimization Methods

In [18], the authors propose a geometric method of minimizing the curvature

of a quadratic Bézier curve inside a bounding tetragon. This method, like the

author’s other proposed methods, rely on very strict environmental constraints

and rely on having a high-quality initial path with equal vertex spacing to get

the best results. Therefore this method and the others the authors proposed have

very limited curvature control and no user-specified conditions or preference which

guide path optimization. We decided to focus on optimization in this paper in

order to provide a more general purpose optimization algorithm which functions

in multiple passes on initial paths of any condition. Their method results are

strongly dependent on the initial paths and it is only capable of moving the Bézier

path small amount and only one time.

65

Huang et al [44] propose a method which uses a generalized Voronoi diagram

(GVD) to divide free space into regions based on each robot’s path-priority order,

which is a predefined sequence of robots that determines who has the right to

move first in case of conflict. In contrast with [44], which focuses solely on com-

parisons for average trajectory length and success rate, our formulation introduces

a customizable objective function, allowing users to adjust weights for not only

length, but also curvature and clearance terms. [44] does not discuss the concept

of smoothness in trajectory planning. However, our Work emphasizes achieving C1

continuity for smooth transitions in multi-agent systems with a target minimum

clearance to obstacles. Our formulation provides explicit customization options,

ensuring transparency in determining ’better’ navigation points. Additionally, our

approach considers multiple paths simultaneously for optimal shortcut point selec-

tion, offering a more comprehensive exploration strategy compared to [44].

Chen et al [13] propose a novel method for path planning of multiple agents in

an intelligent warehouse, using an Artificial Potential Function (APF) and wall-

following strategy. Utilizing simulated forces, the Artificial Potential Field ap-

proach directs agent movements by shaping their interactions with the environ-

ment’s potential field. The paper aims to solve the problems of local minima,

non-reachable target, collision and traffic jams that may occur in multi-robot sys-

tems.

The distinction between our approaches and [96] is marked. We evaluate our

algorithm’s versatility by testing it against various multi-agent path optimization

techniques, considering a diverse range of complex environments with obstacles of

varying shapes and sizes. In contrast, their approach falls short in its experimental

methodology. Their work lacks a comprehensive analysis of computational com-

plexity and convergence rate, critical for understanding how well the algorithm

performs. Furthermore, the absence of comparisons with other state-of-the-art

methods and the oversight of communication and coordination in [96] challenges

among robots limit the practicality and robustness of their proposed approach. Our

work addresses these gaps, providing a more thorough examination of algorithmic

performance, applicability, and generalization.

66

5.2.2 Numerical Optimization Methods

Zhang et al [102] propose a method of curvature control for single piecewise

polynomial curve paths which linearizes the expression for the curvature of the

path for the sake of optimization. While this method includes curvature, obstacle

clearance, and dynamic considerations such as jerk in its optimization problem,

the authors notably do not seek to improve the overall length of the final path.

At the same time, the method of finding an initial piecewise polynomial curve

path is not discussed, nor how one may convert from a piecewise linear path to

a polynomial path compatible with their representation. As a result, their paths

tend to increase in length with iterations of optimization and do not show a clear

way for the user to specialize or provide input paths.

Dmitri et al present an algorithm [27] for generating smooth paths for self-

driving vehicles, considering real-time obstacles detected by the robot’s sensors.

This work involves two key steps: In the initial stage, a variation of the A∗ search
algorithm is applied to the vehicle’s 3D kinematic state space. However, a modified

state-update rule is employed to capture the continuous state of the vehicle within

the discrete nodes of A∗, ensuring the path’s kinematic feasibility. Subsequently,

the second step focuses on improving the solution’s quality through numeric non-

linear optimization, ultimately achieving a local optimum.

This work lacks a comparison with state-of-the-art methods, and concentrates

solely on single-agent path optimization. Unlike our work, the method proposed

in [27] does not use piecewise-curved paths but only piecewise-linear paths, while

approximating curvature from the angle between path segments. This limits the

researchers capacity to accurately optimize around the curvature of the path.

Siedentop et al [89] propose an automated parking system that navigates with-

out additional restrictions. It uses a lattice grid search and optimization for a

desirable solution, with Dubins Curves for grid search edges. However, it intro-

duces constraints like curvature and orientation cost, and lacks a mechanism for

user-defined curvature preferences. The shapes of the optimized paths are lim-

ited by their choice of path framework, which cannot guarantee C1 or curvature

continuity. The authors make an approximation of the maximum curvature of a

67

path segment for their system of constraints which does not allow the full range of

vehicle motion. Our work, in contrast, allows users to adjust weights for trajectory

length, curvature, and clearance. The previous work also lacks analysis of compu-

tational complexity and convergence rate, and their claims about the convexity of

the objective function and the independence of path length from grid resolution

lack verification. Our manuscript addresses these gaps and provides a compre-

hensive analysis of our proposed approach. Their claims about the convexity of

the objective function and the independence of path length from grid resolution

lack mathematical and statistical verification. Our manuscript enhances the field

by addressing these gaps and providing a comprehensive analysis of our proposed

approach.

Zhanna et al [32] propose a new algorithm for multi-agent path planning in

unknown environments, where the robots use their sensors to detect obstacles and

other robots. The algorithm considers two objectives: finding the safest and the

shortest path for each robot. The paper uses Voronoi Diagrams to find the safest

path, which is the geometric location that is farthest from all obstacles. This paper

offers no algorithmic focus on optimizing clearance and curvature control. However,

our Approach achieves C1 continuity using the Piecewise Quadratic Bézier Curve

Multi-robot Convex Optimization (MCO) algorithm, ensuring smooth trajectories.

The approach discussed in [32] unifies the generation of start and goal points but

lack options for specifying regions or distributing points across the environment.

In contrast, our approach offers various options, including uniform and region-

specific point selection, facilitating controlled evaluations in specific scenarios. Our

approach addresses these gaps, providing a thorough examination of algorithmic

performance, applicability, and generalization.

Ye et al [98] propose method for the trajectory following using curvature con-

trol. This paper shows the importance of understanding dynamic properties of

the vehicle in following a predetermined path. Our proposed method are therefore

more unique in the round of path optimization rather than trajectory following.

Because the literature on using curvature control in path optimization is more

sparse.

68

Li et al [64] present a method for optimal trajectory design for multi-UAV sys-

tems using particle swarm optimization (PSO). It generates smooth, collision-free

paths and outperforms existing algorithms in convergence and accuracy. While

they focus on energy usage and flight risk, our work also considers path length

and trajectory smoothness for a more comprehensive UAV path design process.

One notable distinction lies in the title of this paper [64], claiming ”Optimal tra-

jectory UAV path design based on Bézier curve”. However, our critical analysis

reveals a lack of proof or explanations regarding how their approach is truly rooted

in Bézier curves, let alone specifying the degree of the curve employed. In con-

trast, our work provides a detailed and transparent explanation of our utilization

of Bézier curves, elucidating precisely how we control the curvature of the paths.

Additionally, authors in [64] employ Particle Swarm Optimization with Fuzzy Mu-

tation (PSO-FM2) for path optimization. However, we raise concerns about the

known limitations of PSO, such as premature convergence and susceptibility to

local optima. In contrast, we advocate for the exploration of more robust op-

timization techniques to enhance the overall performance and reliability of the

trajectory optimization method.

Huang et al [45] propose an improved ant colony optimization (ACO) algorithm

for the multi-agent path finding (MAPF) problem, addressing limitations of the

standard ACO. However, it does not address smoothness, curvature control, or

optimize clearance and curvature. Our approach, the Piecewise Quadratic Bézier

Curve Multi-agent Convex Optimization (MCO) algorithm, achieves C1 continuity

and checks additional matrices for average and sharpest angles. The paper also

lacks a rigorous mathematical formulation of the MAPF problem and the IACO

algorithm, and does not consider scalability and robustness [45]. Our approach

uses a well-defined mathematical formulation and explores diverse environments..

69

5.3 Method

5.3.1 Problem Description

Problem Statement

Given a set of non-intersecting piecewise-linear paths Q, and a set of polygo-

nal obstacles O, we must optimize the paths around the user-specified objective

function while avoiding intersections between paths and intersections of paths with

obstacles. Let the set of initial paths be Q = {q1, q2, ..., qZ}, where Z is the num-

ber of path that needs to be optimized. Each path qi is an ordered set of vertices

qi = {v1,v2, ...,vN}, where each vertex is a point in 2D space, vi ∈ R2. The

obstacles are a set of polygons O = {O1, O2, ...}, where each polygon is a closed

set of vertices Om = {o1,o2, ...}.
Our proposed method first transforms the input paths to an ordered set of

Quadratic Bézier paths Q′ = {q′1, q′2, ..., q′Z}. Each piecewise-quadratic Bézier curve

consists of a set of Bézier curves q′z = {B1, B2, ..., }. Each quadratic Bézier curve

can be defined by its three control points,

Bi = {(1− t)2pi,0 + 2t(1− t)pi,1 + t2pi,2

∀t ∈ (0, 1) | pi,0,pi,1,pi,2 ∈ R2}

Our method computes and improves the positions of the control points for each

path q′i, each of which define a continuous collision-free path. In this section, we

employ the notation B(t) to refer to a given quadratic Bézier path evaluated at t.

Our optimization criteria are curvature, clearance, and path length. We enforce

C1 continuity for each Bézier curve while minimizing the sum of the maximum

curvature along the path, the distance between the path and obstacles, and the

length of the path, subject to user-specified coefficients.

Generating Piecewise Linear Paths

We introduce an extension of the popular Rapidly-Exploring Random Trees

(RRT) method for multi-agent systems, which we call Simultaneous RRT (SRRT).

70

In this technique, we create a pair of trees for each path we would like to create,

one rooted in the start point of the path, and the other rooted at the goal point.

We employ a collision avoidance approach in this option, allowing each path

to explore freely while preventing collisions between the multiple trees. We let the

trees grow and we add branches without checking collision with other trees. Then,

only when a solution is found for tree i, then we check for collisions between path

i all other trees. We then attempt to reconnect any orphaned nodes of tree j, if

such branches are collision-free.

Alternative methods for creating initial piecewise-linear paths were explored,

but found to be not efficient or unlikely to succeed in finding a path from each

start to each goal point. These include generating one path at a time according to

some heuristic priority and searching for paths in a high-dimensional space which

is then mapped onto a variable number of paths in 2 dimensions (e.g. a tree in 6

dimensional configuration space may be mapped onto 3 paths in 2D space).

To generate start and goal points between which we can make path using

RRT, we allow the user to easily designate start and goal polygons. Start points

are randomly distributed in the start polygon and are randomly assigned to the

goal points in the goal polygon. Concentrating start and goal points in the same

zones allows for a controlled evaluation, emphasizing the algorithm’s ability to

coordinate paths within specific regions.

Transforming to Piecewise Bézier Paths

To create a smooth (e.g. C1 continuous) path from a piecewise linear path,

we devise a simple curve fitting technique which involves creating one quadratic

Bézier curve for each vertex of the input polygonal path, for each path qi where

∀i ∈ Z. For each vertex vi ∈ Qi, i ̸= 1, N , we define the control points for curve

Bi = {pi,0,pi,1,pi,2} in P ′ as:

• pi,0 = 0.5(vi−1 + vi),

• pi,1 = vi,

• pi,2 = 0.5(vi + vi+1).

71

Thus, pi,0 is the midpoint between vi and the previous vertex, while pi,2 is the

midpoint between vi and the next vertex. For the first vertex, p0,0 = v0, and for

the last vertex, pN−1,2 = vN .

If a collision is found for a given curve, the first and last control points of the

curve are moved to the mid-points between their original positions and vertex vi,

effectively making the curve to be closer to the input polygonal path at vertex

vi. When this binary subdivision is performed, two new Bézier curves forming

straight segments are added to connect the created gap at the beginning and end

of the modified curve. This process can be repeated recursively in order to move

the Bézier curve arbitrarily close to the linear path, ensuring that no collisions are

introduced when converting the input path to the piecewise Bézier representation.

Optimization Variables

Let {mi,0,mi,1,mi,2} = Bm,i ∈ M,∀i, be variables for the optimization model

M , where mi,j = (xmi,j
, ymi,j

). Each mi,j corresponds to pi,j ∈ q′i. We can evaluate

the model variables just like we do with the control points:

Bm,i(t) = (1− t)2mi,0 + 2t(1− t)m1 + t2mi,2. (5.1)

Optimization Constraints

We optimize the model for each path qi, ∀i ∈ Z subject to the following con-

straints:

Bi(t = 1) = Bi+1(t = 0)⇒mi,2 = mi+1,0, (5.2)

B′
i(t = 1) = B′

i+1(t = 0)

⇒mi,2 −mi,1 −mi+1,1 + 2mi+1,0 = 0, (5.3)

∥m0,0 − v1∥ < ϵ, (5.4)

∥mN−1,2 − vN∥ < ϵ, (5.5)

∥m∗ − c∥ < rc. (5.6)

C0 Continuity: This constraint is expressed in equation 5.2. C0 continuity

72

means two adjacent (ordered one after the other) curves for each Bézier path q′i,

∀i ∈ Z share an endpoint.

C1 Continuity: Equation 5.3 establishes the condition for C1 continuity. This

constraint means the tangent vectors of two adjacent curves for each Bézier path q′i,

must be equal at their shared endpoint. The resulting path therefore has smooth

transitions between each consecutive pair of Bézier curves, with a continuous first

derivative.

Endpoints Constraint: Constraints 5.4 and 5.5 are related to the start and

end points of the path. In our problem statement, we stated that the optimized

Bézier path q′i, should maintain the same start and endpoint as the initial linear

path qi. If we enforce this exactly by constraining m0,0 = p0,0 we would make

the optimization model infeasible; therefore, we accept a small difference, ϵ, in the

position of the start and end of the path.

Distance Constraint: Equation 5.6 prevents collisions between the path and

obstacles while also serving as the clearance objective. We identify a collision-free

region around the Bézier path q′i by a collection of collision-free disks. The model

M is constrained to move the path only within the collision-free region.

The center points of the disks are placed along the path, and the radii of the

disks are set to be the distance between each path center and its closest obstacle.

To define these disks, we choose a set equally-spaced points along the path.

For each chosen point, p∗, we find the closest point omin, among the obstacles to

p∗:

omin = argmin
o∈Oj ,Oj∈O

∥o− p∗∥,

with corresponding distance being:

dmin = ∥omin − p∗∥.

We thus take the center of the collision-free disk corresponding to the chosen point

to be equal to point c = p∗, with radius rc = dmin − δ, where δ is the desired

clearance between the path and obstacles. The optimization model expression

73

corresponding to p∗ is m∗. Precisely:

p∗ = Bi(t
∗) = (t∗)2pi,2 + 2t∗(1− t∗)pi,1 + (1− t∗)2pi,0

⇒m∗ = (t∗)2mi,2 + 2t∗(1− t∗)mi,1 + (1− t∗)2mi,0.

This disk is guaranteed to be collision-free, since the distance between p∗ and

m∗ is constrained to be less than the distance between p∗ and the nearest obstacle

to p∗. This constraint is illustrated in Figure 5.1. Since our environments and

paths are 2-dimensional, we can further express constraint 5.6 as:

There exist several methods for calculating the distance between Bézier curves,

such as those based on culling [11]. Using such methods may improve the running

time of our proposed algorithm, but we leave this for future work.

(xm∗ − xc)
2 + (ym∗ − yc)

2 < r2c . (5.7)

This distance constraint has the added benefit of improving the accuracy of

our approximation for the curvature of each Bézier curve, as discussed in the next

section.

Constraint Initial path Model path

Clearance Obstacles

Figure 5.1: Visualization of the Distance constraint

74

Multi-Objective Optimization Function

Since there is more than one independent quantity to optimize, our problem

requires multi-objective optimization. We assign a weight (or coefficient) to each

objective term to indicate its relative importance in the model. we formulate

our objective function considering maximum curvature Kmaxz, clearance ∆z, and

length Lz for each path q′i, as below.

Minimize
Z∑
i=0

n−1∑
i=0

(cKK̂maxi + c∆∆i + cLL̂i). (5.8)

The maximum curvature along a single quadratic Bézier curve can be calculated

with:

Kmax =
∥p2 − 2p1 + p0∥

2∥(p1 − p0)∥ · ∥(p2 − p1)∥
. (5.9)

This formula however is not suitable for optimization packages, since it is non-

linear, non-convex, and discontinuous. Therefore, we approximate the max cur-

vature using a first-degree Taylor Expansion, therefore linearizing the equation.

The linearization involves taking derivatives of Kmax with respect to each of the

optimization variables, evaluated at the corresponding control points of q′i, ∀i ∈ Z ,

which we take as our base. We apply the process of linearizing a function y = f(x)

with:

ŷ = (x− xbase)
df

dx

∣∣∣∣
x=xbase

+ f(xbase). (5.10)

Where ŷ is the linear approximation for y. Applying this process to Kmax

results in:

K̂max = (x0 − x0,base)
dKmax

dx0

∣∣∣∣
x=x0,base

(5.11)

+ (y0 − y0,base)
dKmax

dy0

∣∣∣∣
y=y0,base

+ ...

+Kmax(x0,base, y0,base, ..., y2,base).

Where K̂max is the linear approximation for curvature. Expressions for each

derivative of Kmax can be found in the Appendix. This linearized version of max

75

curvature is implemented in the objective function, substituting pi with the cor-

responding optimization variable mi. We sum the max curvature of every curve

along the path in order to minimize the maximum curvature throughout the path,

rather than myopically focusing on only one curve at a time.

We represent the length of the entire piecewise Bézier curve as L =
∑

Li, where

Li is the length of each curve Bi. A quadratic Bézier curve Bi(t) is defined on the

range t ∈ (0, 1). Therefore, we can express the arc length of this curve with:

Li =

∫ 1

0

∥∥∥∥dBi

dt

∥∥∥∥ dt. (5.12)

A method for calculating the exact arc length for a quadratic Bézier curve is

outlined in the Appendix Section 7.

Clearance in our convex optimization problem refers to the minimum distance

between the path generated by the optimization algorithm and any obstacles in

the environment. To ensure that the system is safe, it is important to consider

clearance in the optimization problem.

Clearance is expressed in the objective function as a pseudo indicator function

where control points with adequate clearance have low cost, and control points

outside of the collision-free region have very high cost.

5.3.2 Proposed Method

User-specified termination conditions for convex optimization

For all convex optimization methods discussed in this chapter, we consider

three options for their termination conditions. The user may choose either a time

limit, a round limit, or convergence. Using the round limit condition, convex

optimization continues for the specified number of rounds. During each round of

convex optimization, the control points which define the path are allowed to move

up to a configurable distance. Using the time limit condition, optimization will

continue until the specified time has elapsed, regardless of how many rounds are

run. Finally, when using the convergence condition, optimization continues until

the update to the path on the most recent optimization round is sufficiently small.

76

We define the size of the update to the path as the sum of the distances between

the control points in the input path(s) and the control points in the output of

convex optimization. The threshold defining convergence is also user-configurable.

Use of Single-agent Convex Optimization

The primary contribution of this publication is the proposal of a method for

multi-agent planning which relies on our previous work in single-agent convex

optimization [56]. The pseudocode for this algorithm is repeated here 6. This al-

gorithm implements the optimization variables, constraints, and objective function

described in section 5.3.1, and is used iteratively so solve multi-agent systems.

Algorithm 6: Single Agent Convex

Data: Piecewise Bézier path q′, Obstacles O

M ← CreateConvexModel()

while q′ not converged do

AddVarsFromBezier(M , q′)

AddObjLinearCurvature(M , q′)

AddObjApproxLength(M , q′)

AddEndConstraints(M , q′)

AddC1Constraints(M , q′)

AddDistConstraints(M , q′, O)

Optimize(M)

q′ ← ExtractPath(M)

end

Priority Ordering

In this method, the optimization process alternates between lanes, in an order

determined by a priority score. We provide the user the ability to choose the

relative importance of factors such as path length, distance to obstacles, and angle

sharpness in the priority score. We found in our testing that a simple heuristic

weighted sum of these factors gave the user sufficient flexibility to control the path

77

ordering while remaining intuitive. In order to ensure that every path ultimately

will be optimized, we use the previous update size to the path as a global factor

on the priority score as well. Therefore, paths which could not be updated much

will be sorted after paths which have more opportunity to be optimized.

Multi-agent Interleaving Convex Optimization Method

We present Multi-agent Interleaving Convex Optimization (MICO), a robust

approach to optimizing multi-agent lane systems using convex optimization tech-

niques. It involves iterative optimization of each lane. When optimizing lane i,

we employ the single-agent optimization technique from [56], algorithm 6, treating

other lanes as obstacles with respect to lane i. Lanes can approach optimal config-

urations, even if they are temporarily prevented from doing so by the positioning

of other lanes in the system.

MICO is capable of uncovering various aspects of the optimization process,

including its convergence behaviors. This method is helpful when you want to

make sure all the lanes are balanced or receive similar computational time during

optimization.

Algorithm 7 illustrates the pseudocode for this process. In this algorithm, we

consider the termination conditions on all the paths rather than only one at a time;

only if convergence (for example) has been reached for all the paths does this while

loop terminate. Furthermore, through the use of a priority queue, we ensure that

the paths which are most in need of optimization are optimized first. The same

path may be optimized multiple times in a row, but through careful design of the

priority function, we ensure all the paths are eventually optimized.

5.3.3 Alternative Approaches

Multi-agent Baseline Convex Optimization

The Multi-agent Baseline Convex Optimization (MBCO) method employs a

sequential and individual optimization strategy for each path lane. This involves

optimizing one lane to completion before proceeding to the next, and so forth. This

78

Algorithm 7: Multi-agent Interleaving Convex Optimization (MICO)

Data: Priority Queue of Input paths Q = {q1, q2, ..., qZ}, Obstacles O

while Termination conditions not met on Q do

qi ← Q.pop()

env ← O
⋃

Q \ qi
SingleAgentConvex(qi, env)

p← priority(qi)

Q.priorityInsert(qi, p)

end

method represents a näıve approach to multi-agent path optimization, treating

each lane as a separate component.

When optimizing lane i, we utilize the same single-agent optimization technique

discussed in [56], while considering each other lane as an obstacle with respect to

lane i. The quality of the optimized paths therefore depends strongly on the order

in which each path is optimized.

Algorithm 8 illustrates the pseudocode for this process. In this algorithm,

we consider the termination condition for one path at a time. That is, once the

round limit, time limit, or convergence has been reached for path i, we move on

to optimizing path i+ 1.

Algorithm 8: Multi-agent Base-line Convex Optimization (MBCO)

Data: Input paths L = {q1, q2, ..., qZ}, Obstacles O

for every path qi ∈ L do

env ← O
⋃

L \ qi
while Termination conditions not met on qi do

SingleAgentConvex(qi, env)

end

end

79

Multi-agent Convex Optimization Problem

To summarize, we have outlined the following convex optimization problem M

for each path qi, ∀i ∈ Z:

Minimize
z∑

i=0

n−1∑
i=0

(cKK̂maxi + c∆∆i + cLL̂i) (5.13)

Subject to:

mi,2 = mi+1,0,

mi,2 −mi,1 −mi+1,1 + 2mi+1,0 = 0,

∥m0,0 − v1∥ < ϵ,

∥mN−1,2 − vN∥ < ϵ,

∥m∗ − c∥ < rc.

Since our objective function is an approximation of the true max curvature and

length, we chose to limit the distance between mi,j and pi,j, ∀i, j, in addition to

the above constraints. This ensures that our approximations have small enough

error to the true max curvature and length. To account for this limitation, we run

the optimization program a few times, until convergence is reached. After each

iteration, Bézier path q′i, ∀i ∈ Z is updated with the values calculated through

convex optimization in M . The path is considered converged if the distance be-

tween a Bézier path q′i, ∀i ∈ Z and M ′ is sufficiently small after an iteration. This

process of running optimization multiple times also allows us to update the dis-

tance constraint before each iteration in order to precisely capture the free space

available as the path changes shape. Algorithm 9 illustrates the pseudocode for

this process.

80

Algorithm 9: Piecewise Quadratic Bézier Curve Multi-agent Convex Op-

timization (MCO)

Data: Input paths Q = {q1, q2, ..., qZ}, Obstacles O

M ← CreateConvexModel()

while Termination conditions not met on Q do

for every path qi ∈ Q do

AddVarsFromBezier(M , qi)

AddObjLinearCurvature(M , qi)

AddObjApproxLength(M , qi)

AddEndConstraints(M , qi)

AddC1Constraints(M , qi)

AddDistConstraints(M , qi, O)

end

Optimize(M)

end

5.4 Results and Evaluation

We have applied our method to optimize different types of input paths, in

several environments and using varied sets of parameters.

5.4.1 Experiments

We formulate our path planning problem as a convex optimization problem

and solve it using Gurobi optimization package. We applied MCO, MICO, and

MBCO on randomly generated input paths and varied the weights for the objective

function to evaluate its performance. We experimented with MCO using different

objective function weights for path length, max curvature, and clearance. We

usually set the clearance weight to 1 for all tests to avoid collisions; however, we

want to emphasize that it is not necessary to make the sum of the weights in

the objective function equal 1. We also tested three scenarios: only minimizing

length (curvature weight = 0), only minimizing curvature (length weight = 0), and

81

minimizing both length and curvature equally (length weight = curvature weight).

We built a user-interface for the testing application that allows easy adjustment

of the weights.

We used common metrics from the literature to evaluate the paths: computa-

tion time, path length, max curvature, average max curvature over all curves, min

clearance, and average min clearance over all curves. These metrics correspond to

the path features that are most significant for path optimization literature.

Figure 5.2: Illustration of the environments showcases a variety of convex and
non-convex obstacles, each differing in size and positions

Figure 5.3: Illustration of the environments showcases a variety of convex and
non-convex obstacles, each differing in size and positions

82

5.4.2 Discussion

Each of our convex optimization methods usually converged in less than 50

iterations. In this work, we conducted SRRT to obtain the initial piecewise linear

path, and subsequently applied the Multi-agent Interleaving Convex Optimiza-

tion Method (MICO), Multi-agent Baseline Convex Optimization (MBCO) and

Piecewise Quadratic Bézier Curve Multi-agent Convex Optimization (MCO).

In Figures 5.2 and 5.3, various environments are represented along with their

names and distinctive features.

Figure 5.4, and 5.5, present a comparative analysis of the results when compar-

ing MICO and MBCO in the ”U-Turn” environment. In Figure 5.4, it is apparent

that MBCO, which optimizes one path at a time, displays sub-optimal results due

to the chosen path optimization order. Notably, the prioritization of optimizing

paths begins with the outer path followed by the inner path, impacting the qual-

ity of optimization achieved with MBCO. Figure 5.5 illustrates the effectiveness

of MICO. This figure presents initial paths from SRRT, the path shown in pink

representing the optimized path from MBCO, and the path shown in green dis-

playing the optimized path using MICO. The paths generated by MICO not only

demonstrate smoother trajectories but also create shorter paths.

Figure 5.6 shows the impact of prioritizing objective function in the ”Teeth”

environment using MICO. The path highlighted in green is derived by prioritiz-

ing length cL = 0.75, and cKmax = 0.25, while the path in red is obtained by

emphasizing curvature cL = 0.25, and cKmax = 0.75. The results reveal that prior-

itizing length yields shorter paths, although the images, especially upon zooming

in, demonstrate an increase in sharpness.

Figure 5.7 indicates visualizing the impact of objective function weight in the

”Office” environment using MICO. The green path represents the result with

weights cL = 0.80, cKmax = 0.20, and c∆ = 0.20, while the red path shows the

optimized trajectory with weights cL = 0.50, cKmax = 0.80, and c∆ = 0.40. It is

important to note that the sum of the weights in the objective function does not

need to equal 1. The path with a higher priority for curvature is smoother and has

a larger clearance compared to the path that prioritizes length, which is shorter.

83

Highlighting the flexibility of MICO, this visualization underscores that adjusting

the weights allows for path optimization, offering a range of trade-offs in length,

clearance, and smoothness.

In Figure 5.8, we present a scenario in the ”Teeth” environment where the ob-

jective function prioritizes both length and curvature. Specifically, the balanced

weights assigned to length and curvature are cL = 0.70, and cKmax = 0.30. This

weighting strategy results in a path that is noticeably smoother near sharp obsta-

cles with shorter length compared to the initial paths.

Figure 5.9 Illustrates the optimized paths of MICO when prioritizing length

in the ”Regular” environment. The results indicate that the paths are shorter as

we place higher priority on length. Additionally, they are relatively smooth while

maintaining a small clearance from obstacles, considering cL = 0.70, cKmax = 0.30,

and c∆ = 0.20.

In Figure 5.10, we display the optimal paths generated using MICO in the

”Elbow” environment. We carefully adjust the weights of the objective function

for curvature, length, and clearance in the optimization process. The outcome is a

refined path that is not only shorter with enhanced clearance but also demonstrates

smoothness. This underscores the success of our optimization approach, which

takes into consideration various factors, resulting in a path that is both efficient

and fast to compute.

In Figure 5.11, we present the optimal paths found using MCO in the ”Mixed”

environment. The key is to balance the weight of objective function for curvature,

length, and clearance during optimization. The outcome is an optimized path in

terms of shorter length and smoother vertices.

As illustrated in Table 5.1, we performed a numerical comparison in the ”Reg-

ular” environment setting. The evaluation includes the MBCO, MICO, and MCO

methods. MICO yielded paths with less maximum curvature, and shorter over-

all length and larger minimum clearance to obstacles than any other method. In

our experiments, MBCO typically had the shortest computation time, while MCO

typically computed paths with the largest average clearance.

We performed a numerical comparison in the ”Mixed” environment setting.

84

The evaluation includes MICO, MBCO, and MCO methods. Table 5.2 shows

that MICO yielded paths with less maximum curvature, shorter overall length and

computation time and larger average clearance to obstacles than any other method.

In our experiments, MCO typically had the largest minimum clearance.

Table 5.3 illustrates a numerical comparison conducted in the ”Teeth” envi-

ronment. MICO is then applied with the specified objective function: prioritizing

length, prioritizing curvature, or combining both evenly. In this experiment, when

prioritizing length, we set cL = 0.80, cKmax = 0.20, and c∆ = 0.30. When prior-

itizing curvature we set cL = 0.30, cKmax = 0.70, and c∆ = 0.30. When using a

balanced objective function, we set cL = 0.50, cKmax = 0.50, and c∆ = 0.30.

The choice of objective function significantly influences the quality of the opti-

mized path. A higher coefficient for length results in a shorter final path, while a

larger coefficient for curvature reduces overall curvature. Intermediate coefficients

yield a combination of these effects.

SRRT MBCO Start-Zone and Obstacle Goal-Zone

Figure 5.4: MBCO employs SRRT input in the ”U-Turn” environment. The chosen
path optimization order significantly influences outcomes, resulting in sub-optimal
results as paths are optimized sequentially. These paths are longer and less smooth
compared to those generated by MICO.

85

SRRT MICO MBCO

Figure 5.5: Figure 5.5 demonstrates MICO’s effectiveness in the ”U-Turn” en-
vironment by comparing paths from SRRT, MBCO, and MICO. MICO produces
shorter and smoother trajectories, highlighting the efficacy of MICO’s performance.

SRRT MICO (prioritized curvature) MICO (prioritized length)

Figure 5.6: Illustration of MICO in ”Teeth” showcasing the effect of Objective
function parameters, generating a green path prioritizing length cL = 0.75, cKmax =
0.25 and a red path emphasizing curvature cL = 0.25, cKmax = 0.75. Prioritizing
length produces shorter paths with increased sharpness upon zooming.

86

SRRT MICO (prioritized curvature) MICO (prioritized length)

Figure 5.7: Visualization of the comparison of objective function weight in the
”Office” environment using MICO. The path shown in green shows the optimized
path when cL = 0.80, cKmax = 0.20, and c∆ = 0.20 and the path shown in red shows
the optimized path when cL = 0.50, cKmax = 0.80, and c∆ = 0.40.

Method Avg T Avg L Max K Avg K Min C Avg C
MBCO 0.12 23.09 4.10 1.80 0.28 0.54
MICO 0.19 21.90 3.11 1.40 0.42 0.60
MCO 0.24 22.11 3.56 1.44 0.40 0.63

Table 5.1: Numerical comparison of multi-agent convex optimization techniques in
the “ Regular ” environment. MICO on average computed the path with the best
path length, and max curvature, min clearance. Notation: T = Time in seconds,
K = Curvature, L = Length, and C = Clearance.

87

SRRT MICO Start-Zone and Obstacle Goal-Zone

Figure 5.8: MICO using SRRT input in the ”Teeth” environment with cL = 0.50,
and cKmax = 0.50. The results shows a smoother trajectory near sharp obstacles,
with a shorter length compared to initial paths

SRRT MICO Start-Zone and Obstacle Goal-Zone

Figure 5.9: Illustration of the optimized paths of MICO when prioritizing length
in the ”Regular” environment. Prioritizing length leads to shorter and relatively
smoother trajectories, maintaining a safe distance from obstacles (Parameters:
cL = 0.70, cKmax = 0.30, and c∆ = 0.20).

88

SRRT MICO Start-Zone and Obstacle Goal-Zone

Figure 5.10: Illustration of the optimized paths of MICO in the ”Elbow” environ-
ment, with a balanced weight between curvature, length, and clearance. The result
indicates a path finely adjusted to minimize length, enhance clearance, and achieve
smoothness in vertex degrees.

Figure 5.11: Illustration of the optimized paths of MCO in the ”Mixed” environ-
ment, with a balanced weight between curvature, length, and clearance. The out-
come suggests a path finely tuned for minimized length, reduced clearance, and a
pleasing smoothness in vertex degrees.

89

Method Avg T Avg L Max K Avg K Min C Avg C
MBCO 1.33 30.36 4.24 2.46 0.16 0.88
MICO 0.79 26.49 3.73 1.85 0.14 0.94
MCO 1.01 34.59 3.53 2.23 0.18 0.82

Table 5.2: Numerical comparison of multi-agent convex optimization techniques in
the “ Mixed ” environment. MICO on average computed the path with the best
computational time, path length, and average curvature, and clearance. Notation:
T = Time in seconds, K = Curvature, L= Length, and C = Clearance.

Objective function Avg T Avg L Max K Avg K Min C Avg C
Priority length 0.23 17.03 2.31 1.74 0.17 1.40

Priority Curvature 0.68 21.57 1.51 1.14 0.24 1.43
Priority Length + Curvature 0.98 19.37 2.11 1.54 0.19 1.48

Table 5.3: Numerical analysis in the “ Teeth” environment. The MICO method is
applied with distinct objective functions length, curvature, and considering both
length, curvature displays the impact of objective function coefficients on the op-
timized path quality.

90

5.4.3 Conclusion

In conclusion, the exploration of Multi-agent Interleaving Convex Optimization

(MICO) in comparison to methods like MBCO and MCO demonstrates its supe-

rior path optimization capability. Our experiments reveal that MICO not only

reduces computation time but also exhibits low curvature in diverse environments,

including Office, Regular, and simple. The priority function, which is included in

MICO, is easy for the user to understand and allows the user the ability to inform

the path optimization order with domain-specific knowledge. This method builds

upon previously accepted path optimization algorithm in the realm of single agent

planning, while extending them in an efficient manner to Multi-agent problems.

Our multi-objective function guides the agents’ paths to configurations which are

optimal in terms of length, curvature, and clearance to obstacles.

The dynamic constraints of robots and agents, specifically in terms of maximum

acceleration and velocity, impact the design of optimal paths. Path smoothness,

achieved by minimizing bends, becomes crucial for maintaining speed and stability

in direction. Although quadratic Bézier curves offer C1 continuity, ensuring C0,

and C1 involves solving a linear system for each curve. While quadratic curves

simplify curvature integration, Our future research focuses on exploring the appli-

cability of piecewise cubic Bézier curves.

Chapter 6

Conclusion

Overall, the presented Deterministic Shortcut-based Smoothing (DSS) method

presents a valuable solution when time efficiency is a primary concern. In scenarios

where real-time responsiveness or fast trajectory generation is necessary, these

methods prove indispensable. By taking advantage of simplified computations

and heuristics, shortcut methods facilitate efficient navigation through complex

environments. However, it is important to acknowledge that this efficient approach

introduce discontinuities in the generated paths, potentially leading to less visually

smooth trajectories. On the other hand, using Bézier curves with C1 continuity

ensures a visually smooth trajectory, which is ideal for scenarios where smoothness

matters. The decision for the choice between the presented optimization methods

in this thesis depends on the task’s priorities: shortcuts can be chosen when time

is crucial, and optimization using Bézier curves can be chosen when a smooth and

high-quality path is the goal.

The proposed optimization method can be extended to employ Cubic Bézier

curves as path segments, rather than quadratic curves. Cubic Bézier curves can

provide C2 continuity to the resulting optimized paths. We decided to limit our

scope and not use Cubic Bézier curves in our path representation in an effort to

reduce the complexity of the convex optimization model. Initial results evaluating

the feasibility of cubic or higher-order bezier curves are detailed in Appendix 7.

91

92

6.1 Future Directions

A promising direction to consider is to address the determination of lanes for

multi-agent systems using a Max Flow Algorithm, and then apply the proposed

multi-lane optimization methods to improve the results. For example, it is pos-

sible to consider a medial axis transform to then employ graph-based max flow

algorithms. These variations deal with challenges including assigning capacity at

vertex points, handling crossing flows, and using multiple sources and sinks. These

directions are promising in terms of achieving sets of lanes of maximum flow.

Another relevant problem deals with Crossing Flows. Crossing Flows happen

when lanes addressing different sets of sources and sinks, need to intersect at edges

or vertices, possibly causing assigned agents to collide. Even when the edge or

vertex in question has enough capacity to accommodate all the agents on it, they

may still collide as they need to leave the crossing sections in different directions.

Thus, the problem is distinct from the task of assigning or correctly using edge and

vertex capacities. Employing the time dimension to prevent agents from occupying

the same space at the same time becomes necessary, in order to determine the time

of occupancy for every edge and vertex of the path.

In order to address the need for curvature control and C2 continuity in path

optimization a clear direction is employ cubic Bézier curves for the path repre-

sentation. Cubic Bézier curves allow us to independently specify the position and

tangent of both endpoints of each segment. In comparison to quadratic Bézier

curves, which are only suited to the Corner test we derived for the DSS method,

cubic Bézier curves are more versatile and can be used in conjunction with our

DSS Disk test.

Chapter 7

Appendix

Definition of Bézier Curves

Let p0,p1, . . . ,pn be n + 1 control points in Rd, where d is the dimension of

the space in which the curve lies. The Bézier curve of degree n with these control

points is defined as

B(t) =
n∑

i=0

(
n

i

)
(1− t)n−itipi,

where t ∈ [0, 1] is a parameter that determines the position on the curve.

Properties of Bézier Curves

Bézier curves have the following properties:

• Degree: The degree of a Bézier curve is equal to the number of control

points minus one. A curve of degree n requires at least n+ 1 control points.

• Endpoint interpolation: The curve passes through the first and last con-

trol points, p0 and pn. This property is called endpoint interpolation.

• Affine invariance: Bézier curves are affine invariant, which means that

they are unchanged by affine transformations such as translation, rotation,

scaling, and shearing.

93

94

• Convex hull property: The curve is contained within the convex hull of

its control points. This property is called the convex hull property.

• Local control: Each segment of the curve between adjacent control points

is influenced only by those control points and not by the other control points.

This property is called local control.

• Smoothness: The curve is smooth, meaning that it has no sharp corners

or discontinuities. The degree of smoothness depends on the degree of the

curve and the arrangement of the control points.

These properties make Bézier curves useful for a wide range of applications in

computer graphics, computer-aided design, and other fields.

Derivative, Continuity of Bézier Curve

The derivatives of a Bézier curve can be determined geometrically from its

control points [15, 88]. The first derivative of a Bézier curve is evaluated as

B′(t) =
n−1∑
i=0

n(pi+1 − pi)

(
n

i

)
(1− t)n−iti (7.1)

Where n(pi+1 − pi), are control points of P ′(t)

In order to obtain the higher order derivative of a Bézier curve, the relationship

of equation 7.1, can be used iteratively.

Two Bézier curve B(t) and Q(t) are said to be Ck continuous at the endpoint

B(1) if if

B(1) = Q(0), B′(1) = Q′(0), ..., Bk(1) = Qk(0) (7.2)

Thus, C0 continuity means simply that the two adjacent curves share a com-

mon endpoint. C1 continuity means that the two curves not only share the same

endpoint, but also that they have the same tangent vector at their shared endpoint,

in magnitude as well as in direction. C2 continuity means that two curves have

95

C1 continuity and, in addition, that they have the same second order parametric

derivatives at their shared endpoint, both in magnitude and in direction.

Lemma 1 If B(t) and Q(t) are at least C2 continuous at B(1), for the path

constructed by two Bézier curve segments B(t) and Q(t), then the path has con-

tinuous curvature at every point on the curves.

Distance from line segment of obstacles to quadratic

Bézier curve segment

Let B(t) be the equation of quadratic Bézier curve and dB
dt
(t) be the derivative

of B(t).

B(t) = (1− t)2p0 + 2t(1− t)p1 + t2p2 (7.3)

dB

dt
(t) = −2(1− t)p0 + 2(1− 2t)p1 + 2tp2 (7.4)

Let L(u) be equation of line segment (Bézier curve of degree 1) and dL
du
(u) be

the derivative of L(u).

L(u) = (1− u)l0 + ul1 (7.5)

dL

du
(u) = −l0 + l1 (7.6)

Since tangent vectors dB
dt

and dL
du

are co-linear, we have the following equation

where α is a scalar:

dB

dt
= α

dL

du
(7.7)

In order to find the shortest distance between quadratic Bézier curve B(t) and

line segment L(t), we need to find the following:

1. The closest point B∗ on the Bézier curve to the line segment. To find this,

we will find value of t that satisfies at B(t).

96

2. The closest point l∗ on the line segment L to the Bézier curve.

Using the formulas above, we can find B∗ and L∗. If B∗ falls outside of the

Bézier curve segment B(t), then the distance from B∗ to L∗ is not valid. We should

instead check the endpoints of Bézier curve B(t). We should be careful to find the

distance between B0 and line segment L(t) and between B(1) and line segment L.

We obtain shortest distance from point L∗ on the line segment to the Bézier

curve B(t) as following:

if 0 <= t∗ <= 1 and 0 <= u∗ <= 1:

return (p∗, l∗)

else:

return min(dist(L, p0), dist(L, p1))

Note that for the last line which returns the minimum distance, we call a

subroutine for calculating the distance between a point and a line segment.

Curvature of a quadratic Bézier Curve

The curvature for a parameterized curve B(t) = ((x(t), y(t)) is given by:

K(t) =
|B′(t), B′′(t)|
∥B′(t)∥3

Where the numerator is the determinant of the matrix created by concatenating

B′(t) and B′′(t).

A quadratic Bézier curve is defined by the points p0, p1, and p2 is parameterized

by

B(t) = (1− t)2p0 + 2(1− t)tp1 + t2p2 (7.8)

with derivatives

B′(t) = 2(1− t)(p1 − p0) + 2t(p2 − p1) (7.9)

B′′(t) = 2(p2 − 2p1 + p0) (7.10)

By using the bi-linearity of the determinant operator and the fact that |x, x| ≡
0, the numerator given by n(t) = |B′(t), B′′(t)| can be obtained by plugging

97

these values into the expression for the curvature. To simplify the calculation, we

introduce the variables s(t) and w(t):

s(t) = 4(1− t) |p1 − p0,p2 − p1|

+ 4t |p2 − p1,p0 − p1|

s(t) = 4 |P1 − P0, P2 − P1| (7.11)

The denominator of 7 is given by

w(t) = ∥B(t)∥3

where |B(t)|2 can be expanded as following:

w(t) = 4(1− t)2 |p1 − p0|2

+ 8t(1− t)(p1 − p0) · (p2 − p1)

+ 4t2 |p2 − p1|2 (7.12)

Either the highest degree of curvature is located at (i) the peak of the function

K(t) or (ii) at one of the endpoints of the curve if the peak is beyond the range of

(0,1). The maximum of the function K(t) is associated with K ′(t) = 0, meaning

that the slope of the curvature is zero at that point.

The equation K ′(t) = s′(t)w(t)−s(t)w′(t)
w(t)2

shows that to find the zeros of K ′(t),

one must find the zeros of w′(t) since w(t) is constant. Finding the zeros of w′(t)

further simplifies to finding the zeros of ∥B′(t)∥2. This can be computed using the

formula d
dt
∥B(t)∥2 = 8(p1−p0) · (p0− 2p1+p2)+8t||p0− 2p1+p2||, which yields

the optimal parameter value t∗ = (p1−p0)·(p0−2p1+p2)
||p0−2p1+p2|| . Plugging this value into the

expression and performing some algebraic manipulation gives the following formula

for the maximum curvature of a quadratic Bézier Curve:

K(t∗) =
||p2 − 2p1 + p0||
2|p1 − p0,p2 − p1|

(7.13)

98

Approximation of Arc Length of Quadratic Bézier

Curves

To compute the arc length of a curve, we need to integrate the magnitude of

its derivative over the parameter interval:

L =

∫ 1

0

∥∥∥∥dBdt
∥∥∥∥ dt (7.14)

We can derive the following expression by expanding equation 7.14:

∥∥∥∥dBdt
∥∥∥∥ =

√
e21 + e22 (7.15)

where e1, and e2 are defined as below:

e1 = (2(1− t)(x1 − x0) + 2t(x2 − x1))
2

e2 = (2(1− t)(y1 − y0) + 2t(y2 − y1))
2

Substituting the second degree polynomial form of the expression inside the

square root of 7.15 into 7.14 simplifies the integral and makes it easier to solve. To

express the equation as a second degree polynomial, we take a factor from t and

t2 while expanding 7.15.

e21 + e22 = [2(1− t)(x1 − x0) + 2t(x2 − x1)]
2

+ [2(1− t)(y1 − y0) + 2t(y2 − y1)]
2

= t2[4x2
2 + 16x2

1 + 4x2
0 − 16x2x1 + 8x2x0

− 16x1x0 + 4y22 + 16y21 + 4y20 − 16y2y1

+ 8y2y0 − 16y1y0] + t[16x2
1 − 8x2

0 + 8x2x1

− 8x2x0 + 24x1x0 − 16y21 − 8y20 + 8y2y1

− 8y2y0 + 24y1y0] + [−8x1x0 + 4x2
0 + 4x2

1

− 8y1y0 + 4y20 + 4y21] (7.16)

99

To simplify the calculation of arc length, we establish the constants a, b, and c

in the following manner:

a = 4x2
2 + 16x2

1 + 4x2
0 − 16x2x1 + 8x2x0 − 16x1x0

+ 4y22 + 16y21 + 4y20 − 16y2y1 + 8y2y0 − 16y1y0

b = −16x2
1 − 8x2

0 + 8x2x1 − 8x2x0 + 24x1x0

− 16y21 − 8y20 + 8y2y1 − 8y2y0 + 24y1y0

c = −8x1x0 + 4x2
0 + 4x2

1 − 8y1y0 + 4y20 + 4y21 (7.17)

The equation in 7.14 can therefore be written as:

L =

∫ 1

0

∥∥∥∥dBdt
∥∥∥∥ =

∫ 1

0

√
at2 + bt+ c dt (7.18)

To solve 7.18, we modify the expression ax2 + bx+ c in the following way:

ax2 + bx+ c = a

(
x2 +

b

a
x+

c

a
+

b

(2a)2
− b

(2a)2

)
= a

(
(x+

b

2a
)2 + (

4ac− b2

4a2
)

)
(7.19)

After substituting 7.19 into 7.18, the following computations are carried out:

L =

∫ 1

0

√
at2 + bt+ c dx

=

∫ 1

0

√
a

(
(x+

b

2a
)2 + (

4ac− b2

4a2
)

)
dx

=
√
a

∫ 1

0

√
(
4ac− b2

4a2
)(
(x+ b

2a
)2

4ac−b2

4a2

) + 1 dx

=
√
a

√
(
4ac− b2

4a2
)

∫ 1

0

√
(
(x+ b

2a
)2(4a2)

4ac− b2
) + 1 dx

=

√
(
4ac− b2

4a
)

∫ 1

0

√
(
(2ax+ b)2

4ac− b2
) + 1 dx

100

If we define A =
√

4ac−b2

4a
, then the equation mentioned above can be written in

the following manner:

L = A

∫ 1

0

√
(
(2ax+ b)2

4ac− b2
) + 1 dx (7.20)

Assuming the expression below, we can solve the integral using a change of

variables:

tan(x) =

√
(
(2ax+ b)2

4ac− b2
) =

(2ax+ b)√
4ac− b2

(7.21)

Taking the derivative of each side results in

sec2(t)dt =
2a√

4ac− b2
dx (7.22)

The equation above is equivalent to the one presented below:

√
4ac− b2

2a
sec2(t) dt = dx (7.23)

By substituting equation 7.23 into equation 7.20 and taking into account that

sec(t) =
√

tan2(t) + 1, the resulting expression is as follows:

L = A

∫ 1

0

√
tan2(t) + 1×

√
4ac− b2

2a
sec2(t) dt

= A

√
4ac− b2

2a

∫ 1

0

sec3(t) dt (7.24)

We know that

∫ 1

0

sec3(t) dt =
sec(t) tan(t)

2
+ ln

sec(t) + tan(t)

2
(7.25)

Substituting 7.25 in 7.24 turns out the following:

101

L = A

√
4ac− b2

2a

∫ 1

0

sec3(t) dt

=
4ac− b2

4a
3
2

(
sec(t) tan(t)

2
+ ln

∣∣∣∣sec(t) + tan(t)

2
)

∣∣∣∣ (7.26)

Using sec(t) =
√

tan2(t) + 1, the change of variable we did and some algebra

7.26 follows the following equation:

L =
4ac− b2

8a
3
2

(
2ax+ b√
4ac− b2

×
√

2ax+ b

4ac− b2
+ 1

× ln

∣∣∣∣∣
√

2ax+ b

4ac− b2
+ 1

∣∣∣∣∣+ 2ax+ b√
4ac− b2

(7.27)

The equation to determine the arc length of a quadratic Bézier curve can be

obtained by using the following expression:

Arc Length = I(x = 1)− I(x = 0) (7.28)

where B is defined by:

I = w1 (w2 · w3 + log |w3 + w2|) (7.29)

To evaluate the constants a, b, c, n1, n2, w1, w2, and w3, we use the following

equations:

n1 = 2ax− b

n2 = 4ac− b2

w1 =
n2

8a
3
2

w2 =
n1√
n2

w3 =

√
n2
1

n2
2

+ 1

The values for a, b, and c are established in equation 7.17.

102

Cubic Bézier approach

In order to address the need for curvature control and C2 continuity in path

optimization we propose the use of cubic Bézier curves. Cubic Bézier curve short-

cuts allow us to independently specify the position and tangent of both endpoints

of the shortcut. In comparison to quadratic Bézier curves, which are only suited

to the Corner test we derived, cubic Bézier curves are more versatile and can be

used in conjunction with our Disk test. Figure 7.4 demonstrates a shortcut which

is not possible to create using a single quadratic Bézier curve while satisfying C2

continuity on both endpoints. Thus, cubic Bézier curves have the potential to

make longer shortcut. We outline the procedure for choosing cubic Bézier curves,

which follows from Disk test from our preliminary work:

1. As previously, we find the vertex with most free space which we label v∗. We

denote the distance from v∗ to the nearest obstacle as d∗.

2. We find the intersections between the path and the circle C of radius d∗

centered at v∗, and label them P0 and P3, where P3 occurs later in the

path. We call these two control points the position points.

3. We determine the tangent lines for both P0 and P3. We extend the tangent

line from P0 into the circle C by a fixed distance df , and call the end point

of this tangent line P′. We also find the next vertex along the path after P0,

which we call v′. If df is greater than the radius of the circle, we assign the

tangent control point P1 to be v′. Otherwise, we let P1 = P′. We perform

the same process from P3 to determine P2. We call P1 and P2 the tangent

points of P0 and P3, respectively.

In the following figures, we illustrate several of the advantages of the cubic

Bézier approach.

In 7.2, the circle around v∗ is small, so this cubic method behaves like a

quadratic Bézier curve because P1 and P2 are the same point. This minimizes

curvature around sharp corners. Some arrangements of control points result in

“shortcuts” which are longer than the original path, is shown in part (b) of 7.2.

103

Figure 7.1: Sub-figure (a) shows a shortcut with a small distance between end-
points and tangent control points, df , resulting in a small radius of curvature near
the end points. Sub-figure (b) shows the effect of choosing a large df , as the short-
cut has larger radius of curvature.

In these cases, we choose v* or another vertex on the path as the tangent control

points. In figure 7.3, the circle is much larger than df , which makes the result-

ing shortcut appear close to flat. This minimizes the length of the shortcut while

maintaining C2 continuity. As in previous algorithms, when there are not two

points of intersections between the circle and the path, we can choose the rele-

vant path endpoint as the shortcut end point P0 or P3. Figure 7.4 demonstrates

one such case while also showing the flexibility of cubic Bézier curves in creating

shortcuts regardless of tangent lines. df can be increased to favor smaller curva-

ture where possible in the path or decrease to favor minimizing length. Figure

7.1 demonstrates the effect of changing df . When the direction of the tangent

at both endpoints of the shortcut is fixed, the curvature of the shortcut can still

be controlled by choosing how far away the tangent control points are from the

endpoints.

104

Figure 7.2: Some arrangements of control points result in “shortcuts” which are
longer than the original path, as shown in (b). In these cases, we choose v∗ or
another vertex on the path as the tangent control points as shown in (a).

Figure 7.3: We identify a fixed distance in order to produce a shortcut like a
straight line which make the length of the short smoother. When using a fixed dis-
tance between P0 and P1, the generated shortcut is close to a straight line shortcut,
which provides the best length shortening while maintaining C2 continuity.

105

Figure 7.4: Cubic Bezier curves create shortcuts between path segments with any
tangent. The tangent lines from the end points of the shortcut are taken to point
into the circle.

Bibliography

[1] Sheelan Waad Adwaan et al. Proposed modified directed RRT algorithm of
the basic RRT. Al-Mansour Journal, 33, 2020.

[2] Shubhani Aggarwal and Neeraj Kumar. Path planning techniques for un-
manned aerial vehicles: A review, solutions, and challenges. Computer Com-
munications, 149:270–299, 2020.

[3] Ali-Akbar Agha-Mohammadi, Suman Chakravorty, and Nancy M Amato.
Firm: Sampling-based feedback motion-planning under motion uncertainty
and imperfect measurements. The International Journal of Robotics Re-
search, 33(2):268–304, 2014.

[4] Ebtehal Turki Saho Alotaibi and Hisham Al-Rawi. Multi-robot path-
planning problem for a heavy traffic control application: A survey. Interna-
tional Journal of Advanced Computer Science and Applications, 7(6), 2016.

[5] Federico Augugliaro, Angela P Schoellig, and Raffaello D’Andrea. Genera-
tion of collision-free trajectories for a quadrocopter fleet: A sequential convex
programming approach. In 2012 IEEE/RSJ international conference on In-
telligent Robots and Systems, pages 1917–1922. IEEE, 2012.

[6] Gustavo SC Avellar, Guilherme AS Pereira, Luciano CA Pimenta, and Paulo
Iscold. Multi-uav routing for area coverage and remote sensing with minimum
time. Sensors, 15(11):27783–27803, 2015.

[7] Hyansu Bae, Gidong Kim, Jonguk Kim, Dianwei Qian, and Sukgyu Lee.
Multi-robot path planning method using reinforcement learning. Applied
sciences, 9(15):3057, 2019.

[8] Mylène Campana, Florent Lamiraux, and Jean-Paul Laumond. A simple
path optimization method for motion planning. working paper or preprint,
September 2015.

[9] Runqi Chai, Al Savvaris, Antonios Tsourdos, Senchun Chai, Runqi Chai,
Al Savvaris, Antonios Tsourdos, and Senchun Chai. Overview of trajectory

106

107

optimization techniques. Design of Trajectory Optimization Approach for
Space Maneuver Vehicle Skip Entry Problems, pages 7–25, 2020.

[10] Runqi Chai, Al Savvaris, Antonios Tsourdos, Senchun Chai, and Yuanqing
Xia. Improved gradient-based algorithm for solving aeroassisted vehicle tra-
jectory optimization problems. Journal of Guidance, Control, and Dynamics,
40(8):2093–2101, 2017.

[11] Jung-Woo Chang, Yi-King Choi, Myung-Soo Kim, and Wenping Wang.
Computation of the minimum distance between two bézier curves/surfaces.
Computers & Graphics, 35(3):677–684, 2011.

[12] Gang Chen, Ning Luo, Dan Liu, Zhihui Zhao, and Changchun Liang. Path
planning for manipulators based on an improved probabilistic roadmap
method. Robotics and Computer-Integrated Manufacturing, 72:102196, 2021.

[13] Hailong Chen, Qiang Wang, Meng Yu, Jingjing Cao, and Jingtao Sun. Path
planning for multi-robot systems in intelligent warehouse. In Internet and
Distributed Computing Systems: 11th International Conference, IDCS 2018,
Tokyo, Japan, October 11–13, 2018, Proceedings 11, pages 148–159. Springer,
2018.

[14] Sung-Won Cho, Jin-Hyoung Park, Hyun-Ji Park, and Seongmin Kim. Multi-
uav coverage path planning based on hexagonal grid decomposition in mar-
itime search and rescue. Mathematics, 10(1):83, 2021.

[15] Ji-wung Choi, R Curry, and Gabriel Hugh Elkaim. Smooth path generation
based on bézier curves for autonomous vehicles. InWCECS (World Congress
on Engineering and Computer Science 2009 Vol II), 2009.

[16] Ji-wung Choi, Renwick Curry, and Gabriel Elkaim. Path planning based on
bézier curve for autonomous ground vehicles. In Advances in Electrical and
Electronics Engineering-IAENG Special Edition of the World Congress on
Engineering and Computer Science 2008, pages 158–166. IEEE, 2008.

[17] Ji-Wung Choi, Renwick Curry, and Gabriel Elkaim. Piecewise bezier curves
path planning with continuous curvature constraint for autonomous driving.
In Machine learning and systems engineering, pages 31–45. Springer, 2010.

[18] Ji-wung Choi, Renwick E Curry, and Gabriel H Elkaim. Minimizing the max-
imum curvature of quadratic bézier curves with a tetragonal concave polyg-
onal boundary constraint. Computer-Aided Design, 44(4):311–319, 2012.

[19] Ji-wung Choi and Gabriel Hugh Elkaim. Bézier curves for trajectory guid-
ance. In World Congress on Engineering and Computer Science, WCECS,
pages 22–24. Citeseer, 2008.

108

[20] Younsung Choi, Donghyung Kim, Soonwoong Hwang, Hyeonguk Kim,
Namwun Kim, and Changsoo Han. Dual-arm robot motion planning for
collision avoidance using B-spline curve. International Journal of Precision
Engineering and Manufacturing, 18(6):835–843, 2017.

[21] Reinis Cimurs, Jaepyung Hwang, and Il Hong Suh. Bezier curve-based
smoothing for path planner with curvature constraint. In 2017 First IEEE In-
ternational Conference on Robotic Computing (IRC), pages 241–248. IEEE,
2017.

[22] Juan Dai and Yuanqing Xia. Mars atmospheric entry guidance for reference
trajectory tracking. Aerospace science and technology, 45:335–345, 2015.

[23] SCMS De Sirisuriya, TGI Fernando, and MKA Ariyaratne. Algorithms for
path optimizations: a short survey. Computing, 105(2):293–319, 2023.

[24] Robin Deits and Russ Tedrake. Efficient mixed-integer planning for uavs in
cluttered environments. In 2015 IEEE international conference on robotics
and automation (ICRA), pages 42–49. IEEE, 2015.

[25] JFC Dekkers. Application of bezier curves in computer-aided design. Delft
Institute of Applied Mathematics, 2010.

[26] Moritz Diehl, Hans Georg Bock, Holger Diedam, and P-B Wieber. Fast
direct multiple shooting algorithms for optimal robot control. Fast motions
in biomechanics and robotics: optimization and feedback control, pages 65–
93, 2006.

[27] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James Diebel.
Practical search techniques in path planning for autonomous driving. Ann
Arbor, 1001(48105):18–80, 2008.

[28] SA Eshtehardian and S Khodaygan. A continuous rrt*-based path planning
method for non-holonomic mobile robots using b-spline curves. Journal of
Ambient Intelligence and Humanized Computing, pages 1–10, 2022.

[29] Fariba Fahroo and I Michael Ross. Direct trajectory optimization by a cheby-
shev pseudospectral method. Journal of Guidance, Control, and Dynamics,
25(1):160–166, 2002.

[30] Renato Farias and Marcelo Kallmann. Improved shortest path maps with
gpu shaders. arXiv preprint arXiv:1805.08500, 2018.

[31] Liping Fu, Dihua Sun, and Laurence R Rilett. Heuristic shortest path al-
gorithms for transportation applications: State of the art. Computers &
Operations Research, 33(11):3324–3343, 2006.

109

[32] Zhanna Gabbassova, Davoud Sedighizadeh, Alireza Sheikhi Fini, and
Mostafa Seddighizadeh. Multiple robot motion planning considering shortest
and safest trajectory. Electromechanical Energy Conversion Systems, 1(3):1–
6, 2021.

[33] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. In-
formed rrt: Optimal sampling-based path planning focused via direct sam-
pling of an admissible ellipsoidal heuristic. In 2014 IEEE/RSJ international
conference on intelligent robots and systems, pages 2997–3004. IEEE, 2014.

[34] Roland Geraerts and Mark H Overmars. Clearance based path optimization
for motion planning. In IEEE International Conference on Robotics and
Automation, 2004. Proceedings. ICRA’04. 2004, volume 3, pages 2386–2392.
IEEE, 2004.

[35] Roland Geraerts and Mark H Overmars. Creating high-quality paths for
motion planning. The international journal of robotics research, 26(8):845–
863, 2007.

[36] Andrew V Goldberg. Point-to-point shortest path algorithms with prepro-
cessing. In International Conference on Current Trends in Theory and Prac-
tice of Computer Science, pages 88–102. Springer, 2007.

[37] Reda Guernane and Mahmoud Belhocine. A smoothing strategy for PRM
paths application to six-axes MOTOMAN SV3X manipulator. In 2005
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 4155–4160. IEEE, 2005.

[38] Faiza Gul, Imran Mir, Laith Abualigah, Putra Sumari, and Agostino
Forestiero. A consolidated review of path planning and optimization
techniques: Technical perspectives and future directions. Electronics,
10(18):2250, 2021.

[39] Kris Hauser and Victor Ng-Thow-Hing. Fast smoothing of manipulator tra-
jectories using optimal bounded-acceleration shortcuts. In 2010 IEEE Inter-
national Conference on Robotics and Automation, pages 2493–2498. IEEE,
2010.

[40] Eric Heiden, Luigi Palmieri, Sven Koenig, Kai O Arras, and Gaurav S
Sukhatme. Gradient-informed path smoothing for wheeled mobile robots. In
2018 IEEE International Conference on Robotics and Automation (ICRA),
pages 1710–1717. IEEE, 2018.

[41] Matthias Heinkenschloss and Denis Ridzal. A matrix-free trust-region sqp
method for equality constrained optimization. SIAM Journal on Optimiza-
tion, 24(3):1507–1541, 2014.

110

[42] Martin Holzer, Frank Schulz, Dorothea Wagner, and Thomas Willhalm.
Combining speed-up techniques for shortest-path computations. Journal of
Experimental Algorithmics (JEA), 10:2–5, 2005.

[43] David Hsu, J-C Latcombe, and Stephen Sorkin. Placing a robot manipulator
amid obstacles for optimized execution. In Proceedings of the 1999 IEEE
International Symposium on Assembly and Task Planning (ISATP’99)(Cat.
no. 99TH8470), pages 280–285. IEEE, 1999.

[44] Sheng-Kai Huang, Wen-June Wang, and Chung-Hsun Sun. A path plan-
ning strategy for multi-robot moving with path-priority order based on a
generalized voronoi diagram. Applied Sciences, 11(20):9650, 2021.

[45] Shuai Huang, Dingkang Yang, Chuyi Zhong, Shichao Yan, and Lihua Zhang.
An improved ant colony optimization algorithm for multi-agent path plan-
ning. In 2021 International Conference on Networking Systems of AI (IN-
SAI), pages 95–100. IEEE, 2021.

[46] Jingchao Jiang and Yongsheng Ma. Path planning strategies to optimize
accuracy, quality, build time and material use in additive manufacturing: a
review. Micromachines, 11(7):633, 2020.

[47] Yuan Jin, Jianke Du, Zhiyong Ma, Anbang Liu, and Yong He. An op-
timization approach for path planning of high-quality and uniform additive
manufacturing. The International Journal of Advanced Manufacturing Tech-
nology, 92:651–662, 2017.

[48] Timothy R Jorris and Richard G Cobb. Three-dimensional trajectory opti-
mization satisfying waypoint and no-fly zone constraints. Journal of Guid-
ance, Control, and Dynamics, 32(2):551–572, 2009.

[49] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor,
and Stefan Schaal. Stomp: Stochastic trajectory optimization for motion
planning. In 2011 IEEE international conference on robotics and automation,
pages 4569–4574. IEEE, 2011.

[50] Marcelo Kallmann, Amaury Aubel, Tolga Abaci, and Daniel Thalmann.
Planning collision-free reaching motions for interactive object manipulation
and grasping. In ACM SIGGRAPH 2008 Classes, SIGGRAPH ’08, New
York, NY, USA, 2008. Association for Computing Machinery.

[51] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal
motion planning. The international journal of robotics research, 30(7):846–
894, 2011.

111

[52] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Transactions on Robotics and Automation, 12(4):566–580, 1996.

[53] Lydia E Kavraki, Mihail N Kolountzakis, and J-C Latombe. Analysis of
probabilistic roadmaps for path planning. IEEE Transactions on Robotics
and automation, 14(1):166–171, 1998.

[54] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration spaces.
IEEE transactions on Robotics and Automation, 12(4):566–580, 1996.

[55] Taro Kawasaki, Pradeep Kumar Jayaraman, Kentaro Shida, Jianmin Zheng,
and Takashi Maekawa. An image processing approach to feature-preserving
b-spline surface fairing. Computer-Aided Design, 99:1–10, 2018.

[56] Maryam Khazaei Pool, Matthew Morozov, and Marcelo Kallmann. Optimiz-
ing curvature and clearance of piecewise bézier paths. IEEE ICCMA 2023,
NA:NA, 2023.

[57] Calvin Kielas-Jensen, Venanzio Cichella, Thomas Berry, Isaac Kaminer,
Claire Walton, and Antonio Pascoal. Bernstein polynomial-based method for
solving optimal trajectory generation problems. Sensors, 22(5):1869, 2022.

[58] Dong-Hyung Kim, Youn-Sung Choi, Sang-Ho Kim, Jing Wu, Chao Yuan, Lu-
Ping Luo, Ji Yeong Lee, and Chang-Soo Han. Adaptive rapidly-exploring
random tree for efficient path planning of high-degree-of-freedom articulated
robots. Proceedings of the Institution of Mechanical Engineers, Part C: Jour-
nal of Mechanical Engineering Science, 229(18):3361–3367, 2015.

[59] Boris Lau, Christoph Sprunk, and Wolfram Burgard. Kinodynamic motion
planning for mobile robots using splines. In 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2427–2433. IEEE, 2009.

[60] Julien Laurent-Varin, J Frederic Bonnans, Nicolas Bérend, Mounir Haddou,
and Christophe Talbot. Interior-point approach to trajectory optimization.
Journal of Guidance, Control, and Dynamics, 30(5):1228–1238, 2007.

[61] Steven M. LaValle. Rapidly-exploring random trees : a new tool for path
planning. The annual research report, 1998.

[62] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[63] Juan Li and Chengyu Yang. AUV Path Planning Based on Improved RRT
and Bézier Curve Optimization. In 2020 IEEE International Conference on
Mechatronics and Automation (ICMA), pages 1359–1364, Beijing, China,
October 2020. IEEE.

112

[64] Likun Li, Yinsheng Fu, Kun Yu, Ahmed M Alwakeel, and Lubna A Alharbi.
Optimal trajectory uav path design based on bezier curves with multi-hop
cluster selection in wireless networks. Wireless Networks, pages 1–12, 2022.

[65] Xin Li and Thomas W. Sederberg. S-splines: A simple surface solution
for iga and cad. Computer Methods in Applied Mechanics and Engineering,
350:664–678, 2019.

[66] Libretexts. Sampling-based path planning. Libretexts, n.d. In In-
troduction to Autonomous Robots (Correll). Retrieved November 12,
2023, from https://eng.libretexts.org/Bookshelves/Mechanical_

Engineering/Introduction_to_Autonomous_Robots_(Correll)/04%3A_

Path_Planning/4.03%3A_Sampling-based_Path_Planning.

[67] Xinfu Liu, Ping Lu, and Binfeng Pan. Survey of convex optimization for
aerospace applications. Astrodynamics, 1:23–40, 2017.

[68] Xinfu Liu, Zuojun Shen, and Ping Lu. Entry trajectory optimization by
second-order cone programming. Journal of Guidance, Control, and Dy-
namics, 39(2):227–241, 2016.

[69] Henrik Lurz, Tobias Recker, and Annika Raatz. Spline-based path plan-
ning and reconfiguration for rigid multi-robot formations. Procedia CIRP,
106:174–179, 2022.

[70] Xiaolu Ma, Rui Gong, Yibo Tan, Hong Mei, Chengcheng Li, et al. Path
planning of mobile robot based on improved prm based on cubic spline.
Wireless Communications and Mobile Computing, 2022, 2022.

[71] Amgad Madkour, Walid G Aref, Faizan Ur Rehman, Mohamed Abdur Rah-
man, and Saleh Basalamah. A survey of shortest-path algorithms. arXiv
preprint arXiv:1705.02044, 2017.

[72] Sidra Maqsood, Muhammad Abbas, Kenjiro T Miura, Abdul Majeed, and
Azhar Iqbal. Geometric modeling and applications of generalized blended
trigonometric bézier curves with shape parameters. Advances in difference
equations, 2020(1):1–18, 2020.

[73] Ivo Marinić-Kragić, Stipe Perǐsić, Damir Vučina, and Milan Ćurković. Su-
perimposed rbf and b-spline parametric surface for reverse engineering ap-
plications. Integrated Computer-Aided Engineering, 27(1):17–35, 2020.

[74] Reza Mashayekhi, Mohd Yamani Idna Idris, Mohammad Hossein Anisi, Is-
mail Ahmedy, and Ihsan Ali. Informed rrt*-connect: An asymptotically
optimal single-query path planning method. IEEE Access, 8:19842–19852,
2020.

https://eng.libretexts.org/Bookshelves/Mechanical_Engineering/Introduction_to_Autonomous_Robots_(Correll)/04%3A_Path_Planning/4.03%3A_Sampling-based_Path_Planning
https://eng.libretexts.org/Bookshelves/Mechanical_Engineering/Introduction_to_Autonomous_Robots_(Correll)/04%3A_Path_Planning/4.03%3A_Sampling-based_Path_Planning
https://eng.libretexts.org/Bookshelves/Mechanical_Engineering/Introduction_to_Autonomous_Robots_(Correll)/04%3A_Path_Planning/4.03%3A_Sampling-based_Path_Planning

113

[75] Imran Mir, Faiza Gul, Suleman Mir, Mansoor Ahmed Khan, Nasir Saeed,
Laith Abualigah, Belal Abuhaija, and Amir H Gandomi. A survey of trajec-
tory planning techniques for autonomous systems. Electronics, 11(18):2801,
2022.

[76] A A Neto, D G Macharet, and M F M Campos. Feasible RRT-based path
planning using seventh order bézier curves. In IEEE Proceedings. IEEE,
2010.

[77] Ngoc Thinh Nguyen, Pranav Tej Gangavarapu, Niklas Fin Kompe, Georg
Schildbach, and Floris Ernst. Navigation with polytopes: A toolbox for
optimal path planning with polytope maps and b-spline curves. Sensors,
23(7):3532, 2023.

[78] Iram Noreen. Collision free smooth path for mobile robots in cluttered envi-
ronment using an economical clamped cubic b-spline. Symmetry, 12(9):1567,
2020.

[79] Radhakant Padhi and SN Balakrishnan. Optimal dynamic inversion control
design for a class of nonlinear distributed parameter systems with continuous
and discrete actuators. IET control theory & applications, 1(6):1662–1671,
2007.

[80] Jia Pan, Liangjun Zhang, Dinesh Manocha, and UC Hill. Collision-free and
curvature-continuous path smoothing in cluttered environments. Robotics:
Science and Systems VII, 17:233, 2012.

[81] Probabilistic Roadmap Planning. On the probabilistic foundations of prob-
abilistic roadmap planning. In Robotics Research: Results of the 12th Inter-
national Symposium ISRR, volume 28, page 83. Springer Science & Business
Media, 2007.

[82] Joseph Polden, Zengxi Pan, Nathan Larkin, and Stephen van Duin. Adap-
tive partial shortcuts: Path optimization for industrial robotics. Journal of
Intelligent & Robotic Systems, 86(1):35–47, 2017.

[83] Maryam Khazaei Pool, Carlos Diaz Alvarenga, and Marcelo Kallmann. Path
smoothing with deterministic shortcuts. In 2022 Sixth IEEE International
Conference on Robotic Computing (IRC), pages 411–415. IEEE, 2022.

[84] Zhihua Qu, Jing Wang, and Clinton E Plaisted. A new analytical solution
to mobile robot trajectory generation in the presence of moving obstacles.
IEEE Transactions on Robotics, 20(6):978–993, 2004.

[85] Abhijeet Ravankar, Ankit A Ravankar, Yukinori Kobayashi, and Takanori
Emaru. Symbiotic navigation in multi-robot systems with remote obstacle
knowledge sharing. Sensors, 17(7):1581, 2017.

114

[86] Abhijeet Ravankar, Ankit A Ravankar, Yukinori Kobayashi, Yohei Hoshino,
and Chao-Chung Peng. Path smoothing techniques in robot navigation:
State-of-the-art, current and future challenges. Sensors, 18(9):3170, 2018.

[87] Volodymyr Savkiv, Roman Mykhailyshyn, Frantisek Duchon, Olegas Pren-
tkovskis, Pavlo Maruschak, and Illia Diahovchenko. Analysis of operational
characteristics of pneumatic device of industrial robot for gripping and con-
trol of parameters of objects of manipulation. In TRANSBALTICA XI:
Transportation Science and Technology: Proceedings of the International
Conference TRANSBALTICA, May 2-3, 2019, Vilnius, Lithuania, pages
504–510. Springer, 2020.

[88] Thomas W Sederberg. Computer aided geometric design. Computer Aided
Geometric Design, 2012.

[89] Christoph Siedentop, Robert Heinze, Dietmar Kasper, Gabi Breuel, and
Cyrill Stachniss. Path-planning for autonomous parking with dubins curves.
In Uni-DAS Workshop Fahrerassistenzsysteme. Uni-DAS eV Darmstadt,
Germany, 2015.

[90] Igor Škrjanc and Gregor Klančar. Optimal cooperative collision avoidance
between multiple robots based on bernstein–bézier curves. Robotics and
Autonomous systems, 58(1):1–9, 2010.

[91] Alaa Tharwat, Mohamed Elhoseny, Aboul Ella Hassanien, Thomas Gabel,
and Arun Kumar. Intelligent bézier curve-based path planning model us-
ing chaotic particle swarm optimization algorithm. Cluster Computing,
22(2):4745–4766, 2019.

[92] Bailing Tian, Wenru Fan, Rui Su, and Qun Zong. Real-time trajectory and
attitude coordination control for reusable launch vehicle in reentry phase.
IEEE Transactions on Industrial Electronics, 62(3):1639–1650, 2014.

[93] Xiaolong Wang, Alp Sahin, and Subhrajit Bhattacharya. Coordination-free
multi-robot path planning for congestion reduction using topological reason-
ing. Journal of Intelligent & Robotic Systems, 108(3):50, 2023.

[94] Wikipedia. Probabilistic roadmap. Retrieved November 12, 2023.

[95] JunWu, Guang Yu, Ying Gao, and Liping Wang. Mechatronics modeling and
vibration analysis of a 2-dof parallel manipulator in a 5-dof hybrid machine
tool. Mechanism and Machine Theory, 121:430–445, 2018.

[96] Zicong Wu, Weizhou Su, and Junhui Li. Multi-robot path planning based on
improved artificial potential field and b-spline curve optimization. In 2019
Chinese Control Conference (CCC), pages 4691–4696. IEEE, 2019.

115

[97] Hui Yang, Jie Qi, Yongchun Miao, Haixin Sun, and Jianghui Li. A new robot
navigation algorithm based on a Double-Layer Ant algorithm and trajectory
optimization. IEEE Transactions on Industrial Electronics, 66(11):8557–
8566, 2018.

[98] Qing Ye, Chaojun Gao, Yao Zhang, Zeyu Sun, Ruochen Wang, and Long
Chen. Intelligent vehicle path tracking control method based on curvature
optimisation. Sensors, 23(10):4719, 2023.

[99] Zhiheng Yuan, Zhengmao Yang, Lingling Lv, and Yanjun Shi. A bi-level path
planning algorithm for multi-agv routing problem. Electronics, 9(9):1351,
2020.

[100] Xiaojing Zhang, Alexander Liniger, and Francesco Borrelli. Optimization-
based collision avoidance. IEEE Transactions on Control Systems Technol-
ogy, 29(3):972–983, 2020.

[101] Zhen Zhang, Defeng Wu, Jiadong Gu, and Fusheng Li. A path-planning
strategy for unmanned surface vehicles based on an adaptive hybrid dynamic
stepsize and target attractive Force-RRT algorithm. Journal of Marine Sci-
ence and Engineering, 7(5):132, 2019.

[102] Ziang Zhang, Ziyi Zou, Xiang Li, Mingyi Wang, Yixu Wang, Xiaoqing Guan,
You Wang, and Guang Li. Path planning for autonomous driving with
curvature-considered quadratic optimization. In 2023 IEEE Intelligent Ve-
hicles Symposium (IV), pages 1–7. IEEE, 2023.

[103] TI3927120 Zohdi. The game of drones: rapid agent-based machine-learning
models for multi-uav path planning. Computational Mechanics, 65:217–228,
2020.

[104] Matt Zucker, Nathan Ratliff, Anca D Dragan, Mihail Pivtoraiko, Matthew
Klingensmith, Christopher M Dellin, J Andrew Bagnell, and Siddhartha S
Srinivasa. CHOMP: Covariant Hamiltonian Optimization for Motion Plan-
ning. The International Journal of Robotics Research, 32(9-10):1164–1193,
2013.

[105] Uri Zwick. Exact and approximate distances in graphs—a survey. In Euro-
pean Symposium on Algorithms, pages 33–48. Springer, 2001.

	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita and Publications
	Abstract
	Introduction
	Literature Review
	Sampling-based Path Planners
	Shortest-Path Algorithms
	Numerical Path Optimization Techniques
	Geometric Path Optimization Techniques
	Shortcut-based Optimization Techniques
	Trajectory Optimization Techniques
	Multi-agent Path Optimization Techniques

	Path Smoothing by Deterministic Shortcuts
	Introduction
	Related Work
	 Definition and Models
	Methodology
	Disk Test
	Corner Test
	Termination Condition
	DSS Method
	Random shortcut Method

	Evaluation and results
	Conclusion

	Optimizing Curvature and Clearance of Piecewise Bézier Paths
	Introduction
	Related Work
	Mathematical model and Definitions
	Method
	Problem Statement
	Generating the Initial Piecewise Bézier Path
	Optimization Variables
	Multi-Objective Optimization Function
	Optimization Constraints
	Convex Optimization Problem

	Results and Evaluation
	Input Paths
	Experiments
	Discussion
	Curvature Control
	Conclusion

	 Multi-Objective Path Optimization for Sets of Lanes in Cluttered Environments
	Introduction
	Related Work
	Geometric Optimization Methods
	Numerical Optimization Methods

	Method
	Problem Description
	Proposed Method
	Alternative Approaches

	Results and Evaluation
	Experiments
	Discussion
	Conclusion

	Conclusion
	Future Directions

	Appendix
	Bibliography

