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ABSTRACT OF THE DISSERTATION

Sea Ice Drift in Arctic Marginal Ice Zones Derived from Optical Satellite Imagery

by

Rosalinda Lopez

Doctor of Philosophy, Graduate Program in Mechanical Engineering
University of California, Riverside, September 2021

Dr. Monica Martinez Wilhelmus, Chairperson

Warming temperatures and extreme weather conditions have transformed the Arctic climate

system. Most salient are the reduction of ice cover and the growth of marginal ice zones

(MIZ). MIZ are regions along the ice edge where meso/submeso-scale variability strongly

influences the sea ice field and vice versa. Understanding how sea ice and ocean circulation

evolve in MIZ is crucial to fully characterize the mechanisms that control surface dispersion

and consequently transform the Arctic.

Existing sea ice products cannot retrieve comprehensive dynamical observations in MIZ.

As a result, critical dynamical processes are often overlooked in scientific studies and are

not properly constrained in numerical models. The main goal of this study was to develop a

sea ice detection algorithm designed to acquire measurements in MIZ extending throughout

the 21st century.

Optical remote sensing imagery, namely Moderate-resolution Imaging Spectroradiometer

(MODIS), was employed to develop an algorithm capable of retrieving the complex MIZ sea

vi



ice motion. The algorithm filters the atmospheric conditions abating MODIS images while

maximizing ice identification via image processing and feature matching techniques. The

robustness of the method was tested along the eastern coast of Greenland. Upon validation,

a unique dataset of sea ice characteristics and kinematics was extracted from Fram Strait

and the Beaufort Sea from 2003 to 2020. The dataset included geometric shape parameters,

along with Lagrangian trajectories, angular velocities, and Eulerian velocity fields.

The data was employed to assess the influence of meso/submeso-scale ocean turbulence

on sea ice dynamics. First, an in-depth analysis of the role of atmospheric and oceanic

forcing on ice floe motion demonstrated the importance of meso/submeso-scale processes

driving sea ice drift. Next, the seasonal and decadal variability of the ice flow field in the

summer and spring-time MIZ was quantified. In these regions, sea ice dynamics di�ered

from the central Arctic basin, highlighting the importance of a correct parametrization of

sea ice in MIZ. Finally, for the first time, satellite-tracked sea ice was employed as surface

tracers to analyze the topology of the underlying flow field. The results were validated with

high-resolution buoys, providing an additional resource to characterize the eddy field.
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Chapter 1

Introduction

1.1 Dissertation overview

Based on the intrinsically coupled interactions between sea ice and oceanic turbulence, sea

ice can provide a window to study the evolution of marginal ice zone (MIZ) dynamics in a

rapidly changing Arctic. MIZ are regions important regions in between the ice edge and

open ocean where strong temperatures and salinity gradients drive the dynamics in this

regions. Extensive ongoing e�orts have been made to acquire remote sensing observations

to characterize sea ice drift. The framework and current limitations of the available sea

ice drift tools are introduced in this chapter, followed by the research objectives of this

investigation. Chapter 2 delineates the methodology applied to develop a sea ice tracking

algorithm from multi-platform satellite imagery in the spring- and summer-time Arctic MIZ.

In Chapter 3, the compilation of sea ice characteristics and kinematics is employed to assess
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the role of atmospheric and oceanic forcing on ice floe motion. A strong correlation between

sea ice and the dynamics of the underlying ocean currents is established via an idealized

quasigeostrophic model. Moreover, the size, spatial patterns, and temporal variability of

the eddy field are explored, for the first time, using sea ice drift observations. Chapter 4

depicts a comprehensive investigation of sea ice surface dispersion. The dynamical metrics

quantified from the MODIS imagery are leveraged to infer the characteristics of the under-ice

eddy field via single-particle dispersion statistical analysis of sea ice. In Chapter 5, high

resolution in-situ data from the Multidisciplinary drifting Observatory for the Study of Arctic

Climate (MOSAiC) campaign is used along with MODIS-derived sea ice observations. The

single- and two-particle relative dispersion metrics from both datasets are quantified across a

broad range of spatiotemporal scales along the Fram Strait and Greenland Sea MIZ. Despite

their inherent di�erences, both datasets retrieve the same topological features, serving as a

validation to the present work. Chapter 6 concludes this thesis with a final discussion of the

accomplished research goals and objectives.

1.2 Background

Every fall, the indigenous communities along the coast of the Arctic Ocean look for the

return of the ice, crucial for their survival. After a period of long sun exposure and warm

spring temperatures, sea ice begins to form in the Arctic owning to reduced sunlight and a

drop in atmospheric temperatures. However, in the last decades, warming temperatures and

extreme weather conditions have introduced positive feedback mechanisms that have altered
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this cycle and transformed the Arctic landscape [41, 85, 89]. A thinner and reduced ice cover

exposes dark waters to solar radiation, increasing surface temperatures, accelerating sea ice

melting in the spring, and delaying freezing in the fall [98]. Record lows of sea ice extent

have been observed every summer over the past four decades [22]. Sea ice is now much

younger, thinner, and more mobile [106, 108]. The elders from the indigenous communities

recall the disappearance of so-called mother ice, the large multiyear ice, began decades ago

[117]. Now, multiyear ice has essentially disappeared [77].

The projected e�ects are far-reaching from a conservation and geopolitical stance.

A summer ice-free Arctic ocean is predicted as soon as 2035 [29]. Consequently, new

navigation routes will open for commerce and tourism, while unexploited reserves of oil and

gas will become accessible [25, 80]. Moreover, coastal erosion, rising sea levels, and the

absence of ice will continue to displace communities dependent on marine resources [25].

The observed reduction of Arctic sea ice extent has transformed the Arctic climate

system. A notable consequence of the reduced sea ice cover is the increase in size, duration,

and influence of regions known as marginal ice zones (MIZ) [124]. MIZ are characterized

by significant salinity and temperature gradients, critical in momentum and heat transfer

in polar oceans [126]. Therefore, an amplification of MIZ has the potential to alter marine

habitat, ocean circulation, and the dynamics of the Arctic climate system [109].

In MIZ, the interactions between sea ice and open waters intensify. As a result, sea ice

to rotates and deforms more rapidly than in the central ice pack. Recent numerical and

observational studies have demonstrated the importance of ocean eddies in the transport of

3



sea ice in MIZ [38, 47, 76]. As such, the sea ice drift field can be used as an indicator to

gauge the evolution of MIZ dynamics in a rapidly changing Arctic.

Despite the advances in climate modeling, surveying field campaigns, and satellite

monitoring, a complete parametrization of sea ice-ocean-atmosphere interactions across a

broad range of spatiotemporal scales in MIZ has not been accomplished. Critical dynamical

processes are not properly constrained in climate models and have resulted in inaccurate sea

ice extent predictions [123]. In-situ field campaigns in MIZ (e.g., 68, 126, 132, 141), are too

scarce to fully monitor the state of the flow field. Moreover, sea ice drift products, even those

yielding high-quality datasets, employ sensors that are not suitable to retrieve information

in MIZ. The inability to capture long-term observations and the urgency to gain a physical

understanding of the processes driving the dynamics in MIZ motivates this investigation.

1.3 Dynamics in marginal ice zones

MIZ are critical momentum and heat transfer regions between the consolidated ice pack and

the open ocean. The dynamics in these regions are complex. In general, sea ice drift is

governed by the Coriolis and inertial forces, as well as atmospheric, oceanic and internal

stresses. In Cartesian coordinates, the momentum balance equation of sea ice is defined as

[31, 32]:

<

⇡u

⇡C

= < 5 +̂⇥u�<6r� +3ice +3a +3w, (1.1)
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where ⇡/⇡C is the material derivative, +̂ is the unit vector normal to the surface, u is the sea

ice velocity, 5 is the Coriolis parameter, < is the averaged sea ice floe mass per unit area,

� is the sea surface dynamic height, 6 is the gravitational acceleration, 3ice is the stress

due to the variation in internal ice stress, 3a, 3w are the drag forces due to air and water

stresses, respectively. Considering the rotational speed of Earth, ⌦, and q as the latitude,

5 = 2⌦B8=(q).

In MIZ the Coriolis and surface tilt forcing can be neglected in MIZ [61]. Furthermore,

typically documented low sea ice concentrations and a highly fractured sea ice cover

imply that the rheological e�ects are relatively small. Hence, in free drift, the important

spatiotemporal scales of ice motion are those originating from wind and ocean currents.

In particular, the intrinsically strong sea ice-ocean interactions can drive sea ice to mirror

meso/submeso-scale ocean eddies, even amid strong wind conditions. As such, sea ice tends

to accumulate in convergence zones of vortices, i.e. eddy cores [47]. Even after days of

strong wind conditions, remote sensing imagery still captures the signature of ocean eddies

[38], whereby images illustrate the complexity of eddies and filaments (Figure 1.1).

In the northern hemisphere, a vortex with rotational direction in the clockwise (counter-

clockwise) direction is identified as an anti-cyclone (cyclone). Important eddy formation

mechanisms include hydrodynamic (barotropic and baroclinic) instabilities and the fluid-

solid interactions occurring at the topographic boundaries in region [38]. One one hand, a

barotropic instability is generated in a homogeneous and non-stratified water mass, where

shear instabilities occur due to horizontal shear. On the other hand, a baroclinic instability
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Figure 1.1: Marginal ice zone (MIZ). a) MIZ captured by satellite imagery. Sea ice displays complex mo-
tion due to its forcing mechanisms. The eddy signature of the underlying flow field is revealed by swirling
ice and its accumulation in eddy cores. b) Key atmosphere, ice, and upper ocean processes of the Arctic
MIZ.

emerges due to the vertical shear from isobaric and isopycnal layers. Along the ice edge, the

interaction of the currents with bottom ocean topography is also a significant source of eddy

formation [38, 134].

Characterizing sea ice interactions with the turbulent eddy field in MIZ remains di�cult

due to the inherent challenges of polar monitoring. A useful dimenseionless number is the

Rossby number, '>. '> is employed as the criterion to separate the mesoscale from the

submesoscale, and is defined as the ratio between inertial force and the Coriolis acceleration

forcing due to the rotation of the Earth,

'> =
6
0
�

5
2
!

2
=
✓
'3

!

◆
, (1.2)

where,
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. (1.3)

Here, 60 is the reduced gravity, 6 = (d/d0)6, where d is the density between the two layers.

! is a a characteristic length scale. The Rossby radius of deformation, '3 , is representative

of characteristic eddy length scale that is formed by geostrophic currents. In the Arctic

Ocean, stratification is generally weak and the Rossby radius is significantly smaller than

the mid-latitude oceans with '3 = 30�50 km [92]. Therefore, the small Rossby radius of

deformation at high latitudes, O(1) km, means that geostrophic eddies have small length

scale (2c'3). Even though coherent structures have been globally investigated through

altimetry data, the presence of ice in the Arctic regions and the limited resolution of satellite

sensors have challenged the ability to capture the wavelengths associated with these features

within the meso/submeso-scale spatial range.

Oceanic eddies play a key role in the transport of nutrients, heat, salinity, and bio-

geochemical properties [42, 74, 79, 140]. Recent studies have highlighted the role of

meso- ('0 ⇠ O(�1)) and submeso-scale ('0 ⇠ O(1)) eddies, typically in the form of lateral

density gradients, in modulating sea ice dynamics and vice versa. From satellite observations

[38, 47], to in-situ field campaigns [71, 126, 141], and numerical idealized models [76], there

is growing evidence of the important role of meso/submeso-scale turbulence in influencing

sea ice transport. As such, sea ice transported by eddies can strongly a�ect the dynamics

in the region. For example, sea ice drift can introduce positive feedback mechanisms that

can result in accelerated sea ice melt [35]. The transport of sea ice and any induced lateral
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freshwater transport can also enhance strong lateral buoyancy gradients that can a�ect the

heat budget of the upper ocean [132]. Meanwhile, submesoscale flows can promote vertical

heat and salinity fluxes in the water column [129]. In turn, these mechanisms can directly

impact sea ice melt, formation, and dispersion rates [76, 129].

Understanding the multiscale features driving sea ice and the turbulent eddy field in

MIZ is crucial to reach a system-level understanding of the Arctic. Advances in satellite

monitoring technology has substantially improved the ability to acquire remote sensing

observations to monitor polar regions, albeit with strong limitations in MIZ. In the following

section, available sea ice drift products are presented, along with their limitations and the

need for more comprehensive dynamical observations of sea ice to fully characterize the

evolution of Arctic MIZ dynamics.

1.4 State of the art in sea ice drift monitoring

The recent advances in technology, the surge of satellite missions, and the development of

new algorithms to acquire remote sensing observations have greatly improved the scientific

capability to monitor polar regions. Remote sensing has proven to be a powerful tool,

providing comprehensive information to monitor sea ice, validate models, and assimilate

data. Some of the most commonly used and readily available sea ice drift products are listed

in Table 5.1. The broad variability among these products exists due to the di�erences in the

satellite- and air-borne sensors and the use of the di�erent methodologies to calculate sea
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ice drift, resulting in variations of spatial and temporal data resolutions [51, 55, 59]. Each

product presents unique monitoring capabilities, with limitations.

Most commonly employed, Eulerian products detect sea ice motion by tracking the initial

position of a sea ice parcel on a grid and calculating displacement vectors on subsequent

satellite imagery. Eulerian products thus provide homogenous spatial and temporal data

coverage. On the other hand, Lagrangian methods consist of analyzing a sequential record of

positions of sea ice where the initial position of the ice parcel is not on a grid. These products

allow for the identification of sea ice features. In both methods, sea ice displacement vectors

can be calculated via two main ice motion quantification techniques: feature-matching (FM)

and area-matching (AM). FM methods retrieve the motion of sea ice by identifying sea ice

features on consecutive images [45]. On the other hand, AM algorithms take advantage

of changes in intensities within the grid cells of consecutive images. Each grid cell is

then analyzed via cross-correlation. The grid displaying the maximum cross-correlation

(MCC) coe�cient is identified and the displacement of sea ice within grid cells is quantified.

Although robust, the technique fails where rotation and deformation of sea ice impede a

correct intensity cross-correlation calculation [53]. In MIZ, most sea ice tracking algorithms

fail to produce accurate results given the high vorticity and deformation rates of the sea

ice field. Many products, including the Medium Resolution Sea Ice Drift product, the L3

Daily Brightness Temperatures, Sea Ice Concentration, Motion & Snow Depth Polar Grids

product, and the Global high-resolution SAR sea ice drift product use MCC techniques to

retrieve sea ice motion.
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The quality of a given sea ice product mainly depends on the acquisition platform

of the sensors being used. In general, the orbital tracks of the network of satellites are

too sparse to derive sea ice fields at a su�ciently high temporal and spatial resolution

as is required to resolve small-scale features of the sea ice drift field. This is the case

of the Global Low Resolution Sea Ice Drift, which employs Special Sensor Microwave

Imager/Sounder (SSMIS), Advanced Scatterometer (ASCAT), and Advanced- Microwave

Scanning Radiometer 2 (AMSR2) sensors. The product provides sea ice concentration

metrics, sea ice extent, and sea ice drift fields in a coarse 62.5 km grid and a 48 hr temporal

resolution [59]. Another low-resolution product includes the Arctic Ocean Sea Ice Drift

Reprocessed, which combines Lagrangian displacement data from AMSR, ASCAT, Special

Sensor Microwave Imager (SSM/I), and Quick Scatterometer (QUICKSCAT) to quantify sea

drift fields (31.25 km). Data from this product is not available over the summer periods due

to the sensors’ sensitivity to atmospheric water vapor, ice, and snow surface properties [27].

At moderate resolutions, one of the most popular products used to monitor the sea ice

field in the Arctic is the Medium Sea Ice Drift product. This product employs Advanced Very

High Resolution Radiometer (AVHRR) optical and infrared (IR) data to produce a sea ice

drift field in a 20 km grid [19]. The National Snow and Ice Data Center (NSIDC) sea ice drift

product provides one of the most comprehensive sets of Eulerian ice motion products for the

Arctic Ocean by combining the Scanning Multi-channel Microwave Radiometer (SMMR),

Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), SSM/I,

SSMIS, AVHRR, as well as sea ice buoys and wind data. This product produces daily sea
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ice motion vectors with a resolution of 25 km. However, it needs large areas of open ocean

and fails in regions where both land and ocean are present [136].

In recent years, products derived from Synthetic Aperture Radars (SAR) have proven

to be a reliable tool to track sea ice motion, owing to the launch of Sentinel-1A/B in

2016. Starting in 2018, SAR-derived products have provided big publicly available data at

moderate-resolution (e.g., the 10 km sea ice drift fields from the Global High-Resolution

SAR Sea Ice Drift product) [20]. In addition to these products, product generated at the

Alaska Satellite Facility, MEaSUREs, o�ers Lagrangian sea ice trajectories and Eulerian

velocity fields derived from eleven years of uninterrupted, three-day radar snapshots of

sea ice from the Radarsat-1 satellite (1995-2012) and four years from the Envisat satellite

(2008-2012). Unfortunately, the MEaSUREs sea ice drift product covers only half of the

Arctic and the Antarctic poles [50, 63]. The sampling interval of the MEaSUREs sea ice

drift product ranges from 1.5 h to 15 days. Similar to other products, MEaSUREs addresses

its uneven temporal sampling by interpolating its measurements. As such, the motion at the

meso/submeso-scale range is not properly resolved.

Optical imagery, namely AVHRR and Moderate Resolution Imaging Spectroradiometer

(MODIS), represent the longest records of Earth ever compiled. The extensiveness of these

datasets allows for the exploration of the evolution of the sea ice field over the years. The

MODIS platform has provided a large number of Earth-monitoring products. However, due

to the limitations of visual imagery in regards to clouds and illumination, sea ice studies

often employ only a small sample of images with minimal cloud imprint (e.g., 125). Despite
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Table 1.1: Available sea ice drift products derived from a variety of in-situ and remote monitoring sensors.

Program Sensors Products Spatial/Temporal Resolution Availability Season

Global Low Resolution
SSMIS, ASCAT, AMSR-2

concentration,
62.5 km / 48 hrs 2009 - present

winter
Sea Ice Drift extent, drift and summer

Arctic Ocean Sea Ice ASCAT, QUICKSCAT
drift 31.25 km / daily, weekly, monthly 1999 - 2020 winterDrift Reprocessed AMSR, SSM/I

L3 Daily Brightness Temperatures,
AMSR-E, AMSR2

brightness temperature,
12.5 km / 1, 2, and 5 days 2012 - present all yearSea Ice Concentration, concentration,

Motion & Snow Depth Polar Grids snow depth, drift

AMSR-E/Aqua Daily
AMSR-E drift

6.25 km / 5-day average
2011 summerL3 Sea Ice Drift Polar Grids

NSIDC Sea Ice Drift
AMSR-E, AVHRR, SMMR,

drift 25 km / 24 h 1978 - present all yearSSM/I, SSMIS,
NCEP/NCAR winds, drifting buoys

Medium Resolution
AVHRR drift 20 km / 24 h 2014 - present all yearSea Ice Drift

Global High-Resolution
SAR drift 10 km / 24 h 2018 - present all yearSAR Sea Ice Drift

MEaSUREs SAR
deformation, age

10 - 20 km / 3 days 1996 - 2012 all yearthickness, drift

Baltic Sea - SAR
SAR concentration, thickness, drift 0.5 km / 24 h 2018 - present winterSea Ice Thickness and Drift
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these limitations, some Arctic monitoring products are available, including snow cover

MOD10A2/ MYD102A2 and sea ice extent MODIS MOD29/ MYD29 [111]. However, to

date, no automatic sea ice drift measurements from MODIS imagery exist. The extensive

MODIS dataset has the potential to produce a comprehensive time-series study of sea ice

extending the twenty-first century, incomparable to any other SAR-based product.

1.5 Research objectives

This dissertation is devoted to the understanding of the evolution of the sea ice drift field in

the Arctic MIZ. The lack of remote sensing tools to harness information of the sea ice field

in these regions motivated this investigation. The main foal is to develop a sea ice detection

algorithm designed to acquire measurements in MIZ. This new observational tool identifies

and tracks sea ice in polar regions where dynamical measurements are sparse. On one hand,

the decision to employ MODIS optical satellite imagery presented a unique opportunity to

evaluate the variability of sea ice drift over the last two decades due to the extensiveness of

the MODIS mission. On the other hand, optical imagery is often abated by cloud coverage

and illumination changes. In this work, image processing techniques and FM methods

are employed to develop a tool capable of tracking sea ice in MIZ despite cloud coverage,

complex sea ice motion, and high sea ice deformation rates. The region south of Fram Strait

along the coast of eastern Greenland was chosen to develop and validate this tool. The

location was ideal because the region’s strong winds and mean current dictated a year-round

south-bound mean flow. As such, most of the ice was expected to drift southwards, which
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simplified visual inspection e�orts when developing the tracking algorithm. It is important to

highlight, however, that the sea ice tracking algorithm is capable of identifying and tracking

sea ice in any MIZ notwithstanding the mean flow direction.

The second research objective of this investigation is the compilation of sea ice char-

acteristics and kinematics into a unique sea ice database. The developed methodology

successfully retrieves geometric parameters including the perimeter, major and minor axes of

an ellipsoid matching second-moment of inertia as the ice floe, centroid position, and surface

and convex areas of identified sea ice floes. Moreover, relevant kinematic parameters include

Lagrangian trajectories, angular velocities, and monthly and seasonal Eulerian velocity fields.

These parameters were extracted from MODIS imagery acquired from 2003 to 2020.

The scope of this work is the thorough investigation of the sea ice field from the

calculated sea ice dataset. This endeavor consists of assessing the role of atmospheric

and oceanic forcing on ice floe motion. The results elucidate the feasibility of identifying

meso/submeso-scale eddies from satellite-derived sea ice drift fields with the long-term goal

of developing a new tool to characterize the oceanic turbulent eddy flow field. The eddies

identified from sea ice observations are characterized based on their size, spatial patterns,

and temporal variability.

The third objective of this investigation consists in quantifying the interannual variability

of sea ice drift within the past two decades. One of the most salient consequences of rising

atmospheric and oceanic temperatures is the registered drastic changes in the Arctic climate
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system. The extensive database of sea ice Lagrangian measurements extends throughout the

21BC century, allowing for an unparalleled long-term analysis of the MIZ sea ice evolution.

Finally, the last objective of this investigation is to employ sea ice as parcels subject

to the ocean surface forcing to analyze the topology of the underlying flow field. For the

first time, Lagrangian trajectories of sea ice derived from satellite imagery are employed

to measure sea ice dispersion statistics. The high-latitude turbulent oceanic eddy field is

inherently challenging to observe due to the di�culty associated with capturing coherent

structures corresponding to Rossby deformation radii in ice-covered regions. As such, this

new sea ice analysis tool provides a unique approach to employ readily available data to

characterize the processes driving the dynamics in regions where field data is di�cult to

obtain.
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Chapter 2

Ice Floe Tracker: an algorithm to

automatically retrieve sea ice drift from

moderate-resolution satellite imagery

2.1 Introduction

Historically, ice motion has been quantified via Lagrangian and Eulerian methods. Lagrangian

methods often consist of analyzing a sequential record of positions of on-ice buoys. With

over 700 buoys deployed through the International Arctic Buoy Program since 1991, buoy

trajectory measurements have provided long-term information regarding the dynamics of sea

ice in the Arctic (e.g., 99, 113, 131, among others). However, Lagrangian analysis of buoy
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trajectories does not provide uniform sampling due to constraints in spatial and temporal

coverage of the drifting instruments.

Eulerian methods have been primarily used to analyze remote sensing observations,

which allow for uniform spatial and temporal coverage of sea ice motion [51]. Time series of

airborne or satellite imagery of sea ice are superimposed on a grid, and displacement vectors

are calculated via two main ice motion quantification techniques: area-matching (AM) and

feature-matching (FM). AM techniques fail to track ice floes where rotation and deformation

are present [53]. On the other hand, FM result in inhomogeneous sea ice motion fields given

that features are not evenly distributed throughout the image [45].

By adopting both AM and FM ice motion retrieval methods, studies done with microwave,

infrared, and visible space- and airborne-instruments have provided continuous long-term

observations to monitor sea ice motion, as introduced in Chapter 1.

Remote sensing imagery from active sensors has been commonly analyzed using AM and

FM techniques, for example, active scatterometer data from NASA Scatterometer (NSCAT)

and NASA’s Quik Scatterometer (QuikSCAT) [27, 30, 64, 155]. More predominant, however,

has been the use of Synthetic Aperture Radars (SAR) to quantify sea ice drift given the high

resolution of the data as well as its independence from uneven illumination and atmospheric

conditions. The development of algorithms employing SAR imagery dates back to the first

Earth-orbiting satellite designed for remote sensing of the Earth’s oceans, SeaSat, [24] and

the European remote-sensing satellite ERS1 [55, 130]. More techniques to identify sea ice

employing SAR imagery include studies by 17, 44, 53, 78, 86, 87. One advantage of SAR
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is that it provides optimal resolution for the detection of small features over large regions

(especially over the ice pack, where high ice concentration is encountered), and thus feature

analysis from SAR imagery proves e�cient due to the rich texture provided by these sensors

[11]. However, due to inherent speckle noise from the backscattering microwave signal, SAR

imagery often requires further filtering and ice features can be a�ected [60]. In addition, the

incidence angle at which the backscatter signal is measured and the type of the target surface

(ice or open water) alter this measurement. A correction factor must hence be taken into

consideration in the majority of algorithms (e.g., 150).

Data from visible sensors are not a�ected by speckle noise and allows for sea ice-

water discrimination at the pixel level, which can prove beneficial when analyzing regions

under dynamic conditions with relatively low ice concentration (such as in the marginal

ice zone). However, it has lower resolution than SAR and is a�ected by atmospheric

conditions. Moderate Resolution Imaging Spectroradiometer (MODIS) has resulted in the

longest continuous daily global moderate-resolution satellite observation record of Earth

ever compiled [147]. Since the launch of the Earth Observing System Terra and Aqua

satellites (1999 and 2002, respectively), the comprehensive database of MODIS imagery has

been a good resource to monitor sea ice at resolutions ranging from 250 m to 1 km [95].

Due to the limitations of visual imagery in regards to clouds and illumination, sea ice studies

often employ only a small sample of images with minimal cloud imprint (e.g., 125). To date,

no automatic sea ice drift measurements from MODIS imagery exist.
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In this Chapter, an algorithm for automatic identification and tracking of ice floes is

presented. The algorithm provides sea ice drift and velocity information by processing

MODIS imagery. Our technique integrates three main modules: image processing, feature

identification, and ice floe tracking. The image processing module of the ice floe tracker

e�ectively minimizes noise due to uneven illumination and cloud coverage, while increasing

the contrast between ice floes and ocean water. The ice floe matching module allows the

retrieval of Lagrangian trajectories of ice floes with length scales ranging from 8 to 65 km in

a region where the annual mean of the Rossby radius of deformation, '0, is 5 km [92], and

the eddy radii range from 15 to 35 km [72].

This chapter is organized as follows. After a description of the database and study area

presented in Section 2.2, the structure of the algorithm is explained in Section 2.3, followed

by a discussion on its performance in Section 2.4. Acquired measurements and derived

products are presented in Section 2.5. Finally, Section 2.6 provides a summary along with

an outlook of improvements and potential applications.

2.2 Data and study area

2.2.1 Data: MODIS images

Moderate-resolution (250 m) georeferenced MODIS imagery was employed. The images

were downloaded from the platform NASA Worldview1, which implements the product

1NASA: https://worldview.earthdata.nasa.gov
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MODIS Level 1B 250M to produce 8-bit GeoTi� images. The images are displayed on an

Arctic polar stereographic projection (WGS 84/NSIDC Sea Ice Polar Stereographic North

70� N for minimal distortion at the poles and the marginal ice zone). In particular, two digital

color images are used: Corrected Reflectance True Color and Corrected Reflectance False

Color. Each of these images is composed of three bands corresponding to RGB channels,

namely band 1 (620-670 nm, 250 m), band 4 (545-565 nm, 500 m), and band 3 (459-479

nm, 500 m) for the former and band 7 (2105-2155 nm, 500 m), band 2 (841-876 nm, 250 m),

and band 1 (620-670 nm, 250 m) for the latter. Given that the high-resolution bands, i.e.,

bands 1 and 2, are used to sharpen the ones with lower resolution, digital images have an

e�ective resolution of up to 250 m. In this study, the RGB intensity values of the True Color

images are used as reflectance data to extract ice features, while False Color images are used

to di�erentiate between ice and clouds.

The EOS-NASA satellites acquiring the images (Terra and Aqua) follow a sun-

synchronous near-polar orbit with a period of 100 min [147]. Hence, each satellite

passes over any given latitude at approximately the same local time during each orbital pass,

maintaining a consistent angle of sunlight upon the Earth’s surface, critical in assessing

time-series data. Thus, as Terra and Aqua image their swath at about the same sun time

during each pass, a minimal variation of solar illumination is achieved due to a consistent

orbit and sun angle. Within a season, the majority of changes in illumination observed in the

images originate from variations in atmospheric conditions (i.e., cloud imprint) as well as

shifts in the satellite tracks. As the sensors capture sun reflectance data, spring and summer
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are the optimal seasons in which sea ice measurements can be retrieved in the Arctic. This

study covers a period of the 2017 spring season spanning from 20.04.2017 to 05.06.2017.

While in orbit, each satellite acquires an image (2340 ⇥ 2030 km2) every 5 min along

its track [146]. Worldview provides a daily real-time global image composed of a single

revisit cycle for each satellite (an image from Terra’s descending-southbound orbit and

another from Aqua’s ascending-northbound orbit). From these global images, the study

region is selected (Figure 2.1). Although each satellite produces a global image daily, the

repeat frequency does not occur along the same ground track, resulting in a slightly shifted

satellite track every day with a 16-day repeat cycle. As a result, the snapshot of the study

region can be composed of one or two satellite passes (100 min apart) depending on the

satellite track. For the study period, 21% of the images are composed of two satellite passes

(hereon referred to as composites). The advantage of working with this data set rather than

individual images is that these images have been color-calibrated, geolocated, and processed

to eliminate geometrical distortions (e.g., bow-tie and stretching) as well as atmospheric

e�ects (e.g., Rayleigh scattering).

Daily images from both Aqua and Terra were sorted to produce a comprehensive data

set from which to retrieve ice floe trajectories and velocities. Due to the di�erences in the

revisit cycle of each satellite, the time di�erence between images, �C, ranges from 20 to 90

min according to the orbit track timestamp of each satellite.
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Figure 2.1: Study region: eastern Greenland. Representative MODIS True Color image corresponding
to 06.05.2017 (displaying bands 1, 4, and 3). The grey grid indicates latitudes and longitudes, land is
shaded black. Note that the study region is smaller than a satellite swath. Inset map shows the geographical
location of the study area.
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2.2.2 Study area: eastern Greenland coast

The study area is located along the eastern coast of Greenland (Figure 2.1) and is characterized

by strong winds [39] and the East Greenland Current (EGC). The majority of the ice exported

from the Arctic exits through Fram Strait, the largest and most concentrated meridional

sea ice flow in the world [139]. The EGC, as the only major southward flowing current

in the Greenland Sea [148], transports over 90% of this ice [114]. The seasonal sea ice

cover allows for the identification of ice floes under dynamical conditions in the study

region. Furthermore, the EGC is important both locally and globally as a link between the

Arctic Ocean and the North Atlantic Ocean. Small variations in freshwater supplies, such

as freshwater spreading outside the EGC into the Greenland Sea, can alter the convective

overturning of water masses and weaken the thermohaline circulation [1].

2.3 Automatic algorithm for ice floe tracking

The developed adaptive algorithm is composed of three main stages: image processing

(Section 2.3.1), feature identification (Section 2.3.2, and tracking (Section 2.3.3). These

routines include processing functions involving numerical constants and thresholds that have

been set according to statistical analysis of the whole image sequence (total of 94 images).

The robustness of these parameters was tested by processing both a larger domain within

Fram Strait for the 2017 spring season and the marginal ice zone (MIZ) within the Beaufort

Gyre for the spring and summer seasons for years spanning 2005 to 2018 (not presented in
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this study). These analyzes proved successful despite the very di�erent dynamical properties

in these regions. Hence, it is unlikely that additional tuning is required to analyze other

regions within the Arctic. Nonetheless, the values of all the thresholds imposed are outlined

in the pertaining sections. All modules in the algorithm are implemented in Matlab using a

text-based interface to operate the Image Processing Toolbox.

2.3.1 Image processing routine

Imagery derived from optical sensors is a�ected by atmospheric processes. The first modules

in the algorithm automatically minimize the e�ects of uneven image illumination caused

by cloud coverage. Routines to enhance ice-water discrimination are then implemented,

followed by ice floe segmentation and feature identification. All of these processes are laid

out in the flow chart of Figure 2.2, with representative products of the main stages of the

algorithm presented in Figure 2.3.

Pre-processing

Initially, both RGB Reflectance False Color (RGB channels corresponding to bands 7, 2, and

1, respectively) and True Color images (RGB channels corresponding to bands 1, 4, and 3,

respectively) are automatically downloaded from the open-access Earth Observing System

Data and Information System (EOSDIS) Worldview platform and loaded into the module. A
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Figure 2.2: Image processing flowchart. Overview of the algorithm developed to process MODIS imagery
for ice floe identification. Outputs 1 and 2 refer to panels c) and e) of Figure 2.3, respectively.
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Figure 2.3: Ice floe tracker. Panels are representative of outputs at main stages of the algorithm: a) unpro-
cessed MODIS RGB True Color image, b) image after cloud minimization, c) sharpened image, d) image
after ice-water discrimination; note that colors are reversed for clarity in the presentation, e) binary image
after K-means color segmentation, and f) segmented ice floe contours superimposed on the corresponding
unprocessed True Color MODIS image. The geometric centroids of identified ice floes are marked with red
on the bottom rightmost panel.
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land mask is then superimposed and dilated 12 km into the ocean to reduce computational

time and minimize identification errors of landfast ice.

Although a cloud mask product (MOD35) is available, the algorithm does not employ it

to avoid removing regions where ice floes can be potentially retrieved. Instead, reflectance

thresholds were employed to discriminate sea ice from clouds and open water [2]. False

Color RGB images are first analyzed to distinguish snow and ice from clouds. Since snow

and ice are very reflective in the visible part of the spectrum (band 1), and absorbent both

near infrared (IR) (bands 2) and short-wave infrared (band 7), False Color RGB images

display ice and snow with blue, and clouds with white color (Figure 2.4). Furthermore, by

analyzing the red channel of the image (band 7) separately from the other channels, the cloud

imprint is readily observed (Figure 2.4.b).

Following statistical analysis of the images, pixel thresholds were set to create a cloud

mask at each time step. First, a preliminary mask is created by identifying pixels exceeding

an intensity value, ;1, of 110 in channel 1 (band 7), since, unlike ice, clouds appear bright

near IR. The preliminary mask is then corrected for pixels including discernible ice floes

underneath clouds by selecting pixels with ;1 < 200 in the red channel (band 7), and also

;2 > 190 in the green channel (band 2). Also, pixels with a ratio of ;1/;2 ranging from 0

to 0.75 were found to contain underlying ice floe features that could be resolved with the

presented algorithm. The final cloud mask is generated by subtracting pixels from which ice

floes could be retrieved from the preliminary cloud-mask (Figure 2.4.d).
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Figure 2.4: Reflectance False Color MODIS image. a) Representative False Color image used to identify
clouds, with RGB channels corresponding to bands 7 (2105-2155 nm), band 2 (841-876 nm), and band 1
(620-670 nm), respectively. b) Band 7 of the RGB. c) Band 1 of the RGB. d) Computed cloud mask of the
region. The land is shaded in gray in all images.

True Color RGB images are processed to identify ice floes. To minimize the e�ects

of uneven image illumination due to clouds, an intensity enhancement method, known as

histogram equalization, is adopted for its e�ectiveness in removing thin clouds in visible

satellite imagery [137]. This technique is based on the premise that cloudless images have

more contrast than those taken on cloudy days [127]. Histogram equalization takes the

histogram of the input image (Figure 2.5.a) and aims to evenly distribute the intensities over

the whole intensity domain so that these span over a wider range on the intensity scale. To

accomplish this, the probability density function (PDF) of the RGB True Color image is

computed:

%⇡� (;) =
=;

#

, (2.1)
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where =; is the number of pixels at every intensity ;, and # is the total number of pixels in

the image. The cumulative distribution function (CDF) is then obtained by summing all of

the probabilities over the entire intensity domain:

⇠⇡� (;) =
;’
8=0

%⇡� (8). (2.2)

Ideally, this function would map the input histogram (e.g., Figure 2.5.a) into an image with

an equal number of pixels at each intensity level. However, the intensity values in real digital

images are discrete and final; hence, this transformation cannot produce a perfectly uniform

output histogram. Nonetheless, mapping the input image via its CDF modifies the dynamic

range of the image such that its intensities are better distributed [119]. To that end, the CDF

value at every ; is multiplied by the maximum intensity value, ;<0G =255:

) (;) = ⇠⇡� (;) ⇤255. (2.3)

This is performed using all RGB channels of the True Color image, producing a flatter

and more evenly distributed histogram (Figure 2.5.b). As a result, images have maximum

contrast [144], and the noise due to thin clouds is reduced. The equalized True Color RGB

image is subsequently converted to greyscale (Figure 2.3.b). The e�ect of the histogram

equalization is evident in the central region of Figure 2.3.b, where the thin haze produced by

clouds is reduced, and ice floes are better resolved than in the original image (Figure 2.3.a).
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Figure 2.5: Histogram equalization. Distribution of intensity values of the red channel of a representative
True Color MODIS image a) before and b) after histogram equalization is performed.

Ice-water discrimination

After image pre-processing, the next module in the algorithm increases the contrast between

ice floes and seawater (e.g., bright objects and dark background, respectively, in Figure

2.3.b). By enhancing the di�erence in intensities between sea ice and ocean pixels, ice floes

can then be readily segmented and identified.

First, the algorithm sharpens the images by subtracting a blurred copy (!). Blurred

images are generated by imposing a Gaussian function (⌧) on each pixel of produced copies,

! (G, H,f) = ⌧ (G, H,f) ⇤=(G, H, ;) , (2.4)

where f is the standard deviation of the Gaussian distribution that e�ectively determines

how much blurring will be imposed. A value of f = 2 was prescribed on a 10-pixel radius
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based on empirical analysis of the images. As a result of this operation, ice floe contours are

better distinguished from seawater (e.g., compare Figure 2.3.b to Figure 2.3.c).

Next, the algorithm selectively identifies pixels containing sea ice and increases their

intensities to brighten ice floes in the sharpened images. Due to cloud overcast and residual

noise from the image pre-processing routine, artifacts may appear as shadows and color

gradients on the surfaces of some ice floes (e.g., mid-section of Figure 2.3.c). To better

discern ice-pixels, sharpened images are divided into nine subsections, and band 7 (short-

wave infrared) is analyzed to evaluate the presence of clouds (e.g., Figure 2.4.b). If the

number of bright pixels with intensity value ; � 110 (indicative of bright clouds) covers

less than 20% of any given subsection, the standard deviation of pixels with high intensities

(f;>110) is quantified. If f;>110 � 100, the intensity of every pixel with ; > 125 in any

given subsection is increased by 30%. This enhances ice floe-water discrimination while

minimizing the gradients within the surface of ice floes. On the other hand, if cloud coverage

on the subsection is extensive, only pixels with intensity ; >175 are brightened. This results

in images with a dark water background and bright ice floes (e.g., Figure 2.3.d, which for

ease of visualization is shown with black and white reversed).

Once the resulting greyscale images have been enhanced to increase intensity di�erences

between sea ice and water, their grey levels are used to perform a color-based segmentation

routine via K-means clustering [73] to automatically discriminate ice floes from seawater.

The grey shades are classified based on the chromatic similarities between pixels containing

sea ice and water. To perform this task, a total number of four clusters were defined to
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partition the images and identify ice floes. The algorithm groups all of these in the same

cluster since most of the pixels pertaining to ice floes have similar chromatic values. From

the four clusters generated, the cluster containing the ice floes is automatically selected

by identifying pixels with low intensities (; ⇡ 0) in band 7 (e.g., Figure 2.4.b), and high

intensities (; ⇡ 255) in band 1 (e.g., Figure 2.4.c.) By selecting low ; values in band 7, pixels

with artifacts due to clouds are e�ectively discarded, while the selection of high ; values in

band 1 isolates sea ice, which is highly reflective in the visible part of the spectrum. Once

the ice floe cluster is identified, the image is binarized by assigning the pixels in this cluster

value of one, while the rest of the pixels (the water-mask) are assigned a value of zero.

Finally, objects with a surface area less than 1 km2 are filtered from the image to eliminate

ice floes with geometrical parameters that cannot be properly resolved (e.g., Figure 2.4.e).

Segmentation

Incorrect identification of adjacent ice floes as a single over-sized floe can occur if the

individual contours of neighboring ice floes are not fully resolved (e.g., ice floes enclosed

by the blue outline in Figure 2.3.e). Ice floe segmentation is performed to minimize such

identification errors by identifying intensity valleys and applying a watershed segmentation

to each image. To this end, bordering ice-pixels are identified and connected via a watershed

function by calculating the inverse Euclidean distance of each ice-pixel to the nearest

water-pixel, and recognizing that pixels within the center of the ice floes have larger absolute

distances to water pixels than those at the contour [36]. The watershed function is applied to
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both ice-water discriminated images (e.g., Figure 2.3.d), and binary images that have already

been processed via K-means color segmentation (e.g., Figure 2.3.e) to reduce any artifacts

due to incorrect segmentation. Given that one set of images is formed of greyscale images,

while the other set is composed of binary images, the inverse Euclidean distance metric

results in di�erent intensity valleys. Retrieved ice floe divisions that align in both images are

thus the only ones imposed.

Watershed segmentation allows for ice contour identification without distortion. However,

this function must be combined with the following image operations to identify ice floes as

single objects correctly. First, the color-based segmentation routine employing K-means

clustering is performed on sharpened images taking into account the water-mask produced

during the ice-water discrimination module (considering three-color clusters). The cluster

containing the ice floes is automatically selected, and binary images are produced holding

the rest of the parameter space constant. The computed watershed segments are also applied,

and artifacts are filtered by removing objects with areas smaller than 3 km2. Second,

single white pixels connecting large groups of white pixels are removed, followed by an

erosion-and-dilation operation, whereby the ice floes are shrunk in size by 4 pixels and then

expanded by 4 pixels again, to eliminate gaps in ice floe contours.

Holes can appear on the surface of ice floes covered by clouds. Clusters of dark pixels

are identified to correct this issue. If these clusters (irrespective of the number of pixels) are

entirely surrounded by bright pixels, dark pixels within the cluster are reassigned an intensity

value of one, thus filling in the holes on the surfaces of ice floes. Finally, to generate the
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final product of the image processing routine (e.g., Figure 2.3.f), the cloud-mask produced

at the beginning of the algorithm (e.g., Figure 2.3.d) is applied to each filled-in image.

2.3.2 Feature identification

Once segmented images are obtained, ice floes are recognized as objects, and their geometrical

parameters are calculated, including perimeter, major and minor axes of a circumscribing

ellipsoid, centroid position, and surface and convex areas. The convex area is defined as

the area of the smallest convex polygon enclosing an ice floe. The full suite of geometrical

parameters is used to identify and track ice floes in subsequent MODIS images automatically.

From the positions of tracked ice floes, displacement vectors are calculated together with sea

ice velocities (taking into account image acquisition time di�erences).

Limiting thresholds on the size of retrieved ice floes are imposed to ensure the accuracy

of the feature identification module, whereby information of ice floes with surface areas less

than 44 km2 or greater than 940 km2 is discarded. The lower threshold is applied given

that ice floes with areas below this cut-o� cannot be reliably di�erentiated solely based on

geometrical measurements. For instance, the standard deviation of geometrical parameters

for ice floes with areas below 44 km2 decreases by an order of magnitude compared to those

above that limit, restricting accurate di�erentiation between neighboring ice floes. The

maximum threshold, on the other hand, eliminates the identification of residual imprints of

large atmospheric conditions as over-sized ice floes.
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As a result of this module, the agglomerations of ice floes being resolved are vast, with

length scales ranging from 8 to 65 km (e.g., objects with red markers in Figure 2.3.f). A

database containing the geometrical parameters of all ice floes, together with their positions

(provided both in polar stereographic and lat/lon coordinates), is generated and transferred

to the tracking module.

2.3.3 Tracking

Ice floes are automatically tracked by: (1) comparing the geometrical information of ice floes

within consecutive images, (2) finding potential matches by evaluating the percent di�erence

in prescribed geometrical parameters between reference ice floes and their prospective pair

based on empirically derived thresholds, and (3) selecting the best candidates based on the

assessment of a similarity metric. As implemented, this analysis occurs in a multi-step

process. The first step analyzes image pairs within a 24-hr window, while a second step

repeats steps (1) through (3) within a 48-hr window. Given that the accuracy of the retrieved

ice floe trajectories depends on the evaluation of geometrical parameters, identified ice floes

that are too small to retrieve this information reliably are excluded from the tracking module

(ice floes with length scales less than 8 km and surface area of approximately 44 km2).

Before inspecting the geometrical parameters of ice floes within consecutive images, upper

bounds on the distances traveled by drifting ice floes are imposed to improve computational

time (Table 2.1). Displacement thresholds of 3.75 and 7.5 km were set for acquisition

time di�erences of 20 and 90 min, respectively. For longer acquisition time di�erences,
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Table 2.1: Restrictions on sea ice displacement applied to the multi-step matching module according to the
time di�erence between potential ice floe matches.

� t
20 min 90 min 24 hr >24 hr

Displacement radius 3.75 km 7.5 km 30 km 60 km

displacement thresholds of 30 and 60 km were imposed for di�erences of 24 hr and >24 hr,

respectively. High thresholds are imposed to avoid tuning these parameters when analyzing

regions with di�erent dynamical properties.

If the displacement thresholds are met, the geometrical parameters of ice floes within

consecutive image pairs are examined. Potential matches are detected by identifying ice floe

pairs that meet empirically derived bounds on the percent di�erence of major and minor

axes, surface area, and convex area (Table 2.2). Given that measurable di�erences in these

factors decrease with ice floe size, a lower tolerance is imposed on ice floes with areas less

than 75 km2 (resulting in a reduction of the percent di�erence of all parameters ranging

from 30 to 35% compared to bounds imposed on larger ice floes). The numerical thresholds

imposed throughout this module were empirically determined by trial-and-error analysis of

the whole image sequence. The empirical method to select these thresholds consisted of

manually tracking ice floes for a few days, while continuously measuring these parameters

and their day-to-day di�erences. The value of the thresholds imposed to each parameter is

an upper bound on the registered variability of each metric.
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Table 2.2: Geometrical thresholds applied to the first and second passes of the ice floe tracker algorithm.
Numerical values indicate the percent di�erence in geometrical parameters of evaluated ice floes from one
trajectory point to the next (except for the surface area di�erence and the correlation coe�cient).

Parameter
Threshold [%]

Ice floe area < 75 km2 Ice floe area � 75 km2

Major axis 7 10

Minor axis 8 12

Surface area 18 28

Convex area 9 14

Surface area di�erence 18 24

 � ( cross-correlation coe�cient 0.7 0.7

Due to the resolution of the images, uneven illumination due to cloud overcast, and

residual artifacts from the image processing module, the contours of identified ice floes can

vary substantially, even during short periods of time. However, the geometrical parameters

evaluated to match ice floes are not directly dependent on the accuracy of ice floe contour

detection. The major and minor axes are defined by circumscribing an ellipsoid around an ice

floe, which has the same second-moment of inertia as the ice floe. Hence, the length of both

major and minor axes are robust metrics despite ice floe contour variability. For this reason,

strict bounds were considered for the major and minor axes, as seen in Table 2.2. Surface

and convex areas are slightly a�ected by the accuracy of ice floe contour detection, which

justifies more lenient thresholds. An example of the evaluation of geometrical parameters to
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Figure 2.6: Ice floe identification via evaluation of geometrical parameters. The circled ice floe is identified
continuously for nine days. The position of the ice floe is presented both a) at the beginning (30.04.2017)
and b) at the end (08.05.2017) of the automatically retrieved trajectory. The contour of the ice floe is de-
lineated with light-blue, and its area is filled in with gray. The major and minor axes of the circumscribing
ellipsoid are indicated by a red and blue line, respectively. The bottom inset of b) shows the ice floes rotated
until aligned and superimposed against each other. Matching areas are shown in white, while the pink and
green colors show misaligned regions.

retrieve an ice floe match is presented in Figure 2.6, illustrating an ice floe tracked during a

9-day period. Although the shape of this ice floe changes from day one to nine (Figures

2.6.a and 2.6.b, respectively), the tracking module successfully identifies the correct match

based on evaluation of its geometrical parameters, notwithstanding large rotations.

Finally, two additional metrics are used to evaluate potential ice floe matches: surface

area di�erence, and the  � ( correlation coe�cient (Table 2.2, below the dotted line). To

calculate the surface area di�erence between a reference ice floe and its potential match,
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both ice floes are superimposed, and the potential ice floe match is rotated about its center

of mass until the area di�erence between the two is minimum (e.g., bottom inset of Figure

2.6.b). If the area di�erence between the superimposed ice floes is below 24%, the so-called

 � ( similarity metric is calculated for each ice floe.  is defined as the angle between the

tangent to the ice floe contour and the horizontal (calculated at regular intervals throughout

the contour), while ( is the arc length of the boundary traversed (evaluated at the same

points throughout the contour) [78]. Once the  � ( function is calculated, the normalized

correlation coe�cient is computed:

d(:) =

=Õ
9=1

( � ()1( 9) ( � ()2( 9 � :)� `1`2

f1f2
, (2.5)

where the subscripts 1 and 2 refer to quantities pertaining to the reference ice floe and its

potential match, respectively. Also, ` is the mean of the  � ( function, f is the standard

deviation, : is the o�set between correlation measures and = is the last point of the ice

floe contour. A given pair is considered a final match if d(: ⇡ 0) > 0.70. If more than

one potential ice floe match is being evaluated, the ice floe pair with the smallest percent

di�erences in analyzed geometrical parameters (including superimposed matching area and

the  � ( correlation coe�cient) is selected as the final match.

The first pass of the tracking algorithm analyzes consecutive image pairs with a time

di�erence �C ranging from 20 min to 24 hr, whereby heavy cloud cover can thwart continuous

ice floe tracking. During the second pass (also referred to as 1-day skip module), longer
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trajectories can be recovered by applying the same analysis to a longer time series. By

analyzing a total of five images spanning a 48-hr period, the 1-day skip module successfully

retrieves longer trajectories if ice floe identification was corrupted for up to 24 hr (one to

four images of missing information). The process is better illustrated with the following

hypothetical example, in which the first pass identifies ice floe � for days 1, 2, and 3. Its

trajectory is then retrieved for days 1, 2 and 3 and velocity vectors can be computed for

days 1 and 2 (considering ice floe displacements between image pairs 1+2 and 2+3, and

the corresponding �C between images). Suppose that excessive cloud coverage on day 4

impedes the continuous identification of ice floe � and, as a result, ice floe � is identified as

a new ice floe � on day 5. The 1-day skip module corrects this and relabels ice floe � as �

while retrieving not only a longer trajectory (spanning days 1 through 5) for ice floe �, but

also more comprehensive information regarding the ice floe velocity (given the retrieved

image pair 3+5). The algorithm recognizes that the time di�erence between days 3 and 5 is

48 hr and assumes a linear drift to calculate the velocity vector. On average, this increases

the number of points in a trajectory from 2 to 3 trajectory points. It is also important to

comment that there are a total of two images per day (originating from each one of the EOS

satellites). This is taken into consideration in the algorithm but omitted in this example for

simplification. Similarly to the first pass, a displacement radius threshold is imposed during

the 1-day skip module, see the fourth column of Table 2.1). In addition, ice floe trajectories

with a higher number of extrapolated positions from the 1-day skip module than of retrieved
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positions from the first pass are compared to those of neighboring ice floes (within a 30 km

radius) to eliminate spurious trajectories.

2.4 Performance evaluation of the algorithm

Manual ice floe identification in unprocessed True Color RGB MODIS images (with a

dilated land mask was performed to quantify the error associated with algorithm-derived

products. This set of baseline images was selected such that a broad range of cloud-coverage

conditions were included in the analysis (Figure 2.7). Manual identification of ice floes was

open to human interpretation of contrast, intensity, and texture of the images, unavoidably

making this process subjective to the discretion of the authors.

In general, good agreement between manually identified ice floes and algorithm results

were observed. Both the shape and location of ice floes qualitatively matched manual

selections everywhere except in regions with dense cloud cover. Di�erences in geometrical

parameters between manually identified ice floes and the tracker output ranged from 1.7±0.7

% to 4.9±0.02 % (Table 2.3).

The mismatch between manually and automatically identified ice floes can be attributed

to artifacts arising as a byproduct of the image processing module (e.g., ice floes within

regions 1 through 5 in Figure 2.7). As a result of the implemented strategies to filter clouds,

ice floes in certain parts of the images can be darkened, thereby reducing the number of

identified ice floes (e.g., regions 1 and 2 in Figure 2.7). Also, although reflectance data were
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Figure 2.7: Evaluation of the algorithm. A superposition of raw MODIS images and algorithm-derived
products (black outline) is presented along with manual ice floe identifications (red outline) for the follow-
ing acquisition dates: a) 04.05.2017, b) 05.05.2017, c), 21.05.2017, and d) 24.05.2017.
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Table 2.3: Identification error of geometrical parameters. Identification errors are taken as percent di�er-
ences between manual and automatic results.

Parameter Identification error

Major axis 4.1 ± 2.1

Minor axis 4.9 ± 0.02

Surface area 1.7 ± 0.7

Convex area 1.7 ± 0.8

used to distinguish sea ice from clouds, remanent errors from the image processing routine

can appear as distorted shapes (e.g., regions 3 and 4). Additional sources of error are cloud

residues due to thick clouds that cannot be completely filtered, as the cloud intensity values

are brightened and identified as ice floes (e.g., region 5 in Figure 2.7.b). In most cases, these

artifacts are products of the histogram equalization operation, which is applied to flatten and

evenly distribute intensities in the image. However, given the large concentration of pixels

in brighter sections of the original histogram, spikes are unavoidably introduced (Figure

2.5). Notwithstanding these processing issues, the algorithm still retrieves reliable ice floe

trajectories and drift by leveraging the tracking module. The geometrical parameters of the

artifacts that could result in incorrect ice floe identification have high variability throughout

the image sequence; hence these are not matched within consecutive images, and the final

products of the algorithm are not a�ected by issues stemming from the image processing

routine.
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Quantitatively, error in sea ice drift (fD), which results from the error of retrieving the

correct geographical position of an ice floe and the error associated with correctly tracking it

over time, is computed as [34, 51]:

fD =
(2f2

6
+f

2
5
)
1/2

�C
, (2.6)

where f6 and f5 are the standard deviations of the absolute geographic position error and

the tracking error respectively, and �C is the corresponding time interval.

Retrieving the correct geographical position of ice floe centroids depends on three factors:

(1) the geolocation accuracy of MODIS images (f8 = 150 m) [146], (2) image resolution

(f88 = 250 m), and (3) the accuracy of automatically identified centroid positions. Estimation

Figure 2.8: Evaluation of automatic ice floe detection. Comparison between ice floe centroid positions and
velocity vectors derived by the ice floe tracker algorithm and from manually identified ice floes. Eastward
and northward components along the stereographic projection axes are depicted in blue and red circles
respectively for both position and velocity vectors.

44



of centroid positions with the ice tracker algorithm showed good agreement with manually

identified ice floes, which are taken as ground truth ('2 = 0.99, Figure 2.8.a). The root

mean square error (RMSE) is used to estimate the error associated with automatic centroid

identification,

f888 =

vtÕ#6

8=1(G
<

8
� G

0

8
)2 + (H

0

8
� H

<

8
)2

#6

= 255m, (2.7)

where #6 = 430 is the total number of algorithm-manual ice floe pairs, G0
8
, and H0

8
are the

coordinates of the 8C⌘ automatically identified ice floe along the projection grid, respectively.

Finally, G<
8

, and H<
8

are the coordinates of the 8C⌘ manually identified ice floe, respectively.

The geographical position error is then attributed to the greatest source of error (f888), thus

f6= 255 m.

Ice floe drift velocities were computed from manually identified ice floes. To this end,

daily displacements were produced by employing the tracking module on the manually

outlined ice floes. These trajectories were manually verified and compared to the results

of the trajectories automatically produced with the algorithm, showing good agreement

(R2=0.99 in Figure 2.8.b). The error associated with the tracking module is derived from the

RMSE,

f8E =

vtÕ# 5

8=1 (D
<

8
�D

0

8
)2 + (E

0

8
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<

8
)2

# 5

= 0.5 cm/s, (2.8)

where # 5 = 50 is the total number of algorithm-manual ice floe velocity vector pairs.

D
0

8
, and E0

8
are the eastward and northward components of the 8C⌘ automatically identified

ice floe velocity vectors along the polar stereographic axes, respectively, and D<
8

, and E<
8
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are the eastward and northward components of the 8C⌘ manually identified ice floe velocity

vectors, respectively. Based on f8E, the tracking error was computed (considering �C = 1

day) yielding f5 = 430 m. Hence, employing Equation 2.6, the error in the automatically

retrieved sea ice velocity, fD, ranges from 46.77 cm/s to 0.65 cm/s (corresponding to images

acquired with a �C of 20 min and 24 hr, respectively).

2.5 Ice floe trajectories and velocities

2.5.1 Ice floe trajectories

A total of 1,061 ice floes were automatically tracked during the study period (Figure 2.9).

In this image, the color gradient is indicative of the length of each trajectory, e.g., lines

colored with dark blue represent trajectories comprised of two trajectory points (equivalent

to identifying the same ice floe on two consecutive images). Similarly, yellow lines represent

the longest ice floe trajectories (with eleven, or more, trajectory points). The length scale

distribution of tracked ice floes for the duration of the study shows that the majority of the

ice floes for which trajectories could be retrieved have length scales smaller than 15 km, and

surface areas smaller than approximately 100 km2 (Figure 2.10).

On average, ice floes identified for more than 24 hr were tracked for up to 2.5 days,

corresponding to an average of 7 trajectory points. A total of 2,489 drift vectors composed

the 1,061 trajectories retrieved. From these, 73% of the drift vectors had a southward

46



Figure 2.9: Ice floe trajectories. Retrieved ice floe trajectories during the period 20.04.2017 - 05.06.2017
are presented with solid lines. Both the length of the lines and the color gradient scale with the number of
retrieved trajectory points.
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Figure 2.10: Length scale distribution of tracked ice floes. The characteristic length scale is defined as the
major axis of a circumscribing ellipsoid.

direction. In these cases, displacement was dominated by an eastward motion (along the

projection axes) with 66% of ice floes drifting to the south-east and 34% to the south-west.

Out of all the northward trajectories, 72% corresponded to ice floes with length scales less

than 15 km (and a surface area of roughly 100 km2). Irrespective of size, 43% of the tracked

ice floes experienced northward drift, at least partially (Figure 2.9).

2.5.2 Ice floe velocities

Eastward and northward sea ice velocities along the stereographic projection axes were

computed from the retrieved ice floe trajectories. Specifically, velocity vectors were acquired

from the drift vectors composing each trajectory, and the corresponding acquisition time

di�erence between trajectory points for the entire study period (Figure 2.11). A mean
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velocity field spanning the study period was computed by computing the weighted average

of sea ice velocity vectors within a uniform grid. The spatial resolution of the grid was

chosen such that approximately ten velocity vectors were enclosed in each cell, which was

roughly 20 km by side. A post-processing routine commonly employed in experimental

velocimetry studies was implemented to eliminate outliers [104]. This involved evaluation of

the velocity field via thresholds of the maximum local velocity (twice the standard deviation

from the mean of the sample data to detect velocity outliers), a standard deviation test (mean

velocity minus five standard deviations of the gathered data), and a normalized median

test. The resulting average sea ice velocity field is presented in Figure 2.12, where yellow

arrows indicate the velocity vectors that were replaced during post-processing and the black

arrows represent the final velocity field product. The majority of the flagged vectors that

were interpolated according to the post-processing routine are observed to fall in the vicinity

of the sea ice edge. In future versions of this algorithm, these errors can be mitigated by

implementing a filter to discard sea ice floes drifting along the ice edge. With a higher

resolution sea ice concentration map, the sea ice edge can be better identified and bands

of brash ice or pancake ice floes, changing too fast to allow a reasonable tracking of these

segments, can be removed from the analysis to improve the output. On average, northward

sea ice velocities ranged from �9.3±0.65 cm/s to 1.4±0.65 cm/s (with negative values

denoting a southward drift); while eastward velocities varied between �1.7±0.65 cm/s to
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Figure 2.11: Drift velocity vectors. All drift velocity vectors retrieved during 20.04.2017 - 05.06.2017 are
displayed on a 20 km grid. The AMSR-E/AMSR2 Unified L3 Daily 12.5 km Sea Ice Concentration Version
1 layer provided by the MODIS Worldview platform was employed to map the open water for the entire
study period. Note that overlapping vectors are a result of superimposing the data in a single image. Red
hues indicate the amount of time open water was observed in the area during the study period.
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Figure 2.12: Mean sea ice velocity field. The derived velocity field before post-processing (in yellow),
overlapped with the post-processed output (in black) and the CMEMS SAR sea ice velocity product of
the region (in red) are presented in this figure. Ocean bathymetry is reproduced in color from ETOPO1,
National Geophysical Data Center (NGDC) NOAA.
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4.1±0.65 cm/s (with negative values denoting a westward drift). The mean sea ice speed

was 9.4±0.65 cm/s.

Information on sea ice motion was also acquired from the CMEMS global high-resolution

SAR sea ice drift product 011-006 (10 km of resolution). A CMEMS mean velocity field for

the study period was obtained by linearly interpolating daily velocity fields onto the 20 km

grid used to analyze the MODIS output. To that end, the Delaunay triangulation of points

technique was employed to interpolate the scattered CMEMS data onto the 20 km grid. The

Delaunay triangulation is performed by summing the three vertices of a triangle enclosing

the query point. This produces the velocity field seen in Figure 2.12. Note that a few grid

points in this map are empty since not all the areas in the study region had ice transition

through them during the study period (see Figure 2.11). Weighted averages produced

northward velocities ranging from �11.6±0.6 to 0.8±0.6 cm/s, while eastward velocities

varied between �0.5±0.6 to 3.4±0.6 cm/s. The mean sea ice speed was 12.4±0.6 cm/s.

Comparison of the ice tracker output to the CMEMS sea ice drift product qualitatively shows

good agreement. Although the CMEMS sea ice drift product employs high-resolution SAR

data, moderate resolution MODIS data produced comparable results to SAR. Quantitative

comparison between both products resulted in an RMSE of 5.2 cm/s ('2 = 0.79, with a total

vector pairs of #=86, Figure 2.13).

The discrepancy in the results compared to the CMEMS product are due to several

factors. This includes di�erences in the operation of MODIS and SAR instruments, the most

important one being that SAR imagery is not a�ected by clouds. In addition, the CMEMS
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product employs Sentinel-1 data resampled to a 300 m resolution before sea ice displacement

is computed, which is slightly di�erent from the MODIS 250 m resolution employed in

this study. Moreover, the consecutive SAR images used to calculate sea ice displacement

are typically 12 to 36 hr apart [133], in comparison to the images employed in this study,

which range from 20 min to 48 hr apart. While the weather independence of SAR images is

indeed an advantage to extract sea ice motion, the temporal coverage of MODIS is more

comprehensive. These factors contribute to the di�erences observed in Figure 2.13.

An additional source of error is introduced by the 1-day skip module. Although this

module significantly increased the trajectory vectors retrieved in this study, the module

introduces uncertainties to the final product. When the trajectory of an ice floe is extended,

the module assumes a linear drift, which is not correct. Nevertheless, this module was

Figure 2.13: Comparison of MODIS and SAR velocity vectors. Comparison between mean velocity ice
motion vectors derived with the presented algorithm and the CMEMS ice drift product for eastward and
northward components along the stereographic projection axes.

53



necessary due to the persistent cloud cover observed in MODIS imagery. Without this

module, the vector fields are too scarce to produce a mean velocity field. Moreover, the

number of trajectory vectors increases with the 1-day skip module, resulting in an improved

RMSE. Without a 1-day skip module, RMSE= 7.2 cm/s, as compared to the RMSE of 5.2

cm/s when employing the 1-day skip module.

Other products, such as the OSI-SAF medium resolution sea ice drift product, were also

explored to evaluate the output of the presented algorithm. Although this product retrieves

valuable data for the Arctic Basin, no data was available for the study region during the study

period.

Finally, reported sea ice drift velocities in the literature are presented here as a reference

for the estimates presented in this study. Buoy measurements done by 145 during the spring

of 1997 eastward from the study region (in the area delineated between 70� and 74� N

and 0� and 10� W) resulted in a sea ice mean velocity of 29 ± 18 cm/s for a period of 41

days. A recent GPS study by 149 performed in between 2012 and 2014 northward from the

study region (between 74� and 78� N and 6� and 20� W), reported mean ice floe velocities

ranging from 6.1 ± 7.9 cm/s to 34.3 ± 20.9 cm/s in a 41-day and 52-day period, respectively.

Further north in Fram Strait, at the same longitudes of the study region, monthly mean ice

floe velocities have been measured to range from -15 to 5 cm/s (meridional) and -10 to

10 cm/s (zonal) during the spring of 2015 [88]. The results in this study fall within one

standard deviation of the reported values in literature. Note that direct comparison is not

straightforward as sea ice drift depends on the study period and location.
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2.6 Conclusions

In this paper, a new processing algorithm is presented. This algorithm is developed to

leverage existing long-term MODIS datasets to analyze ocean surface conditions in the

Arctic. The method is adaptive, thereby di�erentiating sea ice-water interfaces based on

pixel intensity. The intensity of the images is manipulated via time- and cost-e�cient

techniques to identify ice floe positions and track them continuously. No manual interaction

is needed to process images, thus allowing the analysis of inaccessible and remote areas of

Arctic regions with dynamic sea ice motion and relatively low sea ice concentrations via

Lagrangian methods.

Various factors play a role in the quality of the products here presented. First, the centroid

positions of the ice floes must be precisely located. As a quality check, the algorithm was

evaluated against manual identification. Second, a good agreement in most geometrical

parameters is critical for the quality of the results. A shortcoming of this method is to fully

filter atmospheric conditions, which results in geometrical parameter errors (Table 2.3).

Also, di�erentiation between landfast ice and floating ice is not possible with the present

method. However, given that drift vectors within landfast ice are e�ectively zero, the final

products are not a�ected by these identification errors. Third, a su�ciently high temporal

sampling along the entire trajectory is needed to sample the mean velocity field correctly.

While 1-day skip module is useful, it unavoidably introduces uncertainties to the final product

by extending ice floe trajectories assuming a linear drift, which is not necessarily correct.
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Nonetheless, the calculated mean ice floe velocities are in good agreement with previously

derived estimates in the region and SAR-derived sea ice drift products. Other sea ice drift

products were explored to validate the algorithm, such as OSI-SAF medium-resolution sea

ice drift product, alas the product was not able to resolve ice floe motion in the region of

interest. This emphasizes one of the motivations behind this work; studies in regions where

existing sea ice products cannot resolve ice motion, particularly near the coast, can benefit

from using the presented algorithm.

More importantly, the observed variability of sea ice drift strongly suggests that our ice

floe tracker can be employed to analyze mesoscale eddy fields. In a region highly influenced

by the East Greenland Current, the retrieved northward trajectories are a clear indication of

variability from a southward mean flow. These spatial deviations from the mean, especially at

small length scales, highlight the feasibility of retrieving kinematic parameters of sea surface

turbulence in the Arctic from MODIS imagery. Future implementations of this method could

benefit from including an additional module based on cross-correlation techniques, such as

those commonly used to process particle image velocimetry measurements in experimental

studies of fluid mechanics, to resolve turbulent eddies with smaller length scales.

Given the accessibility of this method, this work will help to further the exploration

of turbulence dynamics in the Arctic. In this region, eddy radii range from 20 to 40 km

[38]. Hence, mesoscale ocean turbulence statistics could be, in principle, retrieved with this

product. Furthermore, evidence of eddying motion was observed in the computed trajectory

and mean velocity maps. In the central region of the study area, for example, sea ice drift
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follows the topographic shelf partitioning of the ocean floor (Figure 2.12). Closer to the

coast, however, whether wind- or oceanic-driven, areas of recirculation are observed both in

shallow waters (<280 m) (top left corner of Figure 2.13) as well as in deep waters (<2000

m).

With the continuation of the MODIS program, this ice floe tracker provides new means

to study sea ice drift in the Arctic. New analysis methods are introduced in the next chapters

of this thesis.
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Chapter 3

Sea ice dynamics mirror the underlying

turbulent oceanic currents amid strong

atmospheric forcing

3.1 Introduction

An accurate understanding of the sea ice field is crucial for navigation operations and the

conservation of the Arctic. Of particular interest are marginal ice zones (MIZ), where the

coupling between sea ice and the open ocean intensifies. In these regions, the oceanic

flow field plays a crucial role in the formation, melt, and distribution of sea ice. In MIZ,

sea ice spanning a wide range of length scales move primarily due to wind and ocean

forcing. Evidence of meso/submeso-scale turbulent eddies interacting with sea ice has been
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thoroughly documented, from in-situ measurements to satellite remote sensing imagery.

Nevertheless, a complete parameterization of these interactions remains di�cult to achieve.

In this chapter, sea ice field information derived from MODIS imagery is used to investigate

the role of oceanic eddies on sea ice transport.

Several studies have investigated the role of atmospheric and oceanic forcing on sea ice

drift. Lukovich et al., [68], for example, characterized ice drift features associated with

individual ice beacons during the winter of 2008 to investigate the key mechanisms causing

variability in the sea ice drift field. The team assessed atmospheric and oceanic conditions

during three case studies in which the e�ects of coherent structures were observed, i.e.,

reversal events forcing buoys into loops or meanders. The team demonstrated that the sea

ice-ocean-atmosphere coupling was enhanced, but only for a single case, with others showing

a weak coupling. Furthermore, although the study attempted to characterize atmospheric

conditions during turbulent events, the number of study cases was too small to adequately

characterize these interactions. In a subsequent study, Lukovich et al., [69] employed GPS

beacons deployed in the southern Beaufort Sea in the fall of 2009. The team identified

inflection points in the drift of sea ice, as well as directional changes of the beacons during

eight loop- and meander-reversal events in the beacons’ trajectories. The direct comparison

of ice drift and surface winds showed that these events were highly correlated to surface

wind changes. This work established a framework to characterize directional changes in

sea ice drift in response to atmospheric forcing based on Lagrangian dispersion statistics.

Gabrielski et al., [26] also analyzed the wind field along the trajectories of a single buoy.
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Their findings suggested a strong coupling between sea ice drift and atmospheric forcing.

However, a single case study is not su�cient to fully characterize these interactions.

In this chapter, the role of atmospheric and oceanic forcing on ice floe motion is assessed

employing a robust statistical analysis. To that end, a correlation analysis between wind

and ice velocity fluctuations is performed to determine the influence of atmospheric forcing

during turbulent events in sea ice drift. An innovative approach employing ice floe rotation

measurements is here presented. This metric has never been reported on a large sea ice

database due to the inherent di�culty of measuring this parameter from in-situ or remote

sensing observations. This in-depth assessment of the wind field led to the development of

an automatic eddy detection tool from MODIS imagery.

This chapter is structured as follows. In the next section, the methodology used to

characterize the dynamics of sea ice is presented. Section 3.3 presents the analysis of the

results regarding sea ice-atmospheric interactions and the eddy detection tool. Conclusions

follow in Section 3.4.

3.2 Technical approach to characterize sea ice drift

3.2.1 Angular ice floe velocities

The unique dataset developed in Chapter 2 contains information on ice floe shape character-

istics derived from MODIS imagery. The dataset includes the perimeter, major and minor

axes of the ellipsoid matching the second central moment, centroid position, and surface and

60



convex areas. The convex area is defined as that of the smallest convex polygon enclosing an

ice floe. These surface metrics allow the quantification of the rotation angle evolution of an

ice floe. The angle evolution of sea ice has been rarely reported in the literature due to the

inability to calculate it from in-situ field measurements [149].

The calculataion of the rotation of sea ice is based on examining the shape of floes at

consecutive trajectory points. To illustrate this process, an example is presented in Figure 3.1,

where the Lagrangian trajectory of an ice floe is displayed for a period of two weeks. The

daily positions of the ice floe are plotted. In addition, the mean velocity field spanning the

study period is presented (see Chapter 2). In this example, as the ice floe drifts southward,

significant continous rotation about its center of mass is observed. To quantify the evolution

of the rotation angle, the shape of the ice floe at the beginning of the measurement period

is superimposed (panel a) onto its shape at a subsequent location (panel b). The angle of

rotation, which produces the minimum misaligned regions during this superposition process,

is then selected. These misaligned regions are highlighted in panel c with di�erent colors for

reference. In this particular case, the ice floe rotated 61° clockwise in 7 days. The analysis

described here is performed at each point of each ice floe trajectory until the evolution of the

angle of the entire dataset computed is computed. Finally, the angular velocity of the ice

floes, ⌦, is quantified employing the acquisition timestamp of the images.
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Figure 3.1: Ice floe rotations. Example of a two-week Lagrangian trajectory with daily contours plotted on
map from both Aqua and Terra satellites. a) Contour of the ice floe at the beginning of the image sequence.
b) Contour of the same ice floe after nine days. c) Superposition of both contours used to quantify ice floe
rotation. Matching areas are shown in white. Pink and green areas denote misaligned regions.

3.2.2 Curvatures of ice floe trajectories

An analysis of the nature of the trajectories is also performed. The retrieved sea ice

trajectories are classified into two groups: those displaying a straight path for over 5 days,

and those with curved trajectories. Since the analysis is sensitive to noise, sea ice trajectories

62



are first smoothed using a Bezier curve interpolation scheme [66]. Next, the curvature of a

trajectory is calculated employing the tools developed by [84]. The consecutive points along

the trajectory are analyzed in sets of three labelled A B and C, which form the line segment

�⌫⇠. A circle circumscribing �⌫⇠ is estimated, as well as a radius A8 to the center of this

circumscribed circle. The local curvature vector is thus defined as :8 = n8/A8, where n8 is the

unit vector in the direction from B to the center of the circle.

The magnitude of :8 is substantially smaller for straight curvatures compared to curved

ones. In other words, for local straight paths, the center of a curve lies far from the three

points �⌫⇠. In contrast, a path with an inflection has a center much closer to these points. By

statistical analysis cuto� values of :8 < 0.002 and :8 � 0.002 were determined to discriminate

between straight and curved trajectories, respectively. It is important to note that these

bounds are applied on images with a spatial resolution of 250 m and, hence, :8 values are

obtained using pixels units. In conclusion, a segment is considered to have an inflection if

:8 � .002 for at least 5 days. Otherwise, it is considered straight.

3.2.3 Wind velocity field

The ERA5 10 m wind speed reanalysis data was employed to assess the role of atmospheric

forcing on ice floe dispersion. The product is obtained from the European Centre for

Medium-Range Weather1. Hourly wind data is averaged considering a 7-hour window

(3 hours before and 3 hours after sea ice velocity measurements are acquired). Using a

1Copernicus: https://cds.climate.copernicus.eu
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biharmonic spline interpolation scheme, the wind velocity vectors are interpolated to match

the exact position of the ice floes positions.

3.2.4 Automatic eddy detection tool

An automatic eddy detection algorithm was developed. Sea ice Lagrangian trajectories and

their rotation evolution were used to characterize the flow field and identify meso/submeso-

scale ocean eddies.

A geometric definition of a loop is implemented to identify sea ice trapped inside of an

eddy [7]. In this scheme, an ice floe that followed a trajectory descrubed by a closed curved

is considered to have formed a loop if the motion occurred between 5 to 21 days, according

to the time and length scales observed in the area [38]. The ice floe closes its loop when

its initial and final position overlap. Realistically, the distance between the initial and final

positions, ⇡, is not zero. Thus, ⇡ must be smaller than a threshold maximum distance ⇡0,

which depends on the scale of the eddy in question [18]. From a manual identification and

analysis of trajectory loops, the tolerance was set such that small floes (< 180 km2) forming

loops between 5 to 7 days with a surface area, �! , smaller than 300 km2 are assigned a value

of ⇡0 = 10 km. The threshold distance for bigger ice floes (> 180 km2) is set to ⇡0 = 20 km.

In general, even if an ice floe trajectory forms a closed loop by meeting the distance

threshold, the ice floe may in fact be locally trapped [18]. The distance between the initial and

the final positions, ⇡ must form a loop with a perimeter smaller than half the displacement

distance of the ice floe during the query days to ensure that the ice floe is indeed circulating.
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In addition, there is no certainty that a large ice floe is being turned by an underlying eddy or

some other forcing source if the surface area of the ice floe, �8 covers the area formed by the

loop, �! . Therefore, from statistical inspection, �! � 32�8 to ensure the trajectory points of

an ice floe actually form a loop. Due to the image resolution, only loops with an area greater

than 2 km2 are considered.

Finally, not all the loops formed by sea ice were eddies. As atmospheric forcing drives

sea ice to drift over an oceanic eddy field, the eddy field forces sea ice to rotate over its

own axis while it moves through the eddy. To identify oceanic eddies correctly, the angular

velocity of sea ice, ⌦, had to coincide with the motion of the eddy field. To that end, eddy

vorticity, Z , is defined as 2c divided by the time taken by the ice floe to complete the loop.

As such, this tool allows for the quantification of an eddy’s rotational direction, lower-limit

apparent radius, and location.

To summarize, the following conditions must be met to identify an eddy from sea ice:

1. The ice floe must form a loop within 5 to 21 days and have a radius of over 2 km2.

2. The ice floe must return to an initial point considering a tolerance of ⇡0.

3. The distance traveled by the ice floe must be long enough to avoid trapping.

4. The area of the loop formed by the eddy must be greater than 32 times the area of the

ice floe forming the loop.

5. The ice floe must rotate over its own axis in the same direction as its translation

displacement direction.
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3.3 Results

The developed approach to track the translational and rotational evolution of sea ice provides

a resource to automatically characterize the oceanic turbulent eddy field from MODIS

imagery. The Beaufort Gyre (BG) is a major basin-scale anticyclonic current in the Western

Arctic Ocean. For a few decades, the gyre has accumulated a large amount of fresh water

[102]. To maintain equilibrium, the number of small eddies in this region has increased [154].

To investigate the inter-annual variability of the BG, the characteristics of the underlying

flow field in MIZ were evaluated within the past two decades. The position, velocity, and

rotation rates of over 28,000 ice floes in the BG MIZ were calculated. Sea ice transitioning

over an eddy was demonstrated to rotate over its vertical axis according to the underlying

eddy flow field.

The characteristic rotation rate of the observed floes, ⌦, depended strongly on their size.

Normalized by the Coriolis parameter 5 = 10�4, their rotation rates can reach values of up to

0.15 for the relatively small 5 km floes. In comparison, floes larger than 50 km rotate an

order of magnitude slower than the smallest detectable floes. An example of this behavior

is presented in Figure 3.2 (panels a-e). The rotation evolution of two ice floes is plotted.

As the floes drift, it is evident that they also significantly rotate about their center of mass.

A sketch of the recovered five-day trajectories is displayed in the last panel. The smaller

ice floe shows a faster rotation rate than the bigger ice floe. The color of each ice floe is
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Figure 3.2: Ice floe rotation rates. a-e) Time series of the rotation rate of two representative sea ice floes
over five consecutive days. f) Sketch of collapsed trajectories for both ice floe cases. The color of each
ice floe is representative of its vorticity normalized by the Coriolis parameter, 5 at a given time step. The
mean geostrophic ocean current velocity (2003–2014) is plotted in background [4]. Ocean bathymetry is
reproduced in color from ETOPO1, National Geophysical Data Center (NGDC) NOAA [91].

representative of their vorticity normalized by the Coriolis parameter taken at each time step

of their trajectories.

The statistics of floe rotation predominantly reflect the properties of the oceanic eddy

field. A strong correlation between the rotation rates of sea ice and the vorticity of underlying

ocean eddies was established via an idealized high-resolution numerical model 2. The model

simulates translational and spinning motion of floes via a two-layer quasi-geostrophic (QG)

framework [3]. The model is initialized by ERA-5 atmospheric wind data. The model also

employs the MODIS sea ice observations, which include the shape of the ice floes and linear

and rotational velocities (see Figure 3.3.A). The main model parameters include the Rossby

deformation radius, '3 , the vertical shear of the horizontal currents, �*, the ratio of layer

depths, X, and the drag coe�cients of the top and bottom boundaries. These parameters are

2This investigation was done in collaboration with the Oceanographic Team from the University of
Washington. The e�ort to develop the QG model was performed by Dr. Manucharyan, while the author
provided the observations to initialize the QG model and participated in the analysis of the results.
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Figure 3.3: Sea ice and oceanic statistics. a) Examples of floe rotation and translation over eddies initialized
with a constant wind flow field and sea ice shapes and velocities (from MODIS imagery). The underlying
oceanic flow field was generated by a QG model with best-fit parameters from MODIS observations. Color
scheme represents the average ocean vorticity normalized by 5 . b) Variance of the simulated (red) and
observed (black circles) floe rotation rates as a function of floe length-scale; the error bars denote 95%
confidence intervals. c) Interannual evolution of the floe rotation rates variance (red), bulk SSH anomaly
associated with the Beaufort Gyre (blue), mean flow in the south-east Beaufort Gyre, and the seasonal mean
of sea ice concentration (gray). The data points in the timeseries represent three-year running mean values.

adjusted to produce an eddy field that mimics the observed rotational statistics of the ice

floes (as seen in Figure 3.3.B). The variance of the simulated sea ice floe rotations agree

with the variance of the observed floe rotation rates. Within a few hours, the simulated ice

floes reach statistical equilibrium with the driving forces, and the floe angular velocity is

highly correlated to the ocean vorticity, Z , averaged over the floe surface area.
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The inter-annual variability of the sea ice rotation rates is investigated by comparing

the observed rotation statistics against the conditions of the region over the twenty-first

century. Figure 3.3.C shows the the ice floe rotation rates against the strength of the BG. To

assess the strength of the BG, two metrics were quantified: the BG sea surface height (SSH)

anomaly and a regional mean flow velocity. To quantify a characteristic seasonal average

SSH anomaly, the di�erence between the SSH of an area encompassing the center of the gyre

and its periphery is calculated. The center of the gyre was defined as the region enclosing

most of the gyre during the spring and summer seasons from 2003 to 2019. The area

surrounding the gyre excludes shallow waters that were below 100 m deep. Next, a regional

mean flow velocity is calculated as  ⇢> = 1
2d>

�
< D

2
>
> + < E

2
>
>

�
. The monthly geostrophic

oceanic currents are denoted by (D>, E>). Angle brackets denote regional averages within

the time frame of availability of sea ice floe observations. Water density values are taken

as dF=1 kg/m3 and d>=1000 kg/m3. Both metrics are produced from Armitage et al., [4].

From figure 3.3.C, the strong correlation between the rotational characteristics of sea ice

with the oceanic conditions of the BG demonstrates that the statistics of floe rotation can be

used to infer the properties of the oceanic eddy field.

It was also observed that ice concentration suppresses the eddy field due to the frictional

eddy kinetic energy dissipation by the ice-ocean drag taken from the NSIDC MASIE-AMSR2

(MASAM2) 4-km product [23]. A sea ice area index is calculated by defining the area

covered by sea ice relative to the total area of the Beaufort Sea (983,663 km2). This

relationship provides direct observational evidence that declining sea ice concentrations lead
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to enhanced turbulent activity on the ocean surface. Ice cover dramatically suppresses the

eddy field due to the frictional eddy kinetic energy dissipation by the ice-ocean drag. The

consequences of this can be far-reaching as sea ice continues to retreat. Large-scale currents

and the eddy field will become much more energetic, contributing to enhanced lateral and

vertical flux of heat, salt, and chemical tracers.

Upon establishing a strong correlation between the rotation rates of sea ice and the

vorticity of underlying ocean eddies, the influence of atmospheric and oceanic forcing on ice

floe motion was further assessed. To that end, an analysis between wind and ice velocity

vectors was performed to determine the influence of atmospheric forcing on sea ice drift

during turbulent events. First, the sea ice trajectories collected from the Greenland Sea MIZ

from 2003 to 2020 were classified into two groups: trajectories with straight and curved

sections (Section 3.2.2). The wind forcing contribution on these two groups of trajectories

was evaluated via statistical analysis.

The turning angle between the sea ice drift observations and the 7-hr mean ERA wind

vectors were calculated. Distinguishing between trajectories with straight and curved

sections, the influence of the wind was examined. The majority of the straight sea ice

trajectory sections remained with wind heading, as the majority of sea ice followed the

direction of the wind within 0� to 30� (Fig 3.4.A, grey). On the other hand, when the

curved sections were examined, there was no clear relationship between the direction of the

observed sea ice velocity and that of the wind (Fig 3.4.A, orange). This is an indication that

the influence of wind during an inflection is not the dominant factor for sea ice drift and
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Figure 3.4: Turning angle and wind factor. a) Probability distribution of turning angles between ice and
wind velocity vectors. Metrics from ice floes following straight paths are displayed in grey, while inflection
paths are presented in orange. The majority of straight path observations are with wind heading. (Inset)
Histogram of turning angles between ice and wind vectors considering all the observations collected during
this study. As expected in the northern hemisphere, sea ice vectors pointed 20� to 30� to the right of wind
vectors. b) Probability distribution of the apparent wind factor, (|E824 |/|EF8=3 |). The apparent wind factor
of ice with straight trajectories is much larger than those in inflection paths. (Inset) Histogram of apparent
wind factor considering all the observations collected during the study. The expected 2% influence of wind
on ice is observed.

could possibly point at sea ice trapped in a vorticity-dominated region, i.e. an oceanic eddy

core. Next, the turning angle between the sea ice drift and the mean wind vector of all of the

sea ice observations was calculated, notwithstanding of the sea ice trajectory characteristics.

Overall, the ice vectors remained 20� to 30� east of the wind direction, as expected from

Earth’s rotational e�ects, (Fig 3.4.A, inset). Floes driven by wind will follow 25� to the right

of the wind [90]. Floes driven by water currents will show rotation uncorrelated to the wind

direction.

The apparent wind factor was also quantified. This parameter describes the ratio of sea

ice speed to wind speed, |E824 |

|EF8=3 |
. Sea ice speed is known to be about 2% of the surface wind

speed [90]. As expected, assessing all of the collected measurements regardless of trajectory
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direction, sea ice drift speed corresponded to 2% of the wind speed, (Fig 3.4.B, inset). Once

again, a distinction between the straight and curved trajectories was performed. The straight

trajectory sections display a greater apparent wind factor than the curved sections (Fig 3.4.B).

As such, wind forcing has a stronger influence on sea ice motion when the trajectories of sea

ice do not curve or are una�ected by the underlying turbulent flow field.

To examine the nature of wind, the variability of 24-hr winds of straight and inflection

trajectories was quantified. No clear distinction between the two groups was observed,

indicating that the observed deviation from a mean southward flow of sea ice is not entirely

due to intermittent atmospheric events. These results are in accordance to the low correlation

found between sea ice and wind motion in the Beaufort’s sea MIZ by [71], who attributed

submesoscale ocean currents to the observed sea ice motion. The decorrelation found

between curved wind trajectories and the wind vectors demonstrates that wind is not the

only source of sea ice motion variability.

The weak correlation displayed by wind velocities and the curving sea ice paths presented

the feasibility to identify Lagrangian coherent structures in the flow field from sea ice motion.

When sea ice is trapped in an eddy vortex, its motion can mirror the underneath oceanic

coherent structure and can consequently form a loop in its trajectory. Eddies in the region

are reported to range within 20-40 km with a lifetime of 2-3 weeks [142]. Meanwhile, larger

eddies have been detected in the region, reaching 80-90 km and lasting no more than 10

days [48]. Therefore, sea ice loops are restricted to spatial scales smaller than 100 km with

a minimum of a 5 day lifetime. Atmospheric vortices develop at spatial scales too large
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(O(2)- O(3)) km and at time scales too quick (1-2 days) to induce the observed loops in sea

ice trajectories [143]. Additionally, inertial oscillation frequencies in this region vary from

-1.885 to -1.975 cycle/d. For these reasons, the motion here described can be attributed to

oceanic forcing.

In order to recognize these turbulent events, loops in sea ice trajectories are automatically

identified, i.e., inflection sections of sea ice trajectories when the sea ice returns to an

original position after some time and closes its curve as described in Section 3.2.4. The

acquisition of ⌦ on a large sea ice dataset has not been reported before in the literature.

Sea ice displaying closed curvatures in their inflection trajectories over a period of 5 days

or more, in addition to coinciding l and Z directions, were identified as motion driven by

oceanic eddies. Some examples are presented in Figure 3.5.A-C. The insets show daily

positions of sea ice recovered from satellite observations. The radius of sea ice trajectories

transitioning over oceanic eddies is presented as a low-bound length scale of oceanic eddies

in the region, ranging from 3 to 23 km. A total of fifty-one eddies were identified via sea

ice observations. The locations of eddies are observed to cover the entire study region,

concentrating in shallow waters, as seen in Figure 3.5.E. Leveraging the ability to retrieve

rotation rates, the rotational direction of an ice floe is employed to determine the rotational

direction of the underlying eddy. There was a slight anticyclonic directional preference, with

63% of the eddies rotating in that direction, but no dominant gyre drives the motion in this

region.
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Ice–ocean interactions were observed using the first ice- tethered profiler equipped with

a velocity sensor in the Beaufort Gyre by Cole et al., [12]. The team collected ice velocity,

u824, and ocean velocity at 7-m depth, u>240=, among other parameters, from October 2009 to

March 2010 in the Canada Basin. Over the 6 months of observations, the speed regression

between the ice and ocean at 7-m depth was D>240= = 0.43D824. Leveraging this information

on the sea ice-ocean field, the collected sea ice velocities in this study were scaled using this

factor (see Figure 3.5.D). Sea ice trapped in an eddy displays sea ice rotation rates equal to

the underlying eddy flow field. This is in accordance with [75] and the results presented

earlier demonstrating sea ice transitioning over an eddy rotated over their vertical axis in

accordance with the underlying eddy field of motion. These results emphasize how the

accurate parametrization of sea ice in MIZ is important, as the evolution of sea ice drift in

MIZ cannot be solely attributed to wind. As such, meso/submeso-scale oceanic currents

must be taken into consideration for accurate modeling and forecasting of sea ice conditions

in the Arctic.

3.4 Conclusions

In order to improve prediction models of sea ice evolution, it is crucial to understand the

ocean-ice-atmosphere coupling across a wide range of scales. The results from an extensive

investigation of the sea ice and atmospheric fields reveal the critical physical processes

driving sea ice motion in MIZ regions. The Lagrangian sea ice observations, along with a
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suite of concurrent upper ocean and atmospheric measurements, provide crucial information

to achieve accurate parameterization of sea ice-turbulent ocean interactions in MIZ.

In this chapter, a correlation between the rotation rates of sea ice and the vorticity of

underlying ocean eddies via an idealized QG model was established. The model simulates

the translational and spinning motion of floes. The model was initialized with ERA-5

atmospheric wind data as well as observational data of sea ice derived from MODIS imagery.

Sea ice rotation was demonstrated to predominantly reflect the vorticity of underlying eddies.

The role of atmospheric and oceanic forcing on sea ice motion was further investigated.

Leveraging atmospheric forcing information, sea ice variability was found to have a weak

correlation to atmospheric forcing. From this framework, an automated eddy detection

tool employing MODIS-derived sea ice trajectories was presented. Using the trajectory

and, for the first time, rotation information of sea ice, meso/submeso-scale eddies along the

Greenland Sea and Fram Strait MIZ were automatically identified. The ability to quantify

sea ice vorticity provides an innovative source to analyze the underlying turbulent eddy field.

A total of fifty-one events were identified in which sea ice trajectories formed loops as if

trapped in eddies. Even in the presence of strong winds, the imprint of oceanic eddies is

evident in the Lagrangian trajectories of sea ice floe motion. These observations highlight

the importance of sea ice-ocean interactions, such that sea ice drift in MIZ cannot be solely

attributed to atmospheric forcing. Understanding the tight connection between sea ice and

ocean dynamics will allow for a more comprehensive characterization of the turbulent eddy

field at the meso/submeso-scale range in MIZ.
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Figure 3.5: Rotation characteristics of tracked sea ice. a-c) Examples of sea ice trajectories forming loops
during (a) 09.2006, (b) 06.2007, and (c) 07.2007, respectively. Daily positions and shapes of sea ice dis-
played with normalized rotation rates. Monthly mean velocity flow field calculated from NSIDC 25-km
sea ice drift product. Insets show the loops formed by the trajectories, along with an estimated eddy core
radius. d) Scatter plot of average normalized eddy vorticity versus daily normalized sea ice rotation rates
of sea ice displaying eddy-like trajectories (all normalized by 5 ). Ice rotation rates belonging to the same
sea ice under the influence of the same eddy are joined by a straight line. Color scheme is representative of
estimated apparent eddy radius. e) Eddy locations, apparent radii and direction of eddies identified using
the MODIS detection tool during the spring- and summer-time MIZ from 2003 to 2020. Red (blue) circles
denote cyclonic (anticyclonic) direction of the eddy. Marker size is proportional to eddy apparent radius.
Bathymetry of the region is taken from General Bathymetric Chart of the Oceans (GEBCO).
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Chapter 4

Sea ice evolution during the twenty-first

century from statistical dispersion

metrics

4.1 Introduction

Characterizing the critical processes driving sea ice motion in MIZ is crucial for the

improvement of prediction models, ocean operations, and the conservation of the Arctic.

However, monitoring the long-term changes of sea ice dynamics in these regions remains

challenging. Dating back to work done by Cole and Thorndike [13, 14], sea ice motion has

been employed as a tracer to extract the signature of turbulence in the ocean. Building on to

the framework of these studies, the structure and evolution of the sea ice drift field within the
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MIZ is investigated in this chapter. The unique dataset of sea ice observations derived from

optical MODIS images developed in the Chapter 2 is employed to quantify the dispersion

statistics of sea ice, namely single-particle dispersion statistics.

The focus of this chapter encompasses the north-eastern coast of Greenland (Figure

4.1.B). Year-round, the region is covered by sea ice exported from the Arctic through Fram

Strait. As mentioned earlier, Fram Strait is the largest and most concentrated meridional sea

ice flow in the world [139]. The region is characterized by strong winds [39], and the East

Greenland Current (EGC). The EGC, as the only major southward flowing current in the

Greenland Sea [148], transports over 90% of this ice [114]. Submesoscale oceanic eddies

drive recirculating warm Atlantic waters into the region, impacting the heat, salinity and thus

sea ice structure [140]. The first baroclinic Rossby deformation radius, '0 in the Greenland

Sea is approximately 5 km [92]. This suggests eddy wavelength variability in the order of

2c'0. In the region, eddy radii ranges from 15 to 35 km, while eddy lifetime ranges from

20 to 30 days [38, 72]. The sea ice velocity field is employed to study the topology of the

underlying flow field in MIZ and infer the properties of the turbulent eddy field in the region.

The MODIS dataset employed in this study represents the longest record of Earth ever

compiled [147]. As such, these images can provide invaluable daily observations at moderate

spatial resolutions extending throughout the 21st century. The number of observations is

extensive, in contrast to studies that employ, for example, solely IABP data. Therefore, the

extension of the long-term MODIS database allows for the analysis of inter-annual variability

of sea ice dispersion by focusing on the following questions:
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• What are the characteristics of sea ice dispersion in MIZ?

• How have the properties of sea ice velocity field changed in the last two decades?

These questions are addressed in this chapter. In section 4.2.1, a brief theoretical

review of single-particle statistics and the methodology employed to quantify single-particle

dispersion of sea ice is presented. The absolute dispersion and variability of the sea ice field

over the twenty-first century are presented in Section 4.3. Finally, this chapter concludes

with a discussion and summary in Section 4.4.

4.2 Theory review and methodology

4.2.1 Absolute dispersion theory

Here, the theory developed by Taylor [128] on the absolute di�usion of a turbulent

flow is applied. The first stipulation of this turbulence theory is the assumption of a

statistically homogeneous and steady turbulent flow field without the presence of a mean flow.

Therefore, the influence of the mean flow must be removed from the MODIS-derived sea ice

measurements. To that end, sea ice motion is decomposed into a mean (predictable) and a

fluctuating (unpredictable) component. The latter component is motion due to fluctuations

caused by turbulence in the ocean. Let u be the velocity of an sea ice 8, at time C:

ui(t) = u
0

i
(t) +ui(t) . (4.1)
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The fluctuating component of sea ice velocity, u
0

i
(t), is free of the influence of the mean flow

[26]. Then, the fluctuating displacement of sea ice is obtained by integrating this fluctuating

velocity in time [105],

G
0

8
(C) = G8 (C)�

C

)

π
)

0
D8 (C

0
)3C

0
, (4.2)

where G8 is the position of an ice floe, and ) is an averaging temporal window.

Once the influence of the mean flow is removed from the measurements, the absolute

dispersion of sea ice, A02, can be calculated. Sea ice dispersion is defined as the displacement

of sea ice from an initial position. Absolute dispersion is obtained by averaging this

dispersion over the ensemble comprised of # ice floes:

A
02 =

1
# �1

#’
8=1

[ |G8 (C)� G8 (0)� hG8 (C)� G8 (0)i |2 ] ,

A
02 =< [G

0

8
(C)� G

0

8
(C0)]

2
> .

(4.3)

Here, G8 (0) indicates its initial position of an ice floe. hG8 (C)� G8 (0)i denotes the influence

of the mean flow.

The Lagrangian integral time scale, )! is calculated by integrating the normalized

velocity fluctuation autocorrelation function [103]

)! =
π

1

0
'(g)3g , (4.4)
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where g is the lag time of consecutive trajectory points. The normalized velocity fluctuation

autocorrelation function, '(g), is defined as [26, 67]

'(g) =
hu

0

i
(t)u0

i
(t+ g)i

hu0

i
(t)2i

. (4.5)

)! is an important metric, as it can reveal the temporal regimes of the flow field. These

regimes are characterized by di�erent topological features. In isotropic and homogeneous

2D turbulence, tracers follow two distinct regimes, a ballistic and a di�usive regime [103].

These regimes can be identified by defining their absolute di�usion, the rate at which ice

floes are being dispersed, as [16, 56]

^(C) = a2
π

C

0
'(g)3g , (4.6)

where a is the velocity variance hu
0

i
(t)2

i. To distinguish between dispersion regimes, the

absolute dispersion can be written in terms of '(g) [56]:

A
02
8
= 2a2

π
C

0
(C � g)'(g)3g . (4.7)

At short time periods, i.e., C ⌧ )! , dispersion is characterized by a ballistic regime. In this

case, '(g) ⇡ 1, such that dispersion grows quadratically over time:

A
02
8
= 2a2

π
C

0
(C � g) ·1 3g ,

A
02
8
⇡ C

2
.

(4.8)
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If the mean flow is not properly removed from the residual velocities, dispersion will be

a�ected. For example, when the mean flow is not removed, the absolute dispersion grows

quadratically in time when the mean flow is comprised of a strong shear flow [26].

During a late-time limit, i.e., C � )! , sea ice experiences random walk motion [103],

known as a di�usive regime. In this regime, absolute di�usion is constant and can be defined

as the time evolution of the absolute dispersion [16, 56],

^(C) =
1
2
3

3C

hA
02
8

↵
. (4.9)

Combining equation 4.6 and 4.9:

1
2
3

3C

= a2
π

1

0
'(g)3g

A
02
8
= 2a2

π
1

0
'(g)3g .

(4.10)

At this long-time limit, if the integral of the normalized autocorrelation function, '(g),

converges to a constant value, i.e., V =
Ø
1

0 '(g)3g, then dispersion grows linearly:

A
02
8
= 2a2

V C . (4.11)

Both regimes, C � )! and C ⌧ )! , have often been observed in oceanic flow. Rampal

et al., [107] investigated the trajectory of 450 IABP drifters deployed between 1979 and

2001 over the entire Arctic basin. They observed that the absolute dispersion of their buoy
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ensemble grew, first, quadratically in time following a ballistic regime. After 10 days,

they observed a linear growth in their absolute dispersion measurements (di�usive regime).

Rampal et al., [105] studied the trajectories of sea ice employing IABP buoys for three

consecutive winter seasons (2007-2011). An integral timescale was found to be 1.71 days,

where a clear transition between the ballistic regime and a di�usive regime was observed.

A third regime is of particular interest. This regime is observed at intermediate scales,

between 2)! and 30)! [103]. In the past, this anomalous dispersion regime has been di�cult

to resolve in oceanic flow, mainly due to the inability to completely remove the influence of

a background mean flow [56]. Known as an anomalous dispersion regime, it is observed if

the integral of the normalized autocorrelation function does not converge to a constant value

in equation 4.10. If that is indeed the case, dispersion is quantified by a power-law exponent,

where U < 1 or U < 2:

A
02
8
/ C

U

. (4.12)

Anomalous dispersion has been observed in both numerical simulations [9, 21] and

experiments [120]. A power-law exponent of U=5/3 denotes dispersion in rotational (elliptic)

regions. On the other hand, a power-law exponent of U=5/4 indicates regions associated

with eddies, motion driven by shear and stretching [21]. For the first time, Rupolo et al.,

[115] observed the existence of anomalous dispersion subsurface floats in the Western

North Atlantic. Later, Lukovich et al., [67] examined the trajectories of 22 ice beacons

in the Beaufort Gyre (BG) during the 2007-2008 winter. The sea ice displacement was

decomposed into zonal and meridional direction of the BG. Zonal dispersion, in agreement
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with the strong zonal shear of the region, grew as C2. An anomalous dispersion regime was

identified when the team analyzed meridional dispersion, which followed a scaling law of

C
5/4, characteristic of flow dominated by mesoscale eddies. The investigation found the

integral time scales to be 1.2 days in the zonal and 0.7 days in the meridional direction.

Gabrielski et al., [26] performed an analysis on 29 Fram Strait Cyclones (FRAMZY)

and Arctic Climate System Study (ACSYS) ice buoys deployed in the Fram Strait region

in the winters of the years 2002, 2003, and 2007-2009. In addition, 49 IABP buoys were

also tracked in the winters between 1988-2011. The absolute dispersion of the cross-stream

component grew quadratically during short timescales (<3 days). Anomalous dispersion was

observed at longer timescales, with a U = 5/4 power law. The integral timescale calculated

for the FRAMZY/ ACSYS ensemble was 0.45 days and 0.46 days for the IABP ensemble.

These studies established the framework to investigate sea ice dispersion using surface

drifters in the Arctic oceans. However, despite the high seasonal atmospheric and oceanic

variability in the region, neither seasonal nor annual distinctions in the data employed

are taken into consideration in any of these studies [112, 153]. As such, a complete

characterization of sea ice drift cannot be yet completed to understand the evolution of

surface dispersion in MIZ. For the first time, the trajectories of sea ice derived from MODIS

satellite imagery are employed to quantify the evolution of sea ice dispersion in the Fram

Strait and Greenland Sea MIZ.
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Figure 4.1: Sea ice observations. a) Retrieved trajectories of identified ice floes along the eastern Greenland
coast. The background image corresponds to 14.05.2003, and all backward-in-time trajectories that include
ice floe positions on that day are shown with colors. The position of the center of mass of each identified
ice floe is marked with a circle, and the displacement vectors are presented with solid lines. b) Ice floe
trajectories lasting over 30 days retrieved between March 31 and September 19 (2003 – 2020). c) Length
scale distribution of detected sea ice floes. d) Time span of the Lagrangian trajectories analyzed to calculate
absolute dispersion metrics.

4.2.2 Methods

To investigate the structure of the sea ice drift field within the MIZ, sea ice kinematics are

quantified from remote sensing data to calculate the dispersion statistics of sea ice as single

particles. First, sea ice must be identified and tracked from MODIS imagery. Next, the

velocities of sea ice are calculated.
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Calculation of sea ice Lagrangian trajectories and linear velocities

Sea ice is identified and tracked employing the methods developed in Chapter 2 [65]. Daily

sea ice positions and velocity measurements are calculated. As such, for a given ice floe i,

its instantaneous position xi

�
G8 (C), H8 (C)

�
and its instantaneous velocity, ui

�
D8 (t), E8 (t)

�
are

estimated with a temporal resolution of 24 hr. Here, D8 (t) and E8 (t) are the eastward and

northward velocity components, respectively, along the Arctic polar stereographic projection

axes. The trajectories of these ice floes are also recorded. An example is presented in Figure

4.1, where backward trajetories of sea ice identified on 14.05.2003 are displayed in di�erent

colors for ease of visualization.

An unprecedented number of sea ice trajectories were calculated and employed in this

analysis, totaling 13,280. The captured trajectory lifetimes ranged from 2 to 90 days. Sea

ice trajectories lasting over 30 days during our study are presented in Figure 4.1.B. The

recovered sea ice dataset was composed of sea ice with length scales (taken as the square

root of the surface area) which ranged from 3 to 42 km (Figure 4.1.C). Given the broad range

of spatial scales, this dataset provided comprehensive sampling at the ocean surface across

meso- to submeso-scales.

The large number of the observations allowed for the binning of the data into groups of

two years. The number of sea ice floes used for this analysis is shown in Figure 4.1.D. When

an ice floe is no longer tracked, it stops contributing to the dispersion analysis. The longer

the trajectory, the harder it becomes to track that specific ice floe due to cloud coverage or
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Figure 4.2: Mean velocity field. a) NSIDC mean velocity field calculated during the period from
05.04.2017 to 05.05.2017 (blue arrows) along with instantaneous velocity vectors captured from MODIS
imagery on 20.04.2017 (black arrows). b) Zoomed-in area (red square) displays mean flow field calcu-
lated at locations of instantaneous velocities via a biharmonic interpolation (dark blue arrows). The orange
dashed line indicates the cross-stream velocity component.

high deformation rates in the region. To ensure statistical integrity, the last point of the

dispersion curve must contain at least 30 sea ice trajectories.

Calculation of sea ice mean velocity flow and absolute dispersion

To correctly parameterize the turbulent flow field via single-particle statistics, the influence

of the mean flow field is removed from the MODIS-derived Lagrangian trajectories. There

exist several approaches to achieve this. One way to calculate the mean flow of the region is

by grouping observations into geographical bins of equal size. However, there are several

factors to consider when doing so. For example, the dataset employed can have uneven
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coverage and produce an array-bias [16]. Furthermore, the size of temporal and spatial

bins must be selected carefully [56]. There have been several attempts to address this issue,

including Rampal et al., 2009 and 2016 [105, 107]. In both studies, the smallest integral time

and length scales that converged to a constant value were selected, i.e., selecting the smallest

region containing the displacements A0
8
as geographical and temporal bins are varied.

Another approach is to calculate Lagrangian averages from individual Lagrangian

trajectories of the tracers. Zavala Sansón [151] calculated a mean velocity vector for each of

their drifters by averaging retrieved velocities over a temporal window equal to the mean

lifetime of their total drifters (45 days). Given that the trajectories in the present dataset are

too short to assess a Lagrangian mean flow of individual ice trajectories, an additional sea

ice product is employed. Daily velocity fields from the National Snow and Ice Data Center

(NSIDC) 25 km sea ice drift product were used [135]. These Eulerian velocity fields are

averaged over a dynamic temporal window of ) = 31 days. As a result, each observation

has an instantaneous velocity vector and a mean velocity vector derived from the NSIDC

product.

The NSIDC product provides vertical and horizontal velocity components, UNSIDC(C)

and VNSIDC(C), projected onto a NSIDC EASE-Grid North projection. To compute the zonal

and meridional components of this data, the following rotation matrix is applied:

u
zon
NSIDC(t) = UNSIDC(t) · cos(L) +VNSIDC(t) · sin(L)

u
mer
NSIDC(t) = �UNSIDC(t) · sin(L) +VNSIDC(t) · cos(L) .

(4.13)
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Here, ! is the longitudinal coordinate of the vector in question. Thus, u
zon
NSIDC(t) and

u
mer
NSIDC(t) are the converted velocity components along latitudinal lines and longitudinal

lines on the Earth’s surface, respectively. Finally, these geo-referenced components are

transformed into a cartesian polar stereographic coordinate system, uNSIDC(t) and vNSIDC(t)

[28].

The monthly mean velocity field for April 20, 2017 () spans from April 5 to May 5)

is displayed in Figure 4.2.a (blue arrows). The ice floes’ instantaneous velocity vectors

retrieved from MODIS images are displayed with black arrows in a zoomed area in Figure

4.2.b. The monthly mean velocity vector at the location of the MODIS observations is

computed by means of a biharmonic spline interpolation. These vectors are shown with

darker blue arrows in Figure 4.2.b. This interpolation method is ideal to calculate a mean

velocity field of the ocean since it provides minimum-curvature interpolation of nonuniform

data [116]. The resulting mean velocities are used to calculate the residual velocities of the

tracked ice floes.

The velocity component parallel to the mean flow, E | |
824

, and the component perpendicular

to the mean flow, E0
824

are calculated. The latter is displayed with orange dashed lines for each

instantaneous velocity vector in Figure 4.2.b. A complete removal of the mean flow influence

is impossible, and by only considering the perpendicular velocity E0
824

as the residual velocity,

the influence of the mean flow field is excluded as much as possible [26]. E0
824

is then used to

calculate sea ice absolute dispersion using equation 4.2 and is referred to as the fluctuating

velocity component of sea ice henceforth.
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The mean flow field was calculated by integrating the velocity flow field over a dynamic

temporal window, ) , of 31 days. The duration of 31 days was chosen to account for the

variability of oceanic conditions of the region, i.e., eddy lifetime in the region is about 20

to 30 days [38]. To assess the chosen averaging window, the autocorrelation function of

the velocity fluctuations was examined, see Figure 4.3.A. The rapid decrease and eventual

convergence to 0 in the autocorrelation function is an indication that the correct averaging

parameters were chosen to calculate a proper mean velocity field [105]. The autocorrelation

function of the fluctuating velocities of the ensemble comprising the years 2003-2020 also

rapidly decreases and eventually converges to 0 (Figure 4.3.A, inset).

4.3 Sea ice dispersion results and analysis

Sea ice dispersion is calculated employing the velocity fluctuations of sea ice, E0
824

, obtained

from MODIS imagery. The absolute dispersion of sea ice revealed a dispersion growth

following an anomalous dispersion regime (Figure 4.3.B). Error bars based on standard error,

f

#
, where f is the standard deviation of A02, are also presented. Each of the bi-yearly groups

displayed a 5/4 power law growth behavior for time scales between 1 to 24 days (Figure 4.3.B.

In addition, when binning all the observations into a single ensemble encompassing the years

2003 to 2020, the dispersion regime clearly followed anomalous dispersion from 1 to 41 days

(Figure 4.3.B, inset). This dispersion growth regime is indicative of a flow field where shear

and stretching dominate [9, 21]. In MIZ where meso/submeso-scales are known to influence
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Figure 4.3: Single-particle dispersion statistics. a) Normalized autocorrelation functions E0824, binned into
two-year groups. (Inset) E0824 autocorrelation function of an ensemble composed of all the observations
collected from 2003 to 2020. b) Absolute dispersion of sea ice calculated from E

0
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(Inset) Absolute dispersion calculated for ensemble composed of all the observations collected from 2003 to
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PDF of fluctuating velocities of an ensemble composed of all the observations collected from 2003 to 2020.
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surface dynamics, this behavior indicates the e�ect of hyperbolic or elliptical regions of

coherent structures on ice drift. A ballistic regime was expected at shorter timescales, but

the regime cannot be captured due to the daily resolution of the measurements. Nevertheless,

this demonstrates the ability to retrieve sea ice velocity fields from remote sensors to reveal

the topology of the underlying flow field. The results presented here were in accordance to

buoy studies in this region (e.g., [26]).

The integral time scale, calculated as
Ø
)0

0 '(g)3g, varies slightly between all years, from

0.7 to 1.2 days. In this region, the inertial oscillation frequencies vary from -1.885 to -1.975

cycle/d. This suggests that ice motion across-the-mean-flow is governed by timescales

associated with oceanic phenomena and not by these high-frequency inertial oscillations

[67]. In comparison, buoy studies such as [26] found values from 0.38 to 0.57 days in the

Fram Strait region. The short timescales indicated forcing mechanisms associated with

higher frequency processes. Furthermore, Lukovich et al., [67] calculated 0.7 days in the BG,

while Colony et al., [13] measured integral time scales of 5 days in the Arctic basin. As these

studies used di�erent ways to remove the mean flow influence from their measurements,

variation among studies was expected.

Furthermore, probability density functions (PDF) of the velocity fluctuations were

calculated (Figure 4.3.C, inset). A Gaussian behavior of a PDF suggests a ballistic regime

(random-walk) of sea ice dispersion. Analysis of the fourth-order-moment of the PDF

revealed departures from Gaussianity. A Gaussian distribution would yield a kurtosis value

of 3, whereas, for each of the bi-yearly groups, a kurtosis value was quantified ranging from
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5.8 to 8.4. The 2003-2020 ensemble yielded a kurtosis value of 7.1 (Figure 4.3.C, inset).

The PDF of the sea ice velocity fluctuations exhibited extended tails, reaching maximum

values of 47 cm/s, which contributed to the high kurtosis. These high velocities can be

associated with intermittent high energy events in the flow field, i.e., coherent structures [8].

Sea ice drift speeds were observed to be greatly a�ected by the rising temperatures. A

strong correlation between the conditions of the sea ice field and its drift speed was found.

To assess the conditions of the field, four regional monthly sea ice extent indices were

calculated from di�erent sources. Monthly mean sea ice cover values were calculated from

(I) the Multisensor Analyzed Sea Ice Extent (MASIE) and the National Snow and Ice Data

Center (NSIDC), (II) area, and (III) ice extent indices [22]. A fourth metric, the monthly

means of sea ice export exiting Fram Strait was also calculated from (IV) Smedsrud et al.,

[118]. A strong correlation between these metrics was observed (Figure 4.4.A, grey). These

four metrics were therefore used to describe the monthly ice cover conditions during our

study period.

On seasonal time scales, sea ice drift speed was found to be highly correlated to the

sea ice cover conditions (Figure 4.4.A ). April and May had the highest values of sea ice

drift speed every year, when the ice extent values were the highest. In the late summer

months from July through September, the speed drift of sea ice decreases. These findings

contradict the recent observations that sea ice speeds have increased as a result of decreasing

sea ice concentrations in the Arctic basin [93]. When low sea ice concentration values in the

central Arctic are observed, the response of sea ice to atmospheric forcing is more readily
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Figure 4.4: Sea ice field evolution a) Time series of monthly average values of sea ice extent from MASIE
and NSIDC products plotted from April through September 2003-2020 (greys). Monthly sea ice export
through Fram Strait from [118] plotted from April through September 2003-2014 (black). Monthly sea ice
speed values from MODIS observations are also plotted (blue). b) Yearly average weighted values of sea
ice extent from MASIE extent, NSIDC extent and NSIDC area (greys). Absolute mean E | |824 values of yearly
ensembles plotted (green). c) Kurtosis values of PDF constructed from yearly-binned velocity fluctuations
as a metric to turbulent events (orange). Notice the inverted right y-axis highlighting the anti-correlation
between ice extent and kurtosis values of E0824 PDF.
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observed, allowing for larger drifting speeds. In MIZ, however, the opposite was observed.

Lund et al., 2018 [71] suggested that sea ice wind stresses might have a stronger e�ect on

consolidated ice than on thinner ice, which has a lower surface roughness and consequently

is less responsive to wind forcing.

Finally, the inter-annual time scales of sea ice drift were explored. To that end, weighted

average regional values of sea ice extent were calculated based on the number of observations

for the Spring and Summer seasons of each year (April through September). These yearly

values are presented in Figure 4.4.B-C, grey. The components of sea ice velocity vectors

were examined against ice extent, i.e., along-the-mean-flow, E | |
824

, and across-the-mean-flow

E
0

824
. A strong correlation was found between E | |

824
and the yearly sea ice extent values, R=0.7

(Figure 4.4.B). Of particular interest was the anti-correlation, R=-0.6, found between sea ice

cover and the kurtosis values calculated from E
0

824
PDF (Figure 4.4.C).This behavior can be

explained by the relationship between sea ice cover and the submesoscale eddy field. As the

sea ice cover decreases, submesoscale eddy activity in the ocean is predicted to increase

[138]. The kurtosis values of E0
824

found in this investigation serve as a metric to quantify

the variability and departure from Gaussianity of sea ice motion. Sea ice cover is known

to suppress eddy formation [81]. Therefore, a diminishing sea ice cover results in higher

kurtosis values of the E0
824

PDF. A predicted ice-free central Arctic will consequently result

in an intensified eddy field in the future, similar to the currently observed trends in MIZ.
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4.4 Conclusions

In this chapter, the structure of the sea ice field within the MIZ was investigated by quantifying

the dispersion statistics of sea ice. The dynamical regime of the sea ice drift field was

assessed via a single-particle dispersion analysis. To this end, Lagrangian trajectories of sea

ice derived from MODIS imagery were considered along the eastern coast of Greenland.

First, the fluctuating velocity of sea ice was recovered by removing the influence of the mean

flow. Only the cross-stream component of velocity was considered.

After grouping the data into bi-yearly groups, each of the groups displayed an absolute

dispersion growing with a power-law of 5/4. This absolute dispersion regime is known as so-

called hyperbolic regime. These findings suggest that sea ice transport (without the influence

of a mean flow) is associated with oceanic eddies. Recent observations and numerical

simulations have suggested that submesoscales can drive the state and dynamics of sea ice.

Therefore, the results provide direct evidence of the importance of meso/submeso-scale

turbulence on sea ice transport in MIZ.

Oceanic survey studies often fail to make clear inter-seasonal and inter-annual distinc-

tions to quantify absolute dispersion despite the drastic changes observed in oceanic and

atmospheric conditions from season to season and from year to year in the Arctic [112, 153].

To retain statistical integrity, instead, these studies group all the available data of a region into

a single statistical ensemble (e.g., [105, 107]). The critical advantage of employing MODIS

data is the large number of retrieved sea ice measurements. This allowed for the examination
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of inter-annual variability of sea ice dispersion, which was examined for almost two decades

along the eastern coast of Greenland. A strong correlation between the conditions of the sea

ice field and its drift speed was found. Monthly mean sea ice cover indices were calculated

from various sources. On seasonal time scales, sea ice drift speed was highly correlated to

the sea ice cover conditions. For the months of April and May, the highest values of sea

ice drift speed were recovered every year. On the other hand, in the late summer months

of July through September, sea ice speeds decreased to their lowest values. Lastly, sea ice

fluctuating velocities varied according to the sea ice cover. This suggested that the amount

of high-energy turbulent events in the sea ice flow field increases with a receding ice cover.

This is in accordance to the results presented in Chapter 3, where the rotation variance of sea

ice was employed as a metric to characterize the small scale-eddy energetics of the flow field.
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Chapter 5

Lagrangian statistics of in-situ and

remote sensing sea ice observations in

marginal ice zones

5.1 Introduction

Whether chemical, biological, or artificial, the dispersion of surface tracers can be used to

understand the underlying turbulent processes driving their motion. Globally, these turbulent

mechanisms have been thoroughly investigated. However, their small size, along with the

harsh conditions in the Arctic, have made it di�cult to fully understand them and their role

in sea ice transport. Leveraging the unique opportunity to employ unprecedented drifter

data in concert with satellite images, this chapter investigates the surface circulation of the
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Greenland Sea. Both datasets provide important information to understand the ocean surface

circulation in regions where direct ocean measurements are challenging to obtain. Moreover,

the scales associated with the spread of surface drifters can provide useful information to

advance accurate modeling and forecasting of sea ice conditions in the Arctic.

In 2020, rising temperatures and extreme weather events decreased the Arctic ice extent

by almost 40% from the 1981-2010 satellite record mean [97]. This rapid ice loss has already

begun to transform the region, e.g., marginal ice zones (MIZ) continue to increase in size,

duration, and influence over the Arctic climate system [124]. MIZ are important regions

along the ice edge where meso- ('0 ⇠ O(�1)) and submeso-scale ('0 ⇠ O(1)) variability

strongly influences the sea ice field and vice versa. Understanding how sea ice and ocean

currents evolve in MIZ is thus crucial to fully characterize the mechanisms controlling

surface dispersion and thus the mechanisms transforming the new Arctic.

A complete understanding of the multiscale features driving the sea ice and ocean flow

fields is challenging. Globally, coherent structures driving surface circulation have been

thoroughly investigated through altimetry data. However, these observations are obstructed

by the presence of ice in the Arctic regions. Although many methods exist to recover

oceanic measurements from areas of open water over the sea ice cover [4, 54], long-term

high-resolution measurements remain unavailable. For these reasons, tracer transport across

geostrophic surface currents has become an important tool to investigate the signature of

the underlying flow circulation in polar oceans. The wind forcing on drifters and surface

currents occurs simultaneously near coastal zones and thus wind forcing does not a�ect
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drifter dispersion [83, 100, 101]. Moreover, the sea ice dynamics are in quasi-equilibrium

with the underlying oceanic eddy field in MIZ [75]. Minimally a�ected by wind forcing,

Lagrangian drifters thus serve as an important indicator to gauge the evolution of meso-

/submeso-scale physical processes in rapidly changing Arctic MIZ. In this work, we have the

unique opportunity to employ high resolution in-situ Lagrangian measurements and, for the

first time, satellite-derived Lagrangian trajectories of sea ice as surface drifters.

Dating back to work by Colony et al., 1984 and 1985 [13, 14], sea ice has been employed

as a tracer to characterize the properties of the underlying flow field via statistical analysis,

namely single- and two-particle dispersion [110, 128]. Single-particle dispersion, also

known as absolute dispersion, describes the structure of the drift field by quantifying the rate

at which a tracer moves away from its original position. If the resolution of the measurements

allows it, di�erent regimes in the absolute dispersion of the tracers can be identified, revealing

the topology of the underlying flow field. At short time scales, the particles are expected to

be advected by the mean flow, known as the ballistic regime [56]. During a late-time limit,

the tracer experiences random walk motion known as a di�usive regime. These regimes

have been readily resolved in oceanic measurements [16, 56, 57, 107].

At intermediate scales, the presence of anomalous regimes associated with shear and

stretching by mesoscale eddies has been observed in numerical simulations, experiments,

and oceanic surveys [9, 21, 26, 37, 46, 67, 103, 151].

Meanwhile, a more comprehensive characterization of the flow field across broader

length scales can be accomplished by quantifying the relative dispersion of surface tracers.
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Two-particle dispersion quantifies the rate at which two tracers move away from each

other. Along with relative di�usivity, these metrics can describe the mixing and stirring

characteristic length scales of the turbulent flow [56]. At length scales smaller than the

Rossby radius of deformation, '0, particles drift away driven by coherent structures larger

than their separation distances. This process is known as nonlocal relative dispersion.

At larger scales, two local dispersion regimes can be observed: a ballistic regime and a

Richardson regime. These occur when relative dispersion is dominated by eddies whose

length scales are similar to the pair separation distances. Lastly, a random walk, or di�usive

regime, is recovered when the two particles are uncorrelated and their separation distances

exceed the eddy length scales.

Relative dispersion has been explored in various oceanic studies, [15, 46]. Nevertheless,

the observational di�culties arising from the small '0 found at high latitudes can make

nonlocal dispersion challenging to resolve. Koszalka et al., [46] explored the relative

dispersion of POLEWARD experiment surface drifters in the Nordic Seas from 2007 to

2008. The team resolved three regimes, including a submesoscale regime within the first two

days and up to 10 km. Next, they recovered a Richardson regime from 2 to 10 days and 10 to

100 km. A di�usive regime was lastly recovered when the separation distances were greater

than 100 km. Meyerjürgens et al., 2020 [83] employed surface drifters in the North Sea.

The team resolved a nonlocal dispersion regime at scales smaller than 10 km, followed by a

ballistic relative dispersion regime and a Richardson regime in the final phase of their data.
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Building on the framework of these studies, the structure of the sea ice drift field is

investigated within the MIZ by quantifying the dispersion statistics of sea ice from in-situ

field campaigns and remote sensing Lagrangian data. A relative dispersion analysis in the

Fram Strait region has not been performed yet. Moreover, studies in absolute dispersion

statistics are limited to one investigation [26]. This is due, in part, to the limited number of

buoy deployments in the region. In this study, the opportunity to employ data from one of

the largest Arctic research expeditions was employed. The recent Multidisciplinary drifting

Observatory for the Study of Arctic Climate (MOSAiC) campaign collected unprecedented

data as the research vessel exited the Arctic through the Transpolar drift into the Fram Strait

region from 2019 to 2020. In addition, Moderate Resolution Imaging Spectroradiometer

(MODIS) imagery is leveraged to recover valuable daily Lagrangian observations of sea ice

at moderate spatial resolutions. MODIS images represent the longest record of Earth ever

compiled and provide a continuous view of the evolution of sea ice drift since 2003 [147].

The MOSAiC Lagrangian data, in concert with MODIS imagery, o�ers an extensive number

of sea ice measurements to investigate one- and two-particle pair statistics.

This chapter is organized as follows. The region of interest and data are briefly described

in Section 5.2. In section 5.3, the methodology to calculate the dispersion metrics of the

datasets is presented. Lastly, the results are given in Section 5.4, followed by a discussion

and conclusions in Section 5.5.
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5.2 Study area and data

5.2.1 Study area

The study focuses on the MIZ south of Fram Strait along the eastern coast of Greenland

(70° to 85°N, -30° to 20°E), Figure 5.1a. This region is an important component of the

Arctic climate system. As described in previous chapters, in this region, warm and salty

Atlantic waters meet colder and fresher polar waters, supplying nutrients and controlling

the heat and freshwater budget of the region [33]. An estimated 14% of the total Arctic

sea ice volume exits through Fram Strait each year via the East Greenland Current (EGC),

which is the main southward current in the region [121]. Together with strong winds, the

EGC transports over 90% of the ice that exits the Arctic into MIZ, making this region the

largest and most concentrated meridional sea ice flow in the world [114, 139]. Here, the

first baroclinic Rossby deformation radius, '0 is approximately 5 km [92], suggesting eddy

wavelengths in the order of 2c'0. Eddies have been reported to range within 20-40 km with

a lifetime of 2-3 weeks [38, 142]. Larger eddies have also been detected, reaching 80-90 km

and lasting no more than 10 days [48]. Atmospheric vortices develop at large spatial scales

(200–1000 km in diameter) and quick time scales (1-2 days) [143].
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A B

Figure 5.1: Study Region. a) Map of the east Greenland region with 104 MOSAiC buoy trajectories cap-
tured during the MOSAiC mission. b) Collapsed map of the east Greenland region with sea ice trajectories
derived from MODIS imagery from 2003 to 2020. Only trajectories of sea ice tracked over 25 days are
displayed.
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5.2.2 Sea ice Lagrangian buoys

The recent MOSAiC campaign collected unprecedented Arctic sea ice data 1. As the research

vessel Polarstern exited the Arctic basin in the transpolar drift, ice tethered platforms, or

buoys, were deployed along the vessel’s trajectory. In total, an array of over 200 GPS

drifting buoys was deployed in a distributed network, capturing scales of sea ice motion

from hundreds to thousands of meters from the Siberian coast to the Greenland Sea. The

deployment of the first buoy occurred on September 26, 2019, while the last measurement

was received on April 19, 2021.

Di�erent types of drifting sensors were deployed during the mission, including CALIBS

(which measure temperature, barometric pressure, and position), Modular Sea Ice Buoy

(which have sensors to measure barometric pressure, temperature and humidity, temperature,

salinity, camera, position, etc), Surface Velocity Profiler (which measure temperature,

barometric pressure, and position), among others. Consequently, the transmission frequency

of each buoy varied from 15 min to 4 hrs. Therefore, the positions of each buoy with di�erent

sampling frequencies are interpolated to obtain uniform hourly positions.

The influence of tides and high-frequency inertial oscillations on buoy motion can be

captured due to the hourly resolution of the drifters. The Coriolis parameter is defined as

5 = 2⌦B8=(q), where the rotational speed of Earth, ⌦ = 1.002736 cycles per day, and q is

the latitude. As such, the inertial frequency varies from -1.885 to -1.975 cycle per day in

our study region. Therefore, one inertial period corresponds to approximately 12 hrs. To

1https://mosaic-expedition.org
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remove the e�ects of high-frequency inertial oscillations, a time-averaging operation on

buoy locations over a moving time window of 12 hrs is performed.

Finally, due to the high seasonal and regional variability of the Arctic, only the sections

of the MOSAiC trajectories transitioning over MIZ (sea ice concentrations below 80%)

during the spring and summer seasons are considered. When large gaps in the position data

of buoys were found, the trajectory was stopped during this analysis. On average, while

constraining the buoys to these conditions, the buoys have a lifetime of 30±19 days and

cover a distance of 363±244 km. This results in a total of 104 buoys, for which trajectories

are mapped in Figure 5.1.A. This dataset is referred to as MOSAiC buoys hereafter.

5.2.3 Sea ice remote sensing observations

Complimenting the MOSAiC buoy dataset, the MODIS-derived Lagrangian sea ice trajec-

tories of sea ice derived in previous chapters are employed. To summarize, the MODIS

images were directly downloaded from the open-access Earth Observing System Data and

Information System (EOSDIS) Worldview platform. These georeferenced images have a

moderate resolution (250 m) and are projected onto an Arctic polar stereographic projection

(WGS 84/NSIDC Sea Ice polar Stereographic North 70� N). Daily Corrected Reflectance

True Color and Corrected Reflectance False Color images are used. Each of these images is

composed of three bands corresponding to RGB channels, namely band 1 (620– 670 nm),

band 4 (545–565 nm), and band 3 (459–479 nm) for the former and band 7 (2105–2155 nm),

band 2 (841–876 nm), and band 1 (620–670 nm) for the latter. To extract the Lagrangian
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trajectories of sea ice, the methodology developed in Chapter 2 is employed. A total of

13,280 ice floe trajectories were obtained, with length scales ranging from 4 to 65 km,

of which 180 ice floes had trajectory lifetimes longer than 20 days. This last subset is

displayed in Figure 5.1.B. The satellite-derived Lagrangian sea ice trajectories are referred

to as MODIS sea ice henceforward.

5.2.4 Sea ice mean flow field

To investigate the structure of the underlying flow field via single-particle dispersion, the

influence of the mean flow field is first removed. Several methods exist to do so [26, 107, 151].

Following Gabrielski et al., [26], the National Snow and Ice Data Center (NSIDC) sea

ice drift product is employed [22]. The NSIDC provides daily Eulerian fields (25 km of

resolution) from 1978 to the present day. The mean flow field is estimated by averaging

NSIDC daily velocity vectors considering a moving temporal window, ) , of 31 days. The

value of ) is chosen to account for the variability of oceanic and atmospheric conditions of

the region, i.e., eddy lifetime in the region is about 20 to 30 days [38].

5.2.5 Sea ice concentration

Daily sea ice concentration values were employed to estimate the day correspoding to

when a MOSAiC buoy entered the MIZ. Sea ice concentration estimates are quantified

from NSIDC MASIE-AMSR2 (MASAM2) 4-km product. The product blends sea ice

concentration data from the Multisensor Analyzed Sea Ice Extent (MASIE) product and the
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Advanced Microwave Scanning Radiometer 2 (AMSR2), with grid cell sizes of 4 and 10 km,

respectively. The product covers July 2012 to present day [23].

5.3 Theory review and methodology

The surface dispersion of Lagrangian drifters is investigated in the Fram Strait and the

Greenland Sea MIZ. Whether MOSAiC instruments or MODIS-derived sea ice, the locations

of these surface tracers are statistically analyzed to describe the topology of the flow field.

These measurements are projected onto an Arctic polar stereographic projection (WGS

84/NSIDC Sea Ice polar Stereographic North) to calculate their horizontal and vertical

velocity components along these projection axes.

First, the dispersion statistics of sea ice via absolute dispersion are considered. The

displacement of the drifters from their initial positions is calculated. Next, two-particle

dispersion of the drifters is analyzed by pairing buoys as they approach each other. The

relative dispersion and di�usion of both drifter ensembles are estimated. Lastly, the so-called

finite-scale Lyapunov exponents are quantified, allowing for the calculation of relative

dispersion rates with distance as an independent variable [56, 58]. A brief theory review

and methodology is presented next.
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5.3.1 One-particle statistics

The absolute dispersion, A02, of the flow field is obtained by averaging the displacement of

particles over an ensemble comprised of N surface drifters [128],

A
02 =

1
# �1

#’
8=1

[ G
0

8
(C)� G

0

8
(C0)]

2
, (5.1)

where G0
8
(C) and G0

8
(C0) are the residual positions of drifter 8 after the influence of the mean

flow has been removed at time t and at an initial reference time C0, respectively. In this study,

the MOSAiC buoys will form an ensemble while the MODIS sea ice will comprise a second

ensemble.

In order to remove the influence of the mean flow, the monthly mean flow field velocity

employing the NSDIC 25 km sea ice drift product is employed. The mean flow fields were

interpolated over the locations of every observation. Following Gabrielski et al., [26], the

Lagrangian velocities from the particles are projected in the direction of the mean flow. The

across-mean flow velocity component is considered the velocity fluctuation, D0
8
(C). Finally,

Equation 5.1 is obtained by integrating D0
8
(C) in time to obtain G0

8
(C) [105]. The displacement

vectors caused by the velocity fluctuations in the cross-stream direction of the flow field are

presented in Figure 5.2.A and 5.2.B for MOSAiC buoys and MODIS sea ice, respectively.
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Figure 5.2: Displacements by velocity fluctuations. a) Cumulative displacements of the MOSAiC buoys
considering only the velocity fluctuations (cross-stream). b) Cumulative displacements of the MODIS sea
ice considering only the velocity fluctuations (cross-stream). d) Normalized autocorrelation function of
velocity fluctuations from MOSAiC buoys (red) and MODIS sea ice (blue).

Absolute dispersion

If the data resolution is su�cient and the influence of the mean flow field has been

properly removed, distinct dynamical regimes in the absolute dispersion function can be

observed. At short time scales, dispersion is characterized by a ballistic regime, where

A
02 grows quadratically. The ballistic dispersion regime is observed at timescales smaller
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than Lagrangian integral timescale, )! . The autocorrelation of fluctuating velocities, ', is

calculated as

' =
hu

0

i
(t)u0

i
(t+ g0)i

hu0

i
(t)2i

, (5.2)

where g0 corresponds to zero lag. The autocorrelation functions of MOSAiC buoys and

MODIS sea ice are presented in Figure 5.2.C. )! is thus defined as

)! =
π

CI

0
'(g0)3g0 , (5.3)

where CI is taken as the first-zero crossing of '. )! for the MOSAiC buoys was calculated to

be 0.80 days, while )! for the MODIS sea ice was 1.06 days. This discrepancy is attributed

to the hourly resolution of MOSAiC buoys compared to the daily resolution of MODIS sea

ice measurements. In comparison, Gabrielski et al., [26] found values from 0.38 to 0.57

days in the Fram Strait region, meanwhile, Lukovich et al., [67] calculated 0.7 days in the

Beaufort Gyre and Colony et al., [13] estimated a velue of 5 days in the Arctic basin.

At intermediate scales, anomalaous absolute dispersion is expected, namely an elliptic

and hyperbolic regime, with A02 / C5/3 and A02 / C5/4, respectively. The hyperbolic regime

corresponds to the scales at which the flow is dominated by shear and stretching, characteristic

of coherent vortices [9, 21, 103].

Finally, at longer timescales, ) � )! , dispersion is characterized by a di�usive regime.

This regime is also known as the random-walk regime, where A02 / C. The dispersion regimes

are summarized in Table 5.1.
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5.3.2 Two-particle statistics

The relative dispersion of surface drifters along MIZ is next investigated. For the MOSAiC

ensemble, buoy pairing is assigned as they approach each other, regardless of their deployment

date or location. Buoys are considered pairs if they approach each other at a distance ranging

from 650 m to 1 km in order to maximize the number of buoy pairs identified while still

capturing short separation scales.

MODIS sea ice floes are also paired according to their separation distances. Due to the

coarser resolution of MODIS measurements, a sea ice pair is defined as two ice floes located

at a maximum initial separation distance of 20 km. This results in the pairing of 62 ice floes

with trajectories longer than 10 days.

Relative dispersion and di�usivity

Relative dispersion, ⇡2 is calculated by measuring the separation distance between two

drifters in time:

⇡
2 =

1
#

#’
8< 9

[ G8 (C)� G 9 (C)]
2
+ [ H8 (C)� H 9 (C)]

2
, (5.4)

where G and H are the vertical and horizontal position components along the stereographic

projection axis of 8 and 9 drifter pairs. The scaling components of relative dispersion

give insight into the oceanic topology as drifters spread from a center of mass, providing

information into the energy scales associated with the flow field. Two-dimensional turbulence

predicts that, at the inertial range where enstrophy cascades to smaller scales, the energy
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spectrum, ^, scales with a ^�3 dependence [56]. The pair relative dispersion will grow

exponentially, ⇡2
/ 4

C [10, 49, 62]. This so-called nonlocal dispersion occurs because the

separation of the pairs is much smaller than the scale at which the energy is injected into the

system.

Relative dispersion behaves like absolute dispersion at small and large scales. A ballistic

behavior is present when ⇡2
/ C

2, associated with the local shear of the flow field. A di�usive

regime can be recovered if the separation distance of the pairs is larger than the biggest

eddies in the region. Therefore, the pair particles are not correlated and their separation

grows as a random walk where ⇡2
/ C.

At intermediate scales, in 2-D turbulence, the energy spectrum cascades at a constant

rate of ^�5/3 towards large scales [49, 56]. This yields a separation rate regime predicted by

Richardson’s law, where dispersion grows cubically in time up to a length scales comparable

to the largest eddies in the region, ⇡2
/ C

3 [110]. This inertial regime is known as local

dispersion since the spreading rate of the pairs is driven by coherent structures comparable

in length scales to the pair separation.

The relative di�usivity of the drifters, . , is defined as the rate of change of relative

dispersion. . measures how fast the system grows in time,

. =
1
2
3

3C

⇡
2
. (5.5)

Of particular interest is the di�usivity regime growing under Richardson’s law, as this can

describe the scales in the flow of the energy-containing eddies. Richardson’s law thus
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indicates that, at certain length and time scales, the stirring of the particles is driven by

eddies comparable in scale to the separation of the particles (local di�usivity). This regime

is characterized by . / ⇡
4/3. Nonlocal di�usivity is characterized by . / ⇡

2 [56].

Finite-scale Lyapunov exponents

Artale et al., [5] introduced a finite size metric, g(d), to describe the Lagrangian motion of

particles enclosed in a basin. In this scheme, the main goal is to calculate the time it takes

two particles to separate a distance g(d), rather than quantifying their separation distances

as time progresses. Making distance an independent variable is helpful to avoid binning

particles under an incorrect dispersion regime.

The Finite-scale Lyapunov exponents are defined as

_(X) =
;>6(d)⌦
) (X)

↵ , (5.6)

where T(X) corresponds to the time it takes for by a pair of drifters to separate from a

distance X to a larger distance dX. Following [15, 58, 151], the scaling factor is defined as

d =
p

2. FSLE allow for the exploration of every possible initial separation within the buoy

trajectories. Therefore, every time the drifters cross an initial separation distance scaled by

d =
p

2 is taken into consideration. This increases the number of data points and improves

the statistical integrity in the calculations [70].

The Richardson regime is observed at scales where the FSLE function plotted against

drifter separation distance decreases at a rate / X
�2/3. An advantage of analyzing the flow
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Figure 5.3: Absolute dispersion. Absolute dispersion of MOSAiC buoys (red) and MODIS sea ice (blue).
Green lines are estimated fits, while dashed lines represent the theoretical absolute dispersion regimes:
ballistic (A 02 / C2), anomalous (A 02 / C5/4), and di�usive (A 02 / C). The shading corresponds to 95% confidence
intervals.

field via FSLE is that the di�usivity can be readily recovered, . (X) = _X2 [5]. As mentioned

before, nonlocal relative di�usivity is distinguished by . (X) / ⇡2, while local di�usivity

scales as . (X) / ⇡4/3.
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5.4 Sea ice absolute and relative dispersion analysis

5.4.1 Absolute dispersion

A total of 104 MOSAiC drifting buoy trajectories were employed, along with 13,280

MODIS-dervided sea ice trajectories to calculate the absolute dispersion along Fram Strait

and the north-east Greenland Sea (Figure 5.3). Each dispersion point has a minimum of 30

drifters, respectively. Given the high temporal resolution of the MOSAiC buoys, a ballistic

regime was observed from the beginning up to 1.5 days. The estimated fit is 216.0C2.01.

A transition in regimes was observed next. This anomalous regime lasted from 1.5 to 23

days for MOSAiC buoys, with an estimated fit of 159.0C1.25. The same result was obtained

with MODIS sea ice trajectories, with an estimated fit of 35.5C1.21. Both datasets confirm the

presence of anomalous dispersion at similar scales in this region. MODIS sea ice showed

an anomalous dispersion that persists until the end of the timeseries. The MOSAiC buoys,

on the other hand, displayed a transition at the final stage of the absolute dispersion curve

(estimate fit 379.5C0.84). As expected from theory, absolute dispersion should grow linearly

at large scales.

5.4.2 Relative dispersion

Three di�erent regimes were discerned in the relative dispersion function of MOSAiC buoys

(Figure 5.4.A). First, an exponential growth from 0 to 2 days is observed. This exponential
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Figure 5.4: Relative statistics. a) Relative dispersion of sea ice from MOSAiC buoys (red) and MODIS sea
ice observations (blue). The shaded region indicates the 95% confidence limits for MOSAiC buoys and
the 75% confidence limits for MODIS sea ice. Green lines are estimated fits, while dashed lines represent
the theoretical relative dispersion regimes: nonlocal (⇡2

/ 4
C ), ballistic (⇡2

/ C
2), and Richardson’s (⇡2

/

C
3) regimes. b) Relative di�usivity of sea ice calculated from MOSAiC buoys (red) and MODIS sea ice

observations (blue). Green lines are estimated fits, while dashed lines represent the theoretical relative
di�usivity regimes: nonlocal relative di�usivity (. / ⇡

2), and local relative di�usivity (. / ⇡
4/3) regimes.

growth is indicative of nonlocal relative dispersion as sub-mesoscale mechanisms drive the

drifter’s motion. The estimate fit is ⇡2 = 1.241.86C with an e-folding time equal to 0.54 days.

Next, a ballistic regime from 3.5 to 15 days is seen, distinguished by a quadratic growth

in the relative dispersion curve. For this regime, the estimated fit is ⇡2 = 22.0C2.10. At these

scales, the drifters are mainly advected by the local shear of the EGC. Next, the Richardson’s

regime is recovered from 16 days to the end of the time series. The dispersion growth regime

is expected to develop as ⇡2
/ C

3 (estimated fit ⇡2 = 1.1C2.93). This regime is associated

with mesoscale eddies.
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Interestingly, the Richardson regime is also captured by the MODIS sea ice motion.

Because the spatiotemporal resolution of the images is much lower than MOSAiC buoys

data, the sea ice pairs have a minimum initial separation of 20 km. Therefore, only the

Richardson regime is recovered and the first few days of the MODIS relative dispersion

curve can be neglected since it is not expected to capture a nonlocal or ballistic regime. From

day 11 onward, the relative separation of the MODIS sea ice grew as C3, with an estimated fit

of ⇡2 = 0.5C2.88.

5.4.3 Relative di�usivity

The relative di�usivities of the MOSAiC buoys and MODIS sea ice pairs were calculated.

The mixing scales of the flow field were explored by plotting the results obtained from

Equation 5.5 against pair separation (Figure 5.4.B). The pair separations were determined

by averaging the relative di�usivities of buoys at specific separation bins discretized as

bin= = U=⇡0, where U=1.1 and ⇡0 is the initial distance separation of buoys [46]. A nonlocal

to local dispersion regime transition was observed at approximately 10 km. This first regime

is consistent with nonlocal di�usivity, as the function is expected to grow quadratically at

scales smaller than '0. The estimated fit for the MOSAiC buoys is 4.3⇡2.09. The second

regime was observed right after, at scales similar to '0. This regime is an indication of local

dispersion, where the separation rates are driven by mechanisms with similar length scales

as their separation distance. The estimated fit is 38.8⇡1.19.
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Figure 5.5: Finite-scale Lyapunov exponents. a) FSLE calculated for MOSAiC sea ice buoys (red) and
MODIS sea ice observations (blue). The shaded region indicates the 95% confidence limits. Black line
indicates the theoretical prediction for Richardson (_ / ⇡�2/3

) regime. b) Relative di�usivity derived from
FSLE for the MOSAiC buoy network (red) and MODIS sea ice (blue). Green lines are estimated fits, while
dashed lines represent the theoretical relative di�usivity regimes: nonlocal relative di�usivity (. / ⇡

2), and
local relative di�usivity (. / ⇡

4/3) regimes.

5.4.4 Finite-scale Lyapunov exponents

To calculate the FSLE, every possible initial separation, X, of the drifter pairs was calculated

and every instance the pairs separate a distance, dX, was recorded, where d =
p
(2). The

FSLE calculation begins by finding every instance a pair of buoys is separated within a

distance, X =0 to 1 km. Next, the time it takes these buoys to separates to a distance dX is

recorded.

This step is repeated, and so all the buoys separated within a distance, X =1 to 2 km are

found. The time it takes these buoy pairs to separate by a distance dX is calculated. This is
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repeated so forth. The FSLE calculation is halted when the number of pairs in a distance

group is reduced to 25 % of the number found in the first group. In this study, the calculation

is stopped at the 200th iteration, i.e., X =199 km to 200 km.

The resulting FSLE vs X calculation of MOSAiC buoys is presented in Figure 5.5.A. A

clear Richardson regime can be identified from 101 to 102 km. From 0 to 10 km, however,

a local dispersion is not resolved. It can be inferred that, at these scales, submesoscale

processes smaller than 10 km significantly enhance the dispersion rate of drifters. These

findings are in agreement with the local dispersion observed in Figure 5.4, where nonlocal

dispersion is observed at short time- and length-scales. Despite the reduced resolution of

MODIS data, the Richardson regime is also captured from an FSLE calculation on MODIS

sea ice pairs.

Finally, the di�usivity of sea ice was calculated and is presented in Figure 5.5.B. The

di�usivity derived via an FSLE calculation is consistent with the results presented in 5.4.B.

Nonlocal di�usivity was confirmed by the di�usivity growth scaled as ⇡2 from 0 to about

10 km (estimated fit was calculated as 2.5⇡1.83). Next, the Richardson regime was once

again observed after distances between 13 to 160 km, confirming local di�usivity at larger

scales (estimated fit 9.14.3⇡1.34).
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5.5 Conclusions

In this study, the structure of the underlying flow field was analyzed in the Arctic MIZ via one-

and two-particle dispersion statistics of drifters. Information on the surface circulation is

obtained from two di�erent sources, MOSAiC Lagrangian drifters, and MODIS-detected sea

ice. The main contribution of this study is the analysis of high-resolution data collected by

the MOSAiC mission. From this data, the time and length scales of the smallest processes in

the flow field were resolved. These submesoscale structures are known to strongly influence

the dynamics of the region. However, the number of extensive high-resolution long-term

in-situ observations remains unavailable to fully characterize the dynamics of other MIZ in

polar oceans. With this problem in mind, Lagrangian trajectories of sea ice derived from

Table 5.1: Dispersion regimes detected using MOSAiC buoys.

Absolute dispersion regimes

Ballistic Anomalous Di�usive
t
2

t
5/4

t
5/3

t

time scales [days] 0-1.5 1.5-23 ND 24-end
spatial scales [km] 0.5-15 15-90 ND 75-end

Relative dispersion regimes

nonlocal Ballistic Richardson’s Di�usive
e

t
t
2

t
3

t

time scales [days] 0-2 3.5-15 16-end ND
spatial scales [km] 0.8-6 13-60 60-end ND

⇤ ND: not detected
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MODIS remote sensing data were obtained. As such, information of the flow field in regions

where in-situ measurements are di�cult to recover can still be recovered from remote sensing

imagery. The comparison between the MOSAiC and the MODIS datasets confirmed the

feasibility to retrieve the structure of the flow field from remote sensing imagery. Moreover,

it was confirmed that ice motion at the mesoscale range is properly resolved by MODIS

imagery and can be observed to transition between submeso- and meso-scale ranges.

The results of this investigation are summarized next. The absolute and relative dispersion

at the ocean’s surface for the two datasets were quantified. Despite their di�erences, the results

are consistent between datasets and throughout the study. Inconsistency and failure to resolve

intermediate regimes were expected when analyzing the absolute and relative dispersion

of the MODIS drifters. However, the intermediate regimes were successfully identified

by both the high-resolution MOSAiC buoys and the moderate-resolution MODIS sea ice

measurements. This opens the door to achieving a more comprehensive characterization of

the dynamical processes within MIZ over time by leveraging remote sensing data.

First, single-particle statistics of MOSAiC instruments and MODIS-derived sea ice were

investigated. The influence of the mean flow was removed by employing the NSIDC sea

ice product to calculate the displacements caused by velocity fluctuations of the drifters.

At short time scales, the absolute dispersion of MOSAiC buoys obeyed a nearly ballistic

regime. Because the MODIS measurements have a coarser temporal resolution, this regime

was not expected to get resolved. However, at longer timescales, the absolute dispersion of

both MOSAiC and MODIS drifters grew clearly in an anomalous regime, as the drifters are
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strongly influenced by mesoscale processes in the region. Lastly, the absolute dispersion of

the MOSAiC buoys showed a change of dispersion regimes after 24 days, likely entering

the di�usive regime. There is a di�erence in magnitudes when comparing the absolute

dispersion functions of MOSAiC and MODIS drifters. This can be attributed, in part, to the

coarser temporal resolution of the measurements, as the entirety of the displacements from

each MODIS drifter is not accounted for. Similarly, Gabrielski et al., 2015 [26] compared

the dispersion of two drifter sets with di�erent temporal resolutions, i.e., 1-hr and 12-hr

respectively, which also showed a discrepancy in magnitudes similar to what is observed

in this study. This single-particle statistics analysis on both drifter datasets emphasizes the

findings from other studies that have highlighted the importance of meso/submeso-scale

eddies on sea ice transport [47, 76].

These results are also qualitatively consistent with previous studies in the region. For

example, buoy field campaigns such as Lukovich et al., 2011 [67] followed the trajectories

of 22 ice beacons in the Beaufort Gyre during the winter of 2007 and 2008. Anomalous

dispersion was evident in the meridional dispersion of the beacons from 6 days onward. A

similar study in the Fram Strait MIZ registered absolute dispersion growing quadratically

in time for the first 3 days and an anomalous dispersion from 6 days to 32 days [26]. Both

findings agree with the scales resolved in this investigation. However, the studies employed

only Lagrangian in-situ instruments and a dispersion field analysis in these regions has not

been calculated from remote sensing observations to date.
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Next, the relative dispersion of drifter pairs was explored via a two-particle dispersion

statistical analysis and an FSLE calculation. First, the separation distances of MOSAiC

instruments were quantified and observed to grow exponentially from the beginning up to

approximately 2 days. This nonlocal dispersion regime corresponds to the nonlocal relative

di�usivity regime observed up to 10 km. The e-folding time of 0.5 days agrees with e-folding

times found in Nordic Seas during 2007–2008 [46] and the North Sea in 2018 [83]. On the

other hand, studies performed in other regions of the world found an e-folding time of 12

days in the central North Atlantic [94], 1.25 days in the Bay of Bengal [122], and 0.5 to 1

day in the Southwestern Gulf of Mexico [152]. The faster e-folding time in this study region

indicates faster separation rates of drifter pairs at short-length scales. Therefore, the results

demonstrate that the influence of submesoscale coherent structures on the surface dispersion

of sea ice at short time- and length- scales drives the dynamics in the region.

Two local relative dispersion regimes were also observed in the MOSAiC buoys, namely

the ballistic and Richardson regime. Relative dispersion obeyed a ballistic regime from

3.5 to 15 days, followed by the Richardson regime from day 16 to the end of the time

series. Despite the coarser resolution of MODIS measurements, the Richardson regime

can also be identified in its relative dispersion function after approximately 11 days. The

mixing characteristic length scales of the region agree in both datasets, as local di�usivity is

observed after approximately 10 km. This result is per the Rossby radius of deformation in

the region, '0 = 5 km, and the eddy length scales in the region, 20-40 km with a lifetime

of 2-3 weeks [38, 142]. Larger eddies have also been observed, 80-90 km [48]. Lastly, a
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di�usive regime is not captured by either dataset. Throughout this region of interest, the

EGC might impede the drifters to become uncorrelated and separate linearly (random walk).

Finally, the results obtained from quantifying the FSLE for both datasets were consistent

with the findings obtained from the relative dispersion analysis. After approximately 10 km,

the Richardson regime (_ / C2/3) for both datasets can be discerned in the calculations. When

examining the relative di�usivity, this time derived from FSLE, a transition from nonlocal to

local di�usivity is observed around 10 km. These results agree with other studies performed

around the world, where submesoscale motion shows nonlocal dispersion [15, 46]. Lumpkin

et al., 2010 [70], however, warns that a higher than 1-hr resolution sampling is needed to

resolve submesoscale motion. Meyerjügens et al., 2020 [83] observed a local dispersion in

the form of a Richardson regime at submesoscales. The team attributed this to the possibility

of inertial motions and strong tidal oscillations contaminating the submesoscales motion, as

well as position uncertainties and sampling frequency of the drifters. Because the influence

of inertial oscillations is strong in this region, the influence of inertial oscillations at small

scales was alleviated by averaging the MOSAiC buoy motion over one inertial period, as

explained in Section 5.3.

The lack of comprehensive drift measurements has thwarted a full characterization of

surface dispersion in MIZ. The constant deployment of Lagrangian surveying instruments in

the vast oceans presents a plethora of limitations, not to mention the additional challenges

of pair buoy deployments under the harsh conditions of polar oceans. In this study, it was

demonstrated that extensive and readily available moderate-resolution satellite imagery can
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be employed to detect the transition regimes between nonlocal and local relative dispersion

of the sea ice field in MIZ. Mesoscale turbulence was seen to dominate the absolute

dispersion of sea ice at moderate scales. These findings open the door to achieving a more

comprehensive characterization of the ocean surface dispersion dynamics in Arctic regions

where Lagrangian measurements are di�cult to obtain. To the author’s knowledge, absolute

and relative dispersion have not been quantified from remote sensing satellite imagery.

Moreover, no other study has been conducted in the Fram Strait region to analyze the relative

dispersion of sea ice due to the limited amount of buoys simultaneously surveying the region.

Understanding the dispersion mechanisms driving the sea ice field can improve the modeling,

forecasting, and understanding of the sea ice field in a rapidly changing Arctic system.

126



Chapter 6

Conclusions

The work presented in this dissertation is a comprehensive study of sea ice drift during

the spring and summer seasons in Arctic MIZ over the twenty-first century. With the ultimate

goal of advancing the understanding of the sea ice dynamics, this thesis combined the triad of

remote sensing observational data analysis, high-resolution in-situ Lagrangian instruments,

and numerical simulations.

Conventional sea ice characterization tools are intended to e�ectively retrieve large-scale

sea ice motion in the consolidated ice pack. As such, ice tracking algorithms fail to produce

accurate results given the high vorticity and deformation rates characteristic of sea ice in MIZ.

The need for a characterization scheme capable of identifying the complex sea ice motion

in MIZ inspired the development of a sea ice tracking algorithm in Chapter 2 . Extensive

optical remote sensing imagery, namely Moderate-resolution Imaging Spectroradiometer

(MODIS), was employed for this purpose. The developed algorithm filters atmospheric
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conditions a�ecting MODIS images while maximizing sea ice identification. The algorithm

is composed of three main stages: image processing, feature matching, and sea ice tracking.

The robustness of the method was tested along the eastern coast of Greenland. Calculated

mean ice floe velocities were found to be in good agreement with estimates derived from

buoy and GPS measurements as well as SAR drift products. Further testing in Arctic regions

with di�erent dynamical properties also proved successful (e.g., within Fram Strait and in

the Beaufort Sea), proving the feasibility of the method to collect unprecedented data of sea

ice dynamics in the Arctic MIZ.

Chapter 3, is an in-depth assessment of the role of atmospheric and oceanic forcing on ice

floe motion. First, a strong relation of the sea ice and ocean dynamic field is established via

the idealized quasi-geostrophic model. The rotating rate measurements of over 28,000 ice

floes were calculated in the Beaufort Gyre MIZ. The dynamics of the ice were demonstrated to

be in quasi-equilibrium with the underlying oceanic eddy field dynamics in MIZ. As such, the

sea ice drift field served as an indicator to gauge the evolution of MIZ dynamics in a rapidly

changing Arctic. After establishing this relation, the instances when sea ice trajectories

deviated from a straight path were further investigated. These trajectories were weakly

correlated with the wind field. This suggested that, despite the strong winds in the area,

upper ocean currents play an important role in sea ice transport. During some of these events,

the intrinsically strong sea ice-ocean interactions drove sea ice to mirror meso/submesoscale

ocean eddies, forming loops. An automatic eddy detection algorithm from MODIS imagery

was developed. For the first time, the approach retrieved the geographical location, length
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scale, and direction of identified eddies leveraging satellite-derived sea ice information.

Predominantly, this analysis is a�ected by missing sections in the Lagrangian trajectories of

sea ice. Linear interpolation is used to recover missing information. However, the present

work will benefit from the implementation of a better-suited smoother. Preliminary analyses

have proven successful when an ensemble Kalman smoother (EnKS) is implemented to

recover realistic sea ice dynamics in MIZ. However, the state of the ocean and atmosphere

have to be known a priori. By improving the quality of the recovered sea ice trajectories, the

quality of the eddy-detection tool presented in Chapter 3 can therefore be improved in future

work.

In Chapter 4 , the Lagrangian trajectories along the Fram Strait and Greenland Sea

MIZ were statistically analyzed to study the topology of the underlying flow field. From

2003 to 2020, over 10,000 ice floe trajectories were employed to quantify the single-particle

dispersion of sea ice. In this region, sea ice absolute dispersion grew in an anomalous regime,

driven by the dominant influence of energetic turbulent fluctuations. The results highlight

the importance of meso/submesoscale eddies in sea ice transport. The longevity of the

MODIS data unveiled the sea ice interannual and seasonal variability over the twenty-first

century. A strong correlation was found between sea ice velocities and the sea ice extent

conditions in the region. The magnitude of sea ice velocity in the central Arctic basin has

increased with receding sea ice concentrations. In MIZ, however, a decrease in sea ice

speeds with decreasing sea ice concentrations suggests that sea ice wind stresses have a

stronger e�ect on consolidated ice in the central basin in comparison to the thinner MIZ sea
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ice. As such, comprehensive observations of the MIZ sea ice thus revealed that the critical

physical processes driving sea ice motion in MIZ are di�erent than in the central Arctic

Basin. Furthermore, we find an anti-correlation between sea ice extent and sea ice fluctuating

velocities. As sea ice extent continues decreasing in the Arctic, the ocean turbulent field is

thus expected to intensify.

In Chapter 5 the single-particle and two-particle dispersion of two di�erent types of

surface tracers were quantified along the Fram Strait and Greenland sea MIZ. The unique

opportunity to employ unprecedented MOSAiC drifter data in concert with MODIS images

validated the results presented in Chapter 4. Moreover, this study showed the feasibility

to explore the transition processes linking meso/submesoscale ocean circulation in Arctic

MIZ employing moderate resolution remote sensing imagery. For the first time, Lagrangian

trajectories of sea ice derived from satellite imagery are used to quantify dispersion statistics

of the sea ice field. Both datasets provide important information to understand the ocean

surface circulation in regions where direct ocean measurements are challenging to obtain. As

such, this comprehensive study provided a new tool to study the topology of the underlying

turbulent field. Future investigations would benefit from employing higher-resolution

imagery to capture the smallest dispersion and energy regimes of the sea ice system.

The MODIS-based sea ice tracking algorithm provides novel observations of the sea

ice drift field in MIZ. The presented tool motivates further investigations. A notable future

investigation is the development and validation of a simplified sea ice–ocean–atmosphere

system model. Correct prediction of the mechanical evolution of MIZ can be achieved by
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coupling sea ice observations with high-resolution oceanic and atmospheric measurements.

This information can be employed to quantify the momentum transfer between the atmosphere,

ocean, and ice. This endeavor will support current e�orts of the scientific community to

better forecast sea ice conditions. Atmosphere-ocean forcing of in-situ measurements are not

always available. Nevertheless, the reanalysis product ERA5 10-m wind speeds is suggested

to calculate the wind flow field. Surface Water and Ocean Topography (SWOT) data is

recommended to infer the ocean flow field. The SWOT mission is scheduled to launch later

this year. It will provide sea surface height (SSH) with an unprecedented resolution of 15–30

km wavelength. With global coverage and a repeat period of 21 days, SSH measurements

along Arctic MIZ will be collected. The satellite tracks will cover a large area of the Arctic,

given its 120 km-wide swaths. The small temporal scales of this data will help determine

the presence of eddies in the field and validate the regions identified by meanders and loops

in sea ice trajectories to improve the eddy detection algorithm presented in this work.

This dissertation concludes by emphasizing the crucial role of sea ice in polar oceans.

As the Arctic climate system transforms at unprecedented rates, it is important to integrate

novel and extensive measurements into the study of the sea ice field. Given the plethora of

potential applications, this work presents possible collaborations with experts across physical

oceanography and mechanical engineering disciplines that will help achieve adequate

characterization of sea ice to advance our understanding of MIZ in a new Arctic.
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